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ON THE STABLE EQUIVALENCE PROBLEM FOR k[x, y]

BY

ROBERT DRYŁO (Warszawa and Kielce)

Abstract. L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the
stable equivalence problem for the polynomial ring k[x, y] when k is a field of character-
istic 0. In this note we give an affirmative solution for an arbitrary field k.

1. Introduction. Let k be an arbitrary commutative field and k[n] be
the polynomial ring in n variables over k. We say that two polynomials f, g ∈
k[n] are equivalent (resp. stably equivalent) if there exists a k-automorphism
ϕ of k[n] such that ϕ(f) = g (resp. f, g are equivalent in k[n+m] for some
m > 0). The following problem was stated by Shpilrain and Yu [11]:

Stable equivalence problem. Is it true that two stably equivalent
polynomials in k[n] are equivalent?

An affirmative answer is known for a generic polynomial in k[n] of degree
> n when k is algebraically closed of characteristic 0 (see [11, 5]). In general,
the problem remains open for n ≥ 3. An affirmative solution in characteristic
zero for k[2] was given by Makar-Limanov, van Rossum, Shpilrain and Yu [9].
The aim of this note is to give a solution for k[2] and an arbitrary field k.
We prove the following:

Theorem 1. Let f1, f2 ∈ k[2] \ k be two stably equivalent polynomials,
and ϕ be a k-automorphism of k[2+n] such that ϕ(f1) = f2. If there exist
coordinates t1, t2 of k[2] such that fi ∈ k[ti], i = 1, 2, then ϕ(k[t1]) = k[t2];
otherwise ϕ(k[2]) = k[2]. In particular, f1 and f2 are equivalent.

2. Proof. We start by summarizing some properties of exponential maps
(see [3] for more details) and next prove some analogue of Rentschler’s theo-
rem. Then for the proof of Theorem 1 we introduce an analogue of the Makar-
Limanov invariant, which will be an invariant of equivalent polynomials.

Let A be an integral finitely generated k-algebra and ϕ : A → A[1] be
a k-algebra homomorphism. We write ϕ = ϕt : A → A[t] to emphasize
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a variable t. We say that ϕ is an exponential map on A if it satisfies the
following two conditions:

(i) ϕ0(a) = a for all a ∈ A, where ϕ0 is evaluation at t = 0,
(ii) ϕs+t = ϕsϕt, where ϕs is extended by ϕs(t) = t to a homomorphism

ϕ : A[t]→ A[s, t].
If k is algebraically closed, then there exists a one-to-one correspondence

between exponential maps on A and algebraic k+-actions on an affine variety
with the coordinate ring A. Furthermore, in characteristic zero exponential
maps on A correspond to locally nilpotent derivations D on A, as follows:

ϕ(a) =
∞∑

n=0

1
n!
Dn(a)tn.

The ring of ϕ-invariants is defined to be
Aϕ = {a ∈ A | ϕ(a) = a},

and the Makar-Limanov invariant of A is

(2.1) ML(A) =
⋂

ϕ∈Exp(A)

Aϕ,

where Exp(A) is the set of all exponential maps on A.
We will need the following elementary properties of Aϕ.
Lemma 2 ([3, Lemmas 2.1 and 2.2]).
(i) Aϕ is factorially closed in A (i.e., if ab ∈ Aϕ for a, b ∈ A\{0}, then

a, b ∈ Aϕ). In particular, if A is a UFD , then so is Aϕ.
(ii) Aϕ is algebraically closed in A.
(iii) If ϕ is nontrivial, then there exist c ∈ Aϕ \ {0} and x ∈ A transcen-

dental over Aϕ such that A ⊂ Aϕ[c−1][x].

Now we prove the following analogue of Rentschler’s theorem:
Theorem 3. Let A = k[2], ϕ be an exponential map on A[n], and Aϕ =

{a ∈ A | ϕ(a) = a}. If Aϕ 6= A, then either Aϕ = k or Aϕ = k[t], where t is
a coordinate in A.

To prove this fact we follow the idea of the proof of Rentschler’s theorem
given in [4, Th. 1.2]. We will need the following lemmas.

Lemma 4 ([10, Th. 2.4.2]). Let A be a finitely generated integral k-
algebra. Suppose that t ∈ A satisfies the following conditions:

(i) AS = k(t)[1], where AS is the localization of A at S = k[t] \ {0};
(ii) k(t) ∩A = k[t];
(iii) A is geometrically factorial over k (i.e., A⊗k K is a UFD for any

algebraic field extension K/k).

Then A = k[t][1].
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Lemma 5. Let L ⊂ K be a finitely generated separable field extension
with trdegLK = 1. Then there exist infinitely many discrete valuation rings
(R,M) of K/L such that the residue field R/M is finite separable over L.

Proof. It is well-known that for any DVR (R,M) ofK/L the residue field
R/M is finite over L (i.e., if x ∈ R is transcendental over L and A is the
integral closure of L[x] in K, then A ⊂ R is a finitely generated L-algebra
of dimension 1 and R is equal to the localization of A at the maximal ideal
M ∩ A, which implies that R/M = A/(M ∩ A) is finite over L). If L is
finite, hence perfect, then R/M is always separable over L. Suppose that
L is infinite. Let x ∈ K be a separable transcendental element over L, and
u ∈ K be a primitive element of K over L(x) with the minimal polynomial
f over L(x). Since f has no multiple roots, gf + hf ′ = 1 for some g, h ∈
L(x)[1]. Let A = L[x] and B be the integral closure of A in K. Since B is a
finitely generated L-algebra, there exists v ∈ A such that Av[u] = Bv for the
localizations at v, and all coefficients of f, g, h are in Av. Since L is infinite,
there exist infinitely many maximal ideals M in A such that A/M = L and
v 6∈ M . For each such M , let M ′ be a maximal ideal in Bv lying over Mv,
which exists since the extension Av ⊂ Bv is integral. Then the field extension
L = Av/Mv ⊂ Bv/M

′ = L[ū] is separable, since ḡf̄ + h̄f̄ ′ = 1, where the
bar denotes reduction modulo Mv. Clearly, the localization of Bv at M ′ is a
DVR of K/L with the residue field L[ū]. This completes the proof.

The following lemma generalizes [1, (2.9)].

Lemma 6. Let k ⊂ K be a separable field extension. If A ⊂ K [1] is a
finitely generated normal k-algebra of dimension 1 such that A 6⊂ K, then
A = k′[1], where k′ is the algebraic closure of k in A.

Proof. We will reduce the above fact to the case when K/k is finite and
separable, which was proved in [1]. SinceA is finitely generated over k, we may
assume the same about K. Let t1, . . . , tn be a separable transcendence basis
ofK/k and L = k(t1, . . . , tn−1). LetK[x] = K [1] and A = k[b1(x), . . . , bs(x)],
where bi ∈ K[x]. If u ∈ K \ 0, then u ∈ R \M for all but a finite number of
DVRs (R,M) of K/L (see [7, II, Lem. 6.1]). Hence by Lemma 5 there exists
a DVR (R,M) of K/L such that all nonzero coefficients of b1, . . . , bs are in
R \M and the residue field R/M is finite separable over L. Then A ⊂ R[x]
and the canonical homomorphism R[x]→ (R/M)[x] restricted to A yields an
embedding A → (R/M)[x], because dimA = 1 and the image of A contains
an element which depends on x. Since the extension k ⊂ R/M is separable of
transcendence degree n− 1, the lemma follows by induction.

Now we are in a position to prove Theorem 3. Let B = (A[n])ϕ. Since
Aϕ = B ∩ A, Aϕ is factorially and algebraically closed in A by Lemma 2.
It follows that Aϕ is a UFD and trdegk A

ϕ ≤ 1. This implies that either
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Aϕ = k or A = k[t] (see [1, Th. 4.1] for the latter case). To show that t
is a coordinate in A we apply Lemma 4. Obviously assumptions (ii) and
(iii) of that lemma are satisfied. For (i) we will show that the extension
k(t) ⊂ Frac(B) is separable. Assuming this fact we can complete the proof
as follows. By Lemma 2(iii) there exists x ∈ A[n] transcendental over Frac(B)
such that AS ⊂ Frac(B)[x], where S = k[t] \ 0. Obviously, AS 6⊂ Frac(B),
trdegk(t)AS = 1, and k(t) is algebraically closed in AS . This implies by
Lemma 6 that AS = k(t)[1]. Therefore t is a coordinate in A.

It remains to show that the extension k(t) ⊂ Frac(B) is separable. Let
p = char k > 0 and k[x1, x2] = A. We will show that the partial deriva-
tions ∂/∂x1, ∂/∂x2 do not vanish simultaneously at t, which implies by [8,
VIII, Cor. 5.6] that k(t) ⊂ Frac(A) is separable. Then k(t) ⊂ Frac(A[n]) is
separable, too, and hence so is k(t) ⊂ Frac(B).

Suppose that ∂t/∂x1 = ∂t/∂x2 = 0. One can extend ϕ to an exponential
ϕ on k[x1, x2][n], where k is the algebraic closure of k. Then the ring of
ϕ-invariants in k[x1, x2] is equal to k[t]. Since ∂t/∂x1 = ∂t/∂x2 = 0, we
have t = sp for some s ∈ k[x1, x2] \ k[t], which contradicts the fact that k[t]
is algebraically closed in k[x1, x2]. This completes the proof of Theorem 3.

For the proof of Theorem 1 we introduce an analogue of the Makar-
Limanov invariant, which is an invariant of equivalent polynomials. Given a
k-algebra A and a ∈ A, let

(2.2) ML(A, a) =
⋂

ϕ∈Exp(A)
ϕ(a)=a

Aϕ.

One easily checks that if ψ : A → B is a k-algebra isomorphism, then
ψ(ML(A, a)) = ML(B,ψ(a)). Note that always

(2.3) ML(A[n], a) ⊂ ML(A, a),

which is a consequence of the following two facts:

(i) there exist exponential maps ϕi on A[n] = A[t1, . . . , tn] such that
ϕi(ti) = ti + t and ϕi(f) = f for all f ∈ A[t1, . . . , t̂i, . . . , tn],

(ii) every exponential map on A can be extended on A[n] to be constant
on variables.

We apply the above invariant in the proof of Theorem 1 in an analogous
way as the Makar-Limanov invariant was used in [3] to prove the cancellation
theorem for curves of Abhyankar, Eakin and Heinzer [1]. First we show the
following:

Lemma 7. If f ∈k[2]\k, then either ML(k[2+n], f)=k[2], or ML(k[2+n], f)
= k[t] whenever there exists a coordinate t of k[2] such that k[f ] ⊂ k[t].
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Proof. By (2.3) we have ML(k[2+n], f) ⊂ k[2]. Suppose that this in-
clusion is proper. Then by Theorem 3 there exists a coordinate t of k[2]

such that ML(k[2+n], f) ⊂ k[t]. Since the extension k[f ] ⊂ k[t] is finite and
ML(k[2+n], f) is algebraically closed, we have ML(k[2+n], f) = k[t].

Now we prove Theorem 1 as follows. Let ϕ be an automorphism of
k[2+n] such that ϕ(f1) = f2, where f1, f2 ∈ k[2] \ k. Since ϕ(ML(k[2+n], f1))
= ML(k[2+n], f2), it follows from Lemma 7 that either ML(k[2+n], f1) =
ML(k[2+n], f2) = k[2] or ML(k[2+n], f1) = k[t1] and ML(k[2+n], f2) = k[t2],
where t1, t2 are coordinates in k[2]. In the first case ϕ induces the desired
automorphism of k[2]. In the second case ϕ induces an isomorphism resϕ :
k[t1]→ k[t2], which takes f1 to f2 and can be extended to an automorphism
of k[2]. This completes the proof.

Remark 8. Note that if k is algebraically closed of characteristic 0, then
one can give an alternative simple geometric proof of Theorem 1 (see also [9]).
First we give some useful facts. For an isomorphism f : X × kn → Y × kn,
where X,Y are algebraic sets, let

Zf = {x ∈ X | f(x× kn) = y× kn for some y ∈ Y }.
Note that Zf is closed, since if Y ⊂ km and f = (f1, . . . , fm+n), then

Zf =
m⋂

i=1

⋂
y,z∈kn

{x ∈ X | fi(x, y) = fi(x, z)}.

Clearly, if Zf = X, then f induces an isomorphism f̃ : X → Y such that
πY ◦ f = f̃ ◦ πX , where πX , πY are the projections. This is always the case
in the following situation:

(2.4) Let X, Y be connected affine curves one of which is not isomorphic
to k. If f : X × kn → Y × kn is an isomorphism, then Zf = X.

Proof. Let us recall two well-known facts. If C is an irreducible affine
curve such that there exists a dominant polynomial map k → C, then every
such map is finite, hence surjective. Furthermore, if C is additionally smooth,
then it easily follows from Lüroth’s theorem that C ∼= k. Therefore to prove
(2.4) it suffices to consider two cases: Y is not dominated by k and irreducible,
or Y has singularities.

In the former case, Zf = X, since otherwise we would have a dominant
map πY ◦ f : x× kn → Y for some x ∈ X.

If Sing(Y ) 6= ∅, then f(Sing(X)× kn) = Sing(Y )× kn and for each irre-
ducible component X1 of X there exists an irreducible component Y1 of Y
such that f(X1× kn) = Y1× kn. Obviously Sing(X) ∩X1 6= ∅, so as above
we obtain Zf = X, since otherwise the map πY1 ◦ f : x× kn → Y1 \ Sing(Y )
would be dominant for some x ∈ X1 \ Sing(X).
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Remark. Note that (2.4) implies that affine curves have the cancellation
property (see [1] for a more general result).

We will also need the following:

(2.5) Let g ∈ k[2] \ k and g−1(0) =
⋃s

i=1 li, where li are connected com-
ponents of g−1(0). Then li ∼= k for i = 1, . . . , s if and only if there
exists a coordinate t of k[2] such that g ∈ k[t].

Proof. If li ∼= k, i = 1, . . . , s, then by the Abhyankar–Moh–Suzuki the-
orem [2, 12] there exists a polynomial automorphism f of k2 such that
f(l1) = x1× k, x1 ∈ k. Then f(li) = xi× k for some xi ∈ k, i = 1, . . . , s,
since otherwise we would have a dominant map πk ◦ f : li → k \ {x1} for
some i ≥ 2. The second implication is obvious.

Now we prove Theorem 1 as follows. Let f1, f2 ∈ k[2] \k be stably equiva-
lent polynomials and ϕ be an automorphism of k[2+n] such that ϕ(f1) = f2.
Let f be the automorphism of k2+n induced by ϕ. Then f(f−1

2 (λ)× kn) =
f−1
1 (λ)× kn for all λ ∈ k.

If f2 6∈ k[t] for every coordinate t of k[2], then by (2.5) some connected
component of f−1

2 (λ) is not isomorphic to k for all λ ∈ k. By (2.4) such
components are contained in Zf , which implies that Zf = k2, since Zf

is closed. Hence there exists an induced automorphism f̃ of k2 such that
f̃ ◦ πk2 = πk2 ◦ f , which means that ϕ(k[2]) = k[2].

It remains to show that if there exist coordinates t1, t2 of k[2] such that
fi ∈ k[ti], i = 1, 2, then ϕ(k[t1]) = k[t2]. This follows from the fact that
elements of ϕ(k[t1]) are integral over k[f2], hence over k[t2], and similarly
elements of k[t2] are integral over ϕ(k[t1]). Since k[ti] is algebraically closed
in k[2+n], we have ϕ(k[t1]) = k[t2].
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