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INDUCTIVE DIMENSIONS MODULO SIMPLICIAL COMPLEXES
AND ANR-COMPACTA
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Abstract. We introduce and investigate inductive dimensions K- Ind and L- Ind for
classes K of finite simplicial complexes and classes L of ANR-compacta (if K consists of
the 0-sphere only, then the K- Ind dimension is identical with the classical large inductive
dimension Ind). We compare K-Ind to K-Ind introduced by the author [Mat. Vesnik
61 (2009)]. In particular, for every complex K such that K ∗ K is non-contractible, we
construct a compact Hausdorff space X with K-Ind X not equal to K-dim X.

Introduction. In [8] we introduced dimension functions K-dim and
L-dim for classes K of finite simplicial complexes and classes L of ANR-
compacta. For the definitions and necessary information see Section 1. The
theory of L-dim is a part of extension theory introduced by A. Dranish-
nikov [2].

Here we introduce and investigate inductive functions K-Ind and L-Ind
(Definitions 2.1 and 2.3). For K and L consisting of a two-point set {0, 1}
the dimension functions K-Ind and L-Ind coincide with the classical large
inductive dimension Ind.

If L is a class of compact polyhedra and τ is an arbitrary triangulation
of the class L (τ consists of some triangulations of all elements of L), then
Lτ -IndX ≤ L-IndX for every normal space X and Lτ -IndX = L-IndX for
the hereditarily normal space X (Theorem 2.4).

If a hereditarily normal space X is represented as the union of two sub-
spaces X1 and X2, then L-IndX ≤ L-IndX1 +L-IndX2 + 1 (Theorem 2.8).

For homotopy equivalent classes L1 and L2 and an arbitrary hereditarily
normal space X we have L1-IndX = L2-IndX (Corollary 3.7). So, when we
investigate the L-Ind dimension of hereditarily normal spaces, we can con-
sider only classes L consisting of compact polyhedra, because by J. West’s
theorem every ANR-compactum has a homotopy type of some compact
polyhedron.
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For every K, L, and X we have K-IndX, L-IndX ≤ IndX (Theo-
rem 3.12). The equality K-IndX = IndX holds for every normal space
X if and only if K contains a disconnected complex (Theorem 3.14). The
same is true for L-Ind and hereditarily normal spaces X (Theorem 3.15).

We also prove that K-dimX ≤ K-IndX for every normal space X (The-
orem 3.18) and K-dimX = K-IndX for every metrizable space X (Theo-
rem 3.23).

In Section 5 we construct compact Hausdorff spaces XK
n with

K-dimXK
n = n < 2n− 1 ≤ K-IndXK

n ≤ 2n,
where n ≥ 2 and K is a complex with K ∗K non-contractible. To construct
XK
n we apply fully closed mappings and resolutions. In Section 4 we recall

necessary information concerning this area.

1. Preliminaries

1.1. By a space we mean a normal T1-space. For a space X we denote
by expX the set of all closed subsets of X (including ∅).

All mappings are assumed to be continuous. A metrizable compact space
is called a compactum. By ' we denote homotopy equivalence, and |S|
stands for the cardinality of a set S. We denote by Fins(expX) the set of
all finite sequences Φ = (F1, . . . , Fm), Fj ∈ expX, i.e.

Fins(expX) =
⋃
{(expX)m : m = 1, 2, . . .}.

Recall that an abstract simplicial complex K is said to be complete if
every face of each simplex from K belongs to K. In what follows, complexes
are finite abstract complete simplicial complexes. Sometimes we identify a
complex K with its geometric realization, i.e. with a Euclidean complex K̃
with the same vertex scheme.

In what follows, polyhedra are compact polyhedra. Hence every polyhe-
dron is an ANR in the class of all (normal) spaces.

For a complex K we denote by v(K) the set of all its vertices. Let u be
a finite family of sets and let u0 = {U ∈ u : U 6= ∅}. The nerve of the family
u is a complex N(u) such that v(N(u)) = {aU : U ∈ u0} and a non-empty
set ∆ ⊂ v(N(u)) is a simplex of N(u) if and only if

⋂
{U : aU ∈ ∆} 6= ∅.

We now recall several notions and facts. They are well known but im-
portant for this article.

1.2. Definition. A pair (X,Y ) of spaces has the Homotopy Extension
Property if, for every closed set F ⊂ X, each mapping f : (X × 0)∪ (F × I)
→ Y extends over X × I.

1.3. Theorem. (Borsuk’s theorem on extension of homotopy; see [13],
[14]). Every pair (X,L), where X is a space and L is an ANR-compactum,
has the Homotopy Extension Property.
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1.4. Theorem [15]. Every ANR-compactum is homotopy equivalent to
some compact polyhedron.

1.5. Definition. Let X and Y be spaces and let Z ⊂ X. The property
that all partial mappings f : Z → Y extend over X will be denoted by
Y ∈ AE(X,Z). If every mapping f : Z → Y extends over an open set
Uf ⊃ Z, then we write Y ∈ ANE(X,Z). If Y ∈ A(N)E(X,Z) for every
closed Z ⊂ X, then Y is called an absolute (neighbourhood) extensor of X
(notation: Y ∈ A(N)E(X)). If Y ∈ A(N)E(X) for all spaces X, then Y is
said to be an absolute (neighbourhood) extensor (notation: Y ∈ A(N)E).

The Brouwer–Tietze–Urysohn theorem on extension of functions yields

1.6. Theorem. If Y is an A(N)R-compactum, then Y ∈ A(N)E.

1.7. Lemma (Open enlargement lemma). Let Φ = (F1, . . . , Fm) ∈
Fins(expX). Then there exists a sequence u = (U1, . . . , Um) of open sub-
sets of X such that Fj ⊂ Uj, j = 1, . . . ,m, and N(Φ) = N(u).

Now we are going to discuss new dim-type functions introduced in [8].
In what follows, K stands for a complex. For each complex K we fix an
enumeration of its vertices: v(K) = (a1, . . . , am).

1.8. Definition. Let K be a complex with |v(K)| = m and let Φ =
(F1, . . . , Fm) ∈ Fins(expX). We say that N(Φ) is embedded in K (notation:
N(Φ) ⊂ K) if the correspondence Fj → aj generates a simplicial embedding
e : N(Φ)→ K.

Put ExpK(X) = {Φ ∈ (expX)m : N(Φ) ⊂ K}.
1.9. Definition. Let Φ = (F1, . . . , Fm) ∈ ExpK(X). A sequence u =

(U1, . . . , Um) of open subsets ofX is called aK-neighbourhood of Φ if Fj ⊂ Uj
and the correspondence Uj→aj generates a simplicial embedding N(u)→K.

According to Lemma 1.7 each Φ ∈ ExpK(X) has a K-neighbourhood.

1.10. Definition. A set P ⊂ X is said to be a K-partition of Φ ∈
ExpK(X) (notation: P ∈ Part(Φ,K)) if P = X \

⋃
u, where u is a K-

neighbourhood of Φ.

1.11. Definition ([8]). A sequence (K1. . . . ,Kr) of complexes is called
inessential in X if for every sequence (Φ1, . . . , Φr) such that Φi ∈ ExpKi

(X)
there exist Ki-partitions Pi of Φi with P1 ∩ · · · ∩ Pr = ∅.

1.12. Definition ([8]). Let K be a non-empty class of complexes. To
every space X one assigns the dimension K-dimX, which is an integer ≥ −1
or ∞, defined in the following way:

(1) K-dimX = −1⇔ X = ∅;
(2) K-dimX ≤ n ≥ 0 if every sequence (K1, . . . ,Kn+1), Ki ∈ K, is

inessential in X;
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(3) K-dimX =∞ if K-dimX > n for all n = −1, 0, 1, . . . .

If the class K contains only one complex K we write K = K and
K-dimX = K-dimX.

Hemmingsen’s theorem on partitions ([3, Theorem 3.2.6]) can be refor-
mulated as follows:

1.13. Theorem. {0, 1}-dimX = dimX.

In what follows, L stands for a non-empty class of ANR-compacta L.
We denote by X1 ∗ · · · ∗Xn ≡ ∗ni=1Xi the join of the spaces X1, . . . , Xn.

1.14. Definition. To every spaceX one assigns the dimension L-dimX,
which is an integer ≥ −1 or ∞, defined in the following way:

(1) L-dimX = −1⇔ X = ∅;
(2) L-dimX ≤ n ≥ 0 if L1∗· · ·∗Ln+1 ∈ AE(X) for any L1, . . . , Ln+1∈L;
(3) L-dimX =∞ if L-dimX > n for all n ≥ −1.

If the class L contains only one compactum L we write L = L and
L-dimX = L-dimX.

1.15. Remark. In [8, Definition 3.9], L-dim was defined in a slightly
different but equivalent way (see [8, Corollary 3.13]).

Since Sn = (S0)∗(n+1), from a characterization of the Lebesgue dimension
by means of mappings to spheres we get

1.16. Theorem. For every space X, S0-dimX = dimX.

Let L be a non-empty class of polyhedra. For each L ∈ L we fix a
triangulation t = t(L) of L. The pair (L, t) is a simplicial complex which is
denoted by Lt. The family τ = {t(L) : L ∈ L} is said to be a triangulation
of the class L. Let Lτ = {Lt : t ∈ τ}.

1.17. Theorem ([8]). Let L be a non-empty class of polyhedra and let
τ be a triangulation of L. Then Lτ -dimX = L-dimX for every space X.

1.18. Definition. Let L1 and L2 be non-empty classes of ANR-comp-
acta. We say that L1 is dominated by L2 (notation: L1≤hL2) if every L1∈L1

is homotopically dominated by some L2 ∈ L2. The class L1 is homotopy
equivalent to L2 (notation: L1 ' L2) if both L1 ≤h L2 and L2 ≤h L1.

1.19. Proposition ([8]). If L1 ' L2, then L1-dimX = L2-dimX for
every space X.

Theorem 1.4 and Proposition 1.19 yield

1.20. Theorem. For every non-empty class R of ANR-compacta there
exists a class L = L(R) of polyhedra such that R-dimX = L-dimX for
every space X.
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So, when we investigate dimension functions of type L-dim, we can con-
sider only classes L consisting of compact polyhedra. In the remainder of
this section, L stands for a compact polyhedron and L for a non-empty class
of compact polyhedra.

1.21. Definition. Let F be a closed subset of a space X. A mapping
f : F → L is called a partial mapping of X to L (notation: f ∈ PC(X,L)).

1.22. Definition. Every mapping f ∈ PC(X,L) extends over an open
set U ⊃ F = dom f . Such a set U is said to be an L-neighbourhood of f .
Its complement P = X \ U is called an L-partition of f (notation: P ∈
Part(f, L)).

1.23. Definition. A sequence (f1, . . . , fr), fi ∈ PC(X,Li), is said to
be inessential in X if there exist partitions Pi ∈ Part(fi, Li) such that
P1 ∩ · · · ∩ Pr = ∅.

Theorem 1.3 implies

1.24. Lemma. Let X be a hereditarily normal space, f1, f2 ∈ PC(X,L),
dom f1 = dom f2, and f1 ' f2. Then Part(f1, L) = Part(f2, L).

The following statement is well known.

1.25. Lemma. Let X be a space, u = (U1, . . . , Um) be an open covering
of X, and F ⊂ X be a closed subset. Assume (ϕ1, . . . , ϕm) is a partition of
unity on F subordinated to the covering u|F . Then the functions ϕj , j =
1, . . . ,m, can be extended over X to functions ψj so that (ψ1, . . . , ψm) is a
partition of unity on X subordinated to the covering u.

In what follows we identify a complex K with its geometric realization K̃.
So K is both a complex and a polyhedron.

1.26. Definition. Let u = (U1, . . . , Um) be an open covering of a
space X. A mapping f : X → N(u) is said to be u-barycentric if f(x) =
(ϕ1(x), . . . , ϕm(x)), where (ϕ1, . . . , ϕm) is some partition of unity subordi-
nated to the covering u, and ϕj(x) is the barycentric coordinate of f(x)
corresponding to the vertex aj ≡ Uj ∈ v(N(u)).

If e : N(u)→ K is a simplicial embedding, then the composition e ◦ f :
X → K is also called a u-barycentric mapping.

1.27. Proposition. If u = (U1, . . . , Um) is an open covering of a space
X, then there exists a u-barycentric mapping f : X → N(u).

1.28. Lemma. Let Φ=(F1, . . . , Fm)∈ExpK(X) and let F =F1∪· · ·∪Fm.
Assume that u is a K-neighbourhood of Φ such that U =

⋃
u is normal. Then

the set P = X \U is a K-partition of any partial mapping f : F → K which
is (u|F )-barycentric.
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Proof. Since f is (u|F )-barycentric, f(x) = (ϕ1(x), . . . , ϕm(x)), where
(ϕ1, . . . , ϕm) is a partition of unity on F subordinated to the covering u|F =
(U1 ∩ f, . . . , Um ∩ F ). From Lemma 1.25 and normality of U it follows that
the functions ϕ1, . . . , ϕm extend to functions ψj : U → I, j = 1, . . . ,m, so
that (ψ1, . . . , ψm) is a partition of unity on U subordinated to the covering
u of U . Then the mapping g : U → K defined as g(x) = (ψ1(x), . . . , ψm(x))
is an extension of f . Consequently, P = X \ U ∈ Part(f,K).

1.29. Definition. Let K be a complex with vertices a1, . . . , am, Φ =
(F1, . . . , Fm) ∈ Fins(expX), and F = F1 ∪ · · · ∪ Fm. The sequence Φ is
f -generated by K, where f : F → K is a mapping, if there exists a closed
covering (Γ1, . . . , Γm) of K such that Γj ⊂ Oaj ≡ St(aj ,K) and Fj =
f−1(Γj).

1.30. Lemma. Let f ∈ PC(X,K) with F = dom f . If P ∈ Part(f,K),
then P ∈ Part(Φ,K) for any sequence Φ = (F1, . . . , Fm) which is f -generated
by K.

Proof. By Definition 1.29 there exists a closed covering (Γ1, . . . , Γm) of
K such that Γj ⊂ Oaj and Fj = f−1(Γj). Since P ∈ Part(f,K), f extends
to a mapping g : X \ P → K. Put Uj = g−1(Oaj), j = 1, . . . ,m. Then

Fj = f−1(Γj) ⊂ g−1(Γj) ⊂ g−1(Oaj) = Uj .

Hence u = (U1, . . . , Um) is a K-neighbourhood of Φ. Moreover, u is a cov-
ering of X \ P , because (Oa1, . . . , Oam) is a covering of K. Thus P ∈
Part(Φ,K).

1.31. Theorem. Let X be a space and let K be a class of complexes.
Then K-dimX ≤ n if and only if every sequence (f1, . . . , fn+1) with fi ∈
PC(X,Ki) and Ki ∈ K is inessential.

Proof. Necessity. Let K-dimX ≤ n and let fi ∈ PC(X,Ki), Ki ∈ K,
i = 1, . . . , n + 1. Let v(Ki) = (ai1, . . . , a

i
mi

) and dom fi = F i. There exist
closed sets Γ ij ⊂ Ki such that

• Γ ij ⊂ Oaij ≡ St(aij ,Ki);
• γi = (Γ i1, . . . , Γ

i
mi

) is a covering of Ki.

Put F ij = f−1
i (Γ ij ), Φi = (F i1, . . . , F

i
mi

), and Oij = f−1
i (Oaij). Then Φi ∈

ExpKi
(X) and F i = F i1 ∪· · ·∪F imi

= Oi1∪· · ·∪Oimi
. As K-dimX ≤ n, there

exist Ki-neighbourhoods ui = (U i1, . . . , U
i
mi

) of Φi such that P1 ∩ · · · ∩ Pn+1

= ∅, where Pi = X \
⋃
ui. By Lemma 1.7 and the Urysohn lemma we can

enlarge partitions Pi to zero-sets P ′i with P ′1 ∩ · · · ∩ P ′n+1 = ∅. So we may
assume that U i =

⋃
ui are Fσ-sets and hence normal subspaces of X. We

can also assume that

(1.1) U ij ∩ F i ⊂ Oij .
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In fact, if (1.1) is not satisfied, we can define new sets 1U ij = (U ij \ F i) ∪
(U ij ∩Oij). Then the sequences u1

i = (1U i1, . . . ,
1U imi

) are Ki-neighbourhoods
of Φi with

⋃
u1
i =

⋃
ui.

Assuming (1.1) take some (ui|F i)-barycentric mappings f1
i : F i → Ki.

Since Oij = f−1
i (Oaij), condition (1.1) implies that

(1.2) fi(x) ∈ Oaij ⇒ f1
i (x) ∈ Oaij .

By a result of R. Cauty [1] condition (1.2) yields f1
i ' fi. Then Lemma

1.24 implies that Part(f1
i ,Ki) = Part(fi,Ki). On the other hand, Pi ∈

Part(f1
i ,Ki) in view of Lemma 1.28. Consequently, Pi ∈ Part(fi,Ki) and

the sequence (f1, . . . , fn+1) is inessential.
Sufficiency. Let Φi = (F i1, . . . , F

i
mi

) ∈ ExpKi
(X), F i = F i1 ∪ · · · ∪ F imi

,
v(Ki) = (ai1, . . . , a

i
mi

), i = 1, . . . , n+ 1. According to Lemma 1.7 there exist
sequences ωi = (Oi1, . . . , O

i
mi

) of open subsets of F i such that F ij ⊂ Oij and
N(ωi) = N(Φi).

By the usual procedure we construct partitions of unity (ϕi1, . . . , ϕ
i
mi

)
subordinated to the coverings ωi so that

(1.3) x ∈ F ij ⇒ ϕij(x) ≥ 1/mi.

The functions (ϕi1, . . . , ϕ
i
mi

) generate ωi-barycentric mappings

fi : F i → Ki, i = 1, . . . , n+ 1.

For z ∈ Ki, let µij(z), j = 1, . . . ,mi, be the barycentric coordinates of z
in Ki. Put

(1.4) Γ ij = {z ∈ Ki : µij(z) ≥ 1/mi}, j = 1, . . . ,mi; i = 1, . . . , n+ 1.

Clearly

Γ ij ⊂ Oaij = {z ∈ Ki : µij(z) > 0},(1.5)

γi = (Γ i1, . . . , Γ
i
mi

) is a covering of Ki.(1.6)

Since ϕij(x) = µij(fi(x)), (1.3) and (1.4) yield

(1.7) F ij ⊂ f−1
i (Γ ij ).

Put 1F ij = f−1
i (Γ ij ) and Φ1

i = (1F i1, . . . ,
1F imi

). From (1.4), (1.6), and (1.7)
it follows that the sequence Φ1

i is fi-generated by Ki. Consequently,

(1.8) Part(fi,Ki) ⊂ Part(Φ1
i ,Ki)

according to Lemma 1.30.
Since (f1, . . . , fn+1) is inessential, there exist partitions Pi ∈ Part(fi,Ki)

such that P1 ∩ · · · ∩ Pn+1 = ∅. Then (Φ1
1, . . . , Φ

1
n+1) is inessential by (1.8).

Hence (Φ1, . . . , Φn+1) is inessential, because Part(Φ1
i ,Ki) ⊂ Part(Φi,Ki) in

view of (1.7). Thus K-dimX ≤ n.
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1.32. Proposition. If L-dimX ≤ n and F is a closed subspace of X,
then L-dim F ≤ n.

Since ANR-compacta are ANE’s for normal spaces, we have

1.33. Proposition. If F is a closed subspace of a space X such that
L-dimX ≤ n and L-dimE ≤ n for any closed subset E ⊂ X with E∩F = ∅,
then L-dimX ≤ n.

1.34. Proposition ([8]). If a space X is the union of its closed sub-
spaces X1, X2, . . . with L-dimXi ≤ n, i ∈ N, then L-dimX ≤ n.

1.35. Theorem ([8]).

(i) L-dimX ≤ dimX for every L;
(ii) L-dimX = dimX if and only if L contains a disconnected space.

1.36. Theorem ([8]). If a hereditarily normal space X is the union of
subspaces X1 and X2 such that L-dimX1 ≤ m and L-dimX2 ≤ n, then
L-dimX ≤ m+ n+ 1.

1.37. Theorem ([8]). If X is a metrizable space with L-dim X ≤ n,
then X = X1 ∪ · · · ∪Xn+1, where L-dimXi ≤ 0, i = 1, . . . , n+ 1.

1.38. Theorem ([8]). If X is the limit space of an inverse system
{Xα, π

α
β , A} of compact Hausdorff spaces Xα with L-dimXα ≤ n, then

L-dimX ≤ n.

1.39. Theorem ([9]). If L ∗ L is not contractible, then for every n ≥ 0
there is m such that L-dim Im = n.

1.40. Proposition ([11]). Let X be a hereditarily normal space and let
A be an arbitrary subspace of X. Then for every mapping f : A → L there
exist an open subspace U ⊂ X and a mapping f1 : U → L such that A ⊂ U
and f ' f1|A.

2. Inductive dimensions and some of their properties

2.1. Definition. To every space X one assigns the dimension K-IndX,
which is an integer n ≥ −1 or ∞, defined in the following way:

(1) K-IndX = −1⇔ X = ∅;
(2) K-IndX ≤ n ≥ 0 if for every Φ ∈ ExpK(X), K ∈ K, there exists a

K-partition P of Φ such that K-IndP ≤ n− 1;
(3) K-IndX =∞ if K-IndX > n for n = −1, 0, 1, . . . .

If the class K contains only one complex K we write K-IndX = K-IndX.

This dimension function is a generalization of the large inductive dimen-
sion in view of

2.2. Proposition. {0, 1}-IndX = IndX.
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2.3. Definition. To every space X one assigns the dimension L-IndX,
which is an integer n ≥ −1 or ∞, defined in the following way:

(1) L-IndX = −1⇔ X = ∅;
(2) L-IndX ≤ n ≥ 0 if for every f ∈ PC(X,L), L ∈ L, there exists a

partition P ∈ Part(f, L) such that L-IndP ≤ n− 1;
(3) L-IndX =∞ if L-IndX > n for n = −1, 0, 1, . . . .

If the class L contains only one ANR-compactum L we write L-IndX =
L-IndX.

2.4. Theorem. If X is a hereditarily normal space and τ is an arbitrary
triangulation of a class L of polyhedra, then L-IndX = Lτ -IndX.

Proof. Denote the class Lτ by K = K(L) and its members Lt by K =
K(L). We have to prove the inequalities

K-IndX ≤ L-IndX,(2.1)
L-IndX ≤ K-IndX.(2.2)

To prove (2.1) we apply induction on L-IndX. Let L-IndX = n and let Φ =
(F1, . . . , Fm) ∈ ExpK(X), K = K(L), L ∈ L. Let v(K) = (a1, . . . , am). As
in the proof of Theorem 1.31 (Sufficiency) we construct a mapping f : F =
F1∪· · ·Fm → K

top
= L and a sequence Φ1 = (F 1

1 , . . . , F
1
m) such that Fj ⊂ F 1

j

and Φ1 is f -generated by K. Since L-IndX = n there exists a partition
P ∈ Part(f,K) with L-IndP ≤ n−1. By the inductive assumption we have
K-IndP ≤ n − 1. But, by (Lemma 1.30), P ∈ Part(Φ1,K) ⊂ Part(Φ,K).
Thus K-IndX ≤ n.

We prove (2.2) by induction on K-IndX. Let K-IndX = n and let
f ∈ PC(X,L(K)) = PC(X,K). Using the argument of the proof of The-
orem 1.31 (Necessity) we construct a sequence Φ = (F1, . . . , Fm) so that
dom f ≡ F = F1 ∪ · · · ∪ Fm and Φ is f -generated by K. Then we take a
K-neighbourhood u of Φ with K-IndP ≤ n−1, where P = X \

⋃
u, and con-

struct a (u|F )-barycentric mapping f1 : F → K such that f1 ' f . By the in-
ductive assumption we have L-IndP ≤ n−1. On the other hand, by Lemmas
1.28 and 1.24, P ∈ Part(f1, L(K)) = Part(f, L(K)). Thus L-IndX ≤ n.

2.5. Proposition. If Y is closed in X, then L-IndY ≤ L-IndX.

Proof. Induction on L-IndX.

Applying induction and Proposition 2.5 we get

2.6. Proposition. Let X be the discrete union of subspaces Xα, α ∈ A.
Then L-IndX ≤ n if and only if L-IndXα ≤ n for every α ∈ A.

2.7. Proposition. Let X be a hereditarily normal space and let Y be
a subspace of X such that L-IndY ≤ n ≥ 0. Then for every f ∈ PC(X,L),
L ∈ L, there exists an L-partition P of f such that L-Ind(P ∩ Y ) ≤ n− 1.
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Proof. Let dom f = F . Since L-IndY ≤ n, there exist an open subset V
of Y and a mapping f1 : V ∪F → L such that f1|F = f and L-IndQ ≤ n−1,
where Q = Y \V . By Proposition 1.40 there exist an open subset U of X and
a mapping f2 : U → L such that V ∪F ⊂ U and f1 ' f2|V ∪F . Put P = X\U .
Then P ∈ Part(f2|F , L) = Part(f, L) by Lemma 1.24. On the other hand,
P ∩ Y ⊂ Q. Hence, by Proposition 2.5, L-Ind(P ∩ Y ) ≤ L-IndQ ≤ n− 1.

2.8. Theorem. If a hereditarily normal space X is represented as the
union of two subspaces X1 and X2, then

L-IndX ≤ L-IndX1 + L-IndX2 + 1.

Proof. The assertion is obvious if one of the subspaces is empty. So
we assume that X1 6= ∅ 6= X2 and apply induction on p = m + n ≥ 0,
where IndX1 = m and IndX2 = n. We consider only the inductive step
p − 1 → p, since the case p = 0 is considered by the same argument. Let
f ∈ PC(X,L), L ∈ L. By Proposition 2.7 there exists an L-partition P of f
such that L-Ind(P ∩X1) ≤ m− 1. The set P ∩X2 is closed in X2. Applying
Proposition 2.5 we get L-Ind(P ∩X2) ≤ L-IndX2 = n. Hence

L-Ind(P ∩X1) + L-Ind(P ∩X2) ≤ m− 1 + n = p− 1.

By the inductive assumption, L-IndP ≤ m+n. Thus L-IndX ≤ m+n+1.

2.9. Corollary. If a hereditarily normal space X can be represented
as the union of n + 1 subspaces X1, . . . , Xn+1 such that L-IndXi ≤ 0, i =
1, . . . , n+ 1, then L-IndX ≤ n.

Applying a standard argument (see, for example, [3, proof of Theorem
2.2.10]) one can prove the following statements.

2.10. Theorem. For every space X we have K-IndβX = K-IndX.

2.11. Theorem. For every space X we have L-IndβX = L-IndX.

To prove these theorems we use Lemma 1.7 and Theorem 1.6 respectively.

3. Comparison of dimensions. Since Lemma 1.30 holds for every
normal space X, an analysis of the proof of Theorem 2.4 shows that

(3.1) Lτ -IndX ≤ L-IndX

for every (normal) space X and every class L of polyhedra.

3.1. Question. Does the equality

(3.2) Lτ -IndX = L-IndX

hold for an arbitrary space X?
A partial answer to Question 3.1 is given by

3.2. Proposition. If Lτ -IndX = 0, then L-IndX = 0.
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To prove Proposition 3.2 we use the argument of the second part of the
proof of Theorem 2.4. We have a partition P there of dimension ≤ n− 1 =
−1. Hence P is empty and u is a cover of X. Consequently, we can construct
a (u|F )-barycentric mapping f1 for a normal space X.

3.3. Proposition. If K1 ⊂ K2, then K1-IndX ≤ K2-IndX.

3.4. Proposition. If L1 ⊂ L2, then L1-IndX ≤ L2-IndX.

Propositions 3.3 and 3.4 yield

sup{K-IndX : K ∈ K} ≤ K-IndX,(3.3)
sup{L-IndX : L ∈ L} ≤ L-IndX.(3.4)

3.5. Question. Is it true that

K-IndX = sup{K-IndX : K ∈ K}, L-IndX = sup{L-IndX : L ∈ L}?
3.6. Proposition. If L1 ≤h L2, then

(3.5) L1-IndX ≤ L2-IndX

for every hereditarily normal space X.

Proof. We apply induction on L2-IndX = n ≥ −1. For n = −1 the
assertion is obvious. Let L2-IndX = n ≥ 0 and let f ∈ PC(X,L1) for some
L1 ∈ L1. We have to find a partition P ∈ Part(f, L1) with L1-IndP ≤ n−1.

Since L1 ≤h L2 there exists L2 ∈ L2 such that L1 ≤h L2, i.e. there exist
mappings α : L1 → L2 and β : L2 → L1 with β ◦ α ' idL1 . Let

g = α ◦ f : dom f → L2.

Then g ∈ PC(X,L2). Since L2-IndX = n, there exists a partition P ∈
Part(g, L2) with L2-IndP ≤ n − 1. Then P ∈ Part(β ◦ g, L1). But β ◦ g =
(β ◦α) ◦ f ' f , because β ◦α ' idL1 . Consequently, P ∈ Part(f, L1) in view
of Lemma 1.24. On the other hand, by the inductive assumption we have
L1-IndP ≤ L2-IndP ≤ n− 1.

3.7. Corollary. If L1 ' L2, then

(3.6) L1-IndX = L2-IndX

for every hereditarily normal space X.

3.8. Question. Does equality (3.6) hold for an arbitrary space when-
ever L1 ' L2?

Theorem 1.4 and Corollary 3.7 yield

3.9. Proposition. For every non-empty class R of ANR-compacta
there exists a class L = L(R) of compact polyhedra such that R-IndX =
L-IndX for every hereditarily normal space X.

So, when we investigate the L-Ind dimension of hereditarily normal
spaces, we can consider only classes L consisting of compact polyhedra.
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3.10. Lemma. Let Φ=(F1, . . . , Fm)∈ExpK(X) and let u=(U1, . . . , Um)
be a K-neighbourhood of Φ. Then every partition P in X between F =

⋃
Φ

and X \
⋃
u is a K-partition of Φ.

Proof. There exist open sets U and V such that

(3.7) U t P t V = X

and
F ⊂ U ⊂ U ∪ P ⊂

⋃
u.

We define a new K-neighbourhood u1 = (U1
1 , . . . , U

1
m) of Φ as follows:

U1
1 = (U1 ∩ U) ∪ V, U1

j = Uj ∩ U, j = 2, . . . ,m.

Then P = X \
⋃
u1.

3.11. Lemma. Let f ∈ PC(X,L) and let W be a neighbourhood of F =
dom f such that X ⊂W ∈ Part(f, L). Then every partition P in X between
F and X \W is an L-partition of f .

Proof. There exist open sets U and V satisfying (3.7) and F ⊂ U ⊂
U ∪ P ⊂W . Since X \W ∈ Part(f, L), there exists a mapping f1 : W → L
such that f1|F = f . We define an extension f2 of f putting f2|U = f1 and
f2(W ) = pt ∈ L. Then dom f2 = X \ P , so P ∈ Part(f, L).

3.12. Theorem. For every K, L, and X we have

K-IndX ≤ IndX,(3.8)
L-IndX ≤ IndX.(3.9)

Proof. We prove (3.8) by induction on n = IndX. For n = −1 the
assertion is obvious. Let X = n ≥ 0 and let Φ ∈ ExpK X, K ∈ K. By Lemma
3.10 there exists a K-partition P of Φ with IndP ≤ n− 1. By the inductive
assumption we have K-IndP ≤ IndP . Consequently, K-IndX ≤ n. To prove
(3.9) we apply Lemma 3.11 instead of Lemma 3.10.

In connection with Theorem 3.12 two problems arise.

Problem 1. For what classes K of complexes,

K-IndX = IndX for every X?

Problem 2. For what classes L of ANR-compacta,

L-IndX = IndX for every X?

To solve Problem 1 we need the following statement.

3.13. Lemma. If L consists of connected compacta, then L-Ind I = 0.

Proof. If L is a connected ANR-compactum, then it is path-connected,
and consequently L ∈ AE(I). Hence L-Ind I = 0.

The next theorem solves Problem 1.
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3.14. Theorem. The equality K-IndX = IndX holds for every space
X if and only if K contains a disconnected complex.

Proof. Necessity is a consequence of Lemma 3.13 and Theorem 2.4.
Sufficiency. In view of Theorem 3.12 it suffices to show that

(3.10) IndX ≤ K-IndX.

We shall prove (3.10) by induction on n = K-IndX. The assertion is obvious
for n = −1. Assume that K-IndX = n ≥ 0. Let F1 and F2 be disjoint
closed subsets of X. We have to find a partition P between F1 and F2 with
IndP ≤ n− 1.

Take a disconnected complex K = K1 t K2 ∈ K. We can enumerate
its vertices as v(K) = (a1, . . . , am) so that a1 ∈ K1 and a2 ∈ K2. Let
Φ = (F1, F2, F3, . . . , Fm), where F3 = · · · = Fm = ∅. Then Φ ∈ ExpK(X).
Since K-IndX = n, there exists a K-neighbourhood u = (U1, . . . , Um) of Φ
such that K-IndP ≤ n− 1, where P = X \ (U1 ∪ · · · ∪ Um). Let

Ai = {j ∈ {1, . . . ,m} : aj ∈ Ki}, Vi =
⋃
{Uj : j ∈ Ai}, i = 1, 2.

Since the embedding N(u)→K is generated by the correspondence Uj 7→ aj ,
we have

V1 ∩ V2 = ∅, F1 ⊂ V1, F2 ⊂ V2.

Hence P = X \ (V1 ∪V2) is a partition between F1 and F2. By the inductive
assumption we have IndP ≤ K-IndP ≤ n− 1.

The next theorem gives a partial solution of Problem 2. It is a corollary
of Theorems 2.4 and 3.14.

3.15. Theorem. The equality L-IndX = IndX holds for every heredi-
tarily normal space X if and only if L contains a disconnected compactum.

3.16. Question. Is it true that L-IndX = IndX for every space X
whenever L contains a disconnected compactum?

Question 3.16 has a positive answer if the next question has a positive
answer.

3.17. Question. Is it true that L1-IndX ≤ L2-IndX for every space
X whenever L1 ≤h L2?

In connection with Theorem 3.12 another two problems arise.

Problem 3. For what classes K of complexes, K-IndX < ∞ ⇒ IndX
<∞?

Problem 4. For what classes L of ANR-compacta, L-IndX < ∞ ⇒
IndX <∞?

3.18. Theorem. The inequality K-dimX ≤ K-IndX holds for every
space X and every class K.
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To prove Theorem 3.18 we need some additional information.

3.19. Lemma. Let X = Y t Z, α = (A1, . . . , Am) be a sequence of
subsets of Y , and β = (B1, . . . , Bm) be a sequence of subsets of Z such
that N(α), N(β) ⊂ K. Let γ = (C1, . . . , Cm), where Cj = Aj ∪ Bj. Then
N(γ) ⊂ K.

Proof. For aj1 , . . . , ajr ∈ v(K) we denote by K(aj1 , . . . , ajr) ≡ K1 the
biggest subcomplex of K with v(K1) = (aj1 , . . . , ajr). We have to prove that

Cj1 ∩ · · · ∩ Cjr 6= ∅ ⇒ K(aj1 , . . . , ajr) is a simplex.

Let x ∈ Cj1 ∩ · · · ∩Cjr . If x ∈ Y , then x ∈ Aj1 ∩ · · · ∩Ajr , and consequently
K(aj1 , . . . , ajr) is a simplex, because N(α) ⊂ K. If x ∈ Z, then x ∈ Bj1 ∩
· · · ∩Bjr , and so K(aj1 , . . . , ajr) is a simplex, since N(β) ⊂ K.

Lemma 3.19 yields

3.20. Lemma. Let Y be a subspace of a space X, α = (A1, . . . , Am) be a
sequence of subsets of X, and β = (B1, . . . , Bm) be a sequence of subsets of Y
such that N(α), N(β) ⊂ K and Aj∩Y ⊂ Bj, j = 1, . . . ,m. Let Cj = Aj∪Bj
and γ = (C1, . . . , Cm). Then N(γ) ⊂ K.

Proof of Theorem 3.18. We apply induction on K-IndX = n ≥ −1. If
n = −1 the assertion is obvious. Assume that we have proved it for all X
with K-IndX = k ≤ n− 1 ≥ −1 and let K-IndX = n ≥ 0.

We have to prove that every sequence (K1, . . . ,Kn+1), Ki ∈ K, is inessen-
tial in X. Take an arbitrary sequence (Φ1, . . . , Φn+1), Φi ∈ ExpKi

(X).
We are looking for Ki-partitions Pi of Φi such that P1 ∩ · · · ∩ Pn+1 = ∅.
Since K-IndX = n, there exists a Kn+1-partition Pn+1 of Φn+1 such that
K-IndPn+1 ≤ n− 1. Let Φi = (F i1, . . . , F

i
mi

) and Fi = F i1 ∪ · · · ∪ F imi
. Since

K-IndPn+1 ≤ n − 1, by the inductive assumption we have K-dimPn+1 ≤
n − 1. Hence the sequence (Φ1|Pn+1, . . . , Φn|Pn+1) is inessential in Pn+1,
and consequently there exist partitions Qi ∈ Part(Φi|Pn+1,Ki) with Q1 ∩
· · · ∩Qn = ∅. By Lemma 1.7 there exist sets Vi open in Pn+1 such that

Qi ⊂ Vi ⊂ Pn+1 \ Fi, i = 1, . . . , n,(3.11)
V1 ∩ · · · ∩ Vn = ∅.(3.12)

In view of the definition of the Ki-partitions Qi there exist sequences ui =
(U1

1 , . . . , U
i
mi

) of open subsets of Pn+1 such that

F ij ∩ Pn+1 ⊂ U ij , j = 1, . . . ,mi,(3.13)

U i1 ∪ · · · ∪ U imi
= Pn+1 \Qi,(3.14)

N(ui) ⊂ Ki, i = 1, . . . , n.(3.15)

Put Hi = Pn+1 \ Vi. The sequences ui|Hi are open coverings of Hi in view
of (3.11) and (3.14). Shrinking them to closed coverings we get sequences
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Φ0
i = (0F i1, . . . ,

0F imi
) of closed sets such that

F ij ∩ Pn+1 ⊂ 0F ij ⊂ U ij , j = 1, . . . ,mi,(3.16)
0F i1 ∪ · · · ∪ 0F imi

= Hi, i = 1, . . . , n.(3.17)

From (3.15) and (3.16) it follows that

(3.18) N(Φ0
i ) ⊂ Ki, i = 1, . . . , n.

Put Φ1
i = (0F i1 ∪ F i1, . . . , 0F imi

∪ F imi
). According to (3.18) and Lemma 3.20

we have N(Φ1
i ) ⊂ Ki, i = 1, . . . , n. Take arbitrary Ki-neighbourhoods wi =

(W i
1, . . . ,W

i
mi

) of Φ1
i in X and put Pi = X \

⋃
wi. Then P1 ∩ · · · ∩ Pn ⊂

X \ Pn+1 because of (3.12) and (3.17).

From the definition we get

3.21. Proposition. K-IndX = 0⇔ K-dimX = 0.

Corollary 2.9 and Proposition 3.21 imply

3.22. Proposition. If a hereditarily normal space X can be represented
as the union of n + 1 subspaces X1, . . . , Xn+1 such that K-dimXi ≤ 0,
i = 1, . . . , n+ 1, then K-IndX ≤ n.

Theorems 1.17, 1.37, 3.18, and Proposition 3.22 yield

3.23. Theorem. If X is metrizable space, then K-IndX = K-dimX.

Theorem 3.23 is a generalization of a theorem by M. Katětov [10] and
K. Morita [12] for the classical dimensions dim and Ind.

We conclude this section with another application of Lemmas 3.19 and
3.20, which we will need in Section 5.

3.24. Theorem. Let f : X → Y be a mapping of a compact Hausdorff
space X onto a space Y with dimY = 0. Then

K-dimX ≤ sup{K-dim f−1(y) : y ∈ Y }.

Proof. It suffices to consider the case

(3.19) sup{K-dim f−1(y) : y ∈ Y } = n <∞.

Let Φi = (F i1, . . . , F
i
mi

) ∈ ExpKi
(X), Ki ∈ K, i = 1, . . . , n + 1. For y ∈ Y ,

put

(3.20) Φyi = (F i1 ∩ f−1(y), . . . , F imi
∩ f−1(y)).

Since K-dim f−1(y) ≤ n, there exist partitions P yi ∈ Part(Φyi ,Ki) such that

(3.21) P y1 ∩ · · · ∩ P
y
n+1 = ∅, y ∈ Y.
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This means that there exist families vyi = (V y
i,1, . . . , V

y
i,mi

), i = 1, . . . , n + 1,
of open subsets of f−1(y) such that

F ij ∩ f−1(y) ⊂ V y
i,j , j = 1, . . . ,mi,(3.22)

N(vyi ) ⊂ Ki, y ∈ Y,(3.23)

vy = vy1 ∪ · · · ∪ v
y
n+1 ∈ cov(f−1(y)).(3.24)

We can shrink the covering vy to a closed covering

Φy = {F yi,j : i = 1, . . . , n+ 1; j = 1, . . . ,mi}
so that

(3.25) F ij ∩ f−1(y) ⊂ F yi,j ⊂ V
y
i,j .

Put iΦy = (F yi,1, . . . , F
y
i,mi

). From (3.23) and (3.25) it follows that

(3.26) N(iΦy) ⊂ Ki, i = 1, . . . , n+ 1.

Put 1F yi,j = F yi,j ∪ F ij and iΦy1 = (1F yi,1, . . . ,
1F yi,mi

). From (3.25), (3.26), and
Lemms 3.20 it follows that

(3.27) N(iΦy1) ⊂ K, i = 1, . . . , n+ 1.

By Lemma 1.7 and (3.27) there exist families wyi = (W y
i,1, . . . ,W

y
i,mi

) of open
subsets of X such that

1F yi,j ⊂W
y
i,j , j = 1, . . . ,mi,(3.28)

N(wyi ) ⊂ Ki, i = 1 . . . , n+ 1.(3.29)

Put Wy =
⋃
{W y

i,j : i = 1, . . . , n + 1; j = 1, . . . ,mi}. Since
⋃
Φy = f−1(y),

from (3.28) we get f−1(y) ⊂Wy. Hence there exists a neighbourhood Oy of
y such that

(3.30) f−1(y) ⊂ f−1Oy ⊂Wy.

The covering {Oy : y ∈ Y } of Y admits a refinement γ = {G1, . . . , Gr}
consisting of pairwise disjoint clopen sets. For every s = 1, . . . , r fix a point
y(s) so that Gs ⊂ Oy(s). Put

U si,j = W
y(s)
i.j ∩ f

−1Gs, s = 1, . . . , r,(3.31)

usi = (U si,1, . . . , U
s
i,mi

), i = 1, . . . , n+ 1.(3.32)

From (3.29) it follows that

(3.33) N(usi ) ⊂ Ki.

Let Ui,j = U1
i,j ∪ · · · ∪U ri,j and ui = (Ui,1, . . . , Ui,mi). From Lemma 3.19 and

(3.33) we get

(3.34) N(ui) ⊂ Ki.



INDUCTIVE DIMENSIONS 239

From (3.28), (3.30), and (3.31) it follows that

F ij ⊂ Ui,j ,(3.35)

u1 ∪ · · · ∪ un+1 ∈ cov(X).(3.36)

Put Pi=X\
⋃
ui. Then conditions (3.34)–(3.36) imply that Pi ∈ Part(Φi,Ki)

and P1 ∩ · · · ∩ Pn+1 = ∅.

4. Fully closed mappings. Let f : X → Y be a mapping and A ⊂ X.
Recall that the set

f#A = {y ∈ Y : f−1(y) ⊂ A} = Y \ f(X \A)

is said to be the small image of A. If α is a family of subsets of X then we
put f#α = {f#A : A ∈ α}.

4.1. Definition ([4]). A continuous surjective mapping f : X → Y is
called fully closed if for every point y ∈ Y and for every finite family u of
open sets in X with f−1(y) ⊂

⋃
u, the set {y} ∪

⋃
f#u is a neighbourhood

of y.

Obviously, every fully closed mapping is closed.

4.2. Proposition. If f : X → Y is a fully closed mapping and u is a
finite open cover of X, then the set Y \

⋃
f#u is discrete.

4.3. Proposition. If f : X → Y is a fully closed mapping and Z ⊂ Y ,
then the mapping f |f−1(Z) : f−1(Z)→ Z is fully closed.

4.4. Proposition. If f : X → Y and g : Y → Z are mappings whose
composition g ◦ f is fully closed, then g is also fully closed.

4.5. For a mapping f : X → Y and an arbitrary set M ⊂ Y , we put

Mf = {f−1y : y ∈ Y \M} ∪ {{x} : x ∈ f−1M}.
The family Mf is an upper semicontinuous decomposition of the space X.
We denote the quotient space with respect to this decomposition by YM

f

and the corresponding quotient mapping X → YM
f by fM . Since the de-

composition Mf refines the decomposition corresponding to the mapping f ,
there exists a unique mapping πMf : YM

f → Y such that f = πMf ◦ fM . The
mapping πMf is continuous, because f is continuous and fM is quotient. If
M = ∅, then Y ∅f = Y , f∅ = f , π∅f = idY .

4.6. Proposition ([7]). For a closed surjective mapping f : X → Y of a
regular space X to a regular space Y , the following conditions are equivalent:

(1) f is fully closed;
(2) for any set M ⊂ Y , the space YM

f is regular.
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4.7. Proposition ([7]). If f : X → Y is a fully closed mapping and
M ⊂ Y , then both mappings fM and πMf are fully closed.

4.8. Proposition. If f : X → Y is a closed surjective mapping of a
normal space X onto a T1-space Y , then Y is a normal space.

Propositions 4.6–4.8 yield

4.9. Proposition. If f : X → Y is a fully closed mapping between
normal spaces, then YM

f is a normal space for any M ⊂ Y .

4.10. Definition. A familyM of subsets of Y is said to be a direction
in Y if it satisfies the following conditions:

0) ∅ ∈ M;
1) M is a covering of Y ;
2) if M1,M2 ∈M, then there exists M ∈M such that M1 ∪M2 ⊂M .

4.11. The inverse system SfM. Let f : X → Y be a fully closed map-
ping and let M be a direction in Y . If M1,M2 ∈ M and M1 ⊂ M2, then
the decomposition Mf

2 refines the decomposition Mf
1 . Hence there exists a

unique mapping πM2
M1

: YM2
f → YM1

f such that πM2
f = πM1

f ◦ πM2
M1

. It is easy
to check that if M1 ⊂M2 ⊂M3, Mi ∈M, then

πM3
M1

= πM2
M1
◦ πM3

M2
.

So the family SfM = {YM
f , πMM ′ ,M} is an inverse system. We denote by πM

the limit projection limSfM → YM
f .

4.12. Theorem. Let f : Y → Y be a fully closed mapping between
compact Hausdorff spaces and let M be a direction in Y . Then fM is hom-
eomorphic to the limit projection πM of the inverse system SfM, M ∈M.

The proof is a routine.
For a mapping f : X → Y the number L-dim f is defined as follows:

L-dim f = sup{L-dim f−1(y) : y ∈ Y }.

4.13. Theorem ([9]). If f : X → Y is a fully closed mapping between
compact spaces, then

L-dimX ≤ max{L-dimY,L-dim f}.

In applications, fully closed mappings appear as resolutions.

4.14. Definition ([7]). Given a space X, spaces Yx, and continuons
mappings hx : X \ {x} → Yx for each point x ∈ X, a resolution of (the set)
X (at each point x to the space Yx by means of the mappings hx) is the set

R(X) ≡ R(X,Yx, hx) =
⋃
{{x} × Yx : x ∈ X}.
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The mapping π = πX : R(X)→ X taking (x, y) to x is called the resolution
mapping or simply the resolution.

We define a topology on R(X). Given a triple (U, x, V ), where U is an
open subset of X, x ∈ U , and V is an open subset of Yx, put

U ⊗x V = {x} × V ∪ π−1(U ∩ h−1
x (V )).

The family of sets of the form U ⊗x V is the base for a topology on R(X)
called the resolution topology.

4.15. Theorem ([5]). If X and all Yx are compact Hausdorff spaces,
then R(X) is also a compact Hausdorff space, π is fully closed, and each
fibre π−1(x) is homeomorphic to Yx. Moreover, R(X) is first countable if
and only if X and all Yx are first countable.

4.16. Definition. A closed mapping f : X → Y is called atomic if
F = f−1f(F ) for every closed F ⊂ X such that f(F ) is a continuum
(connected closed non-singleton).

4.17. Definition. A closed mapping f : X → Y is said to be ring-like
if, for any point x ∈ X and any neighbourhoods Ox and Of(x), the set
Of(x) ∩ f#Ox contains a partition between f(x) and Y \Of(x).

4.18. Proposition. Every ring-like mapping is atomic.

A number of applications of resolutions are based on the following state-
ment.

4.19. Lemma ([6]). Let X be a first countable connected compact Haus-
dorff space and let Yx, x ∈ X, be AR-compacta. Then we can choose map-
pings hx : X \ {x} → Yx so that

(i) the resolution πX : R(X)→ X is a ring-like mapping.

If X is perfectly normal and hereditarily separable then, under the continuum
hypothesis, the mappings hx can be chosen so that, in addition to (i),

(ii) the space R(X) is perfectly normal and hereditarily separable.

4.20. Reduced resolution. Applying the construction from 4.5 to the
mapping π : R(X) → X and a set M ⊂ X we get a space RM (X) and
mappings πM : R(X) → RM (X) and πM : RM (X) → X such that π =
πM ◦ πM and

(πM )−1(x) = π−1(x) for x ∈M,(4.1)

|(πM )−1(x)| = 1 for x ∈ X \M.(4.2)

The space RM (X) is called a reduced resolution of the resolution R(X) with
respect to M .

4.21. The inverse system SπM. If M1 ⊂ M2 ⊂ X, then there exists a
unique mapping πM2

M1
: RM2(X)→RM1(X) such that πM2 =πM1 ◦πM2

M1
. IfM
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is a direction inX, then according to 4.11 the family SπM={RM(X), πMM ′ ,M}
is an inverse system.

Theorems 4.12 and 4.15 yield

4.22. Theorem. Let π : R(X)→ R be a resolution of a Hausdorff com-
pact space X and let M be a direction in X. Then πM is homeomorphic to
the limit projection limSπM→ RM (X) of the inverse system SπM, M ∈M.

5. Compact spaces with non-coinciding dimensions. The main
result of this section is

5.1. Theorem.

(i) For an arbitrary complex K with K ∗ K non-contractible and any
n ≥ 2 there exists a separable first countable compact Hausdorff
space Xn such that

(5.1) K-dimXn = n < 2n− 1 ≤ K-IndXn ≤ 2n.

(ii) Under the continuum hypothesis there exists a perfectly normal space
X0
n with properties from (i).

To prove Theorem 5.1 we need some auxiliary information.
Just from the definition we get

5.2. Proposition. Let f : X → Y be a ring-like mapping and let U ⊂
X be an open subset. Then indy(Y \ f#U) ≤ 0 for every y ∈ f(U) \ f#U .

The next statement is an immediate consequence of Proposition 5.2.

5.3. Proposition. Let f : X → Y be a ring-like mapping and let
U1, . . . , Um be open subsets of X. Then

ind(f(U1) ∪ · · · ∪ f(Um) \ (f#U1 ∪ · · · ∪ f#Um)) ≤ 0.

5.4. Proposition. Let X be a compactum with K-dimX = k ≥ 1 and
let R(X) be the resolution from Lemma 4.19 with Yx = Im, x ∈ X, and

(5.2) m ≥ n = K-dim Im ≥ k.
Then K-IndR(X) ≥ k + n− 1.

Proof. We apply induction on k. Let k = 1. Take an arbitrary point
x ∈ X. Then

K-IndR(X)
2.5
≥ K-Ind(π−1(x)) = K-Ind Im 3.23= K-dim Im

(5.2)
= n = k+n−1.

Assume that the assertion holds for dimensions K-dimX less than k ≥ 2
and consider a space X with K-dimX = k. There exists Φ = (F1, . . . , Fm) ∈
ExpK(X) such that

(5.3) K-IndP ≥ k − 1 for an arbitrary K-partition P of Φ.
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Put Ψ = (π−1F1, . . . , π
−1Fm). Then Ψ ∈ ExpK(R(X)). Let OΨ =

(U1, . . . , Um), be an arbitrary K-neighbourhood of Ψ existing by Lemma
1.7. The sequence OΦ = (π#U1, . . . , π

#Um) is a K-neighbourhood of Φ.
Then

(5.4) P = X \ (π#U1 ∪ · · · ∪ π#Um)

is a K-partition of Φ. In view of (5.3) we have

(5.5) K-IndP ≥ k − 1 ≥ 1.

Put U = U1 ∪ · · · ∪ Um and Q = R(X) \ U . Then Q is a K-partition of Ψ .
Let

(5.6) G = π#U \ (π#U1 ∪ · · · ∪ π#Um).

By (5.4) we have

(5.7) P = G t f(Q).

Since X is a compactum, from Theorem 3.23 and (5.5) it follows that

(5.8) K-dimP ≥ k − 1 ≥ 1.

On the other hand,

(5.9) K-dimG ≤ dimG ≤ 0

by Theorems 1.17, 1.35, and Proposition 5.3. Consequently, from (5.7)–(5.9)
and Proposition 1.33 it follows that K-dim f(Q) ≥ k−1. Hence by Theorem
3.24 there exists a continuum C ⊂ π(Q) such that K-dimC ≥ k − 1. Then

(5.10) K-Indπ−1(C) ≥ n+ k − 2

by the inductive assumption. Since π is ring-like mapping, we have π−1(C) ⊂
Q by Proposition 4.18. Thus from (5.10) it follows that K-IndQ ≥ n+k−2.
But Q is an arbitrary K-partition of Ψ . Consequently, K-IndR(X) ≥ n +
k − 1.

5.5. Lemma. Let X be a hereditarily normal space and let Y be a closed
subspace such that K-Ind(X \ Y ) ≤ n ≥ 0. Then for every Φ ∈ ExpK(X),
K ∈ K, and every Q ∈ Part(Φ|Y,K) there exists a K-partition P of Φ such
that

P ∩ Y = Q,(5.11)
K-Ind(P \ Y ) ≤ n− 1.(5.12)

Proof. Let Φ = (F1, . . . , Fm) and F = F1∪· · ·∪Fm. There exists a family
v = (V1, . . . , Vm) of open subsets of Y such that

Fj ∩ Y ⊂ Vj , j = 1, . . . ,m,(5.13)
V1 ∪ · · · ∪ Vm = Y \Q,(5.14)

N(v) ⊂ K.(5.15)
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The family v is an open covering of a normal space Y0 = Y \Q. Hence there
exists a family h = (H1, . . . ,Hm) of closed subsets of Y0 such that

Fj ∩ Y ⊂ Hj ⊂ Vj , j = 1, . . . ,m,(5.16)
H1 ∪ · · · ∪Hm = Y \Q,(5.17)

N(h) ⊂ K.(5.18)

Since Y0 is a closed subset of the space X0 = X \Q, the sets F 1
j = Fj ∪Hj

are closed in X0. Put Φ1 = (F 1
1 , . . . , F

1
m). Since Φ ∈ ExpK(X), conditions

(5.16), (5.18), and Lemma 3.20 imply that

(5.19) N(Φ1) ⊂ K.

By (5.19) and Lemma 1.7 there exists a family u = (U1, . . . , Um) of open
subsets of X0 such that

F 1
j ⊂ Uj , j = 1, . . . ,m,(5.20)

N(u) = N(Φ1) ⊂ K.(5.21)

Since X0 is normal, there exists a family u1 = (U1
1 , . . . , U

1
m) of open subsets

of X0 such that

(5.22) F 1
j ⊂ U1

j ⊂ U1
j

X0 ⊂ Uj , j = 1, . . . ,m.

Put Ej = U1
j

X0 \ Y and e = (E1, . . . , Em). From (5.21) it follows that

(5.23) N(e) ⊂ K.

Since K-Ind(X \ Y ) ≤ n, condition (5.23) implies the existence of a family
w = (W1, . . . ,Wm) of open subsets of X \ Y such that

Ej ⊂Wj , j = 1, . . . ,m,(5.24)
N(w) ⊂ K,(5.25)

K-Ind(X \ (Y ∪W1 ∪ · · · ∪Wm)) ≤ n− 1.(5.26)

Put U2
j = U1

j ∪Wj and u2 = (U2
1 , . . . , U

2
m). As unions of open sets, U2

j are
open subsets of X0, and hence of X. Conditions (5.21), (5.25), and Lemma
3.20 imply that N(u2) ⊂ K. Moreover, from (5.22) and (5.24) it follows that

Fj ⊂ U2
j , j = 1, . . . ,m.

Hence u2 is a K-neighbourhood of Φ. Put U3
j =U2

j \Q and u3 =(U3
1 , . . . , U

3
m).

Since Q ∩ F = ∅, u3 is a K-neighbourhood of Φ. We claim that

(5.27) P = X \ (U3
1 ∪ · · · ∪ U3

m)

is the required partition. To check (5.11) it suffices to show that

Y \ (U2
1 ∪ · · · ∪ U2

m) ⊂ Q.
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But this follows from (5.17) and (5.22). As for (5.12), it will be a consequence
of (5.27), as soon as we prove that

(5.28) P \ Y = X \ (Y ∪W1 ∪ · · · ∪Wm).

By (5.27) we have P \ Y = X \ (Y ∪ U3
1 ∪ · · · ∪ U3

m). But since Q ⊂ Y , we
have Y ∪ U3

1 ∪ · · · ∪ U3
m = Y ∪ U2

1 ∪ · · · ∪ U2
m = Y ∪W1 ∪ · · · ∪Wm in view

of (5.22) and (5.24). Thus equality (5.28) is proved.

5.6. Proposition. Let X be a compactum with K-dimX = k ≥ 0 and
let R(X) be the resolution from Lemma 4.19, Yx = Im, x ∈ X, and

(5.29) m ≥ n = K-dim Im ≥ k.
Then K-IndR(X) ≤ k + n.

Proof. We apply induction on k. Let k = 0 and Φ = (F1, . . . , Fm) ∈
ExpK(R(X)). Let M be the family of all finite subsets of X, i.e. M =
Fin(X)∪{∅}. By Theorem 4.22 there exists a finite set M={x1, . . . , xl} ⊂ X
such that

(5.30) N(πM (Φ)) = N(Φ).

Put Z = (πM )−1M and Y = RM (X) \ Z. The set Z = (πM )−1{x1, . . . , xl}
is homeomorphic to the disjoint union of l copies of Im according to (4.1).
Hence

(5.31) n
(5.29)

= K-dimZ
3.23= K-IndZ.

On the other hand, Y is homeomorphic to X \M by (4.2). Thus

(5.32) K-IndY = K-Ind(X \M) 3.23= K-dim(X \M) ≤ K-dimX = 0.

From (5.31) it follows that there exists a partition Q ∈ Part(πM (Φ)|Z,K)
with K-IndQ ≤ n − 1. According to (5.32) and Lemma 5.5 there exists a
K-partition P of πM (Φ) such that

P ∩ Z = Q, K-Ind(P \ Z) ≤ −1.

Consequently, P ⊂ Z and P = Q.
But if P ∈ Part(πM (Φ),K), then P1 = π−1

M (P ) ∈ Part(Φ,K). From (4.1)
it follows that

πM |π−1(M) : π−1(M)→ (πM )−1(M)

is a homeomorphism. So K-IndP1 = K-IndP = K-IndQ ≤ n − 1. Thus
K-IndR(X) ≤ k + n for k = 0.

Assume that our assertion holds for all compacta X with K-dimX ≤
k − 1 ≥ 0 and consider a compactum X with K-dimX = k. Let Φ ∈
ExpK(R(X)). Repeating the previous proof we find a finite set M ⊂ X
with N(πM (Φ)) = N(Φ) and a K-partition P of πM (Φ) such that

K-Ind(P \ Z) ≤ k − 1.
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As πM |P\Z is a homeomorphism, K-dimπM (P \ Z) = K-IndπM (P \ Z) ≤
k − 1. Consequently, K-dimπM (P ) ≤ K-dim(M ∪ πM (P \ Z)) ≤ k − 1,
because M is finite. By the inductive assumption (X = πM (P )) we have

dimπ−1(πM (P )) ≤ n+ k − 1.

But π−1
M (P ) ⊂ π−1(πM (P )). Thus P1 ≡ π−1

M (P ) is a K-partition of Φ with
K-dimP1 ≤ n+ k − 1. Hence K-dimX ≤ n+ k.

Proof of Theorem 5.1. By Theorem 1.39 there is m such that K-dim Im

= n. Put Xn = R(X), where R(X) is a resolution from Lemma 4.19(i) with
Yx = Im, x ∈ X. Then the required properties of Xn are consequences of
Theorems 4.13, 4.15, Proposition 4.8, Lemma 4.19, and Propositions 5.4 and
5.6 with k = n.

For X0
n we apply Lemma 4.19(ii) instead of Lemma 4.19(i).
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