SEMI-PARALLEL CR SUBMANIFOLDS IN A COMPLEX SPACE FORM

BY
MAYUKO KON (Nagano City)

Abstract

We show that there is no proper CR submanifold with semi-flat normal connection and semi-parallel second fundamental form in a complex space form with nonzero constant holomorphic sectional curvature such that the dimension of the holomorphic tangent space is greater than 2 .

1. Introduction. There are many results about real hypersurfaces immersed in a complex space form with additional conditions on the second fundamental form A. It is well known that there are no real hypersurfaces in a complex space form $M^{n}(c), c \neq 0$, of constant holomorphic sectional curvature $4 c$ with parallel second fundamental form. Maeda M proved that there exist no real hypersurfaces of a complex projective space $\mathbb{C} P^{m}, m \geq 3$, with semi-parallel second fundamental form.

On the other hand, Hamada [H] showed that there are no real hypersurfaces with recurrent second fundamental form in $\mathbb{C} P^{m}$, where recurrency of A means that $\left(\nabla_{X} A\right) Y=\alpha(X) A Y, \alpha$ being a 1-form.

In this paper we consider the conditions of being semi-parallel or recurrent for the second fundamental form of CR submanifolds in a complex space form. The definition of a CR submanifold is given in Section 2.

By the equation of Codazzi, we easily see that there are no proper CR submanifolds in a complex space form $M^{n}(c), c \neq 0$, with parallel second fundamental form.

In [K], we studied CR submanifolds of complex space forms with semiparallel Ricci tensor. Moreover, we showed that there is no CR submanifold with semi-flat normal connection and with recurrent Ricci tensor in a complex space form of nonzero constant holomorphic sectional curvature, if the dimension of its holomorphic distribution is greater than 2 .

The purpose of the present paper is to prove the following theorem.

[^0]Theorem 1.1. Let M be an n-dimensional proper $C R$ submanifold of a complex space form $M^{m}(c), c \neq 0$, with semi-flat normal connection. If the dimension of the holomorphic tangent space is greater than 2, then the second fundamental form A is not semi-parallel.
2. Preliminaries. Let $M^{m}(c)$ denote the complex space form of complex dimension m (real dimension $2 m$) with constant holomorphic sectional curvature $4 c$. We denote by J the almost complex structure of $M^{m}(c)$. The Hermitian metric of $M^{m}(c)$ is denoted by G.

Let M be a real n-dimensional Riemannian manifold isometrically immersed in $M^{m}(c)$. We denote by g the Riemannian metric induced on M from G, and by p the codimension of M, that is, $p=2 m-n$.

We denote by $T_{x}(M)$ and $T_{x}(M)^{\perp}$ the tangent space and the normal space of M, respectively.

Definition. A submanifold M of a Kählerian manifold \tilde{M} is called a $C R$ submanifold if there exists a differentiable distribution $H: x \rightarrow H_{x} \subset T_{x}(M)$ on M satisfying the following conditions:
(i) H is holomorphic, i.e., $J H_{x}=H_{x}$ for each $x \in M$, and
(ii) the complementary orthogonal distribution $H^{\perp}: x \rightarrow H_{x}^{\perp} \subset T_{x}(M)$ is anti-invariant, i.e. $J H_{x}^{\perp} \subset T_{x}(M)^{\perp}$ for each $x \in M$.

We call H_{x} the holomorphic tangent space of M.
In the following, we put $\operatorname{dim} H_{x}=h, \operatorname{dim} H_{x}^{\perp}=q$ and $\operatorname{codim} M=p$. If $q=0$ (resp. $h=0$) for any $x \in M$, then the CR submanifold M is a holomorphic submanifold (resp. anti-invariant submanifold or totally real submanifold) of \tilde{M}. If a CR submanifold satisfies $p>0$ and $q>0$, then it is said to be proper.

We denote by $\tilde{\nabla}$ the covariant differentiation in $M^{m}(c)$, and by ∇ the one in M determined by the induced metric. Then the Gauss and Weingarten formulas are respectively

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y), \quad \tilde{\nabla}_{X} V=-A_{V} X+D_{X} V
$$

for any vector fields X and Y tangent to M and any vector field V normal to M, where D denotes the covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp}$ of M. We call both A and B the second fundamental forms of M. They are related by $G(B(X, Y), V)=g\left(A_{V} X, Y\right)$. The second fundamental forms A and B are symmetric.

The covariant derivative $\left(\nabla_{X} A\right)_{V} Y$ of A is defined to be

$$
\left(\nabla_{X} A\right)_{V} Y=\nabla_{X}\left(A_{V} Y\right)-A_{D_{X} V} Y-A_{V} \nabla_{X} Y .
$$

If $\left(\nabla_{X} A\right)_{V} Y=0$ for any vector fields X and Y tangent to M, then the second fundamental form of M is said to be parallel in the direction of the normal vector V. If the second fundamental form is parallel in every direction, it is said to be parallel.

A nonzero tensor field K of type (r, s) on M is said to be recurrent if there exists a 1-form α such that $\nabla K=K \otimes \alpha$. The second fundamental form A is recurrent if A is nonzero and $\left(\nabla_{X} A\right)_{V} Y=\alpha(X) A_{V} Y$ for any vector fields X, Y tangent to M and any vector field V normal to M.

In what follows, we assume that M is a CR submanifold of $M^{m}(c)$. The tangent space $T_{x}(M)$ of M is decomposed as $T_{x}(M)=H_{x}+H_{x}^{\perp}$ at each point x of M, where H_{x}^{\perp} denotes the orthogonal complement of H_{x} in $T_{x}(M)$. Similarly, we see that $T_{x}(M)^{\perp}=J H_{x}^{\perp}+N_{x}$, where N_{x} is the orthogonal complement of $J H_{x}^{\perp}$ in $T_{x}(M)^{\perp}$.

For any vector field X tangent to M, we put

$$
J X=P X+F X
$$

where $P X$ is the tangential part of $J X$ and $F X$ the normal part of $J X$. Then P is an endomorphism on the tangent bundle $T(M)$ and F is a normal bundle valued 1-form on the tangent bundle $T(M)$. We notice that $P^{3}+P$ $=0$.

For any vector field V normal to M, we put

$$
J V=t V+f V
$$

where $t V$ is the tangential part of $J V$ and $f V$ the normal part of $J V$. Then we see that $F P=0, f F=0, t f=0$ and $P t=0$.

We define the covariant derivatives of P, F, t and f by $\left(\nabla_{X} P\right) Y=$ $\nabla_{X}(P Y)-P \nabla_{X} Y,\left(\nabla_{X} F\right) Y=D_{X}(F Y)-F \nabla_{X} Y,\left(\nabla_{X} t\right) V=\nabla_{X}(t V)-$ $t D_{X} V$ and $\left(\nabla_{X} f\right) V=D_{X}(f V)-f D_{X} V$ respectively. We then have

$$
\begin{aligned}
\left(\nabla_{X} P\right) Y & =A_{F Y} X+t B(X, Y), & \left(\nabla_{X} F\right) Y & =-B(X, P Y)+f B(X, Y) \\
\left(\nabla_{X} t\right) V & =-P A_{V} X+A_{f V} X, & \left(\nabla_{X} f\right) V & =-F A_{V} X-B(X, t V)
\end{aligned}
$$

For any vector fields X and Y in $H_{x}^{\perp}=t T(M)^{\perp}$ we obtain

$$
A_{F X} Y=A_{F Y} X
$$

We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is

$$
\begin{aligned}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y+g(P Y, Z) P X-g(P X, Z) P Y \\
& -2 g(P X, Y) P Z\}+A_{B(Y, Z)} X-A_{B(X, Z)} Y
\end{aligned}
$$

for any X, Y and Z tangent to M.

The equation of Codazzi of M is

$$
\begin{aligned}
& g\left(\left(\nabla_{X} A\right)_{V} Y, Z\right)-g\left(\left(\nabla_{Y} A\right)_{V} X, Z\right) \\
& \quad=c\{g(Y, P Z) g(X, t V)-g(X, P Z) g(Y, t V)-2 g(X, P Y) g(Z, t V)\}
\end{aligned}
$$

We define the curvature tensor R^{\perp} of the normal bundle of M by

$$
R^{\perp}(X, Y) V=D_{X} D_{Y} V-D_{Y} D_{X} V-D_{[X, Y]} V
$$

Then we have the equation of Ricci

$$
\begin{aligned}
& G\left(R^{\perp}(X, Y) V, U\right)+g\left(\left[A_{U}, A_{V}\right] X, Y\right) \\
& \quad=c\{g(Y, t V) g(X, t U)-g(X, t V) g(Y, t U)-2 g(X, P Y) g(V, f U)\}
\end{aligned}
$$

If R^{\perp} vanishes identically, the normal connection of M is said to be flat. If $R^{\perp}(X, Y) V=2 c g(X, P Y) f V$, then the normal connection of M is said to be semi-flat (see [YK2]).

We put

$$
(R(X, Y) A)_{V} Z=R(X, Y) A_{V} Z-A_{R^{\perp}(X, Y) V} Z-A_{V} R(X, Y) Z
$$

If $(R(X, Y) A)_{V}=0$ for any X, Y and Z tangent to M and any V normal to M, then the second fundamental form A is said to be semi-parallel. This condition is weaker than $\nabla A=0$. We call M a semi-parallel $C R$ submanifold if its second fundamental form A is semi-parallel.

REMARK 2.1. Let S^{m+1} be a $(2 m+1)$-dimensional unit sphere. For any point $z \in S^{2 m+1}$ we put $\xi=J Z$, where J denotes the almost complex structure of \mathbb{C}^{m+1}. We consider the orthogonal projection $\pi^{\prime}: T_{z}\left(\mathbb{C}^{m+1}\right) \rightarrow$ $T_{z}\left(S^{2 m+1}\right)$. Putting $\phi=\pi^{\prime} \cdot J$, we have a contact metric structure (ϕ, ξ, η, G) on $S^{2 m+1}$, where η is a 1-form dual to ξ, and G the standard metric tensor field on $S^{2 m+1}$ which satisfies $G(\phi X, \phi Y)=G(X, Y)-\eta(X) \eta(Y)$.

Let M be an n-dimensional submanifold in $\mathbb{C} P^{m}$. Let N be an $(n+1)$ dimensional submanifold immersed in a $(2 m+1)$-dimensional unit sphere $S^{2 m+1}$ such that the following diagram is commutative:

where the immersion i^{\prime} is a diffeomorphism on the fibres and π is the standard fibration.

We denote the horizontal lift with respect to the connection η by *. Then the curvature tensor K^{\perp} of the normal bundle of N satisfies

$$
\begin{aligned}
G\left(K^{\perp}\left(X^{*}, Y^{*}\right) V^{*}, U^{*}\right) & =\left[g\left(R^{\perp}(X, Y) V, U\right)-2 g(X, P Y) g(f V, U)\right]^{*} \\
G\left(K^{\perp}\left(X^{*}, \xi\right) V^{*}, U^{*}\right) & =g\left(\left(\nabla_{X} f\right) V, U\right)^{*}
\end{aligned}
$$

for any vectors X and Y tangent to M and any vectors V and U normal to M. Therefore, the normal connection of N in $S^{2 m+1}$ is flat if and only if the normal connection of M in $\mathbb{C} P^{m}$ is semi-flat and $\nabla f=0$ (see YK2, pp. 223-224].

Remark 2.2. Let M be a complex n-dimensional ($n \geq 2$) holomorphic submanifold of a complex space form $M^{m}(c)$. If the normal connection of M is semi-flat, then M is either totally geodesic or an Einstein Kählerian hypersurface of $M^{m}(c)$ with scalar curvature $n^{2} c$. The latter case occurs only when $c>0$ (see Ishihara [I]). Then the second fundamental form of M is parallel.

Let M be an n-dimensional anti-invariant submanifold of a complex space form $M^{m}(c)$. If the normal connection of M is semi-flat, then the normal connection of M is flat since $P=0$. There exists an anti-invariant submanifold with flat normal connection and parallel second fundamental form. For example, $\pi\left(S^{1}\left(r_{1}\right) \times \cdots \times S^{1}\left(r_{n+1}\right)\right), \sum r_{i}=1$, is an anti-invariant submanifold of $\mathbb{C} P^{m}$ with flat normal connection and parallel second fundamental form (cf. Yano-Kon [YK2, p. 237, Theorem 3.17].
3. Semi-parallel second fundamental form. In this section, we prove our main theorem. First we establish some lemmas.

Lemma 3.1. Let M be an n-dimensional proper CR submanifold of a complex space form $M^{m}(c), c \neq 0$, with semi-flat normal connection. If the second fundamental form A is semi-parallel, then

$$
\begin{array}{ll}
A_{f V} X=0 & \text { for } X \in T_{x}(M), \\
g\left(A_{V} X, Y\right)=0 & \text { for } X \in H_{x}, Y \in H_{x}^{\perp}
\end{array}
$$

Moreover, if the dimension of the holomorphic tangent space is $h>2$, then

$$
\begin{aligned}
& P A_{V}=A_{V} P \\
& g\left(A_{V} X, Y\right)=-\frac{1}{h} \operatorname{tr}\left(A_{V} P^{2}\right) g(X, Y) \quad \text { for } X, Y \in H_{x},
\end{aligned}
$$

where tr denotes the trace of an operator.
Proof. Since $g\left((R(X, Y) A)_{V} Z, W\right)=0$ for any vectors $X, Y, Z, W \in T_{x}(M)$, we have

$$
\begin{align*}
R(X, Y) A_{V} Z & =A_{R^{\perp}(X, Y) V} Z+A_{V} R(X, Y) Z \tag{3.1}\\
& =2 c g(X, P Y) A_{f V} Z+A_{V} R(X, Y) Z .
\end{align*}
$$

Thus

$$
\operatorname{tr} R(X, Y) A_{V} A_{f V}=2 c g(X, P Y) \operatorname{tr} A_{f V}^{2}+\operatorname{tr} R(X, Y) A_{f V} A_{V} .
$$

By the equation of Ricci, we have $A_{f V} A_{V}=A_{V} A_{f V}$. Thus we obtain $\operatorname{tr} A_{f V}^{2}=0$, which proves $A_{f V} X=0$ for $X \in T_{x}(M)$.

The equation of Gauss and (3.1) yield

$$
\begin{aligned}
c(g(Y, & \left.A_{V} Z\right) X-g\left(X, A_{V} Z\right) Y+g\left(P Y, A_{V} Z\right) P X-g\left(P X, A_{V} Z\right) P Y \\
& \left.-2 g(P X, Y) P A_{V} Z\right)+A_{B\left(Y, A_{V} Z\right)} X-A_{B\left(X, A_{V} Z\right)} Y \\
= & c\left(g(Y, Z) A_{V} X-g(X, Z) A_{V} Y+g(P Y, Z) A_{V} P X-g(P X, Z) A_{V} P Y\right. \\
& \left.-2 g(P X, Y) A_{V} P Z\right)+A_{V} A_{B(Y, Z)} X-A_{V} A_{B(X, Z)} Y .
\end{aligned}
$$

We take an orthonormal basis $\left\{e_{1}, \ldots, e_{h}, t v_{1}:=e_{h+1}, \ldots, t v_{q}:=e_{n}\right\}$ of $T_{x}(M)$, where $\left\{e_{1}, \ldots, e_{h}\right\}$ is an orthonormal basis of H_{x} and $\left\{v_{1}, \ldots, v_{q}\right\}$ is an orthonormal basis of $J H_{x}^{\perp}$. Then we have

$$
\begin{aligned}
c \sum_{i}\left(g\left(P e_{i}, A_{V} X\right)\right. & g\left(e_{i}, Y\right)-g\left(e_{i}, A_{V} X\right) g\left(P e_{i}, Y\right)+g\left(P^{2} e_{i}, A_{V} X\right) g\left(P e_{i}, Y\right) \\
& \left.-g\left(P e_{i}, A_{V} X\right)\left(P^{2} e_{i}, Y\right)-2 g\left(P e_{i}, P e_{i}\right) g\left(P A_{V} X, Y\right)\right) \\
& +\sum_{i} g\left(A_{B\left(P e_{i}, A_{V} X\right)} e_{i}, Y\right)-\sum_{i} g\left(A_{B\left(e_{i}, A_{V} X\right)} P e_{i}, Y\right) \\
= & c \sum_{i}\left(g\left(P e_{i}, X\right) g\left(A_{V} e_{i}, Y\right)-g\left(e_{i}, X\right) g\left(A_{V} P e_{i}, Y\right)\right. \\
& +g\left(P^{2} e_{i}, X\right) g\left(A_{V} P e_{i}, Y\right) \\
& \left.-g\left(P e_{i}, X\right) g\left(A_{V} P^{2} e_{i}, Y\right)-2 g\left(P e_{i}, P e_{i}\right) g\left(A_{V} P X, Y\right)\right) \\
& +\sum_{i} g\left(A_{V} A_{B\left(P e_{i}, X\right)} e_{i}, Y\right)-\sum_{i} g\left(A_{V} A_{B\left(e_{i}, X\right)} P e_{i}, Y\right) .
\end{aligned}
$$

By a straightforward computation,

$$
\begin{align*}
& (h+2) c g\left(A_{V} X, P Y\right)+(h+2) \operatorname{cg}\left(A_{V} P X, Y\right) \tag{3.2}\\
& \quad-\sum_{a} g\left(A_{a} P A_{a} A_{V} X, Y\right)+\sum_{a} g\left(A_{V} A_{a} P A_{a} X, Y\right)=0
\end{align*}
$$

where A_{a} is the second fundamental form in the direction of v_{a}. Similarly, putting $Y=e_{i}, Z=P e_{i}$ and taking the inner product with Y and summing, we obtain

$$
\begin{align*}
c\left(g\left(P A_{V} X, Y\right)-\operatorname{tr}\right. & \left(P^{2} A_{V}\right) g(P X, Y)+g\left(P^{2} A_{V} P X, Y\right) \tag{3.3}\\
& \left.-2 g\left(P A_{V} P^{2} X, Y\right)-(h+2) g\left(A_{V} P X, Y\right)\right) \\
& +g\left(A_{a} P A_{V} A_{a} X, Y\right)-g\left(A_{V} A_{a} P A_{a} X, Y\right)=0 .
\end{align*}
$$

Since the normal connection of M is semi-flat, the equation of Ricci gives

$$
A_{a} A_{b} X=A_{b} A_{a} X
$$

for any $X \in H_{x}$. Hence, by (3.2) and (3.3),

$$
\begin{align*}
& -(h+1) c g\left(P A_{V} X, Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y) \tag{3.4}\\
& + \\
& +c g\left(P^{2} A_{V} P X, Y\right)-2 c g\left(P A_{V} P^{2} X, Y\right)=0 .
\end{align*}
$$

When $X \in H_{x}^{\perp}$ and $Y \in H_{x}$, from (3.4),

$$
\begin{equation*}
g\left(P A_{V} X, Y\right)=-g\left(A_{V} X, P Y\right)=0 \tag{3.5}
\end{equation*}
$$

So we have the second equation.
Next we consider the case that $X, Y \in H_{x}$. Since $P X, P Y \in H_{x}$, using (3.2), we obtain

$$
\begin{aligned}
& -(h-1) c g\left(P A_{V} X, Y\right)-c g\left(A_{V} P X, Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y)=0, \\
& -(h-1) c g\left(A_{V} P X, Y\right)+c g\left(A_{V} X, P Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y)=0 .
\end{aligned}
$$

From these equations and the assumption that $h>2$, we get

$$
g\left(P A_{V} X, Y\right)-g\left(A_{V} Y, P X\right)=0
$$

From this and (3.5), we have the third equation.
Using this, we finally obtain

$$
g\left(A_{V} X, Y\right)=-\frac{1}{h} \operatorname{tr}\left(A_{V} P^{2}\right) g(X, Y) \quad \text { for } X, Y \in H_{x}
$$

By a method similar to that of Lemma 2.2 of [YK1, we obtain
Lemma 3.2. Let M be a CR submanifold of $M^{m}(c)$ with semi-flat normal connection. If $A_{f V}=0$ and $P A_{V}=A_{V} P$ for any vector field V normal to M, then

$$
\begin{aligned}
g\left(A_{U} X, A_{V} Y\right)= & c g(X, Y) g(t U, t V)-c g(F X, U) g(F Y, V) \\
& -\sum_{i} g\left(A_{U} t V, e_{i}\right) g\left(A_{F e_{i}} X, Y\right) .
\end{aligned}
$$

Using these lemmas, we prove our main theorem.
Proof of Theorem 1.1. Let M satisfy $(R(X, Y) A)_{V} Z=0$. By (3.1),

$$
0=\sum_{i, j} g\left(R\left(e_{i}, e_{j}\right) A_{a} e_{i}, A_{a} e_{j}\right)-\sum_{i, j} g\left(A_{a} R\left(e_{i}, e_{j}\right) e_{i}, A_{a} e_{j}\right) .
$$

By a straightforward computation using the equation of Gauss,

$$
\begin{align*}
0= & \sum_{a, i, j} g\left(R\left(e_{i}, e_{j}\right) A_{a} e_{i}, A_{a} e_{j}\right)-\sum_{a, i, j} g\left(A_{a} R\left(e_{i}, e_{j}\right) e_{i}, A_{a} e_{j}\right) \tag{3.6}\\
= & n c \sum_{a} \operatorname{tr} A_{a}^{2}-c \sum_{a}\left(\operatorname{tr} A_{a}\right)^{2}+\sum_{a, b} \operatorname{tr}\left(A_{a} A_{b}\right)^{2}-\sum_{a, b} \operatorname{tr} A_{a}^{2} A_{b}^{2} \\
& -\sum_{a, b}\left(\operatorname{tr} A_{a} A_{b}\right)^{2}+\sum_{a, b}\left(\operatorname{tr} A_{a}^{2} A_{b}\right)\left(\operatorname{tr} A_{b}\right)
\end{align*}
$$

Since the normal connection is semi-flat, the Ricci equation implies

$$
\sum_{a, b} \operatorname{tr} A_{a}^{2} A_{b}^{2}-\sum_{a, b} \operatorname{tr}\left(A_{a} A_{b}\right)^{2}=\frac{1}{2} \sum_{a, b}\left|\left[A_{a}, A_{b}\right]\right|^{2}=c^{2} q(q-1) .
$$

By Lemma 3.2, we have

$$
\begin{aligned}
\sum_{a, b}\left(\operatorname{tr} A_{a} A_{b}\right)^{2}= & \sum_{a, b, i}\left(\operatorname{tr} A_{a} A_{b}\right) c g\left(e_{i}, e_{i}\right) g\left(t v_{a}, t v_{b}\right)-\sum_{a, b, i} c g\left(F e_{i}, v_{a}\right)\left(F e_{i}, v_{b}\right) \\
& -\sum_{a, b, i, j} g\left(A_{a} t v_{b}, e_{j}\right)\left(A_{F e_{j}} e_{i}, e_{i}\right) \\
= & (n-1) c \sum_{a} \operatorname{tr} A_{a}^{2}+\sum_{a, b, c}\left(\operatorname{tr} A_{a} A_{b}\right)\left(\operatorname{tr} A_{c}\right) g\left(A_{a} t v_{b}, t v_{c}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{a, b}\left(\operatorname{tr} A_{a}\right)(\operatorname{tr} & \left.A_{b}^{2} A_{a}\right) \\
= & \sum_{a, b, i}\left(\operatorname{tr} A_{a}\right) c g\left(e_{i}, A_{b} e_{i}\right) g\left(t v_{a}, t v_{b}\right)-\sum_{a, b, i} c g\left(F e_{i}, v_{a}\right) g\left(F A_{b} e_{i}, v_{b}\right) \\
& -\sum_{a, b, i, j} g\left(A_{a} t v_{b}, e_{j}\right) g\left(A_{F e_{j}} e_{i}, A_{b} e_{i}\right) \\
= & c \sum_{a}\left(\operatorname{tr} A_{a}\right)^{2}-c \sum_{a, b}\left(\operatorname{tr} A_{a}\right) g\left(A_{b} t v_{a}, t v_{b}\right) \\
& +\sum_{a, b, c}\left(\operatorname{tr} A_{a}\right)\left(\operatorname{tr} A_{b} A_{c}\right) g\left(A_{a} t v_{b}, t v_{c}\right) .
\end{aligned}
$$

From Lemma 3.2, we have

$$
-\sum_{a, b}\left(\operatorname{tr} A_{a}\right) g\left(A_{b} t v_{a}, t v_{b}\right)=c(n-1) q-\sum_{a} \operatorname{tr} A_{a}^{2} .
$$

Putting these equations into (3.6), we obtain

$$
q(n-q)=0 .
$$

This is a contradiction.
4. Recurrent second fundamental form. In this section, we study the case where the second fundamental form is recurrent.

Lemma 4.1. Let M be an n-dimensional proper $C R$ submanifold of a complex space form $M^{m}(c), c \neq 0$ with semi-flat normal connection. If the second fundamental form A is recurrent, then A is semi-parallel.

Proof. By the definition of "recurrent", the second fundamental form A of M satisfies $\left(\nabla_{X} A\right)_{V} Y=\alpha(X) A_{V} Y$ for any $X \in T_{x} M$ and $V \in T_{x} M^{\perp}$.

Then we have

$$
\begin{aligned}
\left(\nabla_{X} \nabla_{Y} A\right)_{V} Z & =\left(\nabla_{X} \alpha\right)(Y) A_{V} Z+\alpha(Y)\left(\nabla_{X} A\right)_{V} Z+\alpha\left(\nabla_{X} Y\right) A_{V} Z \\
& =\left(\nabla_{X} \alpha\right)(Y) A_{V} Z+\alpha(Y) \alpha(X) A_{V} Z+\alpha\left(\nabla_{X} Y\right) A_{V} Z \\
\left(\nabla_{Y} \nabla_{X} A\right)_{V} Z & =\left(\nabla_{Y} \alpha\right)(X) A_{V} Z+\alpha(X) \alpha(Y) A_{V} Z+\alpha\left(\nabla_{Y} X\right) A_{V} Z \\
\left(\nabla_{[X, Y]} A\right)_{V} Z & =\alpha([X, Y]) A_{V} X
\end{aligned}
$$

So we obtain

$$
(R(X, Y) A)_{V} Z=\left(\nabla_{X} \alpha\right)(Y) A_{V} Z-\left(\nabla_{Y} \alpha\right)(X) A_{V} Z
$$

On the other hand, taking an eigenvector Z of A_{V}, that is, $A_{V} Z=\beta Z$ for some β, we have

$$
\begin{aligned}
g((R(X, Y) & \left.A)_{V} Z, Z\right) \\
& =g\left(R(X, Y) A_{V} Z, Z\right)-g\left(A_{R^{\perp}(X, Y) V} Z, Z\right)-g\left(A_{V} R(X, Y) Z, Z\right) \\
& =-g\left(A_{R^{\perp}(X, Y) V} Z, Z\right)=-2 c g\left(A_{f V} Z, Z\right) g(X, P Y)
\end{aligned}
$$

From these equations, we obtain

$$
\left(\left(\nabla_{X} \alpha\right)(Y)-\left(\nabla_{Y} \alpha\right)(X)\right) g\left(A_{V} Z, Z\right)=-2 c g(X, P Y) g\left(A_{f V} Z, Z\right)
$$

Hence

$$
\left(\left(\nabla_{X} \alpha\right)(Y)-\left(\nabla_{Y} \alpha\right)(X)\right) g\left(A_{F W} Z, Z\right)=0
$$

So we see that either $\left(\nabla_{X} \alpha\right)(Y)-\left(\nabla_{Y} \alpha\right)(X)=0$ for any X and Y tangent to M or $g\left(A_{F W} Z, Z\right)=0$ for any eigenvector Z of $A_{F W}$. We remark that the latter condition implies that $A_{F W}=0$.

By the equation of Codazzi,

$$
\begin{aligned}
& \alpha(X) g\left(A_{V} Y, Z\right)-\alpha(Y) g\left(A_{V} X, Z\right) \\
& \quad=c g(Y, P Z) g(X, t V)-c g(X, P Z) g(Y, t V)-2 c g(X, P Y) g(Z, t V)
\end{aligned}
$$

for any X, Y, Z tangent to M and V normal to M. If $A_{F W}=0$, putting $X=P Y, Z=W$ and $V=F W$, we have

$$
g(P Y, P Y) g(W, W)=0
$$

for any $Y, W \in T_{x} M$. This is a contradiction. So $\left(\nabla_{X} \alpha\right)(Y)-\left(\nabla_{Y} \alpha\right)(X)=0$. Hence $(R(X, Y) A)_{V}=0$.

Lemma 4.1 gives the relation between being recurrent and being semiparallel for the second fundamental form of proper CR submanifolds in $M^{m}(c)$. Thus, using Theorem 3.3, we have

Theorem 4.2. Let M be an n-dimensional proper $C R$ submanifold of a complex space form $M^{m}(c), c \neq 0, h>2$, with semi-flat normal connection. Then the second fundamental form A is not recurrent.

REFERENCES

[H] T. Hamada, On real hypersurfaces of a complex projective space with recurrent second fundamental form, Ramanujan Math. Soc. 11 (1996), 103-107.
[I] I. Ishihara, Kähler submanifolds satisfying a certain condition on normal connection, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 62 (1977), 30-35.
[K] M. Kon, Ricci recurrent CR submanifolds of a complex space form, Tsukuba J. Math. 31 (2007), 233-252.
[M] S. Maeda, Real hypersurfaces of complex projective spaces, Math. Ann. 263 (1983), 473-478.
[YK1] K. Yano and M. Kon, CR submanifolds of a complex projective space, J. Differential Geom. 16 (1981), 431-444.
[YK2] —, 一, Structures on Manifolds, World Sci., Singapore, 1984.
Mayuko Kon
Faculty of Education
Shinshu University
6-Ro, Nishinagano, Nagano City 380-8544, Japan
E-mail: mayuko_k@shinshu-u.ac.jp

Received 21 October 2010;
revised 1 July 2011

[^0]: 2010 Mathematics Subject Classification: Primary 53C40, 53C55; Secondary 53C25.
 Key words and phrases: CR submanifold, complex space form, semi-parallel second fundamental form, recurrent second fundamental form.

