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ON THE DIOPHANTINE EQUATION f(x)f(y) = f(z)2BYMACIEJ ULAS (Kraków)Abstra
t. Let f ∈ Q[X] and deg f ≤ 3. We prove that if deg f = 2, then thediophantine equation f(x)f(y) = f(z)2 has in�nitely many nontrivial solutions in Q(t).In the 
ase when deg f = 3 and f(X) = X(X2 + aX + b) we show that for all but�nitely many a, b ∈ Z satisfying ab 6= 0 and additionally, if p | a, then p2 ∤ b, the equation
f(x)f(y) = f(z)2 has in�nitely many nontrivial solutions in rationals.1. Introdu
tion. Let f ∈ Q[X], deg f ≤ 3 and 
onsider the diophantineequation

f(x)f(y) = f(z)2.(1.1)We say that a triple of rationals x, y, z satisfying (1.1) is a nontrivialsolution if f(x) 6= f(y). Throughout, by a solution we mean a nontrivial one.It is easy to observe that solving (1.1) in rationals is equivalent to �ndingrationals x, y, z su
h that f(x), f(z), f(y) form a geometri
 progression.The equation (1.1) for f(X) = X2 − 1 was examined in [2℄, where it wasproved that it has in�nitely many solutions in integers. Similar results wereobtained for polynomials of the form f(X) = X2 −a2 in [5℄, and of the form
f(X) = X2−a2+2b2 in [6℄, where a, b ∈ Z. In the above 
ases, by substituting
z = (x − y)/2 the problem was redu
ed to the examination of Pell's typeequations. This method 
annot be used for an arbitrary polynomial of degreetwo, and it is natural to 
onsider whether weakening the assumption aboutthe solvability of (1.1) in integers will enable us to obtain new results in this
ase, as well as in the 
ase when deg f > 2.It turns out that in the 
ase when deg f = 2, studying solvability of(1.1) in rationals 
an be redu
ed to the examination of a 
ertain ellip-ti
 
urve de�ned over the �eld Q(t). By means of this redu
tion we willprove that (1.1) has in�nitely many solutions in Q(t) (Theorem 2.1, Corol-lary 2.2).2000 Mathemati
s Subje
t Classi�
ation: Primary 11D25, 11D41; Se
ondary 11G99.Key words and phrases: diophantine equations, ellipti
 
urves, geometri
 progression.The author is a parti
ipant of a proje
t whi
h is 
o-�nan
ed from the European So
ialFund and Polish national budget within the Integrated Regional Operational Programme.[1℄
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In the 
ase when deg f = 3 and f(X) = X(X2 + aX + b), we will showthat for all but �nitely many a, b ∈ Z satisfying ab 6= 0, and additionally,if p | a, then p2 ∤ b, the equation (1.1) has in�nitely many solutions in ratio-nals (Theorem 3.1, Corollary 3.2). As in the 
ase of a polynomial of degreetwo, the problem is redu
ed to the examination of a suitable ellipti
 
urveover Q(t).2. The equation f(x)f(y) = f(z)2 for f(X) = X2 + k. In this se
tionwe prove the followingTheorem 2.1. Let k ∈ Z and f(X) = X2 + k. Then the equation

f(x)f(y) = f(z)2 has in�nitely many solutions in the �eld Q(t) of ratio-nal fun
tions.Proof. If k = 0 there is nothing to prove, so assume that k ∈ Z \ {0}.Let t be a variable and put
x = T + t, y = u2T + t, z = uT − t.(2.1)Then

f(x)f(y) − f(z)2 = (u + 1)2TFu(T ),where Fu(T ) = 2tu2T 2 + (u − 1)2(t2 + k)T + 2t(t2 + k).It is enough to show that the set of u ∈ Q(t) for whi
h the equation
Fu(T ) = 0 has roots in Q(t) is in�nite. Equivalently, the dis
riminant ∆(u) =
(t2 + k)2(u − 1)4 − 16t2(t2 + k)u2 of the polynomial Fu should be a squarein the �eld Q(t). For k ∈ Z \ {0} 
onsider the 
urve

Ck : v2 = (t2 + k)2(u − 1)4 − 16t2(t2 + k)u2(2.2)over Q(t). The dis
riminant of ∆ equals D = −220kt6(t2 + k)8 and D 6= 0for k ∈ Z \ {0}. This means that the 
urve Ck is smooth. Also note that the
Q(t)-rational point Q = (0, t2 + k) lies on Ck. If we treat Q as a point atin�nity on Ck and use the method des
ribed in [1, p. 77℄, we 
on
lude that
Ck is birationally equivalent by means of the mapping

u =
Y + 108t2(t2 + k)2

(t2 + k)(3X − 72t2(t2 + k))
+ 1,

v = −(t2 + k)(u − 1)2 +
2X + 24t2(t2 + k)

9(t2 + k)to the ellipti
 
urve with the Weierstrass equation
Ek : Y 2 = X3 − 108t2(t2 − 3k)(t2 + k)2X + 432t4(t2 + 9k)(t2 + k)3.We will prove that there are in�nitely many Q(t)-rational points on Ek.First re
all that on the ellipti
 
urve over Q(t) with the equation y2 =

x3 + a(t)x + b(t), where a, b ∈ Z[t], points of �nite order have 
oordinates
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in Z[t]. It is, therefore, enough to �nd a point lying on Ek with 
oordinatesnot in Z[t]. It is easy to noti
e that there is a point on Ek of the form
P = (24t2(t2 + k), 108t2(t2 + k)2).Using the rule of addition on Ek, we obtain the point

2P =

(

3

4
(t2 − 3k)(11t2 − k),

27

8
(3t2 − k)(t4 + 18kt2 + k2)

)

,and the point 3P = (p(t), q(t)), where
p(t) =

24t2(t2 + k)(13t8 − 364kt6 + 14k2t4 + 148k3t2 + 13k4)

(7t4 + 22kt2 − k2)2
,

q(t) =
108(t2−3k)(t3 +kt)2(5t2 +k)(t8 +612kt6−58k2t4 +100k3t2 +k4)

(7t4 +22kt2−k2)3
.It is enough to show that for k ∈ Z \ {0} the rational fun
tion p(t) is not apolynomial. To see this, note that the remainder of division of the numeratorof p by 7t4 + 22kt2 − k2 equals R = −2359296k5(4727t2 − 212k)/16807 and

R 6= 0 for k ∈ Z \ {0}. Hen
e, the X-
oordinate of the point 3P is not apolynomial. Therefore, P is not of �nite order on Ek; hen
e, in�nitely many
Q(t)-rational points lie on our 
urve.Now it is an easy task to obtain the statement of our theorem. For
m = 2, 3, 4, . . . we 
al
ulate mP on the 
urve Ek; next, we 
al
ulate the 
or-responding point (u, v) on Ck and we solve the equation Fu(T ) = 0. We putthe 
al
ulated roots into (2.1) and obtain various rational fun
tion solutionsof our equation. As an example, 
onsider the point 2P . The 
orrespondingpoint on Ck is

(u, v) =

(

−
2(t2 + k)

3t2 − k
,
(t2 + k)(7t4 + 22kt2 − k2)

(3t2 − k)2

)

.The substitution u = −2(t2 + k)/(3t2 − k) to the equation Fu(T ) = 0 gives
T1 = −2t, T2 = −

(3t2 − k)2

8t(t2 + k)
.After substitution into (2.1), we obtain the solutions of our equation f(x)f(y)

= f(z)2 
orresponding to T1 and T2:
x = −t, y =

t(t4 − 22kt2 − 7k2)

(3t2 − k)2
, z =

t(t2 + 5k)

3t2 − k
,

x = −
t4 − 14kt2 + k2

8t(t2 + k)
, y =

t2 − k

2t
, z = −

t2 + k

4t
.The above theorem implies
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Corollary 2.2. For ea
h f ∈ Q[X] with deg f = 2, the equation

f(x)f(y) = f(z)2 has in�nitely many solutions in the �eld Q(t) of ratio-nal fun
tions.3. The equation f(x)f(y) = f(z)2 for f(X) = X(X2 +X + t). In thisse
tion we will prove the followingTheorem 3.1. Let t ∈ Q and f(X) = X(X2 +X + t). Then, for all but�nitely many t, the equation f(x)f(y) = f(z)2 has in�nitely many solutionsin rationals.Proof. Let f(X) = X(X2 + X + t), where t 6= 0, 1/4. Now we de�ne
x = T, y = u2T, z = uT.(3.1)Then

f(x)f(y) − f(z)2 = (u − 1)2u2T 3Gu(T ),where Gu(T ) = u2T 2 + t(u + 1)2T + t. As in the proof of Theorem 2.1,it is su�
ient to show that for in�nitely many u ∈ Q(t), the equation
Gu(T ) = 0 has roots in Q(t). This is the 
ase when the dis
riminant ∆(u) =
t2(u+1)4−4tu2 of the polynomial Gu is a square in the �eld Q(t). Therefore,
onsider the 
urve

C : v2 = t2(u + 1)4 − 4tu2(3.2)over the �eld Q(t). The dis
riminant of the polynomial ∆ equals D =
−212t8(4t − 1) and D 6= 0 in Q(t). This means that the 
urve C is smooth.Also note that the Q(t)-rational point Q = (0, t) lies on C. If we treat Qas a point at in�nity on C and on
e again use the method from [1℄, we �ndthat C is birationally equivalent by means of the mapping

u =
Y − 27t2

3t(X − 6t)
− 1, v = −t(u + 1)2 +

2(X + 3t)

9tto the ellipti
 
urve with the Weierstrass equation
E : Y 2 = X3 + 27t2(3t − 1)X + 27t3(9t − 2).Note that the point P = (6t,−27t2) lies on E. Now, if we spe
ialize to t = 2,we obtain the ellipti
 
urve

E2 : Y 2 = X3 + 540X + 3456with the point P2 = (12,−108). Points of �nite order on the ellipti
 
urve
y2 = x3 + ax + b, a, b ∈ Z, have integer 
oordinates ([3, p. 177℄), while
2P2 = (−15/4, 297/8); therefore, P2 is not of �nite order on E2, whi
h meansthat P is not of �nite order on E. Therefore, E is a 
urve of positive rank.Hen
e, its set of Q(t)-rational points is in�nite.To obtain the statement of our theorem, we have to use Silverman'stheorem ([3, p. 368℄), whi
h states that if E is an ellipti
 
urve over Q(t)
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with positive rank, then for all but �nitely many t0 ∈ Q, the 
urve Et0obtained from E by the spe
ialization t = t0 has positive rank. From thisresult we see that for all but �nitely many t ∈ Q our initial problem hasin�nitely many solutions in rationals.From the above theorem we obtain two interesting 
orollaries.Corollary 3.2. Put f(X) = X(X2 +aX +b). Then, for all but �nitelymany a, b ∈ Z satisfying ab 6= 0 and if p | a, then p2 ∤ b, the equation f(x)f(y)
= f(z)2 has in�nitely many solutions in rationals.Proof. Let F (X) = a3X(X2 + X + t), where t = b/a2. Then f(X) =
F (X/a) and it su�
es to show the statement for the polynomial F . FromTheorem 3.1, the diophantine equation F (x)F (y) = F (z)2 has in�nitelymany solutions in rationals for all but �nitely many rational numbers t.Let now t0 = p/q be a rational number for whi
h the 
urve Et0 from theproof of Theorem 3.1 has rank zero. Are there only �nitely many a, b su
hthat b/a2 = p/q? Sin
e (p, q) = 1, we then have p | b, b = pb1 and a2 = qb1.For a �xed q, there are only �nitely many a, b1 satisfying this equation andthe 
ondition that if s | a, then s2 ∤ b. Be
ause there are only �nitely manypossibilities for t0, there are only �nitely many 
orresponding numbers a, b.Remark 3.3. The 
ondition that p | a implies p2 ∤ b, whi
h appears inthe formulation of Corollary 3.2, is not very restri
tive. Indeed, let f(X) =
X(X2 + aX + b) and suppose a, b ∈ Z do not satisfy this 
ondition. Thenthere exist integers r, a′, b′ su
h that a = ra′, b = r2b′ and if p | a′, then
p2 ∤ b′. It follows that for all but �nitely many a′, b′ the equation h(x)h(y) =
h(z)2, where h(X) = X(X2 + a′X + b′), has in�nitely many solutions inrationals, say (xi, yi, zi) for i = 1, 2, . . . . Then the triples (xi/r, yi/r, zi/r)for i = 1, 2, . . . solve f(x)f(y) = f(z)2.Corollary 3.4. If N ∈ N+, then there are in�nitely many polynomi-als f ∈ Q[X] of degree three without multiple roots su
h that the equation
f(x)f(y) = f(z)2 has at least N solutions in integers.Proof. Let f(X) = X(X2 +X +t) and t = p/q be su
h that the equation
f(x)f(y) = f(z)2 has in�nitely many solutions in rationals. From the previ-ous theorem we know that all but �nitely many t ∈ Q satisfy this 
ondition.Take N distin
t rational solutions of our equation, say (p

i
/q

i
, p′

i
/q′

i
, p′′

i
/q′′

i
)for i = 1, . . . , N , and let

d = LCM(q, q1, q
′

1, q
′′

1 , . . . , qN , q′N , q′′N ).If we now de�ne F (X) = X(X2 + dX + td2), then the equation F (x)F (y)
= F (z)2 has solutions (dp

i
/q

i
, dp′

i
/q′

i
, dp′′

i
/q′′

i
) for i = 1, . . . , N , whi
h aretriples of integers.
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4. A few questions. The results presented in the previous se
tionslead to several interesting questions 
onne
ted with the equation f(x)f(y)

= f(z)2.Question 4.1. Does there exist an irredu
ible polynomial f ∈ Q[X] ofdegree three su
h that the equation f(x)f(y) = f(z)2 has in�nitely manysolutions in rationals?Corollary 3.4 says that for every N ∈ N there exists a polynomial f su
hthat the equation f(x)f(y) = f(z)2 has at least N solutions in integers. Thisleads to the followingQuestion 4.2. Does there exist a polynomial f ∈ Q[X] of degree threewithout multiple roots su
h that the equation f(x)f(y) = f(z)2 has in�nitelymany solutions in integers?And �nallyQuestion 4.3. Does there exist a polynomial f ∈ Q[X] of degree greaterthan three without multiple roots su
h that the equation f(x)f(y) = f(z)2has in�nitely many solutions in rationals?A
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