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TOWARDS BAUER’S THEOREM FOR LINEAR
RECURRENCE SEQUENCES

BY

MARIUSZ SKAŁBA (Warszawa)

Abstract. Consider a recurrence sequence (xk)k∈Z of integers satisfying xk+n =
an−1xk+n−1+. . .+a1xk+1 +a0xk, where a0, a1, . . . , an−1 ∈ Z are fixed and a0 ∈ {−1, 1}.
Assume that xk > 0 for all sufficiently large k. If there exists k0 ∈ Z such that xk0 < 0
then for each negative integer −D there exist infinitely many rational primes q such that
q |xk for some k ∈ N and (−Dq ) = −1.

Let P (K) denote the set of those rational primes which have a prime
ideal factor of the first degree in the algebraic number field K. A classical
theorem of M. Bauer [1] states that:

If K is normal, then P (Ω) ⊂ P (K) implies Ω ⊃ K.

This can be reformulated in the language of polynomial congruences
([3]). For instance, take K = Q(

√
−D), a quadratic imaginary field, and

f(x) ∈ Q[x], a monic irreducible polynomial taking negative values. If Ω =
Q(α), where α ∈ R and f(α) = 0, then K 6⊂ Ω, and the above theorem of
Bauer has the following corollary:

There exist infinitely many rational prime numbers q such that q | f(x)
for some x ∈ Z and (−Dq ) = −1 (cf. also [5, pp. 168–169]).

The main goal of the present paper is the proof of the following theorem:

Theorem. Let (xk)k∈Z be a recurrence sequence of integers which sat-
isfies the relation

xk+n = an−1xk+n−1 + an−2xk+n−2 + . . .+ a1xk+1 + a0xk,(1)

where a0, a1, . . . , an−1 ∈ Z are fixed and a0 ∈ {−1, 1}. Assume further that
xk > 0 for all sufficiently large k. If there exists k0 ∈ Z such that xk0 < 0
then for each negative integer −D there exist infinitely many rational primes
q such that q |xk for some k ∈ N and

(−D
q

)
= −1.

The set of recurrence sequences to which the above theorem applies
contains all polynomials because the condition a0 ∈ {−1, 1} is fulfilled for
polynomials in a trivial way. Hence the above theorem is the extension of
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a restricted version of Bauer’s theorem (restricted to quadratic imaginary
fields K) to a wider class of linear recurrence sequences.

The next result is of a very technical nature, but the proof of the Theorem
relies heavily on it.

Lemma. Assume that a recurrence sequence (xk)k∈Z of rational numbers
satisfies (1), where aj ∈ Z, a0 6= 0. Let there be given s positive definite
binary quadratic forms fj(x, y) = cjx

2 + bjy
2, where cj , bj are squarefree

natural numbers for j = 1, . . . , s. Assume that there exists k0 ∈ Z such that
xk0 < 0 and for each rational prime p the following implication holds:

p | a0 ⇒
(
cj
xk0

,
bj
xk0

)

p

= 1 for j = 1, . . . , s,(2)

where ( , )p is the p-adic Hilbert symbol. Then there exists a natural number
M such that for each l ≥ 0,

xk0+lM 6= fj(x, y)

for all j = 1, . . . , s and x, y ∈ Q.

Proof of Lemma. By the quadratic reciprocity law in Hilbert’s form,
∏

p∈P∪{∞}

(
cj
xk0

,
bj
xk0

)

p

= 1

for each j = 1, . . . , s. Since xk0 < 0 we obtain
(
cj
xk0

,
bj
xk0

)

∞
= −1

and therefore there exist pj ∈ P such that
(
cj
xk0

,
bj
xk0

)

pj

= −1, j = 1, . . . , s.(3)

By the assumption (2) we obtain

gcd(p1 . . . ps, a0) = 1.(4)

This implies that for each j = 1, . . . , s and any natural number t, the se-
quence (xk mod ptj) is periodic (say, by “prolonging-to-the-left” reasoning).

Moreover, after multiplying (xk) by a number of the form p2l1
1 p2l2

2 · · · p2ls
s we

can assume that 0 ≤ vpj (xk0) ≤ 1 for j = 1, . . . , s. Let Mj be a period of
(xk mod p2

j ) for pj 6= 2, and of (xk mod 16) for pj = 2. By the well known
calculation rules for the Hilbert symbol ([2, Theorem 7 of Ch. 1]), from (3)
we obtain (

cj
xk0+lMj

,
bj

xk0+lMj

)

pj

= −1



BAUER’S THEOREM 165

for j = 1, . . . , s and any l ≥ 0. Now we put M =
∏s
j=1Mj and the assertion

follows.

Proof of Theorem. Without loss of generality we restrict ourselves to
fundamental discriminants −D. Let

fj(x, y) = cjx
2 + bjy

2, cj , bj ∈ N squarefree, j = 1, . . . , s,

represent all equivalence classes of primitive integral positive definite binary
quadratic forms of discriminant −D over Q (by the Gauss theory of genera
we can take s = 2ω(D)−1, but what we actually need is just s < ∞). We
can apply the Lemma because the condition (2) is satisfied in a trivial way.
Define

x−k0
=

∏

qa‖xk0 , (
−D
q

)=−1

qa, N =
∏

qa‖xk0 , (
−D
q

)=−1

qa+1

(in case x−k0
= 1 we put N = 1 as well).

By periodicity there exists M0 such that for l ∈ Z,

xk0+lM0 ≡ xk0 (modN ).

Now, we define
x̃l = xk0+lM0/x

−
k0

for l ∈ Z.
The sequence (x̃l) is also a recurrence sequence, consists of integers and
satisfies ã0 ∈ {−1, 1} and x̃0 < 0. By the above construction,

q ∈ P and
(−D

q

)
= −1 ⇒ q - x̃0.(5)

Now, take any finite set Q of prime numbers q satisfying(−D
q

)
= −1.

Let
M =

∏

q∈Q
q.

By periodicity there exists S ∈ N such that

x̃lS ≡ x̃0 (modM) for l ∈ Z.
Hence, by property (5),

gcd(x̃lS,M) = 1 for l ∈ Z.(6)

If we define
˜̃xl = x̃lS, l ∈ Z,

then ( ˜̃xl) is again a recurrence sequence and it satisfies the assumptions of
the Lemma. Hence there exists a natural number M such that for each l ≥ 0,

˜̃xlM 6= fj(x, y)
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for j = 1, . . . , s, x, y ∈ Q. Now take l ≥ 0 such that ˜̃xlM > 0. By a classical
theorem ([2, Theorem 3 of Ch. 3]) we obtain in particular

∃q ∈ P, k ≥ 0,
(−D

q

)
= −1, q2k+1 ‖ ˜̃xlM .

By property (6) we infer that q 6∈ Q. So we have constructed a prime divisor
q of (xk)k with

(−D
q

)
= −1, lying outside a given finite set of such primes.

The proof of the Theorem is finished.

Now, we deduce a corollary which states in part (ii) that in the case of
linear recurrence sequences of the second order the assumption that xk0 < 0
for some k0 ∈ Z is crucial.

Corollary 1. Let (xk)k∈Z be a non-constant recurrence sequence of in-
tegers satisfying

xk+2 = a1xk+1 + a0xk, k ∈ Z,
where a0, a1 ∈ Z, a0 ∈ {−1, 1} and xk > 0 for k sufficiently large.

(i) If there exists k0 ∈ Z such that xk0 < 0 then for each negative integer
−D there exist infinitely many rational primes q such that q |xk for some
k ∈ N and

(−D
q

)
= −1.

(ii) If xk > 0 for each k ∈ Z then there exists a negative integer −D such
that for each k and each prime p,

p |xk ⇒
(−D

p

)
= 1 or p | 2D.

Proof. Case (i) is an immediate consequence of the Theorem.
For the proof of (ii) assume that

xk > 0 for each k ∈ Z.(7)

It follows easily that
a0 = −1, a1 ≥ 3.(8)

For convenience of notation put g = a1. Let us work with the explicit formula
for xk,

xk = αγk + α γk,

where

γ =
g +

√
g2 − 4

2
∈ K := Q(

√
g2 − 4), α ∈ K,

and the bar denotes the non-trivial automorphism of K. The property (7)
forces that

α > 0, α > 0.(9)
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Now, define uk, vk ∈ Q by

uk + vk
√
g2 − 4

2
= γk.(10)

If we put α = h+j
√
g2−4

2 then

x2k = Tr
[(

h+ j
√
g2 − 4

2

)(
uk + vk

√
g2 − 4

2

)2]

=
h

4
u2
k +

j(g2 − 4)
2

ukvk +
h(g2 − 4)

4
v2
k.

The binary quadratic form

f(x, y) =
h

4
x2 +

j(g2 − 4)
2

xy +
h(g2 − 4)

4
y2

is positive definite because by (9),

f(1, 0) =
h

4
=

1
4

Tr(α) > 0,

∆f =
j2(g2 − 4)2

4
− h2(g2 − 4)

4
= (4− g2)N(α) < 0.

Now define −D = ∆f . Then −D is a negative integer and for each k ∈ Z
and prime p we have

p |x2k ⇒ f(uk, vk) ≡ 0 (modp).

In view of (10), gcd(uk, vk) ∈ {1, 2}, hence

2 6= p |x2k ⇒ f(uk/vk, 1) = 0 or f(1, vk/uk) = 0 in Fp.

Hence the discriminant of the relevant quadratic trinomial (f(x, 1) or f(1, x))
must be a square in Fp, thus

(−D
p

)
= 1 or p |D.(11)

In a similar way

x2k+1 = Tr
[(

h+ j
√
g2 − 4

2

)(
g +

√
g2 − 4

2

)(
uk + vk

√
g2 − 4

2

)2]

= g(uk, vk),

where

g(x, y) =
hg + jg2 − 4j

8
x2 +

(h+ gj)(g2 − 4)
4

xy

+
(hg + jg2 − 4j)(g2 − 4)

8
y2.

In view of (8),
γ > 0, γ > 0,
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and therefore
α′ := γα > 0, α′ > 0.

Hence g(x, y) is positive definite for similar reasons as f(x, y),

∆g = (4− g2)N(α′) = ∆f ,

and the characterization (11) of odd prime divisors p of x2k+1 can be ob-
tained in the same way as for prime divisors of x2k, above.

The next corollary illustrates that our approach is more general than it
seems to be—in many specific situations we can dispense with the assump-
tion a0 ∈ {−1, 1}.

Corollary 2. Let A,B be positive odd integers, C = 2c with c ≥ 1,
and consider the sequence xk = ACk − B. For each prime number r ≡ 3
(mod 4) there exist infinitely many prime numbers q such that

q |xk for some k and
(−r
q

)
= −1

(or equivalently
( q
r

)
= −1, by the quadratic reciprocity law).

Sketch of proof. The proof goes along the same lines as the proof of
the Theorem. In order to apply the Lemma we now consider just one form
f1(x, y) = x2 + ry2. We will only verify that the assumption (2) of the
Lemma is fulfilled. The unique prime divisor p of a0 is p = 2. Hence, the
verification of (2) will be brief. Choose k0 = −2l where l > 0 is such that
xk0 < 0. Then

(
1
xk0

,
r

xk0

)

2
= (xk0 ,−r)2 = (A−BC2l,−r)2 = (−1)

A−1
2
−r−1

2 = 1.

As an immediate application of the above corollary we obtain for in-
stance:

There exist infinitely many primes q such that q | 4x − 5 for some x ∈ N
and simultaneously q - 4y + 7 for each y ∈ N.

But we have not been able to handle the following more general problem.
What can be said about positive integers a, b, c, d, where a, c > 1, if for each
prime number q, q divides a number of the form ax−b if and only if q divides
a number of the form cy − d?

Our method of proving the infinitude of relevant primes is in essence
that of Euclid. Despite of this we venture to formulate

Conjecture. Let g be an integer , |g| ≥ 3 and consider a recurrence
sequence (xk)k∈Z of integers satisfying

xk+2 = gxk+1 − xk, k ∈ Z.(12)
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Assume that xk is a sum of two integral squares for all sufficiently large k.
Then there exist two recurrence sequences uk, vk of integers such that xk =
u2
k + v2

k.

It seems doubtful that one can make real progress without any density
results concerning prime divisors of linear recurrence sequences. The situa-
tion is much more satisfactory in the case of polynomials ([4], [6]).
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