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Abstract. Let K be an algebraic number field with non-trivial class group G and
OK be its ring of integers. For k ∈ N and some real x ≥ 1, let Fk(x) denote the number
of non-zero principal ideals aOK with norm bounded by x such that a has at most k
distinct factorizations into irreducible elements. It is well known that Fk(x) behaves, for
x→∞, asymptotically like x(log x)1/|G|−1(log log x)Nk(G). In this article, it is proved that
for every prime p, N1(Cp ⊕ Cp) = 2p, and it is also proved that N1(Cmp ⊕ Cmp) = 2mp
if N1(Cm ⊕ Cm) = 2m and m is large enough. In particular, it is shown that for each
positive integer n there is a positive integer m such that N1(Cmn ⊕ Cmn) = 2mn. Our
results partly confirm a conjecture given by W. Narkiewicz thirty years ago, and improve
the known results substantially.

1. Introduction. Let K be an algebraic number field, OK its ring of
integers and G its ideal class group. For a non-zero element a ∈ OK let Z(a)
denote the set of all (essentially distinct) factorizations of a into irreducible
elements. Then OK is factorial (in other words, |Z(a)| = 1 for all non-zero
a ∈ OK) if and only if |G| = 1. Suppose that |G| ≥ 2 and let k ∈ N. In the
1960s P. Rémond and W. Narkiewicz initiated the study of the asymptotic
behavior of counting functions associated with non-unique factorizations.
The function

Fk(x) = |{aOK | a ∈ OK \ {0}, (OK : aOK) ≤ x and |Z(a)| ≤ k}|
was considered, which counts the number of principal ideals aOK where
0 6= a ∈ OK has at most k distinct factorizations and whose norm is bounded
by x. It was proved in [7] that Fk(x) behaves, for x → ∞, asymptotically
like

x(log x)1/|G|−1(log log x)Nk(G).

In [8, 9], W. Narkiewicz and J. Śliwa showed that the exponents Nk(G)
depend only on the class group G, and they also gave a combinatorial de-
scription of Nk(G) (see Definition 2.1 below). This description was used
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by W. Gao [1] to give a first detailed investigation of Nk(G). In a recent
paper [2], W. Gao, A. Geroldinger and Q. Wang continued the investiga-
tions of Nk(G) with new methods from combinatorial number theory for
G = Cn1 ⊕ · · · ⊕ Cnr a finite abelian group of rank r with 1 < n1 | · · · |nr.
It is well known that N1(Cn) = n. A main result of their paper dealt with
N1(G) for groups of rank two. They also outlined a key strategy in combi-
natorial number theory for such investigations, which divides the problem
into the following two steps (in particular, when G has rank two):

Step A. Determine the precise value for the invariant (e.g. N1(G)) under
investigation for groups of the form Cp ⊕ Cp, where p is a prime.

Step B. Show that the problem is “multiplicative”, in the sense that
the precise value of the invariant can be lifted from groups of the above form
to arbitrary groups of rank two.

In that paper, one of the focuses was on Step B and the authors achieved
some nice results regarding the precise values of N1(G) for several groups
of rank two by showing that the “lifting procedure” works for those groups.
In this paper, we first provide a complete answer to the question mentioned
in Step A by determining the precise value of N1(G) for groups G of the
form Cp⊕Cp, where p is any prime. Then we extend our result to some new
groups of the form Gn⊕Gn of rank two, where n is not necessarily a prime.
Recall that a conjecture on the value of N1(G) is as follows:

Conjecture 1.1 ([9]). Let G = Cn1 ⊕ · · · ⊕ Cnr be an abelian group
with 1 < n1 | · · · |nr. Then N1(G) = n1 + · · ·+ nr.

This conjecture has been confirmed only for very special groups. For
example, the first author confirmed it in [1] for the group Cp ⊕ Cp with
p ≤ 157 a prime. In this paper, we prove the following main results.

Theorem 1.2. N1(Cp ⊕ Cp) = 2p, where p is a prime.

Theorem 1.3. If N1(Cm ⊕ Cm) = 2m, then N1(Cmp ⊕ Cmp) = 2mp
where p is a prime and m ≥ (6p2(p2 − 2)− 5)/(p− 6).

Corollary 1.4. For each n ∈ N, there exists an m ∈ N such that
N1(Cmn ⊕ Cmn) = 2mn.

In the next section, we provide some preliminaries for the study of N1(G).
The proofs for Theorems 1.2 and 1.3, and Corollary 1.4 are given in Sec-
tions 3 and 4.

2. Preliminaries. We denote by N the set of positive integers, by P
(⊂ N) the set of prime numbers, and let N0 = N ∪ {0}. For real numbers
a, b ∈ R, set [a, b] = {x ∈ Z | a ≤ x ≤ b}.
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Let G be a finite additively written abelian group and G0 ⊆ G a subset;
also, let G• = G \ {0}. The elements of the free monoid F(G0) are called
sequences over G0. Let

S =
∏
g∈G0

gvg(S),

where vg(S) ∈ N0 for all g ∈ G0 and vg(S) = 0 for almost all g ∈ G0, be
a sequence over G0. We call vg(S) the multiplicity of g in S, and we say
that S contains g if vg(S) > 0. A sequence S1 is called a subsequence of S
if vg(S1) ≤ vg(S) for all g ∈ G0, denoted by S1 |S. If a sequence S ∈ F(G0)
is written in the form S = g1 · . . . · gl, we tacitly assume that l ∈ N0 and
g1, . . . , gl ∈ G0. For a sequence

S = g1 · . . . · gl =
∏
g∈G0

gvg(S) ∈ F(G0),

we call σ(S) =
∑l

i=1 gi =
∑

g∈G0
vg(S)g ∈ G the sum of S, and Σ(S) =

{
∑

i∈I gi | ∅ 6= I ⊂ [1, l]} the set of subsums of S. For g ∈ G, we set
g + S = (g + g1) · . . . · (g + gl) ∈ F(G).

The sequence S is called

• a zero-sum sequence if σ(S) = 0,
• short (in G) if 1 ≤ |S| ≤ exp(G),
• zero-sum free if there is no non-empty zero-sum subsequence,
• a minimal zero-sum sequence if S is a non-empty zero-sum sequence

and every subsequence S′ of S with 1 ≤ |S′| < |S| is zero-sum free.

We denote by B(G0) = {S ∈ F(G0) | σ(S) = 0} the monoid of zero-sum
sequences over G0, by A(G0) the set of all minimal zero-sum sequences over
G0 (this is the set of atoms of the monoid B(G0)), and by

D(G0) = sup{|U | | U ∈ A(G0)} ∈ N ∪ {∞}
the Davenport constant of G0. For a sequence S ∈ B(G0), let

Z(S) = {S1 · . . . · Sr | S = S1 · . . . · Sr with S1, . . . , Sr ∈ A(G0)}
denote the set of factorizations of S. We say that S has unique factorization
if |Z(S)| = 1.

Every map of abelian groups ϕ : G → H extends naturally to a homo-
morphism ϕ : F(G)→ F(H) where ϕ(S) = ϕ(g1) · . . . ·ϕ(gl). If ϕ is a homo-
morphism, then ϕ(S) is a zero-sum sequence if and only if σ(S) ∈ Ker(ϕ).

For many zero-sum problems, the ordering of the elements of a sequence
is not important. However, when counting the number of subsequences with
a given property or considering the so-called unique factorization, we need
to grant a sequence an ordering or label. There are two popular ways to
do so. One way is to introduce the index set as done by Narkiewicz in [8],
and the other is to use the concept of type, first introduced by Halter-Koch
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(see [5], [6]), as done by W. Gao, A. Geroldinger and Q. Wang in a recent
paper [2]. In the present paper we shall use the latter method.

Monoid of zero-sum types. The elements of F(G0 × N) are called
types over G0. Clearly, they are sequences over G0×N, but we think of them
as labeled sequences over G0 where each element from G0 carries a positive
integer label. Let α : F(G0×N)→ F(G0) denote the unique homomorphism
satisfying

α((g, n)) = g for all (g, n) ∈ G0 × N,

and let σ = σ◦α : F(G0×N)→ G. For a type T ∈ F(G0×N), α(T ) ∈ F(G0)
is the associated (unlabeled) sequence. We say that T is a zero-sum type
(short, zero-sum free or a minimal zero-sum type) if the associated sequence
has the relevant property, and we set Σ(T ) = Σ(α(T )). We denote by

T (G0) = {T ∈ F(G0 × N) | σ(T ) = 0} = α−1(B(G0)) ⊂ F(G0 × N)

the monoid of zero-sum types over G0 (briefly, the type monoid over G0).
Recall that for each finite additively written abelian group G, either

|G| = 1 or G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · |nr, where r = r(G) ∈ N
is the rank of G, and also nr = exp(G) is the exponent of G. For r ∈ N, let
Crn denote the direct sum of r copies of n.

For each homomorphism ϕ : G→ H of abelian groups and the α defined
above, we denote by ϕ = ϕ ◦α : F(G0 × N)→ F(H) the unique homomor-
phism satisfying ϕ((g, n)) = ϕ(g) for all (g, n) ∈ G0 × N .

Let τ : F(G0)→ F(G0 × N) be defined by

τ(S) =
∏
g∈G0

vg(S)∏
k=1

(g, k) ∈ F(G0 × N).

For S ∈ F(G0), we call τ(S) the type associated with S. Let T and T ′ be
two squarefree zero-sum types with α(T ) = α(T ′). Then there is a bijection
from Z(T ) to Z(T ′), and hence |Z(T )| = |Z(T ′)|. In particular, |Z(T )| =
|Z(τ(α(T )))|. Let T = (g1, a1) · . . . · (gl, al) ∈ F(G×N) be a type. For every
g ∈ G, define (g, 0) + T = (g + g1, a1) · . . . · (g + gl, al).

The greatest common divisor of sequences S, S′ ∈ F(G0), denoted by
gcd(S, S′), is defined to be the greatest common subsequence of S and S′

(i.e. it is always taken in the monoid F(G0)). Sequences S and S′ are called
coprime if gcd(S, S′) = 1. Similarly, the greatest common divisor of types
T, T ′ ∈ F(G0 × N), denoted by gcd(T, T ′), is defined to be the greatest
common subtype of T and T ′ (i.e. it is always taken in F(G0 × N)). Types
T and T ′ are called coprime if gcd(T, T ′) = 1.

Narkiewicz constants. We start with the definition of the Narkiewicz
constants (see [4, Definition 6.2.1]). Theorem 9.3.2 in [4] provides an asymp-
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totic formula for the Fk(x) function—the Narkiewicz constants occur as ex-
ponents of the log log x term—in the frame of obstructed quasi-formations
(this setting includes non-principal orders in holomorphy rings in global
fields).

Definition 2.1. A type T ∈ F(G×N) is called square free if vg,n(T ) ≤ 1
for all (g, n) ∈ G×N. For every k ∈ N, the Narkiewicz constant Nk(G) of G
is defined by

Nk(G) = sup{|T | | T ∈ T (G•) square free, |Z(T )| ≤ k} ∈ N0 ∪ {∞}.

If U ∈ A(G•), then τ(U) has unique factorization, and hence we get

(2.1) D(G) ≤ N1(G).

Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · |nr and let (e1, . . . , er) be a
basis of G with ord(ei) = ni for all i ∈ [1, r]. If B =

∏r
i=1 e

ni
i , then τ(B) =∏r

i=1

∏ni
k=1(ei, k) has unique factorization, and hence

(2.2)
r∑
i=1

ni ≤ N1(G) ≤ N2(G) ≤ · · · .

We shall use the above chain of inequalities without further mention.
Now we continue with a simple lemma needed later.

Lemma 2.2 ([2, Lemma 2.2]). Let G be an abelian group with |G| > 1 and
T ∈ T (G•) be a square free zero-sum type. Then the following statements
are equivalent :

(a) |Z(T )| = 1.
(b) If U, V ∈ T (G) with U |T and V |T , then gcd(U, V ) has sum zero.

We recall the definition of the Erdős–Ginzburg–Ziv constant and of two
of its variants.

Definition 2.3. Let G be a finite abelian group and g ∈ G.

• s(G) denotes the smallest integer ` ∈ N such that every sequence
S ∈ F(G) of length |S| ≥ ` has a zero-sum subsequence T of length
|T | = exp(G). The invariant s(G) is called the Erdős–Ginzburg–Ziv
constant of G.
• η(G) denotes the smallest integer ` ∈ N such that every sequence S ∈
F(G) of length |S| ≥ ` has a short zero-sum subsequence (equivalently,
S has a short minimal zero-sum subsequence).

Together with the Davenport constant D(G), the invariants s(G) and
η(G) are classical invariants in Combinatorial Number Theory (see [3, Sec-
tions 4 and 5] for a survey). The following lemma describes their relation-
ships for an abelian group of rank at most 2.
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Lemma 2.4. Let G = Cn1 ⊕ Cn2 with 1 ≤ n1 |n2. Then

s(G) = 2n1 + 2n2 − 3, η(G) = 2n1 + n2 − 2, D(G) = n1 + n2 − 1.

Proof. See [4, Theorem 5.8.3].

Definition 2.5. Let G be a finite abelian group and g ∈ G. Let η∗(G)
denote the smallest integer ` ∈ N0 such that every square free type T ∈
F(G• × N) of length |T | ≥ ` has two distinct short minimal zero-sum sub-
types which are not coprime.

Clearly, η∗(G) can be defined in the following equivalent way.

Definition 2.6. Let G be a finite abelian group. Let η∗(G) denote the
smallest integer ` ∈ N0 such that every square free type T ∈ F(G• × N)
of length |T | ≥ ` has two distinct short zero-sum subtypes such that their
greatest common divisor is not zero-sum.

We list some results on η∗(G).

Lemma 2.7. Let G = Cp ⊕ Cp with p ∈ P.

(1) [2, Proposition 3.12] If p ≤ 7, then η∗(G) = 3p+ 1.
(2) [2, Proposition 3.10] η∗(G) ≤ 2 η(G)− 1 = 6p− 5.

We shall also need one more result from [2]:

Lemma 2.8 ([2, Lemma 3.9]). Let G be a finite abelian group with |G|>1,
and let T = U1 · . . . · Ur ∈ T (G•) be a square free type with r ∈ N and
U1, . . . , Ur ∈ A(T (G•)).

(1) If |Z(T )| = 1, then
∏r
i=1 |Ui| ≤ |G|.

(2) Let S1, . . . , St ∈ F(G × N) be such that S1 · . . . · St is a zero-sum
subtype of T . If |Z(T )| = 1, then τ(σ(S1) · . . . · σ(St)) has unique
factorization.

(3) If T does not have two short minimal zero-sum subtypes which are
not coprime and |T | ≤ 2 exp(G) + 1, then |Z(T )| = 1.

3. Proof of Theorem 1.2. We start with a result which was con-
jectured by J. E. Olson [10] and proved by C. Peng [11, Theorem 2]. Let
S ∈ F(G) be a sequence and H be a subgroup of G. Denote by SH the
largest subsequence of S containing only elements from H.

Lemma 3.1. Let G = Cp⊕Cp, where p is a prime number. Let S ∈ F(G)
be a sequence with |S| = 2p− 1. If |SH | ≤ p for every subgroup H of G with
|H| = p, then

∑
(S) = G.

Proof of Theorem 1.2. If p = 2, the result is a particular case of Corol-
lary 1 to Proposition 3 in [9].
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Next suppose that p ≥ 3. By (2.2) it suffices to prove that N1(G) ≤ 2p.
Let S ∈ T (G•) be a square free type of length |S| ≥ 2p + 1. We have to
show |Z(S)| > 1. Assume to the contrary that |Z(S)| = 1.

We distinguish two cases.

Case 1: There exists a subgroup H of G with |H| = p, such that
|α(S)H | ≥ p+ 1. Assume that

S = g1 · . . . · gt · gt+1 · . . . · g|S|,
where α(gi) ∈ H \ {0} for i = 1, . . . , t and α(gj) 6∈ H for j = t+ 1, . . . , |S|.
Let x =

∑|S|
j=t+1 α(gj). Then x ∈ H since α(S) is a zero-sum sequence. Let

T = g1 · . . . · gt · yν ∈ T (H•)

be squarefree, where α(y) = x, ν = 1 if x 6= 0 and ν = 0 if x = 0. Note
that |T | = t + ν ≥ p + 1. Since H ∼= Cp and N1(Cp) = p, it follows that
there exist two zero-sum subtypes T1, T2 of T such that gcd(T1, T2) is not
zero-sum. Let

T ′i =
{
Ti if y - Ti,
Tiy
−1gt+1 · . . . · g|S| otherwise.

Then T ′1 and T ′2 are two zero-sum subtypes of S. Since σ(gcd(T ′1, T
′
2)) =

σ(gcd(T1, T2)), it follows that gcd(T ′1, T
′
2) is not zero-sum, giving a contra-

diction to Lemma 2.2.

Case 2: For every subgroup K of G with |K| = p, |α(S)K | ≤ p. Let S =
U1 · . . . · Ur, where U1, . . . , Ur ∈ A(T (G•)). Since |Z(S)| = 1, Lemma 2.8(1)
implies that

∏r
i=1 |Ui| ≤ p2. This together with

∑r
i=1 |Ui| = |S| ≥ 2p + 1

gives |Uj | ≥ 3 for some j ∈ [1, r]. Without loss of generality, we may suppose
that |U1| ≥ 3. Let g1, g2 ∈ G be such that g1g2 |U1. Since |g−1

1 g−1
2 S| ≥

2p+ 1− 2 = 2p− 1, it follows from Lemma 3.1 that
∑

(α(g−1
1 g−1

2 S)) = G.
Hence −α(g1) ∈

∑
(α(g−1

1 g−1
2 S)) and there is a subtype S′ of g−1

1 g−1
2 S

such that g1S′ ∈ A(T (G•)). But g1S′ 6= U1 and gcd(g1S′, U1) 6= 1, giving a
contradiction to |Z(S)| = 1. This completes the proof.

4. Proof of Theorem 1.3. We first give a few lemmas which will be
used to prove the main result of this section.

Lemma 4.1. Let G be a finite abelian group, and S ∈ F(G• × N) be a
square free type. Suppose that S has no two short zero-sum subtypes such that
their greatest common divisor is not zero-sum. Let T be any short zero-sum
subtype T of S. Then, for every g ∈ G, we have either vg(α(T )) = vg(α(S))
or vg(α(T )) = 0.

Proof. Assume to the contrary that there is an element g ∈ G such that
1 ≤ vg(α(T )) < vg(α(S)). Now we can take x ∈ T and y ∈ ST−1 such that
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α(x) = g = α(y). Let T ′ = yTx−1. Then T ′ is also a short zero-sum subtype
of S, but σ(gcd(T, T ′)) = −g 6= 0, giving a contradiction to Lemma 2.2.

Lemma 4.2. Let p be a prime, and let G = C2
p . Let S ∈ F(G• ×N) be a

zero-sum square free type of length |S| ≥ 3p+ 1. If there exist two elements
e1, e2 ∈ C2

p such that ep1e
p
2 |α(S), then S contains two short minimal zero-

sum subtypes T1 and T2 such that gcd(T1, T2) 6= 1.

Proof. Assume to the contrary that S does not have two short minimal
zero-sum subtypes which are not coprime.

Write S = xyS1S2T with α(x) = e1, α(S1) = ep−1
1 , α(y) = e2 and

α(S2) = ep−1
2 . Then T is a zero-sum subtype of S of length |T | = |S|− 2p ≥

p+1. Let |T | = p+t with t ≥ 1. Let T1, . . . , Tr be all minimal short zero-sum
subtypes of T . By the assumption we have T = T1 · . . . · TrT ′, where T ′ is
either empty or has length |T ′| ≥ p + 1. Take an element xi ∈ Ti for each
i ∈ [1, r]. By the choice of T1, . . . , Tr and by Lemma 4.1, we infer that the
sequence S1S2

∏r
i=1 Tix

−1
i contains no short zero-sum subtype. It follows

that 3p − 3 + t + 1 − r = p − 1 + p − 1 + |T | − r = |S1S2
∏r
i=1 Tix

−1
i | ≤

η(G)−1 = 3p−3. Therefore, r ≥ t+1. It follows that |T ′| = |T |−|T1·. . .·Tr| ≤
p+ t− 2r ≤ p− t− 2 < p+ 1. Hence, |T ′| = 0 and T = T1 · . . . · Tr. Now for
any i, j ∈ [1, r] with i 6= j, we have

(4.1) |Ti|+ |Tj | ≤ p+ t− 2(r − 2) ≤ p+ t− 2(t− 1) ≤ p+ 1.

Next choose a subset {i1, . . . , i`} ⊂ [1, r] such that the sum |Ti1 |+ · · ·+
|Ti` | is maximal under the restriction that |Ti1 |+ · · ·+ |Ti` | ≤ p+1. By (4.1),
` ≥ 2. It is not hard to show that |Ti1 |+ · · ·+ |Ti` | ≥ (p+ 5)/2.

Let S′ = xS1Ti1 · . . . ·Ti` . Then |S′| ≤ 2p+1. By Lemma 2.8(3), we obtain
|Z(S′)| = 1. By Lemma 2.8(1), we have p2 ≥ |xS1| × |Ti1 | × · · · × |Ti` | ≥
p × |Ti1 | × (|Ti2 | + · · · + |Ti` |) ≥ p × |Ti1 | × ((p + 5)/2 − |Ti1 |) ≥ p × 2 ×
((p + 5)/2 − 2) > p2, giving a contradiction to Lemma 2.2. This completes
the proof.

The following lemma can be found in [2]:

Lemma 4.3 ([2, Lemma 3.14]). Let G = C2
mn with m,n ≥ 2 , ϕ : G→ G

multiplication by m, and S ∈ F(G• × N) square free. Suppose that S has
no two zero-sum subtypes W1 and W2 such that σ(gcd(W1,W2)) 6= 0. Let
S1, . . . , Su be disjoint subtypes of S with the following properties:

(i) For every ν ∈ [1, u], ϕ(Sν) is a non-empty zero-sum sequence over
ϕ(G).

(ii) The sequence σ(S1) · . . . · σ(Su) ∈ F(Ker(ϕ)) is zero-sum free.

Let T1 and T2 be subtypes of S(S1 · . . . · Su)−1 with ϕ(T1) and ϕ(T2) are
zero-sum sequences with σ(gcd(ϕ(T1), ϕ(T2))) 6= 0 ∈ ϕ(G). Then one of the
following conditions holds:
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(a) the sequence σ(S1) · . . . · σ(Su)σ(T1) ∈ F(Ker(ϕ)) is zero-sum free.
(b) the sequence σ(S1) · . . . · σ(Su)σ(T2) ∈ F(Ker(ϕ)) is zero-sum free.

Lemma 4.4. Let G = Cn1p ⊕ Cn2p = 〈e1〉 ⊕ 〈e2〉 with 1 < n1 |n2 and p
being a prime. Suppose that N1(Cn1 ⊕ Cn2) = n1 + n2 and η∗(Cp ⊕ Cp) =
3p+ 1. Then N1(G) = n1p+ n2p.

Proof. By (2.2) it suffices to prove that N1(G)≤n1p+n2p. Let ϕ : G→G
be the homomorphism such that Ker(ϕ) = 〈pe1〉 ⊕ 〈pe2〉 ∼= Cn1 ⊕ Cn2 , and
then ϕ(G) ∼= C2

p . Let S ∈ T (G•) be a square free type of length |S| ≥
n1p + n2p + 1. We have to show that |Z(S)| > 1. Assume to the contrary
that |Z(S)| = 1.

Set S = g1 · . . . · gl, where l ∈ N0 and g1, . . . , gl ∈ G• × N are such that
for some t ∈ [0, l], ϕ(gi) = 0 for all i ∈ [1, t] and ϕ(gi) 6= 0 for all i ∈ [t+ 1, l]
where ϕ = ϕ ◦ α. If t ≥ n1 + n2 + 1, then g1 · . . . · gt · yν ∈ T (Ker(ϕ)× N),
where y =

∑l
i=t+1 gi, ν = 1 if

∑t
i=1 gi 6= 0 and ν = 0 if

∑t
i=1 gi = 0, and

it has two minimal zero-sum subtypes which are not coprime. So we may
assume that t ∈ [0, n1 + n2].

Let r ∈ N0 and let B1, . . . , Br be all minimal zero-sum subtypes of
g1 · . . . · gt. If two of them are not coprime, then we are done. Thus we may
assume that B1 · . . . · Br | g1 · . . . · gt, and for every ν ∈ [1, r] we can choose
an element τν ∈ supp(Bν). It follows that g1 · . . . · gt(τ1 · . . . · τr)−1 has no
zero-sum subtype. Since |Bν | ≥ 2 for all ν ∈ [1, r], we infer that r ≤ t/2.
Let u0 = |g1 · . . . · gt(τ1 · . . . · τr)−1| = t− r. By renumbering if necessary, we
may assume g1 · . . . · gu0 = g1 · . . . · gt(τ1 · . . . · τr)−1. We set

Sν = gν for every ν ∈ [1, u0],

and note that u0 ∈ [t/2, t].
Set T = gt+1 · . . . ·gl. By Lemma 4.3 we can find a maximal u1 ∈ N0 such

that there exist types Su0+1, . . . , Su0+u1 with the following properties:

• Su0+1 · . . . · Su0+u1 |T .
• For every ν ∈ [u0 +1, u0 +u1], ϕ(Sν) is a short zero-sum sequence over
ϕ(G).

• The sequence σ(S1) · . . . · σ(Su0+u1) ∈ F(Ker(ϕ)) is zero-sum free.

Set W = T (Su0+1 · . . . ·Su0+u1)−1. By using η∗(C2
p) = 3p+ 1, Lemma 4.3

and the maximality of u, we derive that |W | ≤ 3p. Therefore,

n1 + n2 − 2 = D(ker(ϕ))− 1 ≥ u0 + u1 ≥ u0 +
|S| − t− |W |

p

≥ t

2
+
n1p+ n2p+ 1− t− 3p

p
> n1 + n2 − 3.

Hence,
u0 + u1 = n1 + n2 − 2.
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Set W ′ = S(g1 · . . . · gtSu0+u1 · . . . ·Sn1+n2−2)−1. Then σ(ϕ(W ′)) = 0 and
|W ′| ≥ n1p+n2p+1− t− (n1 +n2−2−u0)p = 2p+1+(u0p− t) ≥ 2p+1. It
follows from Theorem 1.2 that there exist two minimal zero-sum subtypes
V1, V2 of W ′ such that gcd(V1, V2) 6= 1. Since

|σ(V1)σ(S1) · . . . · σ(Sn1+n2−2)| = |σ(V2)σ(S1) · . . . · σ(Sn1+n2−2)|
= 2m− 1 = D(ker(ϕ)),

neither σ(V1)σ(S1) · . . . · σ(Sn1+n2−2) nor σ(V2)σ(S1) · . . . · σ(Sn1+n2−2) is
zero-sum free, giving a contradiction to Lemma 4.3.

We are now in a position to prove the main result of this section.

Proof of Theorem 1.3. It follows from Lemmas 2.7(1) and 4.4 that the
result holds for p ≤ 7.

Next assume that p ≥ 11. It suffices to prove that N1(G) ≤ 2mp. As in
the proof of Lemma 4.4, we can choose ϕ and S with |S| ≥ 2mp+ 1, and we
need only prove that |Z(S)| > 1. Assume to the contrary that |Z(S)| = 1.

We set S = g1 · . . . ·gl, where l ∈ N0 and g1, . . . , gl ∈ G•×N are such that
for some t ∈ [0, l], ϕ(gi) = 0 for all i ∈ [1, t] and ϕ(gi) 6= 0 for all i ∈ [t+1, l].
As in the proof of Lemma 4.4, we may assume that t ∈ [0, 2m], and then we
can find a subtype g1 · . . . · gu0 | g1 · . . . · gt that has no zero-sum subtype and
u0 ∈ [t/2, t].

We set
Sν = gν for every ν ∈ [1, u0].

Let T = gt+1 · . . . · gl and ϕ(T ) = hr11 · . . . · h
rk
k ∈ F(C2

p \ {0}), where
r1 ≥ · · · ≥ rk. Set T = T1 · . . . · Tk such that ϕ(Ti) = hrii for i = 1, . . . , k,
and set W1 = T3 · . . . · Tk. We claim that r1 ≥ r2 ≥ 6p2.

We first show that r1 ≤ mp+4m−4. Set α(T1) = (g+x1) · . . . · (g+xr1),
where ϕ(g) = h1 6= 0 and xi ∈ C2

m for i = 1, . . . , r1. Assume to the contrary
that r1 ≥ mp+ 4m− 3. Then we can find X1, . . . , Xp+1 ∈ F(C2

m) such that
X1 · . . . ·Xp+1 |x1 · . . . ·xr1 with |Xi| = m and σ(Xi) = 0 for i = 1, . . . , p+ 1.
Set U = (g + X1) · . . . · (g + Xp) and V = (g + X2) · . . . · (g + Xp+1). Then
σ(U) = σ(V ) = 0 and σ(gcd(α−1(U),α−1(V ))) = (p− 1)mg = −mg. Since
ϕ(g) 6= 0, we have mg 6= 0. Therefore, α−1(U) and α−1(V ) are two zero-sum
subtypes of S with σ(gcd(U, V )) non-zero, giving a contradiction to Lemma
2.2. Hence r1 ≤ mp+ 4m− 4.

Next, note that 2mp+ 1 ≤ |S| = t+ r1 + r2 + · · ·+ rk ≤ 2m+mp+ 4m−
4 + (k − 1)r2 ≤ 2m+mp+ 4m− 4 + (p2 − 2)r2. Thus

r1 ≥ r2 ≥
mp− 6m+ 5

p2 − 2
≥ 6p2

and this proves our claim.
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By Lemma 4.3 we can find a maximal u1 ∈ N0 such that there exist
types Su0+1, . . . , Su0+u1 with the following properties:

• Su0+1 · . . . · Su0+u1 |W1.
• For every ν ∈ [u0 +1, u0 +u1], ϕ(Sν) is a short zero-sum sequence over
ϕ(G).

• The sequence σ(S1) · . . . · σ(Su0+u1) ∈ F(Ker(ϕ)) is zero-sum free.

Set W2 = W1(Su0+1 · . . . · Su0+u1)−1. By using η∗(C2
p) ≤ 6p− 5 (Lemma

2.7(2)), Lemma 4.3 and the maximality of u1, we derive that |W2| ≤ 6p− 6.
Consider the type T1T2W2. Let u2 ∈ N0 be maximal such that there exist

types Su0+u1+1, . . . , Su0+u1+u2 with the following properties:

• Su0+u1+1 · . . . · Su0+u1+u2 |T1T2W2.
• For every ν ∈ [u0 + u1 + 1, u0 + u1 + u2], ϕ(Sν) is a short zero-sum

sequence over ϕ(G).
• The sequence σ(S1) · . . . · σ(Su0+u1) · σ(Su0+u1+1) · . . . · σ(Su0+u1+u2) ∈
F(Ker(ϕ)) is zero-sum free.
• For every ν ∈ [u0 + u1 + 1, u0 + u1 + u2], |gcd(Sν ,W2)| ≥ 1.

Set W3 = W2 gcd(Su0+u1+1 · . . . ·Su0+u1+u2 ,W2)−1. By using Lemma 4.2,
r1 ≥ r2 ≥ 6p2 and |W2| ≤ 6p− 6, we obtain |W3| ≤ p.

Let T ′1 (resp. T ′2) be the remaining subsequence of T1 (resp. T2) after
the construction of Sν with ν ∈ [u0 + u1 + 1, u0 + u1 + u2]. Let u3 ∈ N0

be maximal such that there exist types Su0+u1+u2+1, . . . , Su0+u1+u2+u3 with
the following properties:

• Su0+u1+u2+1 · . . . · Su0+u1+u2+u3 |T ′1T ′2.
• For every ν ∈ [u0 + u1 + u2 + 1, u0 + u1 + u2 + u3], ϕ(Sν) ∈ {hp1, h

p
2}

and hence ϕ(Sν) is a short zero-sum sequence over ϕ(G).
• The sequence σ(S1) · . . . · σ(Su0+u1+u2+u3) ∈ F(Ker(ϕ)) is zero-sum

free.

Let T ′′1 (resp. T ′′2 ) be the remaining subsequence of T ′1 (resp. T ′2) after the
construction of Sν with ν ∈ [u0 +u1 +u2 + 1, u0 +u1 +u2 +u3]. By Lemma
4.3, |T ′′1 | ≤ p and |T ′′2 | ≤ p. Therefore,

2m− 2 = D(ker(ϕ))− 1 ≥ u0 + u1 + u2 + u3

≥ u0 +
|S| − t− |W3| − |T ′′1 | − |T ′′2 |

p

≥ t/2 +
2mp+ 1− t− 3p

p
> 2m− 3.

Hence,
u0 + u1 + u2 + u3 = 2m− 2.
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Let W ′ = S(g1 · . . . · gtSu0+1 · . . . · S2m−2)−1. As in Lemma 4.4, we
can find two minimal zero-sum subtypes V1, V2 of W ′ such that neither
σ(V1)σ(S1) · . . . · σ(S2m−2) nor σ(V2)σ(S1) · . . . · σ(S2m−2) is zero-sum free,
giving a contradiction to Lemma 4.3. This completes the proof.

Corollary 4.5. Let m = pr11 · · · prss , where s, r1, . . . , rs ∈ N0, p1, . . . , ps
∈ P and p1 = 2, p2 = 3, p3 = 5, p4 = 7, 11 ≤ p5 ≤ · · · ≤ ps. Then

N1(Cm ⊕ Cm) = 2m

if one of the following conditions holds:

(1) s ≤ 4.
(2) s ≥ 5 and

pr11 · · · p
ri
i ≥

6p2
i+1(p2

i+1 − 2)− 5
pi+1 − 6

for i = 4, . . . , s− 1.

(3) There exist t1, t2 ∈ [1, s] such that

pt2 ≥
6p2
t1(p2

t1 − 2)− 5
pt1 − 6

,

pr11 · · · p
ri
i pt2 ≥

6p2
i+1(p2

i+1 − 2)− 5
pi+1 − 6

for i = t1, . . . , t2 − 1,

pr11 · · · p
ri
i ≥

6p2
i+1(p2

i+1 − 2)− 5
pi+1 − 6

for i = t2, . . . , s− 1.

Proof. (1) The result follows from Theorem 1.2, Lemma 2.7(1) and
Lemma 4.4.

(2) Let m1 = pr11 · · · p
r4
4 . By (1) we have N1(Cm1 ⊕ Cm1) = 2m1. Since

pr11 · · · p
ri
i ≥

6p2
i+1(p2

i+1 − 2)− 5
pi+1 − 6

for i ∈ [4, s− 1],

by using Theorem 1.3 step by step we deduce that

N1(Cn ⊕ Cn) = 2n

for every n ∈ {m1p5, . . . ,m1p
r5
5 ,m1p

r5
5 p6, . . . ,m1p

r5
5 · · · prss = m}.

(3) Since

pt2 ≥
6p2
t1(p2

t1 − 2)− 5
pt1 − 6

,

it follows from Theorems 1.2 and 1.3 that

N1(Cpt1pt2
⊕ Cpt1pt2

) = 2pt1pt2 .

Note that

pt1pt2 ≥
6p2
i (p

2
i − 2)− 5
pi − 6

for i = 1, . . . , t1;



THE NARKIEWICZ CONSTANTS II 217

by using Theorem 1.3 step by step we obtain

N1(C2

p
r1
1 ···p

rt1
t1

pt2

) = 2pr11 · · · p
rt1
t1
pt2 .

Since

pr11 · · · p
ri
i pt2 ≥

6p2
i+1(p2

i+1 − 2)− 5
pi+1 − 6

for i = t1, . . . , t2 − 1,

pr11 · · · p
ri
i ≥

6p2
i+1(p2

i+1 − 2)− 5
pi+1 − 6

for i = t2, . . . , s− 1,

again by using Theorem 1.3 step by step we get

N1(C2
m) = 2m.

Proof of Corollary 1.4. Let n = pr11 · · · prss , where s, r1, . . . , rs ∈ N0,
p1, . . . , ps ∈ P and p1 ≤ · · · ≤ ps. Let m = p be a prime such that

p ≥ 6p2
s(p

2
s − 2)− 5
ps − 6

.

It follows from Corollary 4.5(3) that N1(Cmn ⊕ Cmn) = 2mn.
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