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POINTWISE CONVERGENCE FOR
SUBSEQUENCES OF WEIGHTED AVERAGES

BY

PATRICK LAVICTOIRE (Madison, WI)

Abstract. We prove that if µn are probability measures on Z such that µ̂n converges
to 0 uniformly on every compact subset of (0, 1), then there exists a subsequence {nk}
such that the weighted ergodic averages corresponding to µnk satisfy a pointwise ergodic
theorem in L1. We further discuss the relationship between Fourier decay and pointwise
ergodic theorems for subsequences, considering in particular the averages along n2+bρ(n)c
for a slowly growing function ρ. Under some monotonicity assumptions, the rate of growth
of ρ′(x) determines the existence of a “good” subsequence of these averages.

1. Introduction. Generally speaking, if we have a family of operators
Tn on a Banach space V which converge in some weak sense, we might ask
whether there exists a subsequence Tnk

which converges in some stronger
sense. An important special case here is the contrast between various types
of “convergence in the mean” and “convergence almost everywhere”, as for
example in the following recent result of Kostyukovsky and Olevskii [8] on
approximate identities.

Definition 1.1. A sequence of functions φn ∈ L1(R) is an approximate
identity on R if ‖φn ∗ f − f‖1 → 0 as n→∞, for all f ∈ L1(R).

Theorem 1.2. Let {φn} be an approximate identity on R consisting of
non-negative functions. Then there is a sequence {nk} such that φnk

∗f → f
a.e. for every f ∈ L1(R).

As noted by Rosenblatt [10], this example is analogous to an open ques-
tion about the pointwise convergence of subsequences of certain weighted
ergodic averages. In that context, the natural analogue to an approximate
identity is a sequence of probability measures {µn} such that for any ergodic
dynamical system (X,F ,m, τ) and any f ∈ L1, the weighted averages

(1.1) µnf(x) :=
∑
j∈Z

f(τ jx)µn(j)

converge in the L1 norm to
	
X f dm. This is equivalent [1, Proposition 1.7b
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and Corollary 1.8], to the Fourier condition µ̂n(γ) → 0 for all γ ∈ (0, 1).
However, a stronger condition seems to be required for an analogous result:

Definition 1.3. We say that a sequence {µn} of probability measures
on Z has asymptotically trivial transforms if µ̂n converges to 0 uniformly on
every compact subset of (0, 1), or equivalently, if

sup
γ∈[0,1)

|(1− e(γ))µ̂n(γ)| → 0,

where we denote e(γ) = e2πiγ .

Bellow, Jones and Rosenblatt [1] proved the following:

Theorem 1.4. Suppose {µn} is a sequence of probability measures on Z
with asymptotically trivial transforms. Then there exists a subsequence {nk}
such that µnk

f(x) converges a.e. for every dynamical system (X,F ,m, τ)
and every f ∈ Lp, p > 1.

This was proved by an analysis of square functions and by interpolation
from L2 to Lp, which left open the L1 question (see Section 4 in [1]). In this
paper, I prove the following weak-type (1,1) maximal inequality on Z:

Theorem 1.5. Suppose {µn} has asymptotically trivial transforms. Then
there is a subsequence {nk} which obeys the weak type maximal inequality

|{x : sup
k
|ϕ ∗ µnk

(x)| > λ}| ≤ Cλ−1‖ϕ‖`1(Z) ∀ϕ ∈ `1(Z).

Given Theorem 1.4 and the Conze principle [6], this implies the full L1

result:

Corollary 1.6. Suppose {µn} has asymptotically trivial transforms.
Then there exists a subsequence {nk} such that µnk

f(x) converges a.e. for
every dynamical system (X,F ,m, τ) and every f ∈ L1(X).

The next question is whether our stronger hypothesis (that {µn} has
asymptotically trivial transforms) can be replaced by a weaker one (that
µ̂n(γ)→ 0 for all γ ∈ (0, 1)). We strongly suspect that this cannot be done,
and conjecture the following:

Conjecture 1.7. There exists a sequence of probability measures {µn}
such that µ̂n(γ) → 0 for all γ ∈ (0, 1), but for any subsequence {nk} and
any (non–atomic) ergodic dynamical system (X,F ,m, τ), there exists an
f ∈ L1(X) such that µnk

f(x) diverges on a set of positive measure in X.

Finally, we examine a special case: the averages along the sequence
ak := k2 + bρ(k)c, where ρ is slowly growing. Such sequences (with k2 re-
placed by an arbitrary polynomial) are of independent interest in the realm
of pointwise ergodic theorems; Boshernitzan, Kolesnik, Quas and Wierdl [2]
proved that within a broad class of integer sequences (subject to certain
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growth and regularity conditions), these are the only ones whose ergodic
averages may diverge pointwise for some L2 function, and they proved some
necessary bounds and sufficient bounds on the growth of ρ for this to oc-
cur.

When we consider ergodic averages of L1 functions and ask whether there
exists a fixed subsequence of these that always converges, the positive result
obtained via Corollary 1.6 and a negative result obtained by modifying a
previous result of the author [9] meet at an exact threshold:

Theorem 1.8. Let ρ ∈ C2[0,∞), with ρ(x) ↗ ∞, ρ′(x) ↘ 0 and
ρ′′(x) ↗ 0 as x → ∞, be such that for some ε > 0, ρ′(x) . x−(ε+2/3)

as x→∞. Consider the sequence of measures

µN :=
1
N

N∑
k=1

δk2+bρ(k)c.

If ρ′(x) � x−1 (thus ρ(x) � log x), then the {µN} have asymptotically
trivial transforms, and thus there exists a subsequence µNk

such that µnk
f(x)

converges a.e. for every dynamical system (X,F ,m, τ) and every f ∈ L1(X).
If ρ′(x) . x−1 (thus ρ(x) . log x), then for any subsequence {nk} and

any (non-atomic) ergodic dynamical system (X,F ,m, τ), there exists an f ∈
L1(X) such that µnk

f(x) diverges on a set of positive measure in X.

Remark 1.9. This requires an additional monotonicity assumption (the
existence of limx→∞ xρ

′(x) ∈ [0,∞]) in order to become a true dichotomy;
such an assumption is analogous to the Hardy field condition in [2].

Remark 1.10. The condition ρ′(x) . x−(ε+2/3) is an artifact of the proof
rather than a genuine restriction. The requirement that ρ′′ ↗ 0, though, is
necessary in some form to establish asymptotically trivial transforms; it is
simple otherwise to create examples such that the exponential sums in (3.4)
do not settle down away from 0.

2. Positive result for asymptotically trivial transforms. The proof
of Theorem 1.5 makes use of the following technique: given the Calderón–
Zygmund decomposition of a function f = g+

∑
s bs, we classify s as “small”,

“large” or “intermediate” with respect to each term of our subsequence µn.
For s “large”, we can use a covering lemma to handle the terms; for s “small”,
we will use cancellation properties of bs; and since for each s there will be
only one n for which it counts as “intermediate”, we can handle these terms
with a trivial L1 estimate. This idea plays a role in [12] as well as other
papers.

The proof will also use a technique in singular integral theory, developed
by Fefferman [7] and Christ [4] and first applied to ergodic theory by Urban
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and Zienkiewicz [13], which uses a sufficiently powerful L2 estimate to prove
a weak L1 estimate.

We may assume that ‖µn‖`1(Z) ≤ 1 for all n, and write µn = µ′n + ηn,
where µ′n is compactly supported and

∑∞
n=1 ‖ηn‖`1(Z) <∞. Then

|{x : sup
n
|ϕ ∗ ηn(x)| > λ}| ≤ λ−1

∞∑
n=1

‖ϕ ∗ ηn‖`1(Z)

≤ λ−1
( ∞∑
n=1

‖ηn‖`1(Z)

)
‖ϕ‖`1(Z).

Now |µ′n(γ)| ≤ |µ̂n(γ)| + 2‖ηn‖1, and so µ̂′n converges to 0 uniformly on
every compact subset of (0, 1). Thus we may assume that µn is compactly
supported for each n.

Furthermore, if the union of these supports were compact, then it is
easy to see (by Parseval’s theorem) that ‖µn‖`1(Z) → 0 and we may choose
a subsequence such that

∑
k ‖µnk

‖`1(Z) < ∞; such a subsequence would
trivially satisfy a weak maximal inequality.

We may therefore assume that the union of the supports of the µn is
unbounded, and accordingly set S(n) := min{s ≥ 0 : suppµm ⊂ [−2s, 2s]
for all m ≤ n}, and N(s) := min{n : S(n) > s}.

Since we will want the cancellation properties of µn+1 to overcome the
size of the support of µn, we choose an increasing subsequence {nk} such
that

sup
γ∈[0,1)

|(1− e(γ))µ̂nk
(γ)| ≤ 2−2S(nk−1)−2k

and such that S(nk) is strictly increasing. By passing to this subsequence, we
may without loss of generality assume that µn has the following properties
in the first place:

suppµn ⊂ [−2S(n), 2S(n)],(2.1)

sup
γ∈[0,1)

|(1− e(γ))µ̂n(γ)| ≤ 2−2S(n−1)−2n.(2.2)

Now, given ϕ ∈ `1 and λ > 0, we perform the discrete Calderón–Zygmund
decomposition: we obtain a collection B of dyadic discrete intervals Qs,k,
and a decomposition ϕ = g +

∑
(s,k)∈B bs,k with ‖g‖∞ ≤ λ, such that for all

(s, k) ∈ B,

supp bs,k ⊂ Qs,k,
∑
x

bs,k(x) = 0,
∑
x

|bs,k(x)| ≤ λ|Qs,k| = 2sλ

and such that ∑
(s,k)∈B

|Qs,k| ≤ λ−1‖ϕ‖1.
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Let bs :=
∑

k bs,k for each s, and let Q?s,k denote the interval with the same
center as Qs,k and 3 times the length. Then |{x : supn |µn ∗ ϕ(x)| > 3λ}| is
bounded by

|{x : sup
n
|µn ∗ g(x)| > λ}|+ |{x : sup

n
|µn ∗ b(x)| > 2λ}|

≤ 0 +
∑
s,k

|Q?s,k|+
∣∣∣{x 6∈⋃

s,k

Q?s,k : sup
n
|µn ∗ b(x)| > 2λ

}∣∣∣
≤ C

λ
‖ϕ‖1 +

∣∣∣{x : sup
n

∣∣∣µn ∗ ∑
s<S(n)

bs(x)
∣∣∣ > 2λ

}∣∣∣,
because ‖µn∗g‖∞ ≤ ‖µn‖1‖g‖∞ ≤ λ and because s ≥ S(n)⇒ supp(µn∗bs,k)
⊂ Q?s,k. Now S(n−1) ≤ s < S(n)⇒ n = N(s), and therefore we decompose

sup
n

∣∣∣µn ∗ ∑
s<S(n)

bs(x)
∣∣∣ ≤∑

n

∣∣∣µn ∗ S(n)−1∑
s=S(n−1)

bs(x)
∣∣∣+ sup

n

∣∣∣µn ∗ ∑
s<S(n−1)

bs(x)
∣∣∣

≤
∑
s

|µN(s) ∗ bs(x)|+ sup
n

∣∣∣µn ∗ ∑
s<S(n−1)

bs(x)
∣∣∣.

As mentioned earlier, we can trivially bound the contribution from the “in-
termediate” terms:∣∣∣{x :

∑
s

|µN(s) ∗ bs(x)| > λ
}∣∣∣ ≤ λ−1

∑
s

‖bs ∗ µN(s)‖1

≤ λ−1
∑
s

‖bs‖1‖µN(s)‖1 ≤
C

λ
‖ϕ‖1.

We have thus reduced this problem to the following claim:

Lemma 2.1.

(2.3)
∣∣∣{x : sup

n

∣∣∣µn ∗ ∑
s<S(n−1)

bs(x)
∣∣∣ > λ

}∣∣∣ ≤ C

λ
‖ϕ‖1.

Proof. We will be able to use (2.2) to our advantage here, since each
bs,k has mean 0 when averaged over dyadic intervals of size 2S(n−1), and the
Fourier bounds on µn are strong enough to exploit this.

We consider the standard `1 averages

(2.4) σn = 2−S(n−1)−nχ[1,2S(n−1)+n],

and decompose µn = µn ∗ σn + µn ∗ (δ0 − σn). Accordingly, the set on the
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left of (2.3) is contained in the union of the sets

E1 :=
{
x : sup

n

∣∣∣(µn ∗ σn) ∗
∑

s<S(n−1)

bs(x)
∣∣∣ > λ

2

}
,

E2 :=
{
x : sup

n

∣∣∣(µn − µn ∗ σn) ∗
∑

s<S(n−1)

bs(x)
∣∣∣ > λ

2

}
.

Observe that for any t > s,

|χ[1,2t] ∗ bs,k(x)| ≤


0, x 6∈ Qs,k + [0, 2t],
0, x ∈ Qs,k + [2s, 2t − 2s],
‖bs,k‖1 otherwise,

since each bs,k has mean 0 and is supported on Qs,k. Therefore ‖σn∗bs,k‖1 ≤
2−S(n−1)−n+s+1‖bs,k‖1, which implies

|E1| ≤ 2λ−1
∑
n

∥∥∥µn ∗ σn ∗ ∑
s<S(n−1)

bs

∥∥∥
1
≤ 2λ−1

∑
n

‖µn‖1
∑

s<S(n−1)

‖σn ∗ bs‖1

≤ 2λ−1
∑
n

∑
s<S(n−1)

2−S(n−1)−n+s+1‖bs‖1

≤ 2λ−1
∑
n

∑
s

2−n+1‖bs‖1 ≤
C

λ
‖ϕ‖1.

(This is a standard Calderón–Zygmund argument so far.)
Now for the other sum, we can write

1− σ̂n(γ) = (1− e(γ))
2S(n−1)+n−1∑

j=0

(1− j2−S(n−1)−n)e(jγ),

and use (2.2) to bound

‖µ̂n(1− σ̂n)‖∞ ≤ 2S(n−1)+n sup
γ
|(1− e(γ))µ̂n(γ)| ≤ 2−S(n−1)−n.

Here, in a variant of the technique from [4], we will use the extremely strong
`2 estimate we get from this Fourier bound to obtain a weak `1 estimate.
Starting with Chebyshev’s inequality, we calculate

|E2| ≤ 4λ−2
∥∥∥sup

n

∣∣∣(µn − µn ∗ σn) ∗
∑

s<S(n−1)

bs

∣∣∣∥∥∥2

2

≤ 4λ−2
∑
n

∥∥∥(µn − µn ∗ σn) ∗
∑

s<S(n−1)

bs

∥∥∥2

2

= 4λ−2
∑
n

∥∥∥µ̂n(1− σ̂n)
∑

s<S(n−1)

b̂s

∥∥∥2

2
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≤ 4λ−2
∑
n

‖µ̂n(1− σ̂n)‖2∞
∥∥∥ ∑
s<S(n−1)

b̂s

∥∥∥2

2

≤ 4λ−2
∑
n

2−2S(n−1)−2n
∥∥∥ ∑
s<S(n−1)

bs

∥∥∥2

2

= 4λ−2
∑
n

2−2S(n−1)−2n
∑

s<S(n−1)

‖bs‖22 =: (∗)

using the orthogonality of bs for different s for the last step. Now since
‖bs‖∞ ≤ ‖bs‖1 ≤ λ2s, we get

(∗) ≤ 4λ−2
∑
n

2−2S(n−1)−2n
∑

s<S(n−1)

λ2s‖bs‖1

≤ 4λ−1
∑
n

2−S(n−1)−2n
∑
s

‖bs‖1 ≤
C

λ
‖ϕ‖1.

This completes the proof.

Remark 2.2. This proof generalizes straightforwardly to measure-pre-
serving Zd-actions, and indeed, to actions by finitely generated abelian
groups (this requires defining the Calderón–Zygmund decomposition on such
a group, using for instance the dyadic cubes from [5]). Note that the proof of
Theorem 1.4 for p = 2 generalizes to this case, and thus we will have a.e. con-
vergence of these ergodic averages for all f ∈ L1(X); see Theorem 2.4 in [1].

3. Threshold result: averages along n2 + bρ(n)c. In this section, we
will prove Theorem 1.8.

We begin with the first claim, that if ρ′(x) � x−1, then the {µN} have
asymptotically trivial transforms. In this section, we will use the classical
result of Weyl [14] on trigonometric sums, and we will repeatedly refer to its
exposition in Section II.2 of Rosenblatt and Wierdl [11] rather than replicate
it in its entirety here (1).

Let β ∈ T. By Dirichlet’s theorem on rational approximations, there
exists a rational number p/q in lowest terms, with q ≤ N4/3, such that

(3.1) |β − p/q| ≤ q−1N−4/3.

We first write

µ̂N (β) =
1
N

bρ(N)c∑
j=0

e(jβ)
∑
k∈Ij

e(k2β) +O

(
Lbρ(N)c

N

)
,

(1) Many theorems and equation numbers in this paper will refer to [11], rather than
to Section 2 above. Fortunately, none of the theorems or equation numbers will coincide
between our Section 2 and their Section II.2.



164 P. LAVICTOIRE

where Ij := {x ∈ R+ : bρ(k)c = j}, and denote Lj := |Ij |. Note that by the
hypotheses on ρ, we have Lj increasing and jε+2/3 . Lbρ(j)c � j as j →∞.
We adapt from [11] the notation

Λ̂(p/q) :=
1
q

q−1∑
n=0

e(n2p/q)

for p/q ∈ Q, as well as the functions

Vj(α) :=
∑

l:
√
l∈Ij

1
2
√
l
e(lα)

for any α ∈ R.
As is standard in the Hardy–Littlewood circle method, we will make use

of different estimates depending on the size of the denominator q relative
to N .

Lemma 3.1. There exists a constant C <∞, depending only on ρ and ε,
such that for j > ρ(N1−ε), q ≤ N2/3, and |β − p/q| ≤ q−1N−4/3, we have

(3.2)
∣∣∣∑
k∈Ij

e(k2β)− Λ̂(p/q)Vj(β − p/q)
∣∣∣ ≤ CN−ε/6Lj .

Similarly, if j > ρ(N1−ε), N2/3 < q ≤ N4/3, and |β − p/q| ≤ q−1N−4/3,
then

(3.3)
∣∣∣∑
k∈Ij

e(k2β)
∣∣∣ ≤ CN−ε/7Lj .

Proof. (3.2) is the equivalent of (2.25) of [11], replacing the exponential
sums beginning at 0 with the sums along the interval {l :

√
l ∈ Ij}. As

in (2.27), ∣∣∣∑
k∈Ij

e(k2p/q)− Λ̂(p/q)Vj(0)
∣∣∣ ≤ Cq

clearly holds with a universal constant. Thus we may apply Lemma 2.13
(note that we are summing in l, over ≤ 2NLj terms) to find∣∣∣∑
k∈Ij

e(k2β)− Λ̂(p/q)Vj(β − p/q)
∣∣∣ ≤ Cq(NLj |β − p/q|+ 1) ≤ CN−ε/6Lj ,

using for the Cq term the assumption q ≤ N2/3 and the fact that for j >
ρ(N1−ε), we have

Lj & N (1−ε)(2/3+ε) & N2/3+ε/6.

Similarly, (3.3) is the analogue of (2.28), and the required estimate∣∣∣∑
k∈Ij

e(k2p/q)
∣∣∣ ≤ C( Lj√

q
+
√
q logLj

)
,
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like (2.29), relies only on the fact that the squares are summed along an
interval. We therefore apply Lemma 2.13 to obtain∣∣∣∑

k∈Ij

e(k2β)
∣∣∣ ≤ C( Lj√

q
+
√
q logLj

)
(NLj |β − p/q|+ 1),

which for q > N2/3 is indeed bounded by CN−ε/7Lj .

Thus we have a satisfactory bound for q > N2/3, while for q ≤ N2/3

and |β − p/q| ≤ q−1N−4/3, we have

µ̂N (β) =
1
N

bρ(N)c∑
j=0

e(jβ)Λ̂(p/q)Vj(β − p/q) +O

(
Lj
N

+N−ε/6
)
.

Now
1
N

bρ(N)c∑
j=0

e(jβ)Vj(β − p/q)

is a Cesàro mean of the averages

(3.4)
1
N2

bρ(N)c∑
j=0

e(jβ)
∑

l:
√
l∈Ij

e(l(β − p/q)),

and so it suffices for Theorem 1.8 to show that these averages decay to 0
(away from β = 0) at a rate depending only on ρ. Let α = β − p/q. For
α 6= 0,

1
N2

bρ(N)c∑
j=0

e(jβ)
∑

l:
√
l∈Ij

e(lα) =
1
N2

bρ(N)c∑
j=0

e(jβ)
e(dφ(j + 1)eα)− e(dφ(j)eα)

e(α)− 1

where φ(j) := (ρ−1(j))2. We use the sum version of integration by parts:
m∑
j=0

(aj+1 − aj)bj = am+1bm − a1b0 +
m∑
j=0

aj(bj−1 − bj),

with

aj := N−2
j−1∑
i=0

e(iβ) and bj :=
e(dφ(j + 1)eα)− e(dφ(j)eα)

e(α)− 1
.

We evaluate the end terms first, noting that

|aj+1bj | ≤
2

N2|β|

∣∣∣∣e(dφ(j + 1)eα)− e(dφ(j)eα)
e(α)− 1

∣∣∣∣
≤ C(φ(j + 1)− φ(j))

N2|β|
= O

(
Lj
N |β|

)
.
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Now the main sum is∣∣∣bρ(N)c∑
j=0

aj(bj−1 − bj)
∣∣∣

=
∣∣∣∣ 1
N2

bρ(N)c∑
j=0

1− e(jβ)
1− e(β)

e(dφ(j + 1)eα)− 2e(dφ(j)eα) + e(dφ(j − 1)eα)
1− e(α)

∣∣∣∣
≤ 2
N2|β| |α|

∣∣∣bρ(N)c∑
j=0

e(dφ(j + 1)eα)− 2e(dφ(j)eα) + e(dφ(j − 1)eα)
∣∣∣

≤ C

N2|β| |α|

bρ(N)c∑
j=0

φ′′(j + 1)|α| ≤ Cφ′(N)
N2|β|

= O

(
Lbρ(N)c

N |β|

)
,

using the monotonicity of ρ and its derivatives (and thus the monotonicity
of φ′′) to justify the second inequality.

If α = 0, then by the same methods,

1
N2

bρ(N)c∑
j=0

e(jβ)|{l :
√
l ∈ Ij}| =

1
N2

bρ(N)c∑
j=0

e(jβ)(dφ(j + 1)e − dφ(j)e)

= O

(
Lbρ(N)c

N |β|

)
.

Therefore we have proved that

(3.5) |µ̂N (β)| . N−ε/7 +
Lbρ(N)c

N |β|
,

which clearly establishes that the sequence {µN} has asymptotically trivial
transforms.

Now we turn to the second claim of Theorem 1.8, that if ρ′(x) ≤ Cx−1

(thus ρ(x) ≤ C log x), then no subsequence of the averages along k2 +bρ(k)c
satisfies a weak-type (1, 1) maximal inequality, and thus by the Conze prin-
ciple [6], no subsequence of these averages can converge a.e. for all L1 func-
tions in an ergodic dynamical system. This follows from the argument of [9],
in which it was proved that the same is true of the sequence k2 among others.
(That paper is an extension in several directions of the paper of Buczolich
and Mauldin [3], which proved that the full sequence of averages along k2

does not satisfy a weak maximal inequality.)
Given such a ρ and any subsequence {Nk} of the averages, we choose a

further subsequence {ki} such that modulo any squarefree odd Q,
⌊
ρ
(

1
2Nki

)⌋
has a limit rQ as i → ∞. (This is done by a diagonal argument, since we
only need to ensure that this happens modulo the product of the first M



POINTWISE CONVERGENCE 167

primes, for each M .) Then if we restrict to this subsequence, we see that the
quadratic residues translated by rq serve as the Λq in Theorem 3.1 of [9], that
(3.1)–(3.4) hold for the same reasons as for the original quadratic residues,
and that (3.5) holds along our subsequence. That is, for any squarefree and
odd Q with sufficiently large factors and any non-trivial quadratic residue
a modulo Q,

lim inf
k→∞

1
Nk
|{1 ≤ j ≤ Nk : j2 + bρ(j)c ≡ a+ rQ mod Q}|

≥ lim inf
k→∞

1
Nk
|{1 ≤ j ≤ Nk : j2 ≡ a mod Q, bρ(j)c = bρ(Nk/2)c}|

≥ lim inf
k→∞

|ΛQ|−1 1
2Nk
|{1 ≤ j ≤ Nk : bρ(j)c = bρ(Nk/2)c}| − 1

Q
≥ 1

3C|ΛQ|
,

using the fact that ρ′(x) ≤ 4C/N for all x ≥ N/4, so that |{1 ≤ j ≤ Nk :
bρ(j)c = bρ(Nk/2)c}| ≥ min{N/4C,N/4}, and the fact that |ΛQ| � Q for Q
large. Note that Theorem 4.1 in [9] implies this variant of Theorem 3.1, since
(4.7) is the only use of (3.5) in that paper. Therefore any subsequence of
the µN has a further subsequence for which the weak L1 maximal inequality
fails, which implies our desired result.

Acknowledgements. The author thanks J. Rosenblatt for introducing
him to these interesting problems, for pointing out the article [8], and for
many suggestions; and his dissertation advisor, M. Christ, for several major
ideas, including treating the intermediate terms in Theorem 1.5 separately
after the fashion of [12].

This research was partly supported by the NSF (Grant DMS-0401260.).

REFERENCES

[1] A. Bellow, R. L. Jones, and J. Rosenblatt, Almost everywhere convergence of weight-
ed averages, Math. Ann. 293 (1992), 399–426.

[2] M. Boshernitzan, G. Kolesnik, A. Quas, and M. Wierdl, Ergodic averaging sequences,
J. Anal. Math. 95 (2005), 63–103.

[3] Z. Buczolich and R. D. Mauldin, Divergent square averages, Ann. of Math. 171
(2010), 1479–1530.

[4] M. Christ, Weak type (1, 1) bounds for rough operators, ibid. 128 (1988), 19–42.
[5] —, A T (b) theorem with remarks on analytic capacity and the Cauchy integral,

Colloq. Math. 60/61 (1990), 601–628.
[6] J.-P. Conze, Convergence des moyennes ergodiques pour des sous-suites, in: Contri-

butions au calcul des probabilités, Bull. Soc. Math. France Mém. 35 (1973), 7–15.
[7] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math.

124 (1970), 9–36.
[8] S. Kostyukovsky and A. Olevskii, Compactness of families of convolution operators

with respect to convergence almost everywhere, Real Anal. Exchange 30 (2004/05),
755–765.

http://dx.doi.org/10.1007/BF01444724
http://dx.doi.org/10.1007/BF02791497
http://dx.doi.org/10.4007/annals.2010.171.1479
http://dx.doi.org/10.2307/1971461
http://dx.doi.org/10.1007/BF02394567


168 P. LAVICTOIRE

[9] P. LaVictoire, Universally L1-bad arithmetic sequences, J. Anal. Math. 113 (2011),
241–263.

[10] J. M. Rosenblatt, Convergence of sequences of convolution operators, New Zealand
J. Math. 38 (2008), 137–147.

[11] J. M. Rosenblatt and M. Wierdl, Pointwise ergodic theorems via harmonic analysis,
in: Ergodic Theory and Its Connections with Harmonic Analysis (Alexandria, 1993),
London Math. Soc. Lecture Note Ser. 205, Cambridge Univ. Press, Cambridge, 1995,
3–151.

[12] A. Seeger, T. Tao, and J. Wright, Singular maximal functions and Radon transforms
near L1, Amer. J. Math. 126 (2004), 607–647.

[13] R. Urban and J. Zienkiewicz, Weak type (1, 1) estimates for a class of discrete rough
maximal functions, Math. Res. Lett. 14 (2007), 227–237.
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