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ON THE SPACING BETWEEN TERMS OF GENERALIZED
FIBONACCI SEQUENCES

BY

DIEGO MARQUES (Brasilia)

Abstract. For k ≥ 2, the k-generalized Fibonacci sequence (F
(k)
n )n is defined to

have the initial k terms 0, 0, . . . , 0, 1 and be such that each term afterwards is the sum
of the k preceding terms. We will prove that the number of solutions of the Diophantine
equation F

(k)
m −F

(`)
n = c > 0 (under some weak assumptions) is bounded by an effectively

computable constant depending only on c.

1. Introduction. The problem of studying the spacing between terms
of some sequences has attracted the attention of mathematicians for decades.
For instance, the equation related to the spacing between perfect powers, is
called Pillai’s equation:

(1.1) mk − n` = c,

for a fixed positive constant c. Pillai’s conjecture [13] is that for any given
c ≥ 1, the number of positive integer solutions to the Diophantine equa-
tion (1.1), with min{k, `} ≥ 2, is finite. To the best of our knowledge, this
conjecture remains open (there are several related results, some of them
ineffective; see the nice survey [15]).

We recall that the case c = 1 was already considered by E. Catalan who,
in 1844, conjectured that the only consecutive perfect powers are 8 and 9.
Recently, this conjecture was confirmed by P. Mihăilescu [11]. We refer the
reader to [1] for a better discussion of this subject.

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn
for n ≥ 0, where F0 = 0 and F1 = 1. These numbers are well-known for
possessing amazing properties (consult [7] together with its very extensive
annotated bibliography for additional references and history). It is a simple
matter to deduce that if Fn 6= Fm, then

|Fm − Fn| >
(

1 +
√

5

2

)max{m,n}−4
.
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There are several generalizations of Fibonacci numbers in the literature.
For instance, the Fibonomial coefficient is defined, for 1 ≤ k ≤ m, as

(1.2)

[
m

k

]
F

=
Fm · · ·Fm−k+1

Fk · · ·F1
.

Clearly, (
[
m
1

]
F

)m is the Fibonacci sequence. In 2010, Luca, Marques and
Stănică [8] studied the spacing between Fibonomial coefficients. In particu-
lar, they proved that the difference∣∣∣∣[mk

]
F

−
[
n

`

]
F

∣∣∣∣
tends to infinity when (m, k, n, `) are such that 1 ≤ k ≤ m/2, 1 ≤ ` ≤ n/2,
(m, k) 6= (n, `) and max{m,n} tends to infinity in an effective way.

Another known generalization is, for k ≥ 2, the k-generalized Fibonacci

sequence F (k) := (F
(k)
n )n≥−(k−2), which is the sequence whose terms satisfy

the kth order recurrence relation

(1.3) F
(k)
n+k = F

(k)
n+k−1 + F

(k)
n+k−2 + · · ·+ F (k)

n ,

with initial conditions 0, 0, . . . , 0, 1 (k terms) and such that the first nonzero

term is F
(k)
1 = 1. Clearly for k = 2, we obtain the Fibonacci numbers

F
(2)
n = Fn, and for k = 3, the Tribonacci numbers F

(3)
n = Tn.

The aim of this paper is to prove a related result (in the spirit of Pil-
lai) about the spacing between terms of distinct k-generalized Fibonacci
sequences. That is, we study the Diophantine equation

(1.4) F (k)
m − F (`)

n = c.

This equation could be considered as a “Fibonacci version” of Pillai’s equa-
tion (where we replace the powers ` and k by the respective order of a
generalized Fibonacci sequence, that is, by the superscripts (`) and (k)).
We point out that equation (1.4) for c = 0 was solved independently by
Bravo and Luca [2] and Marques [9].

Our main results are the following.

Theorem 1.1. Let c be an integer. Then there exists an effectively com-
putable constant M = M(c) such that if (m,n, `, k) is a positive integer
solution of (1.4) with ` ≥ k ≥ 2, n > ` + 2,m > k + 2 and m 6= n, then
max{m,n, `, k} < M . A suitable choice for M is

(1.5) M := max{c1, 1.9 · 10146c242 log27 c2, 8 · 10246},
where c1 := 5 log(|c|+ 1) + 2 and c2 := 4 log(|c|+ 5)/log 2.

Observe that Theorem 1.1 implies, in particular, that the difference

|F (k)
m −F (`)

n | tends to infinity when (m,n, `, k) are such that m > k+ 2, n >
`+ 2, m 6= n and max{m,n} tends to infinity in an effective way.
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Note that if (1.4) has infinitely many solutions, then m = n. Our next
result treats this case.

Theorem 1.2. Set td = d·2d−3, for 0 ≤ d 6= 1. Given integers 0 ≤ r < s,

(m,n, `, k) = (k + s, k + s, k + s− r, k)

is a solution of (1.4) when c = −(ts − tr), for all k ≥ s− 1. Moreover, for
m = n, if (1.4) has a solution with m ≤ 2k + 1, then c = −(tr − tp) for
some integers r > p.

The sequence (td)d≥2 (= 1, 3, 8, 20, 48, . . .) is the OEIS (1) A001792 [14]
and, for instance, td counts the number of parts in all compositions (ordered
partitions) of d + 1. Also, the first values of the sequence (ts − tr)r,s, with
s > r ≥ 0 and s, r 6= 1, are

1, 2, 3, 5, 7, 8, 12, 17, 19, 20, 28, 40, 45, 47, 48, 64, . . . .

As another application of the method, we solve completely the case c=1
(“Catalan–Fibonacci” version), that is, we find all consecutive numbers among⋃
k≥2 F

(k).

Theorem 1.3. The only solution of the Diophantine equation

(1.6) |F (k)
m − F (`)

n | = 1,

with ` ≥ k ≥ 2, n > `+ 2 and m > k + 2 is (m,n, `, k) = (10, 8, 4, 2). That
is,

F
(4)
8 − F (2)

10 = 56− 55 = 1.

We remark that the hypotheses n > `+ 2 and m > k + 2 are necessary
to avoid the trivial solutions

(m,n, `, k) = (k + 2, k + 2, k + 1, k)

for all k ≥ 2.
Let us give a brief overview of our strategy for proving Theorem 1.1.

First, we use a formula of Dresden [5, formula (2)] to get an upper bound
for a linear form in three logarithms related to equation (1.4). Afterwards,
we use a lower bound due to Matveev to obtain an upper bound for m and n

in terms of `. Very recently, Bravo and Luca solved the equation F
(k)
n = 2m,

using a nice argument combining some estimates with the Mean Value The-
orem [3, pp. 77–78]. In our case, we must use this approach twice together
with a reduction argument due to Dujella and Pethő. In the final section,
we present a program for checking the “small” cases. The computations in
the paper were performed using Mathematica.

We mention some differences between our work and the one by Bravo and

Luca. In their paper, the equation F
(k)
n = 2m was studied. By applying a key

(1) On-Line Encyclopedia of Integer Sequences.
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method, they get directly an upper bound for |2m − 2n−2|. In our case, the

equation F
(k)
m −F (`)

n = c needs a little more work, because it is necessary to
apply their method twice to get an upper bound for |2n−2−2m−2|. Moreover,
they used a reduction argument due to Dujella and Pethő to solve all small
cases. In our work, we use a fast Mathematica routine to deal with the “very”
small cases.

2. Auxiliary results. In order to avoid unnecessary repetitions,
throughout the paper the integers m,n, k, ` are supposed to satisfy the con-
ditions in the statement of Theorem 1.1.

Before proceeding, we shall recall some facts and properties of the rele-
vant sequences.

We know that the characteristic polynomial of (F
(k)
n )n is

ψk(x) := xk − xk−1 − · · · − x− 1

and it is irreducible over Q[x] with just one zero outside the unit circle. That
single zero is located between 2(1− 2−k) and 2 (see [16]). Also, in a recent
paper, G. Dresden [5, Theorem 1] gave a simplified “Binet-like” formula for

F
(k)
n :

(2.1) F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1i ,

for α = α1, . . . , αk being the roots of ψk(x). It was proved in [4, Lemma 1]
that

(2.2) αn−2 ≤ F (k)
n ≤ αn−1 for all n ≥ 1,

where α is the dominant root of ψk(x). The contribution of the roots inside
the unit circle in formula (2.1) is almost trivial. More precisely, it was proved
in [5] that

(2.3) |F (k)
n − g(α, k)αn−1| < 1/2,

where g(x, y) := (x− 1)/(2 + (y + 1)(x− 2)).
Now, we wish to find a lower bound for m in terms of n. In fact, by (1.4)

and (2.2),

(2.4) 2n−1>φn−1≥F (`)
n =F (k)

m +1>αm−2>(
√

2)m−2 and so 2n>m,

where in the last inequality we used that α > 3/2 >
√

2.

Also, observe that (F
(`)
n )n and (F

(`)
n )` are nondecreasing sequences.

As another tool to prove Theorem 1.1, we use a lower bound for a linear
forms in logarithms à la Baker given by the following result of Matveev [10].

Lemma 2.1. Let γ1, . . . , γt be real algebraic numbers and let b1, . . . , bt be
nonzero rational integers. LetD be the degree of the number field Q(γ1, . . . , γt)
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over Q and let Aj be a positive real number satisfying

Aj ≥ max{Dh(γj), |log γj |, 0.16} for j = 1, . . . , t.

Assume that

B ≥ max{|b1|, . . . , |bt|}.
If γb11 · · · γ

bt
t 6= 1, then

|γb11 · · · γ
bt
t − 1| ≥ exp

(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At

)
.

As usual, in the above statement, the logarithmic height of an s-degree
algebraic number γ is defined as

h(γ) =
1

s

(
log |a|+

s∑
j=1

log max{1, |γ(j)|}
)
,

where a is the leading coefficient of the minimal polynomial of α (over Z)
and (γ(j))1≤j≤s are the conjugates of α (over Q).

After finding an upper bound on n which is in general too large, the next
step is to reduce it. For that, our last ingredient is a variant of the famous
Baker–Davenport lemma, due to Dujella and Pethő [6, Lemma 5(a)]. For a
real number x, we use ‖x‖ = min{|x − n| : n ∈ N} for the distance from x
to the nearest integer.

Lemma 2.2. Suppose that M is a positive integer. Let p/q be a conver-
gent of the continued fraction expansion of the irrational number γ such
that q > 6M and let A,B be some real numbers with A > 0 and B > 1.
Let ε = ‖µq‖ −M‖γq‖, where µ is a real number. If ε > 0, then there is no
solution to the inequality

0 < mγ − n+ µ < A ·B−k

in positive integers m,n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

3. The proof of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1. First note that when ` = k, then:

• If c > 0, then (1.4) implies m > n and so

c = F (k)
m − F (k)

n ≥ F (k)
m − F (k)

m−1 ≥ F
(k)
m−2 > (1.5)m−4,

yielding m < 3 log c+ 4 < c1.
• When c < 0, we have n > m and then

−c = F (k)
n − F (k)

m ≥ F (k)
m+1 − F

(k)
m ≥ F (k)

m−1 > (1.5)m−3,

yielding m < 3 log(−c) + 3 < c1.
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Thus, we may suppose that ` > k. We also suppose, without loss of gener-
ality, that m > n (the case n > m follows exactly the same lines; for conve-
nience of the reader, we shall indicate the substantial changes for n > m).

Note that in order to prove the Theorem 1.1, it suffices to show that (1.4)
has no solution when m > M (with M defined as in (1.5)). Thus suppose,
towards a contradiction, that (m,n, `, k) is a solution of (1.4) with m > M .

The first step is to find an upper bound for m (and so for n) in terms
of `.

For that, we use (2.3) to get

|F (k)
m − g(α, k)αm−1| < 1/2 and |F (`)

n − g(φ, `)φn−1| < 1/2,

where α and φ are the dominant roots of the recurrences (F
(k)
m )m and (F

(`)
n )n,

respectively. Combining these inequalities with |F (`)
n −F (k)

m | = |c|, we obtain

(3.1) |g(φ, `)φn−1 − g(α, k)αm−1| < |c|+ 1

and so

(3.2)

∣∣∣∣ g(φ, `)φn−1

g(α, k)αm−1
− 1

∣∣∣∣ < |c|+ 1

g(α, k)αm−1
<

4(|c|+ 1)

αm−1
<

1

αm/2
,

where we have used the facts that α(m−2)/2 > 4(|c| + 1) (since m > c1)
and g(α, k) > 1/4 (here we would divide (3.1) by g(φ, `)φn−1 when n > m).
Thus (3.2) becomes

(3.3) |eΛ − 1| < 1/αm/2,

where Λ := (n− 1) log φ+ log(g(φ, `)/g(α, k))− (m− 1) logα.

Now, we shall apply Lemma 2.1. To this end, take t := 3,

γ1 := φ, γ2 :=
g(φ, `)

g(α, k)
, γ3 := α

and

b1 := n− 1, b2 := 1, b3 := m− 1.

For this choice, we have D = [Q(α, φ) : Q] ≤ k` < `2. Also h(γ1) =
(log φ)/` < (log 2)/` < 0.7/` and similarly h(γ3) < 0.7/k. In [3, p. 73],
an estimate for h(g(α, k)) was given. More precisely, it was proved that

h(g(α, k)) < log(k + 1) + log 4.

Analogously,

h(g(φ, `)) < log(`+ 1) + log 4.

Thus

h(γ2) ≤ h(g(φ, `)) + h(g(α, k)) ≤ log(`+ 1) + log(k + 1) + 2 log 4,
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where we have used the well-known facts that h(xy) ≤ h(x) + h(y) and
h(x) = h(x−1). Also, in [3] it was proved that |g(αi, k)| < 2 for all i =
1, . . . , k.

Since ` > k andm > n, we can takeA1 = A3 := 0.7`,A2 := 2`2 log(4`+4)
and B := m− 1.

Before applying Lemma 2.1, it remains to prove that eΛ 6= 1. Suppose
the contrary, i.e., g(α, k)αm−1 = g(φ, `)φn−1 ∈ Q(φ). We can conjugate this
relation in Q(φ) to get

g(αsi , k)αm−1si = g(φi, `)φ
n−1
i for i = 1, . . . , `,

where αsi are the ` conjugates of α over Q(φ). Since g(α, k)αm−1 has at most
k conjugates (over Q), each number in the list {g(αsi , k)αm−1si : 1 ≤ i ≤ `}
is repeated at least `/k > 1 times. In particular, there exists t ∈ {2, . . . , `}
such that g(αs1 , k)αm−1s1 = g(αst , k)αm−1st . Thus, g(φ, `)φn−1 = g(φt, `)φ

n−1
t

and then (
7

4

)n−1
< φn−1 =

∣∣∣∣g(φt, `)

g(φ, `)

∣∣∣∣|φt|n−1 < 8,

where we have used that φ > 2(1 − 2−`) ≥ 7/4, |g(φt, `)| < 2 < 8|g(φ, `)|
and |φt| < 1 for t > 1. However, the inequality (7/4)n−1 < 8 holds only for
n = 1, 2, 3, 4, n > `+ 1 ≥ 3 + 1 = 4. Therefore eΛ 6= 1.

Now, the conditions to apply Lemma 2.1 are fulfilled and hence

|eΛ − 1| > exp
(
−1.5 · 1011`8(1 + 2 log `) log(4`+ 4)(1 + log(m− 1))

)
.

Since 1 + 2 log ` ≤ 3 log `, 4` + 4 < `2.6 (for ` ≥ 3) and m − 1 < m1.1, we
have

(3.4) |eΛ − 1| > exp(−2.64 · 1012`8 log2 ` logm)).

By combining (3.3) and (3.4), we get

m

logm
< 1.33 · 1013`8 log2 `,

where we have used that logα > 0.4. Since the function x/log x is increasing
for x > e, it is a simple matter to prove that

(3.5)
x

log x
< A implies that x < 2A logA.

A proof can be found in [3, p. 74].

Thus, by using (3.5) for x := m and A := 1.33 · 1013`8 log2 `, we have

m < 2(1.33 · 1013`8 log2 `) log(1.33 · 1013`8 log2 `).

Now, the inequality 31 + 2 log log ` < 29 log ` for ` ≥ 3 yields

log(1.33 · 1013`8 log2 `) < 31 + 8 log `+ 2 log log ` < 37 log `.
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Therefore,

(3.6) m < 9.9 · 1014`8 log3 `.

The next step is to find an upper bound for ` in terms of k. For that,
consider ` ≤ 240; then the inequality (3.6) yields m < 1.8·1036, contradicting
m > M . Thus, we may assume that ` > 240. Therefore

(3.7) n < 9.9 · 1014`8 log3 ` < 2`/2,

where we have used (3.6) and the fact that n < m. Now, we shall use a key
argument due to Bravo and Luca [3, pp. 77–78]. For the sake of completeness
and because one needs a slight modification in its final part, we shall present
their nice idea.

Setting λ = 2−φ, we deduce that 0 < λ < 1/2`−1 (because 2(1− 2−`) <
φ < 2). So

φn−1 = (2− λ)n−1 = 2n−1(1− λ/2)n−1 > 2n−1(1− (n− 1)λ),

since (1− x)n > 1− 2nx for all n ≥ 1 and 0 < x < 1. Moreover, (n− 1)λ <
2`/2/2`−1 = 2/2`/2 and hence

2n−1 − 2n

2`/2
< φn−1 < 2n−1 +

2n

2`/2
,

yielding

(3.8) |φn−1 − 2n−1| < 2n

2`/2
.

Now, we define for x > 2(1 − 2−`) the function f(x) := g(x, `) which is
differentiable in the interval [φ, 2]. So, by the Mean Value Theorem, there
exists ξ ∈ (φ, 2) such that f(φ)− f(2) = f ′(ξ)(φ− 2). Thus

(3.9) |f(φ)− f(2)| < 2`

2`
,

where we have used the bounds |φ − 2| < 1/2`−1 and |f ′(ξ)| < `. For sim-
plicity, we denote δ = φn−1− 2n−1 and η = f(φ)− f(2) = f(φ)− 1/2. After
some calculations, we arrive at

2n−2 = f(φ)φn−1 − 2n−1η − δ/2− δη.
Therefore

|2n−2 − g(α, k)αm−1| ≤ |f(φ)φn−1 − g(α, k)αm−1|+ 2n−1|η|+ |δ/2|+ |δη|

≤ |c|+ 1 +
2n`

2`
+

2n−1

2`/2
+

2n+1`

23`/2
,

where we have used (3.8) and (3.9). Since n > `+ 2, one has 1 < 2n−2/2`/2

and we rewrite the above inequality as

|2n−2 − g(α, k)αm−1| < (|c|+ 1)
2n−2

2`/2
+

4`

2`/2
2n−2

2`/2
+ 2 · 2n−2

2`/2
+

8`

2`
2n−2

2`/2
.
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Since the inequalities 4` < 8` < 2`/2 < 2` hold for all ` > 240 (actually, they
hold for ` > 13), we have

(3.10) |2n−2 − g(α, k)αm−1| < (|c|+ 5) · 2n−2

2`/2
<

2n−2

2`/4
,

where we have used that 2`/4 > |c|+ 5. This follows because ` > c2 (in fact,
otherwise we can use (3.6) to get M < m < 9.9 · 1014c82 log3 c2).

Equivalently, we have

(3.11) |1− g(α, k)αm−12−(n−2)| < 1

2`/4
.

In order to apply Lemma 2.1, it remains to prove that the left-hand
side of (3.11) is nonzero, or equivalently, 2n−2 6= g(α, k)αm−1. Suppose the
contrary, i.e., 2n−2 = g(α, k)αm−1. By conjugating this relation in the split-
ting field of ψk(x), we obtain 2n−2 = g(αi, k)αm−1i for i = 1, . . . , k. However,
when i > 1, we have |αi| < 1 and |g(αi, k)| < 2, which leads to the absurdity

2n−2 = |g(αi, k)| |αi|m−1 < 2,

since n > 4. Therefore g(α, k)αm−12−(n−2) 6= 1 and so we are in a position
to apply Lemma 2.1. For that, take t := 3,

γ1 := g(α, k), γ2 := α, γ3 := 2

and

b1 := 1, b2 := m− 1, b3 := −(n− 2).

By calculations performed in Section 2, we see that A1 := k log(4k+ 4),
A2 = A3 := 0.7 are suitable choices. Moreover D = k and B = m− 1. Thus

(3.12) |1− g(α, k)αm−12−(n−2)|
> exp

(
−D′ · k3(1 + log k)(1 + log(m− 1)) log(4k + 4)

)
,

where we can take D′ = 0.75 · 1011. Combining (3.11) and (3.12) with a
straightforward calculation, we get

(3.13) ` < 2.16 · 1012k3 log2 k logm.

On the other hand, m < 9.9 · 1014`8 log3 ` (by (3.6)) and so

(3.14) logm < log(9.9 · 1014`8 log3 `) < 41 log `,

where we have used that 35 + 3 log log ` < 33 log `. Turning back to (3.13),
we obtain

`

log `
< 8.9 · 1013k3 log2 k,

which implies, by (3.5), that

` < 2(8.9 · 1013k3 log2 k) log(8.9 · 1013k3 log2 k).
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Since log(8.9 · 1013k3 log2 k) < 47 log k, we finally get

(3.15) ` < 8.4 · 1015k3 log3 k.

Now, if k ≤ 1640, then ` < 2 · 1028 (by (3.15)). Thus, by (3.6), one sees
that m < 7.1 · 10246, which is not possible, because m > M .

Therefore, we may suppose that k > 1640. Then the inequality ` <
8.9 · 1015k3 log3 k together with (3.6) yields

m < 9.9 · 1014(8.9 · 1015k3 log3 k)8 log3(8.9 · 1015k3 log3 k)

< 1.9 · 10146k24 log27 k < 2k/2,

where the last inequality holds because k > 1640. Now, we use again the
key argument of Bravo and Luca to conclude that

(3.16) |2m−2 − g(φ, `)φn−1| < 2m−2

2k/4
,

because k > c2 (to get a contradiction, we substitute k ≤ c2 in (3.15) and
(3.6) to obtain an upper bound for m less than M). Combining (3.10), (3.16)
and (3.1), we get

|2n−2 − 2m−2| ≤ |2n−2 − g(α, k)αn−1|+ |g(α, k)αn−1 − g(φ, `)φn−1|
+ |2m−2 − g(φ, `)φn−1|

<
2n−2

2`/4
+ |c|+ 1 +

2m−2

2k/4
<

3 · 2m−2

2k/4
,

since n < m, k < `,m > k + 1 and |c| + 1 < 2k/2 (otherwise we have k ≤
2 log(|c|+ 1)/log 2 < c2). Therefore

(3.17) |2n−m − 1| < 3

2k/4
.

Since n ≤ m− 1, we have

1

2
≤ 1− 2n−m = |2n−m − 1| < 3

2k/4
.

Thus 2k/4 < 6, yielding k ≤ 10, which is absurd, since k > 1640.

In the case of n > m, we have |2n−m − 1| > 1 and the contradiction is
the same. In fact, in any case, one has |2n−m − 1| > 1/2.

3.2. Proof of Theorem 1.2. The proof is based on the key identity

(3.18) Fk+a = 2k+a−2 − ta,
which holds for all 2 ≤ a ≤ k + 1, where ta = a · 2a−3. We shall leave the
proof of this fact as an exercise to the reader (by induction on k).

For s > r, one has s = r + j for some j > 0. Thus (3.18) gives

F
(k)
k+(r+j) = 2k+r+j−2 − ts,
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since r + j ≤ k + 1 (because s ≤ k + 1). Also,

F
(k+j)
(k+j)+r = 2k+r+j−2 − tr.

Therefore,

F
(k+j)
(k+j)+r − F

(k)
k+(r+j) = ts − tr,

and the result follows.

Suppose now that (m, `, k) is a solution of F
(`)
m − F (k)

m = c > 0. Then
` > k, yielding ` = k+ s with s > 0. Also, the hypothesis m > `+ 2 implies
the existence of integers r and p such that m = k + r and r = s+ p. Thus

F
(k+s)
k+s+p − F

(k)
k+s+p = c.

On the other hand, since p ≤ k − s + 1 (because m ≤ 2k + 1 implies
k + (s+ p) ≤ 2k + 1), we can use (3.18) to get

F
(k+s)
(k+s)+p = 2k+s+p−2 − tp and F

(k)
k+(s+p) = 2k+s+p−2 − tr,

leading to

c = F
(k+s)
k+s+p − F

(k)
k+s+p = (2k+s+p−2 − tp)− (2k+s+p−2 − tr) = tr − ts.

The proof is complete.

4. The proof of Theorem 1.3. First, we claim that n < m. To derive

a contradiction, suppose that n ≥ m. Then (1.6) gives F
(`)
n ≤ F (k)

m +1. How-

ever, F
(k)
m +1 < F

(k+1)
m for m > k+2. In fact, since (F

(`)
n )` is nondecreasing,

it suffices to prove this inequality for m = k + 3. This holds because

F
(k+1)
k+3 = 2k+1 − 1 > 2k+1 − 2 = F

(k)
k+3 + 1.

Thus, we obtain the contradiction

F (`)
n ≤ F (k)

m + 1 < F (k+1)
m ≤ F (`)

n ,

where we have used that the sequences (F
(`)
n )n and (F

(`)
n )` are nondecreasing.

Therefore, m > n as claimed and we can follow the proof of Theorem 1.1.
Summarizing, the previous theorem (for c = ±1) ensures that the possible
solutions (m,n, k, `) of (1.6) must satisfy

m < 8 · 10246,

where we have used that c1 < 5.47, c2 < 2.74 and so 1.9 · 10146c242 log27 c2 <
6.4 · 10156.

Since this upper bound on max{m,n, `, k} is too large, we need to use
Lemma 2.2.
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We recall that 2 ≤ k ≤ 1640, ` < 2 · 1028 and n < m < 7.1 · 10246. In
order to use Lemma 2.2, we rewrite (3.11) as

|eΘ − 1| < 1

2`/4
,

where Θ := (m − 1) logα − (n − 2) log 2 + log g(α, k). Recall that we have
proved that eΘ 6= 1 (the paragraph below (3.11)) and so Θ 6= 0.

If Θ > 0, then Θ < eΘ − 1 < 1/2`/4. In the case of Θ < 0, we use
1− e−|Θ| = |eΘ − 1| < 1/2`/4 to get e|Θ| < 1/(1− 2−`/4). Thus

|Θ| < e|Θ| − 1 <
2−`/4

1− 2−`/4
< 2−`/4+1.5,

where we have used that 1/(1− 2−`/4) < 21.5 for ` ≥ 3.
The further arguments work for Θ > 0 and Θ < 0 in a very similar

way. Thus, to avoid unnecessary repetitions we shall consider only the case
Θ > 0. Then

0 < (m− 1) logα− (n− 2) log 2 + log g(α, k) < (
4
√

2)−`

and so

(4.1) 0 < (m− 1)γk − (n− 2) + µk < 1.45 · ( 4
√

2)−`

with γk := logα(k)/log 2 and µk := log g(α(k), k)/log 2. Here, we added the
superscript to α to emphasize its dependence on k.

We claim that γk is irrational for any integer k ≥ 2. In fact, if γk = p/q
for some positive integers p and q, then 2p = (α(k))q and as before we can
conjugate this relation by some automorphism of the Galois group of the

splitting field of ψk(x) over Q to get 2p < |(α(k)
i )q| < 1 for i > 1, which is

absurd, since p ≥ 1. Let qn,k be the denominator of the nth convergent of
the continued fraction of γk. Taking Mk := 1.9 · 10146k24 log27 k ≤ M1640 <
7.1 · 10246, we use Mathematica to get

min
2≤k≤1640

q650,k > 6 · 10308 > 6M1640.

Also

max
2≤k≤1640

q650,k < 2 · 101112.

Defining εk := ‖µkq650,k‖ −Mk‖γkq650,k‖ for 2 ≤ k ≤ 1640, we get

min
2≤k≤1640

εk > 5.2 · 10−169.

Note that the conditions of Lemma 2.2 are fulfilled for A = 1.45 and
B = 4

√
2, and hence there is no solution to inequality (4.1) (and then no

solution to the Diophantine equation (1.4)) for m and ` satisfying

m < Mk < 7.1 · 10246 and ` ≥
log(Aq650,k/εk)

logB
.
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Since m < Mk (for 2 ≤ k ≤ 1640), we have

` <
log(Aq650,k/εk)

logB
≤ log(1.45 · 2 · 101112/(5.2 · 10−169))

log 4
√

2
< 17014.18 . . . .

Therefore, 2 ≤ k ≤ 1640 and k < ` ≤ 17014. Now, by applying (3.6), we
obtain n < m < 6.5 · 1051.

To deal with these remaining cases, we prepared a Mathematica routine
that returns {56, {2, 4}}, which corresponds to the only solution (m,n, `, k)
= (10, 8, 4, 2). The calculations took roughly 8 days on 2.5 GHz Intel Core
i5 4GB Mac OSX. The proof is complete.
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