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DIRICHLET FORMS ON QUOTIENTS OF SHIFT SPACESBYMANFRED DENKER (Göttingen), ATSUSHI IMAI (Osaka)and SUSANNE KOCH (Hamburg)Abstrat. We de�ne thin equivalene relations ∼ on shift spaes A
∞ and deriveDirihlet forms on the quotient spae Σ = A

∞/∼ in terms of the nearest neighbour aver-aging operator. We identify the assoiated Laplae operator. The onditions are appliedto some non-self-similar extensions of the Sierpi«ski gasket.1. Introdution. A fratal set is ommonly de�ned as a ompat subset
K of some Polish spae Ω with a �xed metri d satisfying

K =
⋃

i∈A

Fi(K),

where Fi : Ω → Ω, i ∈ A = {1, . . . , s} (s ∈ N), are ontinuous maps ([10℄).In many ases, for example when all Fi are ontrations, the fratal set Khas a representation as a (ontinuous) fator of the one-sided shift spae A ∞suh that eah diagram
A ∞ Si−−−−→ A ∞

Π

y
yΠ

K
Fi−−−−→ Kommutes, where Π is ontinuous and Si : A ∞ → A ∞ maps an in�nitesequene x1, x2, . . . to the sequene i, x1, x2, . . . .The fratal set K is alled self-similar if for eah i ∈ A and all x, y ∈ Ω,

d(Fi(x), Fi(y)) = rid(x, y)for some ri ∈ (0, 1), and it is alled post-ritially �nite if it is onneted andthere exists a �nite boundary set V0 ⊂ K suh that
Fi(K) ∩ Fj(K) = Fi(V0) ∩ Fj(V0) ⊂ Ω \ V0 (i 6= j)2000 Mathematis Subjet Classi�ation: Primary 28A80; Seondary 60J45, 37B10.Key words and phrases: Dirihlet form, Laplae operator, shift spae.Researh supported by Deutshe Forshungsgemeinshaft, Foundation for Polish Si-ene and KAKENHI's (13009857) and (14654031).[57℄
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and eah point in V0 is a �xed point for some map Fl. For post-ritially �niteself-similar fratal sets the fator map is an almost topologial isomorphismin the sense of [1℄, hene all Bernoulli measures µ on A ∞ an be onsideredon the quotient spae. For suh fratal sets and L2-spaes the onstrutionof Dirihlet forms has been investigated by several authors (f. [10℄).In what follows we onsider the abstrat setting of the diagram disre-garding the motivation arising from fratal geometry. We are interested inderiving Dirihlet forms on L2(µ) whih are determined by the equivalenerelation given by the preimage relation of Π, thus extending previous on-strutions to non-fratal settings, and ontinuing our previous investigationsin [2℄�[5℄ and [7℄.In order to desribe the general framework of the present paper, onsideran equivalene relation on the spae of all in�nite sequenes of letters from a�nite alphabet. This relation does not need to be shift invariant, as it is thease for post-ritially �nite fratal sets. We only onsider those relationsfor whih the Bernoulli measure with uniform marginals an be regardedas a probability measure on the quotient spae. The representation by se-quene spaes de�nes balls in a natural way and operators averaging overmidpoints of neighbouring balls (in the quotient topology). This will be usedto onstrut Dirihlet forms E on the L2-spae of the Bernoulli measure µ.We reall the de�nition of a Dirihlet form. Let Ω be a loally ompatseparable Hausdor� spae and µ be a positive Radon measure on Ω forwhih Supp(µ) = Ω. A Dirihlet form E on L2(Ω,µ) is a non-negativede�nite symmetri bilinear form de�ned on a dense linear subspae Dom[E ] ⊂
L2(Ω,µ), for whih the following properties hold:(1) E is losed, i.e. Dom[E ] is omplete with respet to the metri whihis indued by the form E1(f, g) := E(f, g) +

T
Ω fg dµ, f, g ∈ Dom[E ],(2) E is Markovian, i.e. for eah ε > 0, there exists a real funtion φεon R suh that

• φε(t) = t on [0, 1], −ε ≤ φε(t) ≤ 1+ε on R and 0 ≤ φε(t̃ )−φε(t) ≤

t̃− t for all t < t̃,
• for f ∈ Dom[E ] also φε ◦f ∈ Dom[E ] and E(φε◦f, φε ◦f) ≤ E(f, f).The onstrution losely follows Friedrihs' extension proedure (see [6℄),starting with a su�iently rih lass of funtions on whih the above averag-ing operator is de�ned. We show that this symmetri form is Markovian andlosable, thus extending to a Dirihlet form. In fat, we formulate this resultfor an abstrat measure m whih may be the sum of the Bernoulli measure

µ and a boundary measure ν. Suh a splitting admits a deomposition
Em(φ, ψ) = Eµ(φ, ψ) + Eν(φ, ψ)of the orresponding Dirihlet forms for ertain ontinuous funtions, whih



DIRICHLET FORMS 59

may be regarded as a generalized Green's formula. In partiular, we thusobtain the Dirihlet and Neumann extensions.By the spetral theory for self-adjoint operators the Laplaian ∆ assoi-ated to a Dirihlet form is well de�ned by
E̺(φ, ψ) = −

\
∆(φ) · ψ d̺, ̺ ∈ {m,µ, ν},whene the right hand side represents the lassial �di�erential� operator for

̺ = µ and the negative of the Neumann derivative for ̺ = ν. Sine theBeurling�Deny onditions must be satis�ed, we also see that for all t > 0the operators e−t∆ are positivity-preserving, and onsequently, de�ne a re-versible Markov proess ([6℄) whih may be onsidered as Brownian motionon the quotient spae.In order to illustrate these ideas and de�nitions, onsider Ω the unitinterval [0, 1] and let A = {0, 1}. The equivalene relation x1 . . . xn0111 · · · ∼
x1 . . . xn1000 . . . de�nes the dyadi representation of reals in [0, 1] (A ∞/∼is isomorphi to Ω). A Dirihlet form on the L2-spae of Lebesgue measureis given by

E (u, v) =
\
u′(x)v′(x) dx = −

\
u′′(x)v(x) dx+ u′(1)v(1) − u′(0)v(0)(u ∈ C2([0, 1]), v ∈ C1([0, 1])) with assoiated Laplae operator ∆u = u′′.This also illustrates the idea behind the analysis for the Sierpi«ski gasket in

N dimensions in Setion 6.In Setion 2 we set up the notations, assumptions and neessary de�ni-tions. Setion 3 ontains the basi result (Theorem 1) whih gives onditionsfor the existene of a Dirihlet form on the spae of square-integrable fun-tions on the quotient spae. In Setion 4 we prove a Gauss�Green formulafor the Laplae operator de�ned by this Dirihlet form. An example of anequivalene relation is onsidered in Setion 5. We onstrut a suitable denseset of funtions satisfying the assumptions of the main theorem and for theexistene of the �di�erentiable� form of the Laplae operator. Appliationsare given in Setion 6. The method immediately applies to the Sierpi«ski gas-ket and we derive as a speial ase Kigami's Laplae operator ([9℄). Other,new examples are also obtained in Setion 6.Aknowledgements. We would like to thank the referee for a are-ful reading of the original manusript and drawing our attention to severalunlear statements.2. Preliminaries. Consider a �nite alphabet A := {1, . . . , N}, N ≥ 2.The spae of �nite words over A is de�ned by T = {w = w1 . . . wn :
1 ≤ wj ≤ N, n ∈ N} ∪ {∅}, where ∅ is the empty word onsisting of noletter. Set T+ = T \ {∅}. For 0 ≤ n ≤ ∞, let A n denote the olletion of
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words onsisting of n symbols. The spae T ∪A ∞ has a metrizable, naturaltopology. For x ∈ A n and 0 ≤ n ≤ ∞, the length of a word is de�nedby d(x) := n. If w = w1 . . . wn is a �nite word, set w

− = w1 . . . wn−1. Wedenote by τ(w) := wn the last letter of w. The produt of w = w1 . . . wn
∈ T and x = x1x2 . . . ∈ T ∪ A ∞ is de�ned by wx := w1 . . . wnx1x2 . . . ∈
T ∪ A ∞. Moreover, the nth power of a letter is de�ned by

an :=

{
∅ if n = 0,
n times︷ ︸︸ ︷
a . . . a otherwise,where 0 ≤ n ≤ ∞ and a ∈ A .If ∼ is an equivalene relation, we denote by 〈x〉 the equivalene lass of

x ∈ A ∞ and by
Π : A

∞ → Σ = A
∞/∼the quotient map Π onto the quotient spae Σ.Definition 1. An equivalene relation ∼ on A ∞ is alled thin if thereis an embedding γ : T+ → Σ suh that(1) γ(T+) ontains all points in Σ whih, as an equivalene lass, are ofardinality ≥ 2.(2) Equivalene lasses are �nite and of uniformly bounded ardinalitywith upper bound R ∈ N.(3) For every x = x1x2 . . . ∈ A ∞ we have

lim
n→∞

γ(x1 . . . xn) = 〈x〉 ∈ Σ.If ∼ is a thin equivalene relation the quotient spae is metrizable, andwe �x a metri d to desribe the quotient topology on Σ.If ϕ ∈ C(Σ) we write ϕγ = ϕ ◦ γ. A thin equivalene relation de�nes anequivalene relation on T by setting
w ∼ v if and only if d(w) = d(v) and γ(w) = γ(v).The equivalene lass of v will be denoted by 〈v〉 ⊂ T . For a �nite word

w ∈ A n de�ne
[w] = {ξ ∈ Σ : ∃x ∈ ξ suh that w = x1 . . . xn}.For example, the Sierpi«ski equivalene relation is de�ned by x = x1x2 . . . ∼

y = y1y2 . . . if there is an n ∈ N suh that xm = ym for all 1 ≤ m ≤ n − 1,
xn+k = yn and yn+k = xn for all k ≥ 1, and the embedding is γ(w) =
〈w1 . . . wd(w)w

∞
d(w)〉. This equivalene relation has been studied by Denkerand Sato in [4℄ and by Denker and Koh in [2℄. In ase N = 2 it reduesto the dyadi representation of reals in the unit interval. Imai onsideredanother equivalene relation for the pentakun in [7℄.
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Lemma 1. If ∼ is a thin equivalene relation, then the Bernoulli measure
µ on A ∞ with uniformly distributed 1-dimensional marginals is mapped to
{〈ξ〉 ∈ Σ : |〈ξ〉| = 1} via the map x 7→ 〈x〉. Denote this image measure alsoby µ.Let w ∈ T+ and ϕ ∈ C(Σ) and de�ne the operator D : C(Σ) → C(T+)by

(Dϕ)(w) :=
1

N

∑

i∈A

ϕγ(w
−i) − ϕγ(w).Let ̺ = (̺n)n∈N be a sequene of stritly positive reals onverging tozero. Call a funtion ψ ∈ C(Σ) ̺-ontinuous if there exists a onstant cψsatisfying

|ψ(Π(ux)) − ψ(Π(uy))| ≤ cψ̺n, d(u) = n,and let D̺ denote the subspae onsisting of these funtions.3. Dirihlet forms on quotient spaes. In this setion we onsider athin equivalene relation on A ∞ and derive onditions for the existene ofertain Dirihlet forms on L2-spaes of measures on Σ.To begin with, note the following easy fat:Lemma 2. For any two funtions ϕ, ψ : Σ → R,
∑

w∈A n

1

|〈w〉|

{ ∑

v∈〈w〉

(Dϕ)(v)
}
ψγ(w) =

∑

w∈A n

(Dϕ)(w)ψγ(w)

= −
∑

w∈A n

(Dϕ)(w)(Dψ)(w).Proof. Sine v ∼ w ⇒ γ(v) = γ(w), the laim follows easily from
∑

w∈A n

1

|〈w〉|

{ ∑

v∈〈w〉

(Dϕ)(v)
}
ψγ(w) =

∑

w∈A n

1

|〈w〉|

∑

v∈〈w〉

(Dϕ)(v)ψγ(v)

=
∑

v∈A n

(Dϕ)(v)ψγ(v),and ∑

v∈A n

(Dϕ)(v)
1

N

∑

a∈A

ψγ(v
−a) = 0.For all n ∈ N, let In denote a positive real onstant and let ̺ = (̺n)n∈N.Let m,mn denote probability measures on Σ suh that mn([w]) ∈ (0,∞]for w ∈ A n and mn onverges weakly to m. De�ne α : T+ → R+ by

α(w) = 1/md(w)([w]). For ϕ ∈ C(Σ) and n ∈ N, let
‖ϕ‖2

α,n :=
∑

w∈A n

ϕγ(w)2α(w)−1.
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It follows that

lim
n→∞

∑

w∈A n

ϕγ(w)2α(w)−1 = ‖ϕ‖L2(m).Proposition 1. Let D denote the set of all funtions φ ∈ D̺ suh that
lim
n→∞

I2
n

∑

w∈A n, a∈A

α(w)(φγ(w) − φγ(w
−a))4 <∞,(3.1)

sup
n∈N

I2
n

∑

w∈A n

α(w)

(
1

|〈w〉|

∑

v∈〈w〉

(Dφ)(v)

)2

<∞.(3.2)
Then D is a linear subspae of L2(µ), and for any funtion φ ∈ D andany twie di�erentiable funtion g : R → R with bounded �rst and seondderivatives, also g ◦ φ ∈ D. Moreover , for all φ ∈ D there exists a onstant
Cφ suh that for any ψ ∈ C(Σ) and n ∈ N,(3.3) ∣∣∣In

∑

w∈A n

(Dφ)(w)ψγ(w)
∣∣∣ ≤ Cφ‖ψ‖α,n.Proof. Clearly, D is a linear subspae.Let φ ∈ D and g : R → R be a twie di�erentiable funtion with bounded�rst and seond derivative. By the mean value property of g it follows for

v,w ∈ T that
|g(φγ(w)) − g(φγ(v))| ≤ ‖g′‖∞|φγ(w) − φγ(v)|,hene g ◦ φ ∈ D̺, and moreover, ondition (3.1) holds for g ◦ φ.By Taylor expansion, for n large enough and for some η : T+ ×A → R+with sup

v∈A n, a∈A η(v, a) → 0 as n→ ∞ it follows that
I2
n

∑

w∈A n

α(w)

|〈w〉|2

{ ∑

v∈〈w〉

(D(g ◦ φ))(v)
}2

= I2
n

∑

w∈A n

α(w)

|〈w〉|2

[ ∑

v∈〈w〉

g′(φγ(w))(Dφ)(v)

+
1

2N

∑

i∈A

g′′(φγ(w) + η(v, i)){φγ(v) − φγ(v
−i)}2

]2

≤ 2‖g′‖2I2
n

∑

w∈A n

α(w)

(
1

|〈w〉|

∑

v∈〈w〉

(Dφ)(v)

)2

+
I2
n

2
‖g′′‖2 1

N

∑

w∈A n

α(w)
∑

i∈A

{φγ(w) − φγ(w
−i)}4.Now (3.2) for g ◦ φ follows from (3.1) and (3.2) for φ.
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Finally, we show (3.3). Let φ ∈ D and ψ ∈ C(Σ). By Lemma 2 andHölder's inequality,∣∣∣In
∑

w∈A n

(Dφ)(w)ψγ(w)
∣∣∣

=

∣∣∣∣In
∑

w∈A n

1

|〈w〉|

∑

v∈〈w〉

(Dφ)(v)ψγ(w)

∣∣∣∣

≤

{
I2
n

∑

w∈A n

α(w)

(
1

|〈w〉|

∑

v∈〈w〉

(Dφ)(v)

)2 ∑

w∈A n

ψγ(w)2α(w)−1

}1/2

.

The laim follows immediately from (3.2) and Lemma 1.Lemma 3. If (3.2) holds for φ ∈ C(Σ), then(3.4) lim
n→∞

In
∑

w∈A n, a∈A

(φγ(w) − φγ(wa))
4 = 0.Proof. A diret alulation shows

In
∑

w∈A n, a∈A

(φγ(w) − φγ(wa))
4

≤ sup
w∈A n, b∈A

|φγ(w) − φγ(w
−b)|2In

×
∑

w∈A n, a∈A

(φγ(w)2 − 2φγ(w)φγ(w
−a) + φγ(w

−a)2)

= −2N sup
w∈A n, b∈A

|φγ(w) − φγ(w
−b)|2In

∑

v∈A n

φγ(v)(Dφ)(v)

= −2N sup
w∈A n, b∈A

|φγ(w) − φγ(w
−b)|2In

∑

v∈A n

φγ(v)
1

|〈v〉|

∑

u∼v

(Dφ)(u)

≤ 2N sup
w∈A n, b∈A

|φγ(w) − φγ(w
−b)|2

×

{
‖φγ‖α,nI

2
n

∑

v∈A n

α(v)

(
1

|〈v〉|

∑

u∼v

(Dφ)(u)

)2}1/2

.This last expression onverges to 0 beause of (3.2) and ontinuity of φ.Whenever the limit exists, de�ne
E (ϕ, ψ) = − lim

n→∞
In

∑

w∈A n

1

|〈w〉|

{ ∑

v∈〈w〉

(Dϕ)(v)
}
ψγ(w)(3.5)

= lim
n→∞

In
∑

w∈A n

(Dϕ)(w)(Dψ)(w).
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Theorem 1. Let D1 ⊂ D generate an L2(m)-dense subspae. Assumethat for every ϕ ∈ D1 and every ψ ∈ D the form E (ϕ, ψ) in (3.5) exists. Then

(E ,D1) extends to a Dirihlet form on L2(m) with domain ontaining D.Proof. We �rst remark that the form E (ϕ, ψ) extends to �nite linearombinations of funtions from D1. Therefore we may as well assume that
D1 is a dense, linear subspae of L2(m). By (3.3) in Proposition 1, we analso extend the form E (· , ·) to D×C(Σ). Sine E is symmetri by Lemma 2,for a Cauhy sequene ϕl ∈ D1 (l ≥ 1), onverging to ϕ ∈ C(Σ) in L2(m),the sequene E (ϕl, ψ) (ψ ∈ D) is onvergent:

|E (ϕl − ϕk, ψ)| = |E (ψ,ϕl − ϕk)|

= − lim
n→∞

In
∑

w∈A n

1

|〈w〉|

∑

v∼w

(Dψ)(v)(ϕl − ϕk)γ(w)

≤ Cψ lim
n→∞

‖ϕl − ϕk‖α,n = Cψ‖ϕl − ϕk‖L2(m)shows that E (ϕk, ψ) is a Cauhy sequene. We de�ne its limit as
E (ϕ, ψ) = lim

n→∞
E (ϕn, ψ).Moreover, by (3.3), for ϕ ∈ D and ψk ∈ D1 onverging to ψ ∈ D we deduethat for every k ∈ N,

lim sup
n→∞

∣∣∣∣In
∑

w∈A n

1

|〈w〉|

∑

v∼w

(Dϕ)(v)(ψ − ψk)γ(w)

∣∣∣∣ ≤ Cϕ‖ψ − ψk‖L2(m).Therefore
E (ϕ, ψ) = lim

n→∞
In

∑

w∈A n

(Dϕ)(w)(Dψ)(w), ϕ, ψ ∈ D.It follows that we may assume D1 = D.Clearly, E is bilinear, non-negative de�nite and symmetri by Lemma 2.In order to show that E extends to a Dirihlet form it is su�ient toshow that (E ,D) is Markovian and losable (see e.g. [6℄).We begin showing the Markov property (see Setion 1). By Proposition 1again, D ontains all funtions of the form g ◦ ϕ for every ϕ ∈ D and every
g ∈ C2(R) with bounded �rst and seond derivative, in partiular thosesatisfying(1) 0 ≤ g′ ≤ 1,(2) −ε ≤ g(t) ≤ 1 + ε for some ε > 0,(3) g(t) = t for 0 ≤ t ≤ 1.Using Taylor expansion for g around ϕγ(v) for eah v ∈ A n, and sine
‖g′‖∞ ≤ 1, we have
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In
∑

v∈A n

(Dg ◦ ϕ)(v)2

= In
∑

v∈A n

{
g′(ϕγ(v))(Dϕ)(v) +

1

2N

∑

a∈A

g′′(θv,a)(ϕγ(v) − ϕγ(v
−a))2

}2

≤ In
∑

v∈A n

g′(ϕγ(v))2{(Dϕ)(v)}2

+ In

{ ∑

v∈A n

{(Dϕ)(v)}2g′(ϕγ(v))2

×
∑

v∈A n

∑

a∈A

g′′(θv,a)
2(ϕγ(v) − ϕγ(v

−a))4
}1/2

+
In
4N

∑

v∈A n

∑

a∈A

g′′(θv,a)
2(ϕγ(v) − ϕγ(v

−a))4

≤ In
∑

v∈A n

{(Dϕ)(v)}2 +O
([
In

∑

w∈A n

∑

a∈A

(ϕγ(w) − ϕγ(w
−a))4

]1/2)
,

where θv,a is some value in the interval determined by ϕ(v) and ϕ(v−a).Letting n→ ∞ and applying (3.4) of Lemma 3 shows that E (g ◦ϕ, g ◦ϕ) ≤
E (ϕ,ϕ).Finally, we show that E is losable, i.e. if φl ∈ D, E (φl−φk, φl−φk) → 0(k, l → ∞) and ‖φl‖2 → 0 (l → ∞), then E (φl, φl) → 0 (l → ∞). Let φl ∈ D,
φl → 0 in L2(m) and ψ ∈ D. By (3.3), for some onstant Cψ > 0, we obtain

|E (ψ, φl)| = lim
n→∞

∣∣∣∣In
∑

w∈A n

1

|〈w〉|

{ ∑

v∈〈w〉

(Dψ)(v)
}
φl(γ(w))

∣∣∣∣

≤ CCψ‖φl‖L2(m).The last expression tends to 0 as l → ∞. It is well known that this propertyis su�ient to prove that E is losable.The following fat has been shown in the previous proof.Corollary 1. The form E is well de�ned on D × C(Σ).4. Gauss�Green formula. We de�ne the notion of boundaries in Σ,ontinue with the de�nition of the Laplae operator ∆Σ on the quotientspae Σ and �nally prove the Gauss�Green formula for this operator andthe Dirihlet form onstruted in the last setion.Definition 2. Let ∼ be a thin equivalene relation with embedding γ.A set ∂Σ ⊂ Σ is alled a boundary if it has the following properties:
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(1) ∂Σ is ompat and nowhere dense.(2) There is a set T∗ ⊂ T suh that γ(T∗) is dense in ∂Σ and satis�es

〈w〉 ∈ T∗ for w ∈ T∗.(3) For eah n ∈ N the set
Un = {ξ ∈ Σ : ∃x ∈ ξ suh that x1 . . . xn ∈ T∗}is a neighbourhood of ∂Σ.Note that ⋂

n∈N
Un = ∂Σ, sine for Σ ∋ η ∈ [wn] ⊂ Un there is some

x ∈ η with x1 . . . xn = w
n, whene

d(η, γ(wn)) ≤ d(〈x〉, γ(wn)) → 0.De�ne
A

n
∗ = {u ∈ A

n : ∀a, b ∈ A , w ∈ T∗, v ∼ u ⇒ v
−b 6∼ w

−a}.Lemma 4.(1) Let µ denote the Bernoulli measure with uniformly distributed one-dimensional marginals, and suppose that µ(∂Σ) = 0. Then Vn =⋃
v 6∈A n

∗
[v] satis�es Un ⊂ Vn and limn→∞ µ(Vn) = 0.(2) If u ∈ A n
∗ and v ∼ u, then v ∈ A n

∗ .(3) If u ∈ A n
∗ and a ∈ A , then u

−a 6∈ T∗.Proof. Sine
Vn =

⋃

w∈A n∩T∗

⋃

a∈A

⋃

v∼w
−a

⋃

b∈A

⋃

u∼v
−b

[u]one immediately dedues
µ(Vn) ≤ |A n ∩ T∗|N

−nN2R2 ≤ N2R2µ
( ⋃

v∈A n∩T∗

[v]
)
→ 0as µ(∂Σ) = 0 and µ is regular.(2) and (3) are immediate onsequenes of the de�nition of A n

∗ .Let D1 be a dense set of ̺-ontinuous funtions ψ ∈ C(Σ) with some�xed sequene ̺ = (I−1
n )n∈N.Definition 3. Suppose ∂Σ is a boundary for the equivalene relation ∼,and m is a Borel measure on Σ. De�ne µ(A) = m(A \ ∂Σ) and ν(A) =

m(A ∩ ∂Σ). We all m = µ+ ν the splitting of m.(1) Let ̺ = (I−1
n )n∈N. The Laplae operator ∆Σ on Σ is de�ned on

Dom(∆Σ) ⊂ D̺ ⊂ L2(µ) suh that ∆Σϕ = ψ if(4.1) lim
n→∞

InN
n 1

|〈w〉|

∑

v∼w

(Dϕ)(v) = ψ(η)uniformly in w ∈ A n
∗ onverging to some η ∈ Σ.
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(2) Let φ ∈ C(Σ). A funtion dφ/dn ∈ L2(ν) is alled the Neumannderivative of φ if for every x ∈ ξ ∈ ∂Σ (in fat the following limit isindependent of the hoie of a representative in ξ),
dφ

dn
(ξ) = − lim

n→∞

In|T∗ ∩ A n|

|〈x1 . . . xn〉|

∑

v∈〈x1...xn〉

(Dϕ)(v).

Theorem 2. Let ∂Σ be a boundary and m be a Borel measure on Σwith splitting m = µ+ ν. Assume that µ is the Bernoulli measure on Σ withuniformly distributed one-dimensional marginals, and that ν is the weak limitof the measures
νn =

1

|T∗ ∩ A n|

∑

w∈T∗∩A n

δw.Let C0 ⊂ C(Σ) be a lass of funtions with the following properties:(a) C0 (onsidered as a subset of L2(µ)) is L2(µ)-dense and ontained in
Dom(∆Σ).(b) C0 (onsidered as a subset of L2(ν)) is L2(ν)-dense and the Neumannderivative exists for ξ ∈ ∂Σ and φ ∈ C0.() Letting T n

∗ = A n \ (T∗ ∪ A n
∗ ), the sequene Kn (n ∈ N) de�ned by

K−1
n := |T n

∗ |
∑

w∈T n
∗

(
In

|〈w〉|

∑

v∼w

(Dφ)(v)

)2

diverges to ∞.If for eah ϕ ∈ C0,
sup
n∈N

∑

w∈A n
∗ , a∈A

Nn(ϕγ(w) − ϕγ(w
−a))2

+
∑

w 6∈A n
∗ , a∈A

|T∗ ∩ A
n|(ϕγ(w) − ϕγ(w

−a))2 <∞,

then
E (φ, ψ) = −

\
∆Σφψ dµ+

\dφ
dn

ψ dν(φ ∈ C0, ψ ∈ C(Σ)) extends to a Dirihlet form on L2(m).Proof. Let φ ∈ C0 and ψ ∈ C(Σ). Sine by Lemma 4, A n
∗ ontainsomplete equivalene lasses, it follows that

∑

w∈A n

(Dφ)(w)ψγ(w) =
∑

w∈A n

1

|〈w〉|

∑

v∼w

(Dφ)(v)ψγ(w),

∑

w 6∈A n
∗

(Dφ)(w)ψγ(w) =
∑

w 6∈A n
∗

1

|〈w〉|

∑

v∼w

(Dφ)(v)ψγ(w).



68 M. DENKER ET AL.
Therefore∣∣∣In

∑

w∈A n

(Dφ)(w)ψγ(w)

−
∑

w 6∈A n
∗

In(Dφ)(w)ψγ(w) −N−n
∑

w∈A n

∆Σφ(γ(w))ψγ(w)
∣∣∣

≤ N−n
∑

w∈A n
∗

|InN
n(Dφ)(w) −∆Σφ(γ(w))| |ψγ(w)|

+N−n
∑

w 6∈A n
∗

|∆Σφ(γ(w))ψγ(w)|.This bound tends to zero as n→ ∞, showing that
E (φ, ψ) = − lim

n→∞
In

∑

w∈A n

(Dφ)(w)ψγ(w)

= −
\
∆Σφ(ξ)ψ(ξ)µ(dξ) − lim

n→∞
In

∑

w∈T n
∗

1

|〈w〉|

∑

v∼w

(Dφ)(v)ψγ(w)

− lim
n→∞

In|T∗ ∩ A
n|

∑

w∈T∗∩A n

1

|〈w〉|

∑

v∼w

(Dφ)(v)ψγ(w)
1

|T∗ ∩ A n|

= −
\
∆Σφ(ξ)ψ(ξ)µ(dξ) +

\dφ
dn

(ξ)ψ(ξ) ν(dξ).Setting α(w) = Nn for w ∈ A n
∗ , α(w) = |T∗ ∩ A n| for w ∈ T∗ ∩ A n and

α(w) = Kn|T∗ ∩ A n| otherwise, we �nd that mn onverges weakly to m(sine |T∗ ∩ A n| and |(A n
∗ )c| are of the same order). Formula (3.2) followsfrom

I2
n

∑

w∈A n

α(w)

(
1

|〈w〉|

∑

v∼w

(Dφ)(v)

)2

= N−n
∑

w∈A n
∗

(
InN

n

|〈w〉|

∑

v∼w

(Dφ)(v)

)2

+
1

|T∗ ∩ A n|

∑

w∈T∗∩A n

(
In|T∗ ∩ A n|

|〈w〉|

∑

v∼w

(Dφ)(v)

)2

+Kn|T∗ ∩ A
n|

∑

w∈T n
∗

(
In

|〈w〉|

∑

v∼w

(Dφ)(v)

)2

<∞,where we use (a)�() and the fat that |T∗ ∩ A n| and |(A n
∗ )c| are of thesame order.Formula (3.1) for ϕ ∈ C0 follows immediately from the assumption, sine

ϕ is ̺-ontinuous.



DIRICHLET FORMS 69

We have shown that D1 = C0 satis�es the assumptions in Theorem 1.Hene E extends to a Dirihlet form on L2(m).The form E in the last theorem may be onsidered also as a form on
L2(µ) sine ontinuous funtions in C0 are dense in L2(µ) and L2(ν). Wetherefore obtainCorollary 2 (Gauss�Green formula). Let ϕ, ψ ∈ Dom(∆Σ) ⊂ L2(µ).Then\

Σ

{ϕ(ξ)(∆Σψ)(ξ) − (∆Σϕ)(ξ)ψ(ξ)}µ(dξ)

=
1

2

\
∂Σ

(
ϕ(ξ)

dψ

dn
(ξ) −

dϕ

dn
(ξ)ψ(ξ)

)
ν(dξ).

5. An example. We onsider the equivalene relation ∼ on Σ de�nedby x ∼ y if x = y or if there exist a 6= b ∈ A and n ≥ 0 suh that
x = x1 . . . xnab

∞ and y = x1 . . . xnba
∞,together with the embedding

γ(w1 . . . wn) = 〈w1 . . . wnw
∞
n 〉.The boundary is de�ned by T∗ = {w = an : a ∈ A , n ≥ 0}, hene

∂Σ = {a∞ : a ∈ A }.As an example onsider the ase N = 2. Then Σ an be identi�ed withthe unit interval and the boundary is {0, 1}. By the de�nition of D we deduefor a twie ontinuously di�erentiable funtion ϕ that
(Dϕ)(wij) =

1

2
(ϕ(y) − ϕ(x)),where x = wijjj . . . and y = wiiii . . . . It follows that

2d(w)+2D(wij) =
ϕ(y) − ϕ(x)

|x− y|
→ ±ϕ′(ξ)as n→ ∞ and x→ ξ. Moreover,

(5.1) 22d(w)+3((Dϕ)(wij) + (Dϕ)(wji))

= 2d(w)+1

(
ϕ(y) − ϕ(x)

|x− y|
+
ϕ(y′) − ϕ(x′)

|x′ − y′|

)
,where y′ = wjjjj . . . and x′ = wjiii . . . . As n → ∞ and x → ξ ∈ [0, 1],it follows that x′ → ξ. Moreover, either y > x and y′ < x′ or vie versa,whene (5.1) onverges to ϕ′′(ξ). This proves that the onstrution in thissetion in ase N = 2 reovers the usual Laplae operator on the L2-spaeof Lebesgue measure on the unit interval.In this setion we onstrut a set of funtions satisfying onditions (3.1),(3.2) and (3.5). In addition the funtions belong to D̺ for some ̺ and �nite
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linear ombinations thereof are dense in L2(µ) and in L2(m), wherem = µ+νwith the ounting measure ν =

∑
a∈A

εa∞ on ∂Σ.We begin with two numbers α, β ∈ (0, 1) satisfying 2α + Nβ = 1 andde�ne In = (1−α−β)−n. The �rst lemmas are straightforward alulationsand their proofs are left to the reader.Lemma 5. Let pa ∈ R (a ∈ A ). De�ne reursively f(a) = pa for a ∈ A ,and for w ∈ T and i, j ∈ A let
f(wij) =

{
f(wi) if i = j,
α

∑
v∼wij f(v−) + β

∑
c∈A

f(wc) if i 6= j.Then(1) There exists a funtion ϕ = ϕf ∈ C(Σ) suh that(a) ϕ(〈wa∞〉) = f(wa) for all a ∈ A , w ∈ T ;(b) |ϕ(〈vξ1ξ2 . . .〉) − ϕ(〈vη1η2 . . .〉)| ≤ 2(1 − α − β)d(v)‖ϕ‖∞, where
ξk, ηk ∈ A , k ≥ 1.(2) We have

(Dϕ)(wij) =

{ (
N−1
N − N−2

N α
)
(Dϕ)(wi) if i = j,

α(Dϕ)(wj) − β(Dϕ)(wi) if i 6= j.(3) If i 6= j then
(Dφ)(wij) + (Dφ)(wji) = 0.Corollary 3. Let ϕ ∈ C(Σ) satisfy , for all w ∈ T , and i, j ∈ A ,

ϕγ(wij)

=





ϕγ(wi) +O((1 − α− β)d(w)) if i = j,
α{ϕγ(wi) + ϕγ(wj)}

+ β
∑

c∈A
ϕγ(wc) +O((1 − α− β)2d(w)) if i 6= j.Then(1) |ϕ(〈vξ1ξ2 . . .〉) − ϕ(〈uvη1η2 . . .〉)| = O((1 − α − β)d(v)‖ϕ‖∞), where

ξk, ηk ∈ A for all k ∈ N.(2) We have
(Dϕ)(wij) =

{(
N−1
N − N−2

N α
)
(Dϕ)(wi) +O((1 − α− β)d(w)) if i = j,

α(Dϕ)(wj) − β(Dϕ)(wi) +O((1 − α− β)d(w)) if i 6= j,where i, j ∈ A and w ∈ uT .Lemma 6. Let ϕ, ψ ∈ C(Σ) satisfy the ondition of Lemma 5(2) for all
w ∈ T and i, j ∈ A . Then, for n ≥ 2,
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In
∑

w∈A n

(Dϕ)(w)(Dψ)(w)

= In−1

∑

w∈A n−1

(Dϕ)(w)(Dψ)(w)

(
1 +

N − 2

N
{(N + 2)α− 1}2

).If (2) in Corollary 3 holds then this equality remains valid up to the order of
(1 − α− β)d(w).Corollary 4. Let ϕ, ψ satisfy the assumptions in Lemma 6. Then

lim
n→∞

In
∑

w∈A n

(Dϕ)(w)(Dψ)(w)exists if and only if α = (N + 2)−1 (= β).In what follows we �x α = β = 1/(N + 2). For every b ∈ A let fb denotethe funtion de�ned in Lemma 5 for the boundary onditions pa = 0, a ∈ A ,
a 6= b, and pb = 1. Let ϕb := ϕfb , as de�ned in (1) of Lemma 5, and onsiderthis funtion de�ned on A ∞ by setting

ϕb(x) = ϕb(Π(x)) (x ∈ A
∞).Fix a word u ∈ T+ and de�ne ϕu : A ∞ → R by

ϕu(x) =

{
0 if x 6∈ [u−],
ϕτ(u)(y) − 1

2I
x=uτ(u)∞ if x = u

−
y.It is also easy to see that for w ∈ T and i, j ∈ A with d(w) + 2 6= d(u),

ϕu(wij∞) =

{
ϕu(wi∞) if i = j,
α{ϕu(wi∞) + ϕu(wj∞) +

∑
c∈A

ϕu(wc∞)} if i 6= j.Let T 6= denote the set of all words in T for whih the last two letters aredi�erent or whih are of length ≤ 1. A funtion Φ : A ∞ → R of the form
Φ =

∑

u∈T6=

β(u)(N + 2)−d(u)ϕuis well de�ned. Suh a funtion de�nes a funtion on Σ if for eah u ∈ T 6=we have β(v) = β(u) for all v ∈ 〈u〉, beause ∑
v∈〈u〉 ϕv is onstant on theset {vτ(v)∞ : v ∈ 〈u〉}. As a funtion on Σ, Φ is ontinuous as long asthe oe�ients β are uniformly bounded. In fat it has the same modulus ofontinuity as ϕu.We need to onstrut the oe�ients β(u) suh that(i) β(u) are bounded and onstant on equivalene lasses.(ii) Conditions (3.1), (3.2) and (3.5) are satis�ed for the assoiated fun-tion Φ.(iii) For a set [u] ∪ [u#] and ε > 0, the assoiated funtion Φ satis�es

‖Φ− I[u]∪[u#]‖L2(µ) < ε.
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First note that (3.5) has been shown in Corollary 4 for ϕv, hene also for�nite linear ombinations and also for Φ by the absolute onvergene of theseries. We start with the equation

β(u) = −
N

|〈u〉|

∑

v∈〈u〉

z(v)

and need to determine z(v). Note that (i) is satis�ed if the oe�ients z(v)are uniformly bounded. In the following alulations we suppress the index γ,thus for a funtion g : Σ → R we write g(w) for g(γ(w)).A diret alulation shows that for k ≥ 2, v ∈ A n and a, c 6= b,
Φγ(vab

k−1c) − Φγ(vab
k)

=
∑

u∈T6=, d(u)≤d(v)+1

β(u)

(N + 2)d(u)
(ϕu(vabk−1c) − ϕu(vabk))

+

k−1∑

j=0

∑

b6=d∈A

β(vabjd)

(N + 2)n+j+2
ϕ

vabjd(vab
k−1c)

=
∑

u∈T6=, d(u)≤d(v)+1

β(u)

(N + 2)d(u)+1

(
ϕu(vabk−1) + ϕu(vabk−2c)

+
∑

d∈A

ϕu(vabk−2d) − (N + 2)ϕu(vabk−1)
)

+
k−2∑

j=0

∑

b6=d∈A

β(vabjd)

(N + 2)n+j+3

(
ϕ

vabjd(vab
k−1)

+ ϕ
vabjd(vab

k−2c) +
∑

e∈A

ϕ
vabjd(vab

k−2e)
)
(N + 2)−n−k−1β(vabk−1c)

= (N + 2)−1(Φ(vabk−2c) − Φ(vabk−1) +N(DΦ)(vabk−1))

+
β(vabk−1c)

(N + 2)n+k+1
.Summing over c 6= b yields

(N + 2)d(v)+k+1(DΦ)(vabk)

= N(N + 2)d(v)+k(DΦ)(vabk−1) +
1

N

∑

c6=b

β(vabk−1c)

= N(N + 2)d(v)+k(DΦ)(vabk−1) −
1

2

∑

c6=b

[z(vabk−1c) + z(vabk−2cb)].
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Setting
z(vabk) := (N + 2)d(v)+k+1(DΦ)(vabk)we obtain

z(vabk−1) =
1

N
z(vabk) +

1

2N

∑

c6=b

[z(vabk−1c) + z(vabk−2cb)],

whih is a onvex ombination determining z(vabk−1).We sketh the onstrution of funtions solving the assoiated Dirihletproblem. Consider funtions ψ on Σ whih are of the form
(ψ ◦Π)(ξ) =

∑

v∈T

τ(v) 6=τ(v−)

αv(N + 2)−d(v)ϕv(ξ),
where

αv =
−1

N + 2

[
(N + 6)z(v) + 3

∑

c∈A

c/∈{τ(v),τ(v#)}

{z(v−c) + z(v#−c)}(5.2)
+

∑

c,d∈A , c6=d
c,d /∈{τ(v),τ(v#)}

z((v−)−cd)
],

and where z : T → R is some ontinuous funtion. Note that the series
∑

v∈T

τ(v) 6=τ(v−)

αv(N + 2)−d(v)

onverges absolutely, hene ψ ∈ C(Σ). We know that ∆Σψ = z (see [5℄).Let D1 denote the spae of funtions onstruted above. We show that
D is a dense linear subspae. By de�nition, D1 is linear and eah ϕ ∈ D1satis�es

ϕγ(wij) =
∑

v∈T , d(v) 6=d(w)+2
τ(v) 6=τ(v−)

αv(N + 2)−d(v)(ϕ̃v ◦ γ)(wij)

+O((N + 2)−d(w)+2)

=
1

N + 2

(
ϕγ(wi) + ϕγ(wj) +

∑

c∈A

ϕγ(wc)
)

+O(I−1
d(w)+2).Therefore, by Corollary 3, ϕ is a ̺-ontinuous funtion, where ̺n = I−nn .Aording to [5, the remarks after Lemma 5.7℄, for any z : T → R as above
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and for k ∈ N,
−

1

2
(N + 2)d(v)+k+2{(Dϕ)(vabk+1) + (Dϕ)(vbak+1)}

= Nz(vabk) −
2

N + 2

[∑

c∈A
c6=b

z(vabkc) +
∑

c∈A
c6=a

z(vbakc)
]

−
1

2(N + 2)

[∑

c∈A
c6=b

∑

d∈A
d 6=b, d 6=c

z(vabk−1cd) +
∑

c∈A
c6=a

∑

d∈A
d 6=a, d 6=c

z(vbak−1cd)
]

≤ 3(N + 2)‖z‖∞.This shows that (3.2) holds for ϕ ∈ D1 when de�ning α(w) = Nn for wnot a monomial and = 1 otherwise. Condition (3.1) an be shown in thefollowing way. Let B denote all words in A n−1 whih are not monomials.Then it su�es to estimate as in the proof of Lemma 3:
I2
nN

n
∑

v∈B, a,b∈A

(ϕγ(vb) − ϕγ(va))
2 = 2NI2

nN
n

∑

w 6∈T∗

((Dϕ)(w))2 <∞.

In order to show that the funtions in D1 are dense in L2(µ), note thatby (5.2) we an hoose z in an arbitrary manner, e.g. vanishing on wordsnot starting with v. The assoiated funtion ϕ will vanish outside of [(v−)−].Therefore, given u and m de�ne z(uv1 . . . vm) = 1 if v1, . . . , vm ∈ A ontainsthe letter τ(u) (similarly for z(u#v1 . . . vm)), and z(w) = 0 if w does notstart with u or u
#. As m → ∞ these funtions approah a multiple of

I[u]∪[u#] in L2(µ). Hene D1 is dense in L2(µ). The solution of the Dirihletproblem for ψ ∈ C(Σ) also shows that this lass of funtions is dense in
L2(m).6. Appliations. In this setion we disuss further appliations of theresults in Setions 3�5. However, we only sketh the proofs, sine they aresimilar to those desribed before.6.1. Appliation to the Sierpi«ski gasket. Fix N ≥ 2. The Sierpi«ski gas-ket S is desribed geometrially in the following way. Let△ := △(p1, . . . , pN )denote the non-degenerate regular simplex generated by N points p1, . . . , pN
∈ R

N−1. For eah �xed i0 ∈ A , the midpoints pj,i0 := (pi0 + pj)/2 (j ∈ A )de�ne a orresponding simplex △(i0) := △(p1,i0 , . . . , pN,i0) ⊂ △ and thea�ne mappings fi0 : △ → △(i0) satisfying fi0(pi) = pi,i0 . It is well knownthat the Sierpi«ski gasket S an be represented as a limit set of the semigroupgenerated by the fi, hene the natural identi�ation spae is a symboli se-quene spae over N symbols with identi�ation by the equivalene relation
x = (xk)k∈N ∼S y = (yk)k∈N
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if x = y or if there exists some n ∈ N suh that xn+l = yn and yn+l = xnfor every l ≥ 1 and xl + yl for l < n. The Bernoulli measure µ is known tobe a multiple of the Hausdor� measure of the Sierpi«ski gasket with respetto the Eulidean norm.The situation desribed in Setion 5 applies diretly in this situation. If
ν denotes the ounting measure on the verties of S, we let m = µ + ν. Itfollows that

E(ϕ, ψ) = lim
n→∞

(
N + 2

N

)n ∑

w∈A n

(Dϕ)(w)(Dψ)(w)de�nes a Dirihlet form on L2(m) with Laplae operator (on L2(µ))
∆Sϕ(ξ) = lim

n→∞
(N + 2)n

1

|〈w〉|

∑

v∼w

(Dϕ)(w)for all w, where w onverges to ξ as n → ∞ under the ondition that eahequivalent v has two di�erent letters in v
−.6.2. The ase of S × B∞. Consider two alphabets A = {1, . . . , N} and

B = {1, . . . , B}. Points in the sequene spae (A × B)∞ are written in theform x = (x1;x2) = (x1
1x

1
2 . . . ;x

2
1x

2
2 . . . ). De�ne an equivalene relation by

x ∼ y if and only if x1 ∼S y
1 and x2 = y2, where ∼S denotes the equivalenerelation of S. Finite words are as well written in the form w = (w1, w2),where w1 and w2 have the same length m = d(w) and the embedding isde�ned by

γ(w) = 〈(w1(w1
n)

∞;w2(w2
n)

∞)〉,where 〈·〉 denotes the equivalene lass.De�ne T∗ to be the set of all words of the form w = (w1, w2), where
w1 is a monomial and w2 ∈ Bd(w). Note that γ(T∗) is ompat, nowheredense and onsists of all points of the form 〈x〉 = 〈(x1, x2)〉, where x1 is amonomial and x2 ∈ B∞. We let ν be a measure on ∂Σ whih is the sum ofthe Bernoulli measures on {a∞} × B∞. Notie that the equivalene relationis not thin, but the Bernoulli measure µ on (A× B)∞ satis�es

µ({x : 〈x〉 = 1}) = 1and an be transported to the quotient spae.Let ϕ be the funtion onstruted in Setion 5 for the Sierpi«ski gasket
S and let v2 be any �nite word over the alphabet B. We denote by I[v2] theindiator funtion of the set of all ξ ∈ B∞ whih begin with the word v2.Then for any word w of length larger than d(v2),

D(ϕ⊗ I[v2])(w) = D(ϕ)(w1)I{v2}(w
2),sine all or none of the (w2)−b belong to [v2].
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Sine the Bernoulli measure µ is the produt measure of the Bernoullimeasures on A∞/∼ and B∞, �nite linear ombinations of funtions of theform ϕ ⊗ I[v2] are dense in L2(µ), and we show that (3.1), (3.2) and (3.5)hold with In =

(
N+2
BN

)n. As before, for �xed ϕ⊗ I[v2], if n is large enough,
lim
n→∞

In(NB)n
∑

w∈(A×B)n

∑

u∈〈w〉
a=(a1,a2)∈A×B

(ϕ⊗ I[v2](γ(u)) − ϕ⊗ I[v2](γ(u
−a)))4

≤ lim
n→∞

B2n+1I2
nN

n
∑

w∈An

∑

u1∈〈w1〉, a1∈A

(ϕγ(u
1) − ϕγ(u

1)−a1)4,

whih is bounded by the results in Setion 5. This shows (3.1).Similarly,
sup
n∈N

I2
n(NB)n

∑

w∈(A×B)n

(
1

|〈w〉|

∑

u∼w

(Dϕ⊗ I[v2])(u)

)2

≤ sup
n∈N

I2
nN

nB2n
∑

w1∈An

(
1

|〈w1〉|

∑

u1∼w1

(Dϕ)(u1)

)2

<∞shows (3.2), and �nally
E (ϕ⊗ I[v2], ψ)

= − lim
n→∞

In
∑

w∈(A×B)n

1

|〈w〉|

∑

u∼w

(Dϕ⊗ I[v2])(u)ψγ(w)

= − lim
n→∞

InB
n

∑

w∈An

1

|〈w1〉|

∑

u1∼w1

(Dϕ)(u1)B−n
∑

w2∈Bn

ψγ(w
1, w2)I{v2}(w

2)

= E
1(ϕ,E2(ψI[v2])),where E 1 denotes the form assoiated to the �rst oordinate aording toSetion 5 and where E2 denotes integration with respet to the seond o-ordinate. Theorem 1 also applies in this situation and we obtain extensionsof the Sierpi«ski gasket.Note that produts of fratals and their analysis have been onsidered inthe literature. We refer to [11℄.6.3. Non-Sierpi«ski ases. In this subsetion we brie�y sketh how ourresults an be applied in other ases than the Sierpi«ski relation.Let A = {1, 2, 3, 4, 5, 6, 7}. Consider the equivalene relation x = x1x2 . . .

∼ y = y1y2 . . . de�ned by x = y or there exists an n suh that
xi = yi ∀i < n, xn+k = yn+k = c ∀k ≥ 1, c 6= xn ∼c yn 6= c,where a ∼c b is given by the following table of lasses:
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c = 1 {2, 3, 5} and {4, 6, 7}

c = 2 {1, 5, 7} and {3, 4, 6}

c = 3 {1, 2, 6} and {4, 5, 7}

c = 4 {1, 5, 6} and {2, 3, 7}

c = 5 {1, 3, 4} and {2, 6, 7}

c = 6 {1, 3, 7} and {2, 4, 5}
c = 7 {1, 2, 4} and {3, 5, 6}

The embedding is as before, i.e. γ(w) = 〈wτ(w)∞〉.The �rst lemma is immediate from the de�nitions and its proof is omitted.Lemma 7. Let f(a) = pa ∈ R for a ∈ A and de�ne
f(wab) =

1

17

∑

c∼ba

f(wc) +
2

17

∑

d∈A

f(wd), a 6= b,

f(wa2) = f(wa), a ∈ A .Then there exists a funtion ϕ ∈ C(Σ) with ϕ(wa∞) = f(wa). Furthermore,
ϕ is {(14/17)n : n ≥ 1}-ontinuous and satis�es

∑

c∼ba

(Dϕ)(wcb) = 0, a 6= b,

(Dϕ)(wa2) =
14

17
(Dϕ)(wa), a ∈ A .The following arguments are similar to those used for the Sierpi«ski re-lation before. We sketh the onstrution of a suitable set D1. For every

b ∈ A let fb and let ϕb denote the funtions being de�ned in Lemma 7 forthe boundary onditions pa = 0, a ∈ A , a 6= b, and pb = 1. Consider aseond funtion de�ned on A ∞ by setting
ϕb(x) = ϕb(Π(x)) (x ∈ A

∞).Fix a word u ∈ T+ and de�ne ϕu : A ∞ → R by
ϕu(x) =

{
0 if x 6∈ [u−],
ϕτ(u)(y) − 1

2I
x=uτ(u)∞ if x = u

−
y.Let T 6= denote the set of all words in T for whih the last two letters aredi�erent or whih are of length ≤ 1. Let β = 2/17 and reall that N = 7.A funtion Φ : A ∞ → R of the form

Φ =
∑

u∈T6=

θ(u)β−d(u)ϕuis well de�ned on Σ and ontinuous as long as the oe�ients θ are uniformlybounded and satisfy θ(v) = θ(u) for all v ∈ 〈u〉, beause ∑
v∈〈u〉 ϕv isonstant on the set {vτ(v)∞ : v ∈ 〈u〉}.
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We need to onstrut the oe�ients θ(u) suh that(i) θ(u) are bounded and onstant on equivalene lasses.(ii) Conditions (3.1), (3.2) and (3.5) are satis�ed for the assoiated fun-tion Φ.(iii) For a set U =

⋃
v∼u

[v] and ε > 0 there exist oe�ients θ(u) suhthat the assoiated funtion Φ satis�es ‖Φ− IU‖L2(µ) < ε.First note that (3.5) follows immediately from Lemma 7 for ϕv, henealso for �nite linear ombinations and also for Φ by the absolute onvergeneof the series.As before, we start with the equation
θ(u) = −

N

|〈u〉|

∑

v∈〈u〉

z(v).

Note that (i) is satis�ed if the oe�ients z(v) are uniformly bounded.A diret alulation shows that for k ≥ 2, v ∈ A n and a, c 6= b,
Φγ(vab

k−1c) − Φγ(vab
k)

=
∑

u∈T6=, d(u)≤d(v)+1

θ(u)

βd(u)
(ϕu(vabk−1c) − ϕu(vabk))

+
k−1∑

j=0

∑

b6=d∈A

θ(vabjd)

βn+j+2
ϕ

vabjd(vab
k−1c)

=
∑

u∈T6=, d(u)≤d(v)+1

θ(u)

βd(u)+1

(
α

∑

d∼cb

ϕu(vabk−2d)

+ β
∑

d∈A

ϕu(vabk−2d) − ϕu(vabk−1)
)

+
k−2∑

j=0

∑

b6=d∈A

θ(vabjd)

βn+j+3

(
ϕ

vabjd(vab
k−1)

+ ϕ
vabjd(vab

k−2c) +
∑

e∈A

ϕ
vabjd(vab

k−2e)
)

+ β−n−k−1θ(vabk−1c)

= β−1

( ∑

b6=d∼cb

1

2
[Φ(vabk−2c) − Φ(vabk−1)] +N(DΦ)(vabk−1)

)

+
θ(vabk−1c)

βn+k+1
.
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Summing over c 6= b yields
β−d(v)−k−1(DΦ)(vabk)

= Nβ−d(v)−k(DΦ)(vabk−1) +
1

N

∑

c6=b

θ(vabk−1c)

= N(N + 2)d(v)+k(DΦ)(vabk−1) −
1

3

∑

c6=b

∑

d∼cb

z(vabk−2d).

Setting z(vabk) := β−d(v)−k−1(DΦ)(vabk) we obtain
z(vabk−1) =

1

N
z(vabk) +

1

3N

∑

c6=b

∑

d∼cb

z(vabk−1d),

whih is a onvex ombination determining z(vabk−1).The remaining arguments are now arried out similar as before. We sum-marize them inTheorem 3. The form
E (φ, ψ) = lim

n→∞

(
17

14

)n ∑

w∈A n

(Dφ)(w)(Dψ)(w)exists for φ ∈ D1 and ψ ∈ C(Σ). The assoiated Laplae operator is givenby
∆Σφ(η) = lim

w→η, d(w)=n
β−n 1

3

∑

c∼τ(w)τ(w
−)

(Dφ)(w−−cτ(w)).
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