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ON THE DIOPHANTINE EQUATION f(z)f(y) = f(2)?

MACIEJ ULAS (Krakéw)

Abstract. Let f € Q[X] and degf < 3. We prove that if deg f = 2, then the
diophantine equation f(x)f(y) = f(2)? has infinitely many nontrivial solutions in Q(t).
In the case when degf = 3 and f(X) = X(X? + aX + b) we show that for all but
finitely many a,b € Z satisfying ab # 0 and additionally, if p|a, then pQJ[b, the equation
f(x)f(y) = f(2)* has infinitely many nontrivial solutions in rationals.

1. Introduction. Let f € Q[X], deg f < 3 and consider the diophantine
equation

(1.1) f@)fly) = f(2).

We say that a triple of rationals z,y, z satisfying (1.1) is a nontrivial
solution if f(x) # f(y). Throughout, by a solution we mean a nontrivial one.
It is easy to observe that solving (1.1) in rationals is equivalent to finding
rationals x,y, z such that f(z), f(z), f(y) form a geometric progression.

The equation (1.1) for f(X) = X2 — 1 was examined in [2], where it was
proved that it has infinitely many solutions in integers. Similar results were
obtained for polynomials of the form f(X) = X2 —a? in [5], and of the form
f(X) = X?—a?+2b? in [6], where a, b € Z. In the above cases, by substituting
z = (x — y)/2 the problem was reduced to the examination of Pell’s type
equations. This method cannot be used for an arbitrary polynomial of degree
two, and it is natural to consider whether weakening the assumption about
the solvability of (1.1) in integers will enable us to obtain new results in this
case, as well as in the case when deg f > 2.

It turns out that in the case when deg f = 2, studying solvability of
(1.1) in rationals can be reduced to the examination of a certain ellip-
tic curve defined over the field Q(¢). By means of this reduction we will
prove that (1.1) has infinitely many solutions in Q(¢) (Theorem 2.1, Corol-
lary 2.2).
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In the case when deg f = 3 and f(X) = X(X? + aX + b), we will show
that for all but finitely many a,b € Z satisfying ab # 0, and additionally,
if p|a, then p?1b, the equation (1.1) has infinitely many solutions in ratio-
nals (Theorem 3.1, Corollary 3.2). As in the case of a polynomial of degree
two, the problem is reduced to the examination of a suitable elliptic curve

over Q(t).

2. The equation f(z)f(y) = f(2)? for f(X) = X2+ k. In this section
we prove the following

THEOREM 2.1. Let k € Z and f(X) = X2 + k. Then the equation
f(@)f(y) = f(2)? has infinitely many solutions in the field Q(t) of ratio-
nal functions.

Proof. If k = 0 there is nothing to prove, so assume that k£ € Z\ {0}.
Let t be a variable and put

(2.1) c=T+t, y=u*T+t, z=ul—t.
Then

F@)f(y) = f(2)? = (u+ 1)*TF(T),
where F,(T) = 2tu®T? + (u — 1)2(t? + k)T + 2t(t> + k).

It is enough to show that the set of u € Q(¢) for which the equation
F,(T) = 0 has roots in Q(t) is infinite. Equivalently, the discriminant A(u) =
(t? + k)?(u — 1)* — 16t2(t> + k)u? of the polynomial F, should be a square
in the field Q(¢). For k € Z \ {0} consider the curve
(2.2) Cr: 02 =t +k)*(u—1)* — 16£2(t* + k)u?

over Q(t). The discriminant of A equals D = —229kt%(#2 + k)8 and D # 0
for k € Z\ {0}. This means that the curve Cj is smooth. Also note that the
Q(t)-rational point Q = (0,t? + k) lies on Cy. If we treat @) as a point at
infinity on C}% and use the method described in [1, p. 77|, we conclude that
C}, is birationally equivalent by means of the mapping

. Y + 108t2(t% + k)? i
(2 +k)(3X —7212(2 + k))

2X + 24t%(t2 4+ k)
9(t2 + k)

to the elliptic curve with the Weierstrass equation

Ep: Y%= X3 10862 (t% — 3k) (12 4+ k)2 X + 432t (2 + 9k) (£* + k)3

v=—F+k)(u—-1)?2+

We will prove that there are infinitely many Q(¢)-rational points on Ej.
First recall that on the elliptic curve over Q(t) with the equation y? =
23 + a(t)x + b(t), where a,b € Z[t], points of finite order have coordinates
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in Z[t]. It is, therefore, enough to find a point lying on Ej with coordinates
not in Z[t]. It is easy to notice that there is a point on Ej of the form

P = (24t2(t> 4+ k), 108t%(t* + k)?).
Using the rule of addition on Fj, we obtain the point

2
2P = (2@2 — 3k)(11£% — k), g(?’t2 — k)(#" + 18kt* + kQ)),

and the point 3P = (p(t), ¢(t)), where
o 2482 (12 + k) (13t® — 364Kkt® + 14k2t* + 148K3t% + 13k%)

p(t) (TtF + 22kt% — k2)2 ’
(1) = 108(22 — 3k) (t3 + kt)2(5t2 + k) (t® + 612kt5 — 58k2t* + 10032 + k*)
ab = (Tt + 22Kt2 — k2)3 '

It is enough to show that for k € Z \ {0} the rational function p(t) is not a
polynomial. To see this, note that the remainder of division of the numerator
of p by 7t* 4 22kt? — k? equals R = —2359296k°(4727t> — 212k) /16807 and
R # 0 for k € Z \ {0}. Hence, the X-coordinate of the point 3P is not a
polynomial. Therefore, P is not of finite order on E}; hence, infinitely many
Q(t)-rational points lie on our curve.

Now it is an easy task to obtain the statement of our theorem. For
m = 2,3,4,...we calculate mP on the curve E}; next, we calculate the cor-
responding point (u,v) on Cj and we solve the equation F,(7") = 0. We put
the calculated roots into (2.1) and obtain various rational function solutions
of our equation. As an example, consider the point 2P. The corresponding
point on C}, is

2 2 4 2 12
(0, 0) = (_Q(t +k) (82 +E)(Tt* + 22kt2 — k )>.

32—k’ (3t2 — k)2
The substitution u = —2(t? + k)/(3t? — k) to the equation F,(T) = 0 gives
(3t2 — k)?
Ty =-2t, Th=——5—5~.
! ©OP T Rt + k)

After substitution into (2.1), we obtain the solutions of our equation f(z)f(y)
= f(2)? corresponding to Ty and Tb:

e _H(tt — 22k — Th?) Z:t(t2+5k:)

’ (3t2 — k)2 ’ g2 —k
I L e .
T ek 0 YT T T Ty "

The above theorem implies
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COROLLARY 2.2. For each f € Q[X]| with degf = 2, the equation
f(@)f(y) = f(2)? has infinitely many solutions in the field Q(t) of ratio-
nal functions.

3. The equation f(z)f(y) = f(2)? for f(X)= X(X?+ X +t). In this
section we will prove the following

THEOREM 3.1. Let t € Q and f(X) = X(X2+ X +1t). Then, for all but
finitely many t, the equation f(x)f(y) = f(2)? has infinitely many solutions
in rationals.

Proof. Let f(X) = X(X?+ X +1t), where t # 0,1/4. Now we define
(3.1) r=T, y=u’T, z=ul.
Then

F@)f(y) = f(2)? = (u—1)*T°Gu(T),
where G(T) = u?T? + t(u + 1)?T + t. As in the proof of Theorem 2.1,
it is sufficient to show that for infinitely many v € Q(¢), the equation
G4 (T) = 0 has roots in Q(¢). This is the case when the discriminant A(u) =
t2(u+1)* —4tu? of the polynomial G, is a square in the field Q(¢). Therefore,
consider the curve
(3.2) C:v?=t2(u+1)* — 4tu?
over the field Q(¢). The discriminant of the polynomial A equals D =
—212¢8(4¢t — 1) and D # 0 in Q(t). This means that the curve C is smooth.
Also note that the Q(¢)-rational point @ = (0,t) lies on C. If we treat @
as a point at infinity on C' and once again use the method from [1], we find
that C is birationally equivalent by means of the mapping
Y —21t? 2(X + 3t)
C3t(X —6t) 9t
to the elliptic curve with the Weierstrass equation
E:Y?=X3421%(3t — 1)X + 27t3(9t — 2).

Note that the point P = (6t, —27t2) lies on E. Now, if we specialize to t = 2,
we obtain the elliptic curve

Ey: Y2 = X34+ 540X + 3456

with the point P, = (12, —108). Points of finite order on the elliptic curve
y?> = 23 + ax + b, a,b € 7Z, have integer coordinates ([3, p. 177]), while
2P, = (—15/4,297/8); therefore, P» is not of finite order on Fs, which means
that P is not of finite order on E. Therefore, E is a curve of positive rank.
Hence, its set of Q(t)-rational points is infinite.

To obtain the statement of our theorem, we have to use Silverman’s
theorem ([3, p. 368]), which states that if E is an elliptic curve over Q(t)

u v=—tu+1)%+
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with positive rank, then for all but finitely many ¢y € Q, the curve Ej,
obtained from E by the specialization ¢ = ¢y has positive rank. From this
result we see that for all but finitely many ¢t € Q our initial problem has
infinitely many solutions in rationals. =

From the above theorem we obtain two interesting corollaries.

COROLLARY 3.2. Put f(X) = X(X%2+aX +b). Then, for all but finitely
many a,b € Z satisfying ab # 0 and if p|a, then p*1b, the equation f(z)f(y)
= f(2)? has infinitely many solutions in rationals.

Proof. Let F(X) = a3X(X? + X +t), where t = b/a®. Then f(X) =
F(X/a) and it suffices to show the statement for the polynomial F. From
Theorem 3.1, the diophantine equation F(z)F(y) = F(z)? has infinitely
many solutions in rationals for all but finitely many rational numbers ¢.

Let now tp = p/q be a rational number for which the curve Ey, from the
proof of Theorem 3.1 has rank zero. Are there only finitely many a,b such
that b/a? = p/q? Since (p,q) = 1, we then have p|b, b = pb; and a® = ¢b;.
For a fixed ¢, there are only finitely many a, b; satisfying this equation and
the condition that if s|a, then s?{b. Because there are only finitely many
possibilities for ¢y, there are only finitely many corresponding numbers a, b. =

REMARK 3.3. The condition that p|a implies p?{b, which appears in
the formulation of Corollary 3.2, is not very restrictive. Indeed, let f(X) =
X(X? + aX + b) and suppose a,b € Z do not satisfy this condition. Then
there exist integers r,a’,b’ such that a = ra’, b = 720’ and if p|ad’, then
p?1b'. It follows that for all but finitely many a’, b the equation h(z)h(y) =
h(2)?, where h(X) = X (X% + a’X + V), has infinitely many solutions in
rationals, say (x;,v;,2;) for ¢ = 1,2,.... Then the triples (x;/r,y;/r, zi/T)
fori=1,2,...solve f(z)f(y) = f(2)>

COROLLARY 3.4. If N € N, then there are infinitely many polynomi-
als [ € Q[X] of degree three without multiple roots such that the equation
f(@)f(y) = f(2)? has at least N solutions in integers.

Proof. Let f(X) = X(X?+ X +t) and t = p/q be such that the equation
f(x)f(y) = f(2)? has infinitely many solutions in rationals. From the previ-
ous theorem we know that all but finitely many ¢ € Q satisfy this condition.
Take N distinct rational solutions of our equation, say (p,;/q;,p./q.,p}/q!)
fori=1,...,N, and let

d= LCM(Q7 q1, Qia q/1,7 ERER) QN7q;\/'7qxf)

If we now define F(X) = X (X2 + dX +td?), then the equation F(x)F(y)
= F(z)? has solutions (dp,/q;,dp./q.,dp}/q!) for i = 1,..., N, which are
triples of integers. =



6 M. ULAS

4. A few questions. The results presented in the previous sections
lead to several interesting questions connected with the equation f(z)f(y)
= f(2).

QUESTION 4.1. Does there exist an irreducible polynomial f € Q[X] of
degree three such that the equation f(x)f(y) = f(2)? has infinitely many
solutions in rationals?

Corollary 3.4 says that for every N € N there exists a polynomial f such
that the equation f(z)f(y) = f(2)? has at least N solutions in integers. This
leads to the following

QUESTION 4.2. Does there exist a polynomial f € Q[X] of degree three
without multiple roots such that the equation f(z)f(y) = f(2)? has infinitely
many solutions in integers?

And finally

QUESTION 4.3. Does there exist a polynomial f € Q[X] of degree greater
than three without multiple roots such that the equation f(x)f(y) = f(2)?
has infinitely many solutions in rationals?
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