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Abstract. Let S and T be automorphisms of a standard Borel probability space.
Some ergodic and spectral consequences of the equation ST = TS are given for T ergodic
and also when 7" = I for some n > 2. These ideas are used to construct examples of
ergodic automorphisms S with oscillating maximal spectral multiplicity function. Other
examples illustrating the theory are given, including Gaussian automorphisms having
simple spectra and conjugate to their squares.

0. Introduction. Let T be an invertible measure-preserving transforma-
tion (automorphism) defined on a standard Borel probability space (X, F, u).
We investigate spectral and ergodic consequences of the equation ST = T2
for automorphisms S and T'. No examples of weakly mixing automorphisms
conjugate to their squares and having simple spectrum have been published
that we are aware of, and we give some Gaussian automorphisms having this
property. Very few examples of transformations conjugate to their squares are
known, and few general results are available indicating when this can happen.
(After this paper was submitted, a preprint was received from O. N. Ageev
(2005), who uses a category argument to show the existence of rank one trans-
formations which are weakly mixing and conjugate to their squares. This
answered a question mentioned in Goodson (2002, 1999) which had been
open for some time. Many of the results of this paper are applicable to such
examples.)

Maps having finite non-zero entropy cannot be conjugate to their squares
because of the identity h(7?) = 2h(T). Consequently, we are only interested
in maps having zero or infinite entropy.

We recall the basic properties of transformations conjugate to their
squares in Section 1. In Section 2 we show that if ST = T2S where T is
mixing with no Lebesgue component, then S is weakly mixing. On the other
hand, if T" is ergodic and has an eigenvalue which is a root of unity, S cannot
be ergodic.
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In Section 3, using the spectral theorem for unitary operators we see that
if T™ = I (I = the identity map), for some n € Z, n > 2, then S? has maximal
spectral multiplicity equal to ¢ on some subspace (for some 1 < ¢ < n), and
we apply these ideas to give examples of automorphisms having an oscillating
multiplicity function. These ideas are used to construct weakly mixing rank
one transformations S for which S? has non-simple spectrum, answering a
question of Thouvenot.

In Section 4, properties of the maximal spectral type of an automorphism
which is conjugate to its square are considered. Section 5 gives examples of
Gaussian automorphisms having simple spectrum and which are conjugate
to their squares. Properties of the conjugating map are also studied.

Much of our exposition generalizes to the case where there are automor-
phisms S and T satisfying ST = TPS for some p > 1.

I wish to thank the participants and organizers of the 2002 Toruri Confer-
ence on Ergodic Theory in honor of Jan Kwiatkowski, for helpful comments
and suggestions concerning this paper. I would also like to thank the referee
for helpful comments that resulted in improvements and in the avoidance of
mistakes.

1. Preliminaries. By a dynamical system we mean a 4-tuple X =
(X, F,pu,T) consisting of an automorphism 7' : (X, F,u) — (X, F,u) de-
fined on a non-atomic standard Borel probability space. Both the identity
automorphism and the identity operator will be denoted by I. The group
Aut(X) of all automorphisms of (X, F, 1) becomes a completely metrizable
topological group when endowed with the weak convergence of transforma-
tions (T;, — T if for all A € F, u(T; 1 (A) AT HA))+pu(T,,(A) AT(A)) — 0
as n — 00). Denote by C(T') the centralizer of T, i.e., the set of those mem-
bers of Aut(X) which commute with 7' (more generally it is usual to define
C(T) to be those measure-preserving transformations which commute with
T, but it will be convenient to assume that C(7T') is a group).

The spectral properties of 1" are those of the induced unitary operator
defined by

T:L3(X,p) — LA(X,p), Tf(z)=[f(Tx), feL*X,p).

Note that if ST = T2S, then T'S = ST2.

Generally a unitary operator U : H — H on a separable Hilbert space
H is said to have simple spectrum if there exists h € H such that Z(h) = H,
where Z(h) is the closed linear span of the vectors U™h, n € Z.

In this case there exists a finite Borel measure o} defined on the unit
circle S' in the complex plane for which
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({U"h,h) = | z"doy, neZ,
Sl

and such that U is unitarily equivalent to V : L%(S' o) — L*(S!,04)
defined by V f(z) = zf(z).
Let us mention some basic facts about automorphisms S and T satisfying

ST =T?S (see Goodson (2002)):

(i) ST =T?"S for n € Z and S"T = T?"S" for all n € Z+.
(ii) If T is aperiodic, then S is aperiodic (i.e., u({x € X : S"z=x})=0
for all n € Z).

(iii) If S'isergodic, then either T is aperiodic, or 7™ = I for some n € Z.

If S is prime, then T is weakly mixing or T' = 1.

If T is ergodic with discrete spectrum, then S is ergodic (and hence

mixing) if and only if 7" has no eigenvalues having finite order.

(vi) The entropy of T satisfies h(T") = 0 or h(T) = occ.

(vii) The Bernoulli shift of infinite entropy and the time one map in the
horocycle flow are conjugate to their squares.

(viii) If T has the weak closure property (see King (1986)), then the
map @ : C(T) — C(T), #(S) = S? is a group automorphism.
Furthermore, S¢ = ¢2S for all ¢ € C(T), and any two conjugations
between T and T2 are isomorphic.

(ix) If S is rigid (there is a sequence n; — oo with S™ — [ as i — 00),
then T is rigid, or T™ = I for some m € Z*.

Recall that rank one maps and also Gaussian—-Kronecker maps have the
weak closure property (see King (1986) and Thouvenot (1987)).

2. Mixing and ergodic properties of S and T when ST = T2S.
We now look at how the equation ST = TS forces certain mixing properties
on S and T when additional assumptions are made.

THEOREM 1. Suppose that ST = T%S where T is ergodic. If T has an
eigenvalue which is a root of unity, then S is not ergodic.

Proof. There exists A € S' and n > 1 with f(Tx) = A\f(x), \F # 1 for
1 <k < nand \* = 1. This implies that f"(Tz) = f™(z), and T ergodic
implies f” = constant a.e. Necessarily, n is odd since otherwise T" would have
—1 as an eigenvalue, contradicting the ergodicity of T2. Thus A # £1, and
in addition, we may assume that f* = 1. In particular, f2(Tz) = \2f%(x)
and also

foS(Tz) = f(STx) = f(T%Sz) = f o T?(Sx) = \2f o S(z),
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i.e., both f2 and f o S are eigenfunctions for T' corresponding to the same
eigenvalue A\2. Since T is ergodic, there exists ¢ € S* for which

foS(z)=rcf(z) ae.,
where ¢" = 1.
Let g(x) = Y2721 ¢#~ ' f¥(z). Then

n—1
g(Sm):ch 1fk S.%' ch 1Cf Zc2k 1 2k g(x)7
k=1
since n is odd and ¢ = 1, f” = 1. We see that g(:v) is non-constant since
the functions f* k=1,...,n — 1, are orthogonal (because they correspond

to distinct eigenvalues A\¥, 0 < k < n). It follows that S is not ergodic. m

Recall that an ergodic transformation T is totally ergodic if it has no
eigenvalues that are roots of unity. We immediately obtain:

COROLLARY 1. If ST = T2S where T and S are ergodic, then T is
totally ergodic.

Suppose that ST = T2S where T has a Lebesgue component in its spec-
trum. If 7" has a Lebesgue component of multiplicity n, then it can be seen
that 72 must have a Lebesgue component of multiplicity 2n, which is impos-
sible unless n = oo. In particular, a transformation with a finite Lebesgue
component cannot be conjugate to its square. The next result shows that if
ST = T?S where T is mixing, and S is not weakly mixing, then T has a
countable Lebesgue component. We conjecture that if T is mixing and S is
ergodic, then S is weakly mixing. This would have implications concern-
ing Bernoulli shifts having infinite entropy as these are conjugate to their
squares. Recall from Goodson and Ryzhikov (1997) that a finite rank mix-
ing transformation (or in fact any locally rank one mixing transformation)
is never conjugate to its square.

THEOREM 2. If ST = T?%S where T is mizing, then:

(i) If T has no Lebesque component in its spectrum, then S is weakly
mizTing.
(ii) If S is ergodic, but not weakly mixing, then T has a countable Lebes-
gue component in its spectrum.
(iii) S cannot be ergodic with purely discrete spectrum (and in fact cannot
be rigid).

Proof. (i) Suppose that S is ergodic but not weakly mixing, and let A be
the eigenvalue group of S with {fy : A € A} the set of eigenfunctions of S in
the orthogonal complement of the constant functions. Let A, u € A. Then

(Tfr, fu) = (TASfr, 1S f) = M(STITS f, fu) = Mu(T? fr, fu)-
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In the same way we see that

(Th fu) = Ow)™T fr, f,)  for all n.

However, T' is mixing, so as n — 00,

<T\2nf)nfu> — (s 1><1,fu) =0 forall A and

since f) L C. Since (Ay)™ is a bounded sequence, we deduce that (T'fy, fu)
= 0. The same argument shows that (f”f»fm =0 forallne€Z, n#0,
and all A\, p € A.

If Z(fy) is the cyclic subspace generated by f) (with respect to T"), then
the restriction of T' to Z(fx) has simple Lebesgue spectrum for each A, and
part (i) follows.

(ii) If S is ergodic but not weakly mixing, then Z(f\) L Z(f,) for all
A # pu, and we conclude that T has a Lebesgue component in its spectrum,
which must be countable.

(iii) Recall that if S is ergodic with purely discrete spectrum, then S
is rigid, so there is a sequence n; — oo as i — oo with §™ — I. Since
SMT = T2" 8" for i = 1,2,..., we deduce that 72""~1 — I as i — oo, so
T is also rigid, and cannot be mixing. =

3. Spectral properties of S when T is of finite order. Suppose
instead we have the situation S¢ = ¢2S for some automorphism ¢ satisfying
¢" = I (some n > 2 necessarily odd). An automorphism extension is a map
S: X x G — X x G of the form

S(z,9) = (Soz, ¥(x) +v(g)),
where v : G — G is a group automorphism, Sy : X — X is an automorphism
and ¢ : X — @ is measurable. S is itself an automorphism on the space
(X X G, F ®@ Fg,pu X \), where F¢ are the Borel sets of G, and X is Haar
measure on the compact group GG. We shall see that automorphism extension
can have the property that S¢ = ¢2S for some automorphism ¢ which
satisfies ¢" = I for some n > 2 odd.
Let w € S! be a primitive nth root of unity and write

Hy={feL?*X,p): fopx)=wFf(x)}, 0<k<n-1.

The subspaces Hj, being the eigenspaces of the unitary operator gg, are $
invariant, pairwise orthogonal and

n—1
k=0

LEMMA 1. S™Hy = Hyom (modn) for k= 0,1,...,n— 1 and m > 1. In

particular, Hy is S-invariant.
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Proof. Let f € Hy. Then §mf = foS™, and
foS™(¢r) = f(*"5™x) = WM o S(x),
so that f o S™ € Hy.om (modn)- ®
As a consequence, we deduce some results about the spectrum of the
powers of S. Specifically we show that for some ¢ > 1, the maximal spectral

multiplicity of S? on a subspace is divisible by g. Note that S can be ergodic
in this theorem.

THEOREM 3. Suppose that S¢ = ¢S where ¢™ =1 (n > 3 odd, ¢* # I,
0 < k < n). Then there exists 1 < q < n — 1 for which S? restricted to the
ortho-complement of the subspace

{feLl’(X,n): foop=f},

has a component of multiplicity divisible by q in its spectrum. Specifically,
g=min{m € Z* : 2™ =1 (modn)}.

Proof. Let f € Hi. Then by the lemma we have

SfeH, S2°feHy, ..., S™f€Hpmmoan and SIf e Hi.

Let g € L?(X, i), and denote by Z(g) the cyclic subspace of L?(X, i) gen-

erated by the unitary operator S, i.e., the closed linear span of all vectors
of the form S™g, n € Z. Then for f € Hy,

2(f) CHy, Z(Sf)CHy .oy Z(8™f) C Hym(modn),
and this implies that Z(S"f) L Z(5Pf) forr #p, 1 <r,p<q— 1.
Furthermore,

(S™(S" ), 8" f) = (§"f, f) for all n € Z,
so that Ogry ~ Of for 0 <r < ¢q—1 (spectral measures with respect to §‘1),
and hence 59 has maximal spectral multiplicity divisible by ¢ on the subspace
HSoHy® - @D Hyg1,
where 29 =1 (modn). =

A slightly more general version of the above can be given, which is only
of interest when T is not ergodic.

THEOREM 4. Suppose that ST = T%S and w is a primitive nth root of
unity for which the set A = {W¥ : 0 < k < n} consists of eigenvalues of T,
but no member of —A is an eigenvalue of T. If S has simple spectrum, then
S has a component of multiplicity q in its spectrum, for some 1 < g <n—1.

The theorem is shown by the method of proof of the last theorem, to-
gether with the following lemma:
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LEMMA 2. Under the conditions of the last theorem, the subspaces
Hy={f e L*(X,p) : Tf(2) =¥ f(2)}, 0<k<n-—1,
are S9-invariant for some 1 < q < n.
Proof. We first show that §Hk = Hyy, for each k (reduced modulo n if

necessary). Proceeding as before, we see that if f € Hj then §f € Hog, so
that SH; C Hoyy, hence it suffices to show the reverse containment. Write

H,={feL*X,n): T*f(z)=w?f(z)}, 0<k<n-—1.
Then clearly H, C Hj. On the other hand, if f € Hj, set g = f — w kT,
then Tg = —whg.

But —wF is not an eigenvalue of T so g = 0 and ff =wFf, or f € Hy
and we deduce that Hj, = H}. Suppose now that f € Hy;. Then

T25-1f = §1Tf = WG/,
so that §_1f € H, = Hy, or §_1H2k C H}. We have shown that
SHy, C Hop C SHy, i.e., Hop = SH;.
Now continue in this way to see that there is some ¢ with :S'\qu =Hy. =
In this direction we also have:

THEOREM 5. If ST = T2S where T is totally ergodic, but not weakly
mizing, then S has a countable Lebesque component in its spectrum.

Proof. Since T is totally ergodic and not weakly mixing, there exists
f e L*(X,u), f(Tz) = \f(x), where A" # 1 for all n € Z. We see that for
n>1,

foSUTx) = f(S"Tx) = f(T*" S"z) = \*"foS™(x) forn>1,

so f o S™ is also an eigenfunction of 7', but corresponding to a different
eigenvalue. Therefore <§" f,f) = 0 for all n # 0. Since this can be done
for each of a countable collection of orthogonal eigenfunctions of 7' (using
the fact that the eigenvalue group is R(z) = 22 invariant), S must have a
countable Lebesgue component in its spectrum. m

COROLLARY 2. Suppose that ST = T2S, where S and T are ergodic. If
msm(S) < oo, then T is weakly mizing.

Proof. The ergodicity of S and T implies that T" has no eigenvalues of
finite order. Since S cannot have a countable Lebesgue component, 7' cannot
have eigenvalues of infinite order, so T' must be weakly mixing. m

The following is also a straightforward consequence of Theorem 3 and
(iii) of Section 1.
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COROLLARY 3. If ST =T2S where S™ has simple spectrum for alln € 7+,
then T'=1 or T is aperiodic.

ExampLES. 1. If T' is a Bernoulli shift having infinite entropy, then T is
conjugate to its square. If S is a conjugating map, then since T’ is mixing,
Theorem 2 implies that S cannot be rigid, and we conjecture that S has to
be weakly mixing in this case.

2. It is possible for S to be mixing with T non-ergodic and satisfying
ST = T?S. For example, there is an ergodic discrete spectrum map 7T} and a
mixing map Sy with STy = T3S0, so simply set T = Ty x T and S = Spx Sp.

3. Suppose that ST = T2S and T is ergodic with discrete spectrum.
Suppose also that every eigenvalue A of T satisfies \™ # 1 for all n € Z,
n # 0. Set

H, ={f € L*(X,p) : f(Tx) = \"f(x)}, neZt,
ie., Hy is just the one-dimensional eigenspace corresponding to the elgen—
value A". Then as before, if f € Hy, Sm f € Hom, so that <Smf, f) =

for all m # 0. These considerations show that S has a countable Lebesgue
spectrum, and hence is mixing (see Goodson (2002)).

4. We give some examples for which S¢ = ¢S with ¢" = I for some
n > 2 odd. Let G be a compact Abelian group and ¢ : G — G a group
automorphism. Suppose that T is an ergodic automorphism of the Lebesgue
space (X,F,u) and ¥ : X — G is a cocycle. Then we can define an auto-
morphism extension Ty, , : X X G — X x G by

Tpolr,9) = (Tz,(x) +0(9)), zeX gel.
Set S = Ty ,. Then S preserves product measure p x A\, where \ is Haar
measure on G. If ¢(x, g) = (x, g+ h) for some h € G, then we can check that

S¢(x,9) = S(x, g+ h) = (T, 9 (x) + (g + h))
and
¢*S(x,9) = ¢*(Tx, () + 0(9)) = (T, 9 (z) + a(g) + 2h),
so if o(h) = 2h we have S¢ = ¢>S. A special case of this is the following:

PROPOSITION 1. Suppose that o : G — G, o(g) = 2g is a group auto-

morphism. If S(z,g) = (Tz,¢(z) + o(g)) and ¢(x,g) = (x,9 +h), h # 0,
then S¢ = ¢*S

We can arrange ¢ to have any order simply by choosing G and h appro-
priately. For example, if we take G = Z5 and set ¢(x,j) = (z,j+1), then the
proposition is applicable. Now S can be chosen to be of rank one by choosing
T, v and o suitably. From Theorem 3, we deduce that S* has a component
in its spectrum of multiplicity four on the orthogonal complement of the
subspace {f € L*(X,u) : f(z,5+ 1) = f(z,7)} (also, S? has a component
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of multiplicity two). So the maximal spectral multiplicity of S4 is equal to 4
(and we must also have rank 4 for S*). Incidentally we see that S cannot be
conjugate to S? as this would imply S conjugate to S*.

Similar constructions may be made for other n odd. Take n = 7. Then
since 23 = 1 (mod7), we obtain an S with simple spectrum, for which $3
has a component of multiplicity three.

5. Friedman, Gabriel and King (1988), and also Filipowicz, Kwiatkowski
and Lemanczyk (1988), construct ergodic automorphisms having oscillating
rank function. The example of Friedman et al. is an automorphism extension

S: X x7Zy— X X Zy4 of the form

S(x,j) = (Tz,¢(x) + o (5)),
where o : Zy — Z4, 0(j) = —j. The map S is shown to have the following
properties:

e S is weakly mixing.
e S has rank one.

1, n odd,
e rank(S") =

2, n even, n # 4k.
Note that S¢ = ¢3S where ¢ : X x Zy — X x Zy, ¢(x,5) = (z,j + 1).

Since msm(S™) < rank(S™) we immediately see that msm(S™) = 1 (n

odd), and < 2 (n even, n # 4k). However, modifying the argument of The-
orem 3 for this situation, if we set

Hy={f € L*(X,p) : f o p(a) = " f(2)}
(where w is a primitive 4th root of unlty) we see that @ _ o Hi = L3(X, )
and Hy and H are each invariant under S and SH1 Hs, SH3 = H;j (using
the method of Lemma 1). We deduce that 52 has a component of multiplicity
two in its spectrum. Furthermore, if n is odd, msm(S52") > msm(5?) = 2.

We deduce that
1, n odd,

S =
msm(5") { 2, n even, n # 4k.

The examples of Filipowicz, Kwiatkowski and Lemanczyk (1988) are
Morse automorphisms with oscillating rank function and all having simple
spectrum. The authors remark that the maximal spectral multiplicity can
also oscillate.

6. Let o € [0,1) be irrational, and define S,T on [0,1) x [0,1) by
S(z,y) = (x + a,z + 2y) (mod 1), and T(z,y) = (z,y + () (mod1), where
3 € [0,1). It is interesting to note that ST = T2S and that T has finite order
if 3 is rational, otherwise T" has infinite order and also S is ergodic with a
discrete component and a countable Lebesgue component. However, S is not
an automorphism, so our theory is not applicable. In a similar manner, if we
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define S,T : S' — S' by S(2) = 22, T(z) = az, then S and T are mixing
and ergodic respectively (with respect to Lebesgue measure on the circle). In
addition ST = T28, and S is not an automorphism. Since S is onto, T? is a
factor of T, but they cannot be isomorphic since they do not have the same
eigenvalue group. A similar situation holds for any ergodic discrete spectrum
transformation 7', and it may be of interest to ask more generally: when is
T? a factor of T?

7. In Goodson (2002) it was shown that if T" is a Z,-extension (n even)
of some transformation 7; where T has the weak closure property, then T’
cannot be conjugate to its square. The case where n is odd is not clear.
Suppose that ST = T2S where T is a Zs-extension of some automorphism
To : X — X. If T has the weak closure property and is ergodic, then So =
028 (see Goodson (2002)) where o is the flip map o(x,g9) = (z,9 + 1).
Since 03 = I, we deduce that S? has a component of even multiplicity in its
spectrum (in fact on the ortho-complement of the subspace {f € L?(X, u) :

foo=Tf}).
We ask whether it is generally true that if ST = T2S where T ergodic,
then S™ has non-simple spectrum (for some n), possibly non-ergodic.

4. Properties of the spectral measure of 7. We study the spectral
measure of 7" when T is conjugate to its square. In particular we look at
its maximal spectral type o. We shall see that the maximal spectral type is
quasi-invariant with respect to the transformation R : St — S, R(z) = 22
We also show that if T has simple spectrum, then R is one-to-one and onto
(a.e. o) on the (non-closed) support of . To say that ¢ is R-quasi-invariant
means that for any Borel set A in S', 0(A) = 0 if and only if 0 (R~1(4)) = 0.

PROPOSITION 2. Suppose that ST = T2%S. Then o, the mazimal spectral

type of T, is R-quasi-invariant, where R : S* — S, R(z) = 22,

Proof. Suppose o = o}, for some h € L?(X, it). Then

\2"doy, = (T"h,h) = (S7'T"h, S h) = (T*"Sh, S h) =\ 2*" dog_y,,.
We deduce that §f(z)doy = §f(2%) dog_,, for all f continuous, or that
on(A) = 0g_1, (R A) for all Borel subsets A of S'.

Suppose that o(R™'A)=0. Then o,(R™'A)=0, and so 0g_,, (R"1A)=0
because 0g_,, < o5, as o is the maximal spectral type. It follows that
on(A) =0, or that 0 < oR™1L.

On the other hand, we can see from the above that og, (4) = o,(R™'A)
for all Borel sets A, so that if 0,(A) = 0, then og,(A) = 0 since oy, is the
maximal spectral type, so that o;(R™1A) = 0 and thus cR™! < ¢ and o is

R-quasi-invariant. m
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REMARK. Let h € L?(X, ). Then
S71Z(h) = span{S—'T"h : n € Z} = span{T>*(S~'h) : n € Z}
C span{T™(S~'h) : n € Z} = Z(S~'h).

The unitary operator T can be represented in the usual way: there are func-
tions h; € L?(X, u) and corresponding spectral measures Oh,y @ € LT, so
that L2(X, 1) can be written as the direct sum of cyclic subspaces:

LX) =Z(h) @ ®Z(hy) @+, op, > >o0p, > -,

where (T"h;, h) = §g1 2" doy,(2). This representation is essentially unique in
the sense that any other such representation leads to equivalent measures in
the spectral sequence. In the case that S~1Z(h;) = Z(S~'h;) fori = 1,2, ...
we can conclude that each of the measures in the spectral sequence is R-
quasi-invariant. However, this is not generally true as the latter subspace
may be much larger. We can say the following:

PROPOSITION 3. If (R,0) is one-to-one, then §_IZ(h) = Z(§_1h) for
each h € L*(X, ), and each measure o, in the spectral sequence is R-quasi-
invariant.

Proof. We know that S~'Z(h) C Z(S§ 'h), so think of S~ as a map

S71: Z(h) — Z(S~'h). Now identify Z(h) with L*(S',0y,), and identify
Z(S7h) witE LQ(Sl,JE_Ih). Then this identification gives a map R corre-
sponding to S™!:

R:L*(S' o) — L*(S", 05.,),  Rf(2) = f(z2).

Because S—! is well defined and an isometry, the same is true of R. The
theorem will follow if we show that R is onto. We know that R(z) = 22
is one-to-one with respect to both op and og_,, since both ¢, < o and
0g-1j, < o where o is the maximal spectral type. It follows that Ris onto,
and the first part of the proposition follows.

Furthermore, in this case

LA(X,p) =S A(X,p) =S Z(h) @ © 87 Z(hy) @ - -
= Z(8 ') @ ®Z(S hy) B -
The uniqueness of the spectral sequence now implies that the measures oy,
and og_,; are equivalent. The result follows since 0,(A) = 051, (R1A)
for all h and Borel subsets A of S'. =
We now obtain more detailed information about the case when T has
simple spectrum. We show that R has to be one-to-one and onto the support

of o, and we give conditions for R to be measure preserving. In the lemma,
oy, is the maximal spectral type of U corresponding to some h € L?(X, ).
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LEMMA 3. Let U : H — H be a unitary operator on a separable Hilbert
space H which has simple spectrum and suppose there exists an operator
P : H — H satisfying U?P = PU. Then P is unitarily equivalent to an
operator P : L*(S',0},) — L*(S',03,) defined by

(1) Pf(z) = f(2*)k(2),  fe€L*(S% o),
for some k € L*(S',04) and h € H where Z(h) = H.

Proof. We can represent U as V f(z) = zf(z), f € L?(S',03), where o},
satisfies (U™h,h) = Ssl z"dop, n € Z; here h is a cyclic vector for U. We
have (V2£)(z) = 22f(2).

If W is the operator giving rise to this unitary equivalence, W : Z(h) —
L2(SY,03), W(U™h) = p, (where p,(z) = 2", n € Z), we may suppose that

3

VEPf(2) = PVf(2), feL*(S"on),
where P = WPW L. Let k = P(p). Then
Ppi(2) = PVpo(z) = V2Ppo(2) = 2°k(2),

and in general

Thus

and consequently
Pf(z) = k(z)f(z?) for each f € L*(S',0}). u

THEOREM 6. Let U be a unitary operator defined on a separable Hilbert
space H, having simple spectrum. Then U is unitarily equivalent to U? if and
only if the mazimal spectral type o of U is R-quasi-invariant (R(z) = 2?)
and where R is one-to-one and onto a.e. o.

Proof. 1If U is unitarily equivalent to its square via a unitary operator P
(PU = U?P), we can represent U as V : L?(S',0) — L2(SY,0), Vf(z) =
2f(2), and P as Pf(z) = k(2)f(22) for some k € L2(S', o). This map is
one-to-one and onto, so the same is true of R(z) = 22, a.e. 0.

Conversely, suppose that the maximal spectral type o of U is R-quasi-
invariant, and R is one-to-one and onto a.e. 0. Represent U as V f(z) =
2f(z) as above, and set Rf(z) = k(z)f(z%), where k(z) = \/do o R/do
is the positive square root of the Radon—Nikodym derivative (well defined
because o is R-quasi-invariant). The hypotheses imply that R: L*(SY, o) —
L?(S', o) is well defined, an isometry and onto a.e. . In addition we can

check that RV f(z) = V2Rf(z). =
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COROLLARY 4. Suppose that ST = T?S, where T has simple spectrum.
Then the map R(z) = 2 defined on the non-closed support of o (where o
is of the mazimal spectral type of T) is one-to-one and onto and k(z) # 0
a.e. 0. In addition, (R, o) is a measure preserving dynamical system if and
only if |k(z)| =1 a.e. o. (Here k is the map defined in Lemma 3.)

Proof. We have seen that we can represent S by S—1f(z) = k(2)f(22).
The first part then follows from the previous theorem To see that |k(z)| =1,
use the fact that S is unitary, giving (S~1f,5711) = (f,1) (where k(z) =
S~11) for all f € L2(S, ). It follows that

| FEIRG) P do(z) = | f(z)do(2)
St St
for all f € L%(S',0). So |k(z)| = 1 if and only if R is measure preserving. =

COROLLARY 5. If T is ergodic with discrete spectrum and eigenvalue
group A = e(T), then T is conjugate to T? if and only if the map R: A — A
R()\) = A2, is a group automorphism.

Proof. The support of the spectral measure o is e(7"), and R has to be
one-to-one and onto on this set, and the result follows. m

Recall that a non-singular transformation (R, o) is ergodic if R~1A = A
implies that 0(A) = 0 or 0(A°) = 0. R is ergodic if and only if for all
measurable functions f, f(Rz) = f(z) a.e. o implies f = constant a.e. o.

In the case that (R, o) is R(z) = 2z and ¢ is the maximal spectral type
of some ergodic transformation 7', 1 is always an eigenvalue of T, so 1 is an
atom of ¢ and also an invariant set for R. When we talk about the ergodicity
of R, we mean on the support of o, excluding the invariant set {1}.

We state a lemma, which is of independent interest:

LEMMA 4. Suppose that ST = T2S and let o be the mazimal spectral
type of T.
(i) If S is not weakly mizing, there exists f L C for which oy is an
R(z) = 2% invariant measure.
(ii) If (R, o) is ergodic, and S is not weakly mizing, then o is of the type
of an R-invariant measure.
(iii) If there are no R-invariant measures v < o, then S is weakly mizing.

Proof. (i) Suppose there exists f L C with §f = Afand A € S'. Then
(T"f. f) = (T"XSf,A8f) = (ST*" [, 5f) = (T*"f. ).
so that [, 2" dos(z) = (g 2*"doys(2) for all n € Z. It follows that oy is
R(z) = 2% invariant.
(ii) If (R, 0) is ergodic with o0y < o, then oy is ergodic, and we deduce
that oy ~ o, so that o is the type of an R-invariant measure.
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(iii) If there are no R-invariant measures v < o, then S can have no
eigenfunctions, so S is both ergodic and weakly mixing. =

In the next theorem we assume the existence of a conjugating map S
which is ergodic with discrete spectrum. It is an open question whether or
not such S can exist for some aperiodic 7. It is hoped that this theorem will
throw light on the existence or otherwise of such transformations.

THEOREM 7. Suppose that ST = T2S and let o be of the mazimal spec-
tral type of T, and set R(z) = 2%. If S is ergodic with discrete spectrum
then:

(i) o can be chosen to be a finite R-invariant measure, which is not the
type of Lebesgue measure. In addition, T is rigid, and if T is ergodic,
then T' is weakly mizing (but not mizing).

(ii) If T has simple spectrum, then

LQ(Xvu) = @Z(fn)7

where the set {f, : n € Z} is a subfamily of the eigenfunctions of S.
Each Z(f,) is both T- and §—invariant, and the corresponding spec-
tral measures oy, constitute an ergodic decomposition for the measure
o with respect to R.

Proof. (i) There is a complete orthonormal basis for L?(X,u), {fn :
n € Z}, consisting of eigenvectors of S, i.e., Sfp(xr) = Ay fa(x) for each
n € Z and some )\, € S'. As in the proof of the above lemma, we see that

<T\mfna fn> = <T\2mfn’ fn>
for all m,n € Z. We deduce that

S 2" doy, (2) = S 2" doy, (2)

S1 St
for all m,n € Z (spectral measures with respect to T\) This tells us that each
of the measures oy, is R(z) = z? invariant, and since the f,’s constitute a
complete orthonormal basis, it can be shown that o must be the type of
an R-invariant measure. The fact that S is rigid implies that T is rigid,
and rigidity is incompatible with the existence of an absolutely continuous
component.

If T is ergodic, then since S is also ergodic with msm(.S) < oo, Corollary 2
applies to show that 7" must be weakly mixing. (In the case that S is totally
ergodic, Corollary 3 implies that 7™ # I for all m # 1.)

(ii) {fn : n € ZT} is the set of eigenfunctions of S with corresponding
eigenvalues {\, : n € ZT}. As in the proof of (i) above we see that

S 2k dop,m(z) = M S 22k don,m(2),
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where 0, ,n = 0y, 1., so that o, = 05,5, is an R(z) = 22 invariant measure.
We also have

<T\kfnafm> = <Wfkmefm> = <Vkamme> = (Vkrn(z),rm(z)>
= | 2Fro(2)Tm(2) do(2),

where W : L2(X, ) — L2(S', o) is the isometry which sends 7" to 2", and
rn(z) = W fp.
This implies that
donm(z) = 1 (2)Tm(2)do(2),

and in particular do,(z) = |r,(2)|?do(2), so that 7,(z) and o, have the same
support (say A;). Set

H,={f € L*(X,n): Sf = Anf}

and ﬁn = WH,. Sin~ce S is ergodic, H,, and ﬁn are one-dimensional sub-
spaces with r,(2) € H,, for each n € Z". Consequently, r,(z) is the essen-
tially unique function with the property that

rn(zz)k:(z) = M\rn(z)  for z € A,.
Clearly each A,, is an R-invariant set. Suppose that o(A, N 4,,) > 0. Then
XAnmAm (ZQ)Tn(ZQ)k(Z) = A”XAnmAm (Z)Tn(z)7

contradicting the fact that f[n is one-dimensional (unless A, = A,,).

This same argument shows that A, can have no non-trivial invariant
subsets, so that (R, A,,0,) is ergodic and measure preserving.

We have shown that A, = 4,, or A, N A,, = 0 a.e. . In the latter case
we must have oy, ,, = 0, so that

<T\kfn, fm) =0 for all £ when n # m.

We deduce that in this case Z(f,) L Z(fy) (with respect to T) and oy, L oy
Note also that since each f,, is an eigenfunction of S, each Z(f,) is S-1
invariant, and we see that the restrictions of T and S to Z (fn) are unitary
operators with the property that TS = ST?. We remark that it can be shown
that Z(f,) L Z(f?) foreachn € Z. m

In the preprint Ageev (2005), it is mentioned that typically the rank one
transformations conjugate to their squares have the property that (R, o) is
an ergodic measure preserving transformation. It follows that the hypothesis
of (ii) below is non-vacuous. Bernoulli shifts having infinite entropy satisfy
the conditions of (i).

THEOREM 8. Suppose that ST = T2S and let o be of the mazimal spec-
tral type of T, and set R(z) = 22.



114 G. R. GOODSON

(i) If T is mizing and o is measure preserving for R, then T has a count-
able Lebesgue component. In fact o is the type of Lebesgue measure.
(ii) If T has simple spectrum and (R, o) is ergodic, then S has at most
two ergodic components. If S is not ergodic then there is an S-
invariant function fo L C such that oy, is R-invariant, ergodic and
of the mazimal spectral type of T.
(iii) If T has the weak closure property and simple spectrum, and there
exists a non-trivial ¢ € C(T) with ¢" = I for some n € Z™, then
(R, 0) is not ergodic.

Proof. (i) There exists f L C such that oy = 0, so that oy is R-invariant.
Thus
Sz” doy = 822" doy for alln € Z,

or <T\”f, f)y= <f2"f, f) for all n € Z. We therefore have

(Tf ) =T )= =T £) = (L)L f) asn— o,
since T is mixing. We deduce that (ff, f) =0, and similarly, (f”f, f)=0

for all n # 0. It follows that o = oy = A, Lebesgue measure, so that T must
have a Lebesgue component in its spectrum. This component is countable,
for if we suppose T has a Lebesgue component of multiplicity m € Z™,
then 72 has a Lebesgue component of multiplicity 2m, contradicting the
conjugacy between T and T2

(ii) Denote by Hj the subspace

Ho={f € L*(X,n) : Sf = f},
and let W : L%(X, ) — L2(S',0) be the isometry which sends T"h to 2"

(where Z(h) = L?(X, p)). As usual, represent S as an operator on L?(S!, o)
by S7lg(z) = g(2%)k(z). Then we can set
Ho=WHy={feL*"0): 5f(z) = f(z) ae. o}.
Now 1 € Hy, so W1 =r(z) € Hy, and 7(22)k(z) = r(2) ae. 0.
But 71 =1,s0 VIW1 = WT1 = W1 and Vr(z) = r(2), or 2r(z) = r(2)
a.e. 0. This implies that r(z) is supported on the set {1} and k(1) = 1, so
7(2) = cxq1y for some constant ¢, i.e., x(1} € Ho.

3

Let us suppose that (R, o) is ergodic and let f € Hy and B = supp(f) =
{z € supp(o) : f(2) # 0, z # 1}. Then B is an R-invariant set, and R ergodic
implies that o(B) = 0 or 0(B¢) = 0 (we know that k(z) # 0 a.e. o). Suppose
that o(B¢) = 0, i.e., f # 0 a.e. o (otherwise every f € Hy is zero a.e. o except
possibly at z =1, so ﬁ() is one-dimensional, which implies S is ergodic), and

let g € Hy. Then g/f(22) = g/f(z) a.e. o, so that g/f = constant a.e. o,
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ie, xB- I:TO is a one-dimensional subspace of L2(S!, o). It follows that Hy is
at most a two-dimensional subspace.

Suppose that S is not ergodic and fy € Hy, with fo L C. Then oy, is
R(z) = 22 invariant because (T fo, fo) = (T?" fo, fo) for all n € Z.

In addition, o4, < o, and o ergodic (with respect to R) implies oy, is
ergodic, so o, ~ o and hence Z(fy) = C*.

(iii) As usual, represent Thy Vf(z)=z2f(2), S using S~1f(2) =k(z) f(z?),
and § as 3/ (2) = h(=)[(2). o

Since T has the weak closure property, S¢ = ¢25, so S~1¢ = 2S5~ 1
This gives h%(z) = h(2?) for all z. Set

9(2) = h(z) + h*(2) + - + k"7 (2).
Then

n—1
9(2%) =Y 1) = g(2),
i=1

since we must have h"(z) = 1 and necessarily n is odd. We see that g is
non-constant, for if not, Z?;ll ¢' = cI for some constant c, and this implies

that $ is the identity operator, a contradiction. m

5. Gaussian—Kronecker automorphisms conjugate to their com-
position squares. We give some examples of weakly mixing transforma-
tions having simple spectrum which are conjugate to their squares. The con-
struction involves Gaussian automorphisms. These are used because spectral
isomorphism gives rise to isomorphism.

Let K C S' be a Kronecker set, i.e., for every continuous complex-valued
function f(z) of absolute value 1 defined on K and for all ¢ > 0 there exists
n € 7 such that

sup |f(z) —2"| < e.
zeEK

Let op be a continuous symmetric measure (og(A) = o¢(A) for all Borel
sets A C S') whose support is K U K. We call og a Gaussian-Kronecker
measure. Given a symmetric measure o, there is a corresponding Gaussian
automorphism T,. We call o the spectral measure of T, (which is distinct
from the maximal spectral type, which is the measure
(2) (3)

o _ _ g g _ e

e —01 =0+ 51 + 3l +--,
where o(™ is the n-fold convolution product of ¢ with itself and 6, is a
normalized measure supported at the point z = 1).
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Let us recall some of the properties of Gaussian automorphisms and
Gaussian-Kronecker measures (see Cornfeld, Fomin and Sinai (1980) and
Lemariczyk, Parreau, Thouvenot (2000) for the properties of Gaussian au-
tomorphisms, and Rudin (1962) for the properties of Kronecker sets):

(i) If o is a Gaussian-Kronecker measure, then 7, has a simple and
continuous spectrum. In fact this is true for any o which has no
rational relations (except for the symmetry relation), in particular
for measures supported on symmetrized Kronecker sets.

(ii) All Gaussian automorphisms with the same continuous spectral
measure are isomorphic.

(iii) Any conjugation between Gaussian automorphisms having simple
spectrum is Gaussian.
(iv) Every Gaussian-Kronecker map has the weak closure property.

(v) If o is Gaussian-Kronecker, then o 1 o * §, for all z € ST\ {1}.
Consequently, the map R(z) = 2" is one-to-one a.e. 0 on K U K,
for all n € Z*.

(vi) If o has an absolutely continuous component, then T}, has a count-
able Lebesgue component in its spectrum.

(vii) Gaussian automorphisms having countable Lebesgue spectrum are
isomorphic.

Denote by an the image of op under R, and define a new measure by

— 1
7= Z olk] R oo,
k=—00
where R(z) = 22. Then o is clearly an R-quasi-invariant measure and it

can be seen that R is one-to-one and onto, ¢ a.e., and that this is also true
for the measure ¢’ on S'\ {1}. In fact, since op has no rational relations
(except for the symmetry relation) on K U K, the same is true for o, and
KNR'K = () for all n € Z\ {0}. Then (i) above ensures that there is
a Gaussian automorphism 7, having simple spectrum, and whose spectral
measure is ¢ with maximal spectral type e — ¢;. Furthermore, both T,
and T2 are Gaussian automorphisms, whose spectral isomorphism follows
from Theorem 6. It then follows from (ii) that T, is conjugate to 7.
We summarize the above with a theorem.

THEOREM 9. The Gaussian automorphism T, constructed above has a
simple and continuous spectrum. In addition T, is conjugate to its square,
and any conjugating map S is Gaussian (possibly non-ergodic) with a count-
able Lebesgue component in its spectrum.

Proof. 1t suffices to prove that the conjugating map has a countable
Lebesgue component. Denote by H C L2 (X, 1) the Gaussian subspace for T,



DYNAMICAL SYSTEMS CONJUGATE TO THEIR SQUARES 117

where L2(X, 1) are the real functions in L?(X, u). For f € H, denote by o
the usual spectral measure of f with respect to the maximal spectral type e°.
Then in this case we see that oy < 0.

For A a Borel subset of S, we set

Ha={f € H: supp(oy)  A}.

Now for the Kronecker set K defined above, o(K) > 0, and welet f € H .
As before, (g1 2" doy(z) = [g1 22" dog_,;, and this implies that o5 .(B) =
o¢(R™1B) for any Borel set B C S'.

It follows that supp(agf) C R(K U K). In addition we have ogp =
O'fR71 < oR™!, and since the latter measure is equivalent to o, we have
0g; < 0, which implies Sf € H (using the fact that o L o™ for all n > 1).

We have shown that S feH R(KUR)> and more generally, gn feH n(KUR)
for n € Z. Clearly the subspaces H n(KUK) T € 7., are pairwise orthogonal

(since the sets R"(K U K), n € Z, are pairwise disjoint), so that
<§”f,f> =0 forallneZ, n#0,

i.e., S must have a Lebesgue component, which must be countably Lebesgue
as S is Gaussian (using property (vi)). m

EXAMPLE. Set T' = T, x T, (where T, is as above). Then ST = T28
where S = S x S. Generally, the Cartesian square T, x T, of a Gaussian
automorphism 7, has infinite multiplicity.
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