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THE STANLEY–FÉRAY–ŚNIADY FORMULA FOR THE
GENERALIZED CHARACTERS OF THE SYMMETRIC GROUP

BY

FABIO SCARABOTTI (Roma)

Abstract. We show that the explicit formula of Stanley–Féray–Śniady for the char-
acters of the symmetric group has a natural extension to the generalized characters. These
are the spherical functions of the unbalanced Gel’fand pair (Sn × Sn−1, diag Sn−1).

1. Introduction. Recently, two different explicit formulas have been
found for the characters of the symmetric group: the Stanley–Féray formula,
conjectured by R. P. Stanley [10] and proved by V. Féray [5], and the formula
of M. Lassalle [8] (see [3] for an account). Actually, these are formulas for
spherical functions rather than characters. Indeed, these formulas give the
normalized characters obtained by dividing each of them by the dimension
of the corresponding representation. These are the spherical functions of
the Gel’fand pair (Sn × Sn,diagSn), where diagSn = {(π, π) : π ∈ Sn}. In
[11] E. Strahov showed that some of the classical results for the characters
of the symmetric group may be extended to the spherical functions of the
unbalanced Gel’fand pair (Sn×Sn−1,diagSn−1), where diagSn−1 = {(π, π) :
π ∈ Sn−1}. This amounts to considering the algebra of all Sn−1-conjugacy
invariant functions on Sn rather than the Sn-conjugacy invariant functions.
It is a natural problem to extend a result for the normalized characters
to the generalized characters of the symmetric group. In the present paper
we show that the Stanley–Féray formula, in the form proved by Féray and
P. Śniady in [6], may be naturally extended to the generalized characters.

2. Preliminaries. We recall some basic facts on unbalanced Gel’fand
pairs. We refer to [2, 3, 11, 12] for more details and proofs (but we follow
the notation of our joint monographs with T. Ceccherini-Silberstein and
F. Tolli). If X is a finite set, we denote by L(X) the space of all complex-
valued functions defined on X. Let G be a finite group. We say that H ≤ G
is a multiplicity free subgroup of G when ResGH σ is a multiplicity free rep-
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resentation of H for every irreducible representation σ of G. We recall that
the action of G×H on G ≡ (G×H)/diagH is (g, h) · g0 = gg0h

−1. The
subgroup H is multiplicity free if and only if (G×H,diagH) is a Gel’fand
pair, if and only if the algebra of H-conjugacy invariant functions on G is
commutative.

Let Ĝ (resp. Ĥ) be a complete set of pairwise inequivalent (unitary)
irreducible representations of G (resp. H). For σ ∈ Ĝ we denote by σ′ the
adjoint of σ. If ρ ∈ Ĥ and σ ∈ Ĝ, we write ρ ≤ ResGH σ to indicate that ρ is
contained in ResGH σ; σ � ρ denotes the tensor product of σ and ρ; χσ and
χρ are the characters of σ and ρ (they are not normalized: χρ(1G) is equal
to the dimension dρ of ρ). If H is multiplicity free, the decomposition of the
permutation representation η of G×H on L(G) is the following:

(2.1) η ∼=
⊕
σ∈ bG

⊕
ρ∈ bH:

ρ≤ResGH σ′

(σ � ρ).

In particular, for H = G the G × G-irreducible representation σ � σ′ coin-
cides with the σ-isotypic component in L(G), that is, the subspace of L(G)
spanned by the matrix coefficients of σ. The spherical function associated
to σ � ρ has the following expression:

φσ,ρ(g) =
1
|H|

∑
h∈H

χσ(gh)χρ(h).

Following [11], we call φσ,ρ a generalized character of G.

Proposition 2.1. Suppose that H is a multiplicity free subgroup of G.
With the notation above we have:

(i) φσ,ρ(h) = (1/dρ)χρ(h) for all h ∈ H;
(ii) if ψ ∈ L(G) is H-conjugacy invariant, it belongs to the σ-isotypic

component of L(G) and ψ(h) = (1/dρ)χρ(h) for all h ∈ H, then
ψ = φσ,ρ.

Proof. Suppose that ResGH σ
′ =

⊕m
i=1 ρi with ρ1, . . . , ρm ∈ Ĥ (pairwise

inequivalent) and ρ1 = ρ.
(i) For every h ∈ H we have

φσ,ρ(h) =
1
|H|

∑
t∈H

χσ(th)χρ(t−1) =
1
|H|

[( m∑
i=1

χρi
)
∗ χρ

]
(h) =

1
dρ
χρ(h).

(ii) Since ψ is H-conjugacy invariant and belongs to the σ-isotypic com-
ponent of L(G), we see that ψ =

∑m
i=1 ciφσ,ρi for suitable complex constants
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c1, . . . , cm. Therefore

1
dρ
χρ(h) = ψ(h) =

m∑
i=1

ciφσ,ρi(h) =
m∑
i=1

ci
dρi

χρi(h) for all h ∈ H

implies that ci = δi,1, that is, ψ = φσ,ρ.

3. Brender’s formula. In this section we give a short proof of the main
result in [1]. It is a formula for the generalized character of the symmetric
group analogous to (8) in [6]. Let Sn be the symmetric group of degree n.
We think of it as the group of all permutations of the set {1, . . . , n}. We
denote by S̃n−1 the stabilizer of 1 in Sn. Then (see [1, 2, 3, 11]) S̃n−1 is a
multiplicity free subgroup of Sn. If λ ` n we denote by Sλ the corresponding
irreducible Sn-representation. We identify λ ` n with its Young frame; if
λ ` n and µ ` n− 1 we write λ→ µ to indicate that µ may obtained from
λ by removing one box (we denote this box by λ \ µ); note that Strahov
draws the arrow in the opposite direction. Then the branching rule for the
symmetric group may be written in the form ResSnSn−1

Sλ =
⊕

µ`n−1:λ→µ S
µ.

Therefore, in the present setting, (2.1) is

L(Sn) =
⊕
λ`n

⊕
µ`n−1:
λ→µ

(Sλ � Sµ).

We denote by φλ,µ the generalized character associated to Sλ � Sµ.
We will use the following notation: a function f ∈ L(Sn) will be identified

with the formal sum
∑

π∈Sn f(π)π. If t is a λ-tableau (an injective filling
of the Young frame of λ with the numbers {1, . . . , n}), we denote by Rt
(resp. Ct) the row (resp. the column) stabilizer of t. It is well known that
the element

Et =
∑
γ∈Ct

∑
σ∈Rt

sign(γ)γσ

belongs to the λ-isotypic component of L(Sn) [7, 9]: it is a multiple of an
idempotent that projects onto a minimal left ideal of L(Sn) isomorphic to
Sλ (see also Exercise 10.6.7 in [2] for a less standard proof). Denote by χλ

the character of Sλ and by dλ the dimension of Sn. We have

(3.1) χλ =
dλ
n!

∑
π∈Sn

πEtπ
−1.

The proof is immediate: f 7→ 1
n!

∑
π∈Sn πfπ

−1 is the orthogonal projection
from L(Sn) onto the subalgebra of Sn-conjugacy invariant functions and the
value of Et on 1Sn is 1. See again Exercise 10.6.7 in [2] or (VI.6.1) in [9]
(where n!/dF must be replaced by dF/n!) or (8) in [6].
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Proposition 3.1 ([1]). If λ ` n, µ ` n− 1, λ→ µ and t is a λ-tableau
with 1 in the box λ \ µ then

(3.2) φλ,µ =
1

(n− 1)!

∑
π∈eSn−1

πEtπ
−1.

Proof. The right hand side of (3.2) is S̃n−1-conjugacy invariant and be-
longs to the Sλ-isotypic component of L(Sn). Moreover, following Brender
[1] we may write Et = Et′+ξ, where t′ is the µ-tableau obtained by removing
the box containing 1 and

ξ =
∑

γ∈Ct, σ∈Rt
but γ /∈eSn−1 orσ/∈eSn−1

sign(γ)γσ.

Neither ξ nor 1
(n−1)!

∑
π∈eSn−1

πξπ−1 contains elements of S̃n−1: if γ ∈ Ct,

σ ∈ Rt but γ /∈ S̃n−1 or σ /∈ S̃n−1 then γσ /∈ S̃n−1. Therefore from (3.1)
applied to S̃n−1 we get

1
(n− 1)!

∑
π∈eSn−1

πEtπ
−1 =

1
dµ
χµ +

1
(n− 1)!

∑
π∈eSn−1

πξπ−1.

Now invoking Proposition 2.1(ii), we get the desired result.

4. The Stanley–Féray–Śniady formula for the generalized char-
acters. Let λ, µ and t be as in Proposition 3.1. For γ, σ ∈ Sn we set

Ñλ,µ = the number of π ∈ S̃n−1 such that each cycle of γ is contained in
a column of πt and each cycle of σ is contained in a row of πt.

As in [6], if � is a box of λ we denote by r(�) and c(�) respectively the
row and the column to which � belongs. Note also that in our notation,
Sn−1 is the stabilizer of n; more generally, Sl ≤ Sn, 1 ≤ l ≤ n, is the
symmetric group on {1, . . . , l} and we will need to consider elements π in Sl
but not in S̃n−1, that is, permutations of {1, . . . , l} that do not fix 1. Indeed,
Proposition 2.1(i) tells us that the value of a generalized character φλ,µ on
an element π ∈ S̃n−1 is given by the formula for the classical characters. For
γ, σ ∈ Sl, with 2 ≤ l ≤ n, we set

Ñλ,µ
Sl

(γ, σ) = the number of one-to-one maps f : {1, . . . , l} → λ such that
f(1) = λ \ µ, c ◦ f is constant on each cycle of γ
and r ◦ f is constant on each cycle of σ,
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and (removing the injectivity)

N̂λ,µ(γ, σ) = the number of functions f : {1, . . . , l} → λ such that
f(1) = λ \ µ, c ◦ f is constant on each cycle of γ
and r ◦ f is constant on each cycle of σ.

Note that if γ, σ ∈ Sl then

(4.1) Ñλ,µ(γ, σ) = (n− l)!Ñλ,µ
Sl

(γ, σ).

Indeed, when we compute Ñλ,µ(γ, σ) we need to determine the positions of
1, . . . , l in πt, while the positions of l + 1, . . . , n may be chosen arbitrarily.
We recall that (x)k = x(x− 1) · · · (x− l + 1).

Lemma 4.1. If θ ∈ Sl then

φλ,µ(θ) =
1

(n− 1)l−1

∑
γ,σ∈Sl:
γσ=θ

sign(γ)N̂λ,µ(γ, σ).

Proof. We may rewrite (3.2) in the form

φλ,µ =
1

(n− 1)!

∑
π∈eSn−1

∑
γ∈Cπt

∑
σ∈Rπt

sign(γ)γσ.

Since
γ ∈ Cπt ⇔ each cycle of γ is contained in a column of πt,
σ ∈ Rπt ⇔ each cycle of σ is contained in a row of πt,

we deduce that

φλ,µ(θ) =
1

(n− 1)!

∑
γ,σ∈Sn:
γσ=θ

sign(γ)Ñλ,µ(γ, σ).

Suppose that θ(i) = i, σ(i) = j and γ(j) = i, with i 6= j. If i, j are contained
in a row of πt then they cannot be contained in a column of πt and vice
versa. Therefore if Ñλ,µ(γ, σ) 6= 0 and γσ = θ then supp(γ), supp(σ) ⊆
supp(θ). In particular, if θ ∈ Sl, the sum may be restricted to γ, σ ∈ Sl;
keeping in mind (4.1) we get

φλ,µ(θ) =
1

(n− 1)l−1

∑
γ,σ∈Sl:
γσ=θ

sign(γ)Ñλ,µ
Sl

(γ, σ).

One can end the proof using the identity∑
γ,σ∈Sl:
γσ=θ

sign(γ)Ñλ,µ
Sl

(γ, σ) =
∑

γ,σ∈Sl:
γσ=θ

sign(γ)N̂λ,µ(γ, σ),

which has the same proof of (10) in [6].
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We denote by C(π) the set of cycles of a permutation π. A coloring of
the cycles of γ, σ is a function h : C(γ) t C(σ)→ N. We set

Nλ,µ(γ, σ) = the number of colorings h of the cycles of γ and σ such that:
• the color of each cycle of γ is a column of λ;
• the color of each cycle of σ is a row of λ;
• the color of the cycle of γ containing 1 is c(λ \ µ);
• the color of the cycle of σ containing 1 is r(λ \ µ);
• if c1 ∈ C(γ), c2 ∈ C(σ) and c1 ∩ c2 6= ∅ then (h(c1), h(c2))

are the coordinates of a box in λ.

Now we can prove the analogue of Theorem 2 in [6] for the generalized
characters.

Theorem 4.2. If θ ∈ Sl then

φλ,µ(θ) =
1

(n− 1)l−1

∑
γ,σ∈Sl:
γσ=θ

sign(γ)Nλ,µ(γ, σ).

Proof. The assertion follows from Lemma 4.1 and the identity Nλ,µ(γ, σ)
= N̂λ,µ(γ, σ). This may be proved by means of the following natural bijection
h 7→ f between the colorings h counted by Nλ,µ(γ, σ) and the functions f
counted by N̂λ,µ(γ, σ):

f(m) = (h(c1), h(c2)) if c1 ∈ C(γ), c2 ∈ C(σ) and m ∈ c1 ∩ c2.
Example 4.3. Suppose that r(λ \ µ) = i and c(λ \ µ) = j. If λ =

(λ1, . . . , λk) and the conjugate partition is λ′ = (λ′1, . . . , λ
′
h) then j = λi and

i = λ′j . Moreover,

Nλ,µ((1)(2), (12)) = λi and Nλ,µ((12), (1)(2)) = λ′j .

Therefore

φλ,µ((12)) =
λi − λ′j
n− 1

.

This formula, in a slightly different form and by means of a completely
different method, was found by P. Diaconis [4, (5.10)].
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