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FULL MATRIX ALGEBRAS WITH STRUCTURE SYSTEMS

BY

HISAAKI FUJITA (Tsukuba)

Abstract. We study associative, basic n xn A-full matrix algebras over a field, whose
multiplications are determined by structure systems A, that is, n-tuples of n X n matrices
with certain properties.

Introduction. Let D be a discrete valuation ring with a unique max-
imal ideal wD. It is standard to reduce homological properties of D-orders
A to those of factor algebras A/mA. For example, Gorenstein D-orders can
be reduced to quasi-Frobenius D /mD-algebras. (See e.g. [7] and [9].) As an-
other example, we recall a theorem of Jategaonkar. It is proved in [4] that
there are only finitely many tiled D-orders in M, (D) having finite global
dimension for a fixed integer n (> 2). The key idea of its proof comes from
a fact concerning the structure of factor algebras A/mwA of tiled D-orders A,
and [5, IIT Theorem 9]. We note that further information can be found in [3].

In this paper we introduce A-full matrix algebras over a field to provide
a framework for such factor algebras A/mA of tiled D-orders A, and as an
application of the framework, we study Frobenius A-full matrix algebras.
We also give an example to show that the class of A-full matrix algebras is
strictly larger than that of factor algebras of tiled D-orders.

In Section 1, we define an n x n A-full matrix algebra A determined by
an n-tuple A of n x n matrices which we call a structure system, and we
examine the Gabriel quiver of an A-full matrix algebra A. We note that
the notion of structure systems is a modification of structure constants of
finite-dimensional algebras. (See e.g. [2].) In the study of tiled D-orders, ir-
reducible A-lattices play an important role. For an irreducible A-lattice L,
the A/mA-module L/xwL has dimension type (1,...,1). In Section 2, we de-
fine representation matrices of right A-modules of dimension type (1,...,1),
and we show that for each indecomposable projective right A-module and
each indecomposable injective right A-module, their representation matrices
consist of a part of a structure system. In Section 3, we notice a relation-
ship between tiled orders and A-full matrix algebras. The factor algebras
of tiled D-orders form a large class of A-full matrix algebras. However, we
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give an example of a structure system which does not have corresponding
tiled D-orders. In Section 4, we show that for an arbitrary permutation o
such that o(i) # i for all 7, there exists a Frobenius A-full matrix algebra
with Nakayama permutation o, which is determined by a special structure
system. We give a procedure to find other structure systems of Frobenius
A-full matrix algebras for a given permutation.

1. Structure systems for full matrix algebras. Let K be a field
and n an integer with n > 2. Let A = (A4,...,A,) be an n-tuple of n x n
matrices Ay = (ag?)) € M,(K) (k=1,...,n), which satisfies the following
conditions:

(A1) agf)ag) = aglk)ag) for all 1 <14,4,k, 1 <n.
(A2) ag;.) = agz) =1 forall 1 <i,j,k <n.
(A3) az(f) =0 whenever ¢ # k, 1 < i,k <n.

Let A= D;<; j<, Kui; be a K-vector space with basis {u;; | 1 <4,j < n}.
Then we define multiplication in A by

k), = e
wi = {aij u; if k=1,
0 otherwise.
PROPOSITION 1.1. A is an associative basic K-algebra and uy1,. .., Unn
are orthogonal primitive idempotents with 1 = w11 + ... 4+ Upp.-

Proof. For all 1 < 4,75, k,l <n, we have
(k) (4)

(k)
(uikukj)ujl = CLZ-]- UjjUj) = CLZ-]- Q7" Uq]

and
. ©) (4
Wik (upjuj) = uik(a](gjl)ukl) = aEl )a;(fl)uil-

Hence the multiplication is associative if and only if (A1) holds.

It follows from (AQ) that Uii Ui = UijUj5 = U4y and uuAuu &~ K for all
1 <4,57 < n. Hence ui1, ..., un, are orthogonal primitive idempotents with
l=ui1+...+upn.

It follows from (A3) that w;pur; = 0 whenever ¢ # k, so that u;; A is not
isomorphic to uiiA. Hence A is basic. This completes the proof. m

DEFINITION. An n-tuple A = (Aj,...,A,) of n X n matrices Ay =
(ag-f)) € M, (K) is said to be a structure system for a K-algebra A =
D1 < j<n Kuij provided that (Al)-(A3) hold. In this case, we call A an

A-full matriz K-algebra.

Next, we examine the Gabriel quiver Q(A) of an A-full matrix algebra
A (see [1]). Since A is basic, the set of vertices is Q(A)p = {1,...,n}.
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PROPOSITION 1.2. (1) The Jacobson radical of A is J={Kuj | i # j,
1<4,j <n}.

(2) For anyi,j € Q(A)y withi # j, there exists an arrow j — i € Q(A)1
if and only if ag?) =0 forany k #1,j.

(3) Q(A) has no loops, and there exists at most one arrow from j to i
in Q(A), for any i # j.

Proof. (1) We can show that J is a two-sided ideal of A, J™ = 0 and that
A/J =2 Kujp @ ... ® Kup, is semisimple. Hence J is the Jacobson radical
of A.

(2) Note that J? = @{Kwui; | i # j, and uug; # 0 for some k # i,5}.
As j — i € Q(A); if and only if u;(J/J?)u;; # 0, (2) follows from the
multiplication w;puy; = ag-g)uij.

(3) Note that the number of arrows from j to i is dim g w;; (J/J?)uj; < 1,
and that u;;Ju;; = 0. Hence (3) holds.

Let B be a finite-dimensional basic K-algebra, and let eq,..., e, be or-
thogonal primitive idempotents of B with 1 =e; 4+ ...+ e,. For a right B-
module M, let m; be the length of Me; as e; Be;-module. Then (my, ..., my)
is called the dimension type of M, denoted by dim M. The Cartan matriz
Cp of B is the n X n matrix whose ith row is dim e; B. It is well known that
if gl.dim B < oo then det Cp = +1. For A-full matrix algebras A, we have
the following proposition, whose proof is straightforward.

PROPOSITION 1.3. Ewvery entry of the Cartan matrixz of an A-full matriz
algebra A is 1. Therefore gl.dim A = co.

2. Representation matrices of projectives and injectives. Let A
be an A-full matrix K-algebra with structure system A = (A41,...,A4,),
where Aj, = (ag-g)) € M,,(K) (k=1,...,n). In this section we study repre-
sentation matrices of right A-modules of dimension type (1,...,1) to distin-
guish indecomposable projective A-modules and indecomposable injective
A-modules.

PROPOSITION 2.1. Let M be a K -vector space with basis {v; | 1 <i<mn}.
Then a right A-module structure of M with dim M = (1,...,1) is determined
by a matriz S = (s;;) € M, (K) satisfying the condtion
() SikSkj = al(f)sij and s; =1, foralll <i,jk<n.

In this case S = (s;5) is determined by viu;j = s;jv; for all 1 <i,j <n.

Proof. It is well known that a right A-module structure of M is deter-

mined by a K-algebra homomorphism ¢ : A — M,,(K) as follows. For any
a € A, let p(a) = (a;;) € My (K). Then M becomes a right A-module if we
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set

n
V@ = Zaijvj forall 1 <i<n.
Jj=1

Conversely, if M is a right A-module then the above equation defines a
K-algebra homomorphism ¢ : A — M, (K), a — (a;j).

Let ¢ : A — M, (K) be a K-algebra homomorphism. Put ¢(u;;) =
M;; € M,(K). Since dim M = (1,...,1), ¢(u;) # 0 for all 1 <14 < n. Hence
by Proposition 1.1, My, ..., M,, are orthogonal primitive idempotents in
M, (K) with E,, = M1 +...+ My, where E,, is the identity matrix. Hence
for some invertible matrix P € M, (K), P"'MyP = E;; for all 1 < i < n,
where Ej; is the usual matrix unit. (See e.g. [6, §3.7, Proposition 3|.) Hence
we may assume that M;; = Ej; for all 1 <7 < n. Since M;; = M;;M;; =
M;; M, excepting the (i, j)-entry of M;;, all other entries are 0. We let s;;
be the (i,j)-entry of M;;, and let S be the matrix (s;;) € M, (K). Since

M My = o(uipug;) = ag-g)Mij, the condition (x) holds.
Conversely, for a given matrix S = (s;;) € M, (K) with (x), we can define

a K-algebra homomorphism ¢ : A — M, (K) by
@( > az‘j“z’j) = (aijsij)
7:7‘7‘

for all elements Zij a;jui; € A. Since o(u;;) = By, dimM = (1,...,1) and

v;u;j = si;v;. This completes the proof. =

We call the above S=(s;;) a representation matriz of a right A-module M.

Note that
sipvg  if i =7,
Villjl = .
0 otherwise.

PROPOSITION 2.2. (1) For each indecomposable projective right A-module
(k)

ui; A, its representation matriz is given by (aij
whose (k, j)-entry is al(-f).

(2) Let M be a right A-module with dim M = (1,...,1) and representa-
tion matriz S = (s;5). Then M is isomorphic to uyA if and only if s;, =1

forall 1 <k <n.

k,j» i-€., an n X n matriz

Proof. (1) Note that u; A is a K-vector space with basis {u; | 1 < k

< n} and dimuiA = (1,...,1). Since upu; = agk)uzj, the (k, j)-entry of

J
the representation matrix of u;; A is ag-g).

(2) The “only if” part follows from (1) and (A2). Assume that s; = 1
for all 1 < k < n. Then s;; = s;35;; = al(;)slj = al(;)

proof. m

. This completes the
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We denote the duality functor Homg ( , K) by ( )*. As a dual of Propo-
sition 2.2, we have the following.

PROPOSITION 2.3. (1) For each indecomposable injective right A-module
(Aujj)*, its representation matriz is given by (al(-f))i,k, i.e., an n X n matriv

(k)

whose (i, k)-entry is a;;’ .

(2) Let M be a right A-module with dim M = (1,...,1) and represen-
tation matriz S = (s;j). Then M is isomorphic to (Augg)* if and only if
s =1 foralll <l <n.

Let M be a right A-module with dim M = (1,...,1) and representation
matrix S = (s;5). Then we draw a diagram of M as follows. (See [3].) The
diagram has vertices 1,...,n corresponding to composition factors of M.
There is an arrow j — 7 if s;; # 0 and s;;5;; = 0 for any k # ¢, j. Note that
a is in the top if s;, = 0 for all 7 # a, and that b is in the socle if s3; = 0 for
all j # b.

The following example illustrates the above observations.

EXAMPLE 2.4. Let

11 11 0110 0 010 0 011
A 10 01 11 11 1011 0 001
11 01 0100 11 11 0 001
1100 0100 1110 11 11
be a structure system of an A-full matrix algebra A. Then representation
matrices of ui1A4,...,uyA are given by
11 11 1 0 01 1101 1100
0110 11 11 01 00 0100
0010 1011 1111 1110
0011 0 001 0 001 11 11
with the following diagrams, respectively:
1 2 3 4
/N |
2 \ / 4 3 / 1 \ 3
3 1 2 4 1
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3. A-full matrix algebras and tiled orders. In this section we study
a certain relationship between A-full matrix algebras and tiled orders. We
begin with the following simple example.

ExAMPLE 3.1. When n = 2, there exists a unique structure system,

namely
1 1 01
A:(Al’Az):<1 0 1 1)'

Now we recall the definition of tiled orders (see [4], [8], [10], [11]) . Let D
be a commutative discrete valuation domain with a unique maximal ideal
nD. Let n > 2 be an integer. Let {\;; | 1 < i,5 < n} be the set of non-
negative integers satisfying

)\ik+>\kj2)\ij7 Aii =0, >\ij+)\ji>0 ifi+#j
for all 1 < 4,5,k < n. Then A = (74 D) is a D-subalgebra of M, (D). We
call A an n xn tiled D-order. The following example provides us a prototype
of A-full matrix algebras.

EXAMPLE 3.2. Let A be an n x n tiled D-order and A = A/7A the
factor ring of A. For each matrix unit e;; € M, (D), let u;; € A be the image
of wi e;j € A via the canonical epimorphism A — A. Let K = D/nD be
the residue field. Then A is a K-algebra with basis {u;; | 1 <i,5 < n}. For

each k =1,...,n, define Ay = (agf)) € M,,(K) by

(k) _ { L Ak + Akj = A,
' 0 otherwise.
Then A = (Ay,...,A,) is the structure system for the K-algebra A.

In what follows, we assume that every entry of structure systems of A-full
matrix algebras is 0 or 1.

When n < 3, for every structure system one can find a corresponding
tiled D-order as in Example 3.2. The following example shows that, for
n = 4, there exists a structure system which has no corresponding tiled
D-orders.

ExaMPLE 3.3. Consider the following structure system:

1 111 0110 0010 0 011
A 1 001 1111 0011 0 0 01
1 0 00 0100 1 1 11 1 001
1100 01 00 0110 1 111

Suppose, to the contrary, that there exists a 4 x 4 tiled D-order A = (7r)‘if D)
corresponding to A. By [4, Lemma 1.1], we may assume that Aj; = 0 for
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1 < j < 4. Since Aoy = Ao1+A14, A3 = Ao+ 23 and Aoy = Aoz +Azq, we have
A21 = A4 = A34. Since A3 = g + M3, A2 = A3+ A32 and A\g2 = Ag1 + Ao,
we have A3 = Ao = Ag1. Hence A31 < A32 + Aoy = Agg + A1 = A3, a
contradiction.

4. Frobenius A-full matrix algebras. In this section we study Frobe-
nius A-full matrix algebras. We begin by recalling the following well known
fact. (See e.g. [2].)

PROPOSITION 4.1. Let B be a finite-dimensional basic K-algebra, and
leteq, ..., ey be orthogonal primitive idempotents of B with 1 = e1+...4ey.
Then B is Frobenius if and only if the socle of each e;B is simple and
soc(e;B) % soc(e;B) whenever i # j (1 < 4,5 < n). In this case, there is
a permutation o of {1,...,n} (called a Nakayama permutation) such that
soc(e; B) = top(eq(;)B)-

LEMMA 4.2. Let A be an n x n A-full matriz algebra with structure
system A = (A1, ..., Ay) where A, = (ag?)) (1 <k <n). Then the following
are equivalent.

(1) A is a Frobenius algebra with Nakayama permutation o.
(2) There exists a permutation o of {1,...,n} such that o(i) # i for all

1<i<n, andag?) =1lifi=k,j=k,orifj=o0(i), foralll <i,j,k <n.
Proof. (1)=(2): Since dimwu;;A = (1,...,1), 0(i) #i for all 1 <i < n.
Since soc(uiA) = top(uy(i)s(i)4), it follows from Propositions 2.2 and 2.3
that al) = Lifi =k, j =k or if j = o(i), for all 1 < i, k,j < n.
(2)=-(1): This follows from Propositions 2.2, 2.3 and 4.1. =

As an immediate application of Lemma 4.2, we have the following.

COROLLARY 4.3. When n = 2, there is a unique structure system of a
Frobenius A-full matriz algebra.

Proof. The structure system of Example 3.1 defines a Frobenius A-full
matrix algebra with Nakayama permutation o = (1 2). =

THEOREM 4.4. Let o € S,, be an arbitrary permutation such that o (i) # i
for all 1 < i < n. Then there exists a Frobenius n X n A-full matriz algebra
with Nakayama permutation o.

Proof. For all 1 <14, k,j <n, we put

N '_{1 ifi=Fkorj=korj=o(i),
E 0 otherwise.

Then by Lemma 4.2, it is sufficient to show that (A1)-(A3) hold. It is clear
that (A2) holds. Since o (i) # i for all 1 < i < n, (A3) holds. In order to
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show (Al), that is, agf)aglj) = ailk)agl) for all 1 < i,k,j,1 < n, we need to
check the following.
(1 )Ifa(k —Othena( ) —0or a,g) =0.
(2) If all = 0 then a(l) =0or a,(g]l') =0.
(3) If a(f = 0 then a( ) —0or ag‘lj) = 0.
(4 )Ifakl —Othenag )—Oora(lj):O.

Suppose that a(]) = 0 and al # 0. Then we obtain i # k, j # k,

j # o(i) and also | = k or [ = o(i). We need to show that k # j, | # j,

l # o(k). In the case of [ = k, we have | # j because j # k, and since

o(k) # k, it follows that [ # o(k). In the case of | = (i), we have | # j

because j # o (i), and since i # k, it follows that [ = o(¢) # o (k). Therefore

we have a,(d) = 0, so that (1) has been checked. We can check (2), (3) and
(4) in a similar way. This completes the proof. =

It is obvious that the structure system given in the proof of Theorem 4.4
is not unique for Frobenius A-full matrix algebras with a given Nakayama
permutation. In order to find other structure systems, we use the following
lemma.

LEMMA 4.5. Let A = (A41,...,A,) = (ag-c)) be a structure system whose
A-full matriz algebra is Frobenius with Nakayama permutation o. Then the
following statements hold.

(1) For distinct 1 <i,k,j <mn, al(-f) = 0 whenever j = o(k) or k = o(i).
(2) Consider the set

X :={(t,k,j) |1 <i,k,j <n are distinct, j #o(i), j # o(k), k# o(i)}.

Then for any (i k,j) € X, agf) = al(cj)( ) and the correspondence (i,k,j) —

(k,j,o(i)) defines a bijection ¢ : X — X.

Proof. (1) For (i,k,i,0(k)), agizk)ag;(k) = a(k)a( )( gy = 0if i # k. Since

() = 1 by Lemma 4.2, Wehavea( )—Olfj—a(k)
For (i,j,0(i),7), agfr)(z) E;(’)) = ag)agj( D — o if o(i) = k(# j). Hence
at) = 0if k = o(i).
(2) For (i,k,j,0(i)), since al(f)ag)(l) = al(i:zz)al(g(l) we have agj) = al(i‘)(z)
If (i,k,j) € X then we can verify that (k,j,o(i)) € X. Since o is a
permutation, ¢ : (i, k,j) — (k,j,o(i)) defines a bijection from X to X. =

(%)
aka

REMARK 4.6. When n = 3, the Nakayama permutation is cyclic and
hence the set X is empty, so that there is a unique structure system A
whose A-full matrix algebra is Frobenius.
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In the following example, by applying the bijection ¢ : X — X of Lemma
4.5, we obtain structure systems of Frobenius A-full matrix algebras in the
case of n =4,5.

ExaMPLE 4.7. (1) Let n =4 and o = (1 2 3 4). First observe that the
set X of Lemma 4.5 has the form X = {(1,4,3),(2,1,4),(3,2,1),(4,3,2)}.
Next note that X itself is a unique p-orbit, i.e.,

(1,4,3) — (4,3,2) — (3,2,1) — (2,1,4) (— (1,4,3)).

If we put a = ag?) for all (i, k, j) € X, then Lemma 4.5(1) yields the following
two structure systems:

1 111 01 0O 01 10 01 a1l
A 1 01 a 1 111 0010 0 011

1 001 a 1 0 1 1 1 11 000 1]’

1 000 1 100 1 a 10 1 1 11

where a = 0 or 1.

(2) n=4and o = (1 2)(3 4): Observe that the set X is empty. Hence
the structure system is unique.

(3) n=>5and 0 =(12345): Observe that the set X has two ¢-orbits,
ie.,

X1 ={¢"((2,1,4)) |0<t <14},  Xo={p"((4,1,3)) |0 <t <4}

Put a = az(f) for all (i,k,j) € X1 and b = ag;;) for all (i,k,j) € Xo. Since
(2,1,4) € X; and (2,4,1) € X5, we have

1) (4 1) (4
ab = ag4)agl) = ag1)a§1) = 0.

Hence we obtain three structure systems depending on (a,b) = (0,0), (1,0),
or (0,1).

(4) n = 5and o0 = (1 2)(3 4 5): Observe that the set X is a @-orbit
{0'((3,1,5)) |0 <t <17}. Puta = ag-c) for all (i,k,j) € X. Since (1,3,5) =

©3((3,1,5)) € X, we have a? = a%)aé? = aﬁ)a%) = 0. Hence a = 0.

Therefore the structure system is unique.
We note that there are corresponding Gorenstein tiled orders in each
case, which can be found in [9, Examples].
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