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FULL MATRIX ALGEBRAS WITH STRUCTURE SYSTEMS

BY

HISAAKI FUJITA (Tsukuba)

Abstract. We study associative, basic n×n A-full matrix algebras over a field, whose
multiplications are determined by structure systems A, that is, n-tuples of n×n matrices
with certain properties.

Introduction. Let D be a discrete valuation ring with a unique max-
imal ideal πD. It is standard to reduce homological properties of D-orders
Λ to those of factor algebras Λ/πΛ. For example, Gorenstein D-orders can
be reduced to quasi-Frobenius D/πD-algebras. (See e.g. [7] and [9].) As an-
other example, we recall a theorem of Jategaonkar. It is proved in [4] that
there are only finitely many tiled D-orders in Mn(D) having finite global
dimension for a fixed integer n (≥ 2). The key idea of its proof comes from
a fact concerning the structure of factor algebras Λ/πΛ of tiled D-orders Λ,
and [5, III Theorem 9]. We note that further information can be found in [3].

In this paper we introduce A-full matrix algebras over a field to provide
a framework for such factor algebras Λ/πΛ of tiled D-orders Λ, and as an
application of the framework, we study Frobenius A-full matrix algebras.
We also give an example to show that the class of A-full matrix algebras is
strictly larger than that of factor algebras of tiled D-orders.

In Section 1, we define an n× n A-full matrix algebra A determined by
an n-tuple A of n × n matrices which we call a structure system, and we
examine the Gabriel quiver of an A-full matrix algebra A. We note that
the notion of structure systems is a modification of structure constants of
finite-dimensional algebras. (See e.g. [2].) In the study of tiled D-orders, ir-
reducible Λ-lattices play an important role. For an irreducible Λ-lattice L,
the Λ/πΛ-module L/πL has dimension type (1, . . . , 1). In Section 2, we de-
fine representation matrices of right A-modules of dimension type (1, . . . , 1),
and we show that for each indecomposable projective right A-module and
each indecomposable injective right A-module, their representation matrices
consist of a part of a structure system. In Section 3, we notice a relation-
ship between tiled orders and A-full matrix algebras. The factor algebras
of tiled D-orders form a large class of A-full matrix algebras. However, we
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give an example of a structure system which does not have corresponding
tiled D-orders. In Section 4, we show that for an arbitrary permutation σ
such that σ(i) 6= i for all i, there exists a Frobenius A-full matrix algebra
with Nakayama permutation σ, which is determined by a special structure
system. We give a procedure to find other structure systems of Frobenius
A-full matrix algebras for a given permutation.

1. Structure systems for full matrix algebras. Let K be a field
and n an integer with n ≥ 2. Let A = (A1, . . . , An) be an n-tuple of n × n
matrices Ak = (a(k)

ij ) ∈ Mn(K) (k = 1, . . . , n), which satisfies the following
conditions:

a
(k)
ij a

(j)
il = a

(k)
il a

(j)
kl for all 1 ≤ i, j, k, l ≤ n.(A1)

a
(k)
kj = a

(k)
ik = 1 for all 1 ≤ i, j, k ≤ n.(A2)

a
(k)
ii = 0 whenever i 6= k, 1 ≤ i, k ≤ n.(A3)

Let A =
⊕

1≤i,j≤nKuij be a K-vector space with basis {uij | 1 ≤ i, j ≤ n}.
Then we define multiplication in A by

uikulj :=
{
a

(k)
ij uij if k = l,

0 otherwise.
Proposition 1.1. A is an associative basic K-algebra and u11, . . . , unn

are orthogonal primitive idempotents with 1 = u11 + . . .+ unn.

Proof. For all 1 ≤ i, j, k, l ≤ n, we have

(uikukj)ujl = a
(k)
ij uijujl = a

(k)
ij a

(j)
il uil

and
uik(ukjujl) = uik(a

(j)
kl ukl) = a

(k)
il a

(j)
kl uil.

Hence the multiplication is associative if and only if (A1) holds.
It follows from (A2) that uiiuij = uijujj = uij and uiiAuii ∼= K for all

1 ≤ i, j ≤ n. Hence u11, . . . , unn are orthogonal primitive idempotents with
1 = u11 + . . .+ unn.

It follows from (A3) that uikuki = 0 whenever i 6= k, so that uiiA is not
isomorphic to ukkA. Hence A is basic. This completes the proof.

Definition. An n-tuple A = (A1, . . . , An) of n × n matrices Ak =
(a(k)
ij ) ∈ Mn(K) is said to be a structure system for a K-algebra A =⊕
1≤i,j≤nKuij provided that (A1)–(A3) hold. In this case, we call A an

A-full matrix K-algebra.

Next, we examine the Gabriel quiver Q(A) of an A-full matrix algebra
A (see [1]). Since A is basic, the set of vertices is Q(A)0 = {1, . . . , n}.
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Proposition 1.2. (1) The Jacobson radical of A is J=
⊕{Kuij | i 6= j,

1 ≤ i, j ≤ n}.
(2) For any i, j ∈ Q(A)0 with i 6= j, there exists an arrow j → i ∈ Q(A)1

if and only if a(k)
ij = 0 for any k 6= i, j.

(3) Q(A) has no loops, and there exists at most one arrow from j to i
in Q(A), for any i 6= j.

Proof. (1) We can show that J is a two-sided ideal of A, Jn = 0 and that
A/J ∼= Ku11 ⊕ . . . ⊕Kunn is semisimple. Hence J is the Jacobson radical
of A.

(2) Note that J2 =
⊕{Kuij | i 6= j, and uikukj 6= 0 for some k 6= i, j}.

As j → i ∈ Q(A)1 if and only if uii(J/J2)ujj 6= 0, (2) follows from the

multiplication uikukj = a
(k)
ij uij .

(3) Note that the number of arrows from j to i is dimK uii(J/J2)ujj ≤ 1,
and that uiiJuii = 0. Hence (3) holds.

Let B be a finite-dimensional basic K-algebra, and let e1, . . . , en be or-
thogonal primitive idempotents of B with 1 = e1 + . . .+ en. For a right B-
module M , let mi be the length of Mei as eiBei-module. Then (m1, . . . ,mn)
is called the dimension type of M , denoted by dimM . The Cartan matrix
CB of B is the n×n matrix whose ith row is dim eiB. It is well known that
if gl.dimB < ∞ then detCB = ±1. For A-full matrix algebras A, we have
the following proposition, whose proof is straightforward.

Proposition 1.3. Every entry of the Cartan matrix of an A-full matrix
algebra A is 1. Therefore gl.dimA =∞.

2. Representation matrices of projectives and injectives. Let A
be an A-full matrix K-algebra with structure system A = (A1, . . . , An),
where Ak = (a(k)

ij ) ∈ Mn(K) (k = 1, . . . , n). In this section we study repre-
sentation matrices of right A-modules of dimension type (1, . . . , 1) to distin-
guish indecomposable projective A-modules and indecomposable injective
A-modules.

Proposition 2.1. Let M be a K-vector space with basis {vi | 1≤ i≤ n}.
Then a right A-module structure of M with dimM = (1, . . . , 1) is determined
by a matrix S = (sij) ∈Mn(K) satisfying the condtion

(∗) sikskj = a
(k)
ij sij and sii = 1, for all 1 ≤ i, j, k ≤ n.

In this case S = (sij) is determined by viuij = sijvj for all 1 ≤ i, j ≤ n.

Proof. It is well known that a right A-module structure of M is deter-
mined by a K-algebra homomorphism ϕ : A → Mn(K) as follows. For any
a ∈ A, let ϕ(a) = (aij) ∈ Mn(K). Then M becomes a right A-module if we
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set

via :=
n∑

j=1

aijvj for all 1 ≤ i ≤ n.

Conversely, if M is a right A-module then the above equation defines a
K-algebra homomorphism ϕ : A→Mn(K), a 7→ (aij).

Let ϕ : A → Mn(K) be a K-algebra homomorphism. Put ϕ(uij) =
Mij ∈Mn(K). Since dimM = (1, . . . , 1), ϕ(uii) 6= 0 for all 1 ≤ i ≤ n. Hence
by Proposition 1.1, M11, . . . ,Mnn are orthogonal primitive idempotents in
Mn(K) with En = M11 + . . .+Mnn, where En is the identity matrix. Hence
for some invertible matrix P ∈ Mn(K), P−1MiiP = Eii for all 1 ≤ i ≤ n,
where Eii is the usual matrix unit. (See e.g. [6, §3.7, Proposition 3].) Hence
we may assume that Mii = Eii for all 1 ≤ i ≤ n. Since Mij = MiiMij =
MijMjj , excepting the (i, j)-entry of Mij , all other entries are 0. We let sij
be the (i, j)-entry of Mij , and let S be the matrix (sij) ∈ Mn(K). Since

MikMkj = ϕ(uikukj) = a
(k)
ij Mij , the condition (∗) holds.

Conversely, for a given matrix S = (sij) ∈Mn(K) with (∗), we can define
a K-algebra homomorphism ϕ : A→Mn(K) by

ϕ
(∑

i,j

aijuij

)
:= (aijsij)

for all elements
∑

i,j aijuij ∈ A. Since ϕ(uii) = Eii, dimM = (1, . . . , 1) and
viuij = sijvj . This completes the proof.

We call the above S=(sij) a representation matrix of a rightA-moduleM.
Note that

viujk =
{
sikvk if i = j,

0 otherwise.

Proposition 2.2. (1) For each indecomposable projective right A-module
uiiA, its representation matrix is given by (a(k)

ij )k,j , i.e., an n × n matrix

whose (k, j)-entry is a(k)
ij .

(2) Let M be a right A-module with dimM = (1, . . . , 1) and representa-
tion matrix S = (sij). Then M is isomorphic to ullA if and only if slk = 1
for all 1 ≤ k ≤ n.

Proof. (1) Note that uiiA is a K-vector space with basis {uik | 1 ≤ k

≤ n} and dimuiiA = (1, . . . , 1). Since uikukj = a
(k)
ij uij , the (k, j)-entry of

the representation matrix of uiiA is a(k)
ij .

(2) The “only if” part follows from (1) and (A2). Assume that slk = 1
for all 1 ≤ k ≤ n. Then sij = slisij = a

(i)
lj slj = a

(i)
lj . This completes the

proof.
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We denote the duality functor HomK( ,K) by ( )∗. As a dual of Propo-
sition 2.2, we have the following.

Proposition 2.3. (1) For each indecomposable injective right A-module
(Aujj)∗, its representation matrix is given by (a(k)

ij )i,k, i.e., an n× n matrix

whose (i, k)-entry is a(k)
ij .

(2) Let M be a right A-module with dimM = (1, . . . , 1) and represen-
tation matrix S = (sij). Then M is isomorphic to (Aukk)∗ if and only if
slk = 1 for all 1 ≤ l ≤ n.

Let M be a right A-module with dimM = (1, . . . , 1) and representation
matrix S = (sij). Then we draw a diagram of M as follows. (See [3].) The
diagram has vertices 1, . . . , n corresponding to composition factors of M .
There is an arrow j → i if sij 6= 0 and sikskj = 0 for any k 6= i, j. Note that
a is in the top if sia = 0 for all i 6= a, and that b is in the socle if sbj = 0 for
all j 6= b.

The following example illustrates the above observations.

Example 2.4. Let

A =




1 1 1 1

1 0 0 1

1 1 0 1

1 1 0 0

0 1 1 0

1 1 1 1

0 1 0 0

0 1 0 0

0 0 1 0

1 0 1 1

1 1 1 1

1 1 1 0

0 0 1 1

0 0 0 1

0 0 0 1

1 1 1 1




be a structure system of an A-full matrix algebra A. Then representation
matrices of u11A, . . . , u44A are given by

1 1 1 1

0 1 1 0

0 0 1 0

0 0 1 1

1 0 0 1

1 1 1 1

1 0 1 1

0 0 0 1

1 1 0 1

0 1 0 0

1 1 1 1

0 0 0 1

1 1 0 0

0 1 0 0

1 1 1 0

1 1 1 1

with the following diagrams, respectively:
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3. A-full matrix algebras and tiled orders. In this section we study
a certain relationship between A-full matrix algebras and tiled orders. We
begin with the following simple example.

Example 3.1. When n = 2, there exists a unique structure system,
namely

A = (A1, A2) =

(
1 1

1 0

0 1

1 1

)
.

Now we recall the definition of tiled orders (see [4], [8], [10], [11]) . Let D
be a commutative discrete valuation domain with a unique maximal ideal
πD. Let n ≥ 2 be an integer. Let {λij | 1 ≤ i, j ≤ n} be the set of non-
negative integers satisfying

λik + λkj ≥ λij , λii = 0, λij + λji > 0 if i 6= j

for all 1 ≤ i, j, k ≤ n. Then Λ = (πλijD) is a D-subalgebra of Mn(D). We
call Λ an n×n tiled D-order. The following example provides us a prototype
of A-full matrix algebras.

Example 3.2. Let Λ be an n × n tiled D-order and A = Λ/πΛ the
factor ring of Λ. For each matrix unit eij ∈Mn(D), let uij ∈ A be the image
of πλijeij ∈ Λ via the canonical epimorphism Λ → A. Let K = D/πD be
the residue field. Then A is a K-algebra with basis {uij | 1 ≤ i, j ≤ n}. For

each k = 1, . . . , n, define Ak = (a(k)
ij ) ∈Mn(K) by

a
(k)
ij :=

{
1 if λik + λkj = λij ,

0 otherwise.
Then A = (A1, . . . , An) is the structure system for the K-algebra A.

In what follows, we assume that every entry of structure systems of A-full
matrix algebras is 0 or 1.

When n ≤ 3, for every structure system one can find a corresponding
tiled D-order as in Example 3.2. The following example shows that, for
n = 4, there exists a structure system which has no corresponding tiled
D-orders.

Example 3.3. Consider the following structure system:

A =




1 1 1 1

1 0 0 1

1 0 0 0

1 1 0 0

0 1 1 0

1 1 1 1

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 1

1 1 1 1

0 1 1 0

0 0 1 1

0 0 0 1

1 0 0 1

1 1 1 1



.

Suppose, to the contrary, that there exists a 4×4 tiled D-order Λ = (πλijD)
corresponding to A. By [4, Lemma 1.1], we may assume that λ1j = 0 for
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1 ≤ j ≤ 4. Since λ24 = λ21+λ14, λ13 = λ12+λ23 and λ24 = λ23+λ34, we have
λ21 = λ24 = λ34. Since λ13 = λ14 +λ43, λ42 = λ43 +λ32 and λ42 = λ41 +λ12,
we have λ32 = λ42 = λ41. Hence λ31 < λ32 + λ21 = λ34 + λ41 = λ31, a
contradiction.

4. Frobenius A-full matrix algebras. In this section we study Frobe-
nius A-full matrix algebras. We begin by recalling the following well known
fact. (See e.g. [2].)

Proposition 4.1. Let B be a finite-dimensional basic K-algebra, and
let e1, . . . , en be orthogonal primitive idempotents of B with 1 = e1 + . . .+en.
Then B is Frobenius if and only if the socle of each eiB is simple and
soc(eiB) 6∼= soc(ejB) whenever i 6= j (1 ≤ i, j ≤ n). In this case, there is
a permutation σ of {1, . . . , n} (called a Nakayama permutation) such that
soc(eiB) ∼= top(eσ(i)B).

Lemma 4.2. Let A be an n × n A-full matrix algebra with structure
system A = (A1, . . . , An) where Ak = (a(k)

ij ) (1 ≤ k ≤ n). Then the following
are equivalent.

(1) A is a Frobenius algebra with Nakayama permutation σ.
(2) There exists a permutation σ of {1, . . . , n} such that σ(i) 6= i for all

1 ≤ i ≤ n, and a(k)
ij = 1 if i = k, j = k, or if j = σ(i), for all 1 ≤ i, j, k ≤ n.

Proof. (1)⇒(2): Since dimuiiA = (1, . . . , 1), σ(i) 6= i for all 1 ≤ i ≤ n.
Since soc(uiiA) ∼= top(uσ(i)σ(i)A), it follows from Propositions 2.2 and 2.3

that a(k)
ij = 1 if i = k, j = k or if j = σ(i), for all 1 ≤ i, k, j ≤ n.

(2)⇒(1): This follows from Propositions 2.2, 2.3 and 4.1.

As an immediate application of Lemma 4.2, we have the following.

Corollary 4.3. When n = 2, there is a unique structure system of a
Frobenius A-full matrix algebra.

Proof. The structure system of Example 3.1 defines a Frobenius A-full
matrix algebra with Nakayama permutation σ = (1 2).

Theorem 4.4. Let σ ∈ Sn be an arbitrary permutation such that σ(i) 6= i
for all 1 ≤ i ≤ n. Then there exists a Frobenius n× n A-full matrix algebra
with Nakayama permutation σ.

Proof. For all 1 ≤ i, k, j ≤ n, we put

a
(k)
ij :=

{
1 if i = k or j = k or j = σ(i),

0 otherwise.
Then by Lemma 4.2, it is sufficient to show that (A1)–(A3) hold. It is clear
that (A2) holds. Since σ(i) 6= i for all 1 ≤ i ≤ n, (A3) holds. In order to
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show (A1), that is, a(k)
ij a

(j)
il = a

(k)
il a

(j)
kl for all 1 ≤ i, k, j, l ≤ n, we need to

check the following.

(1) If a(k)
ij = 0 then a

(k)
il = 0 or a(j)

kl = 0.

(2) If a(j)
il = 0 then a

(k)
il = 0 or a(j)

kl = 0.

(3) If a(k)
il = 0 then a

(k)
ij = 0 or a(j)

il = 0.

(4) If a(j)
kl = 0 then a

(k)
ij = 0 or a(j)

il = 0.

Suppose that a(k)
ij = 0 and a

(k)
il 6= 0. Then we obtain i 6= k, j 6= k,

j 6= σ(i) and also l = k or l = σ(i). We need to show that k 6= j, l 6= j,
l 6= σ(k). In the case of l = k, we have l 6= j because j 6= k, and since
σ(k) 6= k, it follows that l 6= σ(k). In the case of l = σ(i), we have l 6= j
because j 6= σ(i), and since i 6= k, it follows that l = σ(i) 6= σ(k). Therefore
we have a(j)

kl = 0, so that (1) has been checked. We can check (2), (3) and
(4) in a similar way. This completes the proof.

It is obvious that the structure system given in the proof of Theorem 4.4
is not unique for Frobenius A-full matrix algebras with a given Nakayama
permutation. In order to find other structure systems, we use the following
lemma.

Lemma 4.5. Let A = (A1, . . . , An) = (a(k)
ij ) be a structure system whose

A-full matrix algebra is Frobenius with Nakayama permutation σ. Then the
following statements hold.

(1) For distinct 1 ≤ i, k, j ≤ n, a(k)
ij = 0 whenever j = σ(k) or k = σ(i).

(2) Consider the set

X := {(i, k, j) | 1 ≤ i, k, j ≤ n are distinct , j 6= σ(i), j 6= σ(k), k 6= σ(i)}.
Then for any (i, k, j) ∈ X, a(k)

ij = a
(j)
kσ(i), and the correspondence (i, k, j) 7→

(k, j, σ(i)) defines a bijection ϕ : X → X.

Proof. (1) For (i, k, i, σ(k)), a(k)
iσ(k)a

(i)
kσ(k) = a

(k)
ii a

(i)
iσ(k) = 0 if i 6= k. Since

a
(i)
kσ(k) = 1 by Lemma 4.2, we have a(k)

ij = 0 if j = σ(k).

For (i, j, σ(i), j), a(j)
iσ(i)a

(σ(i))
ij = a

(j)
ij a

(σ(i))
jj = 0 if σ(i) = k(6= j). Hence

a
(k)
ij = 0 if k = σ(i).

(2) For (i, k, j, σ(i)), since a(k)
ij a

(j)
iσ(i) = a

(k)
iσ(i)a

(j)
kσ(i), we have a(k)

ij = a
(j)
kσ(i).

If (i, k, j) ∈ X then we can verify that (k, j, σ(i)) ∈ X. Since σ is a
permutation, ϕ : (i, k, j) 7→ (k, j, σ(i)) defines a bijection from X to X.

Remark 4.6. When n = 3, the Nakayama permutation is cyclic and
hence the set X is empty, so that there is a unique structure system A
whose A-full matrix algebra is Frobenius.
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In the following example, by applying the bijection ϕ : X → X of Lemma
4.5, we obtain structure systems of Frobenius A-full matrix algebras in the
case of n = 4, 5.

Example 4.7. (1) Let n = 4 and σ = (1 2 3 4). First observe that the
set X of Lemma 4.5 has the form X = {(1, 4, 3), (2, 1, 4), (3, 2, 1), (4, 3, 2)}.
Next note that X itself is a unique ϕ-orbit, i.e.,

(1, 4, 3) 7→ (4, 3, 2) 7→ (3, 2, 1) 7→ (2, 1, 4) (7→ (1, 4, 3)).

If we put a = a
(k)
ij for all (i, k, j) ∈ X, then Lemma 4.5(1) yields the following

two structure systems:

A =




1 1 1 1

1 0 1 a

1 0 0 1

1 0 0 0

0 1 0 0

1 1 1 1

a 1 0 1

1 1 0 0

0 1 1 0

0 0 1 0

1 1 1 1

1 a 1 0

0 1 a 1

0 0 1 1

0 0 0 1

1 1 1 1



,

where a = 0 or 1.
(2) n = 4 and σ = (1 2)(3 4): Observe that the set X is empty. Hence

the structure system is unique.
(3) n = 5 and σ = (1 2 3 4 5): Observe that the set X has two ϕ-orbits,

i.e.,

X1 = {ϕt((2, 1, 4)) | 0 ≤ t ≤ 14}, X2 = {ϕt((4, 1, 3)) | 0 ≤ t ≤ 4}.
Put a = a

(k)
ij for all (i, k, j) ∈ X1 and b = a

(k)
ij for all (i, k, j) ∈ X2. Since

(2, 1, 4) ∈ X1 and (2, 4, 1) ∈ X2, we have

ab = a
(1)
24 a

(4)
21 = a

(1)
21 a

(4)
11 = 0.

Hence we obtain three structure systems depending on (a, b) = (0, 0), (1, 0),
or (0, 1).

(4) n = 5 and σ = (1 2)(3 4 5): Observe that the set X is a ϕ-orbit
{ϕt((3, 1, 5)) | 0 ≤ t ≤ 17}. Put a = a

(k)
ij for all (i, k, j) ∈ X. Since (1, 3, 5) =

ϕ13((3, 1, 5)) ∈ X, we have a2 = a
(3)
15 a

(1)
35 = a

(3)
11 a

(1)
15 = 0. Hence a = 0.

Therefore the structure system is unique.
We note that there are corresponding Gorenstein tiled orders in each

case, which can be found in [9, Examples].
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