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SPECTRAL PROPERTIES OF ERGODIC DYNAMICAL SYSTEMSCONJUGATE TO THEIR COMPOSITION SQUARESBYGEOFFREY R. GOODSON (Towson, MD)Abstra
t. Let S and T be automorphisms of a standard Borel probability spa
e.Some ergodi
 and spe
tral 
onsequen
es of the equation ST = T 2S are given for T ergodi
and also when T n = I for some n > 2. These ideas are used to 
onstru
t examples ofergodi
 automorphisms S with os
illating maximal spe
tral multipli
ity fun
tion. Otherexamples illustrating the theory are given, in
luding Gaussian automorphisms havingsimple spe
tra and 
onjugate to their squares.
0. Introdu
tion. Let T be an invertible measure-preserving transforma-tion (automorphism) de�ned on a standard Borel probability spa
e (X,F , µ).We investigate spe
tral and ergodi
 
onsequen
es of the equation ST = T 2Sfor automorphisms S and T . No examples of weakly mixing automorphisms
onjugate to their squares and having simple spe
trum have been publishedthat we are aware of, and we give some Gaussian automorphisms having thisproperty. Very few examples of transformations 
onjugate to their squares areknown, and few general results are available indi
ating when this 
an happen.(After this paper was submitted, a preprint was re
eived from O. N. Ageev(2005), who uses a 
ategory argument to show the existen
e of rank one trans-formations whi
h are weakly mixing and 
onjugate to their squares. Thisanswered a question mentioned in Goodson (2002, 1999) whi
h had beenopen for some time. Many of the results of this paper are appli
able to su
hexamples.)Maps having �nite non-zero entropy 
annot be 
onjugate to their squaresbe
ause of the identity h(T 2) = 2h(T ). Consequently, we are only interestedin maps having zero or in�nite entropy.We re
all the basi
 properties of transformations 
onjugate to theirsquares in Se
tion 1. In Se
tion 2 we show that if ST = T 2S where T ismixing with no Lebesgue 
omponent, then S is weakly mixing. On the otherhand, if T is ergodi
 and has an eigenvalue whi
h is a root of unity, S 
annotbe ergodi
.2000 Mathemati
s Subje
t Classi�
ation: Primary 37A05; Se
ondary 28D05.Key words and phrases: ergodi
 automorphism, spe
tral measure, simple spe
trum.[99℄
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In Se
tion 3, using the spe
tral theorem for unitary operators we see thatif Tn = I (I = the identity map), for some n ∈ Z, n > 2, then Sq has maximalspe
tral multipli
ity equal to q on some subspa
e (for some 1 < q < n), andwe apply these ideas to give examples of automorphisms having an os
illatingmultipli
ity fun
tion. These ideas are used to 
onstru
t weakly mixing rankone transformations S for whi
h S2 has non-simple spe
trum, answering aquestion of Thouvenot.In Se
tion 4, properties of the maximal spe
tral type of an automorphismwhi
h is 
onjugate to its square are 
onsidered. Se
tion 5 gives examples ofGaussian automorphisms having simple spe
trum and whi
h are 
onjugateto their squares. Properties of the 
onjugating map are also studied.Mu
h of our exposition generalizes to the 
ase where there are automor-phisms S and T satisfying ST = T pS for some p > 1.I wish to thank the parti
ipants and organizers of the 2002 Toru« Confer-en
e on Ergodi
 Theory in honor of Jan Kwiatkowski, for helpful 
ommentsand suggestions 
on
erning this paper. I would also like to thank the refereefor helpful 
omments that resulted in improvements and in the avoidan
e ofmistakes.
1. Preliminaries. By a dynami
al system we mean a 4-tuple X =

(X,F , µ, T ) 
onsisting of an automorphism T : (X,F , µ) → (X,F , µ) de-�ned on a non-atomi
 standard Borel probability spa
e. Both the identityautomorphism and the identity operator will be denoted by I. The group
Aut(X) of all automorphisms of (X,F , µ) be
omes a 
ompletely metrizabletopologi
al group when endowed with the weak 
onvergen
e of transforma-tions (Tn → T if for all A ∈ F , µ(T−1

n (A)△T−1(A))+µ(Tn(A)△T (A)) → 0as n→ ∞). Denote by C(T ) the 
entralizer of T , i.e., the set of those mem-bers of Aut(X) whi
h 
ommute with T (more generally it is usual to de�ne
C(T ) to be those measure-preserving transformations whi
h 
ommute with
T , but it will be 
onvenient to assume that C(T ) is a group).The spe
tral properties of T are those of the indu
ed unitary operatorde�ned by

T̂ : L2(X,µ) → L2(X,µ), T̂ f(x) = f(Tx), f ∈ L2(X,µ).Note that if ST = T 2S, then T̂ Ŝ = ŜT̂ 2.Generally a unitary operator U : H → H on a separable Hilbert spa
e
H is said to have simple spe
trum if there exists h ∈ H su
h that Z(h) = H,where Z(h) is the 
losed linear span of the ve
tors Unh, n ∈ Z.In this 
ase there exists a �nite Borel measure σh de�ned on the unit
ir
le S1 in the 
omplex plane for whi
h
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〈Unh, h〉 =
\
S1

zn dσh, n ∈ Z,

and su
h that U is unitarily equivalent to V : L2(S1, σh) → L2(S1, σh)de�ned by V f(z) = zf(z).Let us mention some basi
 fa
ts about automorphisms S and T satisfying
ST = T 2S (see Goodson (2002)):(i) STn = T 2nS for n ∈ Z and SnT = T 2n

Sn for all n ∈ Z
+.(ii) If T is aperiodi
, then S is aperiodi
 (i.e., µ({x ∈ X : Snx=x})=0for all n ∈ Z).(iii) If S is ergodi
, then either T is aperiodi
, or Tn = I for some n ∈ Z.(iv) If S is prime, then T is weakly mixing or T = I.(v) If T is ergodi
 with dis
rete spe
trum, then S is ergodi
 (and hen
emixing) if and only if T has no eigenvalues having �nite order.(vi) The entropy of T satis�es h(T ) = 0 or h(T ) = ∞.(vii) The Bernoulli shift of in�nite entropy and the time one map in thehoro
y
le �ow are 
onjugate to their squares.(viii) If T has the weak 
losure property (see King (1986)), then themap Φ : C(T ) → C(T ), Φ(S) = S2 is a group automorphism.Furthermore, Sφ = φ2S for all φ ∈ C(T ), and any two 
onjugationsbetween T and T 2 are isomorphi
.(ix) If S is rigid (there is a sequen
e ni → ∞ with Sni → I as i→ ∞),then T is rigid, or Tm = I for some m ∈ Z

+.Re
all that rank one maps and also Gaussian�Krone
ker maps have theweak 
losure property (see King (1986) and Thouvenot (1987)).
2. Mixing and ergodi
 properties of S and T when ST = T 2S.We now look at how the equation ST = T 2S for
es 
ertain mixing propertieson S and T when additional assumptions are made.Theorem 1. Suppose that ST = T 2S where T is ergodi
. If T has aneigenvalue whi
h is a root of unity , then S is not ergodi
.Proof. There exists λ ∈ S1 and n > 1 with f(Tx) = λf(x), λk 6= 1 for

1 ≤ k < n and λn = 1. This implies that fn(Tx) = fn(x), and T ergodi
implies fn = 
onstant a.e. Ne
essarily, n is odd sin
e otherwise T would have
−1 as an eigenvalue, 
ontradi
ting the ergodi
ity of T 2. Thus λ 6= ±1, andin addition, we may assume that fn = 1. In parti
ular, f2(Tx) = λ2f2(x)and also

f ◦ S(Tx) = f(STx) = f(T 2Sx) = f ◦ T 2(Sx) = λ2f ◦ S(x),
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i.e., both f2 and f ◦ S are eigenfun
tions for T 
orresponding to the sameeigenvalue λ2. Sin
e T is ergodi
, there exists c ∈ S1 for whi
h

f ◦ S(x) = cf2(x) a.e.,where cn = 1.Let g(x) =
∑n−1

k=1 c
k−1fk(x). Then

g(Sx) =

n−1∑

k=1

ck−1fk(Sx) =

n−1∑

k=1

ck−1[cf2(x)]k =

n−1∑

k=1

c2k−1f2k(x) = g(x),sin
e n is odd and cn = 1, fn = 1. We see that g(x) is non-
onstant sin
ethe fun
tions fk, k = 1, . . . , n− 1, are orthogonal (be
ause they 
orrespondto distin
t eigenvalues λk, 0 < k < n). It follows that S is not ergodi
.Re
all that an ergodi
 transformation T is totally ergodi
 if it has noeigenvalues that are roots of unity. We immediately obtain:Corollary 1. If ST = T 2S where T and S are ergodi
, then T istotally ergodi
.Suppose that ST = T 2S where T has a Lebesgue 
omponent in its spe
-trum. If T has a Lebesgue 
omponent of multipli
ity n, then it 
an be seenthat T 2 must have a Lebesgue 
omponent of multipli
ity 2n, whi
h is impos-sible unless n = ∞. In parti
ular, a transformation with a �nite Lebesgue
omponent 
annot be 
onjugate to its square. The next result shows that if
ST = T 2S where T is mixing, and S is not weakly mixing, then T has a
ountable Lebesgue 
omponent. We 
onje
ture that if T is mixing and S isergodi
, then S is weakly mixing. This would have impli
ations 
on
ern-ing Bernoulli shifts having in�nite entropy as these are 
onjugate to theirsquares. Re
all from Goodson and Ryzhikov (1997) that a �nite rank mix-ing transformation (or in fa
t any lo
ally rank one mixing transformation)is never 
onjugate to its square.Theorem 2. If ST = T 2S where T is mixing , then:(i) If T has no Lebesgue 
omponent in its spe
trum, then S is weaklymixing.(ii) If S is ergodi
, but not weakly mixing , then T has a 
ountable Lebes-gue 
omponent in its spe
trum.(iii) S 
annot be ergodi
 with purely dis
rete spe
trum (and in fa
t 
annotbe rigid).Proof. (i) Suppose that S is ergodi
 but not weakly mixing, and let Λ bethe eigenvalue group of S with {fλ : λ ∈ Λ} the set of eigenfun
tions of S inthe orthogonal 
omplement of the 
onstant fun
tions. Let λ, µ ∈ Λ. Then

〈T̂ fλ, fµ〉 = 〈T̂ λŜfλ, µŜfµ〉 = λµ〈Ŝ−1T̂ Ŝfλ, fµ〉 = λµ〈T̂ 2fλ, fµ〉.
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In the same way we see that
〈T̂ fλ, fµ〉 = (λµ)n〈T̂ 2n

fλ, fµ〉 for all n.However, T is mixing, so as n→ ∞,
〈T̂ 2n

fλ, fµ〉 → 〈fλ, 1〉〈1, fµ〉 = 0 for all λ and µsin
e fλ ⊥ C. Sin
e (λµ)n is a bounded sequen
e, we dedu
e that 〈T̂ fλ, fµ〉
= 0. The same argument shows that 〈T̂nfλ, fµ〉 = 0 for all n ∈ Z, n 6= 0,and all λ, µ ∈ Λ.If Z(fλ) is the 
y
li
 subspa
e generated by fλ (with respe
t to T ), thenthe restri
tion of T̂ to Z(fλ) has simple Lebesgue spe
trum for ea
h λ, andpart (i) follows.(ii) If S is ergodi
 but not weakly mixing, then Z(fλ) ⊥ Z(fµ) for all
λ 6= µ, and we 
on
lude that T̂ has a Lebesgue 
omponent in its spe
trum,whi
h must be 
ountable.(iii) Re
all that if S is ergodi
 with purely dis
rete spe
trum, then Sis rigid, so there is a sequen
e ni → ∞ as i → ∞ with Sni → I. Sin
e
SniT = T 2niSni for i = 1, 2, . . . , we dedu
e that T 2ni−1 → I as i → ∞, so
T is also rigid, and 
annot be mixing.3. Spe
tral properties of S when T is of �nite order. Supposeinstead we have the situation Sφ = φ2S for some automorphism φ satisfying
φn = I (some n > 2 ne
essarily odd). An automorphism extension is a map
S : X ×G→ X ×G of the form

S(x, g) = (S0x, ψ(x) + v(g)),where v : G→ G is a group automorphism, S0 : X → X is an automorphismand ψ : X → G is measurable. S is itself an automorphism on the spa
e
(X × G,F ⊗ FG, µ × λ), where FG are the Borel sets of G, and λ is Haarmeasure on the 
ompa
t group G. We shall see that automorphism extension
an have the property that Sφ = φ2S for some automorphism φ whi
hsatis�es φn = I for some n > 2 odd.Let ω ∈ S1 be a primitive nth root of unity and write

Hk = {f ∈ L2(X,µ) : f ◦ φ(x) = ωkf(x)}, 0 ≤ k ≤ n− 1.The subspa
es Hk, being the eigenspa
es of the unitary operator φ̂, are φ̂invariant, pairwise orthogonal and
L2(X,µ) =

n−1⊕

k=0

Hk.Lemma 1. ŜmHk = Hk·2m (modn) for k = 0, 1, . . . , n − 1 and m ≥ 1. Inparti
ular , H0 is Ŝ-invariant.
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Proof. Let f ∈ Hk. Then Ŝmf = f ◦ Sm, and

f ◦ Sm(φx) = f(φ2m

Smx) = ωk·2
m

f ◦ Sm(x),so that f ◦ Sm ∈ Hk·2m (modn).As a 
onsequen
e, we dedu
e some results about the spe
trum of thepowers of S. Spe
i�
ally we show that for some q > 1, the maximal spe
tralmultipli
ity of Sq on a subspa
e is divisible by q. Note that S 
an be ergodi
in this theorem.Theorem 3. Suppose that Sφ = φ2S where φn = I (n ≥ 3 odd , φk 6= I,
0 ≤ k < n). Then there exists 1 < q ≤ n − 1 for whi
h Ŝq restri
ted to theortho-
omplement of the subspa
e

{f ∈ L2(X,µ) : f ◦ φ = f},has a 
omponent of multipli
ity divisible by q in its spe
trum. Spe
i�
ally ,
q = min{m ∈ Z

+ : 2m = 1 (modn)}.Proof. Let f ∈ H1. Then by the lemma we have
Ŝf ∈ H2, Ŝ2f ∈ H22 , . . . , Ŝmf ∈ H2m (modn) and Ŝqf ∈ H1.Let g ∈ L2(X,µ), and denote by Z(g) the 
y
li
 subspa
e of L2(X,µ) gen-erated by the unitary operator Ŝq, i.e., the 
losed linear span of all ve
torsof the form Ŝnqg, n ∈ Z. Then for f ∈ H1,

Z(f) ⊆ H1, Z(Ŝf) ⊆ H2, . . . , Z(Ŝmf) ⊆ H2m (modn),and this implies that Z(Ŝrf) ⊥ Z(Ŝpf) for r 6= p, 1 ≤ r, p ≤ q − 1.Furthermore,
〈Ŝnq(Ŝrf), Ŝrf〉 = 〈Ŝnqf, f〉 for all n ∈ Z,so that σ

Ŝrf
∼ σf for 0 ≤ r ≤ q − 1 (spe
tral measures with respe
t to Ŝq),and hen
e Ŝq has maximal spe
tral multipli
ity divisible by q on the subspa
e

H1 ⊕H2 ⊕ · · · ⊕H2q−1 ,where 2q = 1 (modn).A slightly more general version of the above 
an be given, whi
h is onlyof interest when T is not ergodi
.Theorem 4. Suppose that ST = T 2S and ω is a primitive nth root ofunity for whi
h the set Λ = {ωk : 0 ≤ k < n} 
onsists of eigenvalues of T ,but no member of −Λ is an eigenvalue of T . If S has simple spe
trum, then
Sq has a 
omponent of multipli
ity q in its spe
trum, for some 1 < q ≤ n−1.The theorem is shown by the method of proof of the last theorem, to-gether with the following lemma:
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Lemma 2. Under the 
onditions of the last theorem, the subspa
es
Hk = {f ∈ L2(X,µ) : T̂ f(x) = ωkf(x)}, 0 ≤ k ≤ n− 1,are Sq-invariant for some 1 < q < n.Proof. We �rst show that ŜHk = H2k for ea
h k (redu
ed modulo n ifne
essary). Pro
eeding as before, we see that if f ∈ Hk then Ŝf ∈ H2k, sothat ŜHk ⊆ H2k, hen
e it su�
es to show the reverse 
ontainment. Write
H ′
k = {f ∈ L2(X,µ) : T̂ 2f(x) = ω2kf(x)}, 0 ≤ k ≤ n− 1.Then 
learly Hk ⊆ H ′

k. On the other hand, if f ∈ H ′
k, set g = f − ω−kT̂ f ;then T̂ g = −ωkg.But −ωk is not an eigenvalue of T̂ so g = 0 and T̂ f = ωkf , or f ∈ Hkand we dedu
e that Hk = H ′

k. Suppose now that f ∈ H2k. Then
T̂ 2Ŝ−1f = Ŝ−1T̂ f = ω2kŜ−1f,so that Ŝ−1f ∈ H ′

k = Hk, or Ŝ−1H2k ⊆ Hk. We have shown that
ŜHk ⊆ H2k ⊆ ŜHk, i.e., H2k = ŜHk.Now 
ontinue in this way to see that there is some q with ŜqHk = Hk.In this dire
tion we also have:Theorem 5. If ST = T 2S where T is totally ergodi
, but not weaklymixing , then S has a 
ountable Lebesgue 
omponent in its spe
trum.Proof. Sin
e T is totally ergodi
 and not weakly mixing, there exists

f ∈ L2(X,µ), f(Tx) = λf(x), where λn 6= 1 for all n ∈ Z. We see that for
n ≥ 1,

f ◦ Sn(Tx) = f(SnTx) = f(T 2n

Snx) = λ2n

f ◦ Sn(x) for n ≥ 1,so f ◦ Sn is also an eigenfun
tion of T , but 
orresponding to a di�erenteigenvalue. Therefore 〈Ŝnf, f〉 = 0 for all n 6= 0. Sin
e this 
an be donefor ea
h of a 
ountable 
olle
tion of orthogonal eigenfun
tions of T (usingthe fa
t that the eigenvalue group is R(z) = z2 invariant), S must have a
ountable Lebesgue 
omponent in its spe
trum.Corollary 2. Suppose that ST = T 2S, where S and T are ergodi
. If
msm(S) <∞, then T is weakly mixing.Proof. The ergodi
ity of S and T implies that T has no eigenvalues of�nite order. Sin
e S 
annot have a 
ountable Lebesgue 
omponent, T 
annothave eigenvalues of in�nite order, so T must be weakly mixing.The following is also a straightforward 
onsequen
e of Theorem 3 and(iii) of Se
tion 1.
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Corollary 3. If ST =T 2S where Sn has simple spe
trum for all n∈Z

+,then T = I or T is aperiodi
.
Examples. 1. If T is a Bernoulli shift having in�nite entropy, then T is
onjugate to its square. If S is a 
onjugating map, then sin
e T is mixing,Theorem 2 implies that S 
annot be rigid, and we 
onje
ture that S has tobe weakly mixing in this 
ase.2. It is possible for S to be mixing with T non-ergodi
 and satisfying

ST = T 2S. For example, there is an ergodi
 dis
rete spe
trum map T0 and amixing map S0 with S0T0 = T 2
0 S0, so simply set T = T0×T0 and S = S0×S0.3. Suppose that ST = T 2S and T is ergodi
 with dis
rete spe
trum.Suppose also that every eigenvalue λ of T satis�es λn 6= 1 for all n ∈ Z,

n 6= 0. Set
Hn = {f ∈ L2(X,µ) : f(Tx) = λnf(x)}, n ∈ Z

+,i.e., Hn is just the one-dimensional eigenspa
e 
orresponding to the eigen-value λn. Then as before, if f ∈ H1, Ŝmf ∈ H2m , so that 〈Ŝmf, f〉 = 0for all m 6= 0. These 
onsiderations show that S has a 
ountable Lebesguespe
trum, and hen
e is mixing (see Goodson (2002)).4. We give some examples for whi
h Sφ = φ2S with φn = I for some
n > 2 odd. Let G be a 
ompa
t Abelian group and σ : G → G a groupautomorphism. Suppose that T is an ergodi
 automorphism of the Lebesguespa
e (X,F , µ) and ψ : X → G is a 
o
y
le. Then we 
an de�ne an auto-morphism extension Tψ,σ : X ×G→ X ×G by

Tψ,σ(x, g) = (Tx, ψ(x) + σ(g)), x ∈ X, g ∈ G.Set S = Tψ,σ. Then S preserves produ
t measure µ × λ, where λ is Haarmeasure on G. If φ(x, g) = (x, g+h) for some h ∈ G, then we 
an 
he
k that
Sφ(x, g) = S(x, g + h) = (Tx, ψ(x) + σ(g + h))and

φ2S(x, g) = φ2(Tx, ψ(x) + σ(g)) = (Tx, ψ(x) + σ(g) + 2h),so if σ(h) = 2h we have Sφ = φ2S. A spe
ial 
ase of this is the following:Proposition 1. Suppose that σ : G → G, σ(g) = 2g is a group auto-morphism. If S(x, g) = (Tx, ψ(x) + σ(g)) and φ(x, g) = (x, g + h), h 6= 0,then Sφ = φ2S.We 
an arrange φ to have any order simply by 
hoosing G and h appro-priately. For example, if we take G = Z5 and set φ(x, j) = (x, j+1), then theproposition is appli
able. Now S 
an be 
hosen to be of rank one by 
hoosing
T , ψ and σ suitably. From Theorem 3, we dedu
e that S4 has a 
omponentin its spe
trum of multipli
ity four on the orthogonal 
omplement of thesubspa
e {f ∈ L2(X,µ) : f(x, j + 1) = f(x, j)} (also, Ŝ2 has a 
omponent
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of multipli
ity two). So the maximal spe
tral multipli
ity of S4 is equal to 4(and we must also have rank 4 for S4). In
identally we see that S 
annot be
onjugate to S2 as this would imply S 
onjugate to S4.Similar 
onstru
tions may be made for other n odd. Take n = 7. Thensin
e 23 = 1 (mod7), we obtain an S with simple spe
trum, for whi
h S3has a 
omponent of multipli
ity three.5. Friedman, Gabriel and King (1988), and also Filipowi
z, Kwiatkowskiand Lema«
zyk (1988), 
onstru
t ergodi
 automorphisms having os
illatingrank fun
tion. The example of Friedman et al. is an automorphism extension
S : X × Z4 → X × Z4 of the form

S(x, j) = (Tx, ψ(x) + σ(j)),where σ : Z4 → Z4, σ(j) = −j. The map S is shown to have the followingproperties:
• S is weakly mixing.
• S has rank one.
• rank(Sn) =

{
1, n odd,
2, n even, n 6= 4k.Note that Sφ = φ3S where φ : X × Z4 → X × Z4, φ(x, j) = (x, j + 1).Sin
e msm(Ŝn) ≤ rank(Sn) we immediately see that msm(Ŝn) = 1 (nodd), and ≤ 2 (n even, n 6= 4k). However, modifying the argument of The-orem 3 for this situation, if we set

Hk = {f ∈ L2(X,µ) : f ◦ φ(x) = ωkf(x)}(where ω is a primitive 4th root of unity), we see that ⊕3
k=0Hk = L2(X,µ)and H0 and H2 are ea
h invariant under Ŝ, and ŜH1 = H3, ŜH3 = H1 (usingthe method of Lemma 1). We dedu
e that Ŝ2 has a 
omponent of multipli
itytwo in its spe
trum. Furthermore, if n is odd, msm(Ŝ2n) ≥ msm(Ŝ2) = 2.We dedu
e that

msm(Sn) =

{
1, n odd,
2, n even, n 6= 4k.The examples of Filipowi
z, Kwiatkowski and Lema«
zyk (1988) areMorse automorphisms with os
illating rank fun
tion and all having simplespe
trum. The authors remark that the maximal spe
tral multipli
ity 
analso os
illate.6. Let α ∈ [0, 1) be irrational, and de�ne S, T on [0, 1) × [0, 1) by

S(x, y) = (x + α, x + 2y) (mod1), and T (x, y) = (x, y + β) (mod1), where
β ∈ [0, 1). It is interesting to note that ST = T 2S and that T has �nite orderif β is rational, otherwise T has in�nite order and also S is ergodi
 with adis
rete 
omponent and a 
ountable Lebesgue 
omponent. However, S is notan automorphism, so our theory is not appli
able. In a similar manner, if we
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de�ne S, T : S1 → S1 by S(z) = z2, T (z) = az, then S and T are mixingand ergodi
 respe
tively (with respe
t to Lebesgue measure on the 
ir
le). Inaddition ST = T 2S, and S is not an automorphism. Sin
e S is onto, T 2 is afa
tor of T , but they 
annot be isomorphi
 sin
e they do not have the sameeigenvalue group. A similar situation holds for any ergodi
 dis
rete spe
trumtransformation T , and it may be of interest to ask more generally: when is
T 2 a fa
tor of T?7. In Goodson (2002) it was shown that if T is a Zn-extension (n even)of some transformation T0 where T has the weak 
losure property, then T
annot be 
onjugate to its square. The 
ase where n is odd is not 
lear.Suppose that ST = T 2S where T is a Z3-extension of some automorphism
T0 : X → X. If T has the weak 
losure property and is ergodi
, then Sσ =
σ2S (see Goodson (2002)) where σ is the �ip map σ(x, g) = (x, g + 1).Sin
e σ3 = I, we dedu
e that S2 has a 
omponent of even multipli
ity in itsspe
trum (in fa
t on the ortho-
omplement of the subspa
e {f ∈ L2(X,µ) :
f ◦ σ = f}).We ask whether it is generally true that if ST = T 2S where T ergodi
,then Sn has non-simple spe
trum (for some n), possibly non-ergodi
.4. Properties of the spe
tral measure of T . We study the spe
tralmeasure of T when T is 
onjugate to its square. In parti
ular we look atits maximal spe
tral type σ. We shall see that the maximal spe
tral type isquasi-invariant with respe
t to the transformation R : S1 → S1, R(z) = z2.We also show that if T has simple spe
trum, then R is one-to-one and onto(a.e. σ) on the (non-
losed) support of σ. To say that σ is R-quasi-invariantmeans that for any Borel set A in S1, σ(A) = 0 if and only if σ(R−1(A)) = 0.Proposition 2. Suppose that ST = T 2S. Then σ, the maximal spe
traltype of T̂ , is R-quasi-invariant , where R : S1 → S1, R(z) = z2.Proof. Suppose σ = σh for some h ∈ L2(X,µ). Then\
zn dσh = 〈T̂nh, h〉 = 〈Ŝ−1T̂nh, Ŝ−1h〉 = 〈T̂ 2nŜ−1h, Ŝ−1h〉 =

\
z2n dσ

Ŝ−1h
.We dedu
e that Tf(z) dσh =

T
f(z2) dσ

Ŝ−1h
for all f 
ontinuous, or that

σh(A) = σ
Ŝ−1h

(R−1A) for all Borel subsets A of S1.Suppose that σ(R−1A)=0. Then σh(R−1A)=0, and so σ
Ŝ−1h

(R−1A)=0be
ause σ
Ŝ−1h

≪ σh as σ is the maximal spe
tral type. It follows that
σh(A) = 0, or that σ ≪ σR−1.On the other hand, we 
an see from the above that σ

Ŝh
(A) = σh(R

−1A)for all Borel sets A, so that if σh(A) = 0, then σ
Ŝh

(A) = 0 sin
e σh is themaximal spe
tral type, so that σh(R−1A) = 0 and thus σR−1 ≪ σ and σ is
R-quasi-invariant.
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Remark. Let h ∈ L2(X,µ). Then
Ŝ−1Z(h) = span{Ŝ−1T̂nh : n ∈ Z} = span{T̂ 2n(Ŝ−1h) : n ∈ Z}

⊆ span{T̂n(Ŝ−1h) : n ∈ Z} = Z(Ŝ−1h).The unitary operator T̂ 
an be represented in the usual way: there are fun
-tions hi ∈ L2(X,µ) and 
orresponding spe
tral measures σhi
, i ∈ Z

+, sothat L2(X,µ) 
an be written as the dire
t sum of 
y
li
 subspa
es:
L2(X,µ) = Z(h1) ⊕ · · · ⊕ Z(hn) ⊕ · · · , σh1

≫ · · · ≫ σhn
≫ · · · ,where 〈T̂nhi, hi〉 =

T
S1 z

n dσhi
(z). This representation is essentially unique inthe sense that any other su
h representation leads to equivalent measures inthe spe
tral sequen
e. In the 
ase that Ŝ−1Z(hi) = Z(Ŝ−1hi) for i = 1, 2, . . .we 
an 
on
lude that ea
h of the measures in the spe
tral sequen
e is R-quasi-invariant. However, this is not generally true as the latter subspa
emay be mu
h larger. We 
an say the following:Proposition 3. If (R, σ) is one-to-one, then Ŝ−1Z(h) = Z(Ŝ−1h) forea
h h ∈ L2(X,µ), and ea
h measure σhi

in the spe
tral sequen
e is R-quasi-invariant.Proof. We know that Ŝ−1Z(h) ⊆ Z(Ŝ−1h), so think of Ŝ−1 as a map
Ŝ−1 : Z(h) → Z(Ŝ−1h). Now identify Z(h) with L2(S1, σh), and identify
Z(Ŝ−1h) with L2(S1, σ

Ŝ−1h
). Then this identi�
ation gives a map R̃ 
orre-sponding to Ŝ−1:

R̃ : L2(S1, σh) → L2(S1, σ
Ŝ−1h

), R̃f(z) = f(z2).Be
ause Ŝ−1 is well de�ned and an isometry, the same is true of R̃. Thetheorem will follow if we show that R̃ is onto. We know that R(z) = z2is one-to-one with respe
t to both σh and σ
Ŝ−1h

sin
e both σh ≪ σ and
σ
Ŝ−1h

≪ σ where σ is the maximal spe
tral type. It follows that R̃ is onto,and the �rst part of the proposition follows.Furthermore, in this 
ase
L2(X,µ) = Ŝ−1L2(X,µ) = Ŝ−1Z(h1) ⊕ · · · ⊕ Ŝ−1Z(hn) ⊕ · · ·

= Z(Ŝ−1h1) ⊕ · · · ⊕ Z(Ŝ−1hn) ⊕ · · · .The uniqueness of the spe
tral sequen
e now implies that the measures σhiand σ
Ŝ−1hi

are equivalent. The result follows sin
e σh(A) = σ
Ŝ−1h

(R−1A)for all h and Borel subsets A of S1.We now obtain more detailed information about the 
ase when T hassimple spe
trum. We show that R has to be one-to-one and onto the supportof σ, and we give 
onditions for R to be measure preserving. In the lemma,
σh is the maximal spe
tral type of U 
orresponding to some h ∈ L2(X,µ).
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Lemma 3. Let U : H → H be a unitary operator on a separable Hilbertspa
e H whi
h has simple spe
trum and suppose there exists an operator

P : H → H satisfying U2P = PU . Then P is unitarily equivalent to anoperator P̃ : L2(S1, σh) → L2(S1, σh) de�ned by
(1) P̃ f(z) = f(z2)k(z), f ∈ L2(S1, σh),for some k ∈ L2(S1, σh) and h ∈ H where Z(h) = H.Proof. We 
an represent U as V f(z) = zf(z), f ∈ L2(S1, σh), where σhsatis�es 〈Unh, h〉 =

T
S1 z

n dσh, n ∈ Z; here h is a 
y
li
 ve
tor for U . Wehave (V 2f)(z) = z2f(z).If W is the operator giving rise to this unitary equivalen
e, W : Z(h) →
L2(S1, σh), W (Unh) = pn (where pn(z) = zn, n ∈ Z), we may suppose that

V 2P̃ f(z) = P̃ V f(z), f ∈ L2(S1, σh),where P̃ = WPW−1. Let k = P̃ (p0). Then
P̃ p1(z) = P̃ V p0(z) = V 2P̃ p0(z) = z2k(z),and in general

P̃ pk(z) = z2kk(z), k ∈ Z.Thus
P̃

( n∑

k=−n

akz
k
)

= k(z)
( n∑

k=−n

akz
2k

)

and 
onsequently
P̃ f(z) = k(z)f(z2) for each f ∈ L2(S1, σh).Theorem 6. Let U be a unitary operator de�ned on a separable Hilbertspa
e H, having simple spe
trum. Then U is unitarily equivalent to U2 if andonly if the maximal spe
tral type σ of U is R-quasi-invariant (R(z) = z2)and where R is one-to-one and onto a.e. σ.Proof. If U is unitarily equivalent to its square via a unitary operator P(PU = U2P ), we 
an represent U as V : L2(S1, σ) → L2(S1, σ), V f(z) =

zf(z), and P as P̃ f(z) = k(z)f(z2) for some k ∈ L2(S1, σ). This map isone-to-one and onto, so the same is true of R(z) = z2, a.e. σ.Conversely, suppose that the maximal spe
tral type σ of U is R-quasi-invariant, and R is one-to-one and onto a.e. σ. Represent U as V f(z) =

zf(z) as above, and set R̃f(z) = k(z)f(z2), where k(z) =
√
dσ ◦R/dσis the positive square root of the Radon�Nikodym derivative (well de�nedbe
ause σ is R-quasi-invariant). The hypotheses imply that R̃ : L2(S1, σ) →

L2(S1, σ) is well de�ned, an isometry and onto a.e. σ. In addition we 
an
he
k that R̃V f(z) = V 2R̃f(z).
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Corollary 4. Suppose that ST = T 2S, where T has simple spe
trum.Then the map R(z) = z2 de�ned on the non-
losed support of σ (where σis of the maximal spe
tral type of T ) is one-to-one and onto and k(z) 6= 0a.e. σ. In addition, (R, σ) is a measure preserving dynami
al system if andonly if |k(z)| = 1 a.e. σ. (Here k is the map de�ned in Lemma 3.)Proof. We have seen that we 
an represent S̃ by S̃−1f(z) = k(z)f(z2).The �rst part then follows from the previous theorem. To see that |k(z)| = 1,use the fa
t that S̃ is unitary, giving 〈S̃−1f, S̃−11〉 = 〈f, 1〉 (where k(z) =

S̃−11) for all f ∈ L2(S1, σ). It follows that\
S1

f(z2)|k(z)|2 dσ(z) =
\
S1

f(z) dσ(z)for all f ∈ L2(S1, σ). So |k(z)| = 1 if and only if R is measure preserving.Corollary 5. If T is ergodi
 with dis
rete spe
trum and eigenvaluegroup Λ = e(T ), then T is 
onjugate to T 2 if and only if the map R : Λ→ Λ
R(λ) = λ2, is a group automorphism.Proof. The support of the spe
tral measure σ is e(T ), and R has to beone-to-one and onto on this set, and the result follows.Re
all that a non-singular transformation (R, σ) is ergodi
 if R−1A = Aimplies that σ(A) = 0 or σ(Ac) = 0. R is ergodi
 if and only if for allmeasurable fun
tions f , f(Rz) = f(z) a.e. σ implies f = 
onstant a.e. σ.In the 
ase that (R, σ) is R(z) = z2 and σ is the maximal spe
tral typeof some ergodi
 transformation T , 1 is always an eigenvalue of T , so 1 is anatom of σ and also an invariant set for R. When we talk about the ergodi
ityof R, we mean on the support of σ, ex
luding the invariant set {1}.We state a lemma, whi
h is of independent interest:Lemma 4. Suppose that ST = T 2S and let σ be the maximal spe
traltype of T̂ .(i) If S is not weakly mixing , there exists f ⊥ C for whi
h σf is an

R(z) = z2 invariant measure.(ii) If (R, σ) is ergodi
, and S is not weakly mixing , then σ is of the typeof an R-invariant measure.(iii) If there are no R-invariant measures ν ≪ σ, then S is weakly mixing.Proof. (i) Suppose there exists f ⊥ C with Ŝf = λf and λ ∈ S1. Then
〈T̂nf, f〉 = 〈T̂nλŜf, λŜf〉 = 〈ŜT̂ 2nf, Ŝf〉 = 〈T̂ 2nf, f〉,so that T

S1 z
n dσf (z) =

T
S1 z

2n dσf (z) for all n ∈ Z. It follows that σf is
R(z) = z2 invariant.(ii) If (R, σ) is ergodi
 with σf ≪ σ, then σf is ergodi
, and we dedu
ethat σf ∼ σ, so that σ is the type of an R-invariant measure.
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(iii) If there are no R-invariant measures ν ≪ σ, then Ŝ 
an have noeigenfun
tions, so S is both ergodi
 and weakly mixing.In the next theorem we assume the existen
e of a 
onjugating map Swhi
h is ergodi
 with dis
rete spe
trum. It is an open question whether ornot su
h S 
an exist for some aperiodi
 T . It is hoped that this theorem willthrow light on the existen
e or otherwise of su
h transformations.Theorem 7. Suppose that ST = T 2S and let σ be of the maximal spe
-tral type of T̂ , and set R(z) = z2. If S is ergodi
 with dis
rete spe
trumthen:(i) σ 
an be 
hosen to be a �nite R-invariant measure, whi
h is not thetype of Lebesgue measure. In addition, T is rigid , and if T is ergodi
,then T is weakly mixing (but not mixing).(ii) If T has simple spe
trum, then

L2(X,µ) =
⊕

n

Z(fn),where the set {fn : n ∈ Z} is a subfamily of the eigenfun
tions of S.Ea
h Z(fn) is both T̂ - and Ŝ-invariant , and the 
orresponding spe
-tral measures σfn

onstitute an ergodi
 de
omposition for the measure

σ with respe
t to R.Proof. (i) There is a 
omplete orthonormal basis for L2(X,µ), {fn :

n ∈ Z}, 
onsisting of eigenve
tors of S, i.e., Ŝfn(x) = λnfn(x) for ea
h
n ∈ Z and some λn ∈ S1. As in the proof of the above lemma, we see that

〈T̂mfn, fn〉 = 〈T̂ 2mfn, fn〉for all m,n ∈ Z. We dedu
e that\
S1

zm dσfn
(z) =

\
S1

z2m dσfn
(z)

for all m,n ∈ Z (spe
tral measures with respe
t to T̂ ). This tells us that ea
hof the measures σfn
is R(z) = z2 invariant, and sin
e the fn's 
onstitute a
omplete orthonormal basis, it 
an be shown that σ must be the type ofan R-invariant measure. The fa
t that S is rigid implies that T is rigid,and rigidity is in
ompatible with the existen
e of an absolutely 
ontinuous
omponent.If T is ergodi
, then sin
e S is also ergodi
 with msm(S) <∞, Corollary 2applies to show that T must be weakly mixing. (In the 
ase that S is totallyergodi
, Corollary 3 implies that Tm 6= I for all m 6= 1.)(ii) {fn : n ∈ Z

+} is the set of eigenfun
tions of S with 
orrespondingeigenvalues {λn : n ∈ Z
+}. As in the proof of (i) above we see that\

zk dσn,m(z) = λnλm
\
z2k dσn,m(z),
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where σn,m = σfn,fm
, so that σn = σn,n is an R(z) = z2 invariant measure.We also have

〈T̂ kfn, fm〉 = 〈WT̂ kfn,Wfm〉 = 〈V kWfn,Wfm〉 = 〈V krn(z), rm(z)〉

=
\
zkrn(z)rm(z) dσ(z),whereW : L2(X,µ) → L2(S1, σ) is the isometry whi
h sends T̂nh to zn, and

rn(z) = Wfn.This implies that
dσn,m(z) = rn(z)rm(z)dσ(z),and in parti
ular dσn(z) = |rn(z)|

2dσ(z), so that rn(z) and σn have the samesupport (say An). Set
Hn = {f ∈ L2(X,µ) : Ŝf = λnf}and H̃n = WHn. Sin
e S is ergodi
, Hn and H̃n are one-dimensional sub-spa
es with rn(z) ∈ H̃n, for ea
h n ∈ Z

+. Consequently, rn(z) is the essen-tially unique fun
tion with the property that
rn(z

2)k(z) = λnrn(z) for z ∈ An.Clearly ea
h An is an R-invariant set. Suppose that σ(An ∩Am) > 0. Then
χAn∩Am

(z2)rn(z
2)k(z) = λnχAn∩Am

(z)rn(z),
ontradi
ting the fa
t that H̃n is one-dimensional (unless An = Am).This same argument shows that An 
an have no non-trivial invariantsubsets, so that (R,An, σn) is ergodi
 and measure preserving.We have shown that An = Am or An ∩Am = ∅ a.e. σ. In the latter 
asewe must have σn,m = 0, so that
〈T̂ kfn, fm〉 = 0 for all k when n 6= m.We dedu
e that in this 
ase Z(fn) ⊥ Z(fm) (with respe
t to T̂ ) and σn ⊥ σm.Note also that sin
e ea
h fn is an eigenfun
tion of S, ea
h Z(fn) is Ŝ−1-invariant, and we see that the restri
tions of T̂ and Ŝ to Z(fn) are unitaryoperators with the property that T̂ Ŝ = ŜT̂ 2. We remark that it 
an be shownthat Z(fn) ⊥ Z(f2
n) for ea
h n ∈ Z.In the preprint Ageev (2005), it is mentioned that typi
ally the rank onetransformations 
onjugate to their squares have the property that (R, σ) isan ergodi
 measure preserving transformation. It follows that the hypothesisof (ii) below is non-va
uous. Bernoulli shifts having in�nite entropy satisfythe 
onditions of (i).Theorem 8. Suppose that ST = T 2S and let σ be of the maximal spe
-tral type of T̂ , and set R(z) = z2.
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(i) If T is mixing and σ is measure preserving for R, then T̂ has a 
ount-able Lebesgue 
omponent. In fa
t σ is the type of Lebesgue measure.(ii) If T has simple spe
trum and (R, σ) is ergodi
, then S has at mosttwo ergodi
 
omponents. If S is not ergodi
 then there is an Ŝ-invariant fun
tion f0 ⊥ C su
h that σf0 is R-invariant , ergodi
 andof the maximal spe
tral type of T̂ .(iii) If T has the weak 
losure property and simple spe
trum, and thereexists a non-trivial φ ∈ C(T ) with φn = I for some n ∈ Z

+, then
(R, σ) is not ergodi
.Proof. (i) There exists f ⊥ C su
h that σf = σ, so that σf is R-invariant.Thus \

zn dσf =
\
z2n dσf for all n ∈ Z,or 〈T̂nf, f〉 = 〈T̂ 2nf, f〉 for all n ∈ Z. We therefore have

〈T̂ f, f〉 = 〈T̂ 2f, f〉 = · · · = 〈T̂ 2n

f, f〉 → 〈f, 1〉〈1, f〉 as n→ ∞,sin
e T is mixing. We dedu
e that 〈T̂ f, f〉 = 0, and similarly, 〈T̂nf, f〉 = 0for all n 6= 0. It follows that σ = σf = λ, Lebesgue measure, so that T̂ musthave a Lebesgue 
omponent in its spe
trum. This 
omponent is 
ountable,for if we suppose T̂ has a Lebesgue 
omponent of multipli
ity m ∈ Z
+,then T̂ 2 has a Lebesgue 
omponent of multipli
ity 2m, 
ontradi
ting the
onjuga
y between T and T 2.(ii) Denote by H0 the subspa
e

H0 = {f ∈ L2(X,µ) : Ŝf = f},and let W : L2(X,µ) → L2(S1, σ) be the isometry whi
h sends T̂nh to zn(where Z(h) = L2(X,µ)). As usual, represent Ŝ as an operator on L2(S1, σ),by S̃−1g(z) = g(z2)k(z). Then we 
an set
H̃0 = WH0 = {f ∈ L2(S1, σ) : S̃f(z) = f(z) a.e. σ}.Now 1 ∈ H0, so W1 = r(z) ∈ H̃0, and r(z2)k(z) = r(z) a.e. σ.But T̂1 = 1, so VW1 = WT̂1 = W1 and V r(z) = r(z), or zr(z) = r(z)a.e. σ. This implies that r(z) is supported on the set {1} and k(1) = 1, so

r(z) = cχ{1} for some 
onstant c, i.e., χ{1} ∈ H̃0.Let us suppose that (R, σ) is ergodi
 and let f ∈ H̃0 and B = supp(f) =
{z ∈ supp(σ) : f(z) 6= 0, z 6= 1}. Then B is an R-invariant set, and R ergodi
implies that σ(B) = 0 or σ(Bc) = 0 (we know that k(z) 6= 0 a.e. σ). Supposethat σ(Bc) = 0, i.e., f 6= 0 a.e. σ (otherwise every f ∈ H̃0 is zero a.e. σ ex
eptpossibly at z = 1, so H̃0 is one-dimensional, whi
h implies S is ergodi
), andlet g ∈ H̃0. Then g/f(z2) = g/f(z) a.e. σ, so that g/f = 
onstant a.e. σ,
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i.e., χB · H̃0 is a one-dimensional subspa
e of L2(S1, σ). It follows that H0 isat most a two-dimensional subspa
e.Suppose that S is not ergodi
 and f0 ∈ H0, with f0 ⊥ C. Then σf0 is
R(z) = z2 invariant be
ause 〈T̂nf0, f0〉 = 〈T̂ 2nf0, f0〉 for all n ∈ Z.In addition, σf0 ≪ σ, and σ ergodi
 (with respe
t to R) implies σf0 isergodi
, so σf0 ∼ σ and hen
e Z(f0) = C

⊥.(iii) As usual, represent T̂ by V f(z)=zf(z), Ŝ using S̃−1f(z)=k(z)f(z2),and φ̂ as φ̃f(z) = h(z)f(z).Sin
e T has the weak 
losure property, Sφ = φ2S, so S̃−1φ̃ = φ̃2S̃−1.This gives h2(z) = h(z2) for all z. Set
g(z) = h(z) + h2(z) + · · · + hn−1(z).Then

g(z2) =
n−1∑

i=1

hi(z2) = g(z),

sin
e we must have hn(z) = 1 and ne
essarily n is odd. We see that g isnon-
onstant, for if not, ∑n−1
i=1 φ̂

i = cI for some 
onstant c, and this impliesthat φ̂ is the identity operator, a 
ontradi
tion.5. Gaussian�Krone
ker automorphisms 
onjugate to their 
om-position squares. We give some examples of weakly mixing transforma-tions having simple spe
trum whi
h are 
onjugate to their squares. The 
on-stru
tion involves Gaussian automorphisms. These are used be
ause spe
tralisomorphism gives rise to isomorphism.Let K ⊆ S1 be a Krone
ker set, i.e., for every 
ontinuous 
omplex-valuedfun
tion f(z) of absolute value 1 de�ned on K and for all ε > 0 there exists
n ∈ Z su
h that

sup
z∈K

|f(z) − zn| < ε.Let σ0 be a 
ontinuous symmetri
 measure (σ0(A) = σ0(A) for all Borelsets A ⊂ S1) whose support is K ∪ K. We 
all σ0 a Gaussian�Krone
kermeasure. Given a symmetri
 measure σ, there is a 
orresponding Gaussianautomorphism Tσ. We 
all σ the spe
tral measure of Tσ (whi
h is distin
tfrom the maximal spe
tral type, whi
h is the measure
eσ − δ1 = σ +

σ(2)

2!
+
σ(3)

3!
+ · · · ,where σ(n) is the n-fold 
onvolution produ
t of σ with itself and δ1 is anormalized measure supported at the point z = 1).
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Let us re
all some of the properties of Gaussian automorphisms andGaussian�Krone
ker measures (see Cornfeld, Fomin and Sinai (1980) andLema«
zyk, Parreau, Thouvenot (2000) for the properties of Gaussian au-tomorphisms, and Rudin (1962) for the properties of Krone
ker sets):(i) If σ is a Gaussian�Krone
ker measure, then Tσ has a simple and
ontinuous spe
trum. In fa
t this is true for any σ whi
h has norational relations (ex
ept for the symmetry relation), in parti
ularfor measures supported on symmetrized Krone
ker sets.(ii) All Gaussian automorphisms with the same 
ontinuous spe
tralmeasure are isomorphi
.(iii) Any 
onjugation between Gaussian automorphisms having simplespe
trum is Gaussian.(iv) Every Gaussian�Krone
ker map has the weak 
losure property.(v) If σ is Gaussian�Krone
ker, then σ ⊥ σ ∗ δz for all z ∈ S1 \ {1}.Consequently, the map R(z) = zn is one-to-one a.e. σ on K ∪ K,for all n ∈ Z

+.(vi) If σ has an absolutely 
ontinuous 
omponent, then Tσ has a 
ount-able Lebesgue 
omponent in its spe
trum.(vii) Gaussian automorphisms having 
ountable Lebesgue spe
trum areisomorphi
.Denote by R̂σ0 the image of σ0 under R, and de�ne a new measure by
σ =

∞∑

k=−∞

1

2|k|
R̂kσ0,where R(z) = z2. Then σ is 
learly an R-quasi-invariant measure and it
an be seen that R is one-to-one and onto, σ a.e., and that this is also truefor the measure eσ on S1 \ {1}. In fa
t, sin
e σ0 has no rational relations(ex
ept for the symmetry relation) on K ∪ K, the same is true for σ, and

K ∩ RnK = ∅ for all n ∈ Z \ {0}. Then (i) above ensures that there isa Gaussian automorphism Tσ having simple spe
trum, and whose spe
tralmeasure is σ with maximal spe
tral type eσ − δ1. Furthermore, both Tσand T 2
σ are Gaussian automorphisms, whose spe
tral isomorphism followsfrom Theorem 6. It then follows from (ii) that Tσ is 
onjugate to T 2

σ .We summarize the above with a theorem.Theorem 9. The Gaussian automorphism Tσ 
onstru
ted above has asimple and 
ontinuous spe
trum. In addition Tσ is 
onjugate to its square,and any 
onjugating map S is Gaussian (possibly non-ergodi
) with a 
ount-able Lebesgue 
omponent in its spe
trum.Proof. It su�
es to prove that the 
onjugating map has a 
ountableLebesgue 
omponent. Denote byH ⊂ L2
R
(X,µ) the Gaussian subspa
e for Tσ
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where L2
R
(X,µ) are the real fun
tions in L2(X,µ). For f ∈ H, denote by σfthe usual spe
tral measure of f with respe
t to the maximal spe
tral type eσ.Then in this 
ase we see that σf ≪ σ.For A a Borel subset of S1, we set

HA = {f ∈ H : supp(σf ) ⊆ A}.Now for the Krone
ker setK de�ned above, σ(K) > 0, and we let f ∈ HK∪K .As before, T
S1 z

n dσf (z) =
T
S1 z

2n dσ
Ŝ−1f

, and this implies that σ
Ŝf

(B) =

σf (R
−1B) for any Borel set B ⊆ S1.It follows that supp(σ

Ŝf
) ⊆ R(K ∪ K). In addition we have σ

Ŝf
=

σfR
−1 ≪ σR−1, and sin
e the latter measure is equivalent to σ, we have

σ
Ŝf

≪ σ, whi
h implies Ŝf ∈ H (using the fa
t that σ ⊥ σ(n) for all n > 1).We have shown that Ŝf ∈ HR(K∪K), and more generally, Ŝnf ∈ HRn(K∪K)for n ∈ Z. Clearly the subspa
es HRn(K∪K), n ∈ Z, are pairwise orthogonal(sin
e the sets Rn(K ∪K), n ∈ Z, are pairwise disjoint), so that
〈Ŝnf, f〉 = 0 for all n ∈ Z, n 6= 0,i.e., S must have a Lebesgue 
omponent, whi
h must be 
ountably Lebesgueas S is Gaussian (using property (vi)).Example. Set T = Tσ × Tσ (where Tσ is as above). Then S̃T = T 2S̃where S̃ = S × S. Generally, the Cartesian square Tσ × Tσ of a Gaussianautomorphism Tσ has in�nite multipli
ity.
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