A QUANTITATIVE ASPECT OF NON-UNIQUE FACTORIZATIONS: THE NARKIEWICZ CONSTANTS II

BY
WEIDONG GAO (Tianjin), YUANLIN LI (St. Catharines) and JIANGTAO PENG (Tianjin)

Abstract

Let K be an algebraic number field with non-trivial class group G and \mathcal{O}_{K} be its ring of integers. For $k \in \mathbb{N}$ and some real $x \geq 1$, let $F_{k}(x)$ denote the number of non-zero principal ideals $a \mathcal{O}_{K}$ with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that $F_{k}(x)$ behaves, for $x \rightarrow \infty$, asymptotically like $x(\log x)^{1 /|G|-1}(\log \log x)^{\mathbb{N}_{k}(G)}$. In this article, it is proved that for every prime $p, \mathrm{~N}_{1}\left(C_{p} \oplus C_{p}\right)=2 p$, and it is also proved that $\mathrm{N}_{1}\left(C_{m p} \oplus C_{m p}\right)=2 m p$ if $\mathrm{N}_{1}\left(C_{m} \oplus C_{m}\right)=2 m$ and m is large enough. In particular, it is shown that for each positive integer n there is a positive integer m such that $\mathrm{N}_{1}\left(C_{m n} \oplus C_{m n}\right)=2 m n$. Our results partly confirm a conjecture given by W. Narkiewicz thirty years ago, and improve the known results substantially.

1. Introduction. Let K be an algebraic number field, \mathcal{O}_{K} its ring of integers and G its ideal class group. For a non-zero element $a \in \mathcal{O}_{K}$ let $\mathbf{Z}(a)$ denote the set of all (essentially distinct) factorizations of a into irreducible elements. Then \mathcal{O}_{K} is factorial (in other words, $|\mathrm{Z}(a)|=1$ for all non-zero $\left.a \in \mathcal{O}_{K}\right)$ if and only if $|G|=1$. Suppose that $|G| \geq 2$ and let $k \in \mathbb{N}$. In the 1960s P. Rémond and W. Narkiewicz initiated the study of the asymptotic behavior of counting functions associated with non-unique factorizations. The function

$$
F_{k}(x)=\mid\left\{a \mathcal{O}_{K} \mid a \in \mathcal{O}_{K} \backslash\{0\},\left(\mathcal{O}_{K}: a \mathcal{O}_{K}\right) \leq x \text { and }|\mathrm{Z}(a)| \leq k\right\} \mid
$$

was considered, which counts the number of principal ideals $a \mathcal{O}_{K}$ where $0 \neq a \in \mathcal{O}_{K}$ has at most k distinct factorizations and whose norm is bounded by x. It was proved in [7] that $F_{k}(x)$ behaves, for $x \rightarrow \infty$, asymptotically like

$$
x(\log x)^{1 /|G|-1}(\log \log x)^{\mathrm{N}_{k}(G)} .
$$

In [8, 9], W. Narkiewicz and J. Sliwa showed that the exponents $\mathrm{N}_{k}(G)$ depend only on the class group G, and they also gave a combinatorial description of $\mathrm{N}_{k}(G)$ (see Definition 2.1 below). This description was used

[^0]by W. Gao 1 to give a first detailed investigation of $\mathrm{N}_{k}(G)$. In a recent paper [2], W. Gao, A. Geroldinger and Q. Wang continued the investigations of $\mathrm{N}_{k}(G)$ with new methods from combinatorial number theory for $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ a finite abelian group of rank r with $1<n_{1}|\cdots| n_{r}$. It is well known that $\mathrm{N}_{1}\left(C_{n}\right)=n$. A main result of their paper dealt with $\mathrm{N}_{1}(G)$ for groups of rank two. They also outlined a key strategy in combinatorial number theory for such investigations, which divides the problem into the following two steps (in particular, when G has rank two):

Step A. Determine the precise value for the invariant (e.g. $\mathrm{N}_{1}(G)$) under investigation for groups of the form $C_{p} \oplus C_{p}$, where p is a prime.

Step B. Show that the problem is "multiplicative", in the sense that the precise value of the invariant can be lifted from groups of the above form to arbitrary groups of rank two.

In that paper, one of the focuses was on Step B and the authors achieved some nice results regarding the precise values of $\mathrm{N}_{1}(G)$ for several groups of rank two by showing that the "lifting procedure" works for those groups. In this paper, we first provide a complete answer to the question mentioned in Step A by determining the precise value of $\mathrm{N}_{1}(G)$ for groups G of the form $C_{p} \oplus C_{p}$, where p is any prime. Then we extend our result to some new groups of the form $G_{n} \oplus G_{n}$ of rank two, where n is not necessarily a prime. Recall that a conjecture on the value of $\mathrm{N}_{1}(G)$ is as follows:

Conjecture 1.1 (9). Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ be an abelian group with $1<n_{1}|\cdots| n_{r}$. Then $N_{1}(G)=n_{1}+\cdots+n_{r}$.

This conjecture has been confirmed only for very special groups. For example, the first author confirmed it in for the group $C_{p} \oplus C_{p}$ with $p \leq 157$ a prime. In this paper, we prove the following main results.

Theorem 1.2. $\mathrm{N}_{1}\left(C_{p} \oplus C_{p}\right)=2 p$, where p is a prime.
Theorem 1.3. If $\mathrm{N}_{1}\left(C_{m} \oplus C_{m}\right)=2 m$, then $\mathrm{N}_{1}\left(C_{m p} \oplus C_{m p}\right)=2 m p$ where p is a prime and $m \geq\left(6 p^{2}\left(p^{2}-2\right)-5\right) /(p-6)$.

Corollary 1.4. For each $n \in \mathbb{N}$, there exists an $m \in \mathbb{N}$ such that $\mathrm{N}_{1}\left(C_{m n} \oplus C_{m n}\right)=2 m n$.

In the next section, we provide some preliminaries for the study of $\mathrm{N}_{1}(G)$. The proofs for Theorems 1.2 and 1.3, and Corollary 1.4 are given in Sections 3 and 4.
2. Preliminaries. We denote by \mathbb{N} the set of positive integers, by \mathbb{P} $\left(\subset \mathbb{N}\right.$) the set of prime numbers, and let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For real numbers $a, b \in \mathbb{R}$, set $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$.

Let G be a finite additively written abelian group and $G_{0} \subseteq G$ a subset; also, let $G^{\bullet}=G \backslash\{0\}$. The elements of the free monoid $\mathcal{F}\left(G_{0}\right)$ are called sequences over G_{0}. Let

$$
S=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)}
$$

where $\mathrm{v}_{g}(S) \in \mathbb{N}_{0}$ for all $g \in G_{0}$ and $\mathrm{v}_{g}(S)=0$ for almost all $g \in G_{0}$, be a sequence over G_{0}. We call $\mathrm{v}_{g}(S)$ the multiplicity of g in S, and we say that S contains g if $\mathrm{v}_{g}(S)>0$. A sequence S_{1} is called a subsequence of S if $\mathrm{v}_{g}\left(S_{1}\right) \leq \mathrm{v}_{g}(S)$ for all $g \in G_{0}$, denoted by $S_{1} \mid S$. If a sequence $S \in \mathcal{F}\left(G_{0}\right)$ is written in the form $S=g_{1} \cdot \ldots \cdot g_{l}$, we tacitly assume that $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G_{0}$. For a sequence

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)} \in \mathcal{F}\left(G_{0}\right)
$$

we call $\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G_{0}} \mathrm{v}_{g}(S) g \in G$ the sum of S, and $\Sigma(S)=$ $\left\{\sum_{i \in I} g_{i} \mid \emptyset \neq I \subset[1, l]\right\}$ the set of subsums of S. For $g \in G$, we set $g+S=\left(g+g_{1}\right) \cdot \ldots \cdot\left(g+g_{l}\right) \in \mathcal{F}(G)$.

The sequence S is called

- a zero-sum sequence if $\sigma(S)=0$,
- short (in G) if $1 \leq|S| \leq \exp (G)$,
- zero-sum free if there is no non-empty zero-sum subsequence,
- a minimal zero-sum sequence if S is a non-empty zero-sum sequence and every subsequence S^{\prime} of S with $1 \leq\left|S^{\prime}\right|<|S|$ is zero-sum free.
We denote by $\mathcal{B}\left(G_{0}\right)=\left\{S \in \mathcal{F}\left(G_{0}\right) \mid \sigma(S)=0\right\}$ the monoid of zero-sum sequences over G_{0}, by $\mathcal{A}\left(G_{0}\right)$ the set of all minimal zero-sum sequences over G_{0} (this is the set of atoms of the monoid $\mathcal{B}\left(G_{0}\right)$), and by

$$
\mathrm{D}\left(G_{0}\right)=\sup \left\{|U| \mid U \in \mathcal{A}\left(G_{0}\right)\right\} \in \mathbb{N} \cup\{\infty\}
$$

the Davenport constant of G_{0}. For a sequence $S \in \mathcal{B}\left(G_{0}\right)$, let

$$
\mathrm{Z}(S)=\left\{S_{1} \cdot \ldots \cdot S_{r} \mid S=S_{1} \cdot \ldots \cdot S_{r} \text { with } S_{1}, \ldots, S_{r} \in \mathcal{A}\left(G_{0}\right)\right\}
$$

denote the set of factorizations of S. We say that S has unique factorization if $|\mathrm{Z}(S)|=1$.

Every map of abelian groups $\varphi: G \rightarrow H$ extends naturally to a homomorphism $\varphi: \mathcal{F}(G) \rightarrow \mathcal{F}(H)$ where $\varphi(S)=\varphi\left(g_{1}\right) \cdot \ldots \cdot \varphi\left(g_{l}\right)$. If φ is a homomorphism, then $\varphi(S)$ is a zero-sum sequence if and only if $\sigma(S) \in \operatorname{Ker}(\varphi)$.

For many zero-sum problems, the ordering of the elements of a sequence is not important. However, when counting the number of subsequences with a given property or considering the so-called unique factorization, we need to grant a sequence an ordering or label. There are two popular ways to do so. One way is to introduce the index set as done by Narkiewicz in [8], and the other is to use the concept of type, first introduced by Halter-Koch
(see [5], 6]), as done by W. Gao, A. Geroldinger and Q. Wang in a recent paper [2]. In the present paper we shall use the latter method.

Monoid of zero-sum types. The elements of $\mathcal{F}\left(G_{0} \times \mathbb{N}\right)$ are called types over G_{0}. Clearly, they are sequences over $G_{0} \times \mathbb{N}$, but we think of them as labeled sequences over G_{0} where each element from G_{0} carries a positive integer label. Let $\boldsymbol{\alpha}: \mathcal{F}\left(G_{0} \times \mathbb{N}\right) \rightarrow \mathcal{F}\left(G_{0}\right)$ denote the unique homomorphism satisfying

$$
\boldsymbol{\alpha}((g, n))=g \quad \text { for all }(g, n) \in G_{0} \times \mathbb{N},
$$

and let $\bar{\sigma}=\sigma \circ \boldsymbol{\alpha}: \mathcal{F}\left(G_{0} \times \mathbb{N}\right) \rightarrow G$. For a type $T \in \mathcal{F}\left(G_{0} \times \mathbb{N}\right), \boldsymbol{\alpha}(T) \in \mathcal{F}\left(G_{0}\right)$ is the associated (unlabeled) sequence. We say that T is a zero-sum type (short, zero-sum free or a minimal zero-sum type) if the associated sequence has the relevant property, and we set $\Sigma(T)=\Sigma(\boldsymbol{\alpha}(T))$. We denote by

$$
\mathcal{T}\left(G_{0}\right)=\left\{T \in \mathcal{F}\left(G_{0} \times \mathbb{N}\right) \mid \bar{\sigma}(T)=0\right\}=\boldsymbol{\alpha}^{-1}\left(\mathcal{B}\left(G_{0}\right)\right) \subset \mathcal{F}\left(G_{0} \times \mathbb{N}\right)
$$

the monoid of zero-sum types over G_{0} (briefly, the type monoid over G_{0}).
Recall that for each finite additively written abelian group G, either $|G|=1$ or $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$, where $r=\mathrm{r}(G) \in \mathbb{N}$ is the rank of G, and also $n_{r}=\exp (G)$ is the exponent of G. For $r \in \mathbb{N}$, let C_{n}^{r} denote the direct sum of r copies of n.

For each homomorphism $\varphi: G \rightarrow H$ of abelian groups and the $\boldsymbol{\alpha}$ defined above, we denote by $\bar{\varphi}=\varphi \circ \boldsymbol{\alpha}: \mathcal{F}\left(G_{0} \times \mathbb{N}\right) \rightarrow \mathcal{F}(H)$ the unique homomorphism satisfying $\varphi((g, n))=\varphi(g)$ for all $(g, n) \in G_{0} \times \mathbb{N}$.

Let $\tau: \mathcal{F}\left(G_{0}\right) \rightarrow \mathcal{F}\left(G_{0} \times \mathbb{N}\right)$ be defined by

$$
\tau(S)=\prod_{g \in G_{0}} \prod_{k=1}^{\mathrm{v}_{g}(S)}(g, k) \in \mathcal{F}\left(G_{0} \times \mathbb{N}\right)
$$

For $S \in \mathcal{F}\left(G_{0}\right)$, we call $\tau(S)$ the type associated with S. Let T and T^{\prime} be two squarefree zero-sum types with $\boldsymbol{\alpha}(T)=\boldsymbol{\alpha}\left(T^{\prime}\right)$. Then there is a bijection from $\mathrm{Z}(T)$ to $\mathrm{Z}\left(T^{\prime}\right)$, and hence $|\mathrm{Z}(T)|=\left|\mathrm{Z}\left(T^{\prime}\right)\right|$. In particular, $|\mathrm{Z}(T)|=$ $|\mathrm{Z}(\tau(\boldsymbol{\alpha}(T)))|$. Let $T=\left(g_{1}, a_{1}\right) \cdot \ldots \cdot\left(g_{l}, a_{l}\right) \in \mathcal{F}(G \times \mathbb{N})$ be a type. For every $g \in G$, define $(g, 0)+T=\left(g+g_{1}, a_{1}\right) \cdot \ldots \cdot\left(g+g_{l}, a_{l}\right)$.

The greatest common divisor of sequences $S, S^{\prime} \in \mathcal{F}\left(G_{0}\right)$, denoted by $\operatorname{gcd}\left(S, S^{\prime}\right)$, is defined to be the greatest common subsequence of S and S^{\prime} (i.e. it is always taken in the monoid $\mathcal{F}\left(G_{0}\right)$). Sequences S and S^{\prime} are called coprime if $\operatorname{gcd}\left(S, S^{\prime}\right)=1$. Similarly, the greatest common divisor of types $T, T^{\prime} \in \mathcal{F}\left(G_{0} \times \mathbb{N}\right)$, denoted by $\operatorname{gcd}\left(T, T^{\prime}\right)$, is defined to be the greatest common subtype of T and T^{\prime} (i.e. it is always taken in $\mathcal{F}\left(G_{0} \times \mathbb{N}\right)$). Types T and T^{\prime} are called coprime if $\operatorname{gcd}\left(T, T^{\prime}\right)=1$.

Narkiewicz constants. We start with the definition of the Narkiewicz constants (see [4, Definition 6.2.1]). Theorem 9.3.2 in [4] provides an asymp-
totic formula for the $F_{k}(x)$ function-the Narkiewicz constants occur as exponents of the $\log \log x$ term-in the frame of obstructed quasi-formations (this setting includes non-principal orders in holomorphy rings in global fields).

Definition 2.1. A type $T \in \mathcal{F}(G \times \mathbb{N})$ is called square free if $\mathrm{v}_{g, n}(T) \leq 1$ for all $(g, n) \in G \times \mathbb{N}$. For every $k \in \mathbb{N}$, the Narkiewicz constant $\mathrm{N}_{k}(G)$ of G is defined by

$$
\mathrm{N}_{k}(G)=\sup \left\{|T| \mid T \in \mathcal{T}\left(G^{\bullet}\right) \text { square free, }|\mathrm{Z}(T)| \leq k\right\} \in \mathbb{N}_{0} \cup\{\infty\}
$$

If $U \in \mathcal{A}\left(G^{\bullet}\right)$, then $\tau(U)$ has unique factorization, and hence we get

$$
\begin{equation*}
\mathrm{D}(G) \leq \mathrm{N}_{1}(G) \tag{2.1}
\end{equation*}
$$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$ and let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=n_{i}$ for all $i \in[1, r]$. If $B=\prod_{i=1}^{r} e_{i}^{n_{i}}$, then $\tau(B)=$ $\prod_{i=1}^{r} \prod_{k=1}^{n_{i}}\left(e_{i}, k\right)$ has unique factorization, and hence

$$
\begin{equation*}
\sum_{i=1}^{r} n_{i} \leq \mathrm{N}_{1}(G) \leq \mathrm{N}_{2}(G) \leq \cdots \tag{2.2}
\end{equation*}
$$

We shall use the above chain of inequalities without further mention. Now we continue with a simple lemma needed later.

Lemma 2.2 ([|2, Lemma 2.2]). Let G be an abelian group with $|G|>1$ and $T \in \mathcal{T}\left(G^{\bullet}\right)$ be a square free zero-sum type. Then the following statements are equivalent:
(a) $|\mathrm{Z}(T)|=1$.
(b) If $U, V \in \mathcal{T}(G)$ with $U \mid T$ and $V \mid T$, then $\operatorname{gcd}(U, V)$ has sum zero.

We recall the definition of the Erdős-Ginzburg-Ziv constant and of two of its variants.

Definition 2.3. Let G be a finite abelian group and $g \in G$.

- $s(G)$ denotes the smallest integer $\ell \in \mathbb{N}$ such that every sequence $S \in \mathcal{F}(G)$ of length $|S| \geq \ell$ has a zero-sum subsequence T of length $|T|=\exp (G)$. The invariant $\mathrm{s}(G)$ is called the Erdős-Ginzburg-Ziv constant of G.
- $\eta(G)$ denotes the smallest integer $\ell \in \mathbb{N}$ such that every sequence $S \in$ $\mathcal{F}(G)$ of length $|S| \geq \ell$ has a short zero-sum subsequence (equivalently, S has a short minimal zero-sum subsequence).

Together with the Davenport constant $\mathrm{D}(G)$, the invariants $\mathrm{s}(G)$ and $\eta(G)$ are classical invariants in Combinatorial Number Theory (see [3, Sections 4 and 5] for a survey). The following lemma describes their relationships for an abelian group of rank at most 2 .

Lemma 2.4. Let $G=C_{n_{1}} \oplus C_{n_{2}}$ with $1 \leq n_{1} \mid n_{2}$. Then

$$
\mathrm{s}(G)=2 n_{1}+2 n_{2}-3, \quad \eta(G)=2 n_{1}+n_{2}-2, \quad \mathrm{D}(G)=n_{1}+n_{2}-1
$$

Proof. See [4, Theorem 5.8.3].
Definition 2.5. Let G be a finite abelian group and $g \in G$. Let $\eta^{*}(G)$ denote the smallest integer $\ell \in \mathbb{N}_{0}$ such that every square free type $T \in$ $\mathcal{F}\left(G^{\bullet} \times \mathbb{N}\right)$ of length $|T| \geq \ell$ has two distinct short minimal zero-sum subtypes which are not coprime.

Clearly, $\eta^{*}(G)$ can be defined in the following equivalent way.
Definition 2.6. Let G be a finite abelian group. Let $\eta^{*}(G)$ denote the smallest integer $\ell \in \mathbb{N}_{0}$ such that every square free type $T \in \mathcal{F}\left(G^{\bullet} \times \mathbb{N}\right)$ of length $|T| \geq \ell$ has two distinct short zero-sum subtypes such that their greatest common divisor is not zero-sum.

We list some results on $\eta^{*}(G)$.
Lemma 2.7. Let $G=C_{p} \oplus C_{p}$ with $p \in \mathbb{P}$.
(1) [2, Proposition 3.12] If $p \leq 7$, then $\eta^{*}(G)=3 p+1$.
(2) [2, Proposition 3.10] $\eta^{*}(G) \leq 2 \eta(G)-1=6 p-5$.

We shall also need one more result from [2]:
LEMMA 2.8 ([2, Lemma 3.9]). Let G be a finite abelian group with $|G|>1$, and let $T=U_{1} \cdot \ldots \cdot U_{r} \in \mathcal{T}\left(G^{\bullet}\right)$ be a square free type with $r \in \mathbb{N}$ and $U_{1}, \ldots, U_{r} \in \mathcal{A}\left(\mathcal{T}\left(G^{\bullet}\right)\right)$.
(1) If $|\mathrm{Z}(T)|=1$, then $\prod_{i=1}^{r}\left|U_{i}\right| \leq|G|$.
(2) Let $S_{1}, \ldots, S_{t} \in \mathcal{F}(G \times \mathbb{N})$ be such that $S_{1} \cdot \ldots \cdot S_{t}$ is a zero-sum subtype of T. If $|\mathrm{Z}(T)|=1$, then $\tau\left(\bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{t}\right)\right)$ has unique factorization.
(3) If T does not have two short minimal zero-sum subtypes which are not coprime and $|T| \leq 2 \exp (G)+1$, then $|Z(T)|=1$.
3. Proof of Theorem $\mathbf{1 . 2}$. We start with a result which was conjectured by J. E. Olson [10] and proved by C. Peng [11, Theorem 2]. Let $S \in \mathcal{F}(G)$ be a sequence and H be a subgroup of G. Denote by S_{H} the largest subsequence of S containing only elements from H.

Lemma 3.1. Let $G=C_{p} \oplus C_{p}$, where p is a prime number. Let $S \in \mathcal{F}(G)$ be a sequence with $|S|=2 p-1$. If $\left|S_{H}\right| \leq p$ for every subgroup H of G with $|H|=p$, then $\sum(S)=G$.

Proof of Theorem 1.2. If $p=2$, the result is a particular case of Corollary 1 to Proposition 3 in [9].

Next suppose that $p \geq 3$. By (2.2) it suffices to prove that $\mathrm{N}_{1}(G) \leq 2 p$. Let $S \in \mathcal{T}\left(G^{\bullet}\right)$ be a square free type of length $|S| \geq 2 p+1$. We have to show $|\mathrm{Z}(S)|>1$. Assume to the contrary that $|\mathrm{Z}(S)|=1$.

We distinguish two cases.
Case 1: There exists a subgroup H of G with $|H|=p$, such that $\left|\boldsymbol{\alpha}(S)_{H}\right| \geq p+1$. Assume that

$$
S=g_{1} \cdot \ldots \cdot g_{t} \cdot g_{t+1} \cdot \ldots \cdot g_{|S|}
$$

where $\boldsymbol{\alpha}\left(g_{i}\right) \in H \backslash\{0\}$ for $i=1, \ldots, t$ and $\boldsymbol{\alpha}\left(g_{j}\right) \notin H$ for $j=t+1, \ldots,|S|$. Let $x=\sum_{j=t+1}^{|S|} \boldsymbol{\alpha}\left(g_{j}\right)$. Then $x \in H$ since $\boldsymbol{\alpha}(S)$ is a zero-sum sequence. Let

$$
T=g_{1} \cdot \ldots \cdot g_{t} \cdot y^{\nu} \in \mathcal{T}\left(H^{\bullet}\right)
$$

be squarefree, where $\boldsymbol{\alpha}(y)=x, \nu=1$ if $x \neq 0$ and $\nu=0$ if $x=0$. Note that $|T|=t+\nu \geq p+1$. Since $H \cong C_{p}$ and $\mathrm{N}_{1}\left(C_{p}\right)=p$, it follows that there exist two zero-sum subtypes T_{1}, T_{2} of T such that $\operatorname{gcd}\left(T_{1}, T_{2}\right)$ is not zero-sum. Let

$$
T_{i}^{\prime}= \begin{cases}T_{i} & \text { if } y \nmid T_{i} \\ T_{i} y^{-1} g_{t+1} \cdot \ldots \cdot g_{|S|} & \text { otherwise }\end{cases}
$$

Then T_{1}^{\prime} and T_{2}^{\prime} are two zero-sum subtypes of S. Since $\bar{\sigma}\left(\operatorname{gcd}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)\right)=$ $\bar{\sigma}\left(\operatorname{gcd}\left(T_{1}, T_{2}\right)\right)$, it follows that $\operatorname{gcd}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)$ is not zero-sum, giving a contradiction to Lemma 2.2 .

CASE 2: For every subgroup K of G with $|K|=p,\left|\boldsymbol{\alpha}(S)_{K}\right| \leq p$. Let $S=$ $U_{1} \cdot \ldots \cdot U_{r}$, where $U_{1}, \ldots, U_{r} \in \mathcal{A}\left(\mathcal{T}\left(G^{\bullet}\right)\right)$. Since $|Z(S)|=1$, Lemma 2.8(1) implies that $\prod_{i=1}^{r}\left|U_{i}\right| \leq p^{2}$. This together with $\sum_{i=1}^{r}\left|U_{i}\right|=|S| \geq 2 p+1$ gives $\left|U_{j}\right| \geq 3$ for some $j \in[1, r]$. Without loss of generality, we may suppose that $\left|U_{1}\right| \geq 3$. Let $g_{1}, g_{2} \in G$ be such that $g_{1} g_{2} \mid U_{1}$. Since $\left|g_{1}^{-1} g_{2}^{-1} S\right| \geq$ $2 p+1-2=2 p-1$, it follows from Lemma 3.1 that $\sum\left(\boldsymbol{\alpha}\left(g_{1}^{-1} g_{2}^{-1} S\right)\right)=G$. Hence $-\boldsymbol{\alpha}\left(g_{1}\right) \in \sum\left(\boldsymbol{\alpha}\left(g_{1}^{-1} g_{2}^{-1} S\right)\right)$ and there is a subtype S^{\prime} of $g_{1}^{-1} g_{2}^{-1} S$ such that $g_{1} S^{\prime} \in \mathcal{A}\left(\mathcal{T}\left(G^{\bullet}\right)\right)$. But $g_{1} S^{\prime} \neq U_{1}$ and $\operatorname{gcd}\left(g_{1} S^{\prime}, U_{1}\right) \neq 1$, giving a contradiction to $|\mathrm{Z}(S)|=1$. This completes the proof.
4. Proof of Theorem $\mathbf{1 . 3}$. We first give a few lemmas which will be used to prove the main result of this section.

Lemma 4.1. Let G be a finite abelian group, and $S \in \mathcal{F}\left(G^{\bullet} \times \mathbb{N}\right)$ be a square free type. Suppose that S has no two short zero-sum subtypes such that their greatest common divisor is not zero-sum. Let T be any short zero-sum subtype T of S. Then, for every $g \in G$, we have either $\mathrm{v}_{g}(\boldsymbol{\alpha}(T))=\mathrm{v}_{g}(\boldsymbol{\alpha}(S))$ or $\mathrm{v}_{g}(\boldsymbol{\alpha}(T))=0$.

Proof. Assume to the contrary that there is an element $g \in G$ such that $1 \leq \mathrm{v}_{g}(\boldsymbol{\alpha}(T))<\mathrm{v}_{g}(\boldsymbol{\alpha}(S))$. Now we can take $x \in T$ and $y \in S T^{-1}$ such that
$\boldsymbol{\alpha}(x)=g=\boldsymbol{\alpha}(y)$. Let $T^{\prime}=y T x^{-1}$. Then T^{\prime} is also a short zero-sum subtype of S, but $\bar{\sigma}\left(\operatorname{gcd}\left(T, T^{\prime}\right)\right)=-g \neq 0$, giving a contradiction to Lemma 2.2.

Lemma 4.2. Let p be a prime, and let $G=C_{p}^{2}$. Let $S \in \mathcal{F}(G \times \mathbb{N})$ be a zero-sum square free type of length $|S| \geq 3 p+1$. If there exist two elements $e_{1}, e_{2} \in C_{p}^{2}$ such that $e_{1}^{p} e_{2}^{p} \mid \boldsymbol{\alpha}(S)$, then S contains two short minimal zerosum subtypes T_{1} and T_{2} such that $\operatorname{gcd}\left(T_{1}, T_{2}\right) \neq 1$.

Proof. Assume to the contrary that S does not have two short minimal zero-sum subtypes which are not coprime.

Write $S=x y S_{1} S_{2} T$ with $\boldsymbol{\alpha}(x)=e_{1}, \boldsymbol{\alpha}\left(S_{1}\right)=e_{1}^{p-1}, \boldsymbol{\alpha}(y)=e_{2}$ and $\boldsymbol{\alpha}\left(S_{2}\right)=e_{2}^{p-1}$. Then T is a zero-sum subtype of S of length $|T|=|S|-2 p \geq$ $p+1$. Let $|T|=p+t$ with $t \geq 1$. Let T_{1}, \ldots, T_{r} be all minimal short zero-sum subtypes of T. By the assumption we have $T=T_{1} \cdot \ldots \cdot T_{r} T^{\prime}$, where T^{\prime} is either empty or has length $\left|T^{\prime}\right| \geq p+1$. Take an element $x_{i} \in T_{i}$ for each $i \in[1, r]$. By the choice of T_{1}, \ldots, T_{r} and by Lemma 4.1, we infer that the sequence $S_{1} S_{2} \prod_{i=1}^{r} T_{i} x_{i}^{-1}$ contains no short zero-sum subtype. It follows that $3 p-3+t+1-r=p-1+p-1+|T|-r=\left|S_{1} S_{2} \prod_{i=1}^{r} T_{i} x_{i}^{-1}\right| \leq$ $\eta(G)-1=3 p-3$. Therefore, $r \geq t+1$. It follows that $\left|T^{\prime}\right|=|T|-\left|T_{1} \cdot \ldots \cdot T_{r}\right| \leq$ $p+t-2 r \leq p-t-2<p+1$. Hence, $\left|T^{\prime}\right|=0$ and $T=T_{1} \cdot \ldots \cdot T_{r}$. Now for any $i, j \in[1, r]$ with $i \neq j$, we have

$$
\begin{equation*}
\left|T_{i}\right|+\left|T_{j}\right| \leq p+t-2(r-2) \leq p+t-2(t-1) \leq p+1 \tag{4.1}
\end{equation*}
$$

Next choose a subset $\left\{i_{1}, \ldots, i_{\ell}\right\} \subset[1, r]$ such that the sum $\left|T_{i_{1}}\right|+\cdots+$ $\left|T_{i_{\ell}}\right|$ is maximal under the restriction that $\left|T_{i_{1}}\right|+\cdots+\left|T_{i_{\ell}}\right| \leq p+1$. By (4.1), $\ell \geq 2$. It is not hard to show that $\left|T_{i_{1}}\right|+\cdots+\left|T_{i_{\ell}}\right| \geq(p+5) / 2$.

Let $S^{\prime}=x S_{1} T_{i_{1}} \ldots \cdot T_{i_{\rho}}$. Then $\left|S^{\prime}\right| \leq 2 p+1$. By Lemma 2.8(3), we obtain $\left|\mathrm{Z}\left(S^{\prime}\right)\right|=1$. By Lemma $2.8(1)$, we have $p^{2} \geq\left|x S_{1}\right| \times\left|T_{i_{1}}\right| \times \cdots \times\left|T_{i_{\ell}}\right| \geq$ $p \times\left|T_{i_{1}}\right| \times\left(\left|T_{i_{2}}\right|+\cdots+\left|T_{i_{\ell}}\right|\right) \geq p \times\left|T_{i_{1}}\right| \times\left((p+5) / 2-\left|T_{i_{1}}\right|\right) \geq p \times 2 \times$ $((p+5) / 2-2)>p^{2}$, giving a contradiction to Lemma 2.2. This completes the proof.

The following lemma can be found in [2]:
Lemma 4.3 ([2, Lemma 3.14]). Let $G=C_{m n}^{2}$ with $m, n \geq 2, \varphi: G \rightarrow G$ multiplication by m, and $S \in \mathcal{F}\left(G^{\bullet} \times \mathbb{N}\right)$ square free. Suppose that S has no two zero-sum subtypes W_{1} and W_{2} such that $\bar{\sigma}\left(\operatorname{gcd}\left(W_{1}, W_{2}\right)\right) \neq 0$. Let S_{1}, \ldots, S_{u} be disjoint subtypes of S with the following properties:
(i) For every $\nu \in[1, u], \bar{\varphi}\left(S_{\nu}\right)$ is a non-empty zero-sum sequence over $\varphi(G)$.
(ii) The sequence $\bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{u}\right) \in \mathcal{F}(\operatorname{Ker}(\varphi))$ is zero-sum free.

Let T_{1} and T_{2} be subtypes of $S\left(S_{1} \cdot \ldots \cdot S_{u}\right)^{-1}$ with $\bar{\varphi}\left(T_{1}\right)$ and $\bar{\varphi}\left(T_{2}\right)$ are zero-sum sequences with $\bar{\sigma}\left(\operatorname{gcd}\left(\varphi\left(T_{1}\right), \varphi\left(T_{2}\right)\right)\right) \neq 0 \in \varphi(G)$. Then one of the following conditions holds:
(a) the sequence $\bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{u}\right) \bar{\sigma}\left(T_{1}\right) \in \mathcal{F}(\operatorname{Ker}(\varphi))$ is zero-sum free.
(b) the sequence $\bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{u}\right) \bar{\sigma}\left(T_{2}\right) \in \mathcal{F}(\operatorname{Ker}(\varphi))$ is zero-sum free.

LEMmA 4.4. Let $G=C_{n_{1} p} \oplus C_{n_{2} p}=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle$ with $1<n_{1} \mid n_{2}$ and p being a prime. Suppose that $\mathrm{N}_{1}\left(C_{n_{1}} \oplus C_{n_{2}}\right)=n_{1}+n_{2}$ and $\eta^{*}\left(C_{p} \oplus C_{p}\right)=$ $3 p+1$. Then $\mathrm{N}_{1}(G)=n_{1} p+n_{2} p$.

Proof. By (2.2) it suffices to prove that $\mathrm{N}_{1}(G) \leq n_{1} p+n_{2} p$. Let $\varphi: G \rightarrow G$ be the homomorphism such that $\operatorname{Ker}(\varphi)=\left\langle p e_{1}\right\rangle \oplus\left\langle p e_{2}\right\rangle \cong C_{n_{1}} \oplus C_{n_{2}}$, and then $\varphi(G) \cong C_{p}^{2}$. Let $S \in \mathcal{T}\left(G^{\bullet}\right)$ be a square free type of length $|S| \geq$ $n_{1} p+n_{2} p+1$. We have to show that $|\mathrm{Z}(S)|>1$. Assume to the contrary that $|\mathrm{Z}(S)|=1$.

Set $S=g_{1} \cdot \ldots \cdot g_{l}$, where $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G^{\bullet} \times \mathbb{N}$ are such that for some $t \in[0, l], \bar{\varphi}\left(g_{i}\right)=0$ for all $i \in[1, t]$ and $\bar{\varphi}\left(g_{i}\right) \neq 0$ for all $i \in[t+1, l]$ where $\bar{\varphi}=\varphi \circ \boldsymbol{\alpha}$. If $t \geq n_{1}+n_{2}+1$, then $g_{1} \cdot \ldots \cdot g_{t} \cdot y^{\nu} \in \mathcal{T}(\operatorname{Ker}(\varphi) \times \mathbb{N})$, where $y=\sum_{i=t+1}^{l} g_{i}, \nu=1$ if $\sum_{i=1}^{t} g_{i} \neq 0$ and $\nu=0$ if $\sum_{i=1}^{t} g_{i}=0$, and it has two minimal zero-sum subtypes which are not coprime. So we may assume that $t \in\left[0, n_{1}+n_{2}\right]$.

Let $r \in \mathbb{N}_{0}$ and let B_{1}, \ldots, B_{r} be all minimal zero-sum subtypes of $g_{1} \cdot \ldots \cdot g_{t}$. If two of them are not coprime, then we are done. Thus we may assume that $B_{1} \cdot \ldots \cdot B_{r} \mid g_{1} \cdot \ldots \cdot g_{t}$, and for every $\nu \in[1, r]$ we can choose an element $\tau_{\nu} \in \operatorname{supp}\left(B_{\nu}\right)$. It follows that $g_{1} \cdot \ldots \cdot g_{t}\left(\tau_{1} \cdot \ldots \cdot \tau_{r}\right)^{-1}$ has no zero-sum subtype. Since $\left|B_{\nu}\right| \geq 2$ for all $\nu \in[1, r]$, we infer that $r \leq t / 2$. Let $u_{0}=\left|g_{1} \cdot \ldots \cdot g_{t}\left(\tau_{1} \cdot \ldots \cdot \tau_{r}\right)^{-1}\right|=t-r$. By renumbering if necessary, we may assume $g_{1} \cdot \ldots \cdot g_{u_{0}}=g_{1} \cdot \ldots \cdot g_{t}\left(\tau_{1} \cdot \ldots \cdot \tau_{r}\right)^{-1}$. We set

$$
S_{\nu}=g_{\nu} \quad \text { for every } \nu \in\left[1, u_{0}\right]
$$

and note that $u_{0} \in[t / 2, t]$.
Set $T=g_{t+1} \cdot \ldots \cdot g_{l}$. By Lemma 4.3 we can find a maximal $u_{1} \in \mathbb{N}_{0}$ such that there exist types $S_{u_{0}+1}, \ldots, S_{u_{0}+u_{1}}$ with the following properties:

- $S_{u_{0}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}} \mid T$.
- For every $\nu \in\left[u_{0}+1, u_{0}+u_{1}\right], \bar{\varphi}\left(S_{\nu}\right)$ is a short zero-sum sequence over $\varphi(G)$.
- The sequence $\bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{u_{0}+u_{1}}\right) \in \mathcal{F}(\operatorname{Ker}(\varphi))$ is zero-sum free.

Set $W=T\left(S_{u_{0}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}}\right)^{-1}$. By using $\eta^{*}\left(C_{p}^{2}\right)=3 p+1$, Lemma 4.3 and the maximality of u, we derive that $|W| \leq 3 p$. Therefore,

$$
\begin{aligned}
n_{1}+n_{2}-2 & =D(\operatorname{ker}(\varphi))-1 \geq u_{0}+u_{1} \geq u_{0}+\frac{|S|-t-|W|}{p} \\
& \geq \frac{t}{2}+\frac{n_{1} p+n_{2} p+1-t-3 p}{p}>n_{1}+n_{2}-3
\end{aligned}
$$

Hence,

$$
u_{0}+u_{1}=n_{1}+n_{2}-2
$$

Set $W^{\prime}=S\left(g_{1} \cdot \ldots \cdot g_{t} S_{u_{0}+u_{1}} \cdot \ldots \cdot S_{n_{1}+n_{2}-2}\right)^{-1}$. Then $\sigma\left(\bar{\varphi}\left(W^{\prime}\right)\right)=0$ and $\left|W^{\prime}\right| \geq n_{1} p+n_{2} p+1-t-\left(n_{1}+n_{2}-2-u_{0}\right) p=2 p+1+\left(u_{0} p-t\right) \geq 2 p+1$. It follows from Theorem 1.2 that there exist two minimal zero-sum subtypes V_{1}, V_{2} of W^{\prime} such that $\operatorname{gcd}\left(V_{1}, V_{2}\right) \neq 1$. Since

$$
\begin{aligned}
\left|\bar{\sigma}\left(V_{1}\right) \bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{n_{1}+n_{2}-2}\right)\right| & =\left|\bar{\sigma}\left(V_{2}\right) \bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{n_{1}+n_{2}-2}\right)\right| \\
& =2 m-1=D(\operatorname{ker}(\varphi)),
\end{aligned}
$$

neither $\bar{\sigma}\left(V_{1}\right) \bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{n_{1}+n_{2}-2}\right)$ nor $\bar{\sigma}\left(V_{2}\right) \bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{n_{1}+n_{2}-2}\right)$ is zero-sum free, giving a contradiction to Lemma 4.3 ,

We are now in a position to prove the main result of this section.
Proof of Theorem 1.3. It follows from Lemmas 2.7(1) and 4.4 that the result holds for $p \leq 7$.

Next assume that $p \geq 11$. It suffices to prove that $\mathrm{N}_{1}(G) \leq 2 m p$. As in the proof of Lemma 4.4 , we can choose φ and S with $|S| \geq 2 m p+1$, and we need only prove that $|\mathrm{Z}(S)|>1$. Assume to the contrary that $|\mathrm{Z}(S)|=1$.

We set $S=g_{1} \cdot \ldots \cdot g_{l}$, where $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G^{\bullet} \times \mathbb{N}$ are such that for some $t \in[0, l], \bar{\varphi}\left(g_{i}\right)=0$ for all $i \in[1, t]$ and $\bar{\varphi}\left(g_{i}\right) \neq 0$ for all $i \in[t+1, l]$. As in the proof of Lemma 4.4 , we may assume that $t \in[0,2 m]$, and then we can find a subtype $g_{1} \cdot \ldots \cdot g_{u_{0}} \mid g_{1} \cdot \ldots \cdot g_{t}$ that has no zero-sum subtype and $u_{0} \in[t / 2, t]$.

We set

$$
S_{\nu}=g_{\nu} \quad \text { for every } \nu \in\left[1, u_{0}\right] .
$$

Let $T=g_{t+1} \cdot \ldots \cdot g_{l}$ and $\bar{\varphi}(T)=h_{1}^{r_{1}} \cdot \ldots \cdot h_{k}^{r_{k}} \in \mathcal{F}\left(C_{p}^{2} \backslash\{0\}\right)$, where $r_{1} \geq \cdots \geq r_{k}$. Set $T=T_{1} \cdot \ldots \cdot T_{k}$ such that $\bar{\varphi}\left(T_{i}\right)=h_{i}^{r_{i}}$ for $i=1, \ldots, k$, and set $W_{1}=T_{3} \cdot \ldots \cdot T_{k}$. We claim that $r_{1} \geq r_{2} \geq 6 p^{2}$.

We first show that $r_{1} \leq m p+4 m-4$. Set $\boldsymbol{\alpha}\left(T_{1}\right)=\left(g+x_{1}\right) \cdot \ldots \cdot\left(g+x_{r_{1}}\right)$, where $\varphi(g)=h_{1} \neq 0$ and $x_{i} \in C_{m}^{2}$ for $i=1, \ldots, r_{1}$. Assume to the contrary that $r_{1} \geq m p+4 m-3$. Then we can find $X_{1}, \ldots, X_{p+1} \in \mathcal{F}\left(C_{m}^{2}\right)$ such that $X_{1} \cdot \ldots \cdot X_{p+1} \mid x_{1} \cdot \ldots \cdot x_{r_{1}}$ with $\left|X_{i}\right|=m$ and $\sigma\left(X_{i}\right)=0$ for $i=1, \ldots, p+1$. Set $U=\left(g+X_{1}\right) \cdot \ldots \cdot\left(g+X_{p}\right)$ and $V=\left(g+X_{2}\right) \cdot \ldots \cdot\left(g+X_{p+1}\right)$. Then $\sigma(U)=\sigma(V)=0$ and $\bar{\sigma}\left(g c d\left(\boldsymbol{\alpha}^{-1}(U), \boldsymbol{\alpha}^{-1}(V)\right)\right)=(p-1) m g=-m g$. Since $\varphi(g) \neq 0$, we have $m g \neq 0$. Therefore, $\boldsymbol{\alpha}^{-1}(U)$ and $\boldsymbol{\alpha}^{-1}(V)$ are two zero-sum subtypes of S with $\sigma(\operatorname{gcd}(U, V))$ non-zero, giving a contradiction to Lemma 2.2. Hence $r_{1} \leq m p+4 m-4$.

Next, note that $2 m p+1 \leq|S|=t+r_{1}+r_{2}+\cdots+r_{k} \leq 2 m+m p+4 m-$ $4+(k-1) r_{2} \leq 2 m+m p+4 m-4+\left(p^{2}-2\right) r_{2}$. Thus

$$
r_{1} \geq r_{2} \geq \frac{m p-6 m+5}{p^{2}-2} \geq 6 p^{2}
$$

and this proves our claim.

By Lemma 4.3 we can find a maximal $u_{1} \in \mathbb{N}_{0}$ such that there exist types $S_{u_{0}+1}, \ldots, S_{u_{0}+u_{1}}$ with the following properties:

- $S_{u_{0}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}} \mid W_{1}$.
- For every $\nu \in\left[u_{0}+1, u_{0}+u_{1}\right], \bar{\varphi}\left(S_{\nu}\right)$ is a short zero-sum sequence over $\varphi(G)$.
- The sequence $\bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{u_{0}+u_{1}}\right) \in \mathcal{F}(\operatorname{Ker}(\varphi))$ is zero-sum free.

Set $W_{2}=W_{1}\left(S_{u_{0}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}}\right)^{-1}$. By using $\eta^{*}\left(C_{p}^{2}\right) \leq 6 p-5$ (Lemma 2.7(2)), Lemma 4.3 and the maximality of u_{1}, we derive that $\left|W_{2}\right| \leq 6 p-6$.

Consider the type $T_{1} T_{2} W_{2}$. Let $u_{2} \in \mathbb{N}_{0}$ be maximal such that there exist types $S_{u_{0}+u_{1}+1}, \ldots, S_{u_{0}+u_{1}+u_{2}}$ with the following properties:

- $S_{u_{0}+u_{1}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}+u_{2}} \mid T_{1} T_{2} W_{2}$.
- For every $\nu \in\left[u_{0}+u_{1}+1, u_{0}+u_{1}+u_{2}\right], \bar{\varphi}\left(S_{\nu}\right)$ is a short zero-sum sequence over $\varphi(G)$.
- The sequence $\bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{u_{0}+u_{1}}\right) \cdot \bar{\sigma}\left(S_{u_{0}+u_{1}+1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{u_{0}+u_{1}+u_{2}}\right) \in$ $\mathcal{F}(\operatorname{Ker}(\varphi))$ is zero-sum free.
- For every $\nu \in\left[u_{0}+u_{1}+1, u_{0}+u_{1}+u_{2}\right],\left|\operatorname{gcd}\left(S_{\nu}, W_{2}\right)\right| \geq 1$.

Set $W_{3}=W_{2} \operatorname{gcd}\left(S_{u_{0}+u_{1}+1} \ldots \cdot S_{u_{0}+u_{1}+u_{2}}, W_{2}\right)^{-1}$. By using Lemma 4.2, $r_{1} \geq r_{2} \geq 6 p^{2}$ and $\left|W_{2}\right| \leq 6 p-6$, we obtain $\left|W_{3}\right| \leq p$.

Let T_{1}^{\prime} (resp. T_{2}^{\prime}) be the remaining subsequence of T_{1} (resp. T_{2}) after the construction of S_{ν} with $\nu \in\left[u_{0}+u_{1}+1, u_{0}+u_{1}+u_{2}\right]$. Let $u_{3} \in \mathbb{N}_{0}$ be maximal such that there exist types $S_{u_{0}+u_{1}+u_{2}+1}, \ldots, S_{u_{0}+u_{1}+u_{2}+u_{3}}$ with the following properties:

- $S_{u_{0}+u_{1}+u_{2}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}+u_{2}+u_{3}} \mid T_{1}^{\prime} T_{2}^{\prime}$.
- For every $\nu \in\left[u_{0}+u_{1}+u_{2}+1, u_{0}+u_{1}+u_{2}+u_{3}\right], \bar{\varphi}\left(S_{\nu}\right) \in\left\{h_{1}^{p}, h_{2}^{p}\right\}$ and hence $\bar{\varphi}\left(S_{\nu}\right)$ is a short zero-sum sequence over $\varphi(G)$.
- The sequence $\bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{u_{0}+u_{1}+u_{2}+u_{3}}\right) \in \mathcal{F}(\operatorname{Ker}(\varphi))$ is zero-sum free.

Let $T_{1}^{\prime \prime}$ (resp. $T_{2}^{\prime \prime}$) be the remaining subsequence of T_{1}^{\prime} (resp. T_{2}^{\prime}) after the construction of S_{ν} with $\nu \in\left[u_{0}+u_{1}+u_{2}+1, u_{0}+u_{1}+u_{2}+u_{3}\right]$. By Lemma 4.3. $\left|T_{1}^{\prime \prime}\right| \leq p$ and $\left|T_{2}^{\prime \prime}\right| \leq p$. Therefore,

$$
\begin{aligned}
2 m-2 & =D(\operatorname{ker}(\varphi))-1 \geq u_{0}+u_{1}+u_{2}+u_{3} \\
& \geq u_{0}+\frac{|S|-t-\left|W_{3}\right|-\left|T_{1}^{\prime \prime}\right|-\left|T_{2}^{\prime \prime}\right|}{p} \\
& \geq t / 2+\frac{2 m p+1-t-3 p}{p}>2 m-3 .
\end{aligned}
$$

Hence,

$$
u_{0}+u_{1}+u_{2}+u_{3}=2 m-2 .
$$

Let $W^{\prime}=S\left(g_{1} \cdot \ldots \cdot g_{t} S_{u_{0}+1} \cdot \ldots \cdot S_{2 m-2}\right)^{-1}$. As in Lemma 4.4, we can find two minimal zero-sum subtypes V_{1}, V_{2} of W^{\prime} such that neither $\bar{\sigma}\left(V_{1}\right) \bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{2 m-2}\right)$ nor $\bar{\sigma}\left(V_{2}\right) \bar{\sigma}\left(S_{1}\right) \cdot \ldots \cdot \bar{\sigma}\left(S_{2 m-2}\right)$ is zero-sum free, giving a contradiction to Lemma 4.3. This completes the proof.

Corollary 4.5. Let $m=p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$, where $s, r_{1}, \ldots, r_{s} \in \mathbb{N}_{0}, p_{1}, \ldots, p_{s}$ $\in \mathbb{P}$ and $p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7,11 \leq p_{5} \leq \cdots \leq p_{s}$. Then

$$
\mathrm{N}_{1}\left(C_{m} \oplus C_{m}\right)=2 m
$$

if one of the following conditions holds:
(1) $s \leq 4$.
(2) $s \geq 5$ and

$$
p_{1}^{r_{1}} \cdots p_{i}^{r_{i}} \geq \frac{6 p_{i+1}^{2}\left(p_{i+1}^{2}-2\right)-5}{p_{i+1}-6} \quad \text { for } i=4, \ldots, s-1
$$

(3) There exist $t_{1}, t_{2} \in[1, s]$ such that

$$
\begin{aligned}
p_{t_{2}} & \geq \frac{6 p_{t_{1}}^{2}\left(p_{t_{1}}^{2}-2\right)-5}{p_{t_{1}}-6}, \\
p_{1}^{r_{1}} \cdots p_{i}^{r_{i}} p_{t_{2}} & \geq \frac{6 p_{i+1}^{2}\left(p_{i+1}^{2}-2\right)-5}{p_{i+1}-6} \quad \text { for } i=t_{1}, \ldots, t_{2}-1, \\
p_{1}^{r_{1}} \cdots p_{i}^{r_{i}} & \geq \frac{6 p_{i+1}^{2}\left(p_{i+1}^{2}-2\right)-5}{p_{i+1}-6} \quad \text { for } i=t_{2}, \ldots, s-1 .
\end{aligned}
$$

Proof. (1) The result follows from Theorem 1.2, Lemma 2.7(1) and Lemma 4.4 .
(2) Let $m_{1}=p_{1}^{r_{1}} \cdots p_{4}^{r_{4}}$. By (1) we have $\mathrm{N}_{1}\left(C_{m_{1}} \oplus C_{m_{1}}\right)=2 m_{1}$. Since

$$
p_{1}^{r_{1}} \cdots p_{i}^{r_{i}} \geq \frac{6 p_{i+1}^{2}\left(p_{i+1}^{2}-2\right)-5}{p_{i+1}-6} \quad \text { for } i \in[4, s-1]
$$

by using Theorem 1.3 step by step we deduce that

$$
\mathrm{N}_{1}\left(C_{n} \oplus C_{n}\right)=2 n
$$

for every $n \in\left\{m_{1} p_{5}, \ldots, m_{1} p_{5}^{r_{5}}, m_{1} p_{5}^{r_{5}} p_{6}, \ldots, m_{1} p_{5}^{r_{5}} \cdots p_{s}^{r_{s}}=m\right\}$.
(3) Since

$$
p_{t_{2}} \geq \frac{6 p_{t_{1}}^{2}\left(p_{t_{1}}^{2}-2\right)-5}{p_{t_{1}}-6}
$$

it follows from Theorems 1.2 and 1.3 that

$$
\mathrm{N}_{1}\left(C_{p_{t_{1}} p_{t_{2}}} \oplus C_{p_{t_{1}} p_{t_{2}}}\right)=2 p_{t_{1}} p_{t_{2}} .
$$

Note that

$$
p_{t_{1}} p_{t_{2}} \geq \frac{6 p_{i}^{2}\left(p_{i}^{2}-2\right)-5}{p_{i}-6} \quad \text { for } i=1, \ldots, t_{1} ;
$$

by using Theorem 1.3 step by step we obtain

$$
\mathbf{N}_{1}\left(C_{p_{1}^{r_{1} \ldots p_{t_{1}}}{ }_{t_{1}}^{r_{1}} p_{t_{2}}}\right)=2 p_{1}^{r_{1}} \cdots p_{t_{1}}^{r_{t_{1}}} p_{t_{2}} .
$$

Since

$$
\begin{aligned}
p_{1}^{r_{1}} \cdots p_{i}^{r_{i}} p_{t_{2}} & \geq \frac{6 p_{i+1}^{2}\left(p_{i+1}^{2}-2\right)-5}{p_{i+1}-6} \\
p_{1}^{r_{1}} \cdots p_{i}^{r_{i}} & \text { for } i=\frac{6 p_{i+1}^{2}\left(p_{i+1}^{2}-2\right)-5}{p_{i+1}-6} \quad \text { for } i=t_{2}, \ldots, s-1,
\end{aligned}
$$

again by using Theorem 1.3 step by step we get

$$
\mathrm{N}_{1}\left(C_{m}^{2}\right)=2 m .
$$

Proof of Corollary 1.4 Let $n=p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$, where $s, r_{1}, \ldots, r_{s} \in \mathbb{N}_{0}$, $p_{1}, \ldots, p_{s} \in \mathbb{P}$ and $p_{1} \leq \cdots \leq p_{s}$. Let $m=p$ be a prime such that

$$
p \geq \frac{6 p_{s}^{2}\left(p_{s}^{2}-2\right)-5}{p_{s}-6}
$$

It follows from Corollary 4.5(3) that $\mathrm{N}_{1}\left(C_{m n} \oplus C_{m n}\right)=2 m n$.
Acknowledgements. This research was supported in part by a grant from National Natural Sciences Foundation of China, a discovery grant from the Natural Sciences and Engineering Research Council of Canada and a research grant from Civil Aviation University of China. We would like to thank the referee for his/her careful reading.

REFERENCES

[1] W. Gao, On a combinatorial problem connected with factorizations, Colloq. Math. 72 (1997), 251-268.
[2] W. Gao, A. Geroldinger, and Q. Wang, A quantitative aspect of non-unique factorizations: the Narkiewicz constants, Int. J. Number Theory, to appear.
[3] A. Geroldinger, Additive group theory and non-unique factorizations, in: Combinatorial Number Theory and Additive Group Theory, A. Geroldinger and I. Z. Ruzsa (eds.), Adv. Courses Math. CRM Barcelona, Birkhäuser, 2009, 1-86.
[4] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman \& Hall/CRC, 2006.
[5] F. Halter-Koch, Relative types and their arithmetical applications, Pure Math. Appl. Ser. A 3 (1992), 81-92.
[6] -, Typenhalbgruppen und Faktorisierungsprobleme, Results Math. 22 (1992), 545559.
[7] W. Narkiewicz, Numbers with unique factorization in an algebraic number field, Acta Arith. 21 (1972), 313-322.
[8] -, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319330.
[9] W. Narkiewicz and J. Śliwa, Finite abelian groups and factorization problems II, ibid. 46 (1982), 115-122.
[10] J. E. Olson, A combinatorial problem on finite abelian groups I, J. Number Theory 1 (1969), 8-10.
[11] C. Peng, Addition theorems in elementary abelian groups I, ibid. 27 (1987), 46-57.

Weidong Gao (corresponding author)
Yuanlin Li
Center for Combinatorics
Nankai University
LPMC-TJKLC
Tianjin 300071, P.R. China
E-mail: wdgao1963@yahoo.com.cn
Jiangtao Peng
College of Science
Civil Aviation University of China
Tianjin 300300, P.R. China
E-mail: jtpeng1982@yahoo.com.cn

[^0]: 2010 Mathematics Subject Classification: Primary 11R27; Secondary 11P70, 20K01.
 Key words and phrases: non-unique factorizations, Narkiewicz constants, zero-sum sequences.

