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MINKOWSKIAN RHOMBI AND SQUARES
INSCRIBED IN CONVEX JORDAN CURVES

BY

HORST MARTINI (Chemnitz) and SENLIN WU (Harbin)

Abstract. We show that any convex Jordan curve in a normed plane admits an
inscribed Minkowskian square. In addition we prove that no two different Minkowskian
rhombi with the same direction of one diagonal can be inscribed in the same strictly
convex Jordan curve.

1. Introduction. The classical inscribed square problem in the Eu-
clidean plane asks whether for every Jordan curve (i.e., for any simple closed
curve) there exists at least one inscribed square, where a square is said to be
inscribed in a curve if all its vertices lie on that curve. See [4] and [5] for de-
tailed discussions and references for this problem. In general, the problem is
still open, but positive answers have been given in several special cases. For
example, the case of convex Jordan curves (i.e., of Jordan curves bounding
a convex region) is considered in [2], [3], [13], and [1]; W. Stromquist [11]
showed that each sufficiently smooth Jordan curve admits one inscribed
square; M. Nielsen and S. Wright proved in [9] that every centrally symmet-
ric Jordan curve admits an inscribed square. Another result, which is closely
related to the inscribed square problem and proved in [8], says that any Jor-
dan curve C contains the four vertices of some rhombus with two sides
parallel to any given line l in R2. The aim of the present paper is to extend
the inscribed square problem to Minkowski planes, and to prove that every
convex Jordan curve admits an inscribed Minkowskian square. The type of
methods used for this also yields a related result on Minkowskian rhombi.

By X we denote a normed or Minkowski plane (i.e., a two-dimensional
real Banach space) with origin o, norm ‖·‖, unit disc BX := {x∈X : ‖x‖≤1}
(which is a compact, convex region centered at its interior point o), unit
circle SX := {x ∈ X : ‖x‖ = 1}, and a positive orientation ω. A Minkowski
plane is said to be strictly convex if there is no non-trivial segment contained
in SX . Basic references for the geometry of Minkowski spaces are [7], [6],
and the monograph [12]. For any two distinct points x, y ∈ X we denote by

2010 Mathematics Subject Classification: Primary 52A10; Secondary 46B20, 51M04.
Key words and phrases: closed convex curve, inscribed square, Jordan curve, Minkowski
plane, Minkowskian square, normed plane.

DOI: 10.4064/cm120-2-5 [249] c© Instytut Matematyczny PAN, 2010



250 H. MARTINI AND S. WU

[x, y] the segment with endpoints x and y, by 〈x, y〉 the line passing through
x and y, and by [x, y〉 the ray with starting point x passing through y. A
convex quadrilateral uvst is said to be a parallelogram if v − u = s− t and
u− t = v− s. A parallelogram uvst is said to be a Minkowskian rhombus if
‖u−v‖ = ‖v−s‖, and a Minkowskian rhombus uvst is called a Minkowskian
square if ‖u−s‖ = ‖v− t‖. We note that, unlike the Euclidean case, general
Minkowskian rhombi cannot be characterized as quadrilaterals having four
sides of equal lengths. Namely, the convex quadrilateral formed by the points
(0, 2), (1, 0), (−1,−2), and (−1, 0) and shown in Figure 1 has four sides of
equal lengths, but it is clearly not a Minkowskian rhombus.

Fig. 1. A quadrilateral having four sides of equal lengths may not be a Minkowskian
rhombus.

The convex hull of a set S is denoted by convS.
Let C be a convex Jordan curve. In particular, C is said to be strictly

convex provided it contains no non-trivial line segment. Clearly, if C is
strictly convex, then a line can intersect C at most twice.

The following theorem, proved in Section 3 below, is our main result.

Theorem 1.1. For any convex Jordan curve C in a Minkowski plane X
there exists at least one Minkowskian square inscribed in C.

Additionally we prove in Section 2 that in a strictly convex Minkowski
plane no two different Minkowskian rhombi with the same prescribed di-
rection of one diagonal can be inscribed in the same strictly convex Jordan
curve. This is completed by some results on parallelograms inscribed in
strictly convex Jordan curves. These are, regarding the proof techniques
used, strongly related to the results on inscribed Minkowskian squares and
rhombi, but possibly also of independent interest.

2. Parallelograms and rhombi inscribed in strictly convex Jor-
dan curves. The proof of Theorem 1.1, provided by A. Emch [2] for the
case that C is a strictly convex and smooth Jordan curve in the Euclidean
plane, is based on the following fact: two distinct rhombi with correspond-
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ing parallel sides or parallel diagonals can never be inscribed in the same
strictly convex Jordan curve (see Theorem V in [2]). Since there is only one
(non-zero) direction perpendicular to a given (non-zero) direction in the Eu-
clidean plane, this means that there exists at most one Euclidean rhombus
with one diagonal parallel to a given direction inscribed in a strictly convex
Jordan curve. This is not true in general Minkowski planes; see Figure 2.

Fig. 2. Two Minkowskian rhombi with one diagonal in common are inscribed in the same
strictly convex Jordan curve, where the plane is endowed with the maximum norm.

In this section we first prove a proposition and a lemma concerning par-
allelograms inscribed in strictly convex Jordan curves, and then we show, as
announced, the following: if the underlying normed plane is strictly convex,
then two distinct Minkowskian rhombi, each of which has a diagonal parallel
to a given direction, cannot be inscribed in the same strictly convex Jordan
curve.

Proposition 2.1. Two distinct parallelograms with correspondingly par-
allel diagonals cannot be inscribed in the same strictly convex Jordan curve.

Proof. Suppose that two distinct parallelograms uvst and u′v′s′t′ are
inscribed in the same strictly convex Jordan curve C so that 〈u, s〉 is parallel
to 〈u′, s′〉, and 〈v, t〉 is parallel to 〈v′, t′〉. We can assume that the underlying
Minkowski plane is equipped with a Euclidean background structure. Then
there exists an affine transformation T such that T (u− s) is orthogonal to
T (v−t) in the Euclidean sense. Therefore the image T (uvst) is a rhombus in
the Euclidean sense. On the other hand, since T is an affine transformation,
T (u′−s′) is parallel to T (u−s), and T (v′−t′) is parallel to T (v−t). Therefore
T (u′v′s′t′) is also a rhombus in the Euclidean sense. Note that T (uvst) and
T (u′v′s′t′) are both inscribed in T (C), which contradicts Theorem V in [2]
(note that the proof of that theorem in [2] does not need the assumption
that the curve is smooth).

Lemma 2.2. If the convex regions bounded by two parallelograms do not
intersect each other, then the parallelograms cannot be inscribed in the same
strictly convex Jordan curve.
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Proof. Let uvst and u′v′s′t′ be two parallelograms such that

(2.1) conv{u, v, s, t} ∩ conv{u′, v′, s′, t′} = ∅.
Let o1 and o2 be their respective centers of symmetry. Suppose that uvst
and u′v′s′t′ are both inscribed in one strictly convex Jordan curve C.

Fig. 3. The location of o1 and o2.

Clearly, the lines 〈u, v〉, 〈v, s〉, 〈s, t〉, and 〈t, u〉 divide the whole plane
into nine parts as shown in Figure 3. We show that o2 has to lie in one of
the four open regions U , V , S, and T (see again Figure 3). Otherwise we may
assume, without loss of generality, that o2 lies in the closed region U ′. It is
clear that o2 6∈ [v, 2v−s〉∪[v, 2v−u〉. Then for any relatively interior point x
of the segment [u, v], the segment [o2, x] has to intersect the set 〈v, s〉 \ [v, s]
in a point y. Since C is strictly convex, o2 and x are both interior points
of convC, which implies that y is also an interior point of convC. Again
the convexity of convC implies that v ∈ [y, s] has to be an interior point
of convC, a contradiction. Thus o2 has to lie in the strip bounded by 〈u, v〉
and 〈s, t〉, or in the strip bounded by 〈v, s〉 and 〈u, t〉.

Without loss of generality, we may now assume that o2 lies between the
parallel lines 〈u, v〉 and 〈s, t〉. Then all four points u′, v′, s′, and t′ have to
lie between the lines 〈u, v〉 and 〈s, t〉. Otherwise we may assume that u′ and
o2 lie on different sides of the line 〈u, v〉. Then the segment [o2, u′] has to
intersect 〈u, v〉 in a point x, which is an interior point of convC. From (2.1)
it follows that x 6∈ [u, v]. Then one of the two points u and v has to be an
interior point of convC, a contradiction. Similarly we may assume that o1
lies between the parallel lines 〈u′, v′〉 and 〈s′, t′〉. Then all four points u, v, s,
and t have to lie between the lines 〈u′, v′〉 and 〈s′, t′〉.

Next we show that 〈u, v〉 is parallel to 〈u′, v′〉, which in turn will imply
that 〈u, v〉 and 〈s, t〉 bound the same region as 〈u′, v′〉 and 〈s′, t′〉 do. If 〈u, v〉
is not parallel to 〈u′, v′〉, then the four lines 〈u, v〉, 〈u′, v′〉, 〈s, t〉, and 〈s′, t′〉
bound a new parallelogram u′′v′′s′′t′′. We may assume that 〈u′′, v′′〉 = 〈u, v〉
and 〈u′′, t′′〉 = 〈u′, v′〉; see Figure 4. Then uvst and u′v′s′t′ are contained in
conv{u′′, v′′, s′′, t′′}. It follows that u ∈ [u′′, v′′], s ∈ [s′′, t′′], u′ ∈ [u′′, t′′], and
s′ ∈ [v′′, s′′]. Clearly, [u, s] has to intersect [u′, s′], contrary to (2.1).
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Fig. 4. The new parallelogram u′′v′′s′′t′′.

Now, as we have mentioned, the lines 〈u, v〉 and 〈s, t〉 bound the same
region as 〈u′, v′〉 and 〈s′, t′〉 do. We may therefore assume that 〈u, v〉 =
〈u′, v′〉 and 〈s, t〉 = 〈s′, t′〉. It follows from (2.1) that [u, v] ⊂ 〈u′, v′〉 \ [u′, v′].
This means that 〈u′, v′〉 intersects C in at least four distinct points, contrary
to the strict convexity of C.

Lemma 2.3. Let x, y, z, and p be four distinct points in a strictly convex
Minkowski plane X such that both p and z are equidistant to x and y, and
that p ∈ conv{x, y, z}. Then

∥∥p− 1
2(x+ y)

∥∥ < ∥∥z − 1
2(x+ y)

∥∥.

Proof. It follows from [7, Proposition 14 and Lemma 25] that ‖p− y‖ <
‖z − y‖. If p ∈

[
z, 1

2(x + y)
]
, then there is nothing to prove. Thus we may

assume that p ∈ conv
{
x, z, 1

2(x+ y)
}
\

[
z, 1

2(x+ y)
]
. Then, by [7, Proposi-

tion 7],

‖p− y‖+
∥∥∥∥z − 1

2
(x+ y)

∥∥∥∥ > ∥∥∥∥p− 1
2

(x+ y)
∥∥∥∥ + ‖z − y‖,

which implies that
∥∥z − 1

2(x+ y)
∥∥ > ∥∥p− 1

2(x+ y)
∥∥.

Theorem 2.4. Let X be a strictly convex Minkowski plane. Then two
different Minkowskian rhombi uvst and u′v′s′t′ with

u− s
‖u− s‖

=
u′ − s′

‖u′ − s′‖
cannot be inscribed in the same strictly convex Jordan curve C.

Proof. Suppose that uvst and u′v′s′t′ are both inscribed in C. First we
show that [u′, s′] has to intersect the interior of conv{u, v, s, t}. Otherwise,
an argument similar to that in the proof of Lemma 2.2 would show that
[u′, s′] has to lie either in the strip bounded by 〈u, v〉 and 〈s, t〉, or in the
strip bounded by 〈u, t〉 and 〈v, s〉. We may assume that [u′, s′] ⊂ [v, s] +
{λ(v− u) : λ ≥ 0}. Let z be a point such that z− v = s− u, and p and q be
two points such that

p− u′

‖p− u′‖
=

v − u
‖v − u‖

= − q − s′

‖q − s′‖
,

p− s′

‖p− s′‖
=

v − s
‖v − s‖

= − q − u′

‖q − u′‖
.



254 H. MARTINI AND S. WU

It is not difficult to verify that q ∈ conv{s, u′, s′}. By [7, Proposition 17],

v′ ∈ {p+ λ(u′ − p) + µ(s′ − p) : λµ ≥ 0},
t′ ∈ {q + λ(u′ − q) + µ(s′ − q) : λµ ≥ 0}.

We distinguish three cases:

Case I: The line 〈v, z〉 lies strictly between 〈u, s〉 and 〈u′, s′〉; see Fig-
ure 5.

Fig. 5. Proof of Theorem 2.4: 〈v, z〉 lies strictly between 〈u, s〉 and 〈u′, s′〉.

Since
u′ ∈ v + {λ(v − u) + µ(z − v) : λ, µ ≥ 0},

we have
[v, u′〉 ⊂ v + {λ(v − u) + µ(z − v) : λ, µ ≥ 0}.

This implies that

[v, u′〉 \ [v, u′] ⊂ u′ + {λ(s′ − u′) + µ(p− u′) : λ, µ ≥ 0}.
Thus the ray [v, u′〉 has to intersect the segment [p, s′] in a point w. Then
[u′, w] \ {u′} ∩ convC = ∅, which implies that v′ ∈ conv{u′, w, s′}. Let w′

be a point in [u′, q] such that ‖u′ − w′‖ = ‖s′ − w‖. Then t′ has to lie in
conv{u′, w′, s′} (the shaded region in Figure 5).

Now one can see that

t′ ∈ conv{q, u′, s′} ⊂ conv{s, u′, s′},
a contradiction.

Case II: The line 〈u′, s′〉 lies strictly between 〈u, s〉 and 〈v, z〉; see Fig-
ure 6.

In a similar way to Case I it can be shown that the line 〈v, u′〉 has to in-
tersect the segment [q, s′] in a point w. Then [u′, w]\{u′}∩convC = ∅, which
implies that t′ ∈ conv{u′, w, s′}. Again we would obtain t′ ∈ conv{s, u′, s′},
a contradiction.

Case III: The segment [u′, s′] is contained in [v, z]; see Figure 7.
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Fig. 6. Proof of Theorem 2.4: 〈u′, s′〉 lies strictly between 〈u, s〉 and 〈v, z〉.

Fig. 7. Proof of Theorem 2.4: 〈u′, s′〉 is contained in [v, z].

Since z 6∈ convC, we see that s′ lies strictly between u′ and z, and
therefore u′ has to coincide with v. Now t′ has to lie in conv{u′, q, s′} ⊂
conv{u′, s, s′}, again a contradiction.

With similar arguments we can also show that [u, s] intersects the interior
of conv{u′, v′, s′, t′}.

Now we may assume that 〈u′, s′〉 lies between v and 〈u, s〉. Then v ∈
conv{p, u′, s′}; see Figure 8 (otherwise, we could interchange v and t). One
can easily verify that v′ has to lie in the shaded region in Figure 8. More

Fig. 8. Proof of Theorem 2.4: v′ lies in the shaded region.
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precisely,

v′ ∈ {p+ λ(u′ − p) + µ(s′ − p) : λ, µ ≥ 0, λ+ µ ≤ 1}\
{v + λ(u− v) + µ(s− v) : λµ ≥ 0}.

Since u′ 6∈ 〈u, v〉 and s′ 6∈ 〈s, v〉, we have v′ 66= p. Thus, by Lemma 2.3,∥∥v′ − 1
2(u′ + s′)

∥∥
‖u′ − s′‖

<

∥∥p− 1
2(u′ + s′)

∥∥
‖u′ − s′‖

=

∥∥v − 1
2(u+ s)

∥∥
‖u− s‖

.

On the other hand, interchanging uvst and u′v′s′t′ yields∥∥v′ − 1
2(u′ + s′)

∥∥
‖u′ − s′‖

>

∥∥v − 1
2(u+ s)

∥∥
‖u− s‖

,

a contradiction.

3. The proof of Theorem 1.1. Let C be a convex Jordan curve in
a Minkowski plane X. A chord [x, y] of C is said to be an affine diameter
of C if there exist different parallel supporting lines of convC, say H1 and
H2, such that x ∈ H1 and y ∈ H2. Equivalently, [x, y] is an affine diameter
of C if it is a longest chord of convC in the direction (x− y)/‖x− y‖ (see
[10, 3.1]). It is obvious that, when C is strictly convex, there exists a unique
affine diameter in any given direction.

From now on, let C be strictly convex. For any x ∈ SX , let [xW , xE ] be
the affine diameter of C such that

xE − xW
‖xE − xW ‖

= x;

let xN (xS , resp.) be the point of C such that there exists a line lN (lS , resp.)
which is parallel to 〈−x, x〉 and supports convC at xN (xS , resp.) such that,
in addition, the orientation from xE to xN (xS , resp.) is ω (−ω, resp.). Let
x0 be the point of intersection of [xN , xS ] and [xW , xE ]; see Figure 9.

Fig. 9. The points xN , xS , . . . .

Lemma 3.1. Let C be a strictly convex Jordan curve in a Minkowski
plane X. Then, for any point x ∈ SX , there exists a unique Minkowskian
rhombus inscribed in C with one side parallel to the line 〈−x, x〉.
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Proof. First we show the existence of the desired Minkowskian rhombus.
Let x ∈ SX be given, and λ0 be the number in [0, 1] such that

(1− λ0)xN + λ0xS = x0.

For any number λ ∈ [0, λ0] there exist precisely two distinct chords of C,
say [u(x, λ), v(x, λ)] and [s(x, λ), t(x, λ)], satisfying

(1− λ)xN + λxS ∈ [u(x, λ), v(x, λ)]

and
v(x, λ)− u(x, λ) = s(x, λ)− t(x, λ) = ‖v(x, λ)− u(x, λ)‖x.

Let
f(λ) = ‖u(x, λ)− v(x, λ)‖ − ‖u(x, λ)− t(x, λ)‖.

Then

lim
λ→0

f(λ) = −‖xN − xS‖ < 0 and lim
λ→λ0

f(λ) = ‖xW − xE‖ > 0.

From the continuity of f it follows that there exists a number λ(x) ∈ [0, λ0]
such that f(λ(x)) = 0. Let

u = u(x, λ(x)), v = v(x, λ(x)), s = s(x, λ(x)), t = t(x, λ(x)).

Then it is clear that the parallelogram uvst is a Minkowskian rhombus
inscribed in C with one side parallel to 〈−x, x〉.

Next we show that this Minkowskian rhombus is unique. Suppose the
contrary, namely, that there exists another Minkowskian rhombus u′v′s′t′

with
u− v
‖u− v‖

=
u′ − v′

‖u′ − v′‖
which is inscribed in C. Since C is strictly convex, we may assume that
〈u, v〉 lies strictly between 〈u′, v′〉 and 〈s, t〉, and 〈s, t〉 lies strictly between
〈u, v〉 and 〈s′, t′〉; see Figure 10.

Fig. 10. The uniqueness of the inscribed Minkowskian rhombus.
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Clearly, we have

‖u′ − v′‖ = ‖s′ − t′‖ < ‖u− v‖ = ‖s− t‖.
Let u′′, v′′, s′′, and t′′ be four points such that

{u′′} = [u′, t′] ∩ [u, v], {v′′} = [v′, s′] ∩ [u, v],
{s′′} = [v′, s′] ∩ [s, t], {t′′} = [u′, t′] ∩ [s, t].

If 〈u′, t′〉 is parallel to [u, t], then

‖u′ − t′‖ > ‖u− t‖ = ‖u− v‖ > ‖u′ − v′‖,
a contradiction. Thus, we may assume that ‖u−u′′‖ > ‖t−t′′‖. Let z ∈ [u, u′′]
be such that ‖z − u′′‖ = ‖t− t′′‖. Then

‖u′ − t′‖ > ‖u′′ − t′′‖ = ‖t− z‖ ≥ ‖u− t‖ − ‖u− z‖ = ‖z − v‖ > ‖u′ − v′‖,
a contradiction.

Remark 3.2. The existence part of the proof of Lemma 3.1 is essentially
the same as the proof of Theorem 1 in [8], simplified to deal with only convex
Jordan curves.

Now, for any strictly convex Jordan curve C, we can relate each point
x ∈ SX to four points ux, vx, sx, and tx in a unique way such that uxvxsxtx
is a Minkowskian rhombus inscribed in C, and 〈ux, vx〉 lies between lN and
〈xW , xE〉 with

vx − ux
‖vx − ux‖

= x.

Lemma 3.3. Let C be a strictly convex Jordan curve. Then the mappings

U(x) = ux, V (x) = vx, S(x) = sx, and T (x) = tx

from SX to C are all continuous.

Proof. We only show that U(x) is continuous; the continuity of the other
mappings can be proved in a similar way.

Suppose that there exists a point x0∈SX and a sequence {xn}⊂SX with
limn→∞ xn = x0 such that limn→∞ U(xn) does not exist or limn→∞ U(xn)
6= U(x0). In each case we obtain a subsequence {U(xnk

)} such that
limk→∞ U(xnk

) 6= U(x0). By taking a further subsequence, we may also
assume that there exist points u0, v0, s0, and t0 such that

u0 = lim
k→∞

U(xnk
) = lim

k→∞
uxnk

, v0 = lim
k→∞

V (xnk
) = lim

k→∞
vxnk

,

s0 = lim
k→∞

S(xnk
) = lim

k→∞
sxnk

, t0 = lim
k→∞

T (xnk
) = lim

k→∞
txnk

.

Since uxnk
vxnk

sxnk
txnk

is a Minkowskian rhombus inscribed in C and the
curve C is a closed set, u0v0s0t0 is also a Minkowskian rhombus inscribed
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in C. Furthermore,
u0 − v0
‖u0 − v0‖

= lim
k→∞

uxnk
− vxnk

‖uxnk
− vxnk

‖
= − lim

k→∞
xnk

= −x0.

Since u0 6= ux0 , we see that u0v0s0t0 is a Minkowskian rhombus different
from ux0vx0sx0tx0 , inscribed in C, and having one side parallel to 〈−x, x〉.
By Lemma 3.1, this is a contradiction.

Remark 3.4. In [8], by applying a more complicated method, M. Nielsen
proved that, given any simple closed curve C and any line l in R2, the
curve C contains the four vertices of some rhombus with two sides paral-
lel to l; see [8, Theorem 1]. However, for C not strictly convex, we have
no idea whether the Minkowskian rhombus related to a given direction is
unique.

Lemma 3.5. Any strictly convex Jordan curve C admits an inscribed
Minkowskian square.

Proof. First we introduce the following function for any point x ∈ SX :

f(x) = ‖ux − sx‖ − ‖vx − tx‖.
Let x be an arbitrary point in SX . If f(x) = 0, then the proof is com-
plete. Otherwise we may assume that, without loss of generality, f(x) < 0.
Let

x0 =
sx − vx
‖sx − vx‖

.

Then
ux0 = vx, vx0 = sx, sx0 = tx, tx0 = ux.

Thus
f(x0) = ‖vx − tx‖ − ‖ux − sx‖ = −f(x) > 0.

Since U(x), V (x), S(x), and T (x) are all continuous with respect to x, f(x)
is continuous. Hence there exists a point z0 ∈ SX such that f(z0) = 0. It is
clear that the parallelogram uz0vz0sz0tz0 is a Minkowskian square inscribed
in C.

Proof of Theorem 1.1. Using the Euclidean background structure of X
we denote by E a largest Euclidean circle contained in the bounded re-
gion enclosed by C. We may also assume that E is centered at the ori-
gin.

For all n ∈ N, n ≥ 1, let Cn =
(
1 − 1

n

)
C + 1

nE. Then, for each n,
the curve Cn is strictly convex and contained in the bounded region en-
closed by C, and therefore, by Lemma 3.5, it admits an inscribed square
unvnsntn. Since each curve Cn is strictly convex, the segments [un, vn] and
[sn, tn] are separated by the affine diameter of Cn parallel to the line 〈un, vn〉.
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Similarly, the segments [un, tn] and [vn, sn] are separated by the affine di-
ameter of Cn parallel to the line 〈un, tn〉. Therefore both ‖un − vn‖ and
‖un − tn‖ cannot tend to zero. By compactness, we can choose conver-
gent subsequences {unk

}, {vnk
}, {snk

}, and {tnk
}. Let u = limk→∞ unk

,
v = limk→∞ vnk

, s = limk→∞ snk
, and t = limk→∞ tnk

. Then it is clear
that uvst is a Minkowskian square inscribed in C, which completes the
proof.

Remark 3.6. There is another way to prove Theorem 1.1. Namely, first
one can show that for any points x and y in SX a unique parallelogram in-
scribed in a strictly convex Jordan curve can be found, whose two diagonals
are parallel to 〈−x, x〉 and 〈−y, y〉, respectively. By using a technique similar
to that in the proof of Lemma 3.3 one can prove that such a parallelogram
varies continuously when x is fixed and y varies continuously. Then the in-
termediate value theorem implies the existence of a Minkowskian rhombus
inscribed in C with one diagonal parallel to 〈−x, x〉. Now, if the underly-
ing normed plane is strictly convex, Theorem 2.4 can be applied to show
that such a Minkowskian rhombus is unique. Also one can show that this
Minkowskian rhombus varies continuously when x does, and so finally a
Minkowskian square inscribed in C would be obtained. The case when C
is convex and the underlying normed plane is strictly convex can be solved
by applying the technique used in the proof of Theorem 1.1. When the
Minkowski plane is not strictly convex, one can approximate the norm ‖ · ‖
of this plane by strictly convex norms {‖·‖n}∞n=1. For each n a Minkowskian
square Pn with respect to ‖ ·‖n can be found which is inscribed in C. A sub-
sequence of {Pn}∞n=1 will converge to a parallelogram inscribed in C, which
is a Minkowskian square with respect to ‖·‖. This proof is more complicated
than the one above, but almost all necessary techniques are illustrated in
our current proof.
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