COLLOQUIUM MATHEMATICUM

SHARP SPECTRAL ASYMPTOTICS AND WEYL FORMULA FOR ELLIPTIC OPERATORS WITH NON-SMOOTH COEFFICIENTS—PART 2

BY
LECH ZIELINSKI (Calais)

Abstract

We describe the asymptotic distribution of eigenvalues of self-adjoint elliptic differential operators, assuming that the first-order derivatives of the coefficients are Lipschitz continuous. We consider the asymptotic formula of Hörmander's type for the spectral function of pseudodifferential operators obtained via a regularization procedure of non-smooth coefficients.

1. Introduction. This paper presents a refinement of [22], where we consider the asymptotic behaviour of eigenvalues for an elliptic differential operator A with non-smooth coefficients acting on a compact (boundaryless) smooth manifold M with a density $d x$. More precisely A is defined as a selfadjoint operator in $L^{2}(M, d x)$ asssociated with a quadratic form which can be expressed in local coordinates as

$$
\sum_{|\alpha|,|\beta| \leq m}\left(a_{\alpha, \beta} D^{\alpha} \varphi, D^{\beta} \psi\right) \quad \text { for } \varphi, \psi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)
$$

where (\cdot, \cdot) is the scalar product of $L^{2}\left(\mathbb{R}^{d}\right), a_{\alpha, \beta}=\bar{a}_{\beta, \alpha} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and the ellipticity hypothesis means that

$$
\sum_{|\alpha|=|\beta|=m} a_{\alpha, \beta}(x) \xi^{\alpha+\beta} \geq c|\xi|^{2 m}
$$

with $c>0$. We assume that the first order derivatives of top order coefficients (i.e. of $a_{\alpha, \beta}$ with $|\alpha|=|\beta|=m$ in local coordinates) are Lipschitz continuous. Then we have

Theorem 1.1. The spectrum of A under the above hypotheses is discrete, bounded from below and the counting function $N(A, \lambda)$ (i.e. the number of eigenvalues less than λ, counted with multiplicities) satisfies the Weyl formula

$$
\begin{equation*}
N(A, \lambda)=\omega \lambda^{d /(2 m)}\left(1+O\left(\lambda^{-1 /(2 m)}\right)\right) \quad(\lambda \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

where $\omega>0$ is a constant and d is the dimension of the manifold M.
2000 Mathematics Subject Classification: Primary 35P20.
Key words and phrases: elliptic operators, spectral asymptotics, Weyl formula.

The above result is a consequence of the estimate stated in [22, Theorem 1.2] for the pseudodifferential operator A^{\prime} obtained as a suitable regularization of A. Following Hörmander's well-known approach of [3], instead of A^{\prime} we study the pseudodifferential operator $P=A^{\prime 1 /(2 m)}$ of order 1 and the corresponding spectral asymptotics is described in Theorem 1.2 below.

This result is used in [20] to derive the Weyl formula for boundary value problems (cf. [20, Theorem 2.1b] stated without proof). One more result is stated in [20] without proof: the property of finite propagation speed for $e^{-i t P}$ formulated in [20, Proposition 2.5 b$]$; we give its proof in Section 3 of this paper. Concerning earlier results for boundary value problems we refer to $[2],[5-6],[10]$ in the case of smooth coefficients, and to $[9],[11-14]$ in the case of irregular coefficients; concerning the related spectral asymptotics for differential or pseudodifferential operators we refer to [1], [4], [8] and [15]. We note (cf. [21]) that Theorem 1.2 can also be used to obtain the Weyl formula for the integrated density of states for transitive, ergodic, elliptic differential operators in \mathbb{R}^{d} (e.g. operators with almost periodic coefficients).

The precise formulation of Theorem 1.2 uses the following notation of [7]. If $r \geq 0, m \in \mathbb{R}, 0 \leq \delta<\varrho \leq 1$ and X is open in $\mathbb{R}^{d^{\prime}}$, then $S_{\varrho, \delta}^{m}(r)\left(X \times \mathbb{R}^{d}\right)$ is the class of functions $a \in C^{\infty}\left(X \times \mathbb{R}^{d}\right)$ satisfying

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\alpha^{\prime}} a(x, \xi)\right| \leq C_{\alpha, \alpha^{\prime}}\langle\xi\rangle^{m-\varrho|\alpha|+\delta\left(\left|\alpha^{\prime}\right|-r\right)_{+}} \tag{1.2}
\end{equation*}
$$

for $(x, \xi) \in X \times \mathbb{R}^{d}, \alpha \in \mathbb{N}^{d}, \alpha^{\prime} \in \mathbb{N}^{d^{\prime}}$, where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$ and s_{+} denotes the positive part of the real number s.

If $r=0$ then $S_{\varrho, \delta}^{m}(0)\left(X \times \mathbb{R}^{d}\right)=S_{\varrho, \delta}^{m}\left(X \times \mathbb{R}^{d}\right)$ is the usual Hörmander class of symbols of type ϱ, δ. We abbreviate $S_{\varrho, \delta}^{m}(r)\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)=S_{\varrho, \delta}^{m}(r)$.

We denote by $H^{s}(s \in \mathbb{R})$ the Sobolev space on \mathbb{R}^{d} and write $R \in \Psi^{-\infty}$ if R is a linear operator on the Schwartz space $\mathcal{S}\left(\mathbb{R}^{d}\right)$ having continuous extensions $H^{-s} \rightarrow H^{s}$ for every $s \in \mathbb{R}$. Then $\Psi^{-\infty}$ is a Fréchet space with seminorms $\|R\|_{B\left(H^{-n}, H^{n}\right)}, n \in \mathbb{N}$, where $B\left(\mathcal{X}, \mathcal{X}^{\prime}\right)$ denotes the Banach space of bounded linear operators $\mathcal{X} \rightarrow \mathcal{X}^{\prime}$. A subset of a Fréchet space is called bounded when it is bounded with respect to each seminorm.

If A^{\prime} is the operator described in [22, Theorem 1.2] and $P=A^{1 /(2 m)}$, then due to [22, Lemma 2.1] we have $P=p(x, D)+R$ with $R \in \Psi^{-\infty}$ and

$$
\begin{gather*}
p \in S_{1, \delta}^{1}(2) \tag{1.3}\\
|p(x, \xi)| \geq c|\xi| \quad \text { if }|\xi| \geq C \tag{1.4}\\
\left|\nabla_{\xi} p(x, \xi)\right| \geq c \tag{1.5}\\
\text { if }|\xi| \geq C
\end{gather*}
$$

for certain constants $C, c>0$. We shall prove
Theorem 1.2 Let $0 \leq \delta<1$ and assume that $P=p(x, D)+R$ is self-adjoint in $L^{2}\left(\mathbb{R}^{d}\right)$ with $R \in \Psi^{-\infty}$ and p satisfying (1.3)-(1.5). Then the spectral projectors $E(P, \lambda) \in \Psi^{-\infty}$ have smooth integral kernels $e(P, \cdot, \cdot, \lambda)$
and

$$
\begin{equation*}
e(P, y, y, \lambda)=\omega(p, y, \lambda)\left(1+O\left(\lambda^{-1}\right)\right) \tag{1.6}
\end{equation*}
$$

with

$$
\omega(p, y, \lambda)=(2 \pi)^{-d} \int_{\operatorname{Re} p(y, \xi)<\lambda} d \xi
$$

uniformly with respect to $y \in \mathbb{R}^{d}$.
Since the above result implies [22, Theorem 1.2] with no restrictions on $0 \leq \delta<1$, we obtain Theorem 1.1 as explained in [22]. The plan of the proof of Theorem 1.2 is the following. The starting point is the decomposition of the operator P given in the following lemma (proved in the Appendix):

Lemma 1.3. Let P be as in Theorem 1.2 and $\delta<\varrho<1$. Then there exist

$$
\begin{equation*}
\hat{P}=\hat{p}(x, D)+\hat{R}, \quad \check{P}=\check{p}(x, D)+\check{R} \tag{1.7}
\end{equation*}
$$

which are self-adjoint operators in $L^{2}\left(\mathbb{R}^{d}\right)$ such that $P=\hat{P}+\check{P}, \hat{R}, \check{R} \in \Psi^{-\infty}$ and

$$
\begin{equation*}
\hat{p} \in S_{1,1-\varrho}^{1}(2), \quad \check{p} \in S_{1, \delta}^{1-2(1-\varrho)} \cap S_{1, \delta}^{\varrho}(1) \tag{1.8}
\end{equation*}
$$

Moreover the conditions (1.4), (1.5) hold with \hat{p} in place of p.
Now we can note that the theory of Fourier integral operators described in [22, Section 4] still holds for \hat{P} in place of P. In Section 2 we recall the consequences of the Egorov theorem proved in [22] and give some refinements in terms of new classes of pseudodifferential operators. These properties are used in Section 3 to obtain the finite propagation speed by using the KatoTrotter formula (cf. [16]),

$$
\begin{equation*}
\sup _{\tau \in[-\theta ; \theta]}\left\|e^{-i \tau P} \varphi-\left(e^{-i \tau \hat{P} / n} e^{-i \tau \check{P} / n}\right)^{n} \varphi\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{1.9}
\end{equation*}
$$

where $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ and $\theta>0$. To obtain the asymptotic formula (1.6) we use the parabolic approximation of [22, Proposition 3.1] and clearly it suffices to check that [22, Corollary 3.3] still holds without the restriction $\delta<1 / 2$. In fact the condition $\delta<1 / 2$ was needed for "integrations by parts" described in [22, Proposition 3.4] and the task is to formulate a similar statement valid in the general case $0 \leq \delta<1$. Our approach still uses the Kato-Trotter formula and the calculus of commutators leads to new classes of operators considered in Section 4. The introduction of these classes allows us to give a new statement of "integrations by parts" in Section 5 and to end the proof by reasoning in a similar way to [22, Section 5].
2. Preliminary notations. We introduce some classes of pseudodifferential operators depending on parameters τ and v. We fix $\theta>0$ small enough
and we consider some regularity conditions with respect to $\tau \in[-\theta ; \theta]$. The parameter v is an element of a given set V and we assume that the constants are independent of $v \in V$ in all estimates. We write $(v, \tau) \in V_{\theta}=V \times[-\theta ; \theta]$. Set $S_{\varrho}^{m}=S_{\varrho, 1-\varrho}^{m}$; moreover, $A \in \Psi_{\varrho, \delta}^{m}$ means that $A-a(x, D) \in \Psi^{-\infty}$ with $a \in S_{\varrho, \delta}^{m}$. For $m \in \mathbb{R}$ and $0 \leq \delta<\varrho \leq 1$ we write

$$
\begin{equation*}
A=\left\{A_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m}[V] \tag{2.1}
\end{equation*}
$$

if $A_{v}(\tau)=a_{v}(\tau, x, D)+R_{v}(\tau)$, where $\left\{R_{v}\right\}_{v \in V}$ is a bounded subset of the Fréchet space $C^{\infty}\left([-\theta ; \theta], \Psi^{-\infty}\right)$ and for every $\left(l, \alpha^{\prime}, \alpha\right) \in \mathbb{N} \times \mathbb{N}^{d} \times \mathbb{N}^{d}$,

$$
\begin{align*}
& \left|\partial_{\tau}^{l} \partial_{x}^{\alpha^{\prime}} \partial_{\xi}^{\alpha} a_{v}(\tau, x, \xi)\right| \leq C_{l, \alpha^{\prime}, \alpha}\langle\xi\rangle^{m-\varrho|\alpha|+\delta\left|\alpha^{\prime}\right|+l(1-\varrho)} \tag{a}\\
& \left|\partial_{\tau}^{l} \partial_{x}^{\alpha^{\prime}} \partial_{\xi}^{\alpha} a_{v}(0, x, \xi)\right| \leq C_{l, \alpha^{\prime}, \alpha}\langle\xi\rangle^{m-|\alpha|+\delta\left|\alpha^{\prime}\right|+l(1-\varrho)} \tag{~b}
\end{align*}
$$

with some constants $C_{l, \alpha^{\prime}, \alpha}$.
Lemma 2.1. Let $m, \widetilde{m} \in \mathbb{R}$, let A be given by (2.1) and consider

$$
\begin{equation*}
\widetilde{A}=\left\{\widetilde{A}_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{\widetilde{m}}[V] . \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{aligned}
A \widetilde{A} & =\left\{A_{v}(\tau) \widetilde{A}_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m+\widetilde{m}}[V], \\
{[A, \widetilde{A}] } & =\left\{\left[A_{v}(\tau), \widetilde{A}_{v}(\tau)\right]\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m+\tilde{m}-\varrho+\delta}[V], \\
{\left[A_{v}(\tau), x_{j}\right] } & =A_{v}^{+}(\tau)+\tau A_{v}^{-}(\tau)
\end{aligned}
$$

with $A^{ \pm}=\left\{A_{v}^{ \pm}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m^{ \pm}}[V]$, where $m^{+}=m-1, m^{-}=m+1-2 \varrho$ and x_{j} stands for the operator of multiplication by the j th coordinate.

Proof. The assertions concerning $A \tilde{A},[A, \widetilde{A}]$ are obvious and the last assertion follows as in the proof of [22, Lemma 5.2].

Let $m \in \mathbb{R}, r \geq 0$ and $1 / 2<\varrho \leq 1$. We write

$$
\begin{equation*}
A=\left\{A_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho}^{m}((r))[V] \tag{r}
\end{equation*}
$$

whenever $A_{v}(\tau)=a_{v}(\tau, x, D)+R_{v}(\tau)$ with $\left\{R_{v}\right\}_{v \in V}$ forming a bounded subset of $C^{\infty}\left([-\theta ; \theta], \Psi^{-\infty}\right)$ and the symbols a_{v} are such that
(2.5(a)) $\quad\left|\partial_{\tau}^{l} \partial_{x}^{\alpha^{\prime}} \partial_{\xi}^{\alpha} a_{v}(\tau, x, \xi)\right| \leq C_{l, \alpha^{\prime}, \alpha}\langle\xi\rangle^{m-|\alpha|+(1-\varrho)\left(|\alpha|+\left|\alpha^{\prime}\right|+l-r\right)_{+}}$,

$$
\begin{equation*}
\left|\partial_{\tau}^{l} \partial_{x}^{\alpha^{\prime}} \partial_{\xi}^{\alpha} a_{v}(0, x, \xi)\right| \leq C_{l, \alpha^{\prime}, \alpha}\langle\xi\rangle^{m-|\alpha|+(1-\varrho)\left(\left|\alpha^{\prime}\right|+l-r\right)_{+}} \tag{~b}
\end{equation*}
$$

with some constants $C_{l, \alpha^{\prime}, \alpha}$ (for every $\left(l, \alpha^{\prime}, \alpha\right) \in \mathbb{N} \times \mathbb{N}^{d} \times \mathbb{N}^{d}$), where as before s_{+}denotes the positive part of the real number s.

Lemma 2.2. Let $\varrho \geq 2 / 3$ and let A satisfy $(2.4(r))$ with either $r=0$ or $r=1$. If \hat{P} is as in Lemma 1.3, then

$$
\left\{e^{i \tau \hat{P}} A_{v}(\tau) e^{-i \tau \hat{P}}\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho}^{m}((r))[V]
$$

Proof. For simplicity we skip the index v. If $(2.4(0))$ holds and $\mathcal{C}_{\theta}=$ (]$-\theta ; \theta\left[\times \mathbb{R}^{d}\right) \times \mathbb{R}^{d}$, then due to [22, Corollary 4.2] we have

$$
e^{i \tau \hat{P}} A(\tau) e^{-i \tau \hat{P}}=\widetilde{A}(\tau)=\widetilde{a}(\tau, x, D)+\widetilde{R}(\tau)
$$

with $\widetilde{a} \in S_{\varrho}^{m}\left(\mathcal{C}_{\theta}\right)$ and $\widetilde{R} \in C^{\infty}\left([-\theta ; \theta] ; \Psi^{-\infty}\right)$. Therefore the estimates (2.5(a)) hold with $r=0$ and \widetilde{a} in place of a. Since $\widetilde{A}(0)=A(0)$, to complete the proof in the case $r=0$ it remains to show $(2.5(\mathrm{~b}))$ for $l \geq 1, r=0$. We write $\partial_{\hat{P}} A(\tau)=\partial_{\hat{P}}^{1} A(\tau)=\partial_{\tau} A(\tau)+[i \hat{P}, A(\tau)]$ and $\partial_{\hat{P}}^{l+1} A=\partial_{\hat{P}}\left(\partial_{\hat{P}}^{l} A\right)$ for $l \in \mathbb{N} \backslash\{0\}$, hence $\left.\partial_{\tau}^{l} \widetilde{A}\right|_{\tau=0}=\left.\partial_{\hat{P}}^{l} A\right|_{\tau=0}$ and

$$
\begin{equation*}
\left.\left(\left.\partial_{\tau}^{k} A\right|_{\tau=0} \in \Psi_{1,1-\varrho}^{m+k(1-\varrho)} \text { for } k=0 \text { and } 1\right) \Rightarrow \partial_{\hat{P}} A\right|_{\tau=0} \in \Psi_{1,1-\varrho}^{m+\varrho} \tag{2.6}
\end{equation*}
$$

From (2.6) and $\partial_{\tau}^{k} \partial_{\hat{P}} A=\partial_{\hat{P}} \partial_{\tau}^{k} A$ we have

$$
\begin{align*}
& \left(\left.\partial_{\tau}^{k} A\right|_{\tau=0} \in \Psi_{1,1-\varrho}^{m+k(1-\varrho)} \text { for all } k \in \mathbb{N}\right) \tag{2.7}\\
& \quad \Rightarrow\left(\left.\partial_{\tau}^{k} \partial_{\hat{P}} A\right|_{\tau=0} \in \Psi_{1,1-\varrho}^{m+(k+1)(1-\varrho)} \text { for all } k \in \mathbb{N}\right)
\end{align*}
$$

and by induction with respect to $l \in \mathbb{N} \backslash\{0\}$ we obtain

$$
\begin{align*}
& \left(\left.\partial_{\tau}^{k} A\right|_{\tau=0} \in \Psi_{1,1-\varrho}^{m+k(1-\varrho)} \text { for all } k \in \mathbb{N}\right) \tag{2.8}\\
& \quad \Rightarrow\left(\left.\partial_{\tau}^{k} \partial_{\hat{P}}^{l} A\right|_{\tau=0} \in \Psi_{1,1-\varrho}^{m+(k+l)(1-\varrho)} \text { for all } k \in \mathbb{N}, l \in \mathbb{N} \backslash\{0\}\right)
\end{align*}
$$

hence the estimates $(2.5(\mathrm{~b}))$ hold with $r=0$ and \widetilde{a} in place of a.
Consider now the case $r=1$. Then [22, Corollary 4.2] ensures

$$
\widetilde{a}-\widetilde{a}_{0} \in S_{\varrho}^{m+1-2 \varrho}\left(\mathcal{C}_{\theta}\right) \quad \text { with } \quad \widetilde{a}_{0}(\tau, x, \xi)=a(\tau, \vartheta(\tau, x, \xi)),
$$

where $\vartheta: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d}$ is the Hamitonian flow of $\hat{p}_{0}=\operatorname{Re} \hat{p}$,

$$
\vartheta(t, y, \eta)=\exp \left(t H_{\hat{p}_{0}}\right)(y, \eta)=(x(t, y, \eta), \xi(t, y, \eta))
$$

i.e. $\partial_{t} x(t, y, \eta)=\partial_{\xi} \hat{p}_{0}(\vartheta(t, y, \eta)), \partial_{t} \xi(t, y, \eta)=-\partial_{x} \hat{p}_{0}(\vartheta(t, y, \eta))$ and $\vartheta(0, y, \eta)$ $=(y, \eta)$. Since $b \in S_{\varrho}^{m+1-2 \varrho}\left(\mathcal{C}_{\theta}\right)$ with $\varrho \geq 2 / 3$ implies $\partial_{x} b \in S_{\varrho}^{m+2-3 \varrho}\left(\mathcal{C}_{\theta}\right) \subset$ $S_{\varrho}^{m}\left(\mathcal{C}_{\theta}\right)$ and $\partial_{\xi} b \in S_{\varrho}^{m+1-3 \varrho}\left(\mathcal{C}_{\theta}\right) \subset S_{\varrho}^{m-1}\left(\mathcal{C}_{\theta}\right)$, it is clear that $(2.5(\mathrm{a}))$ holds with $r=1$ and $b=\widetilde{a}-\widetilde{a}_{0}$ in place of a. Moreover the properties of the Hamiltonian flow ϑ described in [22, Lemma 4.1] give the estimates (2.5(a)) with $r=1$ for \widetilde{a}_{0} by using [22, Lemma 2.3 b].

To complete the proof it remains to show estimates $(2.5(\mathrm{~b}))$ with $r=1$ and \widetilde{a} in place of a. Since $\widetilde{A}(0)=A(0) \in \Psi_{1,1-\varrho}^{m}$ and $\partial_{\tau} \widetilde{A}(0)=\partial_{\hat{P}} A(0) \in$ $\Psi_{1,1-\varrho}^{m}$, it suffices to consider $(2.5(\mathrm{~b}))$ with $l \geq 2$. We complete the proof using (2.8) with $\partial_{\hat{P}} A$ in place of A, which gives the implication

$$
\begin{aligned}
& \left(\left.\partial_{\tau}^{k} \partial_{\hat{P}} A\right|_{\tau=0} \in \Psi_{1,1-\varrho}^{m+k(1-\varrho)} \text { for all } k \in \mathbb{N}\right) \\
& \quad \Rightarrow\left(\left.\partial_{\hat{P}}^{l}\left(\partial_{\hat{P}} A\right)\right|_{\tau=0}=\left.\partial_{\hat{P}}^{l+1} A\right|_{\tau=0} \in \Psi_{1,1-\varrho}^{m+l(1-\varrho)} \text { for all } l \in \mathbb{N} \backslash\{0\}\right)
\end{aligned}
$$

3. Finite propagation speed. We set $\mathbb{C}_{-}=\{t \in \mathbb{C}: \operatorname{Im} t<0\}$, $\overline{\mathbb{C}}_{-}=\mathbb{C}_{-} \cup \mathbb{R}$ and we prove

Proposition 3.1. Let P be as in Theorem 1.2 and let $\chi_{1}, \chi_{2} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ be such that $\chi_{1}=1$ on a neighbourhood of $\operatorname{supp} \chi_{2}$. If $\theta=\theta\left(\chi_{1}, \chi_{2}\right)>0$ is small enough, then $\left\{\left(1-\chi_{1}\right) e^{-i t P} \chi_{2}\right\}_{\left\{t \in \overline{\mathbb{C}}_{-}:|t|<\theta\right\}}$ is a bounded subset of $\Psi^{-\infty}$, where $1-\chi_{1}$ and χ_{2} are considered as operators of multiplication by the corresponding functions.

Replacing P by $P+C I$ with a constant $C>0$ sufficiently large we can assume that $P \geq I$ and since P is elliptic of degree 1 , for every $s \in \mathbb{R}$ we can find constants $C_{s}, C_{s}^{\prime}>0$ such that

$$
\begin{equation*}
\left\|e^{-i t P} \varphi\right\|_{H^{s}} \leq C_{s}\left\|P^{s} e^{-i t P} \varphi\right\| \leq C_{s}\left\|P^{s} \varphi\right\| \leq C_{s}^{\prime}\|\varphi\|_{H^{s}} \quad \text { for } t \in \overline{\mathbb{C}}_{-} \tag{3.1}
\end{equation*}
$$

Let $\widetilde{\chi}_{2} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ be such that $\chi_{1}=1$ on a neighbourhood of $\operatorname{supp} \widetilde{\chi}_{2}$ and $\widetilde{\chi}_{2}=1$ on a neighbourhood of $\operatorname{supp} \chi_{2}$. If $t=\tau-i \varepsilon$ with $\tau=\operatorname{Re} t$ and $\varepsilon>0$, then $\left(1-\chi_{1}\right) e^{-i t P} \chi_{2}$ can be written in the form

$$
\begin{equation*}
\left(1-\chi_{1}\right) e^{-i \tau P} \widetilde{\chi}_{2} e^{-\varepsilon P} \chi_{2}+\left(1-\chi_{1}\right) e^{-i \tau P}\left(1-\widetilde{\chi}_{2}\right) e^{-\varepsilon P} \chi_{2} \tag{3.2}
\end{equation*}
$$

Thus it suffices to prove Proposition 3.1 for $\tau=\operatorname{Re} t$ and $\widetilde{\chi}_{2}$ in place of t and χ_{2}. Indeed, it is well known that $\left\{e^{-\varepsilon P}\right\}_{0<\varepsilon<\theta}$ is a bounded subset of $\Psi_{1, \delta}^{0}$ (for every $\theta>0$), hence the last term of (3.2) belongs to a bounded subset of $\Psi^{-\infty}$.

In the next step of the proof we consider the operator \check{P} described in Lemma 1.3 assuming that $\varrho<1$. We note that \check{P} is not elliptic and it is not possible to obtain $e^{-i t \check{P}} \in B\left(H^{s}\right):=B\left(H^{s}, H^{s}\right)$ reasoning as in (3.1).

Lemma 3.2 Let $\theta>0$ and $\chi_{1}, \widetilde{\chi}_{2}$ be as above. Then

$$
\left\{\left(1-\chi_{1}\right) e^{-i \tau \check{P}} \widetilde{\chi}_{2}\right\}_{\tau \in[-\theta ; \theta]}
$$

is a bounded subset of $\Psi^{-\infty}$.
Proof. Let $s \in \mathbb{R}$. We show that there is a constant $C_{s}>0$ such that

$$
\begin{equation*}
\left\|e^{-i \tau \check{P}} \varphi\right\|_{H^{s}} \leq C_{s}\|\varphi\|_{H^{s}} \quad \text { for } \tau \in[-\theta ; \theta] \tag{s}
\end{equation*}
$$

Using the duality it suffices to show $(3.3(s))$ for $s \geq 0$ and it is clear that (3.3(0)) holds. Then writing

$$
\begin{equation*}
A e^{-i \tau \check{P}} \varphi=e^{-i \tau \check{P}} A \varphi+\tau \int_{0}^{1} d z e^{-i \tau(1-z) \check{P}}[i \check{P}, A] e^{-i \tau z \check{P}} \varphi \tag{3.4}
\end{equation*}
$$

with $A=\langle D\rangle^{\kappa}$ and assuming $(3.3(s))$ for a given $s \geq 0$ we can estimate the norm $\left\|e^{-i \tau \check{P}} \varphi\right\|_{H^{s+\kappa}}$ by
$(3.5(s))\left\|A e^{-i \tau \check{P}} \varphi\right\|_{H^{s}} \leq\left\|e^{-i \tau \check{P}} A \varphi\right\|_{H^{s}}+\sup _{0 \leq z \leq 1} \theta C_{s}\left\|[\check{P}, A] e^{-i \tau z \check{P}} \varphi\right\|_{H^{s}}$.

If $0<\kappa \leq 1-\varrho$, then using (1.8) we obtain

$$
\begin{equation*}
[\check{P}, A] \in \Psi_{1, \delta}^{\kappa+\varrho-1} \subset B\left(H^{s}\right) \quad \text { for every } s \in \mathbb{R} \tag{3.6}
\end{equation*}
$$

and the right hand side of $(3.5(s))$ can be estimated by $C_{s, \kappa}\|\varphi\|_{H^{s+\kappa}}$, implying $(3.3(s+\kappa))$.

Due to $(3.3(s))$ it remains to show that for every $s \geq 0$ there is a constant $C_{s}>0$ such that $(3.7(s)) \quad\left\|\left(1-\chi_{1}\right) e^{-i \tau \check{P}} \varphi\right\|_{H^{s}} \leq C_{s}\|\varphi\| \quad$ if $\operatorname{supp} \varphi \subset \operatorname{supp} \widetilde{\chi}_{2}, \tau \in[-\theta ; \theta]$.
It is clear that $(3.7(0))$ holds. Setting $A=\langle D\rangle^{\kappa}\left(1-\chi_{1}\right)$ we still have (3.6) if $0<\kappa \leq 1-\varrho$, and introducing $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\chi_{1}=1$ on a neighbourhood of $\operatorname{supp} \chi, \chi=1$ on a neighbourhood of $\operatorname{supp} \widetilde{\chi}_{2}$, we have $[\check{P}, A] \chi \in \Psi^{-\infty}$. Therefore assuming that $(3.7(s))$ holds for a given $s \geq 0$ and χ in place of χ_{1} we obtain
$\left\|[\check{P}, A](1-\chi) e^{-i \tau z \check{P}} \varphi\right\|_{H^{s}} \leq C_{s}\|\varphi\| \quad$ if $\operatorname{supp} \varphi \subset \operatorname{supp} \widetilde{\chi}_{2}, z \tau \in[-\theta ; \theta]$, and $(3.5(s))$ implies $(3.7(s+\kappa))$.

Now, for $\tau \in \mathbb{R}$ we define

$$
\begin{equation*}
\hat{U}_{\tau}=e^{-i \tau \hat{P}}, \quad \hat{U}_{\tau}^{*}=e^{i \tau \hat{P}}, \quad \check{U}_{\tau}=e^{-i \tau \check{P}}, \quad \check{U}_{\tau}^{*}=e^{i \tau \check{P}} \tag{3.8}
\end{equation*}
$$

where \check{P} and \hat{P} are as in Lemma 1.3 with $\max \{2 / 3, \delta, 1-\delta\}<\varrho<1$.
We consider a map $\widetilde{\sigma}: V \rightarrow[-1 ; 1]$ and

$$
\begin{equation*}
A^{0}=\left\{A_{v}^{0}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho}^{m_{0}}((1))[V] \tag{3.9}
\end{equation*}
$$

Then setting

$$
\begin{equation*}
A_{v}^{\widetilde{\sigma}}(\tau)=\hat{U}_{\tau \widetilde{\sigma}(v)}^{*} A_{v}^{0}(\tau) \hat{U}_{\tau \widetilde{\sigma}(v)} \tag{3.10}
\end{equation*}
$$

and reasoning as in the proof of Lemma 2.2 we obtain

$$
\begin{equation*}
A^{\widetilde{\sigma}}=\left\{A_{v}^{\widetilde{\sigma}}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho}^{m_{0}}((1))[V] \tag{3.11}
\end{equation*}
$$

Next we consider another map $\sigma: V \rightarrow[-1 ; 1]$ and applying the formula (3.4) we can write

$$
\begin{equation*}
\check{U}_{\tau \sigma(v)}^{*} A_{v}^{\widetilde{\sigma}}(\tau) \check{U}_{\tau \sigma(v)}=A_{v}^{\widetilde{\sigma}}(\tau)+\tau \sigma(v) Y_{v}^{\sigma, \widetilde{\sigma}}(\tau) \tag{a}
\end{equation*}
$$

with

$$
\begin{equation*}
Y_{v}^{\sigma, \widetilde{\sigma}}(\tau)=\int_{0}^{1} d z \check{U}_{\tau z \sigma(v)}^{*}\left[i \check{P}, A_{v}^{\widetilde{\sigma}}(\tau)\right] \check{U}_{\tau z \sigma(v)} \tag{~b}
\end{equation*}
$$

However,

$$
\begin{equation*}
\left\{\left[\check{P}, A_{v}^{\widetilde{\sigma}}(\tau)\right]\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m_{0}+\varrho-1}[V] \tag{3.13}
\end{equation*}
$$

and due to $(3.3(s))$ for every $s \in \mathbb{R}$ there is a constant $C_{s}>0$ such that

$$
\begin{equation*}
\left\|Y_{v}^{\sigma, \widetilde{\sigma}}(\tau)\right\|_{B\left(H^{s}, H^{s-m_{0}-\varrho+1}\right)} \leq C_{s} \quad \text { for }(v, \tau) \in V_{\theta} \tag{3.14}
\end{equation*}
$$

for every $\sigma, \widetilde{\sigma}: V \rightarrow[-1 ; 1]$.

Our aim is to use the properties of \check{U}_{τ} and \hat{U}_{τ} to complete the proof of Proposition 3.1 via the Kato-Trotter formula (1.9). For this reason we are going to study the powers of products $\check{U}_{\tau \sigma(v)} \hat{U}_{\tau \sigma(v)}$ where $0 \leq \sigma(v) \leq 1$. To begin we set

$$
U_{\tau}=\hat{U}_{\tau} \check{U}_{\tau}, \quad U_{\tau}^{k}=\left(\hat{U}_{\tau} \check{U}_{\tau}\right)^{k}
$$

where $\tau \in \mathbb{R}$ and $k \in \mathbb{Z}$. Then $U_{\tau \sigma(v)}^{-1} A_{v}^{\widetilde{\sigma}}(\tau) U_{\tau \sigma(v)}$ equals

$$
\begin{equation*}
\check{U}_{\tau \sigma(v)}^{*} A_{v}^{\widetilde{\sigma}+\sigma}(\tau) \check{U}_{\tau \sigma(v)}=A_{v}^{\widetilde{\sigma}+\sigma}(\tau)+\tau \sigma(v) Y_{v}^{\sigma, \sigma+\widetilde{\sigma}}(\tau) \tag{3.15}
\end{equation*}
$$

and assuming that $\hat{n}: V \rightarrow \mathbb{N}$ is such that

$$
\begin{equation*}
\hat{n} \sigma: V \rightarrow[-1 ; 1] \quad \text { where } \quad \hat{n} \sigma(v)=\hat{n}(v) \sigma(v) \tag{3.16}
\end{equation*}
$$

by induction we find that $U_{\tau \sigma(v)}^{-\hat{n}(v)} A_{v}^{0}(\tau) U_{\tau \sigma(v)}^{\hat{n}(v)}$ can be expressed as

$$
\begin{equation*}
A_{v}^{\hat{n} \sigma}(\tau)+\tau \sigma(v) \sum_{1 \leq n(v) \leq \hat{n}(v)} U_{\tau \sigma(v)}^{n(v)-\hat{n}(v)} Y_{v}^{\sigma, n \sigma}(\tau) U_{\tau \sigma(v)}^{\hat{n}(v)-n(v)} \tag{3.17}
\end{equation*}
$$

where $n \sigma: V \rightarrow[-1 ; 1]$ denotes the $\operatorname{map} v \mapsto n(v) \sigma(v)$.
Lemma 3.3. Let $\chi_{1}, \widetilde{\chi}_{2} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ be such that $\chi_{1}=1$ on a neighbourhood of $\operatorname{supp} \widetilde{\chi}_{2}$ and let $\theta=\theta\left(\chi_{1}, \widetilde{\chi}_{2}\right)>0$ be small enough. Then for every $s \in \mathbb{R}$ there is a constant $C_{s}>0$ such that

$$
\begin{align*}
& \left\|\left(1-\chi_{1}\right) U_{\tau \sigma(v)}^{\hat{n}(v)} \varphi\right\|_{H^{s}} \leq C_{s}\|\varphi\| \tag{s}\\
& \quad \text { if } \operatorname{supp} \varphi \subset \operatorname{supp} \widetilde{\chi}_{2},(v, \tau) \in V_{\theta},
\end{align*}
$$

for any maps $\sigma: V \rightarrow[-1 ; 1]$ and $\hat{n}: V \rightarrow \mathbb{N}$ satisfying (3.16).
Proof. In the first step we check that for every $s \in \mathbb{R}$ there is a constant $C_{s}>0$ such that

$$
\begin{equation*}
\left\|U_{\tau \sigma(v)}^{\hat{n}(v)} \varphi\right\|_{H^{s}} \leq C_{s}\|\varphi\|_{H^{s}} \quad \text { for }(v, \tau) \in V_{\theta} \tag{s}
\end{equation*}
$$

for all $\sigma: V \rightarrow[-1 ; 1]$ and $\hat{n}: V \rightarrow \mathbb{N}$ satisfying (3.16).
Clearly the above asssertion holds for $s=0$. Assume that it holds for a given $s \geq 0$. Since (3.16) still holds with $-\hat{n}(v)$ in place of $\hat{n}(v)$, we can use $(3.19(s))$ with $-\hat{n}(v)$ in place of $\hat{n}(v)$ to obtain $(3.19(-s))$. Moreover the condition $1 \leq n(v) \leq \hat{n}(v)$ ensures $(n-\hat{n}) \sigma: V \rightarrow[-1 ; 1]$ and $(3.19(s))$ holds with $(\hat{n}-n)(v)$ in place of $n(v)$. Therefore writing the composition of (3.17) with $U_{\tau \sigma(v)}^{\hat{n}(v)}$ we can estimate $\left\|A_{v}^{0}(\tau) U_{\tau \sigma(v)}^{\hat{n}(v)} \varphi\right\|_{H^{s}}$ by $(3.20(s)) \quad C_{s}\left\|A_{v}^{\hat{n} \sigma}(\tau) \varphi\right\|_{H^{s}}+\sup _{1 \leq n(v) \leq \hat{n}(v)} \theta C_{s}\left\|Y_{v}^{\sigma, n \sigma}(\tau) U_{\tau \sigma(v)}^{(\hat{n}-n)(v)} \varphi\right\|_{H^{s}}$.
Taking $A_{v}^{0}(\tau)=\langle D\rangle^{\kappa}$ with $0<\kappa \leq 1-\varrho$ we have (3.11) with $m_{0}=\kappa$ and (3.14) allows us to estimate the right hand side of $(3.20(s))$ by $C_{s, \kappa}\|\varphi\|_{H^{s+\kappa}}$, implying $(3.19(s+\kappa))$.

Next we note that the assertion of Lemma 3.3 holds if $s=0$. Assume that it holds for a given $s \geq 0$ and set $A_{v}^{0}(\tau)=\langle D\rangle^{\kappa}\left(1-\chi_{1}\right)$ with $0<\kappa \leq 1-\varrho$ and χ defined as below $(3.7(s))$. Then choosing $\theta=\theta\left(\chi_{1}, \chi\right)>0$ small enough we find that $\left\{A_{v}^{\hat{n} \sigma}(\tau) \chi\right\}_{(v, \tau) \in V_{\theta}}$ is a bounded subset of $\Psi^{-\infty}$. Indeed, applying the theory of Fourier integral operators of $[22$, Section 4$]$ to \hat{P} we obtain the finite propagation speed for $e^{-i t \hat{P}}$ in a standard way (cf. Egorov theorem stated as [22, Corollary 4.2]).

Therefore introducing $\widetilde{\chi} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\chi=1$ on a neighbourhood of $\operatorname{supp} \widetilde{\chi}$ and $\chi_{1}=1$ on a neighbourhood of $\operatorname{supp} \widetilde{\chi}$, we see that $\left\{Y_{v}^{\sigma, n \sigma}(\tau) \widetilde{\chi}\right\}_{(v, \tau) \in V_{\theta}}$ is a bounded subset of $\Psi^{-\infty}$ due to Lemma 3.2. Thus $(3.20(s))$ allows estimating the norm $\left\|\left(1-\chi_{1}\right) U_{\tau \sigma(v)}^{\hat{n}(v)} \varphi\right\|_{H^{s+\kappa}}$ by

$$
\begin{equation*}
C_{s}^{\prime}\|\varphi\|+\sup _{1 \leq n(v) \leq \hat{n}(v)} C_{s}^{\prime}\left\|Y_{v}^{\sigma, n \sigma}(\tau)(1-\widetilde{\chi}) U_{\tau \sigma(v)}^{(n-\hat{n})(v)} \varphi\right\|_{H^{s}} \tag{3.21}
\end{equation*}
$$

and $\operatorname{supp} \varphi \subset \operatorname{supp} \widetilde{\chi}_{2}$ allows estimating the last term of (3.21) by $C_{s}^{\prime \prime}\|\varphi\|$ due to the assertion $(3.18(s))$ with $\widetilde{\chi}$ in place of χ_{1}.

End of proof of Proposition 3.1. We take $V=\mathbb{N} \backslash\{0\}, s \geq 0$ and applying Lemma 3.3 with $\hat{n}(v)=v$ and $\sigma(v)=1 / v$ we find $\theta=\theta\left(\chi_{1}, \widetilde{\chi}_{2}\right)>0$ such that $\left\{\widetilde{\chi}_{2}\left(U_{\tau / v}^{v}\right)^{*}\left(1-\chi_{1}\right)\right\}_{(v, \tau) \in V_{\theta}}$ is a bounded subset of $B\left(H^{-s}, L^{2}\right)$. Therefore we find constants C_{s} such that

$$
\left\|\widetilde{\chi}_{2}\left(U_{\tau / v}^{v}\right)^{*}\left(1-\chi_{1}\right)\langle D\rangle^{s} \varphi\right\| \leq C_{s}\|\varphi\| \quad \text { for }(v, \tau) \in V_{\theta}, \varphi \in H^{s}
$$

Thus the Kato-Trotter formula (1.9) implies

$$
\left\|\widetilde{\chi}_{2} e^{i \tau P}\left(1-\chi_{1}\right)\langle D\rangle^{s} \varphi\right\| \leq C_{s}\|\varphi\| \quad \text { for } \varphi \in H^{s}, \tau \in[-\theta ; \theta]
$$

i.e. $\left\{\widetilde{\chi}_{2} e^{i \tau P}\left(1-\chi_{1}\right)\right\}_{\tau \in[-\theta ; \theta]}$ is a bounded subset of $B\left(H^{-s}, L^{2}\right)$ for every $s \geq 0$, completing the proof by (3.1).
4. Commutator estimates. We keep the notations of Section 3 assuming that $0 \leq \delta<1$ and \hat{P}, \check{P} are as in Lemma 1.3 with $\max \{2 / 3, \delta, 1-\delta\}<$ $\varrho<1$. Moreover $\kappa=\min \{1-\varrho, \varrho-\delta\}$ and as before σ is a map $V \rightarrow[-1 ; 1]$. We begin by defining classes $\mathcal{Y}_{\sigma}^{m}[V]$ preserved by conjugations with \breve{U}_{s} similarly to [19]. We write

$$
\begin{equation*}
Y=\left\{Y_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Y}_{\sigma}^{m}[V] \tag{4.1}
\end{equation*}
$$

if there exist $N \in \mathbb{N}$, polynomials $w_{1}, \ldots, w_{N}: \mathbb{R}^{N+1} \rightarrow \mathbb{C}$, real-valued polynomials $w_{k, k^{\prime}}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ for $k, k^{\prime}=1, \ldots, N$ and operators

$$
A_{k, k^{\prime}}=\left\{A_{k, k^{\prime}, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m\left(k, k^{\prime}\right)}[V]
$$

with $\sum_{1 \leq k^{\prime} \leq N} m\left(k, k^{\prime}\right) \leq m(k=1, \ldots, N)$ such that

$$
Y_{v}(\tau)=\sum_{1 \leq k \leq N} \int_{[0 ; 1]^{N}} d z w_{k}(\tau, z) Y_{k, 1, v}(\tau, z) Y_{k, 2, v}(\tau, z) \ldots Y_{k, N, v}(\tau, z)
$$

with

$$
Y_{k, k^{\prime}, v}(\tau, z)=\check{U}_{\tau w_{k, k^{\prime}}(z) \sigma(v)}^{*} A_{k, k^{\prime}, v}(\tau) \check{U}_{\tau w_{k, k^{\prime}}(z) \sigma(v)}
$$

Lemma 4.1. Let $m, \widetilde{m} \in \mathbb{R}$, let Y be given by (4.1) and

$$
\begin{equation*}
\widetilde{Y}=\left\{\widetilde{Y}_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Y}_{\sigma}^{\widetilde{m}}[V] \tag{4.2}
\end{equation*}
$$

Then

$$
\begin{align*}
Y \widetilde{Y} & =\left\{Y_{v}(\tau) \widetilde{Y}_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Y}_{\sigma}^{m+\widetilde{m}}[V] \tag{4.3}\\
{[A, \widetilde{Y}] } & =\left\{\left[A_{v}(\tau), \widetilde{Y}_{v}(\tau)\right]\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Y}_{\sigma}^{m+\widetilde{m}-\kappa}[V] \tag{4.4}
\end{align*}
$$

where A is given by $(2.4(1))$.
Proof. The assertion (4.3) is obvious and the proof of (4.4) follows the reasoning described in [19]. More precisely, we introduce

$$
\bar{Y}_{k, k^{\prime}, v}(\tau, z)=\int_{0}^{1} d z^{\prime} \sigma(v) w_{k, k^{\prime}}(z) \check{U}_{\tau z^{\prime} w_{k, k^{\prime}}(z) \sigma(v)}^{*}\left[A_{v}(\tau), i \check{P}\right] \check{U}_{\tau z^{\prime} w_{k, k^{\prime}}(z) \sigma(v)}
$$

and express $\left[A_{v}(\tau), Y_{k, k^{\prime}, v}(\tau)\right]$ in the form

$$
\check{U}_{\tau w_{k, k^{\prime}}(z) \sigma(v)}^{*}\left[A_{v}(\tau), A_{k, k^{\prime}, v}(\tau)\right] \check{U}_{\tau w_{k, k^{\prime}}(z) \sigma(v)}+\tau\left[\bar{Y}_{k, k^{\prime}, v}(\tau), Y_{k, k^{\prime}, v}(\tau)\right]
$$

We complete the proof by observing that $\left\{\left[A_{v}(\tau), i \check{P}\right]\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m-1+\varrho}[V]$ and $\left\{\left[A_{v}(\tau), A_{k, k^{\prime}, v}(\tau)\right]\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m+m\left(k, k^{\prime}\right)-\varrho+\delta}[V]$.

Let $m \in \mathbb{R}, \sigma: V \rightarrow[-1 ; 1]$ and $\bar{n}: V \rightarrow \mathbb{Z}$. Then we write

$$
\begin{equation*}
Z=\left\{Z_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \widetilde{\mathcal{Z}}_{\bar{n}, \sigma}^{m}[V] \tag{4.5}
\end{equation*}
$$

if there exist $C_{0}>0$ and $N \in \mathbb{N}, \hat{n}_{1}, \ldots, \hat{n}_{N}: V \rightarrow \mathbb{Z}$ such that

$$
\hat{n}_{1}(v)+\ldots+\hat{n}_{N}(v)=\bar{n}(v), \quad\left(\left|\hat{n}_{1}(v)\right|+\ldots+\left|\hat{n}_{N}(v)\right|\right)|\sigma(v)| \leq C_{0}
$$

and

$$
Z_{v}(\tau)=Y_{1, v}(\tau) U_{\tau \sigma(v)}^{\hat{n}_{1}(v)} Y_{2, v}(\tau) U_{\tau \sigma(v)}^{\hat{n}_{2}(v)} \ldots Y_{N, v}(\tau) U_{\tau \sigma(v)}^{\hat{n}_{N}(v)}
$$

where $\left\{Y_{k, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Y}_{\sigma}^{m(k)}[V]$ with $m(1)+\ldots+m(N) \leq m$.
LEmma 4.2. Let $m \in \mathbb{R}, \sigma: V \rightarrow[-1 ; 1], \bar{n}: V \rightarrow \mathbb{Z}$ and $\hat{n}: V \rightarrow \mathbb{Z}$ be such that $\hat{n} \sigma: V \rightarrow[-1 ; 1]$. Let Z be given by (4.5) and $\sigma_{1}: \mathbb{N} \times V \rightarrow[-1 ; 1]$ be such that $\sigma_{1}(n, v)=\sigma(v)$. If A^{0} and $A^{\widetilde{\sigma}}$ are given by (3.9)-(3.10), then there is $C>0$ such that

$$
\begin{align*}
A_{v}^{\hat{n} \sigma}(\tau) Z_{v}(\tau)= & Z_{v}(\tau) A_{v}^{(\hat{n}+\bar{n}) \sigma}(\tau) \tag{4.6}\\
& +\sum_{0 \leq n^{\prime}<N} Z_{n^{\prime}, v}(\tau)+\tau \sigma(v) \sum_{N \leq n \leq C|\sigma(v)|^{-1}} Z_{n, v}(\tau)
\end{align*}
$$

with some $\left\{Z_{n, v}(\tau)\right\}_{(n, v, \tau) \in \mathbb{N} \times V \times[-\theta ; \theta]} \in \widetilde{\mathcal{Z}}_{\bar{n}, \sigma_{1}}^{m+m_{0}-\kappa}[\mathbb{N} \times V]$, where $\theta>0$ is small enough.

Proof. Assume first that $N=1$. Then the assertion follows immediately from Lemma 4.1 and (3.17). Indeed, if $N=1$ then (4.6) holds with

$$
\begin{aligned}
& Z_{0, v}(\tau)=\left[A_{v}^{\hat{n} \sigma}(\tau), Y_{1, v}(\tau)\right] U_{\tau \sigma(v)}^{\hat{n}_{1}(v)} \\
& Z_{n, v}(\tau)=Y_{1, v}(\tau) U_{\tau \sigma(v)}^{n} Y_{n, v}^{0}(\tau) U_{\tau \sigma(v)}^{\hat{n}_{1}(v)-n} \quad(n \geq 1)
\end{aligned}
$$

where for $1 \leq n \leq \hat{n}(v)$ we have $Y_{n, v}^{0}(\tau)=Y_{v}^{\sigma,(\hat{n}+n) \sigma}$, introduced in (3.12(b)), and for $\hat{n}(v)<n \leq C|\sigma(v)|^{-1}$ we set $Y_{n, v}^{0}(\tau)=0$. Therefore (3.13) ensures

$$
\begin{equation*}
\left\{Y_{n, v}^{0}(\tau)\right\}_{(n, v, \tau) \in \mathbb{N} \times V \times[-\theta ; \theta]} \in \mathcal{Y}_{\sigma_{1}}^{m_{0}-\kappa}[\mathbb{N} \times V] \tag{4.7}
\end{equation*}
$$

It is clear that the assertion for $N=1$ follows from (4.4) and (4.7). For general $N \in \mathbb{N}$, it suffices to repeat the analogous reasoning N times.

Let $m \in \mathbb{R}, \sigma: V \rightarrow[-1 ; 1]$ and $\bar{n}: V \rightarrow \mathbb{Z}$. Then we write

$$
\begin{equation*}
Z=\left\{Z_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Z}_{\bar{n}, \sigma}^{m}[V] \tag{4.8}
\end{equation*}
$$

if there exist $C>0, N \in \mathbb{N}$ and

$$
\left\{Z_{k, n, v}(\tau)\right\}_{(n, v, \tau) \in \mathbb{N} \times V \times[-\theta ; \theta]} \in \widetilde{\mathcal{Z}}_{\bar{n}, \sigma_{1}}^{m}[\mathbb{N} \times V] \quad(k=0, \ldots, N)
$$

such that

$$
Z_{v}(\tau)=\sum_{0 \leq k \leq N} \sigma(v)^{k} \sum_{0 \leq n \leq C|\sigma(v)|^{-k}} Z_{k, n, v}(\tau)
$$

It is easy to see that this notation allows reformulating Lemma 4.2 as
Corollary 4.3. Let $m \in \mathbb{R}, \sigma: V \rightarrow[-1 ; 1], \bar{n}: V \rightarrow \mathbb{Z}$ and let Z be given by (4.8) as above. If A^{0} is given by (3.9), $A_{v}^{\widetilde{\sigma}}$ is defined by (3.10) and

$$
\begin{equation*}
\widetilde{Z}_{v}(\tau)=A_{v}^{0}(\tau) Z_{v}(\tau)-Z_{v}(\tau) A_{v}^{\bar{n} \sigma}(\tau) \tag{4.9}
\end{equation*}
$$

then $\left\{\widetilde{Z}_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Z}_{\bar{n}, \sigma}^{m+m_{0}-\kappa}[V]$.
Lemma 4.4. Let $\widetilde{\sigma}: V \rightarrow[-1 ; 1]$ and

$$
\begin{equation*}
B_{v}^{\widetilde{\sigma}}(\tau)=\hat{U}_{\tau \widetilde{\sigma}(v)}^{*} x_{j} \hat{U}_{\tau \widetilde{\sigma}(v)} \tag{4.10}
\end{equation*}
$$

If \tilde{Y} is given by (4.2) and $m^{+}=\widetilde{m}-1, m^{-}=\widetilde{m}-\kappa$, then

$$
\left[B_{v}^{\widetilde{\sigma}}(\tau), \widetilde{Y}_{v}(\tau)\right]=Y_{v}^{+}(\tau)+\tau Y_{v}^{-}(\tau) \text { with } Y^{ \pm}=\left\{Y_{v}^{ \pm}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Y}_{\sigma}^{m^{ \pm}}[V]
$$

Proof. First of all we check that $\left\{\widetilde{A}_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{\widetilde{m}}[V]$ ensures

$$
\left[B_{v}^{\widetilde{\sigma}}(\tau), \widetilde{A}_{v}(\tau)\right]=\widetilde{A}_{v}^{+}(\tau)+\tau \widetilde{A}_{v}^{-}(\tau) \quad \text { with } \quad\left\{\widetilde{A}_{v}^{ \pm}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{m^{ \pm}}[V]
$$

and $m^{+}=\widetilde{m}-1, m^{-}=\widetilde{m}-\kappa$.

Indeed, this follows from Lemma 2.1 and the fact that

$$
\begin{gathered}
B_{v}^{\widetilde{\sigma}}(\tau)=x_{j}+\tau A_{v}(\tau) \quad \text { with } \quad A_{v}(\tau)=\int_{0}^{1} \partial_{\tau} B_{v}^{\widetilde{\sigma}}(z \tau) d z \\
\left\{\partial_{\tau} B_{v}^{\widetilde{\sigma}}(\tau)\right\}_{(v, \tau) \in V_{\theta}}=\left\{\widetilde{\sigma}(v) \hat{U}_{\tau \widetilde{\sigma}(v)}^{*}\left[i \hat{P}, x_{j}\right] \hat{U}_{\tau \widetilde{\sigma}(v)}\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho}^{0}((1))[V]
\end{gathered}
$$

$$
\text { i.e. } A_{v}=\left\{A_{v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho}^{0}((1))[V] \text {. Next, similarly to (3.13), we find }
$$

$$
\left\{\left[B_{v}^{\widetilde{\sigma}}(\tau), i \check{P}\right]\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}_{\varrho, \delta}^{-1+\varrho}[V]
$$

and to complete the proof it remains to replace $A_{v}(\tau)$ by $B_{v}^{\widetilde{\sigma}}(\tau)$ in the proof of Lemma 4.1.

Using Lemmas 2.1 and 4.4 it is easy to follow the reasoning of the proof of Lemma 4.2 with $B^{\widetilde{\sigma}}$ in place of $A^{\widetilde{\sigma}}$. In particular we obtain

Corollary 4.5. Let Z and $B_{v}^{\tilde{\sigma}}(\tau)$ be given by (4.8) and (4.10). Set

$$
\begin{equation*}
\widetilde{Z}_{v}(\tau)=x_{j} Z_{v}(\tau)-Z_{v}(\tau) B_{v}^{\bar{n} \sigma(v)}(\tau) \tag{4.11}
\end{equation*}
$$

If $m^{+}=m-1$ and $m^{-}=m-\kappa$, then

$$
\widetilde{Z}_{v}(\tau)=\widetilde{Z}_{v}^{+}(\tau)+\tau \widetilde{Z}_{v}^{-}(\tau) \quad \text { with } \quad\left\{Z_{v}^{ \pm}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Z}_{\bar{n}, \sigma}^{m^{ \pm}}[V]
$$

5. End of proof. We recall that following the parabolic construction of [22, Proposition 3.1] we obtain Theorem 1.2 from the estimates of [22, Theorem 2.4] and reasoning as at the end of [22, Section 3] we can see that Theorem 1.2 follows from

Proposition 5.1. Let $l_{0} \in \mathbb{N}, m_{0} \in \mathbb{R}$ and $q \in S_{1, \delta}^{m_{0}}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$. Let $\theta, \theta^{\prime}>0$ be small enough and set

$$
\begin{align*}
\Xi_{0}\left(\theta, \theta^{\prime}\right) & =\left\{t \in \mathbb{C}: 0<-\operatorname{Im} t<\theta^{\prime}|\operatorname{Re} t| \text { and }|t|<\theta\right\} \tag{5.1}\\
\Xi\left(\theta, \theta^{\prime}\right) & =\left\{\left(t, \tau^{\prime}\right): t \in \Xi_{0}\left(\theta, \theta^{\prime}\right) \text { and } \tau^{\prime} \in[0 ; \operatorname{Re} t]\right\} \tag{5.2}
\end{align*}
$$

If $l \geq m_{0}+l_{0}+d+1$ and δ_{y} is the Dirac mass at y, then

$$
\begin{equation*}
\sup _{\substack{(t, \tau) \in \Xi\left(\theta, \theta^{\prime}\right) \\ y \in \mathbb{R}^{d}}}\left|t^{l}\left\langle P^{l_{0}} e^{-i \tau P} \delta_{y}, \operatorname{Op}\left(q e^{i(\tau-t) p_{0}}\right)^{*} \delta_{y}\right\rangle\right|<\infty \tag{5.3}
\end{equation*}
$$

Now, we assume that $y \in B\left(y_{0}, r\right)$ where $y_{0} \in \mathbb{R}^{d}, r>0$ is small enough (independent of y_{0}) and all estimates are uniform with respect to y_{0}. We consider a set V^{\prime} of indices and introduce

$$
\begin{align*}
V=\{v= & \left(y, t, n, \tau^{\prime}, v^{\prime}\right): \tag{5.4}\\
& \left.y \in B\left(y_{0}, r\right), n \in \mathbb{N} \backslash\{0\},\left(t, \tau^{\prime}\right) \in \Xi\left(\theta, \theta^{\prime}\right), v^{\prime} \in V^{\prime}\right\}
\end{align*}
$$

We introduce functions $\sigma: V \rightarrow[-1 ; 1]$ and $\hat{n}: V \rightarrow \mathbb{N}$, setting

$$
\begin{equation*}
\sigma(v)=\sigma\left(y, t, n, \tau^{\prime}, v^{\prime}\right)=1 / n, \quad \hat{n}(v)=\hat{n}\left(y, t, n, \tau^{\prime}, v^{\prime}\right)=n \tag{5.5}
\end{equation*}
$$

and write $Z \in \mathcal{Z}_{\sigma}^{m}[V]$ if $Z \in \mathcal{Z}_{\bar{n}, \sigma}^{m}[V]$ with $\bar{n}(v)=0$ for all $v \in V$.

Let $k \in \mathbb{Z}$ and let $m(k), m^{\prime}(k), m^{\prime \prime}(k)$ be some real numbers. We consider the following conditions:
$(5.6(k)) \quad\left\{q_{k, v}\right\}_{v \in V}$ is a bounded subset of $S_{1, \delta}^{m(k)}$
(i.e. (1.2) holds with $a=q_{k, v}, m=m(k), \varrho=1, r=0, x \in X=\mathbb{R}^{d}$ and constants $C_{\alpha, \alpha^{\prime}}$ independent of $\left.v \in V\right)$,

$$
\begin{align*}
& \left\{A_{k, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{A}^{m^{\prime}(k)}[V] \tag{k}\\
& \left\{Z_{k, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Z}_{\sigma}^{m^{\prime \prime}(k)}[V] \tag{k}
\end{align*}
$$

and introduce the notation

$$
\begin{align*}
& J\left(q_{k, v}, A_{k, v}, Z_{k, v}\right)(\tau) \tag{5.9}\\
& \quad=\left\langle U_{\tau \sigma(v)}^{\hat{n}(v)} A_{k, v}(\tau) \delta_{y}, Z_{k, v}(\tau) \operatorname{Op}\left(q_{k, v}^{\sharp} e^{i(\tau-t) p_{0}}\right)^{*} \delta_{y}\right\rangle
\end{align*}
$$

where $v=\left(y, t, n, \tau^{\prime}, v^{\prime}\right) \in V$ and $q_{k, v}^{\sharp}\left(x, \xi, x^{\prime}\right)=q_{k, v}\left(x^{\prime}, \xi\right)$.
Proposition 5.2. Let $\kappa=\min \{\varrho-\delta, 1-\varrho\}$. Assume that $q_{0, v}, A_{0, v}$, $Z_{0, v}$ satisfy respectively $(5.6(k)),(5.7(k)),(5.8(k))$ with $k=0$. Then there exist $k_{1} \in \mathbb{N}$ and $q_{k, v}, A_{k, v}, Z_{k, v}$ satisfying respectively $(5.6(k))$, (5.7(k)), (5.8(k)) for $k= \pm 1, \ldots, \pm k_{1}$ with
(5.10(a)) $m(k)+m^{\prime}(k)+m^{\prime \prime}(k) \leq m(0)+m^{\prime}(0)+m^{\prime \prime}(0)-1$ for $k>0$, $(5.10(b)) \quad m(k)+m^{\prime}(k)+m^{\prime \prime}(k) \leq m(0)+m^{\prime}(0)+m^{\prime \prime}(0)-\kappa$ for $k<0$, such that

$$
\begin{align*}
& t J\left(q_{0, v}, A_{0, v}, Z_{0, v}\right)(\tau) \tag{5.11}\\
& \quad=\sum_{1 \leq k \leq k_{1}}\left(J\left(q_{k, v}, A_{k, v}, Z_{k, v}\right)+t J\left(q_{-k, v}, A_{-k, v}, Z_{-k, v}\right)\right)(\tau)+O(1)
\end{align*}
$$

uniformly with respect to $\left\{(v, \tau): v=\left(y, t, n, \tau^{\prime}, v^{\prime}\right) \in V\right.$ and $\left.\tau^{\prime}=\tau\right\}$.
Proof that Proposition 5.1 follows from Proposition 5.2. First of all we note that due to the H^{s}-estimates of Section 3, the conditions (5.6(k)), $(5.7(k)),(5.8(k))$ imply that the families of operators

$$
\left\{\operatorname{Op}\left(q_{k, v}^{\sharp} e^{i(\tau-t) p_{0}}\right)\right\}_{(v, \tau) \in V_{\theta}}, \quad\left\{A_{k, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}}, \quad\left\{Z_{k, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}}
$$

are bounded in $B\left(H^{s}, H^{s-m(k)}\right), B\left(H^{s}, H^{s-m^{\prime}(k)}\right), B\left(H^{s}, H^{s-m^{\prime \prime}(k)}\right)$ respectively, hence there is a constant $C>0$ (independent of $(v, \tau) \in V \times$ $[-\theta ; \theta])$ such that

$$
m(k)+m^{\prime}(k)+m^{\prime \prime}(k) \leq-d-1 \Rightarrow\left|J\left(q_{k, v}, A_{k, v}, Z_{k, v}\right)(\tau)\right| \leq C
$$

Thus reasoning as in [22, after Proposition 5.1] we can take k_{1} large enough
and forget all the terms $J\left(q_{-k, v}, A_{-k, v}, Z_{-k, v}\right)$, i.e. in place of (5.11) we have

$$
\begin{equation*}
t J\left(q_{0, v}, A_{0, v}, Z_{0, v}\right)(\tau)=\sum_{1 \leq k \leq k_{1}} J\left(q_{k, v}, A_{k, v}, Z_{k, v}\right)(\tau)+O(1) \tag{5.12}
\end{equation*}
$$

Then reasoning as at the beginning of [22, Section 5] we note that iterating this assertion l times we can write (5.12) with t^{l} in place of t and $q_{k, v}, A_{k, v}$, $Z_{k, v}$ satisfying $(5.6(k)),(5.7(k)),(5.8(k))$ with

$$
m(k)+m^{\prime}(k)+m^{\prime \prime}(k) \leq m(0)+m^{\prime}(0)+m^{\prime \prime}(0)-l \quad \text { for } k=1, \ldots, k_{l}
$$

This general statement is analogous to [22, Proposition 3.4], and to obtain (5.3) it suffices to take

$$
q_{0, v}(x, \xi)=q(y, \xi, x), \quad A_{0, v}(\tau)=P^{-d}, \quad Z_{0, v}(\tau)=P^{d+l_{0}}
$$

Indeed, since $P^{-d} \delta_{y} \in L^{2}$, the Kato-Trotter formula (1.9) allows us to write (5.3) in the form

$$
\sup _{\substack{(t, \tau) \in \Xi\left(\theta, \theta^{\prime}\right) \\ y \in \mathbb{R}^{d}}}\left|\lim _{n \rightarrow \infty} t^{l} J\left(q_{0, v}, A_{0, v}, Z_{0, v}\right)(\tau)\right|_{\tau^{\prime}=\tau} \mid<\infty
$$

Proof of Proposition 5.2. Step 1. First of all we note that as at the beginning of the proof of [22, Proposition 5.1], using a suitable partition of unity we may assume that

$$
\begin{equation*}
\operatorname{supp} q_{0, v} \subset B\left(y_{0}, 2 r\right) \times \Gamma_{j}(c) \tag{5.13}
\end{equation*}
$$

where $c>0$ is small enough and

$$
\begin{equation*}
\Gamma_{ \pm j}(c)=\left\{\xi \in \mathbb{R}^{d}: \pm \partial_{\xi_{j}} p_{0}\left(y_{0}, \xi\right)>2 c\right\} \quad \text { for } j=1, \ldots, d \tag{5.14}
\end{equation*}
$$

As in [22], we fix $j \in\{1, \ldots, d\}$. If $\chi_{j, c, r}^{0} \in S_{1,0}^{0}$ is such that $\operatorname{supp} \chi_{j, c, r}^{0} \subset$ $B\left(y_{0}, 3 r\right) \times \Gamma_{j}(c / 2)$ and $\chi_{j, c, r}^{0}=1$ on $B\left(y_{0}, 2 r\right) \times \Gamma_{j}(c)(c f$. [22, Lemma 3.2]), then
(5.15) $\left\{\left(1-\chi_{j, c, r}^{0}\right)(x, D) \operatorname{Op}\left(q_{0, v}^{\sharp} e^{i(t-\tau) p_{0}}\right)^{*}\right\}_{(v, \tau) \in V_{\theta}} \quad$ is bounded in $\Psi^{-\infty}$.

Then Corollary 4.5 alllows us to write

$$
\begin{equation*}
U_{\tau / n}^{n} x_{j} U_{\tau / n}^{-n}=\hat{U}_{\tau} x_{j} \hat{U}_{\tau}^{*}+\widetilde{Z}_{1, v}(\tau)+\tau \widetilde{Z}_{-1, v}(\tau) \tag{5.16}
\end{equation*}
$$

with

$$
\left\{\widetilde{Z}_{1, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Z}_{\sigma}^{-1}[V], \quad\left\{\widetilde{Z}_{-1, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Z}_{\sigma}^{-\kappa}[V]
$$

Moreover we have

$$
\begin{equation*}
\hat{U}_{\tau} x_{j} \hat{U}_{\tau}^{*}=x_{j}-\tau \widetilde{P}_{1}(\tau) \quad \text { with } \quad \widetilde{P}_{1}(\tau)=\int_{0}^{1} d z \hat{U}_{z \tau}\left[i \hat{P}, x_{j}\right] \hat{U}_{z \tau}^{*} \tag{5.17}
\end{equation*}
$$

hence we can consider \widetilde{P}_{1} as an element of $\mathcal{A}_{\varrho}^{0}((1))$. For $y \in \mathbb{R}^{d}$ let

$$
P_{y}=p_{y}(x, D) \quad \text { with } \quad p_{y}(x, \xi)=\partial_{\xi_{j}} p_{0}(y, \xi)
$$

(i.e. the symbol $p_{y} \in S_{1}^{0}$ is independent of the x-variable) and for $v=$ $\left(y, t, n, \tau^{\prime}, v^{\prime}\right) \in V$ let

$$
\begin{equation*}
\widetilde{P}_{v}(\tau)=\frac{\tau^{\prime}}{\bar{t}} \widetilde{P}_{1}(\tau)+\left(1-\frac{\tau^{\prime}}{\bar{t}}\right) P_{y}=\widetilde{p}_{v}(\tau, x, D)+R_{v, \tau} \tag{5.18}
\end{equation*}
$$

where $\left\{R_{v, \tau}\right\}_{(v, \tau) \in V_{\theta}}$ is bounded in $\Psi^{-\infty}$.
As in [22, Section 5], assuming $\theta, \theta^{\prime}>0$ small enough we obtain

$$
\begin{equation*}
\left|\widetilde{p}_{v}(\tau, x, \xi)\right| \geq \frac{c}{4} \quad \text { for } v \in V,(\tau, x, \xi) \in[-\theta ; \theta] \times B\left(y_{0}, 3 r\right) \times \Gamma_{j}(c / 2) \tag{5.19}
\end{equation*}
$$

Step 2. We note that there exist $\widetilde{Z}_{-2, v}$ satisfying $(5.8(-2))$ with $m^{\prime \prime}(-2)$ $=m^{\prime \prime}(0)-\kappa$ and

$$
\left\{\widetilde{Z}_{0, v}(\tau)\right\}_{(v, \tau) \in V_{\theta}} \in \mathcal{Z}_{\sigma}^{m^{\prime \prime}(0)}[V]
$$

such that for $v=\left(y, t, n, \tau^{\prime}, v^{\prime}\right) \in V$ and $\tau^{\prime} \in[0 ; \operatorname{Re} t]$ we have

$$
\begin{align*}
& Z_{0, v}(\tau) \operatorname{Op}\left(q_{0, v}^{\sharp} e^{i(t-\tau) p_{0}}\right)^{*} \tag{5.20}\\
&=\left(\widetilde{Z}_{0, v}(\tau) \widetilde{P}_{v}(\tau)+Z_{-2, v}(\tau)\right) \operatorname{Op}\left(q_{0, v}^{\sharp} e^{i(t-\tau) p_{0}}\right)^{*}
\end{align*}
$$

Indeed, since \widetilde{p}_{v} is uniformly elliptic in $B\left(y_{0}, 3 r\right) \times \Gamma_{j}(c / 2) \supset \operatorname{supp} \chi_{j, c, r}^{0}$ (due to (5.19)), it remains to use (5.15) as in [22, Section 5].

Step 3. We write $y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$ and note that there exist $Z_{ \pm 3, v}$ satisfying $(5.8(\pm 3))$ with $m^{\prime \prime}(3)=m^{\prime \prime}(0)-1, m^{\prime \prime}(-3)=m^{\prime \prime}(0)-\kappa$ and

$$
\begin{align*}
\bar{t} \widetilde{Z}_{0, v}(\tau) \widetilde{P}_{v}(\tau)= & \left(\tau^{\prime} \widetilde{P}_{1}(\tau)-\left(x_{j}-y_{j}\right)\right) \widetilde{Z}_{0, v}(\tau) \tag{5.21}\\
& +\widetilde{Z}_{0, v}(\tau)\left(\left(\bar{t}-\tau^{\prime}\right) P_{y}+\left(x_{j}-y_{j}\right)\right) \\
& +Z_{3, v}(\tau)+\bar{t} Z_{-3, v}(\tau)
\end{align*}
$$

Indeed, it suffices to estimate the commutator of $\widetilde{Z}_{0, v}$ with x_{j} applying Corollary 4.5, and with $\widetilde{P}_{1}(\tau)$ applying Corollary 4.3.

Step 4. There exist $q_{ \pm 4, v}$ satisfying $(5.6(\pm 4))$ with $m(4)=m(0)-1$, $m(-4)=m(0)-\kappa$ and

$$
\begin{align*}
& \left((\bar{t}-\tau) P_{y}+\left(x_{j}-y_{j}\right)\right) \operatorname{Op}\left(q_{1, v}^{\sharp} e^{i(t-\tau) p_{0}}\right)^{*} \delta_{y} \tag{5.22}\\
& \quad=\operatorname{Op}\left(\left(q_{4, v}^{\sharp}+t q_{-4, v}^{\sharp}\right) e^{i(t-\tau) p_{0}}\right)^{*} \delta_{y} .
\end{align*}
$$

Indeed, we integrate by parts as in the proof of [22, Proposition 5.1].
Step 5. There exist $Z_{ \pm 1, v}$ satisfying $(5.8(\pm 1))$ with $m^{\prime \prime}(1)=m^{\prime \prime}(0)-1$, $m^{\prime \prime}(-1)=m^{\prime \prime}(0)-\kappa$ and $A_{ \pm 5, v}$ satisfying $(5.7(\pm 5))$ with $m^{\prime}(5)=m^{\prime}(0)-1$, $m^{\prime}(-5)=m^{\prime}(0)-\kappa$ such that

$$
\begin{equation*}
\widetilde{Z}_{0, v}(\tau)^{*}\left(\tau \widetilde{P}_{1}(\tau)+y_{j}-x_{j}\right) U_{\tau / n}^{n} A_{0, v}(\tau) \delta_{y} \tag{5.23}
\end{equation*}
$$

$$
=\left(Z_{1, v}+t Z_{-1, v}\right)(\tau)^{*} U_{\tau / n}^{n} A_{0, v}(\tau) \delta_{y}+\widetilde{Z}_{0, v}(\tau)^{*} U_{\tau / n}^{n}\left(A_{5, v}+t A_{-5, v}\right)(\tau) \delta_{y}
$$

Indeed, Lemma 2.1 ensures the existence of $A_{ \pm 5, v}$ satisfying

$$
\left(y_{j}-x_{j}\right) A_{0, v}(\tau) \delta_{y}=\left[A_{0, v}(\tau), x_{j}-y_{j}\right] \delta_{y}=\left(A_{5, v}+t A_{-5, v}\right)(\tau) \delta_{y}
$$

and (5.16) can be written as

$$
U_{\tau / n}^{n}\left(y_{j}-x_{j}\right)=\left(\tau \widetilde{P}_{1}(\tau)+y_{j}-x_{j}-\widetilde{Z}_{1, v}(\tau)-\tau \widetilde{Z}_{-1, v}(\tau)\right) U_{\tau / n}^{n}
$$

hence (5.23) holds if

$$
Z_{1, v}(\tau)^{*}=\widetilde{Z}_{0, v}(\tau)^{*} \widetilde{Z}_{1, v}(\tau), \quad Z_{-1, v}(\tau)^{*}=\frac{\tau^{\prime}}{t} \widetilde{Z}_{0, v}(\tau)^{*} \widetilde{Z}_{-1, v}(\tau)
$$

Step 6. Let $Z_{ \pm 1, v}, Z_{-2, v}, Z_{ \pm 3, v}, q_{ \pm 4, v}, A_{ \pm 5, v}$ be as above, $Z_{2, v}(\tau)=0$ and

$$
\begin{array}{cc}
q_{k, v}=q_{0, v}, & m(k)=m(0) \\
A_{k, v}=A_{0, v}, & m^{\prime}(k)=m^{\prime}(0) \\
\text { for } k= \pm 1, \pm 2, \pm 3, \pm 5 \\
\text { for } k= \pm 1, \pm 2, \pm 3, \pm 4
\end{array}
$$

Then (5.20)-(5.23) with $\tau=\tau^{\prime}$ give the equality (5.11).
6. Appendix: Proof of Lemma 1.3. Let $\gamma \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and set $\gamma_{\alpha}(x)=$ $x^{\alpha} \gamma(x)$ for $\alpha \in \mathbb{N}^{d}$. We assume that $\int \gamma=1$ and $\int \gamma_{\alpha}=0$ if $|\alpha|=1$. We introduce \hat{h} and $\check{h}=p-\hat{h}$ by

$$
\begin{align*}
\hat{h}(x, \xi) & =\int p(y, \xi) \gamma\left((x-y)\langle\xi\rangle^{1-\varrho}\right)\langle\xi\rangle^{(1-\varrho) d} d y \tag{A.1}\\
\check{h}(x, \xi) & =\int(p(x, \xi)-p(y, \xi)) \gamma\left((x-y)\langle\xi\rangle^{1-\varrho}\right)\langle\xi\rangle^{(1-\varrho) d} d y \tag{A.2}\\
\partial_{x}^{\alpha} \hat{h}(x, \xi) & =\int \partial_{x}^{\alpha} p(x-y, \xi) \gamma\left(y\langle\xi\rangle^{1-\varrho}\right)\langle\xi\rangle^{(1-\varrho) d} d y \tag{A.3}
\end{align*}
$$

A simple analysis of (A.3) (cf. [7] or [18, Proposition 6.3]) allows us to conclude that $\partial_{x}^{\alpha} p \in S_{1, \delta}^{1} \Rightarrow \partial_{x}^{\alpha} \hat{h} \in S_{1,1-\varrho}^{1}$ if $|\alpha| \leq 2$. Using the Taylor formula

$$
p(x, \xi)-p(y, \xi)+\sum_{1 \leq j \leq d} \partial_{x_{j}} p(x, \xi)\left(x_{j}-y_{j}\right)=\sum_{|\alpha|=2} p_{\alpha}(x, y, \xi)(x-y)^{\alpha}
$$

and $\int\left(x_{j}-y_{j}\right) \gamma\left((x-y)\langle\xi\rangle^{1-\varrho}\right) d y=0$, we can write (A.2) in the form

$$
\begin{equation*}
\check{h}(x, \xi)=\sum_{|\alpha|=2}\langle\xi\rangle^{-2(1-\varrho)} \int p_{\alpha}(x, y, \xi) \gamma_{\alpha}\left((x-y)\langle\xi\rangle^{1-\varrho}\right)\langle\xi\rangle^{(1-\varrho) d} d y \tag{A.4}
\end{equation*}
$$

Now it is easy to check that $p_{\alpha} \in S_{1, \delta}^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ for $|\alpha|=2$ implies $\check{h} \in S_{1, \delta}^{1-2(1-\varrho)}$. Similarly introducing $\widetilde{p}_{\alpha} \in S_{1, \delta}^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)(|\alpha|=1)$ by

$$
\partial_{x} p(x, \xi)-\partial_{x} p(x-y, \xi)=\sum_{|\alpha|=1} \widetilde{p}_{\alpha}(x, y, \xi) y^{\alpha}
$$

we get $\partial_{x} \check{h}=\partial_{x} p-\partial_{x} \hat{h} \in S_{1, \delta}^{1-(1-\varrho)}$, using (A.3) to express $\left(\partial_{x} p-\partial_{x} \hat{h}\right)(x, \xi)$ as

$$
\begin{aligned}
\int\left(\partial_{x} p(x, \xi)-\partial_{x} p(x\right. & -y, \xi)) \gamma\left(y\langle\xi\rangle^{1-\varrho}\right)\langle\xi\rangle^{(1-\varrho) d} d y \\
& =\sum_{|\alpha|=1}\langle\xi\rangle^{-(1-\varrho)} \int \widetilde{p}_{\alpha}(x, y, \xi) \gamma_{\alpha}\left(y\langle\xi\rangle^{1-\varrho}\right)\langle\xi\rangle^{(1-\varrho) d} d y
\end{aligned}
$$

Then $\check{P}=\frac{1}{2}\left(\breve{h}(x, D)+\breve{h}(x, D)^{*}\right)$ and $\hat{P}=\frac{1}{2}\left(\hat{h}(x, D)+\hat{h}(x, D)^{*}\right)$ are essentially self-adjoint on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ by Nelson's commutator lemma (cf. [16] with $N=I-\Delta$) and conditions (1.4)-(1.5) for p imply analogous conditions for \hat{h} and \hat{p} due to (1.8) (note that $\left|\nabla_{\xi} \breve{h}(x, \xi)\right| \leq C\langle\xi\rangle^{-2(1-\varrho)}$).

REFERENCES

[1] M. Birman and M. Solomyak, Asymptotic behaviour of spectrum of differential equations, J. Soviet Math. 12 (1979), 247-282.
[2] Z. Brüning, Zur Abschätzung der Spektralfunktion elliptischer Operatoren, Math. Z. 197 (1974), 75-85.
[3] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218.
[4] -, The Analysis of Linear Partial Differential Operators, Springer, Berlin, 1983 (Vols. 1, 2), 1985 (Vols. 3, 4).
[5] V. Ivriŭ, Precise Spectral Asymptotics for Elliptic Operators, Lecture Notes in Math. 1100, Springer, 1984.
[6] —, Microlocal Analysis and Precise Spectral Asymptotics, Springer, Berlin, 1998.
[7] H. Kumano-go and M. Nagase, Pseudodifferential operators with non-regular symbols and applications, Funkcial. Ekvac. 21 (1978), 151-192.
[8] S. Z. Levendorskiĭ, Asymptotic Distribution of Eigenvalues of Differential Operators, Math. Appl. (Soviet Ser.) 53, Kluwer, Dordrecht, 1990.
[9] G. Métivier, Valeurs propres des problèmes aux limites irréguliers, Bull. Soc. Math. France Mém. 51-52 (1977), 125-219.
[10] -, Estimations du reste en théorie spectrale, Rend. Sem. Mat. Univ. Politec. Torino 1983, Special Issue, 157-180.
[11] Y. Miyazaki, A sharp asymptotic remainder estimate for the eigenvalues of operators associated with strongly elliptic sesquilinear forms, Japan. J. Math. 15 (1989), 65-97.
[12] -, The eigenvalue distribution of elliptic operators with Hölder continuous coefficients, Osaka J. Math. 28 (1991), 935-973.
[13] -, The eigenvalue distribution of elliptic operators with Hölder continuous coefficients II, ibid. 30 (1993), 267-302.
[14] -, Asymptotic behaviour of the spectral function of elliptic operators with Hölder continuous coefficients, J. Math. Soc. Japan 49 (1997), 539-563.
[15] A. Mohamed, Comportement asymptotique, avec estimation du reste, des valeurs propres d'une classe d'opérateurs pseudo-différentiels sur R^{n}, Math. Nachr. 140 (1989), 127-186.
[16] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols. I-IV, Academic Press, New York, 1972, 1975, 1979.
[17] L. Zielinski, Asymptotic behaviour of eigenvalues of differential operators with irregular coefficients on a compact manifold, C. R. Acad. Sci. Paris Sér. I 310 (1990), 563-568.
[18] -, Asymptotic distribution of eigenvalues of some elliptic operators with simple remainder estimates, J. Operator Theory 39 (1998), 249-282.
[19] -, Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates, Asymptotic Anal. 17 (1998), 93-120.
[20] -, Asymptotic distribution of eigenvalues for elliptic boundary value problems, ibid. 16 (1998), 181-201.
[21] -, Spectral asymptotics for elliptic operators with Hölder continuous coefficients, 2: the ergodic case, in: Reports of 17th Conf. Operator Theory (Timişoara, 1998).
[22] -, Sharp spectral asymptotics and Weyl formula for elliptic operators with nonsmooth coefficients, Math. Phys. Anal. Geom. 2 (1999), 291-321.

Laboratoire de Mathématiques Pures et Appliquées (LMPA)
Centre Universitaire de la Mi-Voix
Université du Littoral
50, rue F. Buisson, B.P. 699
62228 Calais Cedex, France
E-mail: zielinsk@lmpa.univ-littoral.fr

