C OLLOQ UIUM MATHEMATICUM

THE DIOPHANTINE EQUATION $D x^{2}+2^{2 m+1}=y^{n}$

BY

J. H. E. COHN (London)

Abstract

It is shown that for a given squarefree positive integer D, the equation of the title has no solutions in integers $x>0, m>0, n \geq 3$ and y odd, nor unless $D \equiv 14$ $(\bmod 16)$ in integers $x>0, m=0, n \geq 3, y>0$, provided in each case that n does not divide the class number of the imaginary quadratic field containing $\sqrt{-2 D}$, except for a small number of (stated) exceptions.

1. Introduction. Ljunggren [3] proved that the equation $x^{2}+2=y^{n}$ in positive integers x, y and $n \geq 3$ has only the solution $x=5$, and Nagell [7, Theorem 24] has shown that if $D \geq 3$ is an odd squarefree integer, $n \geq 3$ is odd and provided n does not divide h, the class number of the quadratic field $\mathbb{Q}[\sqrt{-2 D}]$, then the equation $D x^{2}+2=y^{n}$ has no solution. Cohn [2] has completely solved the equation $x^{2}+2^{2 m+1}=y^{n}$, and it is the object of this note to generalise these results.
2. The case $m=0$. In the first place, the restriction to n odd in Nagell's result can be removed. Since $D>1$, and is odd, $2 D$ has at least two prime factors and so h is even. So if $n=2 N$ with N odd, the result follows directly from Nagell's. Otherwise, it suffices to consider just $n=2^{r}$, a power of 2 . In the field $\mathbb{Q}[\sqrt{-2 D}]$ the principal ideal [2] is the square of the ideal $\varrho=[2, \sqrt{-2 D}]$ and we find that since y must be odd,

$$
\varrho^{2}[y]^{n}=[2+x \sqrt{-2 D}][2-x \sqrt{-2 D}]
$$

the two ideals on the right having ϱ as their common factor. So $[2+x \sqrt{-2 D}]$ $=\varrho \pi^{n}$ for some ideal π, with $\pi^{2 n}$ a principal ideal. Since $n=2^{r}$ does not divide h, we may suppose that $h=2^{s} j$ where j is odd and $1 \leq s<r$. Thus for some rational integers f and $g, 2^{s}=f h-g n$ and so not only is $\pi^{2 n}$ a principal ideal, but so is $\pi^{2^{s+1}}$. Hence

$$
[2+x \sqrt{-2 D}]^{2}=[2] \pi^{2^{r+1}}=[2] \sigma^{2^{r-s}}
$$

where σ is principal. Since the only units in the field are ± 1, for some rational integers A and $B,(2+x \sqrt{-2 D})^{2}= \pm 2(A+B \sqrt{-2 D})^{2}$. But the upper sign

[^0]would give $\sqrt{2}+x \sqrt{-D}= \pm(A+B \sqrt{-2 D})$, which is impossible, and the lower sign yields $-\sqrt{-2}+x \sqrt{D}= \pm(A+B \sqrt{-2 D})$, which cannot occur as $D>1$ and is squarefree.

Theorem 1. Given a positive squarefree $D \not \equiv 14(\bmod 16)$, the equation $D x^{2}+2=y^{n}$ has no solutions in positive integers x, y and $n \geq 3$ unless n divides the class number h of the quadratic field containing $\sqrt{-2 D}$ with just the two exceptions $x=5, n=3, y=3$ for $D=1$ and $x=1, n=3, y=2$ for $D=6$.

Proof. For $D=1$ this is Ljunggren's result, and by the above, the theorem holds for odd $D>1$. For even D we have $D=2 d$ with d odd and $y=2 Y$, and then $d x^{2}+1=2^{n-1} Y^{n}$. Since by supposition $d \not \equiv 7(\bmod 8)$, the only possibility is $n=3$ with $d \equiv 3(\bmod 8), x$ and Y both odd and $3 \nmid h$. Then unless $d=3$, we obtain

$$
\frac{1}{2}(1+x \sqrt{-d})=\left\{\frac{1}{2}(A+B \sqrt{-d})\right\}^{3}
$$

where A and B are rational integers of like parity, since the only units in this field, ± 1, can be absorbed into the cube. But then $4=A\left(A^{2}-3 d B^{2}\right)$, which is easily seen to be impossible. On the other hand if $d=3$, then we have the equation $y^{3}=6 x^{2}+2$ leading to the Mordell equation $(6 y)^{3}=(36 x)^{2}+432$, known [6, p. 247] to have only the rational solutions given by $y=2$. This concludes the proof.

In $\S 4$, we consider some of the cases with $D<100$ in which n does divide h.
3. The case $m>0$. Although in proving Theorem 1 , we were able to deal with some even values of y, Nagell's method depended rather crucially on y being odd. In considering the more general equation of the title, we shall always assume y to be odd, and m positive. This necessarily requires both D and x to be odd as well. We prove

Theorem 2. Given a positive squarefree integer D, and positive integer m, the equation $D x^{2}+2^{2 m+1}=y^{n}$ has no solutions in positive integers x, y and $n \geq 3$ with y odd, unless n divides the class number h of the quadratic field containing $\sqrt{-2 D}$ with the exception of the case $D=1$, $m=2, y=3, n=4$ and a family of exceptions with D the squarefree part of $\frac{1}{3}\left(2^{2 m+1}+1\right), y=\frac{1}{3}\left(2^{2 m+3}+1\right)$ and $n=3$.

Proof. For $D=1$, as is shown in [2], the only solution is as stated. We suppose therefore that $D \geq 3$. Consider first the case in which n is odd; it clearly suffices to consider only powers of odd primes, $n=p^{r}$, and suppose that h, which is not divisible by n, equals $p^{s} j$ where $0 \leq s<r$ and $p \nmid j$.

Then with the ideal $\varrho=[2, \sqrt{-2 D}]$ as above, we find that

$$
\left[2^{m+1}+x \sqrt{-2 D}\right]\left[2^{m+1}-x \sqrt{-2 D}\right]=\varrho^{2}[y]^{n}
$$

and since y is assumed odd, this gives $\left[2^{m+1}+x \sqrt{-2 D}\right]=\varrho \pi^{n}$ for some ideal π for which $\pi^{2 n}$ is principal. But since $(h, n)=p^{s}$, there exist rational integers f and g such that $p^{s}=f h-g n$ and so in fact $\pi^{2 p^{s}}$ is principal. Hence, since the only units in the field are ± 1, for some rational integers a and b we have $\left(2^{m+1}+x \sqrt{-2 D}\right)^{2}=2(a+b \sqrt{-2 D})^{p}$, and so

$$
(a+b \sqrt{-2 D})^{p}=\left(2^{m} \sqrt{2}+x \sqrt{-D}\right)^{2} .
$$

Suppose now that $(a+b \sqrt{-2 D})^{(p-1) / 2}=l+m \sqrt{-2 D}$. Then

$$
\begin{aligned}
a+b \sqrt{-2 D} & =\left(\frac{2^{m} \sqrt{2}+x \sqrt{-D}}{l+m \sqrt{-2 D}}\right)^{2}=\left(\frac{\left(2^{m} \sqrt{2}+x \sqrt{-D}\right)(l-m \sqrt{-2 D})}{l^{2}+2 D m^{2}}\right)^{2} \\
& =(c \sqrt{2}+d \sqrt{-D})^{2}
\end{aligned}
$$

for some rational quantities c, d. Suppose now that the least common multiple of the denominators of c and d is k, so that $c=c_{1} / k, d=d_{1} / k$ with $\left(c_{1}, d_{1}\right)=1$. Then $b k^{2}=2 c_{1} d_{1}$ and $a k^{2}=2 c_{1}^{2}-D d_{1}^{2}$. Since D is odd and squarefree, it is easily seen that no prime can divide k, whence both c and d must be integers, and so changing their signs if necessary, we obtain $2^{m} \sqrt{2}+x \sqrt{-D}=(c \sqrt{2}+d \sqrt{-D})^{p}$. Then

$$
y^{2 n}=\left(2^{2 m+1}+D x^{2}\right)^{2}=\left(2 c^{2}+D d^{2}\right)^{2 p},
$$

and so d is odd. Also,

$$
2^{m}=c \sum_{i=0}^{(p-1) / 2}\binom{p}{2 i+1} 2^{i} c^{2 i}\left(-D d^{2}\right)^{(p-2 i-1) / 2}
$$

and so $c= \pm 2^{m}$ since the second factor is odd.
Thus $2^{m+1 / 2}+x \sqrt{-D}=\left(\pm 2^{m+1 / 2}+d \sqrt{-D}\right)^{p}=\alpha^{p}$, say, and then with $\beta=\bar{\alpha}$,

$$
2^{m+3 / 2}=\alpha^{p}+\beta^{p}=(\alpha+\beta)\left(\frac{\alpha^{2 p}-\beta^{2 p}}{\alpha^{2}-\beta^{2}}\right) /\left(\frac{\alpha^{p}-\beta^{p}}{\alpha-\beta}\right)
$$

and so

$$
\frac{\alpha^{2 p}-\beta^{2 p}}{\alpha^{2}-\beta^{2}}= \pm \frac{\alpha^{p}-\beta^{p}}{\alpha-\beta} .
$$

Now α, β is a Lehmer pair since $(\alpha+\beta)^{2}=2^{2 m+3}$ and $\alpha \beta=2^{2 m+1}+D d^{2}$, and so the Lehmer number $\left(\alpha^{2 p}-\beta^{2 p}\right) /\left(\alpha^{2}-\beta^{2}\right)$ has no primitive divisors. It then follows from [1, Theorems C and 1.4] that there can be no solution except possibly if $p=5$ or 3 . But there is none for $p=5$, since equating real parts would give $1= \pm\left(2^{4 m+2}-10 \cdot 2^{2 m+1} d^{2} D+5 d^{4} D^{2}\right)$ and here the lower sign is impossible modulo 4 and the upper sign modulo 5 . For $p=3$ we obtain
$1= \pm\left(2^{2 m+1}-3 d^{2} D\right)$ and the upper sign is impossible modulo 3 , whence D is the squarefree part of $\frac{1}{3}\left(2^{2 m+1}+1\right)$ and then $y^{n / 3}=\frac{1}{3}\left(2^{2 m+3}+1\right)$, where n would have to be a power of 3 .

To conclude the proof for n odd, we have to show that $n=3$ is the only possibility here. The contrary case would imply that the equation $Y^{3}=$ $\frac{1}{3}\left(2^{2 m+3}+1\right)$ had a solution. Now this equation is impossible modulo 7 unless $m \equiv-1(\bmod 3)$ and then writing $m=3 M-1$ and $X=-2^{2 M}$ we obtain $3 Y^{3}+2 X^{3}=1$. It follows from [5] that this equation has but the single solution $Y=1, X=-1$, and this leads to no solution of our problem.

Finally, if n is even, then if $n=2 N$ with N odd, since $D \geq 3$ and is odd, h is even and so $n \nmid h$ implies that $N \nmid h$ and the result follows since even $D x^{2}+2^{2 m+1}=y^{N}$ has no solutions and $\frac{1}{3}\left(2^{2 m+3}+1\right)$ cannot be a square. For the remaining case $n=2^{r}$ with $r \geq 2$. In the field $\mathbb{Q}[\sqrt{-2 D}]$ the principal ideal [2] is the square of the ideal $\varrho=[2, \sqrt{-2 D}]$ and we find that since x and y must be odd,

$$
\varrho^{2}[y]^{n}=\left[2^{m+1}+x \sqrt{-2 D}\right]\left[2^{m+1}-x \sqrt{-2 D}\right],
$$

the two ideals on the right having ϱ as their common factor. Thus $\left[2^{m+1}+\right.$ $x \sqrt{-2 D}]=\varrho \pi^{n}$ for some ideal π, with $\pi^{2 n}$ a principal ideal. Since $n=2^{r}$ does not divide h, we may suppose that $h=2^{s} j$ where j is odd and $1 \leq s<r$. Thus for some rational integers f and $g, 2^{s}=f h-g n$ and so not only is $\pi^{2 n}$ a principal ideal, but so is $\pi^{2^{s+1}}$. Hence

$$
\left[2^{m+1}+x \sqrt{-2 D}\right]^{2}=[2] \pi^{2^{r+1}}=[2] \sigma^{2^{r-s}}
$$

where σ is principal. Since the only units in the field are ± 1, for some rational integers A and $B,\left(2^{m+1}+x \sqrt{-2 D}\right)^{2}= \pm 2(A+B \sqrt{-2 D})^{2}$. But the upper sign would give $2^{m} \sqrt{2}+x \sqrt{-D}= \pm(A+B \sqrt{-2 D})$, which is impossible, and the lower sign yields $-2^{m} \sqrt{-2}+x \sqrt{D}= \pm(A+B \sqrt{-2 D})$, which cannot occur as $D>1$ and is squarefree.

This concludes the proof, but raises the problem of determining, for a given D, whether it is the squarefree part of $\frac{1}{3}\left(2^{2 m+1}+1\right)$ for one or more values of m. Firstly, we may prove without difficulty that it can never occur for more than one such value. For if D were the squarefree part of both $\frac{1}{3}\left(2^{a}+1\right)$ and $\frac{1}{3}\left(2^{b}+1\right)$ for odd $a>b$, then $\left(2^{a}+1\right) /\left(2^{b}+1\right)$ would be the square of a rational; since $\left(2^{a}+1,2^{b}+1\right)=2^{(a, b)}+1$, it would follow that both $\left(2^{a}+1\right) /\left(2^{(a, b)}+1\right)$ and $\left(2^{b}+1\right) /\left(2^{(a, b)}+1\right)$ would be square integers, and by [4] this cannot occur.

Secondly, we need only consider $D \equiv 3(\bmod 8)$ and for every prime factor p of D, it would follow that $(-2 \mid p)=1$, i.e., that $p \equiv 1$ or $3(\bmod 8)$. Next for each such p, we determine $\sigma(p)$, the least integer with $2^{\sigma} \equiv-1$ $(\bmod p)$, a factor of $\frac{1}{2}(p-1)$. Then $2 m+1$ must be a multiple of $\sigma(p)$, and so impossible if $\sigma(p)$ is even.

Using these results, we find that $3=\frac{1}{3}\left(2^{3}+1\right), 11=\frac{1}{3}\left(2^{5}+1\right), 3^{2} \cdot 19=$ $\frac{1}{3}\left(2^{9}+1\right)$, and $43=\frac{1}{3}\left(2^{7}+1\right)$, whereas 35 is impossible because $5 \mid 35$ and 51 is impossible since $\sigma(17)=4$. However, 59 would appear to present greater difficulties, although here $3 \mid h$ in any case.
4. The equation $D x^{2}+2=y^{n}$ for $D<100$

Theorem 3. For squarefree $D<100$, other than 14, 30, 46, 62, 78 and 94 , there are the unique solutions $x=5$ for $D=1$ and $x=1$ for $D=6$. There is the solution $x=1$ for $D=79$. Otherwise there are no other solutions, except possibly for $(D, n)=(53,3),(55,3),(79,4),(87,3)$ and $(97,5)$.

Proof. We have excluded the values for which $D \equiv 14(\bmod 16)$, and have proved the result for $D=1$ and 6 . For the remaining values of D there are no solutions save possibly for fourteen for which the corresponding h has an odd prime factor p, leading to $D x^{2}+2=y^{p}$, and twenty-eight for which h is divisible by 4 , leading to $D x^{2}+2=y^{4}$.

Of the fourteen with odd prime factors, six can be eliminated using very simple congruence arguments, as follows:

D	h of the field $\mathbb{Q}[\sqrt{-2 D}]$	Only possible value of p	Impossible mod
13	6	3	13
19	6	3	19
61	10	5	61
85	12	3	9
91	12	3	7
93	12	3	9

and four other only slightly more complicated ones, which we prove below:

D	h of the field $\mathbb{Q}[\sqrt{-2 D}]$	Only possible value of p
37	10	5
43	10	5
67	14	7
83	10	5

(a) $y^{5}=37 x^{2}+2$ would imply $y \equiv 7(\bmod 8)$ and $y \equiv 24(\bmod 37)$ but a contradiction arises from

$$
37 x^{2} \equiv-1\left(\bmod \frac{y-1}{2}\right)
$$

whence

$$
-1=\left(37 \left\lvert\, \frac{y-1}{2}\right.\right)=\left(\left.\frac{y-1}{2} \right\rvert\, 37\right)=-(y-1 \mid 37)=-(23 \mid 37)=1 .
$$

(b) $y^{5}=43 x^{2}+2$ would imply $y \equiv 5(\bmod 8)$ and $y \equiv 8(\bmod 43)$ but then

$$
43 x^{2} \equiv-1\left(\bmod \frac{y-1}{4}\right)
$$

gives

$$
1=\left(-43 \left\lvert\, \frac{y-1}{4}\right.\right)=\left(\left.\frac{y-1}{4} \right\rvert\, 43\right)=(y-1 \mid 43)=(7 \mid 43)=-1
$$

which is impossible.
(c) $y^{7}=67 x^{2}+2$ would imply $y \equiv 5(\bmod 8)$ and $y \equiv 13(\bmod 67)$ but then

$$
67 x^{2} \equiv-1\left(\bmod \frac{y-1}{4}\right)
$$

gives

$$
1=\left(-67 \left\lvert\, \frac{y-1}{4}\right.\right)=\left(\left.\frac{y-1}{4} \right\rvert\, 67\right)=(y-1 \mid 67)=(12 \mid 67)=-1
$$

which is impossible.
(d) $y^{5}=83 x^{2}+2$ would imply $y \equiv 5(\bmod 8)$ and $y \equiv 71(\bmod 83)$. So

$$
83 x^{2} \equiv-3\left(\bmod \frac{y+1}{2}\right)
$$

and then

$$
\left(83 \left\lvert\, \frac{y+1}{2}\right.\right)=-\left(\left.\frac{y+1}{2} \right\rvert\, 83\right)=-1=\left(-3 \left\lvert\, \frac{y+1}{2}\right.\right)=\left(\left.\frac{y+1}{2} \right\rvert\, 3\right)
$$

whence $3 \mid y$, which is impossible since it would imply that $x^{2} \equiv-1(\bmod 3)$.
The remaining four cases:

D	h of the field $\mathbb{Q}[\sqrt{-2 D}]$	No solutions except perhaps if $p=$
53	6	3
55	12	3
87	12	3
97	20	5

appear to be more difficult.
Of the twenty-eight with $4 \mid h$, all but six, $7,23,31,47,71$ and 79 , can be eliminated because $v^{2}-D u^{2}=2$ has no solutions. The cases $D=7$, 23 and 71 yield no solutions, because for them $D \equiv 7(\bmod 16)$ and then $D x^{2}+2=y^{4}$ would imply $x^{2} \equiv 9(\bmod 16)$, whence $x \equiv \pm 3(\bmod 8)$ and then $(2 \mid x)=-1$.

There are no solutions for $D=31$, for we should find from $y^{4}-31 x^{2}=2$ that $y^{2}+x \sqrt{31}=(39+7 \sqrt{31})(1520+273 \sqrt{31})^{k}$, whence

$$
y^{2}+x \sqrt{31} \equiv-(1+\sqrt{31})(\sqrt{31})^{k}(\bmod 8)
$$

yielding $y^{2} \equiv-1(\bmod 8)$ if $k \equiv 0$ or $3(\bmod 4)$, and

$$
y^{2}+x \sqrt{31} \equiv(1+7 \sqrt{31})(7 \sqrt{31})^{k}(\bmod 19)
$$

with $y^{2} \equiv-1(\bmod 19)$ if $k \equiv 1$ or $2(\bmod 4)$.
Similarly, there are no solutions for $D=47$, since then

$$
y^{2}+x \sqrt{47}=(7+\sqrt{47})(48+7 \sqrt{47})^{k} \equiv(-1+\sqrt{47})(-\sqrt{47})^{k}(\bmod 8)
$$

giving $y^{2} \equiv-1(\bmod 8)$ if $k \equiv 0$ or $3(\bmod 4)$, and

$$
y^{2}+x \sqrt{47}=(7+\sqrt{47})(48+7 \sqrt{47})^{k} \equiv(1+\sqrt{47})(\sqrt{47})^{k}(\bmod 3)
$$

whence $y^{2} \equiv-1(\bmod 3)$ if $k \equiv 1$ or $2(\bmod 4)$.
Finally, for the case $D=79$ the equation $79 x^{2}+2=y^{4}$ has the solution $x=1$, and to prove that this is the only solution appears to be more difficult.

5. A curious corollary

TheOrem 4. Let $c^{2} d=(2 a+1)^{n}-2^{2 m+1}>0$ with d squarefree, for any integers $m \geq 0, n>2$, and $a>\frac{1}{2}\left(2^{(2 m+1) / n}-1\right)$. Then the class number of the field $\mathbb{Q}[\sqrt{-2 d}]$ is divisible by n except for a family of cases with $n=3$, $m \geq 0, a=\frac{1}{3}\left(2^{2 m+2}-1\right)$ and the single case $n=4, m=2, a=1$.

For, the equation $d x^{2}+2^{2 m+1}=y^{n}$ has the solution $x=c, y=2 a+1$ and the exceptions are just those of the theorems above.

The author would like to express his sincere thanks to the referee for a number of valuable suggestions.

REFERENCES

[1] Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122.
[2] J. H. E. Cohn, The diophantine equation $x^{2}+2^{k}=y^{n}$, Arch. Math. (Basel) 59 (1992), 341-344.
[3] W. Ljunggren, Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat. Astr. Fys. 29A (1943), no. 13.
[4] -, Noen setninger om ubestemte likninger av formen $\left(x^{n}-1\right) /(x-1)=y^{q}$ [Some theorems on indeterminate equations of the form $\left.\left(x^{n}-1\right) /(x-1)=y^{q}\right]$, Norsk Mat. Tiddskr. 25 (1943), 17-20.
[5] -, On an improvement of a theorem of T. Nagell concerning the Diophantine equation $A x^{3}+B y^{3}=C$, Math. Scand. 1 (1953), 297-309.
[6] L. J. Mordell, Diophantine Equations, Academic Press, London \& New York, 1969.
[7] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. (4) 16 (1955), no. 2.

23, Highfield Gardens
London NW11 9HD, U.K.
E-mail: J.Cohn@rhul.ac.uk

Received 19 February 2003;
revised 28 May 2003

[^0]: 2000 Mathematics Subject Classification: Primary 11D61; Secondary 11B37.

