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AN OVERDETERMINED ELLIPTIC PROBLEM IN A DOMAINWITH COUNTABLY RECTIFIABLE BOUNDARYBYPRZEMYS�AW GÓRKA (Warszawa)Abstrat. We examine an ellipti equation in a domain Ω whose boundary ∂Ω isountably (m−1)-reti�able. We also assume that ∂Ω satis�es a geometrial ondition. Weare interested in an overdetermined boundary value problem (examined by Serrin [Arh.Ration. Meh. Anal. 43 (1971)℄ for lassial solutions on domains with smooth boundary).We show that existene of a solution of this problem implies that Ω is an m-dimensionalEulidean ball.1. Introdution. We shall study the following boundary value problem:
∆u = − 1 in Ω,

u = 0 on ∂Ω,

∂u

∂ν
= − crβ on ∂Ω,where r =

√
x2

1 + · · · + x2
m, c, β are onstants and β = 0 or 1. Our goal is toshow that if Ω is an open bounded subset of R

m and there exists u ∈ H̃2(Ω)whih satis�es the above system then Ω must be a Eulidean ball. This prob-lem has been studied by many authors (Serrin, Prajapat, Amdeberhan andothers). Our ontribution is a weakening of the assumptions on the boundary
∂Ω as well as on the solution.We now introdue our hypothesis on ∂Ω. We assume that ∂Ω is ount-ably (m − 1)-reti�able, namely ∂Ω is a union of ountably many Lipshitzmanifolds plus an exeptional set of Hm−1 measure zero. In addition, we as-sume that the measureHm−1 restrited to ∂Ω has a speial behavior, namely
Hm−1(∂Ω ∩ B(x, r)) ∼ rm−1.The de�nition of the Sobolev spaes H̃2(Ω) will be realled later. Here weexplain the meaning of the normal derivative ∂u/∂ν. The expression ∂u/∂νmay be understood as the trae on Lipshitz manifolds; it is well de�ned
Hm−1 almost everywhere (this is a orollary of Rademaher's theorem, see[23℄, [5℄).2000 Mathematis Subjet Classi�ation: 35N99, 35J05, 28A99.Key words and phrases: ountably reti�able sets, integration by parts, overdeterminedproblem, potential theory, geometri measure theory.[7℄
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Let us reall the history of this problem. The �rst fundamental ontribu-tion is due to Serrin [15℄. He obtained the above result for β = 0 assumingthat u ∈ C2(Ω) and ∂Ω is smooth (see [15, Theorem 1℄). In the same volumeof the Arhive for Rational Mehanis and Analysis, Weinberger publisheda short proof of Serrin's result (see [22℄). In fat, Serrin showed this re-sult for more general ellipti equations. In 1998, the assumption on ∂Ω wasweakened by Prajapat (see [14℄). He assumed that ∂Ω is Lipshitz with pos-sibly one orner or usp. Later, Amdeberhan [2℄ onsidered β = 1, Ω withsmooth boundary and u ∈ C2(Ω). Kawohl and others (see [6℄) examinedoverdetermined boundary value problems for degenerate ellipti equationson star-shaped or simply onneted (m = 2) domains under the assump-tion that ∂Ω is of lass C2,α. In partiular, this inludes equations with the

p-Laplaian.Our method of proof relies on the integration by parts formula on do-mains with geometrially admissible boundaries for funtions from Sobolevspaes. The de�nition of geometrially admissible set will be provided below.Roughly speaking, we ompute the trae using a result of Triebel (see [21,Corollary 9.8℄). Then we show the main theorem. Our method of proof issimilar to that used in [2℄ (ase β = 1) and [22℄ (ase β = 0) for funtionsfrom Sobolev spaes. It is worth notiing that Amdeberhan [2℄ and Wein-berger [22℄ applied elementary arguments. Serrin used the so-alled �movingplanes method� and Aleksandrov's theorem (see [1℄): every embedded surfaein R
m with onstant mean urvature must be a sphere.Before going to the next setion we disuss physial motivations for theproblem. Following [15℄ we present a few examples. Let us onsider a vis-ous inompressible �uid moving in straight parallel streamlines through astraight pipe of given ross setional form Ω. If we �x retangular oordi-nates in spae with the z-axis direted along the pipe, it is well known thatthe �ow veloity u is then a funtion of (x, y) alone satisfying the Poissondi�erential equation (for m = 2)

∆u = −A in Ω,where A is a onstant related to the visosity and density of the �uid and tothe rate of hange of pressure per unit length along the pipe. Supplementaryto the di�erential equation one has the adherene ondition
u = 0 on ∂Ω.Finally, the tangential stress per unit area on the pipe wall is given by thequantity ν∂u/∂n, where ν is the visosity. Our result states that the tangen-tial stress on the pipe wall is the same at all points of the wall if and only ifthe pipe has irular ross setion.Notie that our result an be applied to weaken the assumptions in Propo-sition 5.4 of [7℄. Indeed, the authors of that paper used Serrin's result under
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the assumption that the boundary is smooth. But the assumption that theboundary is not smooth is more natural from the rystalline geometry pointof view onsidered there.Exatly the same di�erential equation and boundary ondition arise inthe linear theory of torsion of a solid straight bar of ross setion Ω (see [17℄).Our theorem states that, when a solid straight bar is subjet to torsion, themagnitude of the resulting tration at the surfae of the bar is independentof the position if and only if the bar has irular ross setion. In our ase, i.e.for a ountably reti�able set, we an interpret this result in the followingmanner. In the lass of bars whose boundaries are not regular (ountablyreti�able) there exists exatly one bar suh that the tration at the surfaeof the bar is independent of the position.Before we present the main result we reall known de�nitions and makesome omments. We use the standard notation Hm for the m-dimensionalHausdor� measure. We reall (see [3℄) that a Borel set S ⊂ R
l is ountably

m-reti�able if there is a sequene of Lipshitz maps
fi : Ei ⊂ R

m → R
l,suh that

S =

∞⋃

i=1

fi(Ei) ∪ Band Hm(B) = 0.

Fig. 1Figure 1 represents an example of a ountably 1-reti�able set (some-times alled the Warsaw irle). Notie that from the MShane lemma (anyLipshitz map on a losed subset an be extended to a Lipshitz map on thewhole spae) we an take Ei = R
m (see [4℄, [10℄, [11℄).

Remark 1. It is well known that the above de�nition is equivalent tothe de�nition where we replae Lipshitz maps fi by maps of lass C1 (see[5℄, [16℄).However, it turns out that the lass of ountably reti�able sets is toobroad. We will onsider sets with an additional property. Namely we shall alla ountably (m− 1)-reti�able set S ⊂ R
l (m− 1)-geometrially admissibleif there exists C > 0 suh that for any x ∈ S and r ∈ (0, 1/2),

C−1rm−1 ≤ Hm−1(B(x, r) ∩ S) ≤ Crm−1,
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where B(x, r) is the m-dimensional ball. This ondition will be denoted by
Hm−1(B(x, r) ∩ S) ∼ rm−1.
Remark 2. One an show that if S ⊂ R

m is bounded and ∂S is (m−1)-geometrially admissible, then Hm−1(∂S) < ∞.
Remark 3. It is easy to notie that not every ountably reti�able setis geometrially admissible. A good example is the Warsaw irle (see Fig-ure 1). Another example shown in Figure 3. It is taken from Nikodym'spaper [13℄. The Warsaw irle and Nikodym's example are similar in somesense. Nie examples an be found in the book of Maz'ya [12, Chapter 1,Example 2℄. From this monograph we have taken an example of a set whihis geometrially admissible (see Figure 2).

y y

x
Figure 2 Figure 3

xFig. 2 Fig. 3Let us reall the de�nition of Sobolev spaes H̃s(Ω) (see [9℄). For everypositive s we denote by H̃s(Ω) the spae of all u de�ned in Ω suh that
ũ ∈ Hs(Rm) where ũ is the ontinuation of u by zero outside Ω. We de�nea Hilbert norm on H̃s(Ω) by

‖u‖
H̃s(Ω)

= ‖ũ‖Hs(Rm).

2. The main result. First we formulate and prove a version of theintegration by parts formula. The main point is to weaken the assump-tions on ∂Ω. This result is our basi tool. The di�ulty is in the proofof the integration by parts formula. The geometri admissibility ondition(Hm−1(B(x, r) ∩ S) ∼ rm−1) is essential in order to ompute the trae anduse the result from [21℄.Theorem 1. Suppose u ∈ H̃2(Ω) and v ∈ H̃1(Ω), where Ω is a boundedopen subset of R
m. Assume that ∂Ω is (m − 1)-geometrially admissible.Then \

Ω

v∆udHm(x) = −
\
Ω

∇u∇v dHm(x) +
\

∂Ω

v
∂u

∂ν
dHm−1(x).
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Proof. First, note that if u ∈ C∞(Ω)∩ H̃2(Ω) and v ∈ C∞(Ω)∩ H̃1(Ω),then the formula holds. Indeed, the exeptional set has measure zero and weare dealing with smooth maps (see [23℄ and [5℄).Next, we prove the following lemma.Lemma 1. If u ∈ H̃2(Ω) and v ∈ H̃1(Ω), then there exists a onstant csuh that \
∂Ω

∣∣∣∣v
∂u

∂ν

∣∣∣∣ dHm−1(x) ≤ c‖v‖
H̃1(Ω)

‖u‖
H̃2(Ω)

.

Proof. We apply a result of Triebel [21, Corollary 9.8℄. In order to explainit, we de�ne a Radon measure ν on R
m by

ν(A) = Hm−1(∂Ω ∩ A).It is easy to see that supp ν = ∂Ω, and indeed from Remark 2 we infer that
ν is a Radon measure.Now we have to hek that the assumptions of Corollary 9.8 from [21℄ aresatis�ed. Indeed, by taking s = 1, p = 2, r = 2, d = m − 1 in [21, Corollary9.8℄, it is easy to hek that

ν(B(x, r)) ∼ rd, ν(2Qνl) ≤ c2−ν(m−1), s − m/p > −d/r,where Qνl is the ube in R
m with sides parallel to the axes, entered at 2−ν l,and with side length 2−ν . Here l ∈ Z

m and ν ∈ N0.Triebel's result already mentioned ([21, Corollary 9.8℄) says that if theabove onditions are satis�ed then there exists a trae operator
Tr∂Ω : F s

p,q(R
m) → Lr(∂Ω).Reall that W s,p(Rm) = F s

p,2(R
m), where F s

p,2 are the Lizorkin�Triebelspaes. Hene, we obtain a sequene of inequalities\
∂Ω

∣∣∣∣v
∂u

∂ν

∣∣∣∣ dHm−1(x) ≤ c‖ṽ‖F 1

2,2
(Rm)‖∇ũ‖F 1

2,2
(Rm)

≤ c‖ṽ‖H1(Rm)‖∇ũ‖H1(Rm) ≤ c‖v‖
H̃1(Ω)

‖u‖
H̃2(Ω)

,where we applied the Shwarz inequality. From this the lemma follows.Now, we an return to the proof of the theorem. Reall from [9℄ that
C∞(Ω) ∩ H̃2(Ω)

H̃2(Ω)
= H̃2(Ω), C∞(Ω) ∩ H̃1(Ω)

H̃1(Ω)
= H̃1(Ω).Take any u ∈ H̃2(Ω) and v ∈ H̃1(Ω). Next, �x ε > 0 and hoose vε ∈

C∞(Ω) ∩ H̃1(Ω) and uε ∈ C∞(Ω) ∩ H̃2(Ω) suh that
‖vε − v‖

H̃1(Ω)
≤ ε, ‖uε − u‖

H̃2(Ω)
≤ ε.
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These funtions satisfy\

Ω

vε∆uε dHm(x) = −
\
Ω

∇uε∇vε dHm(x) +
\

∂Ω

vε
∂uε

∂ν
dHm−1(x).(1)Applying the Shwarz inequality and the above lemma one an show thefollowing inequalities:

∣∣∣
\
Ω

vε∆uε dHm(x) −
\
Ω

v∆udHm(x)
∣∣∣ ≤ Mε,

∣∣∣
\
Ω

∇uε∇vε dHm(x) −
\
Ω

∇u∇v dHm(x)
∣∣∣ ≤ Mε,

∣∣∣
\

∂Ω

vε
∂uε

∂ν
dHm−1(x) −

\
∂Ω

v
∂u

∂ν
dHm−1(x)

∣∣∣ ≤ cMε.Finally, we an let ε → 0 under the integrals in (1) to obtain\
Ω

v∆udHm(x) = −
\
Ω

∇u∇v dHm(x) +
\

∂Ω

v
∂u

∂ν
dHm−1(x).This ends the proof of the theorem.

Remark 4. The onlusion of the above theorem is true if we assumethat v ∈ H̃1(Ω) and u ∈ Ẽ(∆, L2(Ω)), where Ẽ(∆, L2(Ω)) = {u ∈ H̃1(Ω) :
∆ũ ∈ L2(Rm)}. This follows from the fat that ∂2ũ/∂xi∂xk = −RiRk∆ũ(see [18℄, [19℄). But in the next theorem we need H2 regularity in order toapply the maximum priniple.Now, we an formulate the main result of this paper. We may view thetheorem below as a generalization of Prajapat's result [14℄ for the overdeter-mined problem for Lipshitz domains with usps. Indeed, ountably reti�-able sets have ountably many usps.Theorem 2. Suppose that Ω is a bounded open subset of R

m suh that
∂Ω is (m− 1)-geometrially admissible. If there exists a solution u ∈ H̃2(Ω)of the problem

∆u = − 1 in Ω

u = 0 on ∂Ω

∂u

∂ν
= − crβ on ∂Ω,where r =

√
x2

1 + · · · + x2
m and c, β are onstants and β = 0 or 1, then Ω isan m-dimensional Eulidean ball.Proof. Our method of proof is similar to [2℄ (ase β = 1) and [22℄ (ase

β = 0). We refer the reader to those papers for details.
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It is easy to see that the assumptions of Theorem 2 imply that ([2, Lem-ma 1℄ for β = 1) \
Ω

u dHm(x) = c2
\
Ω

r2 dHm(x),(2)and also that ([22℄ for β = 0)
(m + 2)

\
Ω

u dHm(x) = mc2Hm(Ω),(3)where we applied Theorem 1.It is not hard to see that the expressions
(

∂u

∂ν

)2

− c2r2 for β = 1,

(
∂u

∂ν

)2

+
2

m
u for β = 0are onstants on ∂Ω, whih is a onsequene of the boundary onditions.Next from the weak maximum priniple (see [8, notes in Chapter 8℄ or [20,Appendix B℄) and identity (2) (respetively (3)), we dedue that these ex-pressions are onstants in Ω. From this we obtain

∂2u

∂xi∂xj
= −

1

m
δij .So the solution of our equation takes the form

u = c −
r2

2m
.Sine u vanishes on ∂Ω and has radial symmetry we onlude that Ω is aball.Finally, let us state some open questions. Is it possible to weaken furtherthe assumptions on ∂Ω? Is geometri admissibility really neessary?Aknowledgements. I would like to thank Professor Piotr Rybka forhis omments and suggestions. I also thank Professor Paweª Strzeleki andProfessor Dariusz Wrzosek for reading a preliminary version of this manu-sript. I thank my wife Maªgosia for making the �gures and the referee for hissuggestions. The author was partially supported by KBN grant 1 P03A 37 28.
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