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DYNAMICALLY DEFINED CANTOR SETS
UNDER THE CONDITIONS OF MCDUFF’S CONJECTURE

BY

JORGE IGLESIAS and ALDO PORTELA (Montevideo)

Abstract. We prove that if the Cantor set K, dynamically defined by a function
S ∈ C1+α, satisfies the conditions of McDuff’s conjecture then it cannot be C1-minimal.

1. Introduction and main result. If f : S1 → S1 is a C1-diffeo-
morphism without periodic points, then there exists a unique set Ω(f) ⊂ S1

minimal for f (we say that Ω(f) is C1-minimal for f). In this case Ω(f) is
either a Cantor set or S1. Examples of C1-minimal Cantor sets are Denjoy’s
examples and their conjugates ([1]). In [2] McDuff proves that the usual
middle thirds Cantor set is not C1-minimal, and in [3] A. Norton also proves
that affine Cantor sets are not C1-minimal.

Let K be a Cantor subset of the circle and let Kc =
⋃
Ij , where Ij is a

connected component of Kc . We define the spectrum of K, denoted by EK ,
as the ordered set {λi} (λi+1 < λi), where λi is the length of Ij for some j.
In [2] McDuff conjectures that if λn/λn+1 9 1 then the Cantor set K is not
C1-minimal.

Let I1, . . . , Ik, k ≥ 2, be pairwise disjoint compact intervals in R, and
let L be a compact interval containing their union I ≡ I1 ∪ · · · ∪ Ik. Define
Sr(I1, . . . , Ik, L), r ≥ 0, to be the set of Cr functions S : I → L such that
for j = 1, . . . , k, S(Ij) = L. For S ∈ Sr(I1, . . . , Ik, L) define

CS = {x ∈ I : Sk(x) ∈ I for all k ∈ Z+}.
Note that not every CS is a Cantor set (see Figure 1) and CS2 = CS . Also
note that every Cantor set K is a CS Cantor set for some function S ∈ C0.
We say that a Cantor set K is dynamically defined by S if K = CS for some
S ∈ Sr(I1, . . . , Ik, L). If S ∈ Sr(I1, . . . , Ik, L) and |S′(x)| > 1 for all x ∈ I,
then CS is a Cantor set, and these sets are called hyperbolic. If S′ is locally
constant, CS is called affine, and if S′ is globally constant, CS is called
linear. In [3] Norton proves that affine Cantor sets are not C1-minimal. In
this work we will consider S ∈ S1+α(I1, . . . , Ik, L) (here S is not necessarily
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monotone) such that CS is a Cantor set with λn/λn+1 9 1. We will prove
that these Cantor sets are not C1-minimal. Our long-term goal is to prove
McDuff’s conjecture, that is why we require λn/λn+1 9 1. For this work we
identified the end points of L, so we can suppose that K ⊂ S1.

Fig. 1. Note that K1 ⊂ CS

We prove the following result:

Theorem A. Let K be a Cantor set dynamically defined by S ∈ S0(I1,
. . . , Ik, L) such that λn/λn+1 9 1. If there exist a fixed point x0 of S and
an open interval J containing x0 such that S|J∩I ∈ C1+α for some α > 0,
then K is not C1-minimal.

2. Previous results. The following proposition contains facts that can
be easily verified.

Remark 1. If K is a Cantor set with K = CS for S ∈ S1(I1, . . . , Ik, L),
then:

(1) Each Ii contains at least one fixed point of S.
(2) If x0 is a fixed point of S then |S′(x0)|≥1 and therefore (S2)′(x0)≥1.
(3) The set of fixed points of S is finite.
(4) For each fixed point x0 of S, there exists δ0 such that:

(i) If x ∈ (x0, x0 + δ0] ∩ I then S2(x) > x.
(ii) If x ∈ [x0 − δ0, x0) ∩ I then S2(x) < x.

Lemma 1. Let K be a Cantor set with K = CS for S ∈ S1(I1, . . . , Ik, L)
and λn/λn+1 9 1. If x0 is a fixed point of S then (S2)′(x0) > 1.

Proof. Suppose that there exists a fixed point x0 such that (S2)′(x0) ≤ 1.
From Remark 1(2) we have (S2)′(x0) = 1. As λn/λn+1 9 1 there exist {nj}
and ε > 0 such that

(1)
λnj
λnj+1

> 1 + ε.

Let δ > 0 be such that:
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• if x ∈ (x0 − δ, x0 + δ) ∩ I then 1− ε/2 ≤ (S2)′(x) ≤ 1 + ε/2;
• the function F = S2|[x0−δ,x0+δ]∩I is increasing;
• δ < δ0 where δ0 is from Remark 1(4).

Let T be a connected component of Kc such that T ⊂ [x0 − δ, x0 + δ],
and let Tk = F−k(T ), k ≥ 0, and λmk = |Tk|. Since δ < δ0 if i 6= j
we see that Ti 6= Tj , therefore λmk → 0. By the definition of Tk we have
λmk = λmk+1

F ′(θk+1) with θk+1 ∈ Tk+1 ⊂ [x0 − δ, x0 + δ]. Then

(2) F ′(θk+1) =
λmk
λmk+1

≤ 1 +
ε

2
.

Consider λm1 and let λnj0 be such that λnj0 < λm1 . As λmk → 0, there
exists

k0 = max{k ∈ N : λmk ≥ λnj0}.
The definition of k0 gives

(3) λmk0 ≥ λnj0 > λnj0+1 ≥ λmk0+1
.

Therefore
λmk0
λmk0+1

(3)

≥
λnj0
λnj0+1

(1)
> 1 + ε,

and this contradicts (2). So (S2)′(x0) > 1.

We say that a covering {Ji} (Ji = [αi, βi], βi+1 < αi ≤ βi) of EK is an
ε-covering (with ε > 0) if αi/βi+1 = 1 + ε.

Note that there exists an ε-covering if and only if λn/λn+1 9 1.
For the proof of the following theorem see [4, Theorem 1.4].

Theorem 1. If {Ji} is an ε-covering of the spectrum of a Cantor set
K and βi/αi is constant, then the Cantor set K is not C1-minimal.

For the proof of the following proposition see [2, Corollary 3.2].

Proposition 1. If K is C1-minimal, then any x ∈ K is contained in
an arbitrarily small open arc A such that A ∩K is also C1-minimal.

3. Proof of Theorem A. Let F = S2 (recall that K = CF = CS). By
hypothesis there exists a fixed point x0 for F and an interval J such that
F |J∩I ∈ C1+α, with x0 ∈ J . So there exists k > 0 such that

(4) |F ′(t1)− F ′(t2)| ≤ k|t1 − t2|α, ∀t1, t2 ∈ J.
As λn/λn+1 9 1 there exist {nj} and ε > 0 such that

λnj
λnj+1

> 1 + ε.

By Lemma 1 we have F ′(x0) = η > 1. Without loss of generality we may
assume that 1 + ε < η. Let ε0 > 0 be such that η − ε0 > 1.
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Remark 2. We take δ such that:

(1) [x0 − δ, x0 + δ] ⊂ J .
(2) F ′|[x0−δ,x0+δ]∩I > η − ε0.

(3)
+∞∏
r=1

[
1− k

η

[
2δ

(η − ε0)r

]α]
>

1
3
√

1 + ε
.

(4)
+∞∏
r=1

[
1 +

k

η

[
2δ

(η − ε0)r

]α]
< 3
√

1 + ε.

For simplicity we will denote F |[x0−δ,x0+δ]∩I by F .
Let U be any open interval such that x0 ∈ U ⊂ [x0 − δ, x0 + δ] and let

K0 = K∩U . We will prove thatK0 is not C1-minimal. Then by Proposition 1
it will follow that K is not C1-minimal.

Let A0 = [x0 − δ, x0 + δ] and define An = F−n(A0) and Kn = F−n(K0).
From Remark 2(2) we have

(5) |An| ≤
2δ

(η − ε0)n
, ∀n ∈ N.

Lemma 2. For each λ > 0 there exist a, b with 0 < a < b < λ, b/a =
3
√

1 + ε such that [+∞⋃
i=0

(aηi, bηi)
]
∩ EK0 = ∅.

Proof. Let nj0 be such that λnj0 < λ and let a and b be such that
λnj0+1 < a < b < λnj0 with

(6)
λnj0
b

=
b

a
= 3
√

1 + ε

(note that a/λnj0+1 ≥ 3
√

1 + ε).
Suppose that there exist l ∈ EK0 and n0 ∈ N such that l ∈ (aηn0 , bηn0).

Let T be a connected component of A0 \ K0 with |T | = l. We will show
that the existence of T implies the existence of a connected component
Tn0 of A0 \ K0 with |Tn0 | ∈ (λnj0+1 , λnj0 ), and this is a contradiction. By
the definition of An and Kn there exists a connected component Tn0 of
An0 \ Kn0 ⊂ A0 \ K0 such that Fn0(Tn0) = T . We will estimate |Tn0 | in
terms of |T |.

There exists T1 ⊂ A1 such that F (T1) = T . So

(7) |F (T1)| = |F ′(x1)| |T1| with x1 ∈ T1.

On the other hand, as F ∈ C1+α, replacing t1 by x1 and t2 by x0 in (4)
we have
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∣∣∣∣F ′(x1)
η

− 1
∣∣∣∣ ≤ k

η
|x1 − x0|α ≤

k

η
|A1|α

(5)

≤ k

η

(
2δ

η − ε0

)α
.

Then

(8) 1− k

η

(
2δ

η − ε0

)α
≤ F ′(x1)

η
≤ 1 +

k

η

(
2δ

η − ε0

)α
so

|T1|
(7)
=
|F (T1)|
F ′(x1)

(8)

≤ |T |
η
[
1− k

η

(
2δ
η−ε0

)α]
and

|T1|
(7)
=
|F (T1)|
F ′(x1)

(8)

≥ |T |
η
[
1 + k

η

(
2δ
η−ε0

)α] ;
therefore

(9)
|T |

η
[
1 + k

η

(
2δ
η−ε0

)α] ≤ |T1| ≤
|T |

η
[
1− k

η

(
2δ
η−ε0

)α] .
Proceeding inductively shows that

(10)
|T |

ηn0
∏n0
r=1

[
1 + k

η

[
2δ

(η−ε0)r

]α] ≤ |Tn0 | ≤
|T |

ηn0
∏n0
r=1

[
1− k

η

[
2δ

(η−ε0)r

]α] .
As aηn0 ≤ |T | ≤ bηn0 , we see that

a∏n0
r=1

[
1 + k

η

[
2δ

(η−ε0)r

]α] ≤ |Tn0 | ≤
b∏n0

r=1

[
1− k

η

[
2δ

(η−ε0)r

]α] .
Since

b∏n0
r=1

[
1− k

η

[
2δ

(η−ε0)r

]α] Rem.2(3)
< b 3

√
1 + ε

(6)
= λnj0 ,

we have
|Tn0 | < λnj0 .

As
a∏n0

r=1

[
1 + k

η

[
2δ

(η−ε0)r

]α] Rem.2(4)
>

a
3
√

1 + ε

(6)

≥ λnj0+1 ,

we conclude that
|Tn0 | > λnj0+1 .

Lemma 3. There exists an ε1-covering {[αi, βi]} of EK0 such that βi/αi
is constant.
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Proof. By Lemma 2 with λ = 1/n there exist an and bn such that

(11) 0 < an < bn < 1/n,
bn
an

= 3
√

1 + ε,
[+∞⋃
i=0

(anηi, bnηi)
]
∩EK0 = ∅.

Let r > 0 and consider [r, rη2]. For each n ∈ N, let

mn = min{k ∈ Z : anηk ∈ [r, rη2]}.
As η > 1 + ε > 3

√
1 + ε and bn/an = 3

√
1 + ε, we have

[anηmn , bnηmn ] ⊂ [r, rη2].

Let z be an accumulation point of anηmn and ε1 = 6
√

1 + ε−1. We will show
that

EK0 ∩
⋃
i∈Z

(zηi, z(ε1 + 1)ηi) = ∅.

Suppose that there exists l ∈ EK0 ∩
⋃
i∈Z(zηi, z(ε1 + 1)ηi). Then there

exists k ∈ Z such that lηk ∈ (z, z(ε1 + 1)). As z is an accumulation point of
anη

mn , there exists mn > k such that

lηk ∈ (anηmn , bnηmn);

therefore l ∈ (anηmn−k, bnηmn−k) and this contradicts (11).
Taking αi = z(ε1 + 1)η−i−1 and βi = zη−i we obtain an ε1-covering

of EK0 .

Proof of Theorem A. Suppose that K is C1-minimal. By Proposition 1
there exists an open arc A ⊂ [x0 − δ, x0 + δ] such that K0 = K ∩ A is
C1-minimal. By Lemma 3, there exists an ε1-covering of EK0 with βi/αi
constant. By Theorem 1 we deduce that K0 is not C1-minimal, and this is
a contradiction.

Remark 3. As the Cantor set K equals CS for S ∈ S0(I1, . . . , Ik, L),
we see that S has a dense set of repelling periodic points in K. Therefore,
if in the statement of Theorem A one replaces the point x0 by a periodic
repelling point p of period n, and S|J ∈ C1+α by Sn|J ∈ C1+α for some
α > 0, the arguments of the proof are still valid.
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