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ON TERMS OF LINEAR RECURRENCE SEQUENCES
WITH ONLY ONE DISTINCT BLOCK OF DIGITS

BY
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Abstract. In 2000, Florian Luca proved that F10 = 55 and L5 = 11 are the largest
numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively.
In this paper, we find terms of a linear recurrence sequence with only one block of digits
in its expansion in base g ≥ 2. As an application, we generalize Luca’s result by finding
the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10
in its decimal expansion.

1. Introduction. A sequence (Gn)n≥1 is a linear recurrence sequence
with coefficients c0, c1, . . . , ck−1, with c0 6= 0, if

(1.1) Gn+k = ck−1Gn+k−1 + · · ·+ c1Gn+1 + c0Gn

for all positive integers n. A recurrence sequence is therefore completely de-
termined by the initial values G0, . . . , Gk−1, and by the coefficients c0, c1, . . .
. . . , ck−1. The integer k is called the order of the linear recurrence. The char-
acteristic polynomial of the sequence (Gn)n≥0 is given by

G(x) = xk − ck−1x
k−1 − · · · − c1x− c0.

It is well-known that for all n,

Gn = g1(n)rn1 + · · ·+ gl(n)rnl ,

where rj is a root of G(x) and gj(x) is a polynomial over a certain num-
ber field, for j = 1, . . . , l. A root rj of the recurrence is called a dominant
root if |rj | > |ri| for all j 6= i ∈ {1, . . . , l}. The corresponding polynomial
gj(n) is named the dominant polynomial of the recurrence. In this paper, we
consider only integer recurrence sequences, i.e. recurrence sequences whose
coefficients and initial values are integers. Hence, gj(n) is an algebraic num-
ber for all j = 1, . . . , l and n ∈ Z.

A general Lucas sequence (Cn)n≥1 given by Cn+2 = Cn+1 +Cn for n ≥ 1,
where the values C0 and C1 are previously fixed, is an example of a linear
recurrence of order 2 (also called binary). For instance, if C0 = 0 and C1 = 1,
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then (Cn)n≥1 = (Fn)n≥1 is the well-known Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

Also, if C0 = 2 and C1 = 1, the sequence Cn = Ln gives the Lucas numbers:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, . . . .

In 2000, F. Luca [2] proved that F10 = 55 and L5 = 11 are the largest
numbers with only one distinct digit in the Fibonacci and Lucas sequences,
respectively. A question arises: is there any Fibonacci or Lucas number of
the form 1212 . . . 12? And of the form 175175 . . . 175? And so on? More
generally, let B be a natural number with l digits. One can think of a string
of B’s, that is,

B · 10lm − 1
10l − 1

= B · · ·B (m times).

In particular, Luca’s result concerns the case l = 1. Moreover, it seems to
be harder to answer the previous questions when we replace Fibonacci and
Lucas numbers by a term of a general linear recurrence sequence.

The aim of this paper is to determine terms of an integer linear recurrence
sequence with only B in its expansion in a base g ≥ 2. More precisely, our
main result is the following.

Theorem 1. Let (Gn)n≥1 be an integer linear recurrence sequence whose
characteristic polynomial has a positive dominant root. Let g ≥ 2 and l ≥ 1
be integers. Then there exists an effectively computable constant C such that
if n,m,B are solutions of the Diophantine equation

(1.2) Gn = B · g
lm − 1
gl − 1

such that 0 < B < gl, then n,m ≤ C. The constant C depends only on g, l
and the parameters of Gn.

As an application, we use our method to find Fibonacci and Lucas num-
bers with only B in their decimal expansion, where the number B has at
most 10 digits.

Theorem 2. Let B be a natural number with l digits. The only solutions
of the Diophantine equations

(1.3) Fn = B · 10lm − 1
10l − 1

and Ln = B · 10lm − 1
10l − 1

,

in positive integer numbers m, n and l, with m > 1 and 1 ≤ l ≤ 10, are
(m,n, l) = (2, 10, 1) and (m,n, l) = (2, 5, 1) in the Fibonacci and Lucas
cases, respectively.
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We organize this paper as follows. In Section 2, we recall some useful
properties such as a result of Matveev on linear forms in three logarithms
and the reduction method of Baker–Davenport that we use to prove The-
orems 1 and 2. The third section is devoted to the proof of Theorem 1. In
the last section, for each particular case (Fibonacci and Lucas), we first use
Baker’s method to obtain a bound for n, then we completely solve the prob-
lem by means of the Baker–Davenport reduction method. Thus, we prove
Theorem 2.

2. Auxiliary results. In this section, we recall some results that will
be useful for the proof of the above theorems. Let G(x) be the characteristic
polynomial of a linear recurrence Gn. One can factor G(x) over the set of
complex numbers as

G(x) = (x− r1)m1(x− r2)m2 · · · (x− rl)ml ,
where r1, . . . , rl are distinct non-zero complex numbers (called the roots of
the recurrence) and m1, . . . ,ml are positive integers. A fundamental result
in the theory of recurrence sequences asserts that there exist uniquely de-
termined polynomials g1, . . . , gl ∈ Q({rj}lj=0)[x], with deg gj ≤ mj − 1 for
j = 1, . . . , l, such that

(2.1) Gn = g1(n)rn1 + · · ·+ gl(n)rnl for all n.

For more details, one can refer to [4, Theorem C.1].
In the case of Fibonacci and Lucas sequences, the above formula is known

as Binet’s formulas:

Fn =
αn − βn

α− β
and Ln = αn + βn,

where α = (1 +
√

5)/2 (the golden number) and β = (1 −
√

5)/2 = −1/α.
Moreover, one can easily prove by induction that

αn−2 ≤ Fn ≤ αn−1, αn−1 ≤ Ln ≤ 2αn

for all n ≥ 1.
The first lemma will be useful in the proof of Theorem 1.

Lemma 1. Let (Gn)n≥1 be a linear recurrence having a dominant root r1

and an infinite subsequence of positive terms. Denote by g1(n) the dominant
polynomial of (Gn)n≥1. Then g1(n) is a non-zero constant. Moreover, if
t ∈ {0, 1} and G2n+t > 0 for infinitely many integers n, then g1(n)rt1 > 0.

Proof. We know that

Gn = g1(n)rn1 + · · ·+ gl(n)rnl ,

where each rj is a root of the characteristic polynomial of Gn, with mul-
tiplicity mj , and each gj(n) is a non-zero polynomial of degree ≤ mj − 1.
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Suppose that r1 is the dominant root; then we immediately see that r1 6= rj
for all j 6= i. Thus m1 = 1 and then the degree of the dominant polynomial
is at most m1 − 1 = 0, so it is a constant, say g1. Now, dividing Gn by rn1 ,
we get

Gn
rn1

= g1 +
l∑

j=2

gj(n)
κnj

,

where κj = r1/rj . Since |κj | > 1, we have

lim
n→∞

gj(n)
κnj

= 0 for all 2 ≤ j ≤ l,

and so

lim
n→∞

Gn
rn1

= g1 6= 0.

Now, if t ∈ {0, 1} and G2n+t > 0 for infinitely many integers n, then

0 ≤ lim
n→∞

sup
G2n+t

r2n
1

= g1r
t
1.

Therefore, g1r
t
1 > 0 as g1r

t
1 6= 0 and the result follows by distinguishing the

cases t = 0 and t = 1.

In order to prove Theorems 1 and 2, we will need to use a lower bound
for a linear form in three logarithms à la Baker, and such a bound was given
by the following result of Matveev [3].

Lemma 2. Let α1, α2, α3 be non-zero algebraic numbers and let b1, b2, b3
be non-zero integer rational numbers. Define

Λ = b1 logα1 + b2 logα2 + b3 logα3.

Let D be the degree of the number field Q(α1, α2, α3) over Q. Put

χ = [R(α1, α2, α3) : R].

Let A1, A2, A3 be real numbers which satisfy

Aj ≥ max{Dh(αj), |logαj |, 0.16} for j = 1, 2, 3.

Assume that

B′ ≥ max{1,max{|bj |Aj/A1 : 1 ≤ j ≤ 3}}.
Define also

C1 =
5 · 165

6χ
· e3(7 + 2χ)(20.2 + log(35.5D2 log(eD))).

If Λ 6= 0, then

log |Λ| ≥ −C1D
2A1A2A3 log(1.5eDB′ log(eD)).
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As usual, in the above statement, the logarithmic height of an s-degree
algebraic number α is defined as

h(α) =
1
s

(
log |a|+

s∑
j=1

log max{1, |α(j)|}
)
,

where a is the leading coefficient of the minimal polynomial of α (over Z),
(α(j))1≤j≤s are the conjugates of α and, as usual, the absolute value of the
complex number z = a+ bi is |z| =

√
a2 + b2.

After finding an upper bound on n which is in general too large, the
next step is to reduce it. For that, we need a variant of the famous Baker–
Davenport lemma, which is due to Dujella and Pethő [1, Lemma 5, a)]. For
a real number x, we use ‖x‖ = min{|x− n| : n ∈ N} for the distance from x
to the nearest integer.

Lemma 3. Suppose that M is a positive integer. Let p/q be a convergent
of the continued fraction expansion of γ such that q > 6M and let ε =
‖µq‖−M‖γq‖, where µ is a real number. If ε > 0, then there is no solution
to the inequality

0 < mγ − n+ µ < AB−m

in positive integers m,n with
log(Aq/ε)

logB
≤ m < M.

Now, we are ready to prove our results.

3. The proof of Theorem 1. Equations (1.2) and (2.1) give

(3.1) Gn = g1(n)rn1 + · · ·+ gs(n)rns = B · g
lm − 1
gl − 1

,

where g1(n), . . . , gs(n) are polynomials of degree at most k−1. Without loss
of generality, we may suppose that |r1| > |rt| := max2≤j≤s |rj |. So r1 is the
dominant root.

Suppose that Gn has only finitely many positive numbers. So there exists
a positive integer n0 such that Gn ≤ 0 for all n ≥ n0. Applying the absolute
value, the triangular inequality and the fact that B ≥ 1, from equation (3.1)
we deduce

(glm − 1)/(gl − 1) ≤ |g1(n)| |r1|n + · · ·+ |gs(n)| |rs|n.
Since r1 is the dominant root, we have

(glm − 1)/(gl − 1) ≤ (|g1(n)|+ · · ·+ |gs(n)|)|r1|n.
Now, |r1| > 1 and n ≤ n0, hence |r1|n ≤ |r1|n0 , yielding

(glm − 1)/(gl − 1) ≤ K|r1|n0 ,



150 D. MARQUES AND A. TOGBÉ

where K = max1≤n≤n0

∑s
j=1 |gj(n)|. Thus,

glm ≤ K|r1|n0(gl − 1) + 1,

and by applying the log function, we finally conclude that

m ≤ log(K|r1|n0(gl − 1) + 1)/l log g =: M.

Thus, n ≤ n0 and m ≤M , hence n,m < max{n0,M} = C and the theorem
is proved in this case.

Now, we suppose that Gn has infinitely many positive numbers. By
Lemma 1, the dominant polynomial g1(n) is a constant, say g1. Thus, we
obtain ∣∣∣∣rn1 − B

gl − 1
· g

lm

g1

∣∣∣∣ ≤ |rt|n · s∑
j=2

∣∣∣∣gj(n)
g1

∣∣∣∣+ 1.

For all sufficiently large n, say n ≥ n1, we have∣∣∣∣rn1 − B

gl − 1
· g

lm

g1

∣∣∣∣ < |rt|n(s− 1)nk

and so ∣∣∣∣1− B

gl − 1
· g

lmr−n1

g1

∣∣∣∣ < κ−n(s− 1)nk,

where κ = |r1/rt| > 1. Observe that

κ−n(s− 1)nk =
1

κn/2
· (s− 1)nk

κn/2
< κ−n/2

for all sufficiently large n, say n > n2 ≥ n1. Therefore,

(3.2) |1− eΛ| < κ−n/2,

where

(3.3) Λ = log
(

B

(gl − 1)g1

)
+ lm log g − n log r1.

Now, we claim that Λ 6= 0. Suppose Λ = 0. Thus, Bglm/(gl − 1) = g1r
n
1

and then equation (3.1) leads to an absurdity as
∑s

j=2 gj(n)rnj = −B/(gl−1)
for all n ∈ N. Hence Λ 6= 0 as desired.

Note that according to the signs of g1 and r1, the number Λ can be
real or complex. In order to deal with this problem, we will split our proof
according to the positivity of Gn.

Case 1. If G2n ≤ 0 for all sufficiently large n, then we repeat the above
argument in order to find a constant C such that if

G2n = B · g
lm − 1
gl − 1

then m, 2n < C.
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Thus, we only need to consider the odd indices (as the even ones are
already bounded). Therefore, we replace n by 2n+1 in equation (3.1) to get

G2n+1 = B · g
lm − 1
gl − 1

.

Note that G2n+1 > 0 for infinitely many n (since Gn > 0 for infinitely
many n). Therefore, by Lemma 1, we have r1g1 > 0. Thus, equation (3.3)
becomes

Λ0 = log
(

B

(gl − 1)g1r1

)
+ lm log g − n log r2

1,

which is a real number as r1g1 and r2
1 are positive numbers.

Case 2. If G2n > 0 for infinitely many n (note that g1 > 0 by Lemma 1),
then we consider two subcases:

Case 2.1. If G2n+1 > 0 for infinitely many n, then again Lemma 1
yields r1g1 > 0. So r1 > 0 as g1 > 0. Therefore, the linear form Λ given by
equation (3.3) is a real number.

Case 2.2. If G2n+1 ≤ 0, for all sufficiently large n, then we proceed as
before to get a bound C for the G2n+1 > 0, such that if

G2n+1 = B · g
lm − 1
gl − 1

,

then m, 2n+1 < C. So, we must bound only the even indices, by considering
the equation

G2n = B · g
lm − 1
gl − 1

.

Thus, (3.3) becomes

Λ1 = log
(

B

(gl − 1)g1

)
+ lm log g − 2n log r1,

which is also a real number.

Summarizing all the above cases, we take the real linear form

Λt = log
(

B

(gl − 1)g1rt1

)
+ lm log g − n log r2

1, t ∈ {0, 1}.

If Λt > 0, then Λt < eΛt − 1 < κ−n/2. In the case of Λt < 0, we get

1− e−|Λt| = |eΛt − 1| < κ−n/2.

Therefore,

|Λt| < e|Λt| − 1 <
κ−n/2

1− κ−n/2
< κ−n/2+1
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for all sufficiently large n > n3 ≥ n2. Hence, |Λt| < κ−n/2+1, i.e.

(3.4) − log |Λt| >
(
n

2
− 1
)

log κ.

To apply Lemma 2, we take

α1 =
B

(gl − 1)g1rt1
, α2 = g, α3 = r2

1, b1 = 1, b2 = lm, b3 = −n.

Then, we can choose

D = k, A1 = kh1 + 0.16, A2 = k log g, A3 = kh3 + 0.16,

where k is the degree of the number field Q(g1, r
2
1) over Q, and h1 and h3

are the logarithmic height of α1 and α3, respectively. Moreover, we have

B′ = max
{

1,
lmk log g
kh1 + 0.16

,
n(kh3 + 0.16)
kh1 + 0.16

}
.

Since χ = 1, we obtain

− log |Λ| < 1.6 · 108(20.2 + log(35.5k2 log(ek)))(3.5)

· k5(max{h1, log g, h3})3 log(1.5ekB′ log(ek)).

Combining estimates (3.4) and (3.5), we get a constant C > 0, which de-
pends only on g, l, and the parameters of Gn, such that m,n < C.

4. The proof of Theorem 2. The aim of this section is to prove
Theorem 2, which is an application of Theorem 1 to the Fibonacci and Lucas
sequences. Note that the dominant root for Fibonacci and Lucas sequences
is α = (1 +

√
5)/2. The dominant polynomials are respectively g(n) = 1/

√
5

and g(n) = 1. Since αn is irrational for all non-zero integer number n, we
can apply Theorem 1 to conclude that the Diophantine equations (1.3) have
only finitely many solutions. So our goal in this section is to improve our
estimates in Section 3 and therefore to completely solve these equations.
First, we prove Theorem 2 in the Fibonacci case. The proof of the Lucas
case will be handled in a similar way.

4.1. The Fibonacci case

4.1.1. Finding a bound on n. We assume that n > 47. By Binet’s for-
mula and equation (1.3), we have

αn − βn =
√

5B
10l − 1

(10ml − 1);

that is,

(4.1) αn −
√

5B
10l − 1

· 10ml = βn − B
√

5
10l − 1

,
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and hence

(4.2)
∣∣∣∣αn − √

5B
10l − 1

· 10ml
∣∣∣∣ ≤ α−47 +

√
5 < 2.4.

Define ΛF = log(
√

5B/(10l − 1))− n logα+ml log 10. Then (4.2) becomes

(4.3) |eΛF − 1| < 2.4
αn

< α−n+2.

We also claim that ΛF > 0. In fact, from equation (4.1), we deduce that

1− eΛF =
1
αn

(
βn − B

√
5

10l − 1

)
≤ 1
αn

(
α−47 −

√
5

1010 − 1

)
< 0;

so ΛF > 0. Thus ΛF < eΛF − 1 < α−n+2 (see (4.3)). Therefore,

(4.4) log |ΛF | < −(n− 2) logα.

Now, we will apply Lemma 2, but first we must be sure that ΛF 6= 0.
Indeed, if (

√
5B/(10l − 1))10mlα−n = 1 then α2n ∈ Q, which is absurd. So

ΛF 6= 0. To apply Lemma 2, we take

α1 =
√

5B/(10l−1), α2 = α, α3 = 10, b1 = 1, b2 = −n, b3 = ml.

Observe that Q(α1, α2, α3) = Q(
√

5) and then D = 2. The conjugates of
α1, α2, α3 are α′1 = −α1, α

′
2 = β, α′3 = α3, respectively. Surely, α2 and α3

are algebraic integers, while the minimal polynomial of α1 is

(X − α1)(X − α′1) = X2 − 5B2

(10l − 1)2
.

Thus, the minimal polynomial of α1 is a divisor of (10l − 1)2X2 − 5B2.
Therefore,

h(α1) <
1
2

(2 log(10l − 1) + 2 log
√

5) < 23.84.

Also, h(α2) = logα/2 < 0.25 and h(α3) = log 10 < 2.31. We take A1 =
47.68, A2 = 0.5 and A3 = 4.62. Since n > 47, we have

max{1,max{|bj |Aj/A1 : 1 ≤ j ≤ 3}} = max{n/12, 5ml/48},

and so it suffices to choose B′ = 5n/48 as n > ml. Since C1 < 4.45 · 109,
Lemma 2 yields

(4.5) log |ΛF | > −1.97 · 1012 log(1.439n).

Combining the estimates (4.4) and (4.5), we get

1.97 · 1012 log(1.439n) > (n− 2) logα,

and this inequality implies n < 1.4 · 1014.
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Now, let us determine some estimates for m in terms of n that will be
useful later. Equation (1.3) yields

ml =
⌊

logFn
log 10

⌋
+ 1.

Hence

(4.6) (n− 2)
logα
log 10

< ml ≤ (n− 1)
logα
log 10

+ 1.

Thus, we deduce from the estimate on n that m < 3 · 1013.

4.1.2. Reducing the bound. We know that 0 < ΛF < α−n+2. Since m ≥ 2
and αc = 10, where c = log 10/logα, we have

αn−2 ≥ αcml−6 > (αc)m10−6 = 10m−6.

Therefore,
0 < ml logα3 − n logα2 + logα1 < 10−m+6.

Dividing by logα2, we get

(4.7) 0 < mlγ − n+ µ < 3 · 106 · 10−m,

with γ = logα3/logα2 and µ = logα1/logα2.
Surely, γ is an irrational number (1) (because α and 10 are multiplica-

tively independent). So, let pn/qn denote the nth convergent of its continued
fraction. In order to reduce our bound on m (which is too large!), we will
use Lemma 3. For that, taking M = 3 · 1013, we have

p34

q34
=

9146274886090674
1911458405521733

;

then q34 ≥ 1911458405521733 > 1.9 · 1015 > 6M . Moreover, we get

M‖q34γ‖ = 0.00736166 . . . < 0.0075,

and the minimal value of ‖q34µ‖ is at least 0.008. Hence

ε = ‖µq‖ −M‖γq‖ > 0.008− 0.0075 = 0.0005.

Thus all the hypotheses of Lemma 3 are satisfied and we take A = 3 · 106

and B = 10. It follows from Lemma 3 that there is no solution of inequality
(4.7) (and hence of the Diophantine equation (1.3)) in the range[⌊

log(Aq34/ε)
logB

⌋
+ 1,M

]
= [26, 3 · 1013].

Therefore m ≤ 26 and then inequality (4.6) tells us that n < 1246. To
finish, we use Mathematica to print the values of all Fibonacci numbers in

(1) Actually, this number is transcendental by the Gelfond–Schneider theorem: if α
and β are algebraic numbers, with α 6= 0 or 1, and β irrational, then α β is transcendental.
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the range 47 < n < 1246 and find that there are no Fibonacci numbers as
desired in the theorem. This completes the proof.

4.2. The Lucas case. From Binet’s formula Ln = αn + βn, we take

ΛL = log(B/(10l − 1))− n logα+ml log 10.

Since B/(10l − 1) <
√

5B/(10l − 1), we get the same estimates as in (4.3)
and (4.4), so the possible solutions appear when n < 1.4 · 1014. Therefore,
m < 3 · 1013. Then the Baker–Davenport reduction method can be applied
to prove that actually n < 1245. Finally, we again use Mathematica to
complete the proof of Theorem 2.

Acknowledgements. The authors would like to express their gratitude
to the anonymous referee for carefully examining this paper and providing a
number of important comments and suggestions. One of his/her suggestions
led us to Theorem 1. The first author is also grateful to CNPq and FEMAT
for financial support. The work on this paper was completed during a very
enjoyable visit of the second author at l’Institut de Mathématiques de Bor-
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