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Abstract. We show that there is no proper CR submanifold with semi-flat normal
connection and semi-parallel second fundamental form in a complex space form with non-
zero constant holomorphic sectional curvature such that the dimension of the holomorphic
tangent space is greater than 2.

1. Introduction. There are many results about real hypersurfaces im-
mersed in a complex space form with additional conditions on the second
fundamental form A. It is well known that there are no real hypersurfaces
in a complex space form Mn(c), c 6= 0, of constant holomorphic sectional
curvature 4c with parallel second fundamental form. Maeda [M] proved that
there exist no real hypersurfaces of a complex projective space CPm, m ≥ 3,
with semi-parallel second fundamental form.

On the other hand, Hamada [H] showed that there are no real hypersur-
faces with recurrent second fundamental form in CPm, where recurrency of
A means that (∇XA)Y = α(X)AY , α being a 1-form.

In this paper we consider the conditions of being semi-parallel or re-
current for the second fundamental form of CR submanifolds in a complex
space form. The definition of a CR submanifold is given in Section 2.

By the equation of Codazzi, we easily see that there are no proper CR
submanifolds in a complex space form Mn(c), c 6= 0, with parallel second
fundamental form.

In [K], we studied CR submanifolds of complex space forms with semi-
parallel Ricci tensor. Moreover, we showed that there is no CR submanifold
with semi-flat normal connection and with recurrent Ricci tensor in a complex
space form of nonzero constant holomorphic sectional curvature, if the
dimension of its holomorphic distribution is greater than 2.

The purpose of the present paper is to prove the following theorem.
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Theorem 1.1. Let M be an n-dimensional proper CR submanifold of
a complex space form Mm(c), c 6= 0, with semi-flat normal connection. If
the dimension of the holomorphic tangent space is greater than 2, then the
second fundamental form A is not semi-parallel.

2. Preliminaries. Let Mm(c) denote the complex space form of com-
plex dimension m (real dimension 2m) with constant holomorphic sectional
curvature 4c. We denote by J the almost complex structure of Mm(c). The
Hermitian metric of Mm(c) is denoted by G.

Let M be a real n-dimensional Riemannian manifold isometrically im-
mersed in Mm(c). We denote by g the Riemannian metric induced on M
from G, and by p the codimension of M , that is, p = 2m− n.

We denote by Tx(M) and Tx(M)⊥ the tangent space and the normal
space of M , respectively.

Definition. A submanifoldM of a Kählerian manifold M̃ is called a CR
submanifold if there exists a differentiable distributionH : x→ Hx ⊂ Tx(M)
on M satisfying the following conditions:

(i) H is holomorphic, i.e., JHx = Hx for each x ∈M , and
(ii) the complementary orthogonal distribution H⊥ : x→ H⊥x ⊂ Tx(M)

is anti-invariant, i.e. JH⊥x ⊂ Tx(M)⊥ for each x ∈M .

We call Hx the holomorphic tangent space of M .

In the following, we put dimHx = h, dimH⊥x = q and codimM = p.
If q = 0 (resp. h = 0) for any x ∈ M , then the CR submanifold M is a
holomorphic submanifold (resp. anti-invariant submanifold or totally real
submanifold) of M̃ . If a CR submanifold satisfies p > 0 and q > 0, then it
is said to be proper.

We denote by ∇̃ the covariant differentiation in Mm(c), and by∇ the one
in M determined by the induced metric. Then the Gauss and Weingarten
formulas are respectively

∇̃XY = ∇XY +B(X,Y ), ∇̃XV = −AVX +DXV

for any vector fields X and Y tangent to M and any vector field V nor-
mal to M , where D denotes the covariant differentiation with respect to
the linear connection induced in the normal bundle T (M)⊥ of M . We call
both A and B the second fundamental forms of M . They are related by
G(B(X,Y ), V ) = g(AVX,Y ). The second fundamental forms A and B are
symmetric.

The covariant derivative (∇XA)V Y of A is defined to be

(∇XA)V Y = ∇X(AV Y )−ADXV Y −AV∇XY.
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If (∇XA)V Y = 0 for any vector fields X and Y tangent to M , then the
second fundamental form of M is said to be parallel in the direction of
the normal vector V. If the second fundamental form is parallel in every
direction, it is said to be parallel.

A nonzero tensor field K of type (r, s) on M is said to be recurrent if
there exists a 1-form α such that ∇K = K ⊗ α. The second fundamental
form A is recurrent if A is nonzero and (∇XA)V Y = α(X)AV Y for any
vector fields X,Y tangent to M and any vector field V normal to M .

In what follows, we assume that M is a CR submanifold of Mm(c).
The tangent space Tx(M) of M is decomposed as Tx(M) = Hx + H⊥x at
each point x of M , where H⊥x denotes the orthogonal complement of Hx

in Tx(M). Similarly, we see that Tx(M)⊥ = JH⊥x + Nx, where Nx is the
orthogonal complement of JH⊥x in Tx(M)⊥.

For any vector field X tangent to M , we put

JX = PX + FX,

where PX is the tangential part of JX and FX the normal part of JX.
Then P is an endomorphism on the tangent bundle T (M) and F is a normal
bundle valued 1-form on the tangent bundle T (M). We notice that P 3 + P
= 0.

For any vector field V normal to M , we put

JV = tV + fV,

where tV is the tangential part of JV and fV the normal part of JV . Then
we see that FP = 0, fF = 0, tf = 0 and Pt = 0.

We define the covariant derivatives of P , F , t and f by (∇XP )Y =
∇X(PY ) − P∇XY , (∇XF )Y = DX(FY ) − F∇XY , (∇Xt)V = ∇X(tV ) −
tDXV and (∇Xf)V = DX(fV )− fDXV respectively. We then have

(∇XP )Y = AFYX + tB(X,Y ), (∇XF )Y = −B(X,PY ) + fB(X,Y ),
(∇Xt)V = −PAVX +AfVX, (∇Xf)V = −FAVX −B(X, tV ).

For any vector fields X and Y in H⊥x = tT (M)⊥ we obtain

AFXY = AFYX.

We denote by R the Riemannian curvature tensor field of M . Then the
equation of Gauss is

R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y + g(PY,Z)PX − g(PX,Z)PY
− 2g(PX, Y )PZ}+AB(Y,Z)X −AB(X,Z)Y,

for any X, Y and Z tangent to M .
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The equation of Codazzi of M is

g((∇XA)V Y, Z)− g((∇YA)VX,Z)
= c{g(Y, PZ)g(X, tV )− g(X,PZ)g(Y, tV )− 2g(X,PY )g(Z, tV )}.

We define the curvature tensor R⊥ of the normal bundle of M by

R⊥(X,Y )V = DXDY V −DYDXV −D[X,Y ]V.

Then we have the equation of Ricci

G(R⊥(X,Y )V,U) + g([AU , AV ]X,Y )
= c{g(Y, tV )g(X, tU)− g(X, tV )g(Y, tU)− 2g(X,PY )g(V, fU)}.

If R⊥ vanishes identically, the normal connection of M is said to be flat. If
R⊥(X,Y )V = 2cg(X,PY )fV , then the normal connection of M is said to
be semi-flat (see [YK2]).

We put

(R(X,Y )A)V Z = R(X,Y )AV Z −AR⊥(X,Y )V Z −AVR(X,Y )Z.

If (R(X,Y )A)V = 0 for any X,Y and Z tangent to M and any V normal
to M , then the second fundamental form A is said to be semi-parallel . This
condition is weaker than ∇A = 0. We call M a semi-parallel CR submanifold
if its second fundamental form A is semi-parallel.

Remark 2.1. Let Sm+1 be a (2m+ 1)-dimensional unit sphere. For any
point z ∈ S2m+1 we put ξ = JZ, where J denotes the almost complex
structure of Cm+1. We consider the orthogonal projection π′ : Tz(Cm+1)→
Tz(S2m+1). Putting φ = π′ ·J , we have a contact metric structure (φ, ξ, η,G)
on S2m+1, where η is a 1-form dual to ξ, and G the standard metric tensor
field on S2m+1 which satisfies G(φX, φY ) = G(X,Y )− η(X)η(Y ).

Let M be an n-dimensional submanifold in CPm. Let N be an (n+ 1)-
dimensional submanifold immersed in a (2m + 1)-dimensional unit sphere
S2m+1 such that the following diagram is commutative:

N
i′ //

��

S2m+1

π

��
M

i // CPm

where the immersion i′ is a diffeomorphism on the fibres and π is the stan-
dard fibration.

We denote the horizontal lift with respect to the connection η by ∗. Then
the curvature tensor K⊥ of the normal bundle of N satisfies

G(K⊥(X∗, Y ∗)V ∗, U∗) = [g(R⊥(X,Y )V,U)− 2g(X,PY )g(fV, U)]∗,

G(K⊥(X∗, ξ)V ∗, U∗) = g((∇Xf)V,U)∗,



SEMI-PARALLEL CR SUBMANIFOLDS IN A COMPLEX SPACE FORM 241

for any vectors X and Y tangent to M and any vectors V and U normal
to M . Therefore, the normal connection of N in S2m+1 is flat if and only
if the normal connection of M in CPm is semi-flat and ∇f = 0 (see [YK2,
pp. 223–224].

Remark 2.2. Let M be a complex n-dimensional (n ≥ 2) holomorphic
submanifold of a complex space form Mm(c). If the normal connection of
M is semi-flat, then M is either totally geodesic or an Einstein Kählerian
hypersurface of Mm(c) with scalar curvature n2c. The latter case occurs
only when c > 0 (see Ishihara [I]). Then the second fundamental form of M
is parallel.

Let M be an n-dimensional anti-invariant submanifold of a complex
space form Mm(c). If the normal connection of M is semi-flat, then the
normal connection of M is flat since P = 0. There exists an anti-invariant
submanifold with flat normal connection and parallel second fundamental
form. For example, π(S1(r1)×· · ·×S1(rn+1)),

∑
ri = 1, is an anti-invariant

submanifold of CPm with flat normal connection and parallel second fun-
damental form (cf. Yano–Kon [YK2, p. 237, Theorem 3.17].

3. Semi-parallel second fundamental form. In this section, we
prove our main theorem. First we establish some lemmas.

Lemma 3.1. Let M be an n-dimensional proper CR submanifold of a
complex space form Mm(c), c 6= 0, with semi-flat normal connection. If the
second fundamental form A is semi-parallel, then

AfVX = 0 for X ∈ Tx(M),

g(AVX,Y ) = 0 for X ∈ Hx, Y ∈ H⊥x .
Moreover, if the dimension of the holomorphic tangent space is h > 2, then

PAV = AV P,

g(AVX,Y ) = −1
h

tr(AV P 2)g(X,Y ) for X,Y ∈ Hx,

where tr denotes the trace of an operator.

Proof. Since g((R(X,Y )A)V Z,W )=0 for any vectorsX,Y, Z,W∈Tx(M),
we have

R(X,Y )AV Z = AR⊥(X,Y )V Z +AVR(X,Y )Z(3.1)

= 2cg(X,PY )AfV Z +AVR(X,Y )Z.

Thus

trR(X,Y )AVAfV = 2cg(X,PY ) trA2
fV + trR(X,Y )AfVAV .

By the equation of Ricci, we have AfVAV = AVAfV . Thus we obtain
trA2

fV = 0, which proves AfVX = 0 for X ∈ Tx(M).
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The equation of Gauss and (3.1) yield

c
(
g(Y,AV Z)X − g(X,AV Z)Y + g(PY,AV Z)PX − g(PX,AV Z)PY

− 2g(PX, Y )PAV Z
)

+AB(Y,AV Z)X −AB(X,AV Z)Y

= c
(
g(Y,Z)AVX − g(X,Z)AV Y + g(PY,Z)AV PX − g(PX,Z)AV PY

− 2g(PX, Y )AV PZ
)

+AVAB(Y,Z)X −AVAB(X,Z)Y.

We take an orthonormal basis {e1, . . . , eh, tv1 := eh+1, . . . , tvq := en} of
Tx(M), where {e1, . . . , eh} is an orthonormal basis of Hx and {v1, . . . , vq} is
an orthonormal basis of JH⊥x . Then we have

c
∑
i

(
g(Pei, AVX)g(ei, Y )− g(ei, AVX)g(Pei, Y ) + g(P 2ei, AVX)g(Pei, Y )

− g(Pei, AVX)(P 2ei, Y )− 2g(Pei, P ei)g(PAVX,Y )
)

+
∑
i

g(AB(Pei,AV X)ei, Y )−
∑
i

g(AB(ei,AV X)Pei, Y )

= c
∑
i

(
g(Pei, X)g(AV ei, Y )− g(ei, X)g(AV Pei, Y )

+ g(P 2ei, X)g(AV Pei, Y )

− g(Pei, X)g(AV P 2ei, Y )− 2g(Pei, P ei)g(AV PX, Y )
)

+
∑
i

g(AVAB(Pei,X)ei, Y )−
∑
i

g(AVAB(ei,X)Pei, Y ).

By a straightforward computation,

(3.2) (h+ 2)cg(AVX,PY ) + (h+ 2)cg(AV PX, Y )

−
∑
a

g(AaPAaAVX,Y ) +
∑
a

g(AVAaPAaX,Y ) = 0,

where Aa is the second fundamental form in the direction of va. Similarly,
putting Y = ei, Z = Pei and taking the inner product with Y and summing,
we obtain

(3.3) c
(
g(PAVX,Y )− tr(P 2AV )g(PX, Y ) + g(P 2AV PX, Y )

− 2g(PAV P 2X,Y )− (h+ 2)g(AV PX, Y )
)

+ g(AaPAVAaX,Y )− g(AVAaPAaX,Y ) = 0.

Since the normal connection of M is semi-flat, the equation of Ricci gives

AaAbX = AbAaX
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for any X ∈ Hx. Hence, by (3.2) and (3.3),

(3.4) −(h+ 1)cg(PAVX,Y )− c tr(P 2AV )g(PX, Y )

+ cg(P 2AV PX, Y )− 2cg(PAV P 2X,Y ) = 0.

When X ∈ H⊥x and Y ∈ Hx, from (3.4),

(3.5) g(PAVX,Y ) = −g(AVX,PY ) = 0.

So we have the second equation.
Next we consider the case that X,Y ∈ Hx. Since PX,PY ∈ Hx, using

(3.2), we obtain

−(h− 1)cg(PAVX,Y )− cg(AV PX, Y )− c tr(P 2AV )g(PX, Y ) = 0,

−(h− 1)cg(AV PX, Y ) + cg(AVX,PY )− c tr(P 2AV )g(PX, Y ) = 0.

From these equations and the assumption that h > 2, we get

g(PAVX,Y )− g(AV Y, PX) = 0.

From this and (3.5), we have the third equation.
Using this, we finally obtain

g(AVX,Y ) = −1
h

tr(AV P 2)g(X,Y ) for X,Y ∈ Hx.

By a method similar to that of Lemma 2.2 of [YK1], we obtain

Lemma 3.2. Let M be a CR submanifold of Mm(c) with semi-flat normal
connection. If AfV = 0 and PAV = AV P for any vector field V normal
to M , then

g(AUX,AV Y ) = cg(X,Y )g(tU, tV )− cg(FX,U)g(FY, V )

−
∑
i

g(AU tV, ei)g(AFeiX,Y ).

Using these lemmas, we prove our main theorem.

Proof of Theorem 1.1. Let M satisfy (R(X,Y )A)V Z = 0. By (3.1),

0 =
∑
i,j

g(R(ei, ej)Aaei, Aaej)−
∑
i,j

g(AaR(ei, ej)ei, Aaej).

By a straightforward computation using the equation of Gauss,

0 =
∑
a,i,j

g(R(ei, ej)Aaei, Aaej)−
∑
a,i,j

g(AaR(ei, ej)ei, Aaej)(3.6)

= nc
∑
a

trA2
a − c

∑
a

(trAa)2 +
∑
a,b

tr(AaAb)2 −
∑
a,b

trA2
aA

2
b

−
∑
a,b

(trAaAb)2 +
∑
a,b

(trA2
aAb)(trAb).
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Since the normal connection is semi-flat, the Ricci equation implies∑
a,b

trA2
aA

2
b −

∑
a,b

tr(AaAb)2 =
1
2

∑
a,b

|[Aa, Ab]|2 = c2q(q − 1).

By Lemma 3.2, we have∑
a,b

(trAaAb)2 =
∑
a,b,i

(trAaAb)cg(ei, ei)g(tva, tvb)−
∑
a,b,i

cg(Fei, va)(Fei, vb)

−
∑
a,b,i,j

g(Aatvb, ej)(AFejei, ei)

= (n− 1)c
∑
a

trA2
a +

∑
a,b,c

(trAaAb)(trAc)g(Aatvb, tvc).

Similarly,∑
a,b

(trAa)(trA2
bAa)

=
∑
a,b,i

(trAa)cg(ei, Abei)g(tva, tvb)−
∑
a,b,i

cg(Fei, va)g(FAbei, vb)

−
∑
a,b,i,j

g(Aatvb, ej)g(AFejei, Abei)

= c
∑
a

(trAa)2 − c
∑
a,b

(trAa)g(Abtva, tvb)

+
∑
a,b,c

(trAa)(trAbAc)g(Aatvb, tvc).

From Lemma 3.2, we have

−
∑
a,b

(trAa)g(Abtva, tvb) = c(n− 1)q −
∑
a

trA2
a.

Putting these equations into (3.6), we obtain

q(n− q) = 0.

This is a contradiction.

4. Recurrent second fundamental form. In this section, we study
the case where the second fundamental form is recurrent.

Lemma 4.1. Let M be an n-dimensional proper CR submanifold of a
complex space form Mm(c), c 6= 0 with semi-flat normal connection. If the
second fundamental form A is recurrent, then A is semi-parallel.

Proof. By the definition of “recurrent”, the second fundamental form A
of M satisfies (∇XA)V Y = α(X)AV Y for any X ∈ TxM and V ∈ TxM⊥.
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Then we have

(∇X∇YA)V Z = (∇Xα)(Y )AV Z + α(Y )(∇XA)V Z + α(∇XY )AV Z
= (∇Xα)(Y )AV Z + α(Y )α(X)AV Z + α(∇XY )AV Z,

(∇Y∇XA)V Z = (∇Y α)(X)AV Z + α(X)α(Y )AV Z + α(∇YX)AV Z,
(∇[X,Y ]A)V Z = α([X,Y ])AVX.

So we obtain

(R(X,Y )A)V Z = (∇Xα)(Y )AV Z − (∇Y α)(X)AV Z.

On the other hand, taking an eigenvector Z of AV , that is, AV Z = βZ for
some β, we have

g((R(X,Y )A)V Z,Z)

= g(R(X,Y )AV Z,Z)− g(AR⊥(X,Y )V Z,Z)− g(AVR(X,Y )Z,Z)

= −g(AR⊥(X,Y )V Z,Z) = −2cg(AfV Z,Z)g(X,PY ).

From these equations, we obtain

((∇Xα)(Y )− (∇Y α)(X))g(AV Z,Z) = −2cg(X,PY )g(AfV Z,Z).

Hence
((∇Xα)(Y )− (∇Y α)(X))g(AFWZ,Z) = 0.

So we see that either (∇Xα)(Y )− (∇Y α)(X) = 0 for any X and Y tangent
to M or g(AFWZ,Z) = 0 for any eigenvector Z of AFW . We remark that
the latter condition implies that AFW = 0.

By the equation of Codazzi,

α(X)g(AV Y,Z)− α(Y )g(AVX,Z)
= cg(Y, PZ)g(X, tV )− cg(X,PZ)g(Y, tV )− 2cg(X,PY )g(Z, tV )

for any X, Y, Z tangent to M and V normal to M . If AFW = 0, putting
X = PY , Z = W and V = FW , we have

g(PY, PY )g(W,W ) = 0

for any Y,W ∈ TxM . This is a contradiction. So (∇Xα)(Y )−(∇Y α)(X) = 0.
Hence (R(X,Y )A)V = 0.

Lemma 4.1 gives the relation between being recurrent and being semi-
parallel for the second fundamental form of proper CR submanifolds in
Mm(c). Thus, using Theorem 3.3, we have

Theorem 4.2. Let M be an n-dimensional proper CR submanifold of a
complex space form Mm(c), c 6= 0, h > 2, with semi-flat normal connection.
Then the second fundamental form A is not recurrent.
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