
C O L L O Q U I U M M A T H E M A T I C U M
VOL. 98 2003 NO. 2

THE DIOPHANTINE EQUATION Dx2 + 22m+1 = yn

BY

J. H. E. COHN (London)

Abstract. It is shown that for a given squarefree positive integer D, the equation of
the title has no solutions in integers x > 0, m > 0, n ≥ 3 and y odd, nor unless D ≡ 14
(mod 16) in integers x > 0, m = 0, n ≥ 3, y > 0, provided in each case that n does not
divide the class number of the imaginary quadratic field containing

√
−2D, except for a

small number of (stated) exceptions.

1. Introduction. Ljunggren [3] proved that the equation x2 + 2 = yn

in positive integers x, y and n ≥ 3 has only the solution x = 5, and Nagell
[7, Theorem 24] has shown that if D ≥ 3 is an odd squarefree integer, n ≥ 3
is odd and provided n does not divide h, the class number of the quadratic
field Q[

√
−2D], then the equation Dx2 + 2 = yn has no solution. Cohn [2]

has completely solved the equation x2 + 22m+1 = yn, and it is the object of
this note to generalise these results.

2. The case m = 0. In the first place, the restriction to n odd in
Nagell’s result can be removed. Since D > 1, and is odd, 2D has at least
two prime factors and so h is even. So if n = 2N with N odd, the result
follows directly from Nagell’s. Otherwise, it suffices to consider just n = 2r,
a power of 2. In the field Q[

√
−2D] the principal ideal [2] is the square of

the ideal % = [2,
√
−2D] and we find that since y must be odd,

%2[y]n = [2 + x
√
−2D][2− x

√
−2D],

the two ideals on the right having % as their common factor. So [2 + x
√
−2D]

= %πn for some ideal π, with π2n a principal ideal. Since n = 2r does not
divide h, we may suppose that h = 2sj where j is odd and 1 ≤ s < r. Thus
for some rational integers f and g, 2s = fh − gn and so not only is π2n a
principal ideal, but so is π2s+1

. Hence

[2 + x
√
−2D]2 = [2]π2r+1

= [2]σ2r−s

where σ is principal. Since the only units in the field are±1, for some rational
integers A and B, (2 + x

√
−2D)2 = ±2(A+B

√
−2D)2. But the upper sign
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would give
√

2 + x
√
−D = ±(A+B

√
−2D), which is impossible, and the

lower sign yields −
√
−2 + x

√
D = ±(A+B

√
−2D), which cannot occur as

D > 1 and is squarefree.

Theorem 1. Given a positive squarefree D 6≡ 14 (mod 16), the equation
Dx2 + 2 = yn has no solutions in positive integers x, y and n ≥ 3 unless n
divides the class number h of the quadratic field containing

√
−2D with just

the two exceptions x = 5, n = 3, y = 3 for D = 1 and x = 1, n = 3, y = 2
for D = 6.

Proof. For D = 1 this is Ljunggren’s result, and by the above, the the-
orem holds for odd D > 1. For even D we have D = 2d with d odd and
y = 2Y , and then dx2 + 1 = 2n−1Y n. Since by supposition d 6≡ 7 (mod 8),
the only possibility is n = 3 with d ≡ 3 (mod 8), x and Y both odd and
3 -h. Then unless d = 3, we obtain

1
2

(1 + x
√
−d) =

{
1
2

(A+B
√
−d)

}3

,

where A and B are rational integers of like parity, since the only units in this
field, ±1, can be absorbed into the cube. But then 4 = A(A2 − 3dB2), which
is easily seen to be impossible. On the other hand if d = 3, then we have the
equation y3 = 6x2 +2 leading to the Mordell equation (6y)3 = (36x)2 +432,
known [6, p. 247] to have only the rational solutions given by y = 2. This
concludes the proof.

In §4, we consider some of the cases with D < 100 in which n does
divide h.

3. The case m > 0. Although in proving Theorem 1, we were able to
deal with some even values of y, Nagell’s method depended rather crucially
on y being odd. In considering the more general equation of the title, we
shall always assume y to be odd, and m positive. This necessarily requires
both D and x to be odd as well. We prove

Theorem 2. Given a positive squarefree integer D, and positive inte-
ger m, the equation Dx2 + 22m+1 = yn has no solutions in positive integers
x, y and n ≥ 3 with y odd , unless n divides the class number h of the
quadratic field containing

√
−2D with the exception of the case D = 1,

m = 2, y = 3, n = 4 and a family of exceptions with D the squarefree part
of 1

3 (22m+1 + 1), y = 1
3 (22m+3 + 1) and n = 3.

Proof. For D = 1, as is shown in [2], the only solution is as stated. We
suppose therefore that D ≥ 3. Consider first the case in which n is odd; it
clearly suffices to consider only powers of odd primes, n = pr, and suppose
that h, which is not divisible by n, equals psj where 0 ≤ s < r and p - j.
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Then with the ideal % = [2,
√
−2D] as above, we find that

[2m+1 + x
√
−2D][2m+1 − x

√
−2D] = %2[y]n

and since y is assumed odd, this gives [2m+1 + x
√
−2D] = %πn for some

ideal π for which π2n is principal. But since (h, n) = ps, there exist rational
integers f and g such that ps = fh − gn and so in fact π2ps is principal.
Hence, since the only units in the field are ±1, for some rational integers a
and b we have (2m+1 + x

√
−2D)2 = 2(a+ b

√
−2D)p, and so

(a+ b
√
−2D)p = (2m

√
2 + x

√
−D)2.

Suppose now that (a+ b
√
−2D)(p−1)/2 = l +m

√
−2D. Then

a+ b
√
−2D =

(
2m
√

2 + x
√
−D

l +m
√
−2D

)2

=
(

(2m
√

2 + x
√
−D)(l −m

√
−2D)

l2 + 2Dm2

)2

= (c
√

2 + d
√
−D)2

for some rational quantities c, d. Suppose now that the least common mul-
tiple of the denominators of c and d is k, so that c = c1/k, d = d1/k
with (c1, d1) = 1. Then bk2 = 2c1d1 and ak2 = 2c21 −Dd2

1. Since D is odd
and squarefree, it is easily seen that no prime can divide k, whence both c
and d must be integers, and so changing their signs if necessary, we obtain
2m
√

2 + x
√
−D = (c

√
2 + d

√
−D)p. Then

y2n = (22m+1 +Dx2)2 = (2c2 +Dd2)2p,

and so d is odd. Also,

2m = c

(p−1)/2∑

i=0

(
p

2i+ 1

)
2ic2i(−Dd2)(p−2i−1)/2,

and so c = ±2m since the second factor is odd.
Thus 2m+1/2 +x

√
−D = (±2m+1/2 + d

√
−D)p = αp, say, and then with

β = α,

2m+3/2 = αp + βp = (α+ β)
(
α2p − β2p

α2 − β2

)/(
αp − βp
α− β

)

and so
α2p − β2p

α2 − β2 = ±α
p − βp
α− β .

Now α, β is a Lehmer pair since (α+ β)2 = 22m+3 and αβ = 22m+1 +Dd2,
and so the Lehmer number (α2p − β2p)/(α2 − β2) has no primitive divisors.
It then follows from [1, Theorems C and 1.4] that there can be no solution
except possibly if p = 5 or 3. But there is none for p = 5, since equating real
parts would give 1 = ±(24m+2 − 10 · 22m+1d2D + 5d4D2) and here the lower
sign is impossible modulo 4 and the upper sign modulo 5. For p = 3 we obtain
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1 = ±(22m+1 − 3d2D) and the upper sign is impossible modulo 3, whence D
is the squarefree part of 1

3 (22m+1 + 1) and then yn/3 = 1
3 (22m+3 + 1), where

n would have to be a power of 3.
To conclude the proof for n odd, we have to show that n = 3 is the only

possibility here. The contrary case would imply that the equation Y 3 =
1
3 (22m+3 + 1) had a solution. Now this equation is impossible modulo 7
unless m ≡ −1 (mod 3) and then writing m = 3M − 1 and X = −22M we
obtain 3Y 3 + 2X3 = 1. It follows from [5] that this equation has but the
single solution Y = 1, X = −1, and this leads to no solution of our problem.

Finally, if n is even, then if n = 2N with N odd, since D ≥ 3 and is
odd, h is even and so n -h implies that N -h and the result follows since
even Dx2 + 22m+1 = yN has no solutions and 1

3 (22m+3 + 1) cannot be a
square. For the remaining case n = 2r with r ≥ 2. In the field Q[

√
−2D] the

principal ideal [2] is the square of the ideal % = [2,
√
−2D] and we find that

since x and y must be odd,

%2[y]n = [2m+1 + x
√
−2D][2m+1 − x

√
−2D],

the two ideals on the right having % as their common factor. Thus [2m+1 +
x
√
−2D] = %πn for some ideal π, with π2n a principal ideal. Since n = 2r

does not divide h, we may suppose that h=2sj where j is odd and 1≤s<r.
Thus for some rational integers f and g, 2s = fh − gn and so not only is
π2n a principal ideal, but so is π2s+1

. Hence

[2m+1 + x
√
−2D]2 = [2]π2r+1

= [2]σ2r−s

where σ is principal. Since the only units in the field are ±1, for some
rational integers A and B, (2m+1 + x

√
−2D)2 = ±2(A+B

√
−2D)2. But

the upper sign would give 2m
√

2 + x
√
−D = ±(A+B

√
−2D), which is

impossible, and the lower sign yields −2m
√
−2 + x

√
D = ±(A+B

√
−2D),

which cannot occur as D > 1 and is squarefree.

This concludes the proof, but raises the problem of determining, for a
given D, whether it is the squarefree part of 1

3 (22m+1 + 1) for one or more
values of m. Firstly, we may prove without difficulty that it can never occur
for more than one such value. For if D were the squarefree part of both
1
3 (2a + 1) and 1

3 (2b + 1) for odd a > b, then (2a + 1)/(2b + 1) would be the
square of a rational; since (2a + 1, 2b + 1) = 2(a,b) + 1, it would follow that
both (2a + 1)/(2(a,b) + 1) and (2b + 1)/(2(a,b) + 1) would be square integers,
and by [4] this cannot occur.

Secondly, we need only consider D ≡ 3 (mod 8) and for every prime
factor p of D, it would follow that (−2 | p) = 1, i.e., that p ≡ 1 or 3 (mod 8).
Next for each such p, we determine σ(p), the least integer with 2σ ≡ −1
(mod p), a factor of 1

2 (p− 1). Then 2m+ 1 must be a multiple of σ(p), and
so impossible if σ(p) is even.
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Using these results, we find that 3 = 1
3 (23 + 1), 11 = 1

3 (25 + 1), 32 ·19 =
1
3 (29 + 1), and 43 = 1

3 (27 + 1), whereas 35 is impossible because 5 | 35 and 51
is impossible since σ(17) = 4. However, 59 would appear to present greater
difficulties, although here 3 |h in any case.

4. The equation Dx2 + 2 = yn for D < 100

Theorem 3. For squarefree D < 100, other than 14, 30, 46, 62, 78 and
94, there are the unique solutions x = 5 for D = 1 and x = 1 for D = 6.
There is the solution x = 1 for D = 79. Otherwise there are no other
solutions, except possibly for (D,n) = (53, 3), (55, 3), (79, 4), (87, 3) and
(97, 5).

Proof. We have excluded the values for which D ≡ 14 (mod 16), and
have proved the result for D = 1 and 6. For the remaining values of D there
are no solutions save possibly for fourteen for which the corresponding h has
an odd prime factor p, leading to Dx2 + 2 = yp, and twenty-eight for which
h is divisible by 4, leading to Dx2 + 2 = y4.

Of the fourteen with odd prime factors, six can be eliminated using very
simple congruence arguments, as follows:

D h of the field Q[
√
−2D] Only possible value of p Impossible mod

13 6 3 13
19 6 3 19
61 10 5 61
85 12 3 9
91 12 3 7
93 12 3 9

and four other only slightly more complicated ones, which we prove below:

D h of the field Q[
√
−2D] Only possible value of p

37 10 5
43 10 5
67 14 7
83 10 5

(a) y5 = 37x2 + 2 would imply y ≡ 7 (mod 8) and y ≡ 24 (mod 37) but
a contradiction arises from

37x2 ≡ −1
(

mod
y − 1

2

)

whence

−1 =
(

37
∣∣∣∣
y − 1

2

)
=
(
y − 1

2

∣∣∣∣ 37
)

= −(y − 1 | 37) = −(23 | 37) = 1.
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(b) y5 = 43x2 + 2 would imply y ≡ 5 (mod 8) and y ≡ 8 (mod 43) but
then

43x2 ≡ −1
(

mod
y − 1

4

)

gives

1 =
(
−43

∣∣∣∣
y − 1

4

)
=
(
y − 1

4

∣∣∣∣ 43
)

= (y − 1 | 43) = (7 | 43) = −1,

which is impossible.
(c) y7 = 67x2 + 2 would imply y ≡ 5 (mod 8) and y ≡ 13 (mod 67) but

then

67x2 ≡ −1
(

mod
y − 1

4

)

gives

1 =
(
−67

∣∣∣∣
y − 1

4

)
=
(
y − 1

4

∣∣∣∣ 67
)

= (y − 1 | 67) = (12 | 67) = −1,

which is impossible.
(d) y5 = 83x2 + 2 would imply y ≡ 5 (mod 8) and y ≡ 71 (mod 83). So

83x2 ≡ −3
(

mod
y + 1

2

)

and then(
83
∣∣∣∣
y + 1

2

)
= −

(
y + 1

2

∣∣∣∣ 83
)

= −1 =
(
−3
∣∣∣∣
y + 1

2

)
=
(
y + 1

2

∣∣∣∣ 3
)
,

whence 3 | y, which is impossible since it would imply that x2 ≡ −1 (mod 3).
The remaining four cases:

D h of the field Q[
√
−2D] No solutions except perhaps if p =

53 6 3
55 12 3
87 12 3
97 20 5

appear to be more difficult.
Of the twenty-eight with 4 |h, all but six, 7, 23, 31, 47, 71 and 79, can

be eliminated because v2 − Du2 = 2 has no solutions. The cases D = 7,
23 and 71 yield no solutions, because for them D ≡ 7 (mod 16) and then
Dx2 + 2 = y4 would imply x2 ≡ 9 (mod 16), whence x ≡ ±3 (mod 8) and
then (2 |x) = −1.

There are no solutions for D = 31, for we should find from y4−31x2 = 2
that y2 + x

√
31 = (39 + 7

√
31)(1520 + 273

√
31)k, whence

y2 + x
√

31 ≡ −(1 +
√

31)(
√

31)k (mod 8),
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yielding y2 ≡ −1 (mod 8) if k ≡ 0 or 3 (mod 4), and

y2 + x
√

31 ≡ (1 + 7
√

31)(7
√

31)k (mod 19)

with y2 ≡ −1 (mod 19) if k ≡ 1 or 2 (mod 4).
Similarly, there are no solutions for D = 47, since then

y2 + x
√

47 = (7 +
√

47)(48 + 7
√

47)k ≡ (−1 +
√

47)(−
√

47)k (mod 8),

giving y2 ≡ −1 (mod 8) if k ≡ 0 or 3 (mod 4), and

y2 + x
√

47 = (7 +
√

47)(48 + 7
√

47)k ≡ (1 +
√

47)(
√

47)k (mod 3),

whence y2 ≡ −1 (mod 3) if k ≡ 1 or 2 (mod 4).
Finally, for the case D = 79 the equation 79x2 + 2 = y4 has the solution

x = 1, and to prove that this is the only solution appears to be more difficult.

5. A curious corollary

Theorem 4. Let c2d = (2a+ 1)n−22m+1 > 0 with d squarefree, for any
integers m ≥ 0, n > 2, and a > 1

2 (2(2m+1)/n − 1). Then the class number of
the field Q[

√
−2d] is divisible by n except for a family of cases with n = 3,

m ≥ 0, a = 1
3 (22m+2 − 1) and the single case n = 4, m = 2, a = 1.

For, the equation dx2 + 22m+1 = yn has the solution x = c, y = 2a + 1
and the exceptions are just those of the theorems above.

The author would like to express his sincere thanks to the referee for a
number of valuable suggestions.
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