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ON THE DIOPHANTINE EQUATION f(x)f(y) = f(z)2BYMACIEJ ULAS (Kraków)Abstrat. Let f ∈ Q[X] and deg f ≤ 3. We prove that if deg f = 2, then thediophantine equation f(x)f(y) = f(z)2 has in�nitely many nontrivial solutions in Q(t).In the ase when deg f = 3 and f(X) = X(X2 + aX + b) we show that for all but�nitely many a, b ∈ Z satisfying ab 6= 0 and additionally, if p | a, then p2 ∤ b, the equation
f(x)f(y) = f(z)2 has in�nitely many nontrivial solutions in rationals.1. Introdution. Let f ∈ Q[X], deg f ≤ 3 and onsider the diophantineequation

f(x)f(y) = f(z)2.(1.1)We say that a triple of rationals x, y, z satisfying (1.1) is a nontrivialsolution if f(x) 6= f(y). Throughout, by a solution we mean a nontrivial one.It is easy to observe that solving (1.1) in rationals is equivalent to �ndingrationals x, y, z suh that f(x), f(z), f(y) form a geometri progression.The equation (1.1) for f(X) = X2 − 1 was examined in [2℄, where it wasproved that it has in�nitely many solutions in integers. Similar results wereobtained for polynomials of the form f(X) = X2 −a2 in [5℄, and of the form
f(X) = X2−a2+2b2 in [6℄, where a, b ∈ Z. In the above ases, by substituting
z = (x − y)/2 the problem was redued to the examination of Pell's typeequations. This method annot be used for an arbitrary polynomial of degreetwo, and it is natural to onsider whether weakening the assumption aboutthe solvability of (1.1) in integers will enable us to obtain new results in thisase, as well as in the ase when deg f > 2.It turns out that in the ase when deg f = 2, studying solvability of(1.1) in rationals an be redued to the examination of a ertain ellip-ti urve de�ned over the �eld Q(t). By means of this redution we willprove that (1.1) has in�nitely many solutions in Q(t) (Theorem 2.1, Corol-lary 2.2).2000 Mathematis Subjet Classi�ation: Primary 11D25, 11D41; Seondary 11G99.Key words and phrases: diophantine equations, ellipti urves, geometri progression.The author is a partiipant of a projet whih is o-�naned from the European SoialFund and Polish national budget within the Integrated Regional Operational Programme.[1℄



2 M. ULAS
In the ase when deg f = 3 and f(X) = X(X2 + aX + b), we will showthat for all but �nitely many a, b ∈ Z satisfying ab 6= 0, and additionally,if p | a, then p2 ∤ b, the equation (1.1) has in�nitely many solutions in ratio-nals (Theorem 3.1, Corollary 3.2). As in the ase of a polynomial of degreetwo, the problem is redued to the examination of a suitable ellipti urveover Q(t).2. The equation f(x)f(y) = f(z)2 for f(X) = X2 + k. In this setionwe prove the followingTheorem 2.1. Let k ∈ Z and f(X) = X2 + k. Then the equation

f(x)f(y) = f(z)2 has in�nitely many solutions in the �eld Q(t) of ratio-nal funtions.Proof. If k = 0 there is nothing to prove, so assume that k ∈ Z \ {0}.Let t be a variable and put
x = T + t, y = u2T + t, z = uT − t.(2.1)Then

f(x)f(y) − f(z)2 = (u + 1)2TFu(T ),where Fu(T ) = 2tu2T 2 + (u − 1)2(t2 + k)T + 2t(t2 + k).It is enough to show that the set of u ∈ Q(t) for whih the equation
Fu(T ) = 0 has roots in Q(t) is in�nite. Equivalently, the disriminant ∆(u) =
(t2 + k)2(u − 1)4 − 16t2(t2 + k)u2 of the polynomial Fu should be a squarein the �eld Q(t). For k ∈ Z \ {0} onsider the urve

Ck : v2 = (t2 + k)2(u − 1)4 − 16t2(t2 + k)u2(2.2)over Q(t). The disriminant of ∆ equals D = −220kt6(t2 + k)8 and D 6= 0for k ∈ Z \ {0}. This means that the urve Ck is smooth. Also note that the
Q(t)-rational point Q = (0, t2 + k) lies on Ck. If we treat Q as a point atin�nity on Ck and use the method desribed in [1, p. 77℄, we onlude that
Ck is birationally equivalent by means of the mapping

u =
Y + 108t2(t2 + k)2

(t2 + k)(3X − 72t2(t2 + k))
+ 1,

v = −(t2 + k)(u − 1)2 +
2X + 24t2(t2 + k)

9(t2 + k)to the ellipti urve with the Weierstrass equation
Ek : Y 2 = X3 − 108t2(t2 − 3k)(t2 + k)2X + 432t4(t2 + 9k)(t2 + k)3.We will prove that there are in�nitely many Q(t)-rational points on Ek.First reall that on the ellipti urve over Q(t) with the equation y2 =

x3 + a(t)x + b(t), where a, b ∈ Z[t], points of �nite order have oordinates
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in Z[t]. It is, therefore, enough to �nd a point lying on Ek with oordinatesnot in Z[t]. It is easy to notie that there is a point on Ek of the form
P = (24t2(t2 + k), 108t2(t2 + k)2).Using the rule of addition on Ek, we obtain the point

2P =

(

3

4
(t2 − 3k)(11t2 − k),

27

8
(3t2 − k)(t4 + 18kt2 + k2)

)

,and the point 3P = (p(t), q(t)), where
p(t) =

24t2(t2 + k)(13t8 − 364kt6 + 14k2t4 + 148k3t2 + 13k4)

(7t4 + 22kt2 − k2)2
,

q(t) =
108(t2−3k)(t3 +kt)2(5t2 +k)(t8 +612kt6−58k2t4 +100k3t2 +k4)

(7t4 +22kt2−k2)3
.It is enough to show that for k ∈ Z \ {0} the rational funtion p(t) is not apolynomial. To see this, note that the remainder of division of the numeratorof p by 7t4 + 22kt2 − k2 equals R = −2359296k5(4727t2 − 212k)/16807 and

R 6= 0 for k ∈ Z \ {0}. Hene, the X-oordinate of the point 3P is not apolynomial. Therefore, P is not of �nite order on Ek; hene, in�nitely many
Q(t)-rational points lie on our urve.Now it is an easy task to obtain the statement of our theorem. For
m = 2, 3, 4, . . . we alulate mP on the urve Ek; next, we alulate the or-responding point (u, v) on Ck and we solve the equation Fu(T ) = 0. We putthe alulated roots into (2.1) and obtain various rational funtion solutionsof our equation. As an example, onsider the point 2P . The orrespondingpoint on Ck is

(u, v) =

(

−
2(t2 + k)

3t2 − k
,
(t2 + k)(7t4 + 22kt2 − k2)

(3t2 − k)2

)

.The substitution u = −2(t2 + k)/(3t2 − k) to the equation Fu(T ) = 0 gives
T1 = −2t, T2 = −

(3t2 − k)2

8t(t2 + k)
.After substitution into (2.1), we obtain the solutions of our equation f(x)f(y)

= f(z)2 orresponding to T1 and T2:
x = −t, y =

t(t4 − 22kt2 − 7k2)

(3t2 − k)2
, z =

t(t2 + 5k)

3t2 − k
,

x = −
t4 − 14kt2 + k2

8t(t2 + k)
, y =

t2 − k

2t
, z = −

t2 + k

4t
.The above theorem implies
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Corollary 2.2. For eah f ∈ Q[X] with deg f = 2, the equation

f(x)f(y) = f(z)2 has in�nitely many solutions in the �eld Q(t) of ratio-nal funtions.3. The equation f(x)f(y) = f(z)2 for f(X) = X(X2 +X + t). In thissetion we will prove the followingTheorem 3.1. Let t ∈ Q and f(X) = X(X2 +X + t). Then, for all but�nitely many t, the equation f(x)f(y) = f(z)2 has in�nitely many solutionsin rationals.Proof. Let f(X) = X(X2 + X + t), where t 6= 0, 1/4. Now we de�ne
x = T, y = u2T, z = uT.(3.1)Then

f(x)f(y) − f(z)2 = (u − 1)2u2T 3Gu(T ),where Gu(T ) = u2T 2 + t(u + 1)2T + t. As in the proof of Theorem 2.1,it is su�ient to show that for in�nitely many u ∈ Q(t), the equation
Gu(T ) = 0 has roots in Q(t). This is the ase when the disriminant ∆(u) =
t2(u+1)4−4tu2 of the polynomial Gu is a square in the �eld Q(t). Therefore,onsider the urve

C : v2 = t2(u + 1)4 − 4tu2(3.2)over the �eld Q(t). The disriminant of the polynomial ∆ equals D =
−212t8(4t − 1) and D 6= 0 in Q(t). This means that the urve C is smooth.Also note that the Q(t)-rational point Q = (0, t) lies on C. If we treat Qas a point at in�nity on C and one again use the method from [1℄, we �ndthat C is birationally equivalent by means of the mapping

u =
Y − 27t2

3t(X − 6t)
− 1, v = −t(u + 1)2 +

2(X + 3t)

9tto the ellipti urve with the Weierstrass equation
E : Y 2 = X3 + 27t2(3t − 1)X + 27t3(9t − 2).Note that the point P = (6t,−27t2) lies on E. Now, if we speialize to t = 2,we obtain the ellipti urve

E2 : Y 2 = X3 + 540X + 3456with the point P2 = (12,−108). Points of �nite order on the ellipti urve
y2 = x3 + ax + b, a, b ∈ Z, have integer oordinates ([3, p. 177℄), while
2P2 = (−15/4, 297/8); therefore, P2 is not of �nite order on E2, whih meansthat P is not of �nite order on E. Therefore, E is a urve of positive rank.Hene, its set of Q(t)-rational points is in�nite.To obtain the statement of our theorem, we have to use Silverman'stheorem ([3, p. 368℄), whih states that if E is an ellipti urve over Q(t)
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with positive rank, then for all but �nitely many t0 ∈ Q, the urve Et0obtained from E by the speialization t = t0 has positive rank. From thisresult we see that for all but �nitely many t ∈ Q our initial problem hasin�nitely many solutions in rationals.From the above theorem we obtain two interesting orollaries.Corollary 3.2. Put f(X) = X(X2 +aX +b). Then, for all but �nitelymany a, b ∈ Z satisfying ab 6= 0 and if p | a, then p2 ∤ b, the equation f(x)f(y)
= f(z)2 has in�nitely many solutions in rationals.Proof. Let F (X) = a3X(X2 + X + t), where t = b/a2. Then f(X) =
F (X/a) and it su�es to show the statement for the polynomial F . FromTheorem 3.1, the diophantine equation F (x)F (y) = F (z)2 has in�nitelymany solutions in rationals for all but �nitely many rational numbers t.Let now t0 = p/q be a rational number for whih the urve Et0 from theproof of Theorem 3.1 has rank zero. Are there only �nitely many a, b suhthat b/a2 = p/q? Sine (p, q) = 1, we then have p | b, b = pb1 and a2 = qb1.For a �xed q, there are only �nitely many a, b1 satisfying this equation andthe ondition that if s | a, then s2 ∤ b. Beause there are only �nitely manypossibilities for t0, there are only �nitely many orresponding numbers a, b.Remark 3.3. The ondition that p | a implies p2 ∤ b, whih appears inthe formulation of Corollary 3.2, is not very restritive. Indeed, let f(X) =
X(X2 + aX + b) and suppose a, b ∈ Z do not satisfy this ondition. Thenthere exist integers r, a′, b′ suh that a = ra′, b = r2b′ and if p | a′, then
p2 ∤ b′. It follows that for all but �nitely many a′, b′ the equation h(x)h(y) =
h(z)2, where h(X) = X(X2 + a′X + b′), has in�nitely many solutions inrationals, say (xi, yi, zi) for i = 1, 2, . . . . Then the triples (xi/r, yi/r, zi/r)for i = 1, 2, . . . solve f(x)f(y) = f(z)2.Corollary 3.4. If N ∈ N+, then there are in�nitely many polynomi-als f ∈ Q[X] of degree three without multiple roots suh that the equation
f(x)f(y) = f(z)2 has at least N solutions in integers.Proof. Let f(X) = X(X2 +X +t) and t = p/q be suh that the equation
f(x)f(y) = f(z)2 has in�nitely many solutions in rationals. From the previ-ous theorem we know that all but �nitely many t ∈ Q satisfy this ondition.Take N distint rational solutions of our equation, say (p

i
/q

i
, p′

i
/q′

i
, p′′

i
/q′′

i
)for i = 1, . . . , N , and let

d = LCM(q, q1, q
′

1, q
′′

1 , . . . , qN , q′N , q′′N ).If we now de�ne F (X) = X(X2 + dX + td2), then the equation F (x)F (y)
= F (z)2 has solutions (dp

i
/q

i
, dp′

i
/q′

i
, dp′′

i
/q′′

i
) for i = 1, . . . , N , whih aretriples of integers.
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4. A few questions. The results presented in the previous setionslead to several interesting questions onneted with the equation f(x)f(y)

= f(z)2.Question 4.1. Does there exist an irreduible polynomial f ∈ Q[X] ofdegree three suh that the equation f(x)f(y) = f(z)2 has in�nitely manysolutions in rationals?Corollary 3.4 says that for every N ∈ N there exists a polynomial f suhthat the equation f(x)f(y) = f(z)2 has at least N solutions in integers. Thisleads to the followingQuestion 4.2. Does there exist a polynomial f ∈ Q[X] of degree threewithout multiple roots suh that the equation f(x)f(y) = f(z)2 has in�nitelymany solutions in integers?And �nallyQuestion 4.3. Does there exist a polynomial f ∈ Q[X] of degree greaterthan three without multiple roots suh that the equation f(x)f(y) = f(z)2has in�nitely many solutions in rationals?Aknowledgments. I would like to thank the anonymous referee forhis valuable omments and Professors A. Shinzel and K. Rusek for remarksimproving the presentation.
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