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POLYNOMIAL ALGEBRA OF CONSTANTS
OF THE FOUR VARIABLE LOTKA–VOLTERRA SYSTEM

BY

PIOTR OSSOWSKI and JANUSZ ZIELIŃSKI (Toruń)

Abstract. We describe the ring of constants of a specific four variable Lotka–Volterra
derivation. We investigate the existence of polynomial constants in the other cases of
Lotka–Volterra derivations, also in n variables.

1. Introduction. Let k be a field of characteristic zero. Let R be
a commutative k-algebra. A k-linear mapping d : R → R is called a k-
derivation (or simply a derivation) of R if d(ab) = ad(b) + bd(a) for all
a, b ∈ R. By Rd we denote the kernel of the mapping d. It forms a ring
and we call it the ring of constants of the derivation d. Then k ⊆ Rd and
a nontrivial constant of the derivation d is an element of the set Rd \ k.
By k[X] we denote k[x1, . . . , xn], the polynomial ring in n variables. If
f1, . . . , fn ∈ k[X], then there exists exactly one derivation d : k[X] → k[X]
such that d(x1) = f1, . . . , d(xn) = fn.

There is no general effective procedure for determining the ring of con-
stants. Even for a given specific derivation the problem may be difficult; see
for instance various counterexamples to Hilbert’s fourteenth problem (for ex-
ample by Deveney and Finston [1]), the derivations of Jouanolou type (for
example Maciejewski et al. [2]), the three variable Lotka–Volterra derivation
(Moulin Ollagnier and Nowicki [3]).

The Lotka–Volterra derivations, besides multiple applications in vari-
ous branches of science, especially in biology, play an important role in
the derivation theory itself. A derivation d : k[X] → k[X] is said to be
factorizable if d(xi) = xifi, where fi ∈ k[X] for i = 1, . . . , n. The most
useful case is when all fi are of degree 1. Examples of such derivations are
Lotka–Volterra derivations. How to associate with any given derivation a
factorizable derivation having all fi of degree 1 is shown in [6]. The con-
struction helps to establish new facts on constants of the initial derivation
(see, for instance, Nowicki and Zieliński [5]). For details and discussion we
refer the reader to [5] and [2].
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The aim of this paper is to present some method of determining the ring
of constants. Section 2 contains several properties of specific Lotka–Volterra
derivations. In Section 3 we prove Theorem 3.1. It gives a full descrip-
tion of the ring of polynomial constants of the derivation d : k[x, y, z, t] →
k[x, y, z, t] of the form

d = x(t− y)
∂

∂x
+ y(x− z) ∂

∂y
+ z(y − t) ∂

∂z
+ t(z − x)

∂

∂t
.

It is the main result of the paper. Finally, in Section 4, we make some further
considerations on various cases.

Let N denote the set of nonnegative integers. For α = (α1, . . . , αn) ∈ Nn,
we denote by Xα the monomial xα1

1 . . . xαn
n ∈ k[X] and by |α| the sum

α1 + · · · + αn. An element of Nn with ith coordinate equal to 1 and the
remaining coordinates equal to 0 is designated by εi (moreover, we assume
that ε0 = εn and εn+1 = ε1). A derivation d : k[X] → k[X] is called
homogeneous of degree s if the image of a homogeneous form of degree t
under d is a homogeneous form of degree s+ t for all t ∈ N.

2. Preliminary lemmas and propositions. Let R = k[x1, . . . , xn].
Throughout this section, n ≥ 3 and d : R→ R is the derivation defined by

(2.1) d(xi) = xi(xi−1 − xi+1)

for i = 1, . . . , n, and we adhere to the convention that xn+1 = x1 and
x0 = xn. Denote by R(i) the homogeneous component of R of degree i. Let
Rd(i) = R(i) ∩Rd. Since d is homogeneous, we have Rd =

⊕∞
i=0R

d
(i).

Lemma 2.1. Let m ≥ 1. Let ϕ =
∑
|α|=m bαX

α ∈ R(m), where bα ∈ k.
Then ϕ ∈ Rd(m) if and only if for every β = (β1, . . . , βn) ∈ Nn such that
|β| = m+ 1 we have

∑n
i=1 βi(bβ−εi−1

− bβ−εi+1
) = 0.

Proof. We compute the value of d at ϕ =
∑
|α|=m bαX

α ∈ R(m), where
m ≥ 1, as follows:

d(ϕ) =
∑
|α|=m

bαd(Xα) =
∑
|α|=m

bα

n∑
i=1

αiX
α−εid(xi)

=
∑
|α|=m

bα

n∑
i=1

αiX
α−εixi(xi−1 − xi+1)

=
∑
|α|=m

bα

n∑
i=1

αi(Xα+εi−1 −Xα+εi+1)
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=
∑
|α|=m

n∑
i=1

bααiX
α+εi−1 −

∑
|α|=m

n∑
i=1

bααiX
α+εi+1

=
∑

|β|=m+1
βi−1>0

n∑
i=1

bβ−εi−1
βiX

β −
∑

|β|=m+1
βi+1>0

n∑
i=1

bβ−εi+1
βiX

β.

We adopt the convention that bα = 0 when αi < 0 for some 1 ≤ i ≤ n.
Therefore

d(ϕ) =
∑

|β|=m+1

n∑
i=1

bβ−εi−1
βiX

β −
∑

|β|=m+1

n∑
i=1

bβ−εi+1
βiX

β

=
∑

|β|=m+1

Xβ
n∑
i=1

(bβ−εi−1
βi − bβ−εi+1

βi).

Hence d(ϕ) = 0 if and only if
∑n

i=1 βi(bβ−εi−1
− bβ−εi+1

) = 0 for all |β| =
m+ 1.

Corollary 2.2. Let ϕ =
∑
|α|=m bαX

α ∈ Rd(m), where m ≥ 1. If r, s ∈
N \ {0} and r + s = m+ 1, then rbrεi+(s−1)εi+1

= sb(r−1)εi+sεi+1
.

Proof. Let β = rεi + sεi+1. According to Lemma 2.1,

βi(bβ−εi−1
− bβ−εi+1

) + βi+1(bβ−εi
− bβ−εi+2

) = 0,

because βj = 0 for j /∈ {i, i + 1}. Then βi = r, βi+1 = s, bβ−εi−1
= 0,

bβ−εi+2
= 0, hence

−rbrεi+(s−1)εi+1
+ sb(r−1)εi+sεi+1

= 0.

Let ϕ ∈ R and 1 ≤ q ≤ n. Then for every subset {i1, . . . , iq} ⊆ {1, . . . , n}
we denote by ϕ{i1,...,iq} the sum of monomials of ϕ that depend on variables
xi1 , . . . , xiq , that is, ϕ{i1,...,iq} = ϕ|xj=0 for j /∈{i1,...,iq}.

Lemma 2.3. If ϕ ∈ Rd(m), then ϕ{i,i+1} = c(xi + xi+1)m for c ∈ k.

Proof. Let ϕ{i,i+1} =
∑m

r=0 brεi+(m−r)εi+1
xrix

m−r
i+1 . By Corollary 2.2 we

have rbrεi+(m−r)εi+1
= (m+ 1− r)b(r−1)εi+(m+1−r)εi+1

for r = 1, . . . ,m.
We show that brεi+(m−r)εi+1

=
(
m
r

)
bmεi+1 . We proceed by induction on r.

If r = 1, then bεi+(m−1)εi+1
= mbmεi+1 =

(
m
1

)
bmεi+1 . Let r > 1. Then

brεi+(m−r)εi+1
=
m+ 1− r

r
b(r−1)εi+(m+1−r)εi+1

=
m+ 1− r

r

(
m

r − 1

)
bmεi+1 ,

by the inductive assumption. Therefore brεi+(m−r)εi+1
=
(
m
r

)
bmεi+1 . Hence

va{i,i+1} =
m∑
r=0

(
m

r

)
bmεi+1x

r
ix
m−r
i+1 = bmεi+1(xi + xi+1)m.
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Proposition 2.4. Rd(1) = k
∑n

j=1 xj.

Proof. Let ϕ =
∑n

j=1 bεjxj ∈ Rd(1). By Lemma 2.3, bεixi + bεi+1xi+1 =
ci(xi + xi+1) for i = 1, . . . , n − 1. Thus bεi = bεi+1 for i = 1, . . . , n − 1.
Therefore ϕ = bε1

∑n
j=1 xj . Obviously then d(ϕ) = 0.

Here and throughout, supp(α) = {i : αi 6= 0} for α = (α1, . . . , αn) ∈ Nn.

Lemma 2.5. If ϕ ∈ Rd(m), then ϕ = c(
∑n

j=1 xj)
m +

∑
bαX

α, where
the latter sum is taken over all |α| = m such that either # supp(α) ≥ 3,
or #supp(α) = 2 and the two nonzero exponents are not on consecutive
variables (in the cyclic sense).

Proof. Let ϕ ∈ Rd(m). It follows from Lemma 2.3 that for every 1 ≤ i ≤ n
there exists c ∈ k such that ϕ{i,i+1} = c(xi+xi+1)m. Then c is the coefficient
of xmi (and of xmi+1, and of xmi+2, . . .) in the polynomial ϕ. Likewise, c

(
m
l

)
is the

coefficient of xlix
m−l
i+1 in ϕ. Thus ϕ−c(

∑n
j=1 xj)

m does not contain monomials
associated to xlix

m−l
i+1 for any 0 ≤ l ≤ m, which proves the assertion.

Proposition 2.6. Rd(2) =

{
k(
∑
xj)2 for n = 3,

k(
∑
xj)2 + kx1x3 + kx2x4 for n = 4.

Proof. According to Lemma 2.5, if ϕ ∈ Rd(2), then

ϕ = c
(∑

xj

)2
+

∑
|α|=2

#supp(α)≥3

bαX
α +

∑
0<j−i 6∈{1,n−1}

bijxixj

for c ∈ k. Since the conditions #supp(α) ≥ 3 and |α| = 2 are contradictory,
it follows that ∑

|α|=2
#supp(α)≥3

bαX
α = 0.

For n = 3, we also have
∑

0<j−i 6∈{1,n−1} bijxixj = 0, because then there
do not exist nonconsecutive variables (in the cyclic sense). For n = 4, we
easily check that ϕ = c(

∑
xj)2 + px1x3 + qx2x4 is a constant of d for all

c, p, q ∈ k.

As an obvious consequence of the fact that xi | d(xi) for i = 1, . . . , n we
obtain the following:

Proposition 2.7. If A ⊆ {1, . . . , n}, then for every homogeneous poly-
nomial ϕ ∈ R(m) we have d(ϕA)A = d(ϕ)A.

Corollary 2.8. If A ⊆ {1, . . . , n}, then for every ϕ ∈ Rd(m) we have
d(ϕA)A = 0.
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Lemma 2.9. If B ⊆A⊆{1, . . . , n} and d(ϕA)A = 0, then also d(ϕB)B= 0.

Proof. Let ϕA = ϕB +ψ, where each monomial in ψ has xj in a positive
power for some j ∈ A \B. Then d(ϕA) = d(ϕB) + d(ψ). If d(ϕA)A = 0, then
clearly d(ϕA)B = 0. Therefore 0 = d(ϕA)B = d(ϕB)B + d(ψ)B. Moreover
d(ψ)B = 0, because every monomial in d(ψ) has xj in a positive power for
some j ∈ A \B, by the definition of d. Finally, d(ϕB)B = 0.

Lemma 2.10. If ϕ ∈ R(m), A = {i, i+ 1} ⊆ {1, . . . , n} and d(ϕA)A = 0,
then ϕA = c(xi + xi+1)m for some c ∈ k.

Proof. Let ϕA =
∑m

r=0 brx
m−r
i xri+1. Then

d(ϕA) =
m∑
r=0

br(d(xm−ri )xri+1 + xm−ri d(xri+1))

=
m∑
r=0

br((m− r)xm−ri xri+1(xi−1 − xi+1) + rxm−ri xri+1(xi − xi+2)).

Consequently,

d(ϕA)A =
m∑
r=0

br(rxm−r+1
i xri+1 − (m− r)xm−ri xr+1

i+1 )

=
m∑
r=1

rbrx
m−r+1
i xri+1 −

m−1∑
r=0

(m− r)brxm−ri xr+1
i+1

=
m∑
r=1

rbrx
m−r+1
i xri+1 −

m∑
r=1

(m− r + 1)br−1x
m−r+1
i xri+1

=
m∑
r=1

(rbr − (m− r + 1)br−1)xm−r+1
i xri+1 = 0.

Hence for r = 1, . . . ,m we have rbr = (m − r + 1)br−1, that is, br =
m−r+1

r br−1. Thus an easy induction on r shows that br =
(
m
r

)
b0 for r =

0, . . . ,m. Therefore, ϕA = b0(xi + xi+1)m.

Proposition 2.11. Let n ≥ 4. If ϕ ∈ R(m), A = {i, i + 1, i + 2} ⊆
{1, . . . , n} and d(ϕA)A = 0, then ϕA ∈ k[xi + xi+1 + xi+2, xixi+2].

Proof. The proof is by induction on m. Let m = 1. By assumption
and Lemma 2.9, d(ϕ{i,i+1}){i,i+1} = 0. In view of Lemma 2.10 we have
ϕ{i,i+1} = c1(xi + xi+1). Similarly, we obtain ϕ{i+1,i+2} = c2(xi+1 + xi+2).
Thus c1 = c2 and ϕA = c1(xi + xi+1 + xi+2). Now let m = 2. Since
d(ϕ{i,i+1}){i,i+1} = 0, it follows that ϕ{i,i+1} = c1(xi + xi+1)2. Analogously
ϕ{i+1,i+2} = c2(xi+1+xi+2)2. Therefore, ϕA = c1(xi+xi+1+xi+2)2+bxixi+2

for some b ∈ k.
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Assume m≥3. Let ϕA=
∑
bαX

α, where the sum is taken over all α with
|α| = m such that supp(α)⊆{i, i+1, i+2}. We have ϕ{i,i+1}= c1(xi + xi+1)m

and ϕ{i+1,i+2} = c2(xi+1 + xi+2)m for c1, c2 ∈ k. Thus c1 = c2 =: c. The
terms of the form xrix

m−r
i+1 and xri+1x

m−r
i+2 for r = 0, . . . ,m have the same

coefficients in ϕA and in c(xi + xi+1 + xi+2)m. Therefore

ϕA = c(xi + xi+1 + xi+2)m +
∑

supp(α)={i,i+2}

bαX
α +

∑
supp(α)={i,i+1,i+2}

bαX
α,

that is, ϕA = c(xi + xi+1 + xi+2)m + xixi+2ψ, where ψ ∈ R(m−2).
Obviously, ψA = ψ. We show that d(ψA)A = 0. First,

d(ϕA) = cd((xi + xi+1 + xi+2)m) + d(xixi+2)ψ + xixi+2d(ψ)

= cd
((( n∑

j=1

xj

)m)A)
+ d
(( ∑

0<s−r 6∈{1,n−1}

xrxs

)A)
ψ + xixi+2d(ψA).

Therefore,

0 = d(ϕA)A

= cd
((( n∑

j=1

xj

)m)A)A
+ d
(( ∑

0<s−r 6∈{1,n−1}

xrxs

)A)A
ψ + xixi+2d(ψA)A.

Because (
∑n

j=1 xj)
m and

∑
0<s−r 6∈{1,n−1} xrxs belong to the ring of constants

of the derivation d, it follows from Corollary 2.8 that d(((
∑n

j=1 xj)
m)A)A

= 0 and d((
∑

0<s−r 6∈{1,n−1} xrxs)
A)A = 0. Hence indeed d(ψA)A = 0.

By the inductive assumption, ψ = ψA ∈ k[xi+xi+1 +xi+2, xixi+2]. Thus
ϕA = c(xi + xi+1 + xi+2)m + xixi+2ψ ∈ k[xi + xi+1 + xi+2, xixi+2].

3. Main theorem

Theorem 3.1. Let R = k[x1, . . . , x4]. Let d : R → R be the derivation
of the form

d(xi) = xi(xi−1 − xi+1)

for i = 1, . . . , 4. Then

Rd = k[x1 + x2 + x3 + x4, x1x3, x2x4].

Proof. It suffices to show that Rd(m) ⊆ k[x1 + x2 + x3 + x4, x1x3, x2x4]
for all m ≥ 1. We proceed by induction on m. In view of Proposition 2.4, if
ϕ ∈ Rd(1), then ϕ = c

∑4
j=1 xj for c ∈ k. From Proposition 2.6, if ϕ ∈ Rd(2),

then ϕ = c1(
∑4

j=1 xj)
2 + c2x1x3 + c3x2x4 for c1, c2, c3 ∈ k.
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Let ϕ ∈ Rd(3). By Lemma 2.5,

ϕ = c
( 4∑
j=1

xj

)3
+ p1x1x

2
3 + p2x

2
1x3 + q1x2x

2
4 + q2x

2
2x4

+ r1x2x3x4 + r2x1x3x4 + r3x1x2x4 + r4x1x2x3.

Therefore, putting x4 = 0 we get

ϕ{1,2,3} = c
( 3∑
j=1

xj

)3
+ p1x1x

2
3 + p2x

2
1x3 + r4x1x2x3

= c
( 3∑
j=1

xj

)3
+ x1x3(p2x1 + r4x2 + p1x3).

According to Corollary 2.8 and Proposition 2.11,

ϕ{1,2,3} ∈ k[x1 + x2 + x3, x1x3].

Hence p1 = p2 = r4 =: p. For ϕ{1,3,4} we similarly obtain p1 = p2 = r2 = p.
Analogously, q1 = q2 = r1 = r3 =: q. Thus

ϕ = c
( 4∑
j=1

xj

)3
+ px1x3

( 4∑
j=1

xj

)
+ qx2x4

( 4∑
j=1

xj

)
.

Assume m ≥ 4. Let ϕ ∈ Rd(m). Denote by
∑

A the sum
∑

supp(α)=A bαX
α.

Then by Lemma 2.5,

ϕ = c
( 4∑
j=1

xj

)m
+
∑
{1,3}

+
∑
{2,4}

+
∑
{1,2,3}

+
∑
{1,2,4}

+
∑
{1,3,4}

+
∑
{2,3,4}

+
∑
{1,2,3,4}

and this decomposition is unique. By Corollary 2.8 and Proposition 2.11,

ϕ{1,2,3} = c
( 3∑
j=1

xj

)m
+
∑
{1,3}

+
∑
{1,2,3}

∈ k[x1 + x2 + x3, x1x3].

Then we have

(3.1)
∑
{1,3}

+
∑
{1,2,3}

= c1

( 3∑
j=1

xj

)m−2
x1x3 + c2

( 3∑
j=1

xj

)m−4
(x1x3)2 + · · · .

Let Φ1(u, v) = c1u
m−2v+c2u

m−4v2+c3u
m−6v3+· · · ∈ k[u, v]. Then deg(1,2) Φ1

equals m and Φ1 is uniquely determined, since k[x1 + x2 + x3, x1x3] is a
polynomial ring.

Moreover, Φ1 is uniquely determined by
∑
{1,3}, because c1 is the coeffi-

cient of xm−1
1 x3 on the right-hand side of (3.1), whereas xm−1

1 x3 appears on
the left-hand side in

∑
{1,3} only, that is, c1 equals the coefficient of xm−1

1 x3
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in
∑
{1,3}. Similarly, the coefficient of xm−2

1 x2
3 on the right-hand side of (3.1)

is equal to c2+c1(m−2), while the monomial xm−2
1 x2

3 appears only in
∑
{1,3}

on the left-hand side of (3.1). Analogously, by recursion, we conclude that
every ci is determined by

∑
{1,3}.

Let us now consider

ϕ{1,3,4} = c(x1 + x3 + x4)m +
∑
{1,3}

+
∑
{1,3,4}

.

Then we have∑
{1,3}

+
∑
{1,3,4}

= b1(x1 +x3 +x4)m−2x1x3 + b2(x1 +x3 +x4)m−4(x1x3)2 + · · · .

The coefficients b1, b2, . . . are determined by
∑
{1,3} in the same way as

c1, c2, . . . , hence bi = ci for all i. Consequently,
∑
{1,3}+

∑
{1,3,4} = Φ1(x1 +

x3 + x4, x1x3).
Therefore

Φ1

( 4∑
j=1

xj , x1x3

)
= c1

( 4∑
j=1

xj

)m−2
x1x3 + c2

( 4∑
j=1

xj

)m−4
(x1x3)2 + · · ·

=
∑
{1,3}

+
∑
{1,2,3}

+
∑
{1,3,4}

+x1x2x3x4Ψ1

for some Ψ1 ∈ R.
The reasoning above shows that there exists Φ1 ∈ k[u, v] such that

ϕ = c
( 4∑
j=1

xj

)m
+ Φ1

( 4∑
j=1

xj , x1x3

)
+
∑
{2,4}

+
∑
{1,2,4}

+
∑
{2,3,4}

+x1x2x3x4Ψ̄1

for some Ψ̄1 ∈ R.
Analogously, there exist Φ2 ∈ k[u, v] and Ψ2 ∈ R such that

Φ2

( 4∑
j=1

xj , x2x4

)
=
∑
{2,4}

+
∑
{1,2,4}

+
∑
{2,3,4}

+x1x2x3x4Ψ2.

Consequently,

ϕ = c
( 4∑
j=1

xj

)m
+ Φ1

( 4∑
j=1

xj , x1x3

)
+ Φ2

( 4∑
j=1

xj , x2x4

)
+ x1x2x3x4Ψ

for some Ψ ∈ R.
All the polynomials c(

∑4
j=1 xj)

m, Φ1(
∑4

j=1 xj , x1x3), Φ2(
∑4

j=1 xj , x2x4),
x1x2x3x4 belong to Rd. Thus ϕ ∈ Rd(m) implies Ψ ∈ Rd(m−4). Hence, by the

inductive assumption, Ψ ∈ k[
∑4

j=1 xj , x1x3, x2x4]. Finally, we deduce that
ϕ ∈ k[

∑4
j=1 xj , x1x3, x2x4].
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4. Further results. It follows from Proposition 2.4 that for every
n ≥ 3 the derivation d : k[x1, . . . , xn] → k[x1, . . . , xn] defined by d(xi) =
xi(xi−1−xi+1) for i = 1, . . . , n has a nontrivial polynomial constant. A sim-
ple calculation shows that the derivation d always has a nontrivial monomial
constant. Namely, we have the following proposition.

Proposition 4.1. Let d be a derivation of the form (2.1). If n is odd,
then a monomial f belongs to Rd if and only if f = c(x1 . . . xn)a for c ∈ k
and a ∈ N. If n = 2k, then a monomial f belongs to Rd if and only if
f = c(x1x3 . . . x2k−1)a(x2x4 . . . x2k)b for c ∈ k and a, b ∈ N.

By the definition, d has the property:

Proposition 4.2. The ring of constants Rd is invariant under the ac-
tion of the subgroup of the group of permutations generated by the cycle
(2 3 . . . n 1).

Note that this does not mean that each particular constant is invariant.
Proposition 4.3 is a simple extension of Proposition 2.6.

Proposition 4.3. Rd(2) = k(
∑
xj)2 + k

∑
0<j−i 6∈{1,n−1} xixj for n ≥ 5.

Let d : k[x, y, z, t]→ k[x, y, z, t] be a derivation of the form

(4.1) d = x(Dy + t)
∂

∂x
+ y(Az + x)

∂

∂y
+ z(Bt+ y)

∂

∂z
+ t(Cx+ z)

∂

∂t
,

where A,B,C,D ∈ k. Then linear algebra calculations give the following
proposition.

Proposition 4.4. Let d be a derivation of the form (4.1). Then the ring
k[x, y, z, t]d has a nonzero homogeneous constant of degree 2 if and only if
at least one of the following conditions holds:

(1) ABCD = 1,
(2) A = −1 and C = −1,
(3) B = −1 and D = −1,
(4) ABCD = −1 and at least one of the elements A or C equals −1 and

at least one of the elements B or D equals −1.

The next proposition is easily verified.

Proposition 4.5. Let d be a derivation of the form (4.1). Then the ring
k[x, y, z, t]d has a nontrivial monomial constant if and only if at least one of
the following two conditions is fulfilled:

(1) D and B are negative rational numbers and DB = 1,
(2) A and C are negative rational numbers and AC = 1.
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Let R = k[x1, . . . , xn], where n ≥ 3. From now on, let d : R→ R be the
derivation defined by

d(xi) = xi(xi−1 − Cixi+1),

where Ci ∈ k for i = 1, . . . , n. The following propositions are analogs of
Lemmas 2.1, 2.3, Proposition 2.4 and Lemmas 2.10, 2.5 respectively. Their
proofs are analogous as well.

Proposition 4.6. Let ϕ =
∑
|α|=m bαX

α ∈ R(m), where m ≥ 1. Then
ϕ ∈ Rd(m) if and only if for every β = (β1, . . . , βn) ∈ Nn such that |β| = m+1
we have

∑n
i=1 βi(bβ−εi−1

− Cibβ−εi+1
) = 0.

Proposition 4.7. If ϕ ∈ Rd(m), then ϕ{i,i+1} = c(xi+Cixi+1)m for some
c ∈ k.

Proposition 4.8. If C1 . . . Cn 6= 1, then Rd(1) = 0. If C1 . . . Cn = 1,
then Rd(1) = k(x1 + C1x2 + C1C2x3 + · · ·+ C1 . . . Cn−1xn).

Proposition 4.9. If ϕ ∈ R(m), A = {i, i+ 1} ⊆ {1, . . . , n} and d(ϕA)A

= 0, then ϕA = c(xi + Cixi+1)m for some c ∈ k.

Proposition 4.10. If ϕ ∈ Rd(m), then ϕ = a(x1 +C1x2 +C1C2x3 + · · ·+
C1 . . . Cn−1xn)m +

∑
bαX

α, where the latter sum is taken over all α with
|α| = m such that either # supp(α) ≥ 3, or # supp(α) = 2 and the two
nonzero exponents are not on consecutive variables (in the cyclic sense).
Moreover, if (C1 . . . Cn)m 6= 1, then a = 0.

We hope that the results presented in the paper will be useful in further
investigations of the Lotka–Volterra derivations.
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Faculty of Mathematics and Computer Science
N. Copernicus University
Chopina 12/18
87-100 Toruń, Poland
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