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Abstract. Using a lattice-theoretical approach we find characterizations of modules
with finite uniform dimension and of modules with finite hollow dimension.

1. Introduction. It is well known that Goldie introduced finite-dimen-
sional modules in [2]. Then the concept of the Goldie dimension of a module
was dualized by Varadarajan in [10] and termed dual Goldie dimension. The
concepts of the Goldie dimension and dual Goldie dimension of modules can
be extended to modular lattices as in [4]. We also note that Goldie dimen-
sions of balanced lattices were studied in [13]. In this paper we give some
characterizations of lattices with finite Goldie dimension and, by passing to
the opposite lattice, some characterizations of lattices with finite dual Goldie
dimension. At the end, we give some applications in module theory. Note that
we prefer the terms uniform dimension and hollow dimension instead of the
terms Goldie dimension and dual Goldie dimension, respectively. This paper
was motivated by and is written in the spirit of [6].

In what follows, R is an associative ring with unit and all modules are
unitary right R-modules.

2. Lattices. Let L be a complete modular lattice with least element 0
and greatest element 1. If a ≤ b are elements of a lattice L then b/a will
denote the set of elements x ∈ L such that a ≤ x ≤ b. An element e of L is
called essential if e ∧ a 6= 0 for all 0 6= a ∈ L. In particular, 1 is an essential
element of L. The set of essential elements of L will be denoted by E(L).
Let e ≤ b in L. Then it is easy to see that e ∈ E(L) if and only if e ∈ E(b/0)
and b ∈ E(L).

An element s of L is called small if s is an essential element of the
opposite lattice Lo. In other words, s is a small element of L if and only if
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1 6= s ∨ b for all 1 6= b ∈ L. Clearly, 0 is a small element of L. The set of
small elements of L will be denoted by S(L). Note that S(L) = E(Lo) and
E(L) = S(Lo). Note also the following simple fact about modular lattices.

Lemma 2.1. Let a, b and c be elements of a lattice L such that a∧ b = 0
and (a ∨ b) ∧ c = 0. Then a ∧ (b ∨ c) = 0.

Let N denote the set of natural numbers 1, 2, . . . . Given n ∈ N, a subset
S = {xi : 1 ≤ i ≤ n} of L is called independent if xi 6= 0 (1 ≤ i ≤ n) and

xj ∧ (x1 ∨ · · · ∨ xj−1 ∨ xj+1 ∨ · · · ∨ xn) = 0

for all 1 ≤ j ≤ n. An arbitrary non-empty subset T of L is called indepen-
dent provided every finite non-empty subset of T is independent. Note the
following simple fact.

Lemma 2.2. Let S be an independent set in a lattice L and let x be a
non-zero element of L such that x ∧ (

∨
F ) = 0 for every finite non-empty

subset F of S. Then the set S ∪ {x} is independent.

Proof. By Lemma 2.1.

Let n be a positive integer and {b1, . . . , bn} an independent set of L. Let
ai ∈ E(bi/0) (1 ≤ i ≤ n). Then a1 ∨ · · · ∨ an ∈ E((b1 ∨ · · · ∨ bn)/0) (see, for
example, [8, Proposition 2.6] or [4, Lemma 3]).

The lattice L is called noetherian (respectively, artinian) provided for any
given chain a1 ≤ a2 ≤ · · · (respectively, a1 ≥ a2 ≥ · · · ) of elements of L there
exists a positive integer n such that an = an+1 = · · · . The lattice L is said
to satisfy the maximal condition (respectively, minimal condition) provided
every non-empty subset of L contains a maximal (respectively, minimal)
member. Recall that c ∈ L is a maximal member (respectively, minimal
member) of a non-empty subset S of L in case whenever c ≤ x (respectively,
c ≥ x) for some x ∈ S then c = x. It is easy to prove that L is noetherian
(respectively, artinian) if and only if L satisfies the maximal (respectively,
minimal) condition. It is clear that L is noetherian (respectively, artinian) if
and only if the opposite lattice Lo is artinian (respectively, noetherian).

By a direct set in the lattice L we mean a non-empty subset S of L such
that whenever a ∈ S and b ∈ S then there exists c ∈ S with a ∨ b ≤ c. By
an inverse set in L we mean a direct set in Lo. Thus T is an inverse set in
L if and only if T is non-empty and given u, v ∈ T there exists w ∈ T with
w ≤ u ∧ v. We shall call an element f in L finitely generated if whenever
f =

∨
S for some direct set S in L, then there exists x ∈ S such that f = x.

Note that 0 is always a finitely generated element of L. We shall call an
element f of L strongly finitely generated provided f ≤

∨
S, for a direct set

S in L, implies that f ≤ x for some x ∈ S.
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Note that if U is any non-empty subset of L then the collection of el-
ements of L of the form

∨
F , where F runs through the finite non-empty

subsets of U , is a direct set in L; we shall denote this set by P (U). Note
that

∨
U =

∨
P (U). Thus an element f is (strongly) finitely generated if

and only if for every non-empty set U with f =
∨
U (f ≤

∨
U) there exists

a finite subset F of U such that f =
∨
F (f ≤

∨
F ). An element f of L will

be called an sfg-element if whenever f ≤
∨
P (U) for some independent set

U in L then f ≤ z for some z ∈ P (U), that is, f ≤ u1 ∨ · · · ∨ un for some
positive integer n and elements ui ∈ U (1 ≤ i ≤ n).

The lattice L is called upper continuous if

a ∧
(∨
i∈I

xi

)
=
∨
i∈I

(a ∧ xi)

for every element a and direct set {xi : i ∈ I} in L. On the other hand, L is
called lower continuous if

a ∨
(∧
i∈I

yi

)
=
∧
i∈I

(a ∨ yi)

for every element a and inverse set {yi : i ∈ I} in L. Note that L is upper
continuous if and only if Lo is lower continuous. For more information about
lattice theory we refer the reader to [3], [7] and [8].

Clearly, every strongly finitely generated element of a general lattice L is
finitely generated. The converse is true if L is upper continuous but we are
not sure if it is true more generally.

Lemma 2.3. Let L be an upper continuous (complete modular) lattice.
Then every finitely generated element of L is strongly finitely generated.

Proof. Let a be any finitely generated element of L. Next let {xi : i ∈ I}
be any direct set in L such that a ≤

∨
i∈I xi. Then

a = a ∧
(∨
i∈I

xi

)
=
∨
i∈I

(a ∧ xi).

Because a is finitely generated, there exists j ∈ I such that a = a ∧ xj and
hence a ≤ xj . It follows that a is strongly finitely generated.

Another situation where finitely generated elements are strongly finitely
generated is given in the next result.

Lemma 2.4. The following statements are equivalent for a lattice L:

(i) L is noetherian.
(ii) Every element of L is strongly finitely generated.
(iii) Every element of L is finitely generated.

Proof. (i)⇒(ii). Let a ∈ L. Next let X = {xi : i ∈ I} be any direct set
in L such that a ≤

∨
i∈I xi. Because L satisfies the maximal condition, X

contains a maximal member xj for some j ∈ I. Let i ∈ I. There exists k ∈ I
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such that xj ≤ xi ∨ xj ≤ xk. By the choice of j, we have xj = xk and hence
xi ≤ xj . Thus xi ≤ xj for all i ∈ I and

a ≤
∨
i∈I

xi = xj .

It follows that a is strongly finitely generated.
(ii)⇒(iii). Clear.
(iii)⇒(i). Let b1 ≤ b2 ≤ · · · be a chain of elements in L. (Such a chain of

elements is called ascending.) Let b =
∨
i∈N bi. Because b is finitely generated,

there exists n ∈ N such that b = bn and hence bn = bn+1 = · · · . It follows
that L is noetherian.

There are weaker forms of the upper continuous condition that a lattice L
can satisfy and we consider these next. We shall denote these conditions by
(UC1), (UC2) and (UC3) and define them as follows:

(UC1) For each element a ∈ L and direct set {xi : i ∈ I}, a ∧ xi = 0
(i ∈ I) implies that a ∧ (

∨
i∈I xi) = 0.

(UC2) a∧ (
∨
S) = 0 for every element a in L and every independent set

S in L such that a ∧ (
∨
F ) = 0 for every finite subset F of S.

(UC3) For each element a ∈ L there exists an element b ∈ L such that
a ∧ b = 0 and a ∨ b ∈ E(L).

Lemma 2.5. Consider the following conditions on a lattice L.

(i) L is upper continuous.
(ii) L satisfies (UC1).
(iii) L satisfies (UC2).
(iv) L satisfies (UC3).

Then (i)⇒(ii)⇒(iii)⇒(iv).

Proof. (i)⇒(ii). Let a ∈ L and let {xi : i ∈ I} be a direct set in L such
that a ∧ xi = 0 (i ∈ I). Because L is upper continuous, we have

a ∧
(∨
i∈I

xi

)
=
∨
i∈I

(a ∧ xi) = 0.

Thus L satisfies (UC1).
(ii)⇒(iii). Suppose that L satisfies (UC1). Let a ∈ L and let S be an

independent set in L such that a∧ (
∨
F ) = 0 for every finite subset F of S.

As we remarked above, the set P (S) is a direct set in L. Moreover, a∧p = 0
for all p ∈ P (S). Because L satisfies (UC1), a ∧ (

∨
P (S)) = 0 and it follows

that a ∧ (
∨
S) = 0. Thus L satisfies (UC2).

(iii)⇒(iv). Let a ∈ L. If a ∈ E(L) then a ∧ 0 = 0 and a ∨ 0 ∈ E(L).
Now suppose that a /∈ E(L). There exists a non-zero element u in L with
a ∧ u = 0. Let S denote the collection of all independent sets S in L such
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that a ∧ (
∨
S) = 0. Note that {u} ∈ S. Let Tλ (λ ∈ Λ) be any chain in S

and let T =
⋃
λ∈Λ Tλ. For any finite subset F of T there exists λ ∈ Λ such

that F ⊆ Tλ. It follows that T is an independent set in L and, moreover,
a∧(

∨
F ) = 0 for every finite subset F of T . By (iii), a∧(

∨
T ) = 0. It follows

that T ∈ S. By Zorn’s lemma, S contains a maximal member U . Note that
U is an independent set in L such that a ∧ (

∨
U) = 0. Let b =

∨
U . Let

c ∈ L. Suppose that (a ∨ b) ∧ c = 0. Note that b ∧ c = 0 implies that the set
W = U ∪{c} is independent (Lemma 2.2). Note also that

∨
W = b∨c. Next,

Lemma 2.1 gives a∧(
∨
W ) = a∧(b∨c) = 0. This means thatW ∈ S. By the

choice of U , W = U and hence c ∈ U . In this case, c ≤ (a∨ b)∧ c = 0. Thus
c = 0. It follows that a ∧ b = 0 and a ∨ b ∈ E(L). Thus L satisfies (UC3).

3. Uniform dimension of lattices. Let L be a (complete modular)
lattice with least element 0 and greatest element 1. The lattice L has fi-
nite uniform dimension provided L does not contain an infinite independent
set (of non-zero elements). On the other hand, the lattice L will be said
to have finite hollow dimension if the opposite lattice Lo has finite uniform
dimension. The theory of lattices with finite uniform dimension is well es-
tablished and, by taking opposite lattices, there is a corresponding theory of
lattices with finite hollow dimension. The lattice L is called uniform provided
L 6= {0} and a ∧ b 6= 0 for all non-zero elements a and b in L. On the other
hand, L is hollow if L 6= {1} and 1 6= a∨ b for all elements a and b of L with
a 6= 1 and b 6= 1. Thus L is uniform if and only if Lo is hollow. An element
u ∈ L is called uniform if the sublattice u/0 is uniform. Note in particular
that uniform elements are non-zero. Next an element h ∈ L is called hollow
provided 1/h is a hollow lattice. Clearly z is a uniform element of L if and
only if z is a hollow element of Lo. Note the following fundamental result
(see, for example, [4, Theorem 5]).

Lemma 3.1. A non-zero lattice L has finite uniform dimension if and
only if there exists a positive integer n and an independent set of uniform
elements ui (1 ≤ i ≤ n) such that u1 ∨ · · · ∨ un ∈ E(L). Moreover in this
case, the following statements are true:

(i) If m is a positive integer and {wi : 1 ≤ i ≤ m} is an independent set
of uniform elements of L such that

∨
1≤i≤mwi ∈ E(L), then m = n.

(ii) Every independent set in L has at most n members.
The positive integer n in Lemma 3.1 is called the uniform dimension of

L and will be denoted by u(L). In case L is a zero lattice we shall say that
L has uniform dimension 0 and write u(L) = 0.

Corollary 3.2. Let e be an essential element of a lattice L such that
the sublattice e/0 has finite uniform dimension. Then L has finite uniform
dimension and u(L) = u(e/0). Moreover, u(a/0) ≤ u(L) for all a ∈ L.
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Proof. By Lemma 3.1.

Lemma 3.3. Consider the following statements for a lattice L.

(i) L is noetherian.
(ii) L has finite uniform dimension.
(iii) L satisfies (UC2) and (UC3).

Then (i)⇒(ii)⇒(iii).

Proof. (i)⇒(ii). Suppose that L is noetherian but that L does not have
finite uniform dimension. Then there exists an infinite independent set of
(non-zero) elements xn (n ∈ N). Consider the ascending chain x1 ≤ x1 ∨ x2

≤ · · · in L. Because L is noetherian, there exists a positive integer k such
that

x1 ∨ · · · ∨ xk = x1 ∨ · · · ∨ xk ∨ xk+1.

This implies that xk+1 ≤ xk+1 ∧ (x1 ∨ · · · ∨ xk) = 0 and hence xk+1 = 0,
a contradiction. This shows that (i)⇒(ii).

(ii)⇒(iii). Clearly L satisfies (UC2) because every independent set is
finite. By Lemma 2.5, L satisfies (UC3).

If R is a ring andM a unital right R-module then L(MR) will denote the
complete modular lattice of submodules of M . Note that if Z is the ring of
integers and Q the rational field then L(QZ) has finite uniform dimension 1
but is not noetherian. Moreover, if V is an infinite-dimensional vector space
over Q then L(VQ) satisfies (UC2) (and hence also (UC3)) but does not
have finite uniform dimension. However, some lattices which satisfy (UC3)
do have finite uniform dimension. We shall be interested in the following
conditions on essential elements of a lattice L:

(A) For each e ∈ E(L) there exists f ∈ E(L) such that f ≤ e and f is
strongly finitely generated.

(B) For each e ∈ E(L) there exists f ∈ E(L) such that f ≤ e and f is
finitely generated.

(C) For each e ∈ E(L) there exists f ∈ E(L) such that f ≤ e and f is
an sfg-element.

Theorem 3.4. A lattice L has finite uniform dimension if and only if L
satisfies (UC3) and (C).

Proof. Suppose first that L has finite uniform dimension. Then L satisfies
(UC3) by Lemma 3.3 and L satisfies (C) because every independent set in
L is finite. Conversely, suppose that L satisfies (UC3) and (C). Suppose
that L does not have finite uniform dimension. Then L contains an infinite
independent set S of (non-zero) elements xn (n ∈ N). Let x =

∨
S. The

condition (UC3) for L gives an element y ∈ L such that x ∧ y = 0 and
x ∨ y ∈ E(L). Suppose that y 6= 0. By Lemma 2.2, the set S ∪ {y} is
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independent. By hypothesis, there exists f ∈ E(L) such that f is an sfg-
element of L and f ≤ x ∨ y. Then f ≤

∨
n∈N (xn ∨ y) and hence f ≤

x1 ∨ · · · ∨ xm ∨ y for some m ∈ N. Now {x1, . . . , xm+1, y} is an independent
set because (x1 ∨ · · · ∨ xm+1) ∧ y ≤ x ∧ y = 0 (Lemma 2.2). Therefore

f ∧ xm+1 ≤ (x1 ∨ · · · ∨ xm ∨ y) ∧ xm+1 = 0.

But this implies that f ∧ xm+1 = 0 and hence, because f ∈ E(L), we
have xm+1 = 0, a contradiction. Thus L has finite uniform dimension. Now
suppose that y = 0. By adapting the above proof we again obtain a contra-
diction.

Corollary 3.5.

(i) Every lattice which satisfies (UC3) and (A) has finite uniform di-
mension.

(ii) Every upper continuous lattice which satisfies (B) has finite uniform
dimension.

Proof. (i) By Theorem 3.4.
(ii) By Lemmas 2.3 and 2.5 and Theorem 3.4.

The converse of Corollary 3.5(i) holds for certain lattices. First we prove
a preparatory result.

Lemma 3.6. Let a and b be strongly finitely generated elements of a lat-
tice L. Then the element a ∨ b is also strongly finitely generated.

Proof. Suppose that a ∨ b ≤
∨
U for some non-empty set U in L. Then

a ≤
∨
U implies that a ≤

∨
F for some finite subset F of U . Similarly

b ≤
∨
G for some finite subset G of U . It follows that a ∨ b ≤

∨
(F ∪ G).

Thus a ∨ b is strongly finitely generated.

Theorem 3.7. Let L be a lattice such that for each uniform element u
there exists a non-zero strongly finitely generated element s with s ≤ u. Then
L has finite uniform dimension if and only if L satisfies (UC3) and (A).

Proof. The sufficiency follows by Corollary 3.5(i). Conversely, suppose
that L has finite uniform dimension. By Lemma 3.3, L satisfies (UC3). Let
e ∈ E(L). By Lemma 3.1, there exist a positive integer n and an independent
set of uniform elements ui (1 ≤ i ≤ n) of L such that u1∨· · ·∨un ∈ E(L) and
u1 ∨ · · · ∨ un ≤ e. By hypothesis, for each 1 ≤ i ≤ n there exists a non-zero
strongly finitely generated element ai of L with ai ≤ ui. Let a = a1∨· · ·∨an.
By Lemma 3.6, a is a strongly finitely generated element of L. Since each ui is
uniform, for each i ∈ {1, . . . , n}, ai ∈ E(ui/0). Then a ∈ E((u1∨· · ·∨un)/0).
Thus a ∈ E(L). Clearly a ≤ e. It follows that L satisfies (A).
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Corollary 3.8. Let L be an upper continuous lattice such that for each
uniform element u there exists a non-zero finitely generated element s with
s ≤ u. Then L has finite uniform dimension if and only if L satisfies (B).

Proof. By Lemmas 2.3 and 2.5 and Theorem 3.7.

4. Further conditions. Let L be any lattice, again with least element
0 and greatest element 1. Note that E(L) is the set of elements e ∈ L such
that every element a in L with e ∧ a = 0 satisfies u(a/0) = 0, because of
course a = 0 in this case. For every non-negative integer n, we set En(L) to
be the set of elements e ∈ L such that every element a ∈ L with e ∧ a = 0
satisfies u(a/0) ≤ n. Note that E(L) = E0(L) and that

E(L) = E0(L) ⊆ E1(L) ⊆ E2(L) ⊆ · · · .
Next, E∞(L) will denote the collection of elements e ∈ L such that whenever
a ∈ L with e ∧ a = 0 then a/0 has finite uniform dimension.

Lemma 4.1. Let L be a lattice. Then:

(i) Given a non-negative integer n, L = En(L) if and only if L has finite
uniform dimension at most n.

(ii) L = E∞(L) if and only if L has finite uniform dimension.

Proof. (i) First suppose that L = En(L). Then 0 ∈ En(L). If e ∈ E(L)
then e ∧ 0 = 0 and hence u(e/0) ≤ n. By Corollary 3.2, the lattice L has
uniform dimension at most n. Conversely, suppose that u(L) ≤ n. Let x ∈ L.
For any y ∈ L with x ∧ y = 0, we have u(y/0) ≤ u(L) ≤ n by Corollary 3.2.
It follows that x ∈ En(L). Thus L = En(L).

(ii) Similar to (i).

For every non-negative integer n, it is clear that a ∈ En(L) and a ≤ b ∈ L
together imply b ∈ En(L). It follows that if n is a non-negative integer and
c ∈ L \ En(L) then d ∈ L \ En(L) for every d ∈ L with c ≥ d. There are
similar facts for the sets E∞(L) and L \ E∞(L). In this section we shall be
interested in the following conditions where n is any non-negative integer:

(En) a is a finitely generated element of L for each a ∈ L \ En(L).
In addition we shall be interested in the following condition on a lattice L:

(E∞) a is a finitely generated element of L for each a ∈ L \ E∞(L).

Lemma 4.2. Let n be any non-negative integer or ∞. Then a lattice L
satisfies (En) if and only if a/0 is noetherian for every a ∈ L \ En(L).

Proof. Suppose first that L satisfies (En). Let a ∈ L \ En(L). For any
b ≤ a, the above remarks show that b ∈ L \ En(L) and hence b is finitely
generated. Thus b is finitely generated for all b ∈ a/0. By Lemma 2.4, a/0 is
noetherian.
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Conversely, if a/0 is noetherian for each a ∈ L \ En(L) then a ∈ a/0
implies that a is finitely generated for each a ∈ L \ En(L), by Lemma 2.4.
Thus L satisfies (En).

Theorem 4.3. The following statements are equivalent for a lattice L:

(i) L has finite uniform dimension.
(ii) L satisfies (UC3) and (Em) for some non-negative integer m.
(iii) L satisfies (UC2) and (E∞).

Proof. (i)⇒(ii). Suppose that u(L) = n for some positive integer n. (If
L = {0} then there is nothing to prove.) By Lemma 3.3, L satisfies (UC3).
Moreover, by Lemma 4.1, L = En(L) and so L satisfies (En) vacuously.

(ii)⇒(i). Suppose that L 6= {0}. Suppose first that m = 0. If a ∧ b 6= 0
for all non-zero elements a, b in L then L is uniform and hence u(L) = 1.
Suppose that u ∧ w = 0 for some non-zero elements u,w ∈ L. Because L
satisfies (UC3), there exists z ∈ L such that u ∧ z = 0 and u ∨ z ∈ E(L).
Clearly z 6= 0. Note that neither u nor z belongs to E(L). By hypothesis and
Lemma 4.2, both u/0 and z/0 are noetherian sublattices of L. By Lemma
3.3, both u/0 and z/0 have finite uniform dimension. But u ∧ z = 0. By
Lemmas 2.1, 2.2 and 3.1, (u ∨ z)/0 has finite uniform dimension. It follows
that L has finite uniform dimension because u ∨ z ∈ E(L) (Corollary 3.2).

Now suppose that m ≥ 1. Suppose that L does not have finite uni-
form dimension. Then there exists an independent set of (non-zero) elements
xi (1 ≤ i ≤ m + 2). Let x = x1 ∨ · · · ∨ xm+1. Note that x ∧ xm+2 = 0 so
that x /∈ E(L). There exists an element y ∈ L such that x ∧ y = 0 and
x ∨ y ∈ E(L). Note that y 6= 0. By Lemma 2.2, the set {x1, . . . , xm+1, y} is
independent. Therefore, for each 1 ≤ i ≤ m+ 1, we have

xi ∧ (x1 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xm+1 ∨ y) = 0.

By Lemma 3.1, xi /∈ Em(L) and hence, by Lemma 4.2, xi/0 is noetherian
for all 1 ≤ i ≤ m+1. Similarly y/0 is noetherian. But Lemma 3.3 then gives
that each of the lattices xi/0 (1 ≤ i ≤ m + 1) and y/0 has finite uniform
dimension. Since the set {x1, . . . , xm+1, y} is independent it follows that the
sublattice (x ∨ y)/0 has finite uniform dimension. Because x ∨ y ∈ E(L),
the lattice L has finite uniform dimension, a contradiction. Thus L has finite
uniform dimension.

(i)⇒(iii). Suppose that L has finite uniform dimension. Then every in-
dependent set of non-zero elements of L is finite and thus L clearly satisfies
(UC2). Moreover, by Lemma 4.1, L satisfies (E∞).

(iii)⇒(i). Suppose that L satisfies (UC2) and (E∞). Suppose that L does
not have finite uniform dimension. Then L contains an independent set S
of (non-zero) elements xn (n ∈ N). Let I and J be disjoint infinite subsets
of N. Let T = {xn : n ∈ I} and U = {xn : n ∈ J}. Let F be any finite
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subset of T . Then (
∨
F ) ∧ (

∨
G) = 0 for every finite non-empty subset G

of U . Because L satisfies (UC2), (
∨
F ) ∧ u = 0, where u =

∨
U . Now, since

(
∨
F )∧u = 0 for every finite non-empty subset F of T , we see (using (UC2)

in L) that t ∧ u = 0 where t =
∨
T . Next note that L satisfies (UC3) by

Lemma 2.5. Thus there exists an element w in L such that (t∨u)∧w = 0 and
t∨ u∨w ∈ E(L). Note that t∧ (u∨w) = 0 by Lemma 2.1. Clearly, t/0 does
not have finite uniform dimension so that u ∨ w /∈ E∞(L). By Lemma 4.2,
(u ∨ w)/0 is noetherian. Similarly the sublattice t/0 is noetherian. By the
proof (ii)⇒(i), L has finite uniform dimension, a contradiction.

5. Application to modules. Let R be a ring with identity and let M
be a unital right R-module. We can apply the above results on lattices to
the lattice L(M) of submodules of M and to its opposite lattice L(M)o.
The application to L(M) is straightforward. Note that L(M) is an upper
continuous complete modular lattice. Corollary 3.8 gives the following well
known result.

Theorem 5.1. A module M has finite uniform dimension if and only if
every essential submodule of M contains a finitely generated essential sub-
module of M .

On the other hand, Lemma 2.5 and Theorem 4.3 give the following result:

Theorem 5.2. Let M be a module and let S denote the collection of
submodules N of M such that every submodule L of M with N ∩ L = 0 has
finite uniform dimension. Then M has finite uniform dimension if and only
if every submodule N not in S is finitely generated.

The module M is called an AB5∗-module in case L(M) is lower contin-
uous or, in other words, L(M)o is upper continuous. Modules M such that
L(M)o satisfies (UC3) are called weakly supplemented. That is, M is weakly
supplemented if and only if for each submodule N of M there exists a sub-
module L of M such that M = N + L and N ∩ L is a small submodule
of M (see [11] and [12]). A submodule N of M is called proper provided
N 6= M or, in other words, N is a non-zero element of L(M)o. A finite col-
lection of submodules Ni (1 ≤ i ≤ k), for some positive integer k, is called
coindependent in case Ni is a proper submodule of M for each 1 ≤ i ≤ k
and

M = Ni + (N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Nk)

for all 1 ≤ i ≤ k. An arbitrary family of submodules of M will be called
coindependent provided every finite subfamily is coindependent. The mod-
ule M has finite hollow dimension provided it does not contain an infinite
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coindependent family (of proper submodules). Thus

M has finite hollow dimension ⇔ L(M) has finite hollow dimension
⇔ L(M)o has finite uniform dimension,

and in this case the hollow dimension, h(M), of M is the uniform dimension
of the lattice L(M)o.

Given a submodule L of M , the factor module M/L is called (strongly)
finitely cogenerated in case L is a (strongly) finitely generated element of
the lattice L(M)0. Thus, as usual, M/L is a finitely cogenerated module
if and only if the fact that L =

⋂
i∈I Ni for some non-empty collection of

submodules Ni (i ∈ I) of M implies that L =
⋂
j∈J Nj for some finite

subset J of I. On the other hand, M/L is a strongly finitely cogenerated
module if and only if the fact that L ⊇

⋂
i∈I Ni for some non-empty collection

of submodules Ni (i ∈ I) of M implies that L ⊇
⋂
j∈J Nj for some finite

subset J of I. For a given submodule L ofM , the moduleM/L will be called
an sfc-module in case L is an sfg-element of L(M)o. Thus M/L is an sfc-
module if and only if for any given coindependent set of proper submodules
Ni (i ∈ I) of M such that

⋂
i∈I Ni ⊆ L, there exists a finite subset J of I

such that
⋂
j∈J Nj ⊆ L.

Theorem 3.4 when applied to the lattice L(M)o gives the next result.

Theorem 5.3. A module M has finite hollow dimension if and only if
M is weakly supplemented and for every small submodule S ofM there exists
a small submodule T of M with S ⊆ T and M/T an sfc-module.

Next, Corollary 3.5 gives:

Proposition 5.4. Let M be an AB5∗-module (respectively, a weakly
supplemented module) such that for each small submodule S ofM there exists
a small submodule T of M with S ⊆ T and M/T (respectively, strongly)
finitely cogenerated. Then M has finite hollow dimension.

Example 5.5. Let P be the set of all prime integers. LetM =
⊕

p∈PMp

with Mp
∼= Z/pZ for all p ∈ P. Note that if A is a submodule of M and

x =
∑k

i=1 xpi ∈ A with 0 6= xpi ∈ Mpi for every 1 ≤ i ≤ k, then Mpi ⊆ A
for every 1 ≤ i ≤ k. In fact, let 1 ≤ i0 ≤ k and let α =

∏
i 6=i0 pi. Then αx =

αxpi0
∈ Mpi0

− {0}. Hence Mpi0
= Z(αx) ≤ A. It follows easily that every

submodule ofM has the form N =
⊕

q∈IMq with I ⊆ P. Let (Aλ)λ∈Λ be an
inverse family of submodules of M and let N be a submodule of M . Clearly,
N +

⋂
λ∈ΛAλ ⊆

⋂
λ∈Λ(N +Aλ). On the other hand, since M is semisimple,

there exists a subset L ⊆ P such that
⋂
λ∈Λ(N + Aλ) = N ⊕

⊕
l∈LMl. Let

l0 ∈ L. Let xl0 ∈ Ml0 − {0}. Let λ ∈ Λ. Since xl0 ∈ N + Aλ, there exist
n0 ∈ N and aλ ∈ Aλ such that xl0 = n0 +aλ. Thus aλ = −n0 +xl0 ∈ Aλ. By
a previous remark, we get Ml0 ≤ Aλ. Therefore Ml0 ⊆

⋂
λ∈ΛAλ. It follows
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thatMl0 ⊆ N+
⋂
λ∈ΛAλ. So

⊕
l∈LMl ⊆ N+

⋂
λ∈ΛAλ. Hence

⋂
λ∈Λ(N+Aλ)

⊆ N +
⋂
λ∈ΛAλ. Consequently,

⋂
λ∈Λ(N + Aλ) = N +

⋂
λ∈ΛAλ. Then M

is AB5∗. On the other hand, it is clear that M does not have finite hollow
dimension. Therefore M contains a small submodule S such that for every
small submodule T containing S, M/T is not finitely cogenerated (Proposi-
tion 5.4).

Let M be any module. We say that M is a generalized Hopfian module
if every epimorphism from M to M has a small kernel (see [1]). By [5,
remark iv), p. 28], if a module M has finite hollow dimension such that
the hollow dimension of M is equal to the hollow dimension of M/N for a
submodule N of M , then N is small in M . Therefore every module with
finite hollow dimension is generalized Hopfian.

We say that a module M has the (∗) property if it satisfies the following
condition:

(∗) For every small submodule N of M , there exists an epimorphism
f : M/N →M .

Now we give an application of Proposition 5.4:

Theorem 5.6. LetM be a finitely cogenerated AB5∗ module with the (∗)
property. Then M is generalized Hopfian if and only if M has finite hollow
dimension.

Proof. (⇐) This is clear.
(⇒) Let L be a small submodule of M . By the (∗) property, there exists

an epimorphism f : M/L→M . Let T be a submodule ofM such that L ⊆ T
and Ker f = T/L. Therefore M/T is finitely cogenerated since M/T ∼= M .
Now consider the natural epimorphism π : M → M/L. So we have the
epimorphism fπ : M →M . Since M is generalized Hopfian, Ker(fπ) = T is
small in M . The result follows from Proposition 5.4.

Note that the above theorem is dual to [9, Lemma 3.2]. The following
examples show that the assumption “M has the (∗) property” in Theorem
5.6 is sufficient but not necessary.

Example 5.7. Let M be an artinian module which is not semisimple
(e.g. we can take M to be the module RR, where R denotes the ring of
all upper triangular 2 × 2 matrices with entries in a field F or we can take
M to be the Prüfer group Zp∞ , where p is a prime number). Since M is
artinian, M has finite hollow dimension and M is a finitely cogenerated
and AB5∗ module. On the other hand, note that M/Rad(M) is semisimple.
Therefore there is no epimorphism fromM/Rad(M) to M. This implies that
the module M does not have the (∗) property.
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Given a non-negative integer n, Hn(M) will denote the collection of sub-
modules N of M such that every submodule L which satisfies M = N + L
also satisfies h(M/L) ≤ n. Next, H∞(M) will denote the collection of sub-
modules N ofM such that whenever L is a submodule ofM withM = N+L
then M/L has finite hollow dimension. Theorem 4.3 then gives:

Theorem 5.8. The following statements are equivalent for a module M :

(i) M has finite hollow dimension.
(ii) M is a weakly supplemented module such that, for some non-negative

integer n, M/N is finitely cogenerated for every submodule N of M
with N /∈ Hn(M).

(iii) M satisfies the following two conditions:

(a) A+
⋂
i∈I Ai = M for every submodule A of M and every coinde-

pendent set {Ai}i∈I of M such that A+
⋂
i∈F Ai = M for every

finite subset F of I,
(b) M/N is finitely cogenerated for every submodule N of M with

N /∈ H∞(M).
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