ON THE STABLE EQUIVALENCE PROBLEM FOR $k[x, y]$
 BY
 ROBERT DRYŁO (Warszawa and Kielce)

Abstract

L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring $k[x, y]$ when k is a field of characteristic 0 . In this note we give an affirmative solution for an arbitrary field k.

1. Introduction. Let k be an arbitrary commutative field and $k^{[n]}$ be the polynomial ring in n variables over k. We say that two polynomials $f, g \in$ $k^{[n]}$ are equivalent (resp. stably equivalent) if there exists a k-automorphism φ of $k^{[n]}$ such that $\varphi(f)=g$ (resp. f, g are equivalent in $k^{[n+m]}$ for some $m>0)$. The following problem was stated by Shpilrain and Yu [11]:

Stable equivalence problem. Is it true that two stably equivalent polynomials in $k^{[n]}$ are equivalent?

An affirmative answer is known for a generic polynomial in $k^{[n]}$ of degree $>n$ when k is algebraically closed of characteristic 0 (see [11, 5]). In general, the problem remains open for $n \geq 3$. An affirmative solution in characteristic zero for $k^{[2]}$ was given by Makar-Limanov, van Rossum, Shpilrain and Yu [9]. The aim of this note is to give a solution for $k^{[2]}$ and an arbitrary field k. We prove the following:

THEOREM 1. Let $f_{1}, f_{2} \in k^{[2]} \backslash k$ be two stably equivalent polynomials, and φ be a k-automorphism of $k^{[2+n]}$ such that $\varphi\left(f_{1}\right)=f_{2}$. If there exist coordinates t_{1}, t_{2} of $k^{[2]}$ such that $f_{i} \in k\left[t_{i}\right], i=1,2$, then $\varphi\left(k\left[t_{1}\right]\right)=k\left[t_{2}\right]$; otherwise $\varphi\left(k^{[2]}\right)=k^{[2]}$. In particular, f_{1} and f_{2} are equivalent.
2. Proof. We start by summarizing some properties of exponential maps (see [3] for more details) and next prove some analogue of Rentschler's theorem. Then for the proof of Theorem 1 we introduce an analogue of the MakarLimanov invariant, which will be an invariant of equivalent polynomials.

Let A be an integral finitely generated k-algebra and $\varphi: A \rightarrow A^{[1]}$ be a k-algebra homomorphism. We write $\varphi=\varphi_{t}: A \rightarrow A[t]$ to emphasize

[^0]a variable t. We say that φ is an exponential map on A if it satisfies the following two conditions:
(i) $\varphi_{0}(a)=a$ for all $a \in A$, where φ_{0} is evaluation at $t=0$,
(ii) $\varphi_{s+t}=\varphi_{s} \varphi_{t}$, where φ_{s} is extended by $\varphi_{s}(t)=t$ to a homomorphism $\varphi: A[t] \rightarrow A[s, t]$.
If k is algebraically closed, then there exists a one-to-one correspondence between exponential maps on A and algebraic k_{+}-actions on an affine variety with the coordinate ring A. Furthermore, in characteristic zero exponential maps on A correspond to locally nilpotent derivations D on A, as follows:
$$
\varphi(a)=\sum_{n=0}^{\infty} \frac{1}{n!} D^{n}(a) t^{n} .
$$

The ring of φ-invariants is defined to be

$$
A^{\varphi}=\{a \in A \mid \varphi(a)=a\},
$$

and the Makar-Limanov invariant of A is

$$
\begin{equation*}
\operatorname{ML}(A)=\bigcap_{\varphi \in \operatorname{Exp}(A)} A^{\varphi}, \tag{2.1}
\end{equation*}
$$

where $\operatorname{Exp}(A)$ is the set of all exponential maps on A.
We will need the following elementary properties of A^{φ}.
Lemma 2 ([3, Lemmas 2.1 and 2.2]).
(i) A^{φ} is factorially closed in A (i.e., if $a b \in A^{\varphi}$ for $a, b \in A \backslash\{0\}$, then $\left.a, b \in A^{\varphi}\right)$. In particular, if A is a UFD, then so is A^{φ}.
(ii) A^{φ} is algebraically closed in A.
(iii) If φ is nontrivial, then there exist $c \in A^{\varphi} \backslash\{0\}$ and $x \in A$ transcendental over A^{φ} such that $A \subset A^{\varphi}\left[c^{-1}\right][x]$.
Now we prove the following analogue of Rentschler's theorem:
Theorem 3. Let $A=k^{[2]}$, φ be an exponential map on $A^{[n]}$, and $A^{\varphi}=$ $\{a \in A \mid \varphi(a)=a\}$. If $A^{\varphi} \neq A$, then either $A^{\varphi}=k$ or $A^{\varphi}=k[t]$, where t is a coordinate in A.

To prove this fact we follow the idea of the proof of Rentschler's theorem given in [4, Th. 1.2]. We will need the following lemmas.

Lemma 4 ([10, Th. 2.4.2]). Let A be a finitely generated integral k algebra. Suppose that $t \in A$ satisfies the following conditions:
(i) $A_{S}=k(t){ }^{[1]}$, where A_{S} is the localization of A at $S=k[t] \backslash\{0\}$;
(ii) $k(t) \cap A=k[t]$;
(iii) A is geometrically factorial over k (i.e., $A \otimes_{k} K$ is a UFD for any algebraic field extension K / k).
Then $A=k[t]^{[1]}$.

Lemma 5. Let $L \subset K$ be a finitely generated separable field extension with $\operatorname{trdeg}_{L} K=1$. Then there exist infinitely many discrete valuation rings (R, M) of K / L such that the residue field R / M is finite separable over L.

Proof. It is well-known that for any $\operatorname{DVR}(R, M)$ of K / L the residue field R / M is finite over L (i.e., if $x \in R$ is transcendental over L and A is the integral closure of $L[x]$ in K, then $A \subset R$ is a finitely generated L-algebra of dimension 1 and R is equal to the localization of A at the maximal ideal $M \cap A$, which implies that $R / M=A /(M \cap A)$ is finite over $L)$. If L is finite, hence perfect, then R / M is always separable over L. Suppose that L is infinite. Let $x \in K$ be a separable transcendental element over L, and $u \in K$ be a primitive element of K over $L(x)$ with the minimal polynomial f over $L(x)$. Since f has no multiple roots, $g f+h f^{\prime}=1$ for some $g, h \in$ $L(x)^{[1]}$. Let $A=L[x]$ and B be the integral closure of A in K. Since B is a finitely generated L-algebra, there exists $v \in A$ such that $A_{v}[u]=B_{v}$ for the localizations at v, and all coefficients of f, g, h are in A_{v}. Since L is infinite, there exist infinitely many maximal ideals M in A such that $A / M=L$ and $v \notin M$. For each such M, let M^{\prime} be a maximal ideal in B_{v} lying over M_{v}, which exists since the extension $A_{v} \subset B_{v}$ is integral. Then the field extension $L=A_{v} / M_{v} \subset B_{v} / M^{\prime}=L[\bar{u}]$ is separable, since $\bar{g} \bar{f}+\bar{h} \bar{f}^{\prime}=1$, where the bar denotes reduction modulo M_{v}. Clearly, the localization of B_{v} at M^{\prime} is a DVR of K / L with the residue field $L[\bar{u}]$. This completes the proof.

The following lemma generalizes [1, (2.9)].
Lemma 6. Let $k \subset K$ be a separable field extension. If $A \subset K^{[1]}$ is a finitely generated normal k-algebra of dimension 1 such that $A \not \subset K$, then $A=k^{[1]}$, where k^{\prime} is the algebraic closure of k in A.

Proof. We will reduce the above fact to the case when K / k is finite and separable, which was proved in [1]. Since A is finitely generated over k, we may assume the same about K. Let t_{1}, \ldots, t_{n} be a separable transcendence basis of K / k and $L=k\left(t_{1}, \ldots, t_{n-1}\right)$. Let $K[x]=K^{[1]}$ and $A=k\left[b_{1}(x), \ldots, b_{s}(x)\right]$, where $b_{i} \in K[x]$. If $u \in K \backslash 0$, then $u \in R \backslash M$ for all but a finite number of DVRs (R, M) of K / L (see [7, II, Lem. 6.1]). Hence by Lemma 5 there exists a DVR (R, M) of K / L such that all nonzero coefficients of b_{1}, \ldots, b_{s} are in $R \backslash M$ and the residue field R / M is finite separable over L. Then $A \subset R[x]$ and the canonical homomorphism $R[x] \rightarrow(R / M)[x]$ restricted to A yields an embedding $A \rightarrow(R / M)[x]$, because $\operatorname{dim} A=1$ and the image of A contains an element which depends on x. Since the extension $k \subset R / M$ is separable of transcendence degree $n-1$, the lemma follows by induction.

Now we are in a position to prove Theorem 3. Let $B=\left(A^{[n]}\right)^{\varphi}$. Since $A^{\varphi}=B \cap A, A^{\varphi}$ is factorially and algebraically closed in A by Lemma 2 . It follows that A^{φ} is a UFD and $\operatorname{trdeg}_{k} A^{\varphi} \leq 1$. This implies that either
$A^{\varphi}=k$ or $A=k[t]$ (see [1, Th. 4.1] for the latter case). To show that t is a coordinate in A we apply Lemma 4. Obviously assumptions (ii) and (iii) of that lemma are satisfied. For (i) we will show that the extension $k(t) \subset \operatorname{Frac}(B)$ is separable. Assuming this fact we can complete the proof as follows. By Lemma 2 (iii) there exists $x \in A^{[n]}$ transcendental over $\operatorname{Frac}(B)$ such that $A_{S} \subset \operatorname{Frac}(B)[x]$, where $S=k[t] \backslash 0$. Obviously, $A_{S} \not \subset \operatorname{Frac}(B)$, $\operatorname{trdeg}_{k(t)} A_{S}=1$, and $k(t)$ is algebraically closed in A_{S}. This implies by Lemma 6 that $A_{S}=k(t)^{[1]}$. Therefore t is a coordinate in A.

It remains to show that the extension $k(t) \subset \operatorname{Frac}(B)$ is separable. Let $p=\operatorname{char} k>0$ and $k\left[x_{1}, x_{2}\right]=A$. We will show that the partial derivations $\partial / \partial x_{1}, \partial / \partial x_{2}$ do not vanish simultaneously at t, which implies by [8, VIII, Cor. 5.6] that $k(t) \subset \operatorname{Frac}(A)$ is separable. Then $k(t) \subset \operatorname{Frac}\left(A^{[n]}\right)$ is separable, too, and hence so is $k(t) \subset \operatorname{Frac}(B)$.

Suppose that $\partial t / \partial x_{1}=\partial t / \partial x_{2}=0$. One can extend φ to an exponential $\bar{\varphi}$ on $\bar{k}\left[x_{1}, x_{2}\right]^{[n]}$, where \bar{k} is the algebraic closure of k. Then the ring of $\bar{\varphi}$-invariants in $\bar{k}\left[x_{1}, x_{2}\right]$ is equal to $\bar{k}[t]$. Since $\partial t / \partial x_{1}=\partial t / \partial x_{2}=0$, we have $t=s^{p}$ for some $s \in \bar{k}\left[x_{1}, x_{2}\right] \backslash \bar{k}[t]$, which contradicts the fact that $\bar{k}[t]$ is algebraically closed in $\bar{k}\left[x_{1}, x_{2}\right]$. This completes the proof of Theorem 3 .

For the proof of Theorem 1 we introduce an analogue of the MakarLimanov invariant, which is an invariant of equivalent polynomials. Given a k-algebra A and $a \in A$, let

$$
\begin{equation*}
\operatorname{ML}(A, a)=\bigcap_{\substack{\varphi \in \operatorname{Exp}(A) \\ \varphi(a)=a}} A^{\varphi} \tag{2.2}
\end{equation*}
$$

One easily checks that if $\psi: A \rightarrow B$ is a k-algebra isomorphism, then $\psi(\operatorname{ML}(A, a))=\operatorname{ML}(B, \psi(a))$. Note that always

$$
\begin{equation*}
\operatorname{ML}\left(A^{[n]}, a\right) \subset \operatorname{ML}(A, a) \tag{2.3}
\end{equation*}
$$

which is a consequence of the following two facts:
(i) there exist exponential maps φ_{i} on $A^{[n]}=A\left[t_{1}, \ldots, t_{n}\right]$ such that $\varphi_{i}\left(t_{i}\right)=t_{i}+t$ and $\varphi_{i}(f)=f$ for all $f \in A\left[t_{1}, \ldots, \widehat{t_{i}}, \ldots, t_{n}\right]$,
(ii) every exponential map on A can be extended on $A^{[n]}$ to be constant on variables.

We apply the above invariant in the proof of Theorem 1 in an analogous way as the Makar-Limanov invariant was used in [3] to prove the cancellation theorem for curves of Abhyankar, Eakin and Heinzer [1]. First we show the following:

Lemma 7. If $f \in k^{[2]} \backslash k$, then either $\operatorname{ML}\left(k^{[2+n]}, f\right)=k^{[2]}$, or $\operatorname{ML}\left(k^{[2+n]}, f\right)$ $=k[t]$ whenever there exists a coordinate t of $k^{[2]}$ such that $k[f] \subset k[t]$.

Proof. By (2.3) we have $\operatorname{ML}\left(k^{[2+n]}, f\right) \subset k^{[2]}$. Suppose that this inclusion is proper. Then by Theorem 3 there exists a coordinate t of $k^{[2]}$ such that $\operatorname{ML}\left(k^{[2+n]}, f\right) \subset k[t]$. Since the extension $k[f] \subset k[t]$ is finite and $\operatorname{ML}\left(k^{[2+n]}, f\right)$ is algebraically closed, we have $\operatorname{ML}\left(k^{[2+n]}, f\right)=k[t]$.

Now we prove Theorem 1 as follows. Let φ be an automorphism of $k^{[2+n]}$ such that $\varphi\left(f_{1}\right)=f_{2}$, where $f_{1}, f_{2} \in k^{[2]} \backslash k$. Since $\varphi\left(\operatorname{ML}\left(k^{[2+n]}, f_{1}\right)\right)$ $=\operatorname{ML}\left(k^{[2+n]}, f_{2}\right)$, it follows from Lemma 7 that either $\operatorname{ML}\left(k^{[2+n]}, f_{1}\right)=$ $\operatorname{ML}\left(k^{[2+n]}, f_{2}\right)=k^{[2]}$ or $\operatorname{ML}\left(k^{[2+n]}, f_{1}\right)=k\left[t_{1}\right]$ and $\operatorname{ML}\left(k^{[2+n]}, f_{2}\right)=k\left[t_{2}\right]$, where t_{1}, t_{2} are coordinates in $k^{[2]}$. In the first case φ induces the desired automorphism of $k^{[2]}$. In the second case φ induces an isomorphism res φ : $k\left[t_{1}\right] \rightarrow k\left[t_{2}\right]$, which takes f_{1} to f_{2} and can be extended to an automorphism of $k^{[2]}$. This completes the proof.

Remark 8. Note that if k is algebraically closed of characteristic 0 , then one can give an alternative simple geometric proof of Theorem 1 (see also (9). First we give some useful facts. For an isomorphism $f: X \times k^{n} \rightarrow Y \times k^{n}$, where X, Y are algebraic sets, let

$$
Z_{f}=\left\{x \in X \mid f\left(x \times k^{n}\right)=y \times k^{n} \text { for some } y \in Y\right\} .
$$

Note that Z_{f} is closed, since if $Y \subset k^{m}$ and $f=\left(f_{1}, \ldots, f_{m+n}\right)$, then

$$
Z_{f}=\bigcap_{i=1}^{m} \bigcap_{y, z \in k^{n}}\left\{x \in X \mid f_{i}(x, y)=f_{i}(x, z)\right\} .
$$

Clearly, if $Z_{f}=X$, then f induces an isomorphism $\tilde{f}: X \rightarrow Y$ such that $\pi_{Y} \circ f=\tilde{f} \circ \pi_{X}$, where π_{X}, π_{Y} are the projections. This is always the case in the following situation:
(2.4) Let X, Y be connected affine curves one of which is not isomorphic to k. If $f: X \times k^{n} \rightarrow Y \times k^{n}$ is an isomorphism, then $Z_{f}=X$.
Proof. Let us recall two well-known facts. If C is an irreducible affine curve such that there exists a dominant polynomial map $k \rightarrow C$, then every such map is finite, hence surjective. Furthermore, if C is additionally smooth, then it easily follows from Lüroth's theorem that $C \cong k$. Therefore to prove (2.4) it suffices to consider two cases: Y is not dominated by k and irreducible, or Y has singularities.

In the former case, $Z_{f}=X$, since otherwise we would have a dominant map $\pi_{Y} \circ f: x \times k^{n} \rightarrow Y$ for some $x \in X$.

If $\operatorname{Sing}(Y) \neq \emptyset$, then $f\left(\operatorname{Sing}(X) \times k^{n}\right)=\operatorname{Sing}(Y) \times k^{n}$ and for each irreducible component X_{1} of X there exists an irreducible component Y_{1} of Y such that $f\left(X_{1} \times k^{n}\right)=Y_{1} \times k^{n}$. Obviously $\operatorname{Sing}(X) \cap X_{1} \neq \emptyset$, so as above we obtain $Z_{f}=X$, since otherwise the map $\pi_{Y_{1}} \circ f: x \times k^{n} \rightarrow Y_{1} \backslash \operatorname{Sing}(Y)$ would be dominant for some $x \in X_{1} \backslash \operatorname{Sing}(X)$.

Remark. Note that (2.4) implies that affine curves have the cancellation property (see [1 for a more general result).

We will also need the following:
(2.5) Let $g \in k^{[2]} \backslash k$ and $g^{-1}(0)=\bigcup_{i=1}^{s} l_{i}$, where l_{i} are connected components of $g^{-1}(0)$. Then $l_{i} \cong k$ for $i=1, \ldots, s$ if and only if there exists a coordinate t of $k^{[2]}$ such that $g \in k[t]$.
Proof. If $l_{i} \cong k, i=1, \ldots, s$, then by the Abhyankar-Moh-Suzuki theorem [2, 12] there exists a polynomial automorphism f of k^{2} such that $f\left(l_{1}\right)=x_{1} \times k, x_{1} \in k$. Then $f\left(l_{i}\right)=x_{i} \times k$ for some $x_{i} \in k, i=1, \ldots, s$, since otherwise we would have a dominant map $\pi_{k} \circ f: l_{i} \rightarrow k \backslash\left\{x_{1}\right\}$ for some $i \geq 2$. The second implication is obvious.

Now we prove Theorem 1 as follows. Let $f_{1}, f_{2} \in k^{[2]} \backslash k$ be stably equivalent polynomials and φ be an automorphism of $k^{[2+n]}$ such that $\varphi\left(f_{1}\right)=f_{2}$. Let f be the automorphism of k^{2+n} induced by φ. Then $f\left(f_{2}^{-1}(\lambda) \times k^{n}\right)=$ $f_{1}^{-1}(\lambda) \times k^{n}$ for all $\lambda \in k$.

If $f_{2} \notin k[t]$ for every coordinate t of $k^{[2]}$, then by (2.5) some connected component of $f_{2}^{-1}(\lambda)$ is not isomorphic to k for all $\lambda \in k$. By (2.4) such components are contained in Z_{f}, which implies that $Z_{f}=k^{2}$, since Z_{f} is closed. Hence there exists an induced automorphism \tilde{f} of k^{2} such that $\tilde{f} \circ \pi_{k^{2}}=\pi_{k^{2}} \circ f$, which means that $\varphi\left(k^{[2]}\right)=k^{[2]}$.

It remains to show that if there exist coordinates t_{1}, t_{2} of $k^{[2]}$ such that $f_{i} \in k\left[t_{i}\right], i=1,2$, then $\varphi\left(k\left[t_{1}\right]\right)=k\left[t_{2}\right]$. This follows from the fact that elements of $\varphi\left(k\left[t_{1}\right]\right)$ are integral over $k\left[f_{2}\right]$, hence over $k\left[t_{2}\right]$, and similarly elements of $k\left[t_{2}\right]$ are integral over $\varphi\left(k\left[t_{1}\right]\right)$. Since $k\left[t_{i}\right]$ is algebraically closed in $k^{[2+n]}$, we have $\varphi\left(k\left[t_{1}\right]\right)=k\left[t_{2}\right]$.

REFERENCES

[1] S. S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
[2] S. S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
[3] A. Crachiola and L. Makar-Limanov, On the rigidity of small domains, J. Algebra 284 (2005), 1-12.
[4] D. Daigle and G. Freudenburg, Locally nilpotent derivation over a UFD and an application to rank two locally nilpotent derivations of $k\left[X_{1}, \ldots, X_{n}\right]$, ibid. 204 (1998), 353-371.
[5] R. Dryło, Non-unirulednees and the cancellation problem, Ann. Polon. Math. 87 (2005), 93-98.
[6] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190, Birkhäuser, Basel, 2000.
[7] R. Harsthorne, Algebraic Geometry, Springer, 1977.
[8] S. Lang, Algebra, Springer, 2002.
[9] L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004), 341-349.
[10] P. Russell and A. Sathaye, On finding and cancelling variables in $k[x, y, z]$, J. Algebra 57 (1979), 151-166.
[11] V. Shpilrain and J.-T. Yu, Affine varieties with equivalent cylinders, ibid. 251 (2002), 295-307.
[12] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbb{C}^{2}, J. Math. Soc. Japan 26 (1974), 241-257.

Robert Dryło
Instytut Matematyczny PAN
Śniadeckich 8
00-956 Warszawa, Poland
and
Instytut Matematyki
Uniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego
Świętokrzyska 15
25-406 Kielce, Poland
E-mail: r.drylo@impan.pl

Received 5 May 2011;
revised 1 July 2011

[^0]: 2010 Mathematics Subject Classification: 13A50, 14R10, 14R20.
 Key words and phrases: polynomial automorphisms, stable equivalence, locally nilpotent derivation, Makar-Limanov invariant.

