VOL. 120

2010

NO. 2

DYNAMICALLY DEFINED CANTOR SETS UNDER THE CONDITIONS OF MCDUFF'S CONJECTURE

ΒY

JORGE IGLESIAS and ALDO PORTELA (Montevideo)

Abstract. We prove that if the Cantor set K, dynamically defined by a function $S \in C^{1+\alpha}$, satisfies the conditions of McDuff's conjecture then it cannot be C^1 -minimal.

1. Introduction and main result. If $f : S^1 \to S^1$ is a C^1 -diffeomorphism without periodic points, then there exists a unique set $\Omega(f) \subset S^1$ minimal for f (we say that $\Omega(f)$ is C^1 -minimal for f). In this case $\Omega(f)$ is either a Cantor set or S^1 . Examples of C^1 -minimal Cantor sets are Denjoy's examples and their conjugates ([1]). In [2] McDuff proves that the usual middle thirds Cantor set is not C^1 -minimal, and in [3] A. Norton also proves that affine Cantor sets are not C^1 -minimal.

Let K be a Cantor subset of the circle and let $K^c = \bigcup I_j$, where I_j is a connected component of K^c . We define the *spectrum* of K, denoted by E_K , as the ordered set $\{\lambda_i\}$ ($\lambda_{i+1} < \lambda_i$), where λ_i is the length of I_j for some j. In [2] McDuff conjectures that if $\lambda_n/\lambda_{n+1} \rightarrow 1$ then the Cantor set K is not C^1 -minimal.

Let $I_1, \ldots, I_k, k \geq 2$, be pairwise disjoint compact intervals in \mathbb{R} , and let L be a compact interval containing their union $I \equiv I_1 \cup \cdots \cup I_k$. Define $\mathcal{S}^r(I_1, \ldots, I_k, L), r \geq 0$, to be the set of C^r functions $S: I \to L$ such that for $j = 1, \ldots, k, S(I_j) = L$. For $S \in \mathcal{S}^r(I_1, \ldots, I_k, L)$ define

$$C_S = \{ x \in I : S^k(x) \in I \text{ for all } k \in \mathbb{Z}^+ \}.$$

Note that not every C_S is a Cantor set (see Figure 1) and $C_{S^2} = C_S$. Also note that every Cantor set K is a C_S Cantor set for some function $S \in C^0$. We say that a Cantor set K is *dynamically defined* by S if $K = C_S$ for some $S \in S^r(I_1, \ldots, I_k, L)$. If $S \in S^r(I_1, \ldots, I_k, L)$ and |S'(x)| > 1 for all $x \in I$, then C_S is a Cantor set, and these sets are called *hyperbolic*. If S' is locally constant, C_S is called *affine*, and if S' is globally constant, C_S is called *linear*. In [3] Norton proves that affine Cantor sets are not C^1 -minimal. In this work we will consider $S \in S^{1+\alpha}(I_1, \ldots, I_k, L)$ (here S is not necessarily

²⁰¹⁰ Mathematics Subject Classification: 37E10, 37C05.

Key words and phrases: Cantor sets, C^1 -minimal sets.

monotone) such that C_S is a Cantor set with $\lambda_n/\lambda_{n+1} \rightarrow 1$. We will prove that these Cantor sets are not C^1 -minimal. Our long-term goal is to prove McDuff's conjecture, that is why we require $\lambda_n/\lambda_{n+1} \rightarrow 1$. For this work we identified the end points of L, so we can suppose that $K \subset S^1$.

Fig. 1. Note that $K_1 \subset C_S$

We prove the following result:

THEOREM A. Let K be a Cantor set dynamically defined by $S \in S^0(I_1, \ldots, I_k, L)$ such that $\lambda_n/\lambda_{n+1} \rightarrow 1$. If there exist a fixed point x_0 of S and an open interval J containing x_0 such that $S|_{J\cap I} \in C^{1+\alpha}$ for some $\alpha > 0$, then K is not C^1 -minimal.

2. Previous results. The following proposition contains facts that can be easily verified.

REMARK 1. If K is a Cantor set with $K = C_S$ for $S \in S^1(I_1, \ldots, I_k, L)$, then:

- (1) Each I_i contains at least one fixed point of S.
- (2) If x_0 is a fixed point of S then $|S'(x_0)| \ge 1$ and therefore $(S^2)'(x_0) \ge 1$.
- (3) The set of fixed points of S is finite.
- (4) For each fixed point x_0 of S, there exists δ_0 such that:
 - (i) If $x \in (x_0, x_0 + \delta_0] \cap I$ then $S^2(x) > x$.
 - (ii) If $x \in [x_0 \delta_0, x_0) \cap I$ then $S^2(x) < x$.

LEMMA 1. Let K be a Cantor set with $K = C_S$ for $S \in S^1(I_1, \ldots, I_k, L)$ and $\lambda_n / \lambda_{n+1} \not\rightarrow 1$. If x_0 is a fixed point of S then $(S^2)'(x_0) > 1$.

Proof. Suppose that there exists a fixed point x_0 such that $(S^2)'(x_0) \leq 1$. From Remark 1(2) we have $(S^2)'(x_0) = 1$. As $\lambda_n/\lambda_{n+1} \not\rightarrow 1$ there exist $\{n_j\}$ and $\varepsilon > 0$ such that

(1)
$$\frac{\lambda_{n_j}}{\lambda_{n_j+1}} > 1 + \varepsilon.$$

Let $\delta > 0$ be such that:

- if $x \in (x_0 \delta, x_0 + \delta) \cap I$ then $1 \varepsilon/2 \le (S^2)'(x) \le 1 + \varepsilon/2;$
- the function $F = S^2|_{[x_0 \delta, x_0 + \delta] \cap I}$ is increasing;
- $\delta < \delta_0$ where δ_0 is from Remark 1(4).

Let T be a connected component of K^c such that $T \subset [x_0 - \delta, x_0 + \delta]$, and let $T_k = F^{-k}(T), k \ge 0$, and $\lambda_{m_k} = |T_k|$. Since $\delta < \delta_0$ if $i \ne j$ we see that $T_i \ne T_j$, therefore $\lambda_{m_k} \to 0$. By the definition of T_k we have $\lambda_{m_k} = \lambda_{m_{k+1}} F'(\theta_{k+1})$ with $\theta_{k+1} \in T_{k+1} \subset [x_0 - \delta, x_0 + \delta]$. Then

(2)
$$F'(\theta_{k+1}) = \frac{\lambda_{m_k}}{\lambda_{m_{k+1}}} \le 1 + \frac{\varepsilon}{2}$$

Consider λ_{m_1} and let $\lambda_{n_{j_0}}$ be such that $\lambda_{n_{j_0}} < \lambda_{m_1}$. As $\lambda_{m_k} \to 0$, there exists

$$k_0 = \max\{k \in \mathbb{N} : \lambda_{m_k} \ge \lambda_{n_{j_0}}\}.$$

The definition of k_0 gives

(3)
$$\lambda_{m_{k_0}} \ge \lambda_{n_{j_0}} > \lambda_{n_{j_0}+1} \ge \lambda_{m_{k_0+1}}$$

Therefore

$$\frac{\lambda_{m_{k_0}}}{\lambda_{m_{k_0+1}}} \stackrel{(3)}{\geq} \frac{\lambda_{n_{j_0}}}{\lambda_{n_{j_0}+1}} \stackrel{(1)}{>} 1 + \varepsilon,$$

and this contradicts (2). So $(S^2)'(x_0) > 1$.

We say that a covering $\{\mathcal{J}_i\}$ $(\mathcal{J}_i = [\alpha_i, \beta_i], \beta_{i+1} < \alpha_i \leq \beta_i)$ of E_K is an ε -covering (with $\varepsilon > 0$) if $\alpha_i / \beta_{i+1} = 1 + \varepsilon$.

Note that there exists an ε -covering if and only if $\lambda_n/\lambda_{n+1} \not\rightarrow 1$. For the proof of the following theorem see [4, Theorem 1.4].

THEOREM 1. If $\{\mathcal{J}_i\}$ is an ε -covering of the spectrum of a Cantor set K and β_i/α_i is constant, then the Cantor set K is not C^1 -minimal.

For the proof of the following proposition see [2, Corollary 3.2].

PROPOSITION 1. If K is C^1 -minimal, then any $x \in K$ is contained in an arbitrarily small open arc A such that $A \cap K$ is also C^1 -minimal.

3. Proof of Theorem A. Let $F = S^2$ (recall that $K = C_F = C_S$). By hypothesis there exists a fixed point x_0 for F and an interval J such that $F|_{J\cap I} \in C^{1+\alpha}$, with $x_0 \in J$. So there exists k > 0 such that

(4)
$$|F'(t_1) - F'(t_2)| \le k|t_1 - t_2|^{\alpha}, \quad \forall t_1, t_2 \in J.$$

As $\lambda_n/\lambda_{n+1} \not\rightarrow 1$ there exist $\{n_j\}$ and $\varepsilon > 0$ such that

$$\frac{\lambda_{n_j}}{\lambda_{n_j+1}} > 1 + \varepsilon.$$

By Lemma 1 we have $F'(x_0) = \eta > 1$. Without loss of generality we may assume that $1 + \varepsilon < \eta$. Let $\varepsilon_0 > 0$ be such that $\eta - \varepsilon_0 > 1$.

REMARK 2. We take δ such that:

$$\begin{array}{ll} (1) & [x_0 - \delta, x_0 + \delta] \subset J. \\ (2) & F'|_{[x_0 - \delta, x_0 + \delta] \cap I} > \eta - \varepsilon_0. \\ (3) & \prod_{r=1}^{+\infty} \left[1 - \frac{k}{\eta} \left[\frac{2\delta}{(\eta - \varepsilon_0)^r} \right]^{\alpha} \right] > \frac{1}{\sqrt[3]{1 + \varepsilon}}. \\ (4) & \prod_{r=1}^{+\infty} \left[1 + \frac{k}{\eta} \left[\frac{2\delta}{(\eta - \varepsilon_0)^r} \right]^{\alpha} \right] < \sqrt[3]{1 + \varepsilon}. \end{array}$$

For simplicity we will denote $F|_{[x_0-\delta,x_0+\delta]\cap I}$ by F.

Let U be any open interval such that $x_0 \in U \subset [x_0 - \delta, x_0 + \delta]$ and let $K_0 = K \cap U$. We will prove that K_0 is not C^1 -minimal. Then by Proposition 1 it will follow that K is not C^1 -minimal.

Let $A_0 = [x_0 - \delta, x_0 + \delta]$ and define $A_n = F^{-n}(A_0)$ and $K_n = F^{-n}(K_0)$. From Remark 2(2) we have

(5)
$$|A_n| \le \frac{2\delta}{(\eta - \varepsilon_0)^n}, \quad \forall n \in \mathbb{N}.$$

LEMMA 2. For each $\lambda > 0$ there exist a, b with $0 < a < b < \lambda$, $b/a = \sqrt[3]{1+\varepsilon}$ such that

$$\left[\bigcup_{i=0}^{+\infty} (a\eta^i, b\eta^i)\right] \cap E_{K_0} = \emptyset.$$

Proof. Let n_{j_0} be such that $\lambda_{n_{j_0}} < \lambda$ and let a and b be such that $\lambda_{n_{j_0+1}} < a < b < \lambda_{n_{j_0}}$ with

(6)
$$\frac{\lambda_{n_{j_0}}}{b} = \frac{b}{a} = \sqrt[3]{1+\varepsilon}$$

(note that $a/\lambda_{n_{j_0+1}} \ge \sqrt[3]{1+\varepsilon}$).

Suppose that there exist $l \in E_{K_0}$ and $n_0 \in \mathbb{N}$ such that $l \in (a\eta^{n_0}, b\eta^{n_0})$. Let T be a connected component of $A_0 \setminus K_0$ with |T| = l. We will show that the existence of T implies the existence of a connected component T_{n_0} of $A_0 \setminus K_0$ with $|T_{n_0}| \in (\lambda_{n_{j_0}+1}, \lambda_{n_{j_0}})$, and this is a contradiction. By the definition of A_n and K_n there exists a connected component T_{n_0} of $A_{n_0} \setminus K_{n_0} \subset A_0 \setminus K_0$ such that $F^{n_0}(T_{n_0}) = T$. We will estimate $|T_{n_0}|$ in terms of |T|.

There exists $T_1 \subset A_1$ such that $F(T_1) = T$. So

(7)
$$|F(T_1)| = |F'(x_1)| |T_1|$$
 with $x_1 \in T_1$.

On the other hand, as $F \in C^{1+\alpha}$, replacing t_1 by x_1 and t_2 by x_0 in (4) we have

$$\left|\frac{F'(x_1)}{\eta} - 1\right| \le \frac{k}{\eta} |x_1 - x_0|^{\alpha} \le \frac{k}{\eta} |A_1|^{\alpha} \le \frac{k}{\eta} \left(\frac{2\delta}{\eta - \varepsilon_0}\right)^{\alpha}$$

Then

(8)
$$1 - \frac{k}{\eta} \left(\frac{2\delta}{\eta - \varepsilon_0}\right)^{\alpha} \le \frac{F'(x_1)}{\eta} \le 1 + \frac{k}{\eta} \left(\frac{2\delta}{\eta - \varepsilon_0}\right)^{\alpha}$$

 \mathbf{SO}

$$|T_1| \stackrel{(7)}{=} \frac{|F(T_1)|}{F'(x_1)} \stackrel{(8)}{\leq} \frac{|T|}{\eta \left[1 - \frac{k}{\eta} \left(\frac{2\delta}{\eta - \varepsilon_0}\right)^{\alpha}\right]}$$

and

$$|T_1| \stackrel{(7)}{=} \frac{|F(T_1)|}{F'(x_1)} \stackrel{(8)}{\geq} \frac{|T|}{\eta \left[1 + \frac{k}{\eta} \left(\frac{2\delta}{\eta - \varepsilon_0}\right)^{\alpha}\right]};$$

therefore

(9)
$$\frac{|T|}{\eta \left[1 + \frac{k}{\eta} \left(\frac{2\delta}{\eta - \varepsilon_0}\right)^{\alpha}\right]} \le |T_1| \le \frac{|T|}{\eta \left[1 - \frac{k}{\eta} \left(\frac{2\delta}{\eta - \varepsilon_0}\right)^{\alpha}\right]}.$$

Proceeding inductively shows that

(10)
$$\frac{|T|}{\eta^{n_0} \prod_{r=1}^{n_0} \left[1 + \frac{k}{\eta} \left[\frac{2\delta}{(\eta - \varepsilon_0)^r}\right]^{\alpha}\right]} \le |T_{n_0}| \le \frac{|T|}{\eta^{n_0} \prod_{r=1}^{n_0} \left[1 - \frac{k}{\eta} \left[\frac{2\delta}{(\eta - \varepsilon_0)^r}\right]^{\alpha}\right]}.$$

As $a\eta^{n_0} \leq |T| \leq b\eta^{n_0}$, we see that

$$\frac{a}{\prod_{r=1}^{n_0} \left[1 + \frac{k}{\eta} \left[\frac{2\delta}{(\eta - \varepsilon_0)^r}\right]^{\alpha}\right]} \le |T_{n_0}| \le \frac{b}{\prod_{r=1}^{n_0} \left[1 - \frac{k}{\eta} \left[\frac{2\delta}{(\eta - \varepsilon_0)^r}\right]^{\alpha}\right]}.$$

7

Since

$$\frac{b}{\prod_{r=1}^{n_0} \left[1 - \frac{k}{\eta} \left[\frac{2\delta}{(\eta - \varepsilon_0)^r}\right]^{\alpha}\right]} \stackrel{\text{Rem.2(3)}}{<} b\sqrt[3]{1 + \varepsilon} \stackrel{(6)}{=} \lambda_{n_{j_0}},$$

we have

$$|T_{n_0}| < \lambda_{n_{j_0}}.$$

 \mathbf{As}

$$\frac{a}{\prod_{r=1}^{n_0} \left[1 + \frac{k}{\eta} \left[\frac{2\delta}{(\eta - \varepsilon_0)^r}\right]^{\alpha}\right]} > \frac{\operatorname{Rem.2(4)}}{\sqrt[3]{1 + \varepsilon}} \stackrel{(6)}{\geq} \lambda_{n_{j_0+1}}$$

we conclude that

$$|T_{n_0}| > \lambda_{n_{j_0+1}}. \blacksquare$$

LEMMA 3. There exists an ε_1 -covering $\{[\alpha_i, \beta_i]\}$ of E_{K_0} such that β_i/α_i is constant.

Proof. By Lemma 2 with $\lambda = 1/n$ there exist a_n and b_n such that

(11)
$$0 < a_n < b_n < 1/n, \quad \frac{b_n}{a_n} = \sqrt[3]{1+\varepsilon}, \quad \left[\bigcup_{i=0}^{+\infty} (a_n \eta^i, b_n \eta^i)\right] \cap E_{K_0} = \emptyset.$$

Let r > 0 and consider $[r, r\eta^2]$. For each $n \in \mathbb{N}$, let

$$m_n = \min\{k \in \mathbb{Z} : a_n \eta^k \in [r, r\eta^2]\}.$$

As $\eta > 1 + \varepsilon > \sqrt[3]{1 + \varepsilon}$ and $b_n/a_n = \sqrt[3]{1 + \varepsilon}$, we have

$$[a_n\eta^{m_n}, b_n\eta^{m_n}] \subset [r, r\eta^2].$$

Let z be an accumulation point of $a_n \eta^{m_n}$ and $\varepsilon_1 = \sqrt[6]{1+\varepsilon} - 1$. We will show that

$$E_{K_0} \cap \bigcup_{i \in \mathbb{Z}} (z\eta^i, z(\varepsilon_1 + 1)\eta^i) = \emptyset.$$

Suppose that there exists $l \in E_{K_0} \cap \bigcup_{i \in \mathbb{Z}} (z\eta^i, z(\varepsilon_1 + 1)\eta^i)$. Then there exists $k \in \mathbb{Z}$ such that $l\eta^k \in (z, z(\varepsilon_1 + 1))$. As z is an accumulation point of $a_n\eta^{m_n}$, there exists $m_n > k$ such that

$$l\eta^k \in (a_n \eta^{m_n}, b_n \eta^{m_n});$$

therefore $l \in (a_n \eta^{m_n-k}, b_n \eta^{m_n-k})$ and this contradicts (11).

Taking $\alpha_i = z(\varepsilon_1 + 1)\eta^{-i-1}$ and $\beta_i = z\eta^{-i}$ we obtain an ε_1 -covering of E_{K_0} .

Proof of Theorem A. Suppose that K is C^1 -minimal. By Proposition 1 there exists an open arc $A \subset [x_0 - \delta, x_0 + \delta]$ such that $K_0 = K \cap A$ is C^1 -minimal. By Lemma 3, there exists an ε_1 -covering of E_{K_0} with β_i/α_i constant. By Theorem 1 we deduce that K_0 is not C^1 -minimal, and this is a contradiction.

REMARK 3. As the Cantor set K equals C_S for $S \in S^0(I_1, \ldots, I_k, L)$, we see that S has a dense set of repelling periodic points in K. Therefore, if in the statement of Theorem A one replaces the point x_0 by a periodic repelling point p of period n, and $S|_J \in C^{1+\alpha}$ by $S^n|_J \in C^{1+\alpha}$ for some $\alpha > 0$, the arguments of the proof are still valid.

Acknowledgments. We would like to thank Mariana Pereira and Alvaro Rovella for helpful discussions and for many useful remarks on mathematical structure, style, references, etc.

REFERENCES

 A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. (9) 11 (1932), 333–375.

- D. McDuff, C¹-minimal subsets of the circle, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 1, 177–193.
- [3] A. Norton [A. N. Kercheval], Denjoy minimal sets are far from affine, Ergod. Theory Dynam. Systems 22 (2002), 1803–1812.
- [4] A. Portela, New examples of Cantor sets in S¹ that are not C¹-minimal, Bull. Braz. Math. Soc. 38 (2007), 623–633.

Jorge Iglesias, Aldo Portela Instituto de Matemática Facultad de Ingeniería CC30, CP 11300 Universidad de la República Montevideo, Uruguay E-mail: jorgei@fing.edu.uy aldo@fing.edu.uy

> Received 14 July 2009; revised 20 February 2010

(5244)