COLLOQUIUM MATHEMATICUM

A PINCHING THEOREM ON COMPLETE SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTORS

BY
ZIQI SUN (Wichita, KS)

Abstract

Let M be an n-dimensional complete immersed submanifold with parallel mean curvature vectors in an $(n+p)$-dimensional Riemannian manifold N of constant curvature $c>0$. Denote the square of length and the length of the trace of the second

 fundamental tensor of M by S and H, respectively. We prove that if$$
S \leq \frac{1}{n-1} H^{2}+2 c, \quad n \geq 4
$$

or

$$
S \leq \frac{1}{2} H^{2}+\min \left(2, \frac{3 p-3}{2 p-3}\right) c, \quad n=3
$$

then M is umbilical. This result generalizes the Okumura-Hasanis pinching theorem to the case of higher codimensions.

1. Introduction. Let M be an n-dimensional complete immersed submanifold with parallel mean curvature vector in an $(n+p)$-dimensional Riemannian manifold N of constant curvature $c>0$, and let h denote the second fundamental tensor of M. We denote the square of the length of h by S and the length of the trace of h by H. It is well known that M is a totally umbilical submanifold of N if and only if $S=H^{2} / n$.

When $p=1$, i.e., when M is a complete hypersurface of N, a classical pinching theorem has been obtained by Okumura and Hasanis. They proved $[\mathrm{O}],[\mathrm{H}]:$ If $n \geq 3$ and

$$
S \leq \frac{1}{n-1} H^{2}+2 c
$$

then M is umbilical.
The purpose of this paper is to generalize the above result to the case of higher codimensions. We first prove that, when $n \geq 4$, Okumura-Hasanis's pinching theorem also holds in the case of high codimension.

Theorem 1. Let M be an n-dimensional complete immersed submanifold with parallel mean curvature vector in an $(n+p)$-dimensional Riemannian manifold N of constant curvature $c>0$. If $n \geq 4, p \geq 2$, and

2000 Mathematics Subject Classification: Primary 53C40.

$$
S \leq \frac{1}{n-1} H^{2}+2 c
$$

then M is totally umbilical.
In the case of $n=3$ and $p \geq 2$, we have the following pinching theorem, which is slightly weaker than Okumura-Hasanis's result in the case of $n=3$ and $p=1$.

Theorem 2. Let M be an 3-dimensional complete immersed submanifold with parallel mean curvature vector in a $(3+p)$-dimensional Riemannian manifold N of constant curvature $c>0$. If $p \geq 2$ and

$$
S \leq \frac{1}{2} H^{2}+\min \left(2, \frac{3 p-3}{2 p-3}\right) c,
$$

then M is totally umbilical.
We refer the reader to [CN] for other related results in the case of submanifolds in Euclidean spheres. In Section 2 we prepare some fundamental formulas, and in Section 3 we prove two lemmas. The proof of Theorems 1 and 2 is given in Section 4.
2. Fundamental formulas. We shall use the following convention on the ranges of indices:

$$
\begin{aligned}
1 & \leq A, B, C, \ldots \leq n+p, \\
1 & \leq i, j, k, \ldots \leq n, \\
n+1 & \leq u, v, y, \ldots \leq n+p .
\end{aligned}
$$

Let M be an n-dimensional complete immersed submanifold with parallel mean curvature vector in an $(n+p)$-dimensional Riemannian manifold N. We choose a local orthonormal frame field $e_{1}, \ldots, e_{n}, e_{n+1} \ldots, e_{n+p}$ in N such that, when restricted to M, e_{1}, \ldots, e_{n} are tangent to M, and consequently, e_{n+1}, \ldots, e_{n+p} will be the normal frame on M. Let $\omega_{1}, \ldots, \omega_{n+p}$ be the dual frame. Then the structure equations of N are given by

$$
\begin{gather*}
d \omega_{A}=\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0, \tag{2.1}\\
d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B}-\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D}, \tag{2.2}
\end{gather*}
$$

where $K_{A B C D}$ is the Riemannian curvature of N. If we restrict these forms to M, then $\omega_{u}=0$. Thus,

$$
0=d \omega_{u}=\sum_{j} \omega_{u j} \wedge \omega_{j} .
$$

By Cartan's lemma we can write

$$
\begin{equation*}
\omega_{u i}=\sum_{j} h_{i j}^{u} \omega_{j}, \quad h_{i j}^{u}=h_{j i}^{u} \tag{2.3}
\end{equation*}
$$

From these formulas we obtain

$$
\begin{align*}
d \omega_{i} & =\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0 \\
d \omega_{i j} & =\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} \\
R_{i j k l} & =K_{i j k l}+\sum_{u}\left(h_{i k}^{u} h_{j l}^{u}-h_{i l}^{u} h_{j k}^{u}\right) \tag{2.4}\\
d \omega_{u v} & =\sum_{y} \omega_{u y} \wedge \omega_{y v}-\frac{1}{2} \sum_{k, l} R_{u v k l} \omega_{k} \wedge \omega_{l} \tag{2.5}\\
R_{u v k l} & =K_{u v k l}+\sum_{i}\left(h_{i k}^{u} h_{i l}^{v}-h_{i l}^{u} h_{i k}^{v}\right) \tag{2.6}
\end{align*}
$$

where $R_{i j k l}$ is the Riemannian curvature of M. The symmetric 2-form

$$
h=\sum_{i, j, u} h_{i j}^{u} \omega_{i} \omega_{j} e_{u}
$$

and the vector

$$
\begin{equation*}
q=\sum_{i, u} h_{i i}^{u} e_{u} \tag{2.7}
\end{equation*}
$$

are the second fundamental form and the mean curvature vector of M, respectively. If q is parallel in the normal bundle of M, then M is called a submanifold with parallel mean curvature vector. The length of q is defined by

$$
H=\|\operatorname{tr} h\|=\left(\sum_{u}\left(\sum_{i} h_{i i}^{u}\right)^{2}\right)^{1 / 2}
$$

Define the covariant derivative $D h$ of h (with components $h_{i j k}^{u}$) by

$$
\begin{equation*}
\sum_{k} h_{i j k}^{u} \omega_{k}=d h_{i j}^{u}+\sum_{m} h_{i m}^{u} \omega_{m j}+\sum_{m} h_{m j}^{u} \omega_{m i}+\sum_{v} h_{i j}^{v} \omega_{v u} \tag{2.8}
\end{equation*}
$$

Taking the exterior derivative of (2.3) and using the structure equations in (2.1) to (2.6), one can show [Y1]

$$
\begin{equation*}
h_{i j k}^{u}-h_{i k j}^{u}=K_{u i j k} \tag{2.9}
\end{equation*}
$$

Next, we take the exterior derivative of (2.8) and define $h_{i j k l}^{u}$ by

$$
\sum_{k} h_{i j k l}^{u} \omega_{l}=d h_{i j k}^{u}+\sum_{l} h_{l j k}^{u} \omega_{l i}+\sum_{l} h_{i l k}^{u} \omega_{l j}+\sum_{l} h_{i j l}^{u} \omega_{l k}+\sum_{v} h_{i j k}^{v} \omega_{v u}
$$

Then we can show [Y1]

$$
\begin{equation*}
h_{i j k l}^{u}-h_{i j l k}^{u}=\sum_{m} h_{i m}^{u} R_{m j k l}+\sum_{m} h_{m j}^{u} R_{m i k l}+\sum_{v} h_{i j}^{v} R_{v u k l} . \tag{2.10}
\end{equation*}
$$

From now on, we assume that N is a Riemannian manifold of constant curvature c. Then we have

$$
\begin{equation*}
K_{A B C D}=\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right) c \tag{2.11}
\end{equation*}
$$

In this case we deduce from (2.9) that

$$
\begin{equation*}
h_{i j k}^{u}=h_{i k j}^{u} . \tag{2.12}
\end{equation*}
$$

We further assume that M is a submanifold with parallel mean curvature vector. A direct computation shows that $H=$ const under this assumption.

We choose $e_{n+1}=q /\|q\|$ with q defined in (2.7) in our local orthonormal frame, and denote the $n \times n$ matrix $\left(h_{i j}^{u}\right)$ by H_{u}. Then clearly $\operatorname{tr} H_{v}=0$ if $v \neq n+1$. Therefore,

$$
H=\sum_{i} h_{i i}^{n+1}
$$

Since e_{n+1} is parallel in the normal bundle of M, we have

$$
\begin{equation*}
\omega_{n+1, v}=0 \tag{2.13}
\end{equation*}
$$

Taking the exterior derivative of (2.13) and using (2.2) yields

$$
\sum_{i} \omega_{n+1, i} \wedge \omega_{v i}=0
$$

which, together with (2.5), implies

$$
\begin{equation*}
R_{n+1, v k l}=0 \tag{2.14}
\end{equation*}
$$

From (2.6) and (2.14) we have

$$
\begin{equation*}
H_{n+1} H_{u}=H_{u} H_{n+1} \tag{2.15}
\end{equation*}
$$

Define

$$
\begin{aligned}
& D=\operatorname{tr} H_{n+1}^{2}=\sum_{i, j}\left(h_{i j}^{n+1}\right)^{2} \\
& Q=S-D=\sum_{v \neq n+1} \operatorname{tr} H_{v}^{2}=\sum_{i, j, v \neq n+1}\left(h_{i j}^{v}\right)^{2}
\end{aligned}
$$

We now compute the Laplacian of D and Q :

$$
\Delta D=\sum_{i} D_{i i}, \quad \Delta Q=\sum_{i} Q_{i i}
$$

From (2.10)-(2.12) and (2.15), one can show [Y1]

$$
\begin{equation*}
\Delta h_{i j}^{u}=\sum_{k} h_{i j k k}^{u}=\sum_{k, m} h_{m k}^{u} R_{m i j k}+\sum_{k, m} h_{i m}^{u} R_{m k j k}+\sum_{k, v} h_{i k}^{v} R_{v u j k} \tag{2.16}
\end{equation*}
$$

Choosing $u=n+1$ in (2.16) and using (2.14) yields

$$
\Delta h_{i j}^{n+1}=\sum_{k, m} h_{m k}^{n+1} R_{m i j k}+\sum_{k, m} h_{i m}^{n+1} R_{m k j k}
$$

Therefore,

$$
\begin{align*}
\frac{1}{2} \Delta D & =\sum_{i, j} h_{i j}^{n+1} \Delta h_{i j}^{n+1}+\sum_{i, j, k}\left(h_{i j k}^{n+1}\right)^{2} \tag{2.17}\\
& \geq \sum_{i, j, k, m} h_{i j}^{n+1} h_{m k}^{n+1} R_{m i j k}+\sum_{i, j, k, m} h_{i j}^{n+1} h_{i m}^{n+1} R_{m k j k}
\end{align*}
$$

For a given point $p \in M$, we choose the frame field e_{1}, \ldots, e_{n} so that the matrix $\left(h_{i j}^{n+1}\right)$ is diagonal at p. Thus we may assume that at p,

$$
h_{i j}^{n+1}=L_{i} \delta_{i j} .
$$

In this frame field, the inequality in (2.17) can be simplified at p :

$$
\begin{equation*}
\Delta D \geq \sum_{i, j}\left(L_{i}-L_{j}\right)^{2} R_{i j i j} \tag{2.18}
\end{equation*}
$$

Let

$$
f^{2}=D-\frac{1}{n} H^{2}
$$

Substituting (2.4) and (2.11) into (2.17) and using Okumura's computation [O], we can get the following estimate:

$$
\begin{align*}
\frac{1}{2} \Delta D \geq & f^{2}\left(c n+\frac{1}{n} H^{2}-\frac{n-2}{\sqrt{n(n-1)}}|H| f-f^{2}\right) \tag{2.19}\\
& -\sum_{v \neq n+1}\left[\operatorname{tr}\left(H_{n+1} H_{v}\right)\right]^{2}
\end{align*}
$$

Choosing $u=v \neq n+1$ in (2.16), one can show

$$
\begin{aligned}
\sum_{i, j, v \neq n+1} h_{i j}^{v} \Delta h_{i j}^{v}= & \sum_{u, v \neq n+1} \operatorname{tr}\left(H_{u} H_{v}-H_{v} H_{u}\right)^{2}-\sum_{u, v \neq n+1}\left[\operatorname{tr}\left(H_{u} H_{v}\right)\right]^{2} \\
& +n c Q+\sum_{v \neq n+1} H \operatorname{tr}\left(H_{v}^{2} H_{n+1}\right)-\sum_{v \neq n+1}\left[\operatorname{tr}\left(H_{v} H_{n+1}\right)\right]^{2}
\end{aligned}
$$

Using the techniques of [CDK], one can prove

$$
\sum_{u, v \neq n+1} \operatorname{tr}\left(H_{u} H_{v}-H_{v} H_{u}\right)^{2}-\sum_{u, v \neq n+1}\left[\operatorname{tr}\left(H_{u} H_{v}\right)\right]^{2} \geq-\left(2-\frac{1}{p-1}\right) Q^{2}
$$

and, when combined with (2.16), this estimate implies

$$
\begin{equation*}
\frac{1}{2} \Delta Q=\sum_{i, j, v \neq n+1} h_{i j}^{v} \Delta h_{i j}^{v}+\sum_{i, j, k, v \neq n+1}\left(h_{i j k}^{v}\right)^{2} \tag{2.20}
\end{equation*}
$$

$$
\geq-\left(2-\frac{1}{p-1}\right) Q^{2}+n c Q+\sum_{v \neq n+1} H \operatorname{tr}\left(H_{v}^{2} H_{n+1}\right)-\sum_{v \neq n+1}\left[\operatorname{tr}\left(H_{v} H_{n+1}\right)\right]^{2}
$$

3. Lemmas

Lemma 1. Under the assumptions of Theorems 1 and 2, if, in addition, M is umbilical with respect to e_{n+1}, then M must be totally umbilical.

Proof. Since M is umbilical with respect to e_{n+1}, we have

$$
\begin{equation*}
h_{i j}^{n+1}=L \delta_{i j} \tag{3.1}
\end{equation*}
$$

for some constant L, and $\operatorname{tr} H_{v}=0$ for $v \neq n+1$. A direct computation shows that in this case,

$$
\begin{equation*}
\sum_{v \neq n+1} H \operatorname{tr}\left(H_{v}^{2} H_{n+1}\right)-\sum_{v \neq n+1}\left[\operatorname{tr}\left(H_{v} H_{n+1}\right)\right]^{2}=\frac{H^{2}}{n} Q \tag{3.2}
\end{equation*}
$$

So, by substituting (3.1) into (2.20) and using (3.2) we get

$$
\begin{equation*}
\frac{1}{2} \Delta Q \geq Q\left[-\left(2-\frac{1}{p-1}\right) Q+n c+\frac{H^{2}}{n}\right] \tag{3.3}
\end{equation*}
$$

This is our main estimate. We shall come back to it later.
By assumption, we have

$$
\begin{equation*}
S \leq \frac{1}{n-1} H^{2}+2 c, \quad n \geq 4 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S \leq \frac{1}{2} H^{2}+\min \left(2, \frac{3 p-3}{2 p-3}\right) c, \quad n=3 \tag{3.5}
\end{equation*}
$$

Also, from (3.1) we have

$$
\begin{equation*}
D=\frac{1}{n} H^{2} . \tag{3.6}
\end{equation*}
$$

(3.4)-(3.6) imply

$$
\begin{equation*}
Q \leq \frac{1}{n(n-1)} H^{2}+2 c, \quad n \geq 4 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
Q \leq \frac{1}{6} H^{2}+\min \left(2, \frac{3 p-3}{2 p-3}\right) c, \quad n=3 \tag{3.8}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{p-1}{2 p-3}>\frac{1}{n-1} \quad \text { when } n \geq 3 \text { and } p \geq 2 \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n(p-1)}{2 p-3}>2 \quad \text { when } n \geq 3 \text { and } p \geq 2 \tag{3.10}
\end{equation*}
$$

(3.7)-(3.10) imply that for $n \geq 3$,

$$
Q<\frac{p-1}{n(2 p-3)} H^{2}+\frac{n(p-1)}{2 p-3} c=\frac{H^{2}}{n\left(2-\frac{1}{p-1}\right)}+\frac{n}{2-\frac{1}{p-1}} c
$$

i.e.

$$
\begin{equation*}
A=-\left(2-\frac{1}{p-1}\right) Q+n c+\frac{H^{2}}{n}>0 \tag{3.11}
\end{equation*}
$$

We now come back to (3.3), and deduce from (3.11) that

$$
\begin{equation*}
\frac{1}{2} \Delta Q \geq A Q, \quad A>0 \tag{3.12}
\end{equation*}
$$

Now since S is bounded, so are Q and the Ricci curvature of M. We apply Yau's generalized maximal principle [Y2] to conclude that there exists a sequence $\left\{p_{s}\right\}$ of points of M such that

$$
\begin{gather*}
\lim _{s \rightarrow \infty} Q\left(p_{s}\right)=\sup _{M} Q \tag{3.13}\\
\lim _{s \rightarrow \infty} \Delta Q\left(p_{s}\right) \leq 0 \tag{3.14}
\end{gather*}
$$

From (3.12)-(3.14), we have

$$
0 \geq A \sup _{M} Q
$$

This implies that $\sup _{M} Q=0$, i.e., $Q \equiv 0$. Hence M is umbilical with respect to e_{u}, and consequently, M is totally umbilical.

Lemma 2. Let a_{1}, \ldots, a_{n}, b be $n+1(n>1)$ real numbers satisfying

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2} \geq(n-1) \sum_{i=1}^{n} a_{i}^{2}+b
$$

Then for $1 \leq i \neq j \leq n$,

$$
2 a_{i} a_{j} \geq \frac{b}{n-1}
$$

Proof. See [C, p. 55].
4. Proof of the theorems. According to Lemma 1, we need only prove that M is umbilical with respect to e_{n+1}. In other words, we need to show $D=H^{2} / n$. Suppose $D \neq H^{2} / n$. Then

$$
\sup _{M} D>\frac{1}{n} H^{2}
$$

According to Yau's generalized maximal principle [Y2], there exists a sequence $\left\{p_{s}\right\} \subset M$ such that

$$
\begin{gathered}
\lim _{s \rightarrow \infty} D\left(p_{s}\right)=\sup _{M} D \\
\lim _{s \rightarrow \infty} \Delta D\left(p_{s}\right) \leq 0
\end{gathered}
$$

For each s, we choose a local orthonormal frame $e_{1}^{p_{s}}, \ldots, e_{n}^{p_{n}}$ in a neighborhood of p_{s}. We denote the components of h in this frame by $h_{i j, p_{s}}^{v}$, and $h_{i j, p_{s}}^{n+1}=L_{i, p_{s}} \delta_{i j}$. Moreover, we denote the Riemannian curvature tensor by $R_{i j k l, p_{s}}$, the n-matrix $\left(h_{i j, p_{s}}^{v}\right)$ by $H_{v, p_{s}}$ with $v \neq n+1$, and the n-matrix $\left(L_{i, p_{s}} \delta_{i j}\right)$ by $H_{n+1, p_{s}}$. Since S is bounded, so are the sequences $\left\{\left(h_{i j, p_{s}}^{v}\right)\right\}_{s \in \mathbb{Z}^{+}}$ and $\left\{\left(L_{i, p_{s}} \delta_{i j}\right)\right\}_{s \in \mathbb{Z}^{+}}$. Therefore, by choosing subsequences if necessary, we can assume they are convergent, and we can write

$$
\begin{align*}
\lim _{s \rightarrow \infty} h_{i j, p_{s}}^{v} & =\bar{h}_{i j}^{v} \tag{4.1}\\
\lim _{s \rightarrow \infty} L_{i, p_{s}} & =\bar{L}_{i} \tag{4.2}\\
\lim _{s \rightarrow \infty} R_{i j k l, p_{s}} & =\bar{R}_{i j k l} \tag{4.3}
\end{align*}
$$

Since $H=$ const, we have

$$
\sum_{i} \bar{L}_{i}=H
$$

If we define

$$
\begin{gathered}
\bar{Q}=\sum_{i, j, v \neq n+1}\left(\bar{h}_{i j}^{v}\right)^{2}, \quad \bar{D}=\sum_{i}\left(\bar{L}_{i}\right)^{2} \\
\bar{S}=\bar{Q}+\bar{D}, \quad \bar{f}=\bar{D}-\frac{1}{n} H^{2} \\
\bar{H}_{v}=\left(\bar{h}_{i j}^{v}\right), \quad \bar{H}_{n+1}=\left(\bar{L}_{i} \delta_{i j}\right) \\
\bar{R}_{i j k l}=\bar{L}_{i} \bar{L}_{j}+\sum_{v \neq n+1}\left(\bar{h}_{i i}^{v} \bar{h}_{j j}^{v}-\left(\bar{h}_{i j}^{v}\right)^{2}\right)+c
\end{gathered}
$$

then, in addition to (4.1)-(4.3), we have

$$
\begin{gathered}
\lim _{s \rightarrow \infty} Q\left(p_{s}\right)=\bar{Q}, \quad \lim _{s \rightarrow \infty} D\left(p_{s}\right)=\bar{D} \\
\lim _{s \rightarrow \infty} S\left(p_{s}\right)=\bar{S}, \quad \lim _{s \rightarrow \infty} f\left(p_{s}\right)=\bar{f} \\
\lim _{s \rightarrow \infty} \operatorname{tr}\left(H_{v, p_{s}} H_{n+1, p_{s}}\right)=\operatorname{tr}\left(\bar{H}_{v} \bar{H}_{n+1}\right)
\end{gathered}
$$

From (2.18) and (2.19), we have

$$
\Delta D\left(p_{s}\right) \geq \sum_{i, j}\left(L_{i, p_{s}}-L_{j, p_{s}}\right)^{2} R_{i j i j, p_{s}}
$$

Therefore

$$
\begin{aligned}
\frac{1}{2} \Delta D\left(p_{s}\right) \geq & f^{2}\left(p_{s}\right)\left(c n+\frac{1}{n} H^{2}-\frac{n-2}{\sqrt{n(n-1)}}|H| f\left(p_{s}\right)-f^{2}\left(p_{s}\right)\right) \\
& -\sum_{v \neq n+1}\left[\operatorname{tr}\left(H_{n+1, p_{s}} H_{v, p_{s}}\right)\right]^{2} .
\end{aligned}
$$

Letting $s \rightarrow \infty$, we have

$$
\begin{gather*}
\sum_{i, j}\left(\bar{L}_{i}-\bar{L}_{j}\right)^{2} \bar{R}_{i j i j} \leq 0 \tag{4.4}\\
\bar{f}^{2}\left(c n+\frac{1}{n} H^{2}-\frac{n-2}{\sqrt{n(n-1)}}|H| \bar{f}-\bar{f}^{2}\right)-\sum_{v \neq n+1}\left[\operatorname{tr}\left(\bar{H}_{n+1} \bar{H}_{v}\right)\right]^{2} \leq 0 .
\end{gather*}
$$

We now divide the rest of the proof into two cases.
Case 1: $Q>0$. Since

$$
S\left(p_{s}\right) \leq \frac{1}{n-1} H^{2}+2 c
$$

we have

$$
\bar{S} \leq \frac{1}{n-1} H^{2}+2 c
$$

and consequently,

$$
H^{2} \geq(n-1) \bar{S}-2(n-1) c
$$

i.e.,

$$
\begin{equation*}
\left(\sum_{i} \bar{L}_{i}\right)^{2} \geq(n-1) \sum_{i} \bar{L}_{i}^{2}+(n-1) \sum_{i, j}\left(\bar{h}_{i j}^{v}\right)^{2}-2(n-1) c \tag{4.6}
\end{equation*}
$$

Applying Lemma 2 to (4.6) yields

$$
2 \bar{L}_{i} \bar{L}_{j} \geq \frac{(n-1) \sum_{k, l, v \neq n+1}\left(\bar{h}_{k l}^{v}\right)^{2}-2(n-1) c}{n-1}
$$

or

$$
\begin{equation*}
\bar{L}_{i} \bar{L}_{j}+c \geq \frac{1}{2} \sum_{k, l, v \neq n+1}\left(\bar{h}_{k l}^{v}\right)^{2} \tag{4.7}
\end{equation*}
$$

Hence, for $i \neq j$,

$$
\begin{align*}
\bar{R}_{i j i j} & =\bar{L}_{i} \bar{L}_{j}+c+\sum_{i, j, v \neq n+1}\left(\bar{h}_{i i}^{v} \bar{h}_{j j}^{v}-\left(\bar{h}_{i j}^{v}\right)^{2}\right) \tag{4.8}\\
& \geq \frac{1}{2} \sum_{k, l, v \neq n+1}\left(\bar{h}_{k l}^{v}\right)^{2}+\frac{1}{2}\left(-2 \sum_{v \neq n+1}\left(\bar{h}_{i j}^{v}\right)^{2}+2 \sum_{v \neq n+1} \bar{h}_{i i}^{v} \bar{h}_{j j}^{v}\right) \\
& \geq \frac{1}{2} \sum_{v \neq n+1 ; k \neq i, j \text { or } l \neq i, j}\left(\bar{h}_{k l}^{v}\right)^{2}+\frac{1}{2}\left(\bar{h}_{i i}^{v}+\bar{h}_{j j}^{v}\right)^{2} \geq 0 .
\end{align*}
$$

From the above inequality and (4.4) we obtain

$$
\begin{equation*}
\sum_{i, j}\left(\bar{L}_{i}-\bar{L}_{j}\right)^{2} \bar{R}_{i j i j}=0 \tag{4.9}
\end{equation*}
$$

We claim that for $i<j$ there is at most one $\bar{R}_{i j i j}$ equal to zero, and the others are positive. If not, we may assume $\bar{R}_{i j i j}=0$ and $\bar{R}_{p q p q}=0$ for two
pairs (i, j) and (p, q) with $i \neq p, i<j$ and $p<q$. Then from (4.7) we have

$$
\begin{equation*}
\bar{h}_{i i}^{v}+\bar{h}_{j j}^{v}=0, \quad \bar{h}_{k l}^{v}=0, \quad k \neq i, j \text { or } l \neq i, j, \quad v \neq n+1 \tag{4.10}
\end{equation*}
$$

and

$$
\bar{h}_{p p}^{v}+\bar{h}_{q q}^{v}=0, \quad \bar{h}_{p q}^{v}=0, \quad k \neq p, q \text { or } l \neq p, q, \quad v \neq n+1
$$

From (4.9) and (4.10) we can deduce that

$$
\bar{h}_{k l}^{v}=0, \quad 1 \leq k, l \leq n, \quad v \neq n+1
$$

and consequently, $\bar{Q}=0$, contrary to the assumption of Case 1. Hence the claim is proven. We now assume without loss of generality that only $\bar{R}_{i j i j}=0$. Then from (4.8) we have

$$
\bar{L}_{1}=\bar{L}_{3}=\ldots=\bar{L}_{n}, \quad \bar{L}_{2}=\bar{L}_{3}=\ldots=\bar{L}_{n}
$$

Hence $\bar{L}_{2}=\bar{L}_{2}=\ldots=\bar{L}_{n}$, i.e., $D=H^{2} / n$. However, this contradicts the assumption $\sup _{M} D>\frac{1}{n} H^{2}$. This completes the proof in Case 1.

Case 2: $\bar{Q}=0$. From $\bar{Q}=0$ it is easy to see that

$$
\sum_{v \neq n+1}\left[\operatorname{tr}\left(\bar{H}_{n+1} \bar{H}_{v}\right)\right]^{2}=0
$$

Hence from (4.5) we get

$$
\begin{equation*}
\bar{f}^{2}\left(c n+\frac{1}{n} H^{2}-\frac{n-2}{\sqrt{n(n-1)}}|H| \bar{f}-\bar{f}^{2}\right) \leq 0 \tag{4.11}
\end{equation*}
$$

But $\bar{f}=\bar{D}-\frac{1}{n} H^{2}>0$, so

$$
\begin{equation*}
c n+\frac{1}{n} H^{2}-\frac{n-2}{\sqrt{n(n-1)}}|H| \bar{f}-\bar{f}^{2} \leq 0 \tag{4.12}
\end{equation*}
$$

Solving the equality (4.11) we get

$$
\begin{equation*}
\bar{f} \geq \frac{2-n}{2 \sqrt{n(n-1)}}|H|+\frac{1}{2} \sqrt{\frac{n}{n-1} H^{2}+4 n c} \tag{4.13}
\end{equation*}
$$

On the other hand, from the fact $\bar{D} \leq \frac{1}{n-1} H^{2}+2 c$ we get

$$
\bar{f} \leq \sqrt{\frac{1}{n(n-1)} H^{2}+2 c}
$$

Combining (4.12) and (4.13) gives

$$
\sqrt{\frac{1}{n(n-1)} H^{2}+2 c} \geq \frac{2-n}{2 \sqrt{n(n-1)}}|H|+\frac{1}{2} \sqrt{\frac{n}{n-1} H^{2}+4 n c}
$$

The above inequality implies

$$
(n-2)^{2} c^{2} \leq 0 .
$$

Therefore $n=2$. However, this contradicts our hypothesis, and this completes the proof of Case 2.

REFERENCES

[C] B. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
[CDK] S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in: Functional Analysis and Related Fields, Springer, 1970, 59-75.
[CN] Q. Cheng and K. Nonaka, Complete submanifolds in Euclidean spaces with parallel mean curvature vector, Manuscripta Math. 105 (2001), 353-366.
[H] T. Hasanis, Characterization of totally umbilical hypersurfaces, Proc. Amer. Math. Soc. 81 (1981), 447-450.
[O] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213.
[Y1] S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96 (1974), 346-366.
[Y2] -, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.

Department of Mathematics and Statistics
Wichita State University
Wichita, KS 67226, U.S.A.
E-mail: ziqi.sun@wichita.edu

