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SHARP SPECTRAL ASYMPTOTICS AND WEYL FORMULA

FOR ELLIPTIC OPERATORS

WITH NON-SMOOTH COEFFICIENTS—PART 2

BY

LECH ZIELINSKI (Calais)

Abstract. We describe the asymptotic distribution of eigenvalues of self-adjoint el-
liptic differential operators, assuming that the first-order derivatives of the coefficients are
Lipschitz continuous. We consider the asymptotic formula of Hörmander’s type for the
spectral function of pseudodifferential operators obtained via a regularization procedure
of non-smooth coefficients.

1. Introduction. This paper presents a refinement of [22], where we
consider the asymptotic behaviour of eigenvalues for an elliptic differential
operator A with non-smooth coefficients acting on a compact (boundaryless)
smooth manifoldM with a density dx. More precisely A is defined as a self-
adjoint operator in L2(M,dx) asssociated with a quadratic form which can
be expressed in local coordinates as∑

|α|,|β|≤m

(aα,βD
αϕ,Dβψ) for ϕ, ψ ∈ C∞0 (R

d)

where (·, ·) is the scalar product of L2(Rd), aα,β = aβ,α ∈ L
∞(Rd) and the

ellipticity hypothesis means that∑

|α|=|β|=m

aα,β(x)ξ
α+β ≥ c|ξ|2m

with c > 0. We assume that the first order derivatives of top order coeffi-
cients (i.e. of aα,β with |α| = |β| = m in local coordinates) are Lipschitz
continuous. Then we have

Theorem 1.1. The spectrum of A under the above hypotheses is dis-
crete, bounded from below and the counting function N(A, λ) (i.e. the num-
ber of eigenvalues less than λ, counted with multiplicities) satisfies the Weyl
formula

(1.1) N(A, λ) = ωλd/(2m)(1 +O(λ−1/(2m))) (λ→∞)

where ω > 0 is a constant and d is the dimension of the manifold M .
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The above result is a consequence of the estimate stated in [22, Theorem
1.2] for the pseudodifferential operator A′ obtained as a suitable regulariza-
tion of A. Following Hörmander’s well-known approach of [3], instead of A′

we study the pseudodifferential operator P = A′1/(2m) of order 1 and the
corresponding spectral asymptotics is described in Theorem 1.2 below.
This result is used in [20] to derive the Weyl formula for boundary value

problems (cf. [20, Theorem 2.1b] stated without proof). One more result is
stated in [20] without proof: the property of finite propagation speed for
e−itP formulated in [20, Proposition 2.5b]; we give its proof in Section 3 of
this paper. Concerning earlier results for boundary value problems we refer
to [2], [5–6], [10] in the case of smooth coefficients, and to [9], [11–14] in the
case of irregular coefficients; concerning the related spectral asymptotics for
differential or pseudodifferential operators we refer to [1], [4], [8] and [15].
We note (cf. [21]) that Theorem 1.2 can also be used to obtain the Weyl
formula for the integrated density of states for transitive, ergodic, elliptic
differential operators in R

d (e.g. operators with almost periodic coefficients).
The precise formulation of Theorem 1.2 uses the following notation of [7].

If r ≥ 0, m ∈ R, 0 ≤ δ < ̺ ≤ 1 and X is open in R
d′ , then Sm̺,δ(r)(X × R

d)

is the class of functions a ∈ C∞(X × R
d) satisfying

(1.2) |∂αξ ∂
α′

x a(x, ξ)| ≤ Cα,α′〈ξ〉
m−̺|α|+δ(|α′|−r)+

for (x, ξ) ∈ X × R
d, α ∈ N

d, α′ ∈ N
d′ , where 〈ξ〉 = (1 + |ξ|2)1/2 and s+

denotes the positive part of the real number s.
If r = 0 then Sm̺,δ(0)(X × R

d) = Sm̺,δ(X × R
d) is the usual Hörmander

class of symbols of type ̺, δ. We abbreviate Sm̺,δ(r)(R
d × R

d) = Sm̺,δ(r).

We denote by Hs (s ∈ R) the Sobolev space on R
d and write R ∈ Ψ−∞

if R is a linear operator on the Schwartz space S(Rd) having continuous
extensions H−s → Hs for every s ∈ R. Then Ψ−∞ is a Fréchet space with
seminorms ‖R‖B(H−n,Hn), n ∈ N, where B(X ,X ′) denotes the Banach space
of bounded linear operators X → X ′. A subset of a Fréchet space is called
bounded when it is bounded with respect to each seminorm.
If A′ is the operator described in [22, Theorem 1.2] and P = A′1/(2m),

then due to [22, Lemma 2.1] we have P = p(x,D) +R with R ∈ Ψ−∞ and

p ∈ S11,δ(2),(1.3)

|p(x, ξ)| ≥ c|ξ| if |ξ| ≥ C,(1.4)

|∇ξp(x, ξ)| ≥ c if |ξ| ≥ C,(1.5)

for certain constants C, c > 0. We shall prove

Theorem 1.2 Let 0 ≤ δ < 1 and assume that P = p(x,D) + R is
self-adjoint in L2(Rd) with R ∈ Ψ−∞ and p satisfying (1.3)–(1.5). Then the
spectral projectors E(P, λ) ∈ Ψ−∞ have smooth integral kernels e(P, ·, ·, λ)
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and

(1.6) e(P, y, y, λ) = ω(p, y, λ)(1 +O(λ−1))

with

ω(p, y, λ) = (2π)−d
\

Re p(y,ξ)<λ

dξ,

uniformly with respect to y ∈ R
d.

Since the above result implies [22, Theorem 1.2] with no restrictions on
0 ≤ δ < 1, we obtain Theorem 1.1 as explained in [22]. The plan of the proof
of Theorem 1.2 is the following. The starting point is the decomposition of
the operator P given in the following lemma (proved in the Appendix):

Lemma 1.3. Let P be as in Theorem 1.2 and δ < ̺ < 1. Then there
exist

(1.7) P̂ = p̂(x,D) + R̂, P̌ = p̌(x,D) + Ř,

which are self-adjoint operators in L2(Rd) such that P = P̂+P̌ , R̂, Ř ∈ Ψ−∞

and

(1.8) p̂ ∈ S11,1−̺(2), p̌ ∈ S
1−2(1−̺)
1,δ ∩ S̺1,δ(1).

Moreover the conditions (1.4), (1.5) hold with p̂ in place of p.

Now we can note that the theory of Fourier integral operators described
in [22, Section 4] still holds for P̂ in place of P . In Section 2 we recall the
consequences of the Egorov theorem proved in [22] and give some refinements
in terms of new classes of pseudodifferential operators. These properties are
used in Section 3 to obtain the finite propagation speed by using the Kato–
Trotter formula (cf. [16]),

(1.9) sup
τ∈[−θ; θ]

‖e−iτPϕ− (e−iτP̂ /ne−iτP̌ /n)nϕ‖ → 0 as n→∞,

where ϕ ∈ L2(Rd) and θ > 0. To obtain the asymptotic formula (1.6) we use
the parabolic approximation of [22, Proposition 3.1] and clearly it suffices to
check that [22, Corollary 3.3] still holds without the restriction δ < 1/2. In
fact the condition δ < 1/2 was needed for “integrations by parts” described
in [22, Proposition 3.4] and the task is to formulate a similar statement valid
in the general case 0 ≤ δ < 1. Our approach still uses the Kato–Trotter
formula and the calculus of commutators leads to new classes of operators
considered in Section 4. The introduction of these classes allows us to give a
new statement of “integrations by parts” in Section 5 and to end the proof
by reasoning in a similar way to [22, Section 5].

2. Preliminary notations. We introduce some classes of pseudodiffer-
ential operators depending on parameters τ and v. We fix θ > 0 small enough
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and we consider some regularity conditions with respect to τ ∈ [−θ; θ]. The
parameter v is an element of a given set V and we assume that the constants
are independent of v ∈ V in all estimates. We write (v, τ) ∈ Vθ = V ×[−θ; θ].
Set Sm̺ = S

m
̺,1−̺; moreover, A ∈ Ψ

m
̺,δ means that A − a(x,D) ∈ Ψ

−∞ with
a ∈ Sm̺,δ. For m ∈ R and 0 ≤ δ < ̺ ≤ 1 we write

(2.1) A = {Av(τ)}(v,τ)∈Vθ ∈ A
m
̺,δ[V ]

if Av(τ) = av(τ, x,D) + Rv(τ), where {Rv}v∈V is a bounded subset of the
Fréchet space C∞([−θ; θ], Ψ−∞) and for every (l, α′, α) ∈ N× N

d × N
d,

|∂lτ∂
α′

x ∂
α
ξ av(τ, x, ξ)| ≤ Cl,α′,α〈ξ〉

m−̺|α|+δ|α′|+l(1−̺),(2.2(a))

|∂lτ∂
α′

x ∂
α
ξ av(0, x, ξ)| ≤ Cl,α′,α〈ξ〉

m−|α|+δ|α′|+l(1−̺),(2.2(b))

with some constants Cl,α′,α.

Lemma 2.1. Let m, m̃ ∈ R, let A be given by (2.1) and consider

(2.3) Ã = {Ãv(τ)}(v,τ)∈Vθ ∈ A
m̃
̺,δ[V ].

Then

AÃ = {Av(τ)Ãv(τ)}(v,τ)∈Vθ ∈ A
m+m̃
̺,δ [V ],

[A, Ã] = {[Av(τ), Ãv(τ)]}(v,τ)∈Vθ ∈ A
m+m̃−̺+δ
̺,δ [V ],

[Av(τ), xj ] = A
+
v (τ) + τA

−
v (τ)

with A± = {A±v (τ)}(v,τ)∈Vθ ∈ A
m±

̺,δ [V ], where m
+ = m−1, m− = m+1−2̺

and xj stands for the operator of multiplication by the jth coordinate.

Proof. The assertions concerning AÃ, [A, Ã] are obvious and the last
assertion follows as in the proof of [22, Lemma 5.2].

Let m ∈ R, r ≥ 0 and 1/2 < ̺ ≤ 1. We write

(2.4(r)) A = {Av(τ)}(v,τ)∈Vθ ∈ A
m
̺ ((r))[V ]

whenever Av(τ) = av(τ, x,D) + Rv(τ) with {Rv}v∈V forming a bounded
subset of C∞([−θ; θ], Ψ−∞) and the symbols av are such that

|∂lτ∂
α′

x ∂
α
ξ av(τ, x, ξ)| ≤ Cl,α′,α〈ξ〉

m−|α|+(1−̺)(|α|+|α′|+l−r)+ ,(2.5(a))

|∂lτ∂
α′

x ∂
α
ξ av(0, x, ξ)| ≤ Cl,α′,α〈ξ〉

m−|α|+(1−̺)(|α′|+l−r)+ ,(2.5(b))

with some constants Cl,α′,α (for every (l, α
′, α) ∈ N × N

d × N
d), where as

before s+ denotes the positive part of the real number s.

Lemma 2.2. Let ̺≥ 2/3 and let A satisfy (2.4(r)) with either r=0 or
r = 1. If P̂ is as in Lemma 1.3, then

{eiτP̂Av(τ)e
−iτP̂ }(v,τ)∈Vθ ∈ A

m
̺ ((r))[V ].
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Proof. For simplicity we skip the index v. If (2.4(0)) holds and Cθ =
(]−θ; θ[× R

d)× R
d, then due to [22, Corollary 4.2] we have

eiτP̂A(τ)e−iτP̂ = Ã(τ) = ã(τ, x,D) + R̃(τ)

with ã ∈ Sm̺ (Cθ) and R̃ ∈ C∞([−θ; θ]; Ψ−∞). Therefore the estimates

(2.5(a)) hold with r = 0 and ã in place of a. Since Ã(0) = A(0), to complete
the proof in the case r = 0 it remains to show (2.5(b)) for l ≥ 1, r = 0. We
write ∂P̂A(τ) = ∂1

P̂
A(τ) = ∂τA(τ) + [iP̂ , A(τ)] and ∂

l+1

P̂
A = ∂P̂ (∂

l
P̂
A) for

l ∈ N \ {0}, hence ∂lτ Ã|τ=0 = ∂
l
P̂
A|τ=0 and

(2.6) (∂kτA|τ=0 ∈ Ψ
m+k(1−̺)
1,1−̺ for k = 0 and 1) ⇒ ∂P̂A|τ=0 ∈ Ψ

m+1−̺
1,1−̺ .

From (2.6) and ∂kτ ∂P̂A = ∂P̂∂
k
τA we have

(2.7) (∂kτA|τ=0 ∈ Ψ
m+k(1−̺)
1,1−̺ for all k ∈ N)

⇒ (∂kτ ∂P̂A|τ=0 ∈ Ψ
m+(k+1)(1−̺)
1,1−̺ for all k ∈ N)

and by induction with respect to l ∈ N \ {0} we obtain

(2.8) (∂kτA|τ=0 ∈ Ψ
m+k(1−̺)
1,1−̺ for all k ∈ N)

⇒ (∂kτ ∂
l
P̂
A|τ=0 ∈ Ψ

m+(k+l)(1−̺)
1,1−̺ for all k ∈ N, l ∈ N \ {0}),

hence the estimates (2.5(b)) hold with r = 0 and ã in place of a.

Consider now the case r = 1. Then [22, Corollary 4.2] ensures

ã− ã0 ∈ S
m+1−2̺
̺ (Cθ) with ã0(τ, x, ξ) = a(τ, ϑ(τ, x, ξ)),

where ϑ : R× R
d × R

d → R
d × R

d is the Hamitonian flow of p̂0 = Re p̂,

ϑ(t, y, η) = exp(tHp̂0)(y, η) = (x(t, y, η), ξ(t, y, η)),

i.e. ∂tx(t, y, η)=∂ξp̂0(ϑ(t, y, η)), ∂tξ(t, y, η)=−∂xp̂0(ϑ(t, y, η)) and ϑ(0, y, η)
= (y, η). Since b ∈ Sm+1−2̺̺ (Cθ) with ̺ ≥ 2/3 implies ∂xb ∈ S

m+2−3̺
̺ (Cθ) ⊂

Sm̺ (Cθ) and ∂ξb ∈ S
m+1−3̺
̺ (Cθ) ⊂ Sm−1̺ (Cθ), it is clear that (2.5(a)) holds

with r = 1 and b = ã − ã0 in place of a. Moreover the properties of the
Hamiltonian flow ϑ described in [22, Lemma 4.1] give the estimates (2.5(a))
with r = 1 for ã0 by using [22, Lemma 2.3b].

To complete the proof it remains to show estimates (2.5(b)) with r = 1

and ã in place of a. Since Ã(0) = A(0) ∈ Ψm1,1−̺ and ∂τ Ã(0) = ∂P̂A(0) ∈
Ψm1,1−̺, it suffices to consider (2.5(b)) with l ≥ 2. We complete the proof
using (2.8) with ∂P̂A in place of A, which gives the implication

(∂kτ ∂P̂A|τ=0 ∈ Ψ
m+k(1−̺)
1,1−̺ for all k ∈ N)

⇒ (∂l
P̂
(∂P̂A)|τ=0 = ∂

l+1

P̂
A|τ=0 ∈ Ψ

m+l(1−̺)
1,1−̺ for all l ∈ N \ {0}).
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3. Finite propagation speed. We set C− = {t ∈ C : Im t < 0},
C− = C− ∪ R and we prove

Proposition 3.1. Let P be as in Theorem 1.2 and let χ1, χ2 ∈ C
∞
0 (R

d)
be such that χ1 = 1 on a neighbourhood of suppχ2. If θ = θ(χ1, χ2) > 0
is small enough, then {(1 − χ1)e

−itPχ2}{t∈C−: |t|<θ}
is a bounded subset of

Ψ−∞, where 1− χ1 and χ2 are considered as operators of multiplication by
the corresponding functions.

Replacing P by P + CI with a constant C > 0 sufficiently large we can
assume that P ≥ I and since P is elliptic of degree 1, for every s ∈ R we
can find constants Cs, C

′
s > 0 such that

(3.1) ‖e−itPϕ‖Hs ≤ Cs‖P
se−itPϕ‖ ≤ Cs‖P

sϕ‖ ≤ C ′s‖ϕ‖Hs for t ∈ C−.

Let χ̃2 ∈ C
∞
0 (R

d) be such that χ1 = 1 on a neighbourhood of supp χ̃2
and χ̃2 = 1 on a neighbourhood of suppχ2. If t = τ − iε with τ = Re t and
ε > 0, then (1− χ1)e

−itPχ2 can be written in the form

(3.2) (1− χ1)e
−iτP χ̃2e

−εPχ2 + (1− χ1)e
−iτP (1− χ̃2)e

−εPχ2.

Thus it suffices to prove Proposition 3.1 for τ = Re t and χ̃2 in place of
t and χ2. Indeed, it is well known that {e

−εP }0<ε<θ is a bounded subset of
Ψ01,δ (for every θ > 0), hence the last term of (3.2) belongs to a bounded

subset of Ψ−∞.
In the next step of the proof we consider the operator P̌ described in

Lemma 1.3 assuming that ̺ < 1. We note that P̌ is not elliptic and it is not
possible to obtain e−itP̌ ∈ B(Hs) := B(Hs, Hs) reasoning as in (3.1).

Lemma 3.2 Let θ > 0 and χ1, χ̃2 be as above. Then

{(1− χ1)e
−iτP̌ χ̃2}τ∈[−θ;θ]

is a bounded subset of Ψ−∞.

Proof. Let s ∈ R. We show that there is a constant Cs > 0 such that

(3.3(s)) ‖e−iτP̌ϕ‖Hs ≤ Cs‖ϕ‖Hs for τ ∈ [−θ; θ].

Using the duality it suffices to show (3.3(s)) for s ≥ 0 and it is clear that
(3.3(0)) holds. Then writing

(3.4) Ae−iτP̌ϕ = e−iτP̌Aϕ+ τ

1\
0

dz e−iτ(1−z)P̌ [iP̌ , A]e−iτzP̌ϕ

with A = 〈D〉κ and assuming (3.3(s)) for a given s ≥ 0 we can estimate the

norm ‖e−iτP̌ϕ‖Hs+κ by

(3.5(s)) ‖Ae−iτP̌ϕ‖Hs ≤ ‖e
−iτP̌Aϕ‖Hs + sup

0≤z≤1
θCs‖[P̌ , A]e

−iτzP̌ϕ‖Hs .



SPECTRAL ASYMPTOTICS AND WEYL FORMULA 7

If 0 < κ ≤ 1− ̺, then using (1.8) we obtain

(3.6) [P̌ , A] ∈ Ψκ+̺−11,δ ⊂ B(Hs) for every s ∈ R

and the right hand side of (3.5(s)) can be estimated by Cs,κ‖ϕ‖Hs+κ , im-
plying (3.3(s+ κ)).
Due to (3.3(s)) it remains to show that for every s ≥ 0 there is a constant

Cs > 0 such that

(3.7(s)) ‖(1−χ1)e
−iτP̌ϕ‖Hs ≤ Cs‖ϕ‖ if suppϕ ⊂ supp χ̃2, τ ∈ [−θ; θ].

It is clear that (3.7(0)) holds. Setting A = 〈D〉κ(1− χ1) we still have (3.6)
if 0 < κ ≤ 1 − ̺, and introducing χ ∈ C∞0 (R

d) such that χ1 = 1 on a
neighbourhood of suppχ, χ = 1 on a neighbourhood of supp χ̃2, we have
[P̌ , A]χ ∈ Ψ−∞. Therefore assuming that (3.7(s)) holds for a given s ≥ 0
and χ in place of χ1 we obtain

‖[P̌ , A](1− χ)e−iτzP̌ϕ‖Hs ≤ Cs‖ϕ‖ if suppϕ ⊂ supp χ̃2, zτ ∈ [−θ; θ],

and (3.5(s)) implies (3.7(s+ κ)).

Now, for τ ∈ R we define

(3.8) Ûτ = e
−iτP̂ , Û∗τ = e

iτP̂ , Ǔτ = e
−iτP̌ , Ǔ∗τ = e

iτP̌ ,

where P̌ and P̂ are as in Lemma 1.3 with max{2/3, δ, 1− δ} < ̺ < 1.
We consider a map σ̃ : V → [−1; 1] and

(3.9) A0 = {A0v(τ)}(v,τ)∈Vθ ∈ A
m0
̺ ((1))[V ].

Then setting

(3.10) Aσ̃v (τ) = Û
∗
τσ̃(v)A

0
v(τ)Ûτσ̃(v)

and reasoning as in the proof of Lemma 2.2 we obtain

(3.11) Aσ̃ = {Aσ̃v (τ)}(v,τ)∈Vθ ∈ A
m0
̺ ((1))[V ].

Next we consider another map σ : V → [−1; 1] and applying the formula
(3.4) we can write

(3.12(a)) Ǔ∗τσ(v)A
σ̃
v (τ)Ǔτσ(v) = A

σ̃
v (τ) + τσ(v)Y

σ,σ̃
v (τ)

with

(3.12(b)) Y σ,σ̃v (τ) =

1\
0

dz Ǔ∗τzσ(v)[iP̌ , A
σ̃
v (τ)]Ǔτzσ(v).

However,

(3.13) {[P̌ , Aσ̃v (τ)]}(v,τ)∈Vθ ∈ A
m0+̺−1
̺,δ [V ]

and due to (3.3(s)) for every s ∈ R there is a constant Cs > 0 such that

(3.14) ‖Y σ,σ̃v (τ)‖B(Hs,Hs−m0−̺+1) ≤ Cs for (v, τ) ∈ Vθ

for every σ, σ̃ : V → [−1; 1].
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Our aim is to use the properties of Ǔτ and Ûτ to complete the proof of
Proposition 3.1 via the Kato–Trotter formula (1.9). For this reason we are
going to study the powers of products Ǔτσ(v)Ûτσ(v) where 0 ≤ σ(v) ≤ 1. To
begin we set

(3.8′) Uτ = Ûτ Ǔτ , Ukτ = (Ûτ Ǔτ )
k,

where τ ∈ R and k ∈ Z. Then U−1τσ(v)A
σ̃
v (τ)Uτσ(v) equals

(3.15) Ǔ∗τσ(v)A
σ̃+σ
v (τ)Ǔτσ(v) = A

σ̃+σ
v (τ) + τσ(v)Y σ,σ+σ̃v (τ)

and assuming that n̂ : V → N is such that

(3.16) n̂σ : V → [−1; 1] where n̂σ(v) = n̂(v)σ(v),

by induction we find that U
−n̂(v)
τσ(v) A

0
v(τ)U

n̂(v)
τσ(v) can be expressed as

(3.17) An̂σv (τ) + τσ(v)
∑

1≤n(v)≤n̂(v)

U
n(v)−n̂(v)
τσ(v) Y σ,nσv (τ)U

n̂(v)−n(v)
τσ(v) ,

where nσ : V → [−1; 1] denotes the map v 7→ n(v)σ(v).

Lemma 3.3. Let χ1, χ̃2 ∈ C
∞
0 (R

d) be such that χ1 = 1 on a neighbour-
hood of supp χ̃2 and let θ = θ(χ1, χ̃2) > 0 be small enough. Then for every
s ∈ R there is a constant Cs > 0 such that

(3.18(s)) ‖(1− χ1)U
n̂(v)
τσ(v)ϕ‖Hs ≤ Cs‖ϕ‖

if suppϕ ⊂ supp χ̃2, (v, τ) ∈ Vθ,

for any maps σ : V → [−1; 1] and n̂ : V → N satisfying (3.16).

Proof. In the first step we check that for every s ∈ R there is a constant
Cs > 0 such that

(3.19(s)) ‖U
n̂(v)
τσ(v)ϕ‖Hs ≤ Cs‖ϕ‖Hs for (v, τ) ∈ Vθ,

for all σ : V → [−1; 1] and n̂ : V → N satisfying (3.16).
Clearly the above asssertion holds for s = 0. Assume that it holds for

a given s ≥ 0. Since (3.16) still holds with −n̂(v) in place of n̂(v), we can
use (3.19(s)) with −n̂(v) in place of n̂(v) to obtain (3.19(−s)). Moreover
the condition 1 ≤ n(v) ≤ n̂(v) ensures (n− n̂)σ : V → [−1; 1] and (3.19(s))
holds with (n̂−n)(v) in place of n(v). Therefore writing the composition of

(3.17) with U
n̂(v)
τσ(v) we can estimate ‖A

0
v(τ)U

n̂(v)
τσ(v)ϕ‖Hs by

(3.20(s)) Cs‖A
n̂σ
v (τ)ϕ‖Hs + sup

1≤n(v)≤n̂(v)

θCs‖Y
σ,nσ
v (τ)U

(n̂−n)(v)
τσ(v) ϕ‖Hs .

Taking A0v(τ) = 〈D〉
κ with 0 < κ ≤ 1 − ̺ we have (3.11) with m0 = κ and

(3.14) allows us to estimate the right hand side of (3.20(s)) by Cs,κ‖ϕ‖Hs+κ ,
implying (3.19(s+ κ)).
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Next we note that the assertion of Lemma 3.3 holds if s = 0. Assume that
it holds for a given s ≥ 0 and setA0v(τ) = 〈D〉

κ(1−χ1) with 0 < κ ≤ 1−̺ and
χ defined as below (3.7(s)). Then choosing θ = θ(χ1, χ) > 0 small enough we
find that {An̂σv (τ)χ}(v,τ)∈Vθ is a bounded subset of Ψ

−∞. Indeed, applying

the theory of Fourier integral operators of [22, Section 4] to P̂ we obtain the

finite propagation speed for e−itP̂ in a standard way (cf. Egorov theorem
stated as [22, Corollary 4.2]).
Therefore introducing χ̃ ∈ C∞0 (R

d) such that χ = 1 on a neighbour-
hood of supp χ̃ and χ1 = 1 on a neighbourhood of supp χ̃, we see that
{Y σ,nσv (τ)χ̃}(v,τ)∈Vθ is a bounded subset of Ψ

−∞ due to Lemma 3.2. Thus

(3.20(s)) allows estimating the norm ‖(1− χ1)U
n̂(v)
τσ(v)ϕ‖Hs+κ by

(3.21) C ′s‖ϕ‖+ sup
1≤n(v)≤n̂(v)

C ′s‖Y
σ,nσ
v (τ)(1− χ̃)U

(n−n̂)(v)
τσ(v) ϕ‖Hs ,

and supp ϕ ⊂ supp χ̃2 allows estimating the last term of (3.21) by C
′′
s ‖ϕ‖

due to the assertion (3.18(s)) with χ̃ in place of χ1.

End of proof of Proposition 3.1. We take V = N\{0}, s ≥ 0 and applying
Lemma 3.3 with n̂(v) = v and σ(v) = 1/v we find θ = θ(χ1, χ̃2) > 0
such that {χ̃2(U

v
τ/v)

∗(1 − χ1)}(v,τ)∈Vθ is a bounded subset of B(H
−s, L2).

Therefore we find constants Cs such that

‖χ̃2(U
v
τ/v)

∗(1− χ1)〈D〉
sϕ‖ ≤ Cs‖ϕ‖ for (v, τ) ∈ Vθ, ϕ ∈ H

s.

Thus the Kato–Trotter formula (1.9) implies

‖χ̃2e
iτP (1− χ1)〈D〉

sϕ‖ ≤ Cs‖ϕ‖ for ϕ ∈ Hs, τ ∈ [−θ; θ],

i.e. {χ̃2e
iτP (1 − χ1)}τ∈[−θ;θ] is a bounded subset of B(H

−s, L2) for every
s ≥ 0, completing the proof by (3.1).

4. Commutator estimates. We keep the notations of Section 3 assum-
ing that 0 ≤ δ < 1 and P̂ , P̌ are as in Lemma 1.3 with max{2/3, δ, 1− δ} <
̺ < 1. Moreover κ = min{1−̺, ̺−δ} and as before σ is a map V → [−1; 1].
We begin by defining classes Ymσ [V ] preserved by conjugations with Ǔs sim-
ilarly to [19]. We write

(4.1) Y = {Yv(τ)}(v,τ)∈Vθ ∈ Y
m
σ [V ]

if there exist N ∈ N, polynomials w1, . . . , wN : R
N+1 → C, real-valued

polynomials wk,k′ : R
N → R for k, k′ = 1, . . . , N and operators

Ak,k′ = {Ak,k′,v(τ)}(v,τ)∈Vθ ∈ A
m(k,k′)
̺,δ [V ]

with
∑
1≤k′≤N m(k, k

′) ≤ m (k = 1, . . . , N) such that

Yv(τ) =
∑

1≤k≤N

\
[0;1]N

dz wk(τ, z)Yk,1,v(τ, z)Yk,2,v(τ, z) . . . Yk,N,v(τ, z)
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with
Yk,k′,v(τ, z) = Ǔ

∗
τwk,k′ (z)σ(v)

Ak,k′,v(τ)Ǔτwk,k′ (z)σ(v).

Lemma 4.1. Let m, m̃ ∈ R, let Y be given by (4.1) and

(4.2) Ỹ = {Ỹv(τ)}(v,τ)∈Vθ ∈ Y
m̃
σ [V ].

Then

Y Ỹ = {Yv(τ)Ỹv(τ)}(v,τ)∈Vθ ∈ Y
m+m̃
σ [V ],(4.3)

[A, Ỹ ] = {[Av(τ), Ỹv(τ)]}(v,τ)∈Vθ ∈ Y
m+m̃−κ
σ [V ],(4.4)

where A is given by (2.4(1)).

Proof. The assertion (4.3) is obvious and the proof of (4.4) follows the
reasoning described in [19]. More precisely, we introduce

Yk,k′,v(τ, z) =

1\
0

dz′ σ(v)wk,k′(z)Ǔ
∗
τz′wk,k′ (z)σ(v)

[Av(τ), iP̌ ]Ǔτz′wk,k′ (z)σ(v)

and express [Av(τ), Yk,k′,v(τ)] in the form

Ǔ∗τwk,k′ (z)σ(v)[Av(τ), Ak,k
′,v(τ)]Ǔτwk,k′ (z)σ(v) + τ [Yk,k′,v(τ), Yk,k′,v(τ)].

We complete the proof by observing that {[Av(τ), iP̌ ]}(v,τ)∈Vθ ∈ A
m−1+̺
̺,δ [V ]

and {[Av(τ), Ak,k′,v(τ)]}(v,τ)∈Vθ ∈ A
m+m(k,k′)−̺+δ
̺,δ [V ].

Let m ∈ R, σ : V → [−1; 1] and n : V → Z. Then we write

(4.5) Z = {Zv(τ)}(v,τ)∈Vθ ∈ Z̃
m
n,σ[V ]

if there exist C0 > 0 and N ∈ N, n̂1, . . . , n̂N : V → Z such that

n̂1(v) + . . .+ n̂N (v) = n̄(v), (|n̂1(v)|+ . . .+ |n̂N (v)|)|σ(v)| ≤ C0

and
Zv(τ) = Y1,v(τ)U

n̂1(v)
τσ(v)Y2,v(τ)U

n̂2(v)
τσ(v) . . . YN,v(τ)U

n̂N (v)
τσ(v)

where {Yk,v(τ)}(v,τ)∈Vθ ∈ Y
m(k)
σ [V ] with m(1) + . . .+m(N) ≤ m.

Lemma 4.2. Let m ∈ R, σ : V → [−1; 1], n : V → Z and n̂ : V → Z be

such that n̂σ : V → [−1; 1]. Let Z be given by (4.5) and σ1 : N×V → [−1; 1]
be such that σ1(n, v) = σ(v). If A

0 and Aσ̃ are given by (3.9)–(3.10), then
there is C > 0 such that

An̂σv (τ)Zv(τ) = Zv(τ)A
(n̂+n)σ
v (τ)(4.6)

+
∑

0≤n′<N

Zn′,v(τ) + τσ(v)
∑

N≤n≤C|σ(v)|−1

Zn,v(τ)

with some {Zn,v(τ)}(n,v,τ)∈N×V×[−θ;θ] ∈ Z̃
m+m0−κ
n,σ1

[N × V ], where θ > 0 is
small enough.
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Proof. Assume first that N = 1. Then the assertion follows immediately
from Lemma 4.1 and (3.17). Indeed, if N = 1 then (4.6) holds with

Z0,v(τ) = [A
n̂σ
v (τ), Y1,v(τ)]U

n̂1(v)
τσ(v) ,

Zn,v(τ) = Y1,v(τ)U
n
τσ(v)Y

0
n,v(τ)U

n̂1(v)−n
τσ(v) (n ≥ 1),

where for 1 ≤ n ≤ n̂(v) we have Y 0n,v(τ) = Y
σ,(n̂+n)σ
v , introduced in

(3.12(b)), and for n̂(v) < n ≤ C|σ(v)|−1 we set Y 0n,v(τ) = 0. Therefore
(3.13) ensures

(4.7) {Y 0n,v(τ)}(n,v,τ)∈N×V×[−θ;θ] ∈ Y
m0−κ
σ1 [N× V ].

It is clear that the assertion for N = 1 follows from (4.4) and (4.7). For
general N ∈ N, it suffices to repeat the analogous reasoning N times.

Let m ∈ R, σ : V → [−1; 1] and n : V → Z. Then we write

(4.8) Z = {Zv(τ)}(v,τ)∈Vθ ∈ Z
m
n,σ[V ]

if there exist C > 0, N ∈ N and

{Zk,n,v(τ)}(n,v,τ)∈N×V×[−θ;θ] ∈ Z̃
m
n,σ1 [N× V ] (k = 0, . . . , N)

such that

(4.8′) Zv(τ) =
∑

0≤k≤N

σ(v)k
∑

0≤n≤C|σ(v)|−k

Zk,n,v(τ).

It is easy to see that this notation allows reformulating Lemma 4.2 as

Corollary 4.3. Let m ∈ R, σ : V → [−1; 1], n : V → Z and let Z be
given by (4.8) as above. If A0 is given by (3.9), Aσ̃v is defined by (3.10) and

(4.9) Z̃v(τ) = A
0
v(τ)Zv(τ)− Zv(τ)A

nσ
v (τ),

then {Z̃v(τ)}(v,τ)∈Vθ ∈ Z
m+m0−κ
n,σ [V ].

Lemma 4.4. Let σ̃ : V → [−1; 1] and

(4.10) Bσ̃v (τ) = Û
∗
τσ̃(v)xjÛτσ̃(v)

If Ỹ is given by (4.2) and m+ = m̃− 1, m− = m̃− κ, then

[Bσ̃v (τ), Ỹv(τ)] = Y
+
v (τ) + τY

−
v (τ) with Y

± = {Y ±v (τ)}(v,τ)∈Vθ ∈ Y
m±

σ [V ].

Proof. First of all we check that {Ãv(τ)}(v,τ)∈Vθ ∈ A
m̃
̺,δ[V ] ensures

[Bσ̃v (τ), Ãv(τ)] = Ã
+
v (τ) + τÃ

−
v (τ) with {Ã

±
v (τ)}(v,τ)∈Vθ ∈ A

m±

̺,δ [V ]

and m+ = m̃− 1, m− = m̃− κ.
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Indeed, this follows from Lemma 2.1 and the fact that

Bσ̃v (τ) = xj + τAv(τ) with Av(τ) =

1\
0

∂τB
σ̃
v (zτ) dz,

{∂τB
σ̃
v (τ)}(v,τ)∈Vθ = {σ̃(v)Û

∗
τσ̃(v) [iP̂ , xj ] Ûτσ̃(v)}(v,τ)∈Vθ ∈ A

0
̺((1))[V ],

i.e. Av = {Av(τ)}(v,τ)∈Vθ ∈ A
0
̺((1))[V ]. Next, similarly to (3.13), we find

{[Bσ̃v (τ), iP̌ ]}(v,τ)∈Vθ ∈ A
−1+̺
̺,δ [V ]

and to complete the proof it remains to replace Av(τ) by B
σ̃
v (τ) in the proof

of Lemma 4.1.

Using Lemmas 2.1 and 4.4 it is easy to follow the reasoning of the proof
of Lemma 4.2 with Bσ̃ in place of Aσ̃. In particular we obtain

Corollary 4.5. Let Z and Bσ̃v (τ) be given by (4.8) and (4.10). Set

(4.11) Z̃v(τ) = xjZv(τ)− Zv(τ)B
nσ(v)
v (τ).

If m+ = m− 1 and m− = m− κ, then

Z̃v(τ) = Z̃
+
v (τ) + τZ̃

−
v (τ) with {Z

±
v (τ)}(v,τ)∈Vθ ∈ Z

m±

n,σ [V ].

5. End of proof. We recall that following the parabolic construction
of [22, Proposition 3.1] we obtain Theorem 1.2 from the estimates of [22,
Theorem 2.4] and reasoning as at the end of [22, Section 3] we can see that
Theorem 1.2 follows from

Proposition 5.1. Let l0 ∈ N, m0 ∈ R and q ∈ Sm01,δ (R
d×R

d×R
d). Let

θ, θ′ > 0 be small enough and set

Ξ0(θ, θ
′) = {t ∈ C : 0 < − Im t < θ′|Re t| and |t| < θ},(5.1)

Ξ(θ, θ′) = {(t, τ ′) : t ∈ Ξ0(θ, θ
′) and τ ′ ∈ [0; Re t]}.(5.2)

If l ≥ m0 + l0 + d+ 1 and δy is the Dirac mass at y, then

(5.3) sup
(t,τ)∈Ξ(θ,θ′)
y∈Rd

|tl〈P l0e−iτP δy,Op(qe
i(τ−t)p0)∗δy〉| <∞.

Now, we assume that y ∈ B(y0, r) where y0 ∈ Rd, r > 0 is small enough
(independent of y0) and all estimates are uniform with respect to y0. We
consider a set V ′ of indices and introduce

(5.4) V = {v = (y, t, n, τ ′, v′) :

y ∈ B(y0, r), n ∈ N \ {0}, (t, τ ′) ∈ Ξ(θ, θ′), v′ ∈ V ′}.

We introduce functions σ : V → [−1; 1] and n̂ : V → N, setting

(5.5) σ(v) = σ(y, t, n, τ ′, v′) = 1/n, n̂(v) = n̂(y, t, n, τ ′, v′) = n,

and write Z ∈ Zmσ [V ] if Z ∈ Z
m
n,σ[V ] with n(v) = 0 for all v ∈ V .
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Let k ∈ Z and letm(k),m′(k),m′′(k) be some real numbers. We consider
the following conditions:

(5.6(k)) {qk,v}v∈V is a bounded subset of S
m(k)
1,δ

(i.e. (1.2) holds with a = qk,v, m = m(k), ̺ = 1, r = 0, x ∈ X = R
d and

constants Cα,α′ independent of v ∈ V ),

{Ak,v(τ)}(v,τ)∈Vθ ∈ A
m′(k)[V ],(5.7(k))

{Zk,v(τ)}(v,τ)∈Vθ ∈ Z
m′′(k)
σ [V ],(5.8(k))

and introduce the notation

(5.9) J(qk,v, Ak,v, Zk,v)(τ)

= 〈U
n̂(v)
τσ(v)Ak,v(τ)δy, Zk,v(τ)Op(q

♯
k,ve

i(τ−t)p0)∗δy〉,

where v = (y, t, n, τ ′, v′) ∈ V and q♯k,v(x, ξ, x
′) = qk,v(x

′, ξ).

Proposition 5.2. Let κ = min{̺ − δ, 1 − ̺}. Assume that q0,v, A0,v,
Z0,v satisfy respectively (5.6(k)), (5.7(k)), (5.8(k)) with k = 0. Then there
exist k1 ∈ N and qk,v, Ak,v, Zk,v satisfying respectively (5.6(k)), (5.7(k)),
(5.8(k)) for k = ±1, . . . ,±k1 with

m(k) +m′(k) +m′′(k) ≤ m(0) +m′(0) +m′′(0)− 1 for k > 0,(5.10(a))

m(k) +m′(k) +m′′(k) ≤ m(0) +m′(0) +m′′(0)− κ for k < 0,(5.10(b))

such that

(5.11) tJ(q0,v, A0,v , Z0,v)(τ)

=
∑

1≤k≤k1

(J(qk,v, Ak,v, Zk,v) + tJ(q−k,v, A−k,v, Z−k,v))(τ) +O(1)

uniformly with respect to {(v, τ) : v = (y, t, n, τ ′, v′) ∈ V and τ ′ = τ}.

Proof that Proposition 5.1 follows from Proposition 5.2. First of all we
note that due to the Hs-estimates of Section 3, the conditions (5.6(k)),
(5.7(k)), (5.8(k)) imply that the families of operators

{Op(q♯k,ve
i(τ−t)p0)}(v,τ)∈Vθ , {Ak,v(τ)}(v,τ)∈Vθ , {Zk,v(τ)}(v,τ)∈Vθ

are bounded in B(Hs, Hs−m(k)), B(Hs, Hs−m
′(k)), B(Hs, Hs−m

′′(k)) re-
spectively, hence there is a constant C > 0 (independent of (v, τ) ∈ V ×
[−θ; θ]) such that

m(k) +m′(k) +m′′(k) ≤ −d− 1 ⇒ |J(qk,v, Ak,v, Zk,v)(τ)| ≤ C.

Thus reasoning as in [22, after Proposition 5.1] we can take k1 large enough
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and forget all the terms J(q−k,v, A−k,v, Z−k,v), i.e. in place of (5.11) we have

(5.12) tJ(q0,v, A0,v, Z0,v)(τ) =
∑

1≤k≤k1

J(qk,v, Ak,v , Zk,v)(τ) +O(1).

Then reasoning as at the beginning of [22, Section 5] we note that iterating
this assertion l times we can write (5.12) with tl in place of t and qk,v, Ak,v,
Zk,v satisfying (5.6(k)), (5.7(k)), (5.8(k)) with

m(k) +m′(k) +m′′(k) ≤ m(0) +m′(0) +m′′(0)− l for k = 1, . . . , kl.

This general statement is analogous to [22, Proposition 3.4], and to obtain
(5.3) it suffices to take

q0,v(x, ξ) = q(y, ξ, x), A0,v(τ) = P
−d, Z0,v(τ) = P

d+l0 .

Indeed, since P−dδy ∈ L
2, the Kato–Trotter formula (1.9) allows us to write

(5.3) in the form

sup
(t,τ)∈Ξ(θ,θ′)
y∈Rd

| lim
n→∞

tl J(q0,v, A0,v, Z0,v)(τ)|τ ′=τ | <∞.

Proof of Proposition 5.2. Step 1. First of all we note that as at the
beginning of the proof of [22, Proposition 5.1], using a suitable partition of
unity we may assume that

(5.13) supp q0,v ⊂ B(y0, 2r)× Γj(c),

where c > 0 is small enough and

(5.14) Γ±j(c) = {ξ ∈ R
d : ±∂ξjp0(y0, ξ) > 2c} for j = 1, . . . , d.

As in [22], we fix j ∈ {1, . . . , d}. If χ0j,c,r ∈ S
0
1,0 is such that suppχ

0
j,c,r ⊂

B(y0, 3r)×Γj(c/2) and χ
0
j,c,r = 1 on B(y0, 2r)×Γj(c) (cf. [22, Lemma 3.2]),

then

(5.15) {(1−χ0j,c,r)(x,D)Op(q
♯
0,ve
i(t−τ)p0)∗}(v,τ)∈Vθ is bounded in Ψ

−∞.

Then Corollary 4.5 alllows us to write

(5.16) Unτ/nxjU
−n
τ/n = ÛτxjÛ

∗
τ + Z̃1,v(τ) + τZ̃−1,v(τ)

with

{Z̃1,v(τ)}(v,τ)∈Vθ ∈ Z
−1
σ [V ], {Z̃−1,v(τ)}(v,τ)∈Vθ ∈ Z

−κ
σ [V ].

Moreover we have

(5.17) ÛτxjÛ
∗
τ = xj − τP̃1(τ) with P̃1(τ) =

1\
0

dz Ûzτ [iP̂ , xj ]Û
∗
zτ ,

hence we can consider P̃1 as an element of A
0
̺((1)). For y ∈ R

d let

Py = py(x,D) with py(x, ξ) = ∂ξjp0(y, ξ)
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(i.e. the symbol py ∈ S01 is independent of the x-variable) and for v =
(y, t, n, τ ′, v′) ∈ V let

(5.18) P̃v(τ) =
τ ′

t
P̃1(τ) +

(
1−

τ ′

t

)
Py = p̃v(τ, x,D) +Rv,τ ,

where {Rv,τ}(v,τ)∈Vθ is bounded in Ψ
−∞.

As in [22, Section 5], assuming θ, θ′ > 0 small enough we obtain

(5.19) |p̃v(τ, x, ξ)| ≥
c

4
for v ∈ V, (τ, x, ξ) ∈ [−θ; θ]×B(y0, 3r)×Γj(c/2).

Step 2. We note that there exist Z̃−2,v satisfying (5.8(−2)) withm
′′(−2)

= m′′(0)− κ and

{Z̃0,v(τ)}(v,τ)∈Vθ ∈ Z
m′′(0)
σ [V ],

such that for v = (y, t, n, τ ′, v′) ∈ V and τ ′ ∈ [0; Re t] we have

(5.20) Z0,v(τ)Op(q
♯
0,ve
i(t−τ)p0)∗

= (Z̃0,v(τ)P̃v(τ) + Z−2,v(τ))Op(q
♯
0,ve
i(t−τ)p0)∗.

Indeed, since p̃v is uniformly elliptic in B(y0, 3r) × Γj(c/2) ⊃ suppχ
0
j,c,r

(due to (5.19)), it remains to use (5.15) as in [22, Section 5].

Step 3. We write y = (y1, . . . , yd) ∈ R
d and note that there exist Z±3,v

satisfying (5.8(±3)) with m′′(3) = m′′(0)− 1, m′′(−3) = m′′(0)− κ and

tZ̃0,v(τ)P̃v(τ) = (τ
′P̃1(τ)− (xj − yj))Z̃0,v(τ)(5.21)

+ Z̃0,v(τ)((t− τ
′)Py + (xj − yj))

+ Z3,v(τ) + tZ−3,v(τ).

Indeed, it suffices to estimate the commutator of Z̃0,v with xj applying

Corollary 4.5, and with P̃1(τ) applying Corollary 4.3.

Step 4. There exist q±4,v satisfying (5.6(±4)) with m(4) = m(0) − 1,
m(−4) = m(0)− κ and

(5.22) ((t− τ)Py + (xj − yj))Op(q
♯
1,ve
i(t−τ)p0)∗δy

= Op((q♯4,v + tq
♯
−4,v)e

i(t−τ)p0)∗δy.

Indeed, we integrate by parts as in the proof of [22, Proposition 5.1].

Step 5. There exist Z±1,v satisfying (5.8(±1)) with m
′′(1) = m′′(0)− 1,

m′′(−1) = m′′(0)−κ and A±5,v satisfying (5.7(±5)) with m
′(5) = m′(0)−1,

m′(−5) = m′(0)− κ such that

(5.23) Z̃0,v(τ)
∗(τP̃1(τ) + yj − xj)U

n
τ/nA0,v(τ)δy

= (Z1,v + tZ−1,v)(τ)
∗Unτ/nA0,v(τ)δy + Z̃0,v(τ)

∗Unτ/n(A5,v + tA−5,v)(τ)δy.
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Indeed, Lemma 2.1 ensures the existence of A±5,v satisfying

(yj − xj)A0,v(τ)δy = [A0,v(τ), xj − yj ]δy = (A5,v + tA−5,v)(τ)δy

and (5.16) can be written as

Unτ/n(yj − xj) = (τP̃1(τ) + yj − xj − Z̃1,v(τ)− τZ̃−1,v(τ))U
n
τ/n,

hence (5.23) holds if

Z1,v(τ)
∗ = Z̃0,v(τ)

∗Z̃1,v(τ), Z−1,v(τ)
∗ =

τ ′

t
Z̃0,v(τ)

∗Z̃−1,v(τ).

Step 6. Let Z±1,v, Z−2,v, Z±3,v, q±4,v, A±5,v be as above, Z2,v(τ) = 0
and

qk,v = q0,v, m(k) = m(0) for k = ±1,±2,±3,±5,

Ak,v = A0,v, m′(k) = m′(0) for k = ±1,±2,±3,±4.

Then (5.20)–(5.23) with τ = τ ′ give the equality (5.11).

6. Appendix: Proof of Lemma 1.3. Let γ ∈ S(Rd) and set γα(x) =
xαγ(x) for α ∈ Nd. We assume that

T
γ = 1 and

T
γα = 0 if |α| = 1. We

introduce ĥ and ȟ = p− ĥ by

ĥ(x, ξ) =
\
p(y, ξ)γ((x− y)〈ξ〉

1−̺
)〈ξ〉

(1−̺)d
dy,(A.1)

ȟ(x, ξ) =
\
(p(x, ξ)− p(y, ξ))γ((x− y)〈ξ〉

1−̺
)〈ξ〉

(1−̺)d
dy,(A.2)

∂αx ĥ(x, ξ) =
\
∂αx p(x− y, ξ)γ(y〈ξ〉

1−̺
)〈ξ〉

(1−̺)d
dy.(A.3)

A simple analysis of (A.3) (cf. [7] or [18, Proposition 6.3]) allows us to

conclude that ∂αx p ∈ S11,δ ⇒ ∂αx ĥ ∈ S11,1−̺ if |α| ≤ 2. Using the Taylor
formula

p(x, ξ)− p(y, ξ) +
∑

1≤j≤d

∂xjp(x, ξ)(xj − yj) =
∑

|α|=2

pα(x, y, ξ)(x− y)
α

and
T
(xj − yj)γ((x− y)〈ξ〉

1−̺
) dy = 0, we can write (A.2) in the form

(A.4) ȟ(x, ξ) =
∑

|α|=2

〈ξ〉
−2(1−̺)

\
pα(x, y, ξ)γα((x− y)〈ξ〉

1−̺
)〈ξ〉

(1−̺)d
dy.

Now it is easy to check that pα ∈ S
1
1,δ(R

d × R
d × R

d) for |α| = 2 implies

ȟ ∈ S
1−2(1−̺)
1,δ . Similarly introducing p̃α ∈ S

1
1,δ(R

d × R
d × R

d) (|α| = 1) by

∂xp(x, ξ)− ∂xp(x− y, ξ) =
∑

|α|=1

p̃α(x, y, ξ)y
α,
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we get ∂xȟ = ∂xp−∂xĥ ∈ S
1−(1−̺)
1,δ , using (A.3) to express (∂xp−∂xĥ)(x, ξ)

as\
(∂xp(x, ξ)− ∂xp(x− y, ξ))γ(y〈ξ〉

1−̺
)〈ξ〉

(1−̺)d
dy

=
∑

|α|=1

〈ξ〉
−(1−̺)

\̃
pα(x, y, ξ)γα(y〈ξ〉

1−̺
)〈ξ〉

(1−̺)d
dy.

Then P̌ = 12 (ȟ(x,D) + ȟ(x,D)
∗) and P̂ = 12 (ĥ(x,D) + ĥ(x,D)

∗) are essen-
tially self-adjoint on S(Rd) by Nelson’s commutator lemma (cf. [16] with
N = I −∆) and conditions (1.4)–(1.5) for p imply analogous conditions for

ĥ and p̂ due to (1.8) (note that |∇ξȟ(x, ξ)| ≤ C〈ξ〉
−2(1−̺)

).
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