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WEYL SUBMERSIONS OF WEYL MANIFOLDS

BY

FUMIO NARITA (Akita)

Abstract. We define Weyl submersions, for which we derive equations analogous to
the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and
sufficient condition for the total space of a Weyl submersion to admit an Einstein—Weyl
structure. Moreover, we investigate the Einstein—Weyl structure of canonical variations of
the total space with Einstein—Weyl structure.

1. Introduction. In [11], B. O’Neill introduced the notion of a Rie-
mannian submersion and obtained equations analogous to the Gauss and
Codazzi equations for an isometric immersion.

Let m: (M,g) — (M’,¢') be a Riemannian submersion. We denote by
V the vector subbundle of the tangent bundle TM of M consisting of the
tangent vectors to the fibers of 7. V is called the vertical distribution of 7. 'H
will denote the complementary “horizontal” distribution in 7'M determined
by the metric g of M. For t > 0, we define the canonical variation g; of
the Riemannian metric g on M by setting ¢:|V = tg|V, ¢:|/H = g/H and
gt(V,H) =0 (cf. [2]).

For a Riemannian submersion 7 : (M, g) — (M’, ¢') with totally geodesic
fibers, in [2], the author gave a necessary and sufficient condition for the
Riemannian manifold (M, g) to admit an Einstein structure. Moreover he
proved the following: Let 7 : (M, g) — (M’, ¢') be a Riemannian submersion
with totally geodesic fibers. Assume that (M, g), (M’,¢') and the fiber are
Einstein manifolds (i.e., r = Ag, ' = N¢/, ¥ = A\g) and the integrability
tensor A9 is nonzero. Then the canonical variation g; (¢ # 1) of g is also
Einstein if and only if 0 < A # N

Let M be a manifold with a conformal structure [g] and a torsion-free
affine connection D. A triplet (M, [g], D) is called a Weyl manifold if Dg =
w ® g for a 1-form w. The Ricci tensor of an affine connection D is not
necessarily symmetric.
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A Weyl manifold is said to be Finstein—Weyl if the symmetrized Ricci
tensor of the affine connection D is proportional to a representative metric
g in [g]. The Einstein—Weyl equation is conformally invariant.

In [12], H. Pedersen and A. Swann proved the following: Let 7 : (M, g) —
(M’,g") be a principal circle bundle with totally geodesic fibers over a com-
pact Einstein manifold (M’,¢') with positive scalar curvature and the inte-
grability tensor AY = 0. For the vertical 1-form w and the canonical variation
g: of g, we define a torsion-free affine connection D! by D'g; = w ® g;. Then,
for 0 < t < ty where g, is an Einstein metric, the canonical variation
(M, g1, D') admits an Einstein—-Weyl structure.

On the other hand, in 8], [9] we studied the existence of Einstein—
Weyl structures on the total space of Riemannian submersions with totally
geodesic fibers of dimension one over Einstein manifolds and on almost con-
tact metric manifolds.

In [1], N. Abe and K. Hasegawa defined an affine submersion with hori-
zontal distribution. They computed the fundamental equations, without us-
ing the metric tensor.

In [3], D. M. J. Calderbank and H. Pedersen studied conformal sub-
mersions. In particular they investigated conformal submersions with one-
dimensional fibers and the minimal Weyl derivative exact.

We consider a special case of conformal submersions. Let (M, [g], D) and
(M',[g], D) be two Weyl manifolds. Let 7 : M — M’ be a submersion. We
say that = : (M, [g],D) — (M, [g], D’) is a Weyl submersion if w : M — M’
is a submersion which satisfies the following two conditions:

(i) for some metric ¢’ € [g] there exists g € [g] such that 7, : (Hy, gz|Hz)
— (Tﬂ(z)M’,g;(x)) is an isometry for every x in M, i.e., w: (M,g) —
(M’,g’) is a Riemannian submersion,

(i) for basic vector fields X and Y which are m-related to X and Y,
HDxY is a basic vector field which is w-related to D;~(1~/

In the case that = : (M,[g],D) — (M',[g],D’) is a Weyl submersion
for which m, : (Hg, 92| He) — (Tﬂ(m)M’,g;(I)) is an isometry, we write 7 :
(M,g,D) — (M',¢',D").

In this paper, for a Weyl submersion, we derive equations analogous to
the Gauss and Codazzi equations for an isometric immersion. For a Weyl
submersion 7 : (M, g, D) — (M’, g, D’) with Weyl totally geodesic fibers, we
obtain a necessary and sufficient condition for the Weyl manifold (M, g, D)
to admit an Einstein—Weyl structure.

In Section 5, we give some examples of Weyl submersions. As an example
with the 1-form w vertical, we produce a Weyl submersion whose total space
is a contact metric manifold with Weyl structure induced from the contact
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form. As examples with w horizontal, we exhibit Weyl submersions whose
total space is a warped product with Weyl structure and whose total space
is a locally conformal cosymplectic manifold with Weyl structure.

In Section 6, for a Weyl submersion, we investigate the Einstein—Weyl
structure of canonical variations of the total space with Einstein—Weyl struc-
ture. If 7 : (M, g, D)— (M', ¢’, D) is a Weyl submersion, then 7 : (M, g;, D)
— (M',¢', D') is also a Weyl submersion, where D, D" and D! are the torsion-
free affine connections such that Dg = w®g, D'g’ = w'®g’ and D'g; = w®g;.

When the 1-form w is vertical, we obtain the following result: Let 7 :
(M,g,D) — (M',¢',D’) be a Weyl submersion with Weyl totally geodesic
fibers of dimension 1 and dim M = n + 1. Let £ be a unit vertical vector
field and 7 its dual 1-form with respect to g. Assume that w = fn, where f
is a function on M. We assume that (M’, ¢’) is an Einstein manifold with
(X,Y) = Ng¢'(X,Y) whose scalar curvature is positive and (M, g, D) is an
Einstein-Weyl manifold with r?(E, F) +r?(F, E) = Ag(E, F) and A9 # 0.
If there exists a positive ¢ # 1 such that (M, g, D!) is an Einstein-Weyl
manifold, then X(f) = 0 and 0 < 2£(f) + f% # -2; N, where X is any

horizontal vector field. If f is C()Qnstant, then (M, g;, D') admits an Einstein—
W

Next, when the 1-form w is horizontal, we obtain the following result:
Let 7 : (M,g,D) — (M',g’, D) be a Weyl submersion with Weyl totally
geodesic fibers over an Einstein-Weyl manifold (M, ¢/, D) with 72’ ()?, 17) +
rP'(Y,X) = Ag'(X,Y) and AP # 0. Suppose w is horizontal and A’ is con-
stant. We assume that the fibers (F,§) are Einstein manifolds with 7(U, V)
= X\§(U,V) and (M, g, D) is an Einstein-Weyl manifold with r?(E, F) +
rP(F,E) = Ag(E, F). Then there exists a positive ¢t # 1 such that (M, g;, D?)
is also an Einstein—Weyl manifold if and only if 0 < 4N # A

Weyl structure for ¢ =

Acknowledgements. The author would like to express his sincere
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2. Weyl manifolds. Let (M, [g], D) be a Weyl manifold with Dg =
w ® g. We assume dim M > 3.

Let V be the Levi-Civita connection of g. We define a vector field B by
9(X, B) = w(X). Then, since Dg = w ® g, we have

(1) DxY =VxY - Jw(X)Y - Jw(Y)X + 3¢(X,Y)B

for any vector fields X,Y on M.

The curvature tensor RP of the affine connection D is defined by
RP(X,Y)Z = [Dx,Dy]Z — Dixy1Z. Let R be the curvature tensor field
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of the Levi-Civita connection V of g. Then
(2) RP(X,Y)Z
=R(X,Y)Z — ${[(Vxw)Z + tw(X)w(Z)]Y
— [(Vyw)Z + §w(Y)w(Z)]X + (Vxw)Y)Z - (Vyw)X)Z
—9(Y,2)(VxB + 3w(X)B) + g(X, Z)(VyB + tw(Y)B) }
— 3wV, 2)X - g(X, 2)Y),

where X, Y and Z are any vector fields on M.
By a simple calculation, we have

LEMMA 1 (cf. [10]).

(a) g(R”(X,Y)Z,H)+g(RP(Y,X)Z H) =0,

(b)  g(RP(X,Y)Z,H)+ g(RP(X,Y)H, Z) = —2dw(X,Y)g(Z, H),
(¢) g(RP(X,Y)Z,H)+ g(RP(Y,Z2)X,H) + g(RP(Z,X)Y,H) = 0,
(d)  g(R”(X,Y)Z,H)—g(R”(Z H)X,Y)

=dw(Y,X)9(Z, H)+ dw(Z,H)g(Y, X)
+dw(Z,X)g(H,Y)+dw(H,Y)g(Z,X)
+dw(Y,Z)g(X, H) + dw(X,H)g(Y, Z),

where 2dw(X,Y) = Xw(Y) = Yw(X) —w([X,Y]). =

The Ricci tensor field 2 is defined as follows:
rP(X,Y) =tr(Z — RP(Z, X)Y),

where XY, Z € T,(M). Let X1,...,X, be an orthonormal basis of T, (M)
with respect to g. By using (2), we get

(3) TD(X,Y) :r(X,Y)—I—%(n—l)(VXw)Y
—L(Vyw)X + 1(n - 2)w(X)w(Y)

+ 9%, ) (33 9V B, Xi) — hn — 2)|wf?).
=1

A Weyl manifold (M, [g], D) is said to have an Einstein-Weyl structure if
there exists a function A on M such that

(4) rP(X,Y) +rP(Y, X) = Ag(X,Y).

Since D is not a metric connection, the Ricci tensor is not necessarily sym-
metric.

3. Weyl submersions. We denote the second fundamental form and
integrability tensor of a Riemannian manifold by 79 and AY respectively.
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LEMMA 2. Let w: (M,g) — (M',¢') be a Riemannian submersion. Let
D and D' be torsion-free affine connections such that Dg = w ® g, D'g’ =
W' ®g'. Then, for basic vector fields X and Y which are mw-related to X and
Y, HDxY s basic vector field which is m-related to D’;{Y if and only if

w(X)=w'(X)on.

Proof. Suppose that HDxY is a basic vector field which is w-related to

D’ Y. For basic vector fields X,Y, Z which are w-related to X Y Z from
(X,Y) = ¢/(X,Y) om, we obtain (Dxg)(Y,Z) = (D’X (Y, Z)ox. Thus
we get w(X) = w'(X) o .

Next, suppose that w(X) = «/(X) o 7. Then HB is a basic vector field
corresponding to B’, where g(X, B) = w(X) and ¢'(X, B’) = &'(X). From
(1) and the properties of a Riemannian submerNSion, it follows that HDxY
is a basic vector field which is w-related to D’)}Y. "

Let 7 : (M,g,D) — (M',g', D') be a Weyl submersion. The fundamental
tensors TP and AP are defined by

(5) TEF .= HDypVF + VDypHF,
(6) ABF =VDygHF +~HDypVF,

where E and F are any vector fields on M.

From the definitions and (1), using the properties of a Riemannian sub-
mersion, we have the following lemma.

LEMMA 3. For any vector fields E, F on M, we have
(a) ARF = A% F + $9(HE,HF)VB — iw(VF)HE,
(b) TRF =TLF + Lg(VE,VF)HB — tw(HF)VE.
If X, Y are horizontal and U,V are vertical, then
ARY = A%Y + L9(X,Y)VB,
ARY = WV[X, Y] + i¢(X,Y)VB,
ARY = —APX + 9(X,Y)VB,
ARU = HDy X + H[X, U],

o
~

d

~—

e

(
(
(
(f
(
(
(

~—

g) TPV =T5V + 39U, V)HB
h) 7V = TPU,
i) TEX =VDxU +V[U,X]. u

From the definition, using Dg = w®g, the following lemma can be proved
as in the case of a Riemannian submersion.
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LEMMA 4.

(a) For vector fields E, F', a horizontal vector field X and a vertical vector

field U,
J(ARE,F) = —g(E,ARF), g(I7E.F)=—g(E,T/F).
(b) TP and AP interchange the horizontal and vertical subspaces. m

Now, for a Weyl submersion 7 : (M, g, D) — (M', ¢, D") we derive equa-
tions analogous to the Gauss and Codazzi equations of an immersion. Let

RP’ be the curvature tensor field of the affine connection D'. Let Rﬁ be the
curvature tensor field of the induced affine connection D on the fibers. From
Lemmas 1, 3 and 4 we obtain the following theorem.

THEOREM 1. Let X,Y,Z, H be horizontal vector fields on M which are
w-related to X,Y ,Z,H on M', and U,V, W, W' vertical vector fields on M.
Then

(7)  g(R”(X,Y)Z,H)
=g'(R”(X,Y)Z,H) om — g(APZ, ARH) + g(AR Z, A H)
+2g(ARY, A H) — g(X,Y)w(AZH),
®8)  g(RP(X,Y)Z,U) = g((DxAP)y Z,U) — g((Dy A”)x Z,U)
— g(ARY, TP Z) + g(AV X, T 2),
(9) g(RP(X,Y)U, Z) = g(DxAP)yU, Z) — g((Dy AP)xU, Z)
+9(ARY, TF 2) — g(AV X, T 2),
(10)  g(RP(X,Y)U,V) = g((DuAP)xV,Y) — g((DvAP)xU,Y)
— g(APV, ARU) + g(ARV, APU) — (TP X, TFY)
+9(TF X, TPY) — g(Y, ARU)w (V) + g(V, ARV)w(U)
+dw(Y, X)g(U,V) 4+ dw(U,V)g(Y, X),
(11)  g(R°(U,X)Y, Z) = —g((Dy A”)zX,U) + g((DzAP)y X, U)
+9(AVZ, TF X) - g(AZY, T X)
— dw(U,X)g(Y, Z) — dw(Z,U)g(Y, X) — dw(U,Y)g(X, Z),
(12)  g(RP(U,X)Y,V) = g(DyAP)xY,V) — g(DxT")yY,V)
—g(TF X, TPY) + g(ARU, APV) + g(ARU, Y )w(V),
(13)  g(RP(U,X)V,Y) = g(DyAP)xV,Y) — g(DxT")uV,Y)
+9(TF X, TPY) — g(ARU, APV) — g(ARU, Y )w(V),
(14)  g(RP(U, X)V,W) = g(DvTP)wU, X) — g(DwT?)yU, X)
+ dw(X, U)g(V,W) + dw(W, X)g(V,U) + dw(X, V)g(U, W),



WEYL SUBMERSIONS 125

(15)  g(RP(U,V)X,Y) = g((DuAP)xV,Y) — g((DvAP)xU,Y)
— g(APV, ARU) + g(ARV, APU) — g(T¢ X, TFY)
+ (TP X, TPY) = g(Y, ARU)w(V) + g(Y, ARV)w(U),
(16)  g(RP(U, V)X, W) = g(DuTP)y X, W) — g((DyTP )y X, W),
(17)  g(RP(U, V)W, X) = g(DyTP)y W, X) — g(DyTP)yW, X),
(18)  g(RP(U, V)W, W)
g(RD<U VIW,W') = g(TP W, TEW') + g(TZ W, T W'). =
Let KD,KD,KD, be the sectional curvatures of the affine connections

D, D and D’ respectively. We set |[X AY[2 = g(X, X)g(Y,Y) — g(X,Y)%
Then we obtain the following

COROLLARY 1. Let X,Y be horizontal vector fields on M which are -
related to X, Y on M', and U,V wvertical vector fields on M. Suppose | X| =
Y|=Ul=|V|=1,|XAY|=1,|[UAV|=1. Then
(19) KP(X,Y)=KP(X,Y)or—3|ARY? - LvBP2,

(20)  KP(U,V) = KP(U,V) + [TV - g(TRU, TV,
(21)  KP(X.U) = g(DxTP)uU, X) - TP X + |ARUP?
+ 2(w(U)*+ g(DyVB,U)) + g(ARU, X)w(U). =

Next, for a Weyl submersion 7 : (M, g, D) — (M’, ¢', D’) we derive some

properties of DAP and DTP. From Lemmas 1, 3, 4 and Theorem 1, using
Dg = w ® g we have the following

LEMMA 5. Let E be a vector field on M. For horizontal vector fields
X,Y, Z and vertical vector fields U, V, W, we have

a)  g((DpAP)xY,U) = —g((DEA”)xU,Y),
b)  g((DeT?)uV,X) = —g(DET”)uX, V),
¢)  g((DTP)uV,X) = g((DETP)vU, X),
(DAP)xY,U) = —g((DpA”)y X,U)
+ (W(E)w(U) + 9(DpVB,U))g(X,Y),
(e)  g((DuAP)xY.V) +g((DvA”)xY,U)
= g((DyTP)uV,X) — g(DxTP)uV,Y) + dw(X,Y)g(V,U)
+dw(U,V)g(X,Y) = g(ARU, Y)w (V) + g(APV, X)w(U)
+ ((U)w(V) +g(DvVB,U))g(X,Y),

Q.
~—
N}
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() 9((DxAP)yZ,U) = g(VxA9)y Z,U) + 5w(X)g (Y,Z)g(VB,U)
+39(Y, Z)g(DxVB,U) + 3w(Y)g(A% Z,U)

—39(X,Y)g(A%Z,U) + §w(X)g(A§7,Z, U)
50(2)9(AS X, U) — $9(X, Z)g(A}B,U). =

Now we suppose that dim M = m +n and dim M’ = n. Let Xy,..., X,
be an orthonormal basis of H, and V4,...,V,, an orthonormal basis of V,
with respect to g. From Theorem 1, we get immediately the following

_l’_

PROPOSITION 1. Letw: (M, g,D) — (M', g, D") be a Weyl submersion.

Let P, rﬁ, rP" be the Ricci curvatures of the affine connections D, D and 12’
respectively. For horizontal vector fields X,Y which are m-related to X,Y,
and vertical vector fields U,V , we derive the Ricci curvature:

(22) TD<X7Y) :TD/()A(Z’?)Oﬂ_3zg(A)D(X”L;A)D/XZ)
=1

ARV} ARV)) = g(TP X, TRY)
7=1

+2 o
3 {9((Dy AP)xY.V;) = g(DXT)y, Y. Vi)

=1
n+ 2

9(ARY,VB) + ¢(X,Y)g(VB, VD),

(23) rPU, V) =rP(UV) =D g(TPV, TEV) + > g(AR U, AR V)
=1 =1

Ui n
g(T(?XiaT\E)Xi) + Zg(Tg‘G?T(?VJ) - § w(U)w(V)v
j=1

+) 9((Dx,TP)uV, Xi) = Y g(DrAP)x,V, X;)
=1 1=1
2
=1

(24) TD(Xa U)= Zg((DXz‘AD)XUv Xi) — Zg((DXAD)XiUv X;)
=1 =1

n n
- Zg(A)'%ix, TP X:) — nggxi, 7 X;)

+Zg (DuTP), Vi, X) = ) g((Dy, TP )V, X)
7j=1 7=1
+ mdw(X,U),
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(25) rP(U,X) =) g(Dx;A”)xU, X;) = ) g((DxAP)x,U, X))
i=1 =1

+ ZQ(A)%X’ TH X)) - ZQ(AQXi, 17 X)

—|—Zg ((Dv, T”)u X, V5) =) g((DuTP)y, X, V)
7j=1 7j=1
+ndw(U,X). »

We introduce some notations. For horizontal vector fields X,Y and ver-
tical vector fields U, V', we define

9(ARV}, AP V),

NE

g(AR,AD) =D (AR X, APX;) =

i=1 1

<.
Il

9(ARV;, TEV)),

NE

g(AR, TP ZgA X, TP X;) =

<.
Il
—

g(APU, APV) = Zg(A;%U, ARV),
=1

m
g(TPX,TPY) =) g(TY X, TVY),
j=1

n
g(T[?,T‘E)) = ZQ(T(?X”DTgXi)?
=1

@TP) U, V) =Y g(Dx,TP)uV, Xi)
i=1
and for any tensor field E on M,

0E=-) (Dx,E)x,, O0E=-) (DyE)y,,
i=1 j=1

§E = 6E + 0E, E=-> (Vx,E)x,.
i=1
We set
m m
AR oA
j=1 j=1
n m
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n m
PP => g(TPX:, TPX,) =Y g(T, T).
i=1 j=1
Since 0N = — S, g(Dx, N, X;), we obtain 257, (3TP)(V;, V;) = —20N
+ 2w(N).
Now a straightforward computation gives

COROLLARY 2. Let sP, Sf), sP" be the scalar curvatures of the affine con-
nections D, D and D’ respectively. Then

(26)  sP=sP om+sD — |AP)2 —|TP)2 — |NJ? — 25N + 20(N)
n(4—n) “
= VB> +n> g(Dy,VB,V;). u
j=1
For a Riemannian submersion 7 : (M,g) — (M',¢'), we say that H
satisfies the Yang-Mills condition if g((09A9)X,U) — g(A%,T}}) = 0, where
X is any horizontal vector field and U is any vertical vector field (cf. [2]).
Let 7 : (M, g,D) — (M’ ¢’, D') be a Weyl submersion. Using Lemma 5(f),
we get

9g(AR. TF) = g(A%, TY) + 30w(TPX) + 2w (ARU) + tw(X)w(U)
and
9((3AP)X,U) = g((89A9) X, U) — L(Dxw)(U)

n—4 n—3

+ w(ARU) +

w(X)w(U).
Thus we have the following
LEMMA 6. Let w: (M,g,D) — (M',g', D) be a Weyl submersion. Then
g((6AP)X,U) - g(AR, TF)
= 9((894%)X,U) — 9(A%, T7) — 5(Dxw)(U) — 3w(T7X)

n —

+ 122 w4y + PR w(x)e),

where X is any horizontal vector field and U any vertical vector field. =

4. Einstein—Weyl manifolds. Let 7 : (M,g,D) — (M',¢’,D’) be a
Weyl submersion. We set Dg = w®g and D’¢g’ = W’ ®¢g’. From Proposition 1
and Lemma 5, we have the following

PROPOSITION 2. Letw: (M, g,D) — (M', ¢, D") be a Weyl submersion.
Assume that dim M = m + n_and dim M’ = n. For horizontal vector fields
X, Y which are m-related to X,Y, and vertical vector fields U,V , we have
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27 YY) +rP(Y, X)
=P (X, YV)orm+rP(YV,X)on —4g(AR, AD)

—29(TPX, TPY) + ) g((DxT" ), V5, Y)
j=1

3 g((DyT), v, X)
j=1

—n+4 “
+{ 5 |VB|2+Zg(DVjVB,Vj)}g(X, Y),
j=1

28) P, V) +rP(V,U)
= DU, V) +rP(V,U) - 29(N, TPV + 2g(APU, APV)

+2(3TP)(U,V) + g {g(DyVB, V) + g(DyVB,U)},
(29) P(X,U)+rP(U, X)

= 2{((BT2)0, X) + 3 0D, Vi, X) — g((FAP)X,U)

—29(AR, T) + (TP X) } + (n — 2){w(X)w(U) + g(DxVB,U)}
+(n—m)dw(U,X). =

Now we consider a Weyl submersion = : (M,g,D) — (M',¢', D) with
one-dimensional Weyl totally geodesic fibers (i.e. TP = 0), where Dg = w®g
and D'g’ = W’ ® ¢’. From Proposition 2, we obtain the following theorem.

THEOREM 2. Letn : (M,g,D) — (M',¢', D) be a Weyl submersion with
Weyl totally geodesic fibers of dimension 1 and dim M = n+1. Let & be a unit
vertical vector field and 1 its dual 1-form with respect to g. Assume that w =
W+, where w = W’ and © = fn for a function f on M. Then (M, g, D) is
an Einstein-Weyl manifold with rP(E,F) + rP(F,E) = Ag(E, F) for some
function A if and only if

(30) rP'(X,Y)or+rP (Y, X)om —4g(AR, AD)
H{TE P e b = agx, ),
(1)  29(APE,APE) +n{e(f) — 512} = A,

(32)  —20((3AP)X,€) + 22 (2x(f) + B(X)f) = 0,

where X,Y are any horizontal vector fields which are m-related to 55,17 "
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REMARK. In [3], Calderbank and Pedersen treated a conformal submer-
sion with totally geodesic fibers and w = Z—:%ﬂ*w’ + fn. The fibers of a
Weyl submersion of the above theorem are Weyl totally geodesic but not
necessarily totally geodesic.

Next, we consider a Weyl submersion 7 : (M, g,D) — (M',¢’,D’) for
which w is horizontal.

LEMMA 7. Let X be a horizontal vector field and U a vertical vector field.
If w is horizontal, then dw(X,U) = 0.

Proof. Since w is horizontal and [X, U] is vertical, using Lemma 3, we
have
2dw(X,U) = —Uw(X) = —(Dug)(X, B) — g(DuX, B) — g(X, Dy B)
= —w(U)g(X, B) — g(DxU, B) — g(X, DgU)
= —g(ARU, B) - g(ApU, X)
= g(U,AXB) + g(U, ApX) = 0. =
Let 7 be the Ricci tensor of the induced Riemannian metric g on the
fibers. In the case that w is horizontal, DyV = VDyV = VVyV, thus D

is the Levi-Civita connection of g. From Proposition 2 and Lemma 7, we
obtain the following theorem.

THEOREM 3. Letn: (M,g,D) — (M',¢', D) be a Weyl submersion with
Weyl totally geodesic fibers and w horizontal. Then (M, g, D) is an Einstein—
Weyl manifold with v (E, F) +rP(F, E) = Ag(E, F) for some function A if
and only if
(33) PP (X Y)om+rP (Y, X)om —dg(AR, AD) = Ag(X.Y),

(34)  2°(U,V) + 29(APU, APV) = Ag(U, V),

(35)  6AP =0,

where X, Y are any horizontal vector fields which are w-related to )A(/, 17, and
U,V are any vertical vector fields. m

Let v’ be the Ricci tensor of the Riemannian metric ¢. When w = 0,
from Lemma 6 and Theorem 3 we obtain the following

COROLLARY 3 (cf. [2]). Let w : (M,g9) — (M',¢') be a Riemannian
submersion with totally geodesic fibers. Then (M, g) is an Finstein manifold
with r(E, F) = A\g(E, F) for some constant \ if and only if
(36) F(X,Y)om —2g(A%, AY) = Ag(X,Y),

(38) 5949 =0,
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where X, Y are any horizontal vector fields which are w-related to )?, 17, and
U,V are any vertical vector fields. m

5. Examples

1. Almost contact metric manifolds. A Riemannian manifold (M, g) is
said to be an almost contact metric manifold if there exist a tensor ¢ of type
(1,1), a unit vector field £ and a 1-form 7 such that

n€) =1, X =-X+nX)§ g(¢X,0Y)=g(X,Y) - n(X)n(Y),
where X, Y are arbitrary vector fields on M.

For an almost contact metric structure (¢, &, 7, g) on M, we put ¢(X,Y)
= g(X, ¢Y). An almost contact metric structure is said to be a contact metric
if dn = .

If the Ricci tensor r(X,Y) of a contact metric manifold (M, ¢,&,n, g) is
of the form r(X,Y) = Bg(X,Y) +yn(X)n(Y), £ and v being constant, then
M is called an n-FEinstein contact metric manifold.

Now, let (M, ¢,&,n,g) be a contact metric manifold with dim M = 2n+1
and w = fn, where f is a function on M. Let 7 : (M, ¢,&,n,9) — (M, g")
be a Riemannian submersion with fibers of dimension 1 and 7 vertical. Let
D be a torsion-free affine connection such that Dg = w ® g. Then (M, g, D)
is a Weyl manifold. From Theorem 2 we have the following

PROPOSITION 3. Let (M,¢,£,1,9) be a contact metric manifold with
dim M = 2n+1 andw = fn, where f is a function on M. Letw : (M, g, D) —
(M',g',D") be a Weyl submersion with Weyl totally geodesic fibers of dimen-
sion 1 and n vertical, where Dg=w ® g and D'g’ = ' ® ¢’ for a 1-form '.
Assume that H satisfies the Yang—Mills condition. Then (M, g, D) is an
Einstein-Weyl manifold with vP(E,F) + rP(F,E) = Ag(E,F) for some
function A if and only if
2n

2r'()~<,17)o7r+{—4— 2_1f2+£(f)}g(X,Y):Ag(X,Y),

dn+2n&(f) =4, X(f) =0,
where X,Y are any horizontal vector fields which are w-related to )~(, Y.

Proof. Since (M, $,&,n,9) is a contact metric manifold, for horizontal
vector fields X, Y, we have A%Y = %V[X, Y] = —dn(X,Y)¢ and so A%€ =
—¢X because ¢ = dn. From AR¢ = A€ — %g(&, B)X, we get g(AR, AD) =
(1+1/%)g(X,Y) and g(APE, APE) = 37 g(A% & A%, &) +qnf® = 2n+4nf>.
Since the fibers are Weyl totally geodesic and w is vertical, 79 = 0. Since
H satisfies the Yang-Mills condition, we get 59A9 = 0. From Lemma 6 and
0949 = 0, g((64P)X,€) = g((89A49)X, &) — §(Dxw)(§) = —5X(f). This
completes the proof. =
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As a corollary, we have the following

COROLLARY 4 (cf. [9]). Let (M, ¢,&,n,g) be an n-FEinstein contact metric
manifold with r(E, F) = Bg(E, F) + yn(E)n(F) with dim M = 2n + 1 and
w = fn, where f is a function on M. Let 7 : (M,g9,D) — (M',¢',D’)
be a Weyl submersion with Weyl totally geodesic fibers of dimension 1 and n
vertical, where Dg = w®g and D'g' = w'®¢’ for a 1-form w'. Then (M, g, D)
is an Einstein—Weyl manifold with r? (E, F)+rP(F,E) = Ag(E, F) for some
function A if and only if
(9) 26— "L PreN =4 Antme(f) =4 X(H)=0,
where X is any horizontal vector field.

In particular, if v < 0 then (M, g, D) admits an Einstein—Weyl structure.

Proof. For basic vector fields X,Y, Z, we have
(cf. [11]). Since M is n-Einstein, we have

r(E, F) = Bg(E, F) + yn(E)n(F),
where § and ~ are constant. Hence g((ggAg)X, &) = 0, i.e. 'H satisfies the
Yang—Mills condition. By using the fundamental equation of a Riemannian
submersion, we get r'(X,Y)on = (3 + 2)g(X,Y). Proposition 3 yields
28— 3(2n—1)f2+£(f) = A, 4n+2n&(f) = A and X(f) = 0.

If v <0, we set f2 = 2;flfy (= constant). From (3) and Proposition 2,

we obtain 12 (€, €) = B+ +n&(f) and r2(€,€) = 2n+ng(f). Thus B+ =
2n and so we obtain (39). Therefore (M, g, D) admits an Einstein-Weyl
structure. =

2. Warped products. Let (M’, g’) and (1/7\, Jo) be Riemannian manifolds of
dimension n and m respectively. Let M = M’ X f2 F be their warped product
with metric g = ¢’ + 2o, where f2 is a positive function on M’. Let V, V'
be the Levi-Civita connections of g, g’ respectively. Then 7 : M — M’ is a
Riemannian submersion whose fiber at 2’ € M is (F, f(2')%go). It is known
that A9 =0, TGV = g(U, V)(=f~'V[f) and N9 = 3 | T Vj = —m[f~'V |
is a basic vector field which is m-related to —mf~!V’f, where Vf is the
gradient of f for g (cf. [2]). We set B = 2f~1Vf and B’ = 2f~1V'f. Then
B is a basic vector field which is m-related to B’. Let w(X) = ¢(X,B)
and w'(X) = ¢/(X, B'). We define torsion-free affine connections D, D’ on
M,M' by Dg =w®gand D'¢ = ' @ g'. From w(X) = «/(X) o7 for a
basic vector field X which is 7-related to )?, it follows that HDxY is a basic
vector field which is 7-related to D;? Y for basic vector fields X, Y. Therefore

w:(M,g,D) — (M' g, D) is a Weyl submersion with w horizontal. Since
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TRV =TSV + 19(U,V)B = g(U,V)(—f'Vf + f71Vf) = 0, the fibers
are Weyl totally geodesic. Since AY = 0 and w is horizontal, AD = 0. As
DUV VDyV =VVyV, D is the Levi-Civita connection of § g = f(z')%%.
Therefore, from Theorem 3 we obtain

PROPOSITION 4. Let M = M’ x 42 F be the warped product of (M, q")
and (ﬁ,’g\g) with metric g = ¢’ + f?Go, where f? is a positive function on M'.
Set B=2f"'Vf B =2f"'V'f, w(X) = g(X,B) and «/(X) = ¢'(X,B').
Define torsion-free affine connections D and D' by Dg = w ® g and D'g' =
W' ®g'. Then w: (M,g,D) — (M',¢',D’) is a Weyl submersion with Weyl
totally geodesic fibers and AP = 0. Therefore (M, g, D) admits an Einstein—
Weyl structure with rP?(E, F) + rP(F,E) = Ag(E, F) for some function A
if and only if (F,Go) is Einstein with 7o = o, 2r(U,V) = Ag(U,V), i.e
2//\\/]”2 = A, and

TDI()Za?) O7T+TD/(?7)Z) om=Ag(X,Y),

where X, Y are any horizontal vector fields which are mw-related to )A(/, 17, and
U,V are any vertical vector fields. m

3. Locally conformal cosymplectic manifolds. An almost contact metric
manifold (M, ¢,&,n,g) is said to be locally conformal cosymplectic if the
Nijenhuis tensor N is zero and if there exists a closed 1-form ¢ on M such
that dnp =n A 6 and d® = —29 A 6, where

Ny(X,Y) = [6X, ¢Y] — ¢[¢X,Y] — ¢[X, ¢Y] + ¢°[X,Y].

Let (M,$,&,m,9) and (M',¢', &)1, ¢") be almost contact metric man-
ifolds. A Riemannian submersion 7 : (M,$,&,n,9) — (M',¢',&' 7', q') is
called an almost contact metric submersion if w is an almost contact map-
ping, i.e. ¢/ o my = m, o ¢. An almost contact metric submersion between
locally conformal cosymplectic manifolds is called locally conformal cosym-
plectic (cf. [4], [7]).

Let 7 : (M,9,&,m,9) — (M',¢',&,1,g") be a locally conformal co-
symplectic submersion. Let w,w’ be the Lee forms of (M, ¢,&,n,9),
(M',¢',& 1, g') respectively. For the Lee form @ in the sense of Chinea,
Marrero and Rocha [4], our Lee form w is w = —2w. Then the Lee vector
field B on M is horizontal and the integrability tensor A9 is zero, moreover
w(X) = W'(X) o7 for any basic vector field X on M which is 7-related to
X on M’ (cf. [4], [7]). Let D and D’ be torsion-free affine connections such
that Dg = w ® g and D¢’ = &' ® ¢'. From w(X) = w’()?) o, it follows
that HDxY is a basic vector field which is 7-related to D/f(?’ for any basic
vector fields X, Y. Therefore 7 : (M, g, D) — (M',¢',D’) is a Weyl submer-
sion. Since A9 = 0 and B is horizontal, AP = 0. Thus, from Theorem 1, if
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(M, g, D) is Weyl flat, i.e. RP =0, then (M, ¢’, D') is also Weyl flat. Hence
we obtain

PROPOSITION 5. Let m : (M, ¢,&,m,9) — (M',¢',&,1',g") be a locally
conformal cosymplectic submersion and w, W' be the Lee forms of (M, ®,&,
n,9), (M',¢' & 1, g") respectively. Let D and D’ be torsion-free affine con-
nections such that Dg = w® g and D'g’ = w' ® ¢'. Then w : (M,g,D) —
(M',g',D") is a Weyl submersion with w horizontal and AP = 0. If (M, g, D)
is Weyl flat, i.e. RP =0, then (M',g',D’) is also Weyl flat. w

4. Locally conformal Kdahler manifolds. Let M be an almost Hermitian
manifold with metric g, Levi-Civita connection V and almost complex struc-
ture J. The Kéahler form (2 is given by 2(X,Y) = g(X, JY). An almost Her-
mitian manifold (M, J, g) is said to be locally conformal Kihler if Ny = 0,
w is closed and df2 = w A {2, where

Ny(X,Y)=[JX,JY] - J[JX,Y] - J|X,JY] - [X,Y]

and w is the Lee form.

Let (M, J,g) and (M’,J',¢') be almost Hermitian manifolds. A Rieman-
nian submersion 7 : (M, J,g) — (M',J',¢’) is called almost Hermitian if
meodJ =J om,.

An almost Hermitian submersion 7 : (M, J,g) — (M',J' ¢') is called
locally conformal Kdahler if (M, J, g) is a locally conformal Kahler manifold
(ct. [6]).

Let w: (M, J,g) — (M',J', ¢’) be alocally conformal Kahler submersion.
Let w,w’ be the Lee forms of (M, J, g), (M', J’, ¢') respectively. Then w(X) =
w'()?) o for any basic vector field X on M m-related to X on M’ and HB
is a basic vector field m-related to B’ (cf. [6]). Let D and D’ be torsion-free
affine connections such that Dg = w ® g and D'g’ = w' ® ¢’. Then HDxY
is a basic vector field which is 7-related to D/)?Y' Therefore 7 : (M, g, D) —
(M',¢',D") is a Weyl submersion.

We assume that w is horizontal. Then A9 = 0 (cf. [6]) and so AP = 0.
Thus we get

PROPOSITION 6. Let w : (M, J,g) — (M',J',q’) be a locally conformal
Kdhler submersion and w, w' be the Lee forms of (M, J,g), (M',J’, ") respec-
tiwely. Let D and D' be torsion-free affine connections such that Dg = w ® g
and D'g' = ' ® ¢’. Assume that w is horizontal. Then 7 : (M,g,D) —
(M',g', D) is a Weyl submersion with AP =0. =

6. Canonical variations. Let 7 : (M, g,D) — (M’',¢', D’) be a Weyl
submersion. Recall that the canonical variation g; of the Riemannian metric
g on M is defined for ¢ > 0 by setting ¢:|V = tg|V, ¢:|H = g|H and ¢:(V, H)
=0 (cf. [2]).
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Let D and D! be torsion-free affine connections such that Dg = w ® g
and D'g; = w ® g;. Since 7 : (M, g, D) — (M', g, D') is a Weyl submersion,
sois m: (M,g, D" — (M',¢,D'). Let T?" and AP" be the fundamental
tensors of the Weyl submersion 7 : (M, g¢, D') — (M’, g, D). Let B and
B; be the dual vector fields of w with respect to g and g; respectively. Then
VB = tVBt and HB = HBt

LEMMA 8. If X,Y are horizontal and U,V are vertical, then

(a) AR'Y = ARy + 11/t —1)g(X,Y)VB,
(b) AR'U = tARU + L(t - Dw(U) X,

(c) TR'V =11V,

(d) TP'X = TP X.

Proof. Since D'g; = w ® g, we have
(0)  DLF = ViF — Lw(E)F - Lw(F)E + La(E, F)B,,

where V' is the Levi-Civita connection of g;. Let T! and A’ be the fun-
damental tensors of a Riemannian submersion 7 : (M, g;) — (M’,¢'). For
Riemannian submersions 7 : (M,g) — (M',¢') and 7 : (M, g;) — (M',¢’),
we have ALY = A%Y, ALU = tAS U, T,V = tTgV and T}/ X = TgX
(cf. [2]). Thus we obtain

AR'Y =VvDLY = VVhY + Lg(X,Y)VB,

= ALY + %Q(X, Y)VB = A%Y + %g(X, Y)VB

1/1
= ARy + 3 <¥ - 1)g(X, Y)VB,

AR'U = AU - o)X
=tA%U — iW(U)X =tARU + 1(t - Dw(U)X,
T,?tV = TEV + Ytg(U,VYHB = tT3V + tg(U,VYHB = TRV,
TH'X = THEX — Lw(X)U = THX — Lo(X)U =TPX. »
Now we consider a Weyl submersion 7 : (M, g,D) — (M’,¢’, D") with

Weyl totally geodesic fibers of dimension 1 and w vertical, where Dg = w®g.
Since w is vertical, D’ is the Levi-Civita connection of g’. We set (5tADt)X =

— S (DY AP x X

THEOREM 4. Letn : (M,g,D) — (M',¢', D) be a Weyl submersion with
Weyl totally geodesic fibers of dimension 1 and dim M = n + 1. Let £ be a
unit vertical vector field and n its dual 1-form with respect to g. Assume that
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w = fn, where f is a functwn on M. Assume that (M’ g') is an Ein-
stein. manifold with ' (X,Y) = N¢'(X,Y) whose scalar curvature is positive
and (M, g, D) is an Einstein-Weyl manifold with rP(E,F) + rP(F,E) =
Ag(E, F) and A9 # 0.

If there exists a positive t # 1 such that (M, g;, D) is an Einstein—Weyl
manifold, then

2

X(f)=0 and 0<2(f)+f*# m)\/7
where X is any horizontal vector field.
If f is constant, then (M, g, D) admits an Einstein—Weyl structure for

(n—1)f

YUy 22

Proof. Since (M, g, D) is an Einstein-Weyl manifold, from Theorem 2,
we have

(41) 2R V)om —4g(AR, AP) ¢ { nt3 s<f>}g<x, v)

= Ag(Xﬂ Y)7
(42) 29(APE APE) + n{E(f) — 317} = 4,
(43) ~29((3AP)X,€) + " 2X(f) =0,

Since the fibers of a Weyl submersion 7 : (M, g, D) — (M',¢', D’) are
Weyl totally geodesic, the fibers of the Weyl submersion 7 : (M, g, D') —
(M',¢',D") are also Weyl totally geodesic because T[]ZtV~ = tTV. Since
(M’ ¢') is an Einstein manifold with »/(X,Y) = N¢/(X,Y), from Proposi-
tion 2, we obtain

(44) XY+ (Y X) = 20 (X, Y) o m — g (AR, AY)
+4
+{ — |Bt|2+ gt(DgBt,E)}gt(X,Y),

(45)  2r”'(&,€) = 20(A”'¢, AP'€) + ngy(DEBy €),
(46) P (X, + (€ X) = ~20:((8:A”)X,€) + (n — 2)gu(DX By, €)
+ (n— 1)dw(€, X).
From B = f¢, we have gt(DéBt,g) =&(f) — f?/2 and |By|? = t71 f2. Using
Lemma 8, we get g,(AP ¢, AP'€) = 12g(AP¢, APg) + i(l —t?)nf? and

AD' 4D AD apy 1P
gt ( ) = tg( v)+

g(X,Y).
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From (41) and (44), we have

A7) XY+, X) =20 (X, Y ) o — t{zxg’(f(', Y)or

# (T e - 4)aten) |

2(t* —1) —n+3 §(f)
+{ 2t t

2+

}MXJW
From (42) and (45), we have

(48) 2rD'(£,€) = t}{A — n€(f)} + né(f).

Since w is vertical, we have HD%Y = HDxY and VD4 U = VDxU, where

X, Y are any horizontal vector fields and U is a vertical vector field. Using

Lemma 8, we obtain g,((6,AP")X,¢) = tg((6AP)X,€) + St —1DX(f).
Thus, from (43) and (46), we have

(49) PP + P (6 X) = 30— (L - DX(S).
From Lemma 3, we have AQ¢= A% ¢~ fX. Thus g(AQ, AD) = g(A%, AL)+
4]‘"2 (X,Y) and g(AP¢, AP¢) = g(Agg,Agg) + %nf2. Equations (41), (42)
imply g(A%, A) = 12N~ 1(n — 1) PHE(f)~ )g(X, Y) and g(A%, A%€) =
(A —n&(f)). Since A9 # 0, we obtain 4\ — (n — 1)(2£(f) + f?) > 0.

Let (M, g, D;) be an Einstein-Weyl manifold with r2° (E, F)+rP" (F, E)
= Mgi(E, F). From (47) and (48), we have

(50) tm:_ﬁ@x_A+ ”+1ﬂ+aﬁ>+m%+ L P e
and

(51) tAr = t*{A = n&(f)} + n&(f)-

Using (50) and (51) we obtain

50 X -Tean e - e B s+ 1) =0

One solution is ¢ = 1, and the other
(n—1)(26(f) + )

AN = (n—1)(26(f) + /)

is positive and # 1 if and only if 0 < 2£(f) + f? # 2N,
Next, we assume that f is constant. From (47)- ( ) for

(n—1)f?
AN — (n—1)f2

t:

t =
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we have rDt(E,F) + rDt(F,E) = tAg;(E, F), where E, F are any vector
fields on M. Thus (M, g, D;) admits an Einstein—Weyl structure. =

As a corollary, we have the following

COROLLARY 5. Let (M, ®,&,m,g) be an n-FEinstein contact metric man-
ifold with r(E,F) = Bg(E,F) +yn(En(F), dim M = 2n+ 1 and w = fn,
where f is a function on M. Let w : (M,g,D) — (M',¢',D’) be a Weyl
submersion with Weyl totally geodesic fibers of dimension 1 and n vertical,
where Dg =w ® g and D'g' = W' ® ¢’ for a 1-form &'.

If v < 0 and we set f% = %7, then (M, g;, D*) admits an Einstein—
Weyl structure for t = S(g—fl)’y.

Proof. From Corollary 4, (M, g, D) admits an Einstein—Weyl structure.
Since 7(X,Y) om = (8+2)g(X,Y) and B+~ = 2n , we have
L (2n —1)f? 4
T1B8+2)-(2n-Df2 8mn+1) "
Therefore, from Theorem 4, (M, g;, D*) admits an Einstein-Weyl structure
for t = 8(;—-;%1)7' "

Next, let 7 : (M, g,D) — (M’,¢',D’) be a Weyl submersion with Weyl
totally geodesic fibers and w horizontal. We study the canonical variation
of the metric of the total space. Let D, D’ and D! be the torsion-free affine
connections such that Dg =w ® g, D'’ = W' ® ¢’ and D'g; = w ® g;. Since
w is horizontal, D is the Levi-Civita connection of the induced Riemannian
metric g of the fiber.

THEOREM 5. Letw: (M,g,D) — (M',¢',D’") be a Weyl submersion with
Weyl~t0t~ally geodej’icﬁbers overgnﬁ’msteianeyl manifold (M', g', D) with
rP(X,Y) 4+ rP(V,X) = A'¢(X,Y) and AP # 0. Suppose w is horizontal
and A’ is constant. Assume that the fibers (F,g) are Einstein manifolds
with F(U, V) = A\g(U,V) and (M, g, D) is an Einstein—-Weyl manifold with
rP(E, F)+rP(F,E) = Ag(E, F). Then there exists a positive t # 1 such that
(M, g¢, DY) is also an Einstein—Weyl manifold if and only if 0 < 4\ # A'.

Proof. By Theorem 3, we have (33)-(35).

Since the fibers of the Weyl submersion = : (M,g,D) — (M',¢’,D’)
are Weyl totally geodesic, so are the fibers of the Weyl submersion 7 :
(M, g¢, D') — (M, g', D). From Proposition 2, we have
(53) (X, Y) + P (Y, X)

= rDl()Af,f/) om+ rD/(EN/,)A(:) om — 4gt(ADt,A$t),
(54) PO V) + P (VU) = PO V) + 0P (V,U) + 20:(AP'U, AP'Y),
(55)  rPUX,U) + P (U, X) = —2¢,((5,AP) X, U).




WEYL SUBMERSIONS 139

Since w is horizontal, from Lemma 8 we have A%Y = AQY, A)D(tU = tA)’%U,
TRV =tTPV, and TP X =TP X. Thus g,(AP'U, AP'V)=t2g(APU, APV)
and gi(AR', AP") = tg(AR, AD). Since VDYY = VDxY, HDYY = HDxY
and VDLU = VDxU, we have §;AP" = §AP.
Thus we obtain

(56) P (X, V) +rP (Y, X) = P (X, Y)or+rP (Y, X)omr—4tg(AR, AR),
57 PO V) + P (v, U) = PN(U, V) + 0PV, U) + 2029(APU, APV,
(58) rP(X,U) +rP (U, X) = —2tg((6AP)X,U) = 0.

Since w is horizontal, rﬁt(U, V) = r(U,V). From (33) and (34), since
AP £ 0, we obtain A’ > 2X. Then (M, g¢, DY) is an Einstein—-Weyl manifold
with 2" (B, F)+rP"(F, E) = Ayg,(E, F) if and only if there exists a positive
t # 1 such that A; = A’ — (A’ — A) and tA; = 2 + t2(A — 2)). That is, ¢
satisfies

(59) (2x — A2+ A't —2X = 0.

One solution of the quadratic equation is ¢ = 1, and the other ¢t = 2X/(/1’—2/)\\)
is positive and # 1 if and only if 0 < 4\ # A'. =
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