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THE DIOPHANTINE EQUATION Dx? + 22m+l — ¢n

BY

J. H. E. COHN (London)

Abstract. It is shown that for a given squarefree positive integer D, the equation of
the title has no solutions in integers z > 0, m > 0, n > 3 and y odd, nor unless D = 14
(mod 16) in integers > 0, m = 0, n > 3, y > 0, provided in each case that n does not
divide the class number of the imaginary quadratic field containing +/—2D, except for a
small number of (stated) exceptions.

1. Introduction. Ljunggren [3] proved that the equation z2 + 2 = y"
in positive integers x, y and n > 3 has only the solution x = 5, and Nagell
[7, Theorem 24| has shown that if D > 3 is an odd squarefree integer, n > 3
is odd and provided n does not divide h, the class number of the quadratic
field Q[v/—2D)], then the equation Dz? + 2 = y™ has no solution. Cohn [2]
has completely solved the equation 2 + 22™+! = ¢" and it is the object of
this note to generalise these results.

2. The case m = 0. In the first place, the restriction to n odd in
Nagell’s result can be removed. Since D > 1, and is odd, 2D has at least
two prime factors and so h is even. So if n = 2N with N odd, the result
follows directly from Nagell’s. Otherwise, it suffices to consider just n = 2",
a power of 2. In the field Q[v/—2D] the principal ideal [2] is the square of
the ideal o = [2,v/—2D] and we find that since y must be odd,

Plyl" = 2+ «v/=2D[2 - 2v/—2D],

the two ideals on the right having g as their common factor. So [2 + xv/—2D)]
= or™ for some ideal 7, with 72" a principal ideal. Since n = 2" does not

divide h, we may suppose that h = 2°j where j is odd and 1 < s < r. Thus

for some rational integers f and g, 2° = fh — gn and so not only is 72" a

principal ideal, but so is 72 ™ Hence
24 zv—2D)? = 2]=*" =[2]0* "

where ¢ is principal. Since the only units in the field are +1, for some rational
integers A and B, (2 + zv/—2D)? = +2(A + B\/—2D)?2. But the upper sign
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would give V2 + 2v/—D = 4(A + By/—2D), which is impossible, and the
lower sign yields —v/—2 + /D = £(A + B\/—2D), which cannot occur as
D > 1 and is squarefree.

THEOREM 1. Given a positive squarefree D # 14 (mod 16), the equation
D% + 2 = y™ has no solutions in positive integers x, y and n > 3 unless n
divides the class number h of the quadratic field containing v/ —2D with just
the two exceptionsx =5, n=3, y=3 forD=1andx=1,n=3,y =2
for D = 6.

Proof. For D = 1 this is Ljunggren’s result, and by the above, the the-
orem holds for odd D > 1. For even D we have D = 2d with d odd and
y = 2Y, and then dz? + 1 = 2"~1Y™. Since by supposition d #Z 7 (mod 8),
the only possibility is n = 3 with d = 3 (mod8), z and Y both odd and
31 h. Then unless d = 3, we obtain

1 1 ’

5 +av—d) = {§(A+B\/—_d)} :
where A and B are rational integers of like parity, since the only units in this
field, -1, can be absorbed into the cube. But then 4 = A(A? — 3dB?), which
is easily seen to be impossible. On the other hand if d = 3, then we have the
equation y® = 622 + 2 leading to the Mordell equation (6y)® = (36x)% + 432,
known [6, p. 247] to have only the rational solutions given by y = 2. This
concludes the proof.

In §4, we consider some of the cases with D < 100 in which n does
divide h.

3. The case m > 0. Although in proving Theorem 1, we were able to
deal with some even values of y, Nagell’s method depended rather crucially
on y being odd. In considering the more general equation of the title, we
shall always assume y to be odd, and m positive. This necessarily requires
both D and z to be odd as well. We prove

THEOREM 2. Given a positive squarefree integer D, and positive inte-
ger m, the equation Dxz? + 221 = y™ has no solutions in positive integers
x, y and n > 3 with y odd, unless n divides the class number h of the
quadratic field containing /—2D with the exception of the case D = 1,
m =2,y =3, n=4 and a family of exceptions with D the squarefree part
of $(2¥™ T +1), y = (2?3 + 1) and n = 3.

Proof. For D = 1, as is shown in [2], the only solution is as stated. We
suppose therefore that D > 3. Consider first the case in which n is odd; it
clearly suffices to consider only powers of odd primes, n = p”, and suppose
that h, which is not divisible by n, equals p®j where 0 < s < r and p1}j.
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Then with the ideal o = [2,+/—2D] as above, we find that
[2m+1 e /—2D] [2m+1 —x /—QD] — QQ[y]n

and since y is assumed odd, this gives [2™*! + 2v/—2D] = o™ for some
ideal 7 for which 72" is principal. But since (h,n) = p®, there exist rational
integers f and g such that p* = fh — gn and so in fact 72" is principal.
Hence, since the only units in the field are £1, for some rational integers a
and b we have (2! + 2v/—2D)? = 2(a + by/—2D)?, and so

(a +bvV—2D)? = (2™V2 + 2/—D)2.
Suppose now that (a + by/—2D)P~1/2 = | 4 m+/—2D. Then
m _ 2 m — _ — 2
a+ bV 2D = (2 V2+ay D) :(@ V2+aV/=D)(I—m 2D)>
[ +m+\/—2D 12 + 2Dm?2
= (¢vV2+dv-D)?

for some rational quantities ¢, d. Suppose now that the least common mul-
tiple of the denominators of ¢ and d is k, so that ¢ = ¢1/k, d = di/k
with (c1,dy) = 1. Then bk? = 2¢1dy and ak? = 2¢? — Dd?. Since D is odd
and squarefree, it is easily seen that no prime can divide k, whence both ¢
and d must be integers, and so changing their signs if necessary, we obtain

2\/2 + x/—D = (¢/2 + dv/—D)P. Then
y2n — (22m+1 +D:132)2 — (262 +Dd2)2p,
and so d is odd. Also,

(p—1)/2 »
m o _ 1200 2\(p—2i—1)/2
2 c g <21, v 1)2 ' (=Dd?) ,

and so ¢ = 2™ since the second factor is odd.
Thus 2m+1Y/2 4+ 20/=D = (£2™+1/2 + d\/=D)P = aP, say, and then with

p=a,
2p _ 32p P — (3P
a2 [ (22)

P — 3% aP — 3P

a2—p32 T a-p8"
Now «, 3 is a Lehmer pair since (a + §)? = 223 and af = 22™+1 4 Dd?,
and so the Lehmer number (a?? — 32P)/(a? — 3?) has no primitive divisors.
It then follows from [1, Theorems C and 1.4] that there can be no solution
except possibly if p = 5 or 3. But there is none for p = 5, since equating real
parts would give 1 = (242 — 10 - 22mT142 D 4 5d* D?) and here the lower
sign is impossible modulo 4 and the upper sign modulo 5. For p = 3 we obtain

and so
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1 = £(22m+1 — 3d2D) and the upper sign is impossible modulo 3, whence D
is the squarefree part of %(22™+1 4 1) and then y"/3 = £(22™%3 4 1), where
n would have to be a power of 3.

To conclude the proof for n odd, we have to show that n = 3 is the only
possibility here. The contrary case would imply that the equation Y3 =
%(22””3 + 1) had a solution. Now this equation is impossible modulo 7
unless m = —1 (mod 3) and then writing m = 3M — 1 and X = —22M we
obtain 3Y3 + 2X3 = 1. It follows from [5] that this equation has but the
single solution Y = 1, X = —1, and this leads to no solution of our problem.

Finally, if n is even, then if n = 2N with N odd, since D > 3 and is
odd, h is even and so n)(h implies that N{h and the result follows since
even Dz? + 221 = yV has no solutions and $(22™*3 + 1) cannot be a
square. For the remaining case n = 2" with r > 2. In the field Q[v/—2D] the
principal ideal [2] is the square of the ideal ¢ = [2,v/—2D] and we find that
since z and y must be odd,

QPlyl" = 2™+ + 2V —2D][2"H! — 2/ 2D,

the two ideals on the right having ¢ as their common factor. Thus [2™+! +

xv/—2D] = or™ for some ideal 7, with 72" a principal ideal. Since n = 27

does not divide h, we may suppose that h=2%j where j is odd and 1 <s<r.

Thus for some rational integers f and g, 2° = fh — gn and so not only is
72" a principal ideal, but so is 72 " Hence

27t 4 pv/—2D]% = 272 =[2]0?
where o is principal. Since the only units in the field are +1, for some
rational integers A and B, (2™ + xv/— 2D) = +2(A+ Bv/-2D)% But
the upper sign would give 2™/2 + zv/— +(A + Bv—2D), which is

impossible, and the lower sign yields —2m\/ 2+ 2vD = +(A+ By—2D),
which cannot occur as D > 1 and is squarefree.

This concludes the proof, but raises the problem of determining, for a
given D, whether it is the squarefree part of £(2*™! + 1) for one or more
values of m. Firstly, we may prove without difficulty that it can never occur
for more than one such value. For if D were the squarefree part of both
3(27+1) and £(2° + 1) for odd a > b, then (2* +1)/(2° + 1) would be the
square of a rational; since (2¢ + 1,2° +1) = 2(®b) 4 1, it would follow that
both (2% +1)/(2(®? 4 1) and (2° +1)/(2(*? 4 1) would be square integers,
and by [4] this cannot occur.

Secondly, we need only consider D = 3 (mod8) and for every prime
factor p of D, it would follow that (—2|p) = 1, i.e., that p = 1 or 3 (mod 8).
Next for each such p, we determine o(p), the least integer with 27 = —1
(mod p), a factor of 1(p —1). Then 2m + 1 must be a multiple of o(p), and
so impossible if o(p) is even.
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Using these results, we find that 3 = (23 +1), 11 = 1(2° + 1), 3219 =
3(2° 4+ 1), and 43 = $(27 4 1), whereas 35 is impossible because 5 | 35 and 51
is impossible since 0(17) = 4. However, 59 would appear to present greater
difficulties, although here 3|k in any case.

4. The equation Dz? + 2 = y™ for D < 100

THEOREM 3. For squarefree D < 100, other than 14, 30, 46, 62, 78 and
94, there are the unique solutions x =5 for D =1 and x = 1 for D = 6.
There is the solution © = 1 for D = 79. Otherwise there are no other
solutions, except possibly for (D,n) = (53,3), (55,3), (79,4), (87,3) and
(97,5).

Proof. We have excluded the values for which D = 14 (mod 16), and
have proved the result for D = 1 and 6. For the remaining values of D there
are no solutions save possibly for fourteen for which the corresponding h has
an odd prime factor p, leading to Dz? 4+ 2 = 3P, and twenty-eight for which
h is divisible by 4, leading to Dx? + 2 = y*.

Of the fourteen with odd prime factors, six can be eliminated using very
simple congruence arguments, as follows:

D h of the field Q[v/—2D] Only possible value of p Impossible mod

13 6 3 13
19 6 3 19
61 10 5 61
85 12 3 9
91 12 3 7
93 12 3 9

and four other only slightly more complicated ones, which we prove below:

D hof the field Q[v/—2D] Only possible value of p

37 10 5
43 10 5
67 14 7
83 10 5

(a) y° = 3722 + 2 would imply y = 7 (mod 8) and y = 24 (mod 37) but
a contradiction arises from

372% = — <mod yT_1>

whence

1= <37‘y7_1> - (y%‘?ﬂ) (Y —1[37) = —(23]37) = 1.
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(b) 3° = 4322 + 2 would imply y = 5 (mod 8) and y = 8 (mod 43) but
then X
432% = — <mod v >
4
gives

1= <—43 y;1> = <y21’43> = (y—1]43) = (7]43) = —1,

which is impossible.
(c) y" = 6722 + 2 would imply y = 5 (mod8) and y = 13 (mod 67) but

then
-1
672° = —1 <mod yT)

gives

- (—67 %) - (;,;_1‘67> — (y—1]67) = (12]67) = —1,

which is impossible.
(d) y° = 8322 + 2 would imply y =5 (mod8) and y = 71 (mod 83). So

1
83z° = —3 <mod %)
and then

y+1 y+1 y+1 y+1
8| ¥—-r—|=—— |83 )| =—-1=-3|7—|=—1|3

whence 3 |y, which is impossible since it would imply that 22 = —1 (mod 3).
The remaining four cases:

D h of the field Q[v/—2D] No solutions except perhaps if p =

53 6 3
55 12 3
87 12 3
97 20 5

appear to be more difficult.

Of the twenty-eight with 4| h, all but six, 7, 23, 31, 47, 71 and 79, can
be eliminated because v2 — Du? = 2 has no solutions. The cases D = 7,
23 and 71 yield no solutions, because for them D = 7 (mod 16) and then
Dx? + 2 = y* would imply 22 = 9 (mod 16), whence x = +3 (mod 8) and
then (2|z) = —1.

There are no solutions for D = 31, for we should find from y* — 3122 = 2
that y? + /31 = (39 + 7/31)(1520 + 273v/31)*, whence

y? +2v31 = —(1 4+ V31)(V31)F (mod8),
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yielding y? = —1 (mod 8) if k=0 or 3 (mod 4), and
y? + V31 = (1 4+ 7V31)(7V31)* (mod 19)

with 2 = —1 (mod 19) if K =1 or 2 (mod 4).
Similarly, there are no solutions for D = 47, since then

Y2 + 2VAT = (T 4+ VAT)(48 + TVAT)* = (=1 + V4T)(—V47)* (mod 8),
giving y?> = —1 (mod 8) if k = 0 or 3 (mod 4), and
y? + 2VAT = (T4 VAT) (48 + TVAT)* = (1 + V4AT)(VAT)® (mod 3),

whence y? = —1 (mod 3) if k =1 or 2 (mod 4).
Finally, for the case D = 79 the equation 7922 + 2 = y* has the solution
x = 1, and to prove that this is the only solution appears to be more difficult.

5. A curious corollary

THEOREM 4. Let c2d = (2a + 1)"—22m*1 > 0 with d squarefree, for any
integersm > 0, n > 2, and a > £(2™+D/" — 1), Then the class number of
the field Q[v/—2d] is divisible by n except for a family of cases with n = 3,
m >0, a= 5(2*"*2 — 1) and the single case n =4, m =2, a = 1.

For, the equation dz? + 22™*! = 4" has the solution x = ¢, y = 2a + 1
and the exceptions are just those of the theorems above.

The author would like to express his sincere thanks to the referee for a
number of valuable suggestions.
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