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ON A DECOMPOSITION OF POLYNOMIALS
IN SEVERAL VARIABLES, II

BY

A. SCHINZEL (Warszawa)

Abstract. One considers representation of cubic polynomials in several variables as
the sum of values of univariate polynomials taken at linear combinations of the variables.

In the first paper of this series [6] we have defined for a field K the
number M (n,d, K) as the least integer M (provided it exists, otherwise co)
such that for every polynomial F' € K[x1,...,xz,] of degree d there exist
vectors oy, = (a1, ..., Q] € K™ and polynomials f, € K[z] (1 < p < M)
such that

M ey, an) = ih(iawmu).

We have shown that M(n,d, K) < oo if char K = 0 or char K > d and
studied the cases d = 2 and n = 2. In this paper we study the next simplest
case d = 3 and prove two theorems.

THEOREM 1. For every field K of characteristic different from 2,3 we

have )
M(n,3,K) < (“; )

THEOREM 2. For every algebraically closed field K of characteristic dif-
ferent from 2,3 we have

M(3,3,K) =5.

An analogue of Theorem 1 for forms and K = C was proved by
B. Reznick [3]. Equality (1) for generic cubic forms F' over C has been
studied by B. Reichstein [2], but his interesting results have no bearing on
our theorems.

The proof of Theorem 1 is based on

LEMMA 1. For every quadratic form F € Klz1,...,x,] \ Klza,..., %]
there exist n linearly independent vectors o, € K™ with a1 # 0 and
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a, € K (1 <p<n) such that

i=1

n n
(2) F = Z au(a,x)?,  where oz = Zaixi.
p=1

Proof. We proceed by induction on n. For n = 1 the lemma is obviously
true. Assume that it is true for all quadratic forms over K in less than n
variables.

If rank FF = r < n, then there exist linearly independent vectors
Bi,...,08, € K" and a form G € K|[yi,...,y,| such that

F = G(ﬁlmv Bgl’, s aﬁrm)-
Since F ¢ K|za,...,x,] we may assume that 11 # 0. Let

H = G<y17y2 + @yl)"wyr + @yl>
/811 611

We have

Fe H(ﬁlw Bow— Bz . B ﬁ“ﬁlw>
Bi1 11

and By — Bglﬂlm € Klxa,...,z,] (1 <o <), hence F ¢ Klza,...,xy]
implies H ¢ K|[ya,...,y.|. By the inductive assumption

H:ZC#(7ﬂy)27 Y= [ylv"'vyr]v
pn=1

where ¢, € K, v, € K" (1 < p < r), 7, are linearly independent and
Yu1 # 0. It follows that

r T 2
F = ZC“ (wtlﬂlm—kz:'yw </39m— %ﬂﬁl})) .
st o= 11

Let us put

B

B2 — B gfi

(3) () p<r = (Ypo) p<r
v<n o<r .

:37’ - ﬁl %

Since the matrix (7,,) u<r is non-singular of order  and the rank of the

B1 o<r
matrix ( : ) is r, the rank of the matrix (a,,) <, is r and there exist
ﬁ'r' I/S’n
n —r vectors a1, ..., 0y, in K™ such that A = (o) u<n is of rank n. We
v<n

have, by (3), a1 = v # 0 for p < r. Adding, if necessary, the first row
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of A to rows r+1,...,n we achieve that o # 0 for all u < n and (2) is
satisfied with a, = ¢, for p <r, a, =0 for pp > r.
If rank F' = n, let

n
F= g a;jx;vj, Wwhere a;; = aj;.

i,j=1
If a;; # 0 for at least one ¢ > 1, then we consider the form

(4) G:F—a“(zn: “—%)2

]:1 a’L’L

This form is of rank m — 1 and it does not depend on x;, hence G ¢
K[zg,...,z,] and by the inductive assumption

5) G =3 b8P

where b, € K, 8, € K" (1 < p < n), B, are linearly independent, 5,1 # 0
and b, # 0 (otherwise G would be of rank < n —1). If a;; # 0 it suffices to
take in (1)
a, =b,, o,=p06, foru<n,
ai an{

Ap = Q44, an:|: yeeey
Qg Qg

If a;; = 0, then we choose ¢ € K, ¢? # 0, +a;; /b1, which is possible unless
K =Fs5, a;; = £b,_1, and infer from (4), (5) that

n—2 " 2
b 102 Qi 2a;;C Qs

P b (3 2.1 Mﬁn xT+ —— —Lz;

Zl “( w ) 1<bn 162 + aj; ' bn—lc2+aiij 1 Qi !

2b,_1C b1 — Qi o 2
b (A g, g O S )

j
n—1% + ai; bn—1€? + a;; parll

Hence (2) is satisfied with

a, = by, a, =06, forpu<n-—1,
bn_162 — Q44 2c
Ap—1 = bn717 Op—1 = B) ﬁnfl + B) [aih cee 7ain]7
bp—162 + ai; bp—162 + ai;
2
0 —a o 2b,,—1c 3 bn—1¢” — ay | ain Qi
n = G, n=7—% —On-1—7—5 | —>» .
bp_16? + ai; bpn—1¢® + ai; | ay @i

By the choice of ¢ we have a1 # 0. Also the «, are linearly independent,
since otherwise F' would be of rank less than n.
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In the remaining case K = F5, a;; = €b,—1 (¢ = £1) it suffices to take

a, = by, o, =B, forpu<n-—1,

3—¢la; Qin
an—1 :3bn—17 Qp_1 :lan—1+ |:_1 ceey :|)

2 |ay’ Qi
3—¢ a1 Ain

an:3bn—17 an:/@n—l_ DEEEREE) .
2 |ay Az

If a;; = 0 for all ¢ > 1, but a;; # 0 for some ¢ > 1, j > 1 then we make the
linear transformation x; = o} + 2%, x; = z} — x; and reduce this case to the
former.

There remains the case where a;; = 0 for all 4,7 > 1. Then 1 < n =
rank F' < 2, so n = rank F' = 2 and we have

2
F = 117 + 2(112(131%2

2 2
1 2 1 2
4 c c 4 & &

where ¢ in K is chosen so that ¢? # 0, £a11. Such a choice is possible unless
K =T5, a1 = £1. In that case

F = 3a1; (21 — 2a1101272)* + 3a11 (21 — a11a1022)>.

Proof of Theorem 1. We proceed by induction on n. For n = 1 the
theorem is obviously true. Assume that M(n — 1,3, K) < (g) and consider
a polynomial F' € K{[z1,...,x,] of degree 3. Let Fy be its leading form.

Since card K > 4, by Lemma 1 of [6], or by Lemma 4.4.1 of [7], there
exists 31 € K™ such that Fy(31) # 0 and thus B # 0. If vectors Ba,. .., 3,
are chosen in K" so that det(31,...,3,) # 0, we can replace in our argument
F(x) by Fi(y) :== F(A1y,...,Bny), where y = [y1,...,y,] and where the
coefficient of y§ in Fy(y) is Fo(B1) # 0 (cf. [3]). Hence we may assume
without loss of generality that

0Fy
d — .
eg,, 1 >0
Then by Lemma 1,
OFy <
(6) i ; a (e x)?,

where a, € K, ay, € K", a1 # 0 (1 < p < n) and the a, are linearly
independent. By the last condition there exist ¢, € K (1 < p < n) and
d € K such that

OF  0F)
(7) . Oz, Mz::lc#(a#x) +d.
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Consider now the polynomial

"L ¢ d
8 G=F— = - —
( ) 3altl Z 2au1 aq1 (0(1:13)
pn=1 pn=1

By (6)—(8) we have

oG _

8561 a
hence G € K|xa,...,x,]. By the inductive assumption there exist vectors

o, € K™ and polynomials g, € K[2] (n < u < ("+1)) such that
7L+1)
-3 (S
p=n-+1

The decomposition (1) follows now from (8) with

a cl d
L R S L
3o 20111 a1y’
A 3 Cu 2
== 0 1< pu<n),
fI—L 3alulz +2C¥#1z ( N—n)

fiu= gus @ =10, <n<ué<n;1>>.

The proof of Theorem 1 is complete. The idea this proof is taken from the
paper of Rosanes [4], §6.

The proof of Theorem 2 is based on four lemmas.
LEMMA 2. For
é(z) = ax} + by + cxd + 3agrizy + 3azrizs + 3byrir + 3b3raxs
+ 301x§x1 + 302x§x2 + 6mxyzoxs € Klr1, x2, 23],
let
S(¢) = abem — (beasas + cabibs + abcica) — m(abscs + beras + cagzby)
+ (abic3 + beaa + aciba + bagc] + chzas + cazb?) — m?
+ 2m2(blcl + coag + asgbs) — 3m(agzbscy + asbica)
— (b} + c3a3 + a3b3) + (caazazbs + azbzbicy + bicicaaz).
Then for every matriz A € K3%3,
S(¢(Az)) = S(¢)(det A)*.
Moreover, if ¢ = Z:’Zl(aim)?’ for some a; € K3, then S(¢) =
Proof. See Salmon [5], Section 221.
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LEMMA 3. FEvery non-zero ternary cubic form ¢ over an algebraically
closed field K of characteristic different from 2, 3 can be transformed by a
non-singular linear transformation over K into one of the forms

Flznz§’+:c§, n=0orl,

Fy = 23 + 23 + 23 + 6mriroxs, m € K,
F; = x% + arg + 612973,

Fy =cx? 4+ 32323, e=0orl,

Fs = 6x12003 + x%,

Fs = 333%:62 + 3331:6%.

Proof. See Gordan [1]. Gordan gives 10 types of forms, but two of them,

m:{’ + a;g + x% and 6z,z2xs, are obtained from F» for m = 0 and m = —1

2
respectively. Indeed,
x:{’ + x% + xg —3x129w3 = (1 + 22 + 23) (21 + 022 + Q2$3)(1‘1 + 0%z + or3),
where 03 =1, 0 # 1.

LEMMA 4. For v=2,3,4 we have for some o, € K3, a, € K (1< <4),

(9) Fo=Y e,

where aq, oo, a3 are linearly independent, rank A, < 4 and, for any
a1, a0, 3 € K, the conditions oy # 0 and rank B, < 5 imply that
(a1, a2, 3] is a scalar multiple of one of the a,.

Here
a7y 044211 0‘%
Q11012 ... 0410042 oy
2 2 1
a12 . e a42 a%
v = oo ) v =
(10) A 1113 41043 B A s
1%
Q12013 ... Q42043 e
2 2
a13 “ e Oé43 a%

Proof. We have, with 0% =1, o # 1,

1
Fy(x)=(1- m?’)x‘z’ + g(mxl + 29 + x3)3

1
(may + oz + 92$3)3 + —(mwy + 0*ry + Qx3)3,

* 3

Wl =

hence
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Ag = Ag(m) =

OO O OO
3
[~
3
[}

Clearly rank As < 4 and by adding the first three columns of By = By(m)
to the fourth we obtain

rank Ba(m) = rank Cy(m) + 2,

where
m mo [e5Ke D]
N D S
Ca(m) = m mo® aias
1 0 o’
If rank Co(m) < 3, then ajaz — ma3 = ma2 — ajas = 0, hence if a; # 0
we have either m # 0 and aﬂl[al,ag,ag] = [m,1,1], [m, 0, 0*] or [m, 0%, o],
or m =0 and a%[al,ag,ag] =[1,0,0].

Further, we have
1 1 1
F3(x) = —a5 + g(azl + gy +2a3)3+ §(m1 + 0o+ 0%x3)3 + g(ml + 0%xo +o13)*,

hence
Az = As(1), Bs = By(1)

and the assertion follows.
Finally, we have

1 1 1
Fy(x) = ex? + §(x3 + 225)3 + §(x3 —215)% — Zw%,

hence

1 0 00 a?
a1
a3

As a1aig
Qa(x3
Qg

O = O

Ay By =

Il
cocoocoo
N S =Ny}
—_—o oo o

Clearly rank A4 < 4 and rank Bs = rank C4 + 2, where

0 0 [e5Ke )]

|4 4 ol
04 o 0 0 103
2 =2 Qo3

If rank Cy < 3, then ajas = ajaz = 0, hence if @y # 0, then O%[al, ag,as] =
[1, 0, 0].
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LEMMA 5. For v =5 we have (9) for some o, € K3, a,, € K; a1, 2, a3
are linearly independent and the condition rank By < 5, where Bs is given
by the formula (10), implies that [oq, g, as] is a scalar multiple of one of
the a,.

Proof. We have

1
Fs(x) = 4—8(3561 — 229 — 213)% — E(Bxl — 229 — 223)3
1 1
— %(3.%'1 — 229 — 4.2(}3)3 + %(3.%'1 — 229 — 4.2(}3)3,
hence
9 9 9 9 &
—6 —6 6 6 [e5KeD)]
4 4 4 4 Q2
Bs =
—6 6 —12 12 103
4 —4 -8 (D)0 %]

8
4 4 16 16 o3

It is easily seen that
rank By = rank C5 + 2,

where
9 9 o?
| -6 6 aia
G=14 4 a3
4 16 o

If rank C5 < 3 then —48a2 + 10803 = 0, 481 + 12003 — 48a3 = 0, hence
3[an, e, a3] = 13, =2, —2], a1[3, —2,2], @1[3,2, —4] or a1[3,2,4].

Proof of Theorem 2. We shall show first that
M(3,3,K) > 5.
Indeed, suppose that

4
(11) 3230 + 32175 = Z fula,x), where v, € K*, f, € K[z].
p=1

Since the left hand side is homogeneous we may assume that the f, are
monomials, and since K is algebraically closed, that f, = 23 (1 < p < 4).
Then for each p < 4,

G, = 3zize + 31175 — (,x)?

is the sum of three cubes of linear forms and by Lemma 2 we have S(G,) = 0.
However by the same lemma and a tedious computation

S(Gy) = —a

n2»
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hence a2 = 0 for all ;1 < 4. This contradicts (11), since the left hand side
depends on x2, while the right does not.
We shall now show that

M(3,3,K) <5.

Let F' € K|z| be a polynomial of degree 3 with the highest homogeneous
part Fy. Since the statement of the theorem is invariant with respect to
non-singular linear transformations we may assume by virtue of Lemma 3
that Fy(x) = F,(x), where 1 < v < 6. Also we may assume that F'(0) = 0,
since a constant can be added to any polynomial f,,. If v =1 we have

Fo(xz) = Fy(z) = nxs + 3.
On the other hand, by Theorem 3 of [6],

3
F(x)— Fi(x) = Zfﬂ(auw), o, € K?, f, € K[z,
p=1

hence (1) holds with M =5 and
ay =[0,1,0], fi=n2",
as =1[0,0,1], f5 =2
If 1 < v <5 we have, by Lemmas 4 and 5,

4
(12) Fo(x) = Fy(z) = au(auz)®.
p=1
Now, let
3 3
(13) F($) — Fo(ﬁ) = Z bijxiﬁj + ch—xi, bij = bji7
i,5=1 i=1

and let

bi1

bi2

_ baa | _
D = det Bl, b13 = Z CijOéiOéj.
1<i<5<3
ba3
b33

If v < 4, in view of the condition rank A, = 0 we have ¢;; = 0, hence
the equation
(14) Z Cij Qi = 0
1<i<;j<3
has infinitely many pairwise linearly independent solutions with a; # 0.
Thus there exists a vector [as1, as2, as3] With a1 # 0 that is not a scalar
multiple of any o, (1 < p < 4) and satisfies D = 0. According to Lemma 4,
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for a; = a5 (1 < i < 3) we have rank B, = 5. It follows by Kronecker—
Capelli’s theorem that the system of linear equations

5
Z by,a,uia,uj = blj (1 < { < j < 3)
pn=1

is solvable for b, in K (1 <y <5). Also the system

3
D duopi=ci  (1<i<3)
pn=1

is solvable for d,, in K (1 < p < 3), because of the linear independence of
a1, ag, ag. Therefore, with dy = ds = 0,
5
F(z) — Fo(z) = Z bu(ovu@)? + Z dy (o),
pn=1 =1
which together with (12) gives (1) with
fu= a#z?’ + b#z2 +duz, as=0.

If v = 5, then the equation (14) has infinitely many pairwise linearly
independent solutions. Thus there exists a vector [as1, as2, s3] that is not
a scalar multiple of any a, (1 < p < 4) and satisfies D = 0. According to
Lemma 5, for o; = a5; (1 < i < 3) we have rank Bs = 5. The remainder of
the proof is identical with the one given above.

There remains the most difficult case v = 6. Here, as the proof of
M(3,3,K) > 5 shows, the above approach is impossible and we argue as
follows.

Let again (13) hold and consider first the case where by # 0, or byy = 0,
bas = 0. We choose ¢ € K as a solution to the equation

(15) Cbgg = b23
and then choose ays, as3 in K satisfying the conditions

couyzassy + a3 +asz3 =0, aszasz(ous — ass) # 0.

This gives
G43 Q53 —C o o
2 2 . 43 53
gz oz 1| =0, 2 o |70
3 3 0 Qy3 O3
Q3 Q53
and the systems of linear equations
2 2 3 3 )
@403 + as053 = —C, Qa3 + as053 = 1,  as0ys + asogs = 0;

(16)

2 2 2
bias + bsass = b1z — cbia, baags + bsags = bsg — c"bao

are solvable for a4, as, by, b5 in K.
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Then we choose aqs, aige, aizo in K such that
(a4 + as)ai200039 + Q2022 + Q2032 + a2aciz2 = 0,

(o2 — a12) (32 — a12)(age — agz) # 0.

This gives
1 1 1 —ay4 — as
Q12 Qo2 (32 1 —0
2 2 2 =,
0121))2 0%2 agz 1
Q1g  Qpy (39 0
1 1 1 1 1 1
a1 oy oge | #0, alp a0 | #0
2 2 2
Qg Q3o Q39 Ch12  CQiag (43

and the systems of linear equations

3 3 3 3
_ _ 2 _ 3 0
g a, = —a4 — as, g a0 =1, E apyy = 0, E A, = 0;
p=1 p=1 =1 p=1
3 3 3
E § § 2 .
(17) bH = b11 - b4 - b5, b#auz = b12, b#OéMQ = b22,
,u:l lu:l #:1

2 2 2
Z du + d4 = C1, Z duaug = C9, Z ducaug + d4a43 = C3

pn=1 p=1 pn=1
are solvable for a1, as, as, b1, bs, b3, d1,ds,ds in K. Then we put dg = ds = 0,
[17 aMQ,CO[MQ] for 2 < 37
o, =
K (1,0, o3 for p = 4,5,
fu=a,z* +b,22 +dyz (1< p<5),

and verify that (12)-(13) and (15)—(17) imply (1).
Consider now the case where by = 0, baz # 0. We take ¢ as the solution
to the equation

(18) cboz + b1o = bs3.
Then we choose a3 as 5 distinct roots of the equation
(19) a3 = d(caz + 1),

where d is chosen so that the equation has distinct roots. It follows that
coyz + 1 # 0 and we take
o2

20 — M 1< u<5).
( ) 2 caug—l—l ( =H= )
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Let us consider the matrix

1 . 1
12 e (0%:9)
A= aly ... ady
13 “e Q53
d12¢13 ... (52053

and suppose that a linear combination of its successive rows with coefficients

e1,...,es, respectively, equals 0. From (20) we obtain
2 4 3
3 &3 &3
e1 + ez L e £ + esq3 + e5—— =0,

cays +1 3 (cays +1)2 coyz +1 -

hence
(es + e5c)ai3 + (eac + esc® + 65)0zi3 + (e1c® +ex + 2646)0[i3
+ (2610 + 64)Oéug +e1 =0

and since the left hand side is a polynomial of degree at most 4 in «3, and
a3, ..., ass are distinct, we have

es+esc=0, esc+ esc® + e5 = 0, e1c? + es + 2e4c = 0,
2eic+e4 =0, e =0,

which implies e, = 0 (1 < p < 5). Thus the rows of A are linearly indepen-
dent and the systems of linear equations

5 5 5
_ _ 2 _
E a, =0, E auoye =1, E apoyy = 0,
pn=1 p=1 pn=1

(21) 5 5
Z @, 03 = O, Z a0y 20,3 = 07
pn=1 un=1
5 5 5
Z bN = bll, Z buap,2 - bl?a Z bﬂ«aiQ = 0’
(22) e e =

5 5
E buayz = b3, E 0203 = bas;
pu=1

pu=1

5 5 5
(23) Z dli =C, Z duaug = Co, Z duaug = C3
pn=1 pn=1 p=1

are solvable for a,,b,,d, in K.
In view of (18) and of the identities
aiQ = doy,s, ai3 = coyo03 + a, 01220(“3 =d(cays + 1),

2 2 2 3 _ 2
Q203 = C& 03 + Q2 Q3 = Coy2C 3 + apoays,
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which follow from (19)—(20), the resulting a,,, b,,, d,, satisfy also the equations

5 5 5
3 _ 2 2 —_0-
E a0,y =0, E auons =1, E a0 003 = 0;
n=1 pn=1 p=1
5 3
2 3 _ 0.
E apop20,3 =0, E ayo,3 = 0;

3
D buady = chas + biy = by,
pn=1

hence, by (12) and (13), (1) holds with
o, =[Lau, aus),  fu=a,2® +b,2°+d,z (1< p<5).
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