COLLOQUIUM MATHEMATICUM

FULL MATRIX ALGEBRAS WITH STRUCTURE SYSTEMS

BY
HISAAKI FUJITA (Tsukuba)

Abstract

We study associative, basic $n \times n \mathbb{A}$-full matrix algebras over a field, whose multiplications are determined by structure systems \mathbb{A}, that is, n-tuples of $n \times n$ matrices with certain properties.

Introduction. Let D be a discrete valuation ring with a unique maximal ideal πD. It is standard to reduce homological properties of D-orders Λ to those of factor algebras $\Lambda / \pi \Lambda$. For example, Gorenstein D-orders can be reduced to quasi-Frobenius $D / \pi D$-algebras. (See e.g. [7] and [9].) As another example, we recall a theorem of Jategaonkar. It is proved in [4] that there are only finitely many tiled D-orders in $\mathbb{M}_{n}(D)$ having finite global dimension for a fixed integer $n(\geq 2)$. The key idea of its proof comes from a fact concerning the structure of factor algebras $\Lambda / \pi \Lambda$ of tiled D-orders Λ, and [5, III Theorem 9]. We note that further information can be found in [3].

In this paper we introduce \mathbb{A}-full matrix algebras over a field to provide a framework for such factor algebras $\Lambda / \pi \Lambda$ of tiled D-orders Λ, and as an application of the framework, we study Frobenius \mathbb{A}-full matrix algebras. We also give an example to show that the class of \mathbb{A}-full matrix algebras is strictly larger than that of factor algebras of tiled D-orders.

In Section 1, we define an $n \times n \mathbb{A}$-full matrix algebra A determined by an n-tuple \mathbb{A} of $n \times n$ matrices which we call a structure system, and we examine the Gabriel quiver of an \mathbb{A}-full matrix algebra A. We note that the notion of structure systems is a modification of structure constants of finite-dimensional algebras. (See e.g. [2].) In the study of tiled D-orders, irreducible Λ-lattices play an important role. For an irreducible Λ-lattice L, the $\Lambda / \pi \Lambda$-module $L / \pi L$ has dimension type $(1, \ldots, 1)$. In Section 2 , we define representation matrices of right A-modules of dimension type $(1, \ldots, 1)$, and we show that for each indecomposable projective right A-module and each indecomposable injective right A-module, their representation matrices consist of a part of a structure system. In Section 3, we notice a relationship between tiled orders and \mathbb{A}-full matrix algebras. The factor algebras of tiled D-orders form a large class of \mathbb{A}-full matrix algebras. However, we
give an example of a structure system which does not have corresponding tiled D-orders. In Section 4, we show that for an arbitrary permutation σ such that $\sigma(i) \neq i$ for all i, there exists a Frobenius \mathbb{A}-full matrix algebra with Nakayama permutation σ, which is determined by a special structure system. We give a procedure to find other structure systems of Frobenius A-full matrix algebras for a given permutation.

1. Structure systems for full matrix algebras. Let K be a field and n an integer with $n \geq 2$. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of $n \times n$ matrices $A_{k}=\left(a_{i j}^{(k)}\right) \in \mathbb{M}_{n}(K)(k=1, \ldots, n)$, which satisfies the following conditions:

$$
\begin{array}{ll}
a_{i j}^{(k)} a_{i l}^{(j)}=a_{i l}^{(k)} a_{k l}^{(j)} & \text { for all } 1 \leq i, j, k, l \leq n \\
a_{k j}^{(k)}=a_{i k}^{(k)}=1 & \text { for all } 1 \leq i, j, k \leq n \\
a_{i i}^{(k)}=0 & \text { whenever } i \neq k, 1 \leq i, k \leq n \tag{A3}
\end{array}
$$

Let $A=\bigoplus_{1 \leq i, j \leq n} K u_{i j}$ be a K-vector space with basis $\left\{u_{i j} \mid 1 \leq i, j \leq n\right\}$. Then we define multiplication in A by

$$
u_{i k} u_{l j}:= \begin{cases}a_{i j}^{(k)} u_{i j} & \text { if } k=l \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 1.1. A is an associative basic K-algebra and $u_{11}, \ldots, u_{n n}$ are orthogonal primitive idempotents with $1=u_{11}+\ldots+u_{n n}$.

Proof. For all $1 \leq i, j, k, l \leq n$, we have

$$
\left(u_{i k} u_{k j}\right) u_{j l}=a_{i j}^{(k)} u_{i j} u_{j l}=a_{i j}^{(k)} a_{i l}^{(j)} u_{i l}
$$

and

$$
u_{i k}\left(u_{k j} u_{j l}\right)=u_{i k}\left(a_{k l}^{(j)} u_{k l}\right)=a_{i l}^{(k)} a_{k l}^{(j)} u_{i l}
$$

Hence the multiplication is associative if and only if (A1) holds.
It follows from (A2) that $u_{i i} u_{i j}=u_{i j} u_{j j}=u_{i j}$ and $u_{i i} A u_{i i} \cong K$ for all $1 \leq i, j \leq n$. Hence $u_{11}, \ldots, u_{n n}$ are orthogonal primitive idempotents with $1=u_{11}+\ldots+u_{n n}$.

It follows from (A3) that $u_{i k} u_{k i}=0$ whenever $i \neq k$, so that $u_{i i} A$ is not isomorphic to $u_{k k} A$. Hence A is basic. This completes the proof.

Definition. An n-tuple $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ of $n \times n$ matrices $A_{k}=$ $\left(a_{i j}^{(k)}\right) \in \mathbb{M}_{n}(K)$ is said to be a structure system for a K-algebra $A=$ $\bigoplus_{1 \leq i, j \leq n} K u_{i j}$ provided that (A1)-(A3) hold. In this case, we call A an \mathbb{A}-full matrix K-algebra.

Next, we examine the Gabriel quiver $\mathcal{Q}(A)$ of an \mathbb{A}-full matrix algebra A (see [1]). Since A is basic, the set of vertices is $\mathcal{Q}(A)_{0}=\{1, \ldots, n\}$.

Proposition 1.2. (1) The Jacobson radical of A is $J=\bigoplus\left\{K u_{i j} \mid i \neq j\right.$, $1 \leq i, j \leq n\}$.
(2) For any $i, j \in \mathcal{Q}(A)_{0}$ with $i \neq j$, there exists an arrow $j \rightarrow i \in \mathcal{Q}(A)_{1}$ if and only if $a_{i j}^{(k)}=0$ for any $k \neq i, j$.
(3) $\mathcal{Q}(A)$ has no loops, and there exists at most one arrow from j to i in $\mathcal{Q}(A)$, for any $i \neq j$.

Proof. (1) We can show that J is a two-sided ideal of $A, J^{n}=0$ and that $A / J \cong K u_{11} \oplus \ldots \oplus K u_{n n}$ is semisimple. Hence J is the Jacobson radical of A.
(2) Note that $J^{2}=\bigoplus\left\{K u_{i j} \mid i \neq j\right.$, and $u_{i k} u_{k j} \neq 0$ for some $\left.k \neq i, j\right\}$. As $j \rightarrow i \in \mathcal{Q}(A)_{1}$ if and only if $u_{i i}\left(J / J^{2}\right) u_{j j} \neq 0$, (2) follows from the multiplication $u_{i k} u_{k j}=a_{i j}^{(k)} u_{i j}$.
(3) Note that the number of arrows from j to i is $\operatorname{dim}_{K} u_{i i}\left(J / J^{2}\right) u_{j j} \leq 1$, and that $u_{i i} J u_{i i}=0$. Hence (3) holds.

Let B be a finite-dimensional basic K-algebra, and let e_{1}, \ldots, e_{n} be orthogonal primitive idempotents of B with $1=e_{1}+\ldots+e_{n}$. For a right B module M, let m_{i} be the length of $M e_{i}$ as $e_{i} B e_{i}$-module. Then $\left(m_{1}, \ldots, m_{n}\right)$ is called the dimension type of M, denoted by dim M. The Cartan matrix C_{B} of B is the $n \times n$ matrix whose i th row is $\operatorname{dim} e_{i} B$. It is well known that if gl. $\operatorname{dim} B<\infty$ then $\operatorname{det} C_{B}= \pm 1$. For \mathbb{A}-full matrix algebras A, we have the following proposition, whose proof is straightforward.

Proposition 1.3. Every entry of the Cartan matrix of an \mathbb{A}-full matrix algebra A is 1 . Therefore $\operatorname{gl} \cdot \operatorname{dim} A=\infty$.
2. Representation matrices of projectives and injectives. Let A be an \mathbb{A}-full matrix K-algebra with structure system $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$, where $A_{k}=\left(a_{i j}^{(k)}\right) \in \mathbb{M}_{n}(K)(k=1, \ldots, n)$. In this section we study representation matrices of right A-modules of dimension type $(1, \ldots, 1)$ to distinguish indecomposable projective A-modules and indecomposable injective A-modules.

Proposition 2.1. Let M be a K-vector space with basis $\left\{v_{i} \mid 1 \leq i \leq n\right\}$. Then a right A-module structure of M with $\operatorname{dim} M=(1, \ldots, 1)$ is determined by a matrix $S=\left(s_{i j}\right) \in \mathbb{M}_{n}(K)$ satisfying the condtion

$$
\begin{equation*}
s_{i k} s_{k j}=a_{i j}^{(k)} s_{i j} \quad \text { and } \quad s_{i i}=1, \quad \text { for all } 1 \leq i, j, k \leq n . \tag{*}
\end{equation*}
$$

In this case $S=\left(s_{i j}\right)$ is determined by $v_{i} u_{i j}=s_{i j} v_{j}$ for all $1 \leq i, j \leq n$.
Proof. It is well known that a right A-module structure of M is determined by a K-algebra homomorphism $\varphi: A \rightarrow \mathbb{M}_{n}(K)$ as follows. For any $a \in A$, let $\varphi(a)=\left(a_{i j}\right) \in \mathbb{M}_{n}(K)$. Then M becomes a right A-module if we
set

$$
v_{i} a:=\sum_{j=1}^{n} a_{i j} v_{j} \quad \text { for all } 1 \leq i \leq n
$$

Conversely, if M is a right A-module then the above equation defines a K-algebra homomorphism $\varphi: A \rightarrow \mathbb{M}_{n}(K), a \mapsto\left(a_{i j}\right)$.

Let $\varphi: A \rightarrow \mathbb{M}_{n}(K)$ be a K-algebra homomorphism. Put $\varphi\left(u_{i j}\right)=$ $M_{i j} \in \mathbb{M}_{n}(K)$. Since $\underline{\operatorname{dim}} M=(1, \ldots, 1), \varphi\left(u_{i i}\right) \neq 0$ for all $1 \leq i \leq n$. Hence by Proposition 1.1, $M_{11}, \ldots, M_{n n}$ are orthogonal primitive idempotents in $\mathbb{M}_{n}(K)$ with $E_{n}=M_{11}+\ldots+M_{n n}$, where E_{n} is the identity matrix. Hence for some invertible matrix $P \in \mathbb{M}_{n}(K), P^{-1} M_{i i} P=E_{i i}$ for all $1 \leq i \leq n$, where $E_{i i}$ is the usual matrix unit. (See e.g. [6, §3.7, Proposition 3].) Hence we may assume that $M_{i i}=E_{i i}$ for all $1 \leq i \leq n$. Since $M_{i j}=M_{i i} M_{i j}=$ $M_{i j} M_{j j}$, excepting the (i, j)-entry of $M_{i j}$, all other entries are 0 . We let $s_{i j}$ be the (i, j)-entry of $M_{i j}$, and let S be the matrix $\left(s_{i j}\right) \in \mathbb{M}_{n}(K)$. Since $M_{i k} M_{k j}=\varphi\left(u_{i k} u_{k j}\right)=a_{i j}^{(k)} M_{i j}$, the condition $(*)$ holds.

Conversely, for a given matrix $S=\left(s_{i j}\right) \in \mathbb{M}_{n}(K)$ with $(*)$, we can define a K-algebra homomorphism $\varphi: A \rightarrow \mathbb{M}_{n}(K)$ by

$$
\varphi\left(\sum_{i, j} a_{i j} u_{i j}\right):=\left(a_{i j} s_{i j}\right)
$$

for all elements $\sum_{i, j} a_{i j} u_{i j} \in A$. Since $\varphi\left(u_{i i}\right)=E_{i i}, \underline{\operatorname{dim}} M=(1, \ldots, 1)$ and $v_{i} u_{i j}=s_{i j} v_{j}$. This completes the proof.

We call the above $S=\left(s_{i j}\right)$ a representation matrix of a right A-module M. Note that

$$
v_{i} u_{j k}= \begin{cases}s_{i k} v_{k} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 2.2. (1) For each indecomposable projective right A-module $u_{i i} A$, its representation matrix is given by $\left(a_{i j}^{(k)}\right)_{k, j}$, i.e., an $n \times n$ matrix whose (k, j)-entry is $a_{i j}^{(k)}$.
(2) Let M be a right A-module with $\operatorname{dim} M=(1, \ldots, 1)$ and representation matrix $S=\left(s_{i j}\right)$. Then M is isomorphic to $u_{l l} A$ if and only if $s_{l k}=1$ for all $1 \leq k \leq n$.

Proof. (1) Note that $u_{i i} A$ is a K-vector space with basis $\left\{u_{i k} \mid 1 \leq k\right.$ $\leq n\}$ and $\operatorname{dim} u_{i i} A=(1, \ldots, 1)$. Since $u_{i k} u_{k j}=a_{i j}^{(k)} u_{i j}$, the (k, j)-entry of the representation matrix of $u_{i i} A$ is $a_{i j}^{(k)}$.
(2) The "only if" part follows from (1) and (A2). Assume that $s_{l k}=1$ for all $1 \leq k \leq n$. Then $s_{i j}=s_{l i} s_{i j}=a_{l j}^{(i)} s_{l j}=a_{l j}^{(i)}$. This completes the proof.

We denote the duality functor $\operatorname{Hom}_{K}(, K)$ by ()*. As a dual of Proposition 2.2 , we have the following.

Proposition 2.3. (1) For each indecomposable injective right A-module $\left(A u_{j j}\right)^{*}$, its representation matrix is given by $\left(a_{i j}^{(k)}\right)_{i, k}$, i.e., an $n \times n$ matrix whose (i, k)-entry is $a_{i j}^{(k)}$.
(2) Let M be a right A-module with $\operatorname{dim} M=(1, \ldots, 1)$ and representation matrix $S=\left(s_{i j}\right)$. Then M is isomorphic to $\left(A u_{k k}\right)^{*}$ if and only if $s_{l k}=1$ for all $1 \leq l \leq n$.

Let M be a right A-module with $\underline{\operatorname{dim}} M=(1, \ldots, 1)$ and representation matrix $S=\left(s_{i j}\right)$. Then we draw a diagram of M as follows. (See [3].) The diagram has vertices $1, \ldots, n$ corresponding to composition factors of M. There is an arrow $j \rightarrow i$ if $s_{i j} \neq 0$ and $s_{i k} s_{k j}=0$ for any $k \neq i, j$. Note that a is in the top if $s_{i a}=0$ for all $i \neq a$, and that b is in the socle if $s_{b j}=0$ for all $j \neq b$.

The following example illustrates the above observations.
Example 2.4. Let

$$
\mathbb{A}=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & & 0 & 0 & 0 \\
1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & & 0 & 0 & 0 \\
1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

be a structure system of an \mathbb{A}-full matrix algebra A. Then representation matrices of $u_{11} A, \ldots, u_{44} A$ are given by

1	1	1	1	1	0	0	1	1	1	0	1		1	1	0
0	1	1	0	1	1	1	1	0	1	0	0	0	1	0	0
0	0	1	0	1	0	1	1	1	1	1	1	1	1	1	0
0	0	1	1	0	0	0	1	0	0	0	1	1	1	1	1

with the following diagrams, respectively:

2	3	4
\uparrow		\uparrow
3	1	3
\uparrow		
1	$2 \quad 4$	1

3. \mathbb{A}-full matrix algebras and tiled orders. In this section we study a certain relationship between \mathbb{A}-full matrix algebras and tiled orders. We begin with the following simple example.

Example 3.1. When $n=2$, there exists a unique structure system, namely

$$
\mathbb{A}=\left(A_{1}, A_{2}\right)=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

Now we recall the definition of tiled orders (see [4], [8], [10], [11]) . Let D be a commutative discrete valuation domain with a unique maximal ideal πD. Let $n \geq 2$ be an integer. Let $\left\{\lambda_{i j} \mid 1 \leq i, j \leq n\right\}$ be the set of nonnegative integers satisfying

$$
\lambda_{i k}+\lambda_{k j} \geq \lambda_{i j}, \quad \lambda_{i i}=0, \quad \lambda_{i j}+\lambda_{j i}>0 \quad \text { if } i \neq j
$$

for all $1 \leq i, j, k \leq n$. Then $\Lambda=\left(\pi^{\lambda_{i j}} D\right)$ is a D-subalgebra of $\mathbb{M}_{n}(D)$. We call Λ an $n \times n$ tiled D-order. The following example provides us a prototype of \mathbb{A}-full matrix algebras.

Example 3.2. Let Λ be an $n \times n$ tiled D-order and $A=\Lambda / \pi \Lambda$ the factor ring of Λ. For each matrix unit $e_{i j} \in \mathbb{M}_{n}(D)$, let $u_{i j} \in A$ be the image of $\pi^{\lambda_{i j}} e_{i j} \in \Lambda$ via the canonical epimorphism $\Lambda \rightarrow A$. Let $K=D / \pi D$ be the residue field. Then A is a K-algebra with basis $\left\{u_{i j} \mid 1 \leq i, j \leq n\right\}$. For each $k=1, \ldots, n$, define $A_{k}=\left(a_{i j}^{(k)}\right) \in \mathbb{M}_{n}(K)$ by

$$
a_{i j}^{(k)}:= \begin{cases}1 & \text { if } \lambda_{i k}+\lambda_{k j}=\lambda_{i j} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ is the structure system for the K-algebra A.
In what follows, we assume that every entry of structure systems of \mathbb{A}-full matrix algebras is 0 or 1 .

When $n \leq 3$, for every structure system one can find a corresponding tiled D-order as in Example 3.2. The following example shows that, for $n=4$, there exists a structure system which has no corresponding tiled D-orders.

Example 3.3. Consider the following structure system:

$$
\mathbb{A}=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & & 0 & 0 & 0 \\
1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Suppose, to the contrary, that there exists a 4×4 tiled D-order $\Lambda=\left(\pi^{\lambda_{i j}} D\right)$ corresponding to \mathbb{A}. By [4, Lemma 1.1], we may assume that $\lambda_{1 j}=0$ for
$1 \leq j \leq 4$. Since $\lambda_{24}=\lambda_{21}+\lambda_{14}, \lambda_{13}=\lambda_{12}+\lambda_{23}$ and $\lambda_{24}=\lambda_{23}+\lambda_{34}$, we have $\lambda_{21}=\lambda_{24}=\lambda_{34}$. Since $\lambda_{13}=\lambda_{14}+\lambda_{43}, \lambda_{42}=\lambda_{43}+\lambda_{32}$ and $\lambda_{42}=\lambda_{41}+\lambda_{12}$, we have $\lambda_{32}=\lambda_{42}=\lambda_{41}$. Hence $\lambda_{31}<\lambda_{32}+\lambda_{21}=\lambda_{34}+\lambda_{41}=\lambda_{31}$, a contradiction.
4. Frobenius \mathbb{A}-full matrix algebras. In this section we study Frobenius \mathbb{A}-full matrix algebras. We begin by recalling the following well known fact. (See e.g. [2].)

Proposition 4.1. Let B be a finite-dimensional basic K-algebra, and let e_{1}, \ldots, e_{n} be orthogonal primitive idempotents of B with $1=e_{1}+\ldots+e_{n}$. Then B is Frobenius if and only if the socle of each $e_{i} B$ is simple and $\operatorname{soc}\left(e_{i} B\right) \not \approx \operatorname{soc}\left(e_{j} B\right)$ whenever $i \neq j(1 \leq i, j \leq n)$. In this case, there is a permutation σ of $\{1, \ldots, n\}$ (called a Nakayama permutation) such that $\operatorname{soc}\left(e_{i} B\right) \cong \operatorname{top}\left(e_{\sigma(i)} B\right)$.

Lemma 4.2. Let A be an $n \times n \mathbb{A}$-full matrix algebra with structure system $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ where $A_{k}=\left(a_{i j}^{(k)}\right)(1 \leq k \leq n)$. Then the following are equivalent.
(1) A is a Frobenius algebra with Nakayama permutation σ.
(2) There exists a permutation σ of $\{1, \ldots, n\}$ such that $\sigma(i) \neq i$ for all $1 \leq i \leq n$, and $a_{i j}^{(k)}=1$ if $i=k, j=k$, or if $j=\sigma(i)$, for all $1 \leq i, j, k \leq n$.

Proof. (1) $\Rightarrow(2)$: Since $\operatorname{dim} u_{i i} A=(1, \ldots, 1), \sigma(i) \neq i$ for all $1 \leq i \leq n$. Since $\operatorname{soc}\left(u_{i i} A\right) \cong \operatorname{top}\left(u_{\sigma(i) \sigma(i)} A\right)$, it follows from Propositions 2.2 and 2.3 that $a_{i j}^{(k)}=1$ if $i=k, j=k$ or if $j=\sigma(i)$, for all $1 \leq i, k, j \leq n$.
$(2) \Rightarrow(1)$: This follows from Propositions 2.2, 2.3 and 4.1.
As an immediate application of Lemma 4.2, we have the following.
Corollary 4.3. When $n=2$, there is a unique structure system of a Frobenius \mathbb{A}-full matrix algebra.

Proof. The structure system of Example 3.1 defines a Frobenius \mathbb{A}-full matrix algebra with Nakayama permutation $\sigma=\binom{1}{2}$.

Theorem 4.4. Let $\sigma \in S_{n}$ be an arbitrary permutation such that $\sigma(i) \neq i$ for all $1 \leq i \leq n$. Then there exists a Frobenius $n \times n \mathbb{A}$-full matrix algebra with Nakayama permutation σ.

Proof. For all $1 \leq i, k, j \leq n$, we put

$$
a_{i j}^{(k)}:= \begin{cases}1 & \text { if } i=k \text { or } j=k \text { or } j=\sigma(i), \\ 0 & \text { otherwise. }\end{cases}
$$

Then by Lemma 4.2, it is sufficient to show that (A1)-(A3) hold. It is clear that (A2) holds. Since $\sigma(i) \neq i$ for all $1 \leq i \leq n$, (A3) holds. In order to
show (A1), that is, $a_{i j}^{(k)} a_{i l}^{(j)}=a_{i l}^{(k)} a_{k l}^{(j)}$ for all $1 \leq i, k, j, l \leq n$, we need to check the following.
(1) If $a_{i j}^{(k)}=0$ then $a_{i l}^{(k)}=0$ or $a_{k l}^{(j)}=0$.
(2) If $a_{i l}^{(j)}=0$ then $a_{i l}^{(k)}=0$ or $a_{k l}^{(j)}=0$.
(3) If $a_{i l}^{(k)}=0$ then $a_{i j}^{(k)}=0$ or $a_{i l}^{(j)}=0$.
(4) If $a_{k l}^{(j)}=0$ then $a_{i j}^{(k)}=0$ or $a_{i l}^{(j)}=0$.

Suppose that $a_{i j}^{(k)}=0$ and $a_{i l}^{(k)} \neq 0$. Then we obtain $i \neq k, j \neq k$, $j \neq \sigma(i)$ and also $l=k$ or $l=\sigma(i)$. We need to show that $k \neq j, l \neq j$, $l \neq \sigma(k)$. In the case of $l=k$, we have $l \neq j$ because $j \neq k$, and since $\sigma(k) \neq k$, it follows that $l \neq \sigma(k)$. In the case of $l=\sigma(i)$, we have $l \neq j$ because $j \neq \sigma(i)$, and since $i \neq k$, it follows that $l=\sigma(i) \neq \sigma(k)$. Therefore we have $a_{k l}^{(j)}=0$, so that (1) has been checked. We can check (2), (3) and (4) in a similar way. This completes the proof.

It is obvious that the structure system given in the proof of Theorem 4.4 is not unique for Frobenius \mathbb{A}-full matrix algebras with a given Nakayama permutation. In order to find other structure systems, we use the following lemma.

Lemma 4.5. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)=\left(a_{i j}^{(k)}\right)$ be a structure system whose \mathbb{A}-full matrix algebra is Frobenius with Nakayama permutation σ. Then the following statements hold.
(1) For distinct $1 \leq i, k, j \leq n, a_{i j}^{(k)}=0$ whenever $j=\sigma(k)$ or $k=\sigma(i)$.
(2) Consider the set
$X:=\{(i, k, j) \mid 1 \leq i, k, j \leq n$ are distinct, $j \neq \sigma(i), j \neq \sigma(k), k \neq \sigma(i)\}$.
Then for any $(i, k, j) \in X, a_{i j}^{(k)}=a_{k \sigma(i)}^{(j)}$, and the correspondence $(i, k, j) \mapsto$ $(k, j, \sigma(i))$ defines a bijection $\varphi: X \rightarrow X$.

Proof. (1) For $(i, k, i, \sigma(k)), a_{i \sigma(k)}^{(k)} a_{k \sigma(k)}^{(i)}=a_{i i}^{(k)} a_{i \sigma(k)}^{(i)}=0$ if $i \neq k$. Since $a_{k \sigma(k)}^{(i)}=1$ by Lemma 4.2, we have $a_{i j}^{(k)}=0$ if $j=\sigma(k)$.

For $(i, j, \sigma(i), j), a_{i \sigma(i)}^{(j)} a_{i j}^{(\sigma(i))}=a_{i j}^{(j)} a_{j j}^{(\sigma(i))}=0$ if $\sigma(i)=k(\neq j)$. Hence $a_{i j}^{(k)}=0$ if $k=\sigma(i)$.
(2) For $(i, k, j, \sigma(i))$, since $a_{i j}^{(k)} a_{i \sigma(i)}^{(j)}=a_{i \sigma(i)}^{(k)} a_{k \sigma(i)}^{(j)}$, we have $a_{i j}^{(k)}=a_{k \sigma(i)}^{(j)}$.

If $(i, k, j) \in X$ then we can verify that $(k, j, \sigma(i)) \in X$. Since σ is a permutation, $\varphi:(i, k, j) \mapsto(k, j, \sigma(i))$ defines a bijection from X to X.

Remark 4.6. When $n=3$, the Nakayama permutation is cyclic and hence the set X is empty, so that there is a unique structure system \mathbb{A} whose \mathbb{A}-full matrix algebra is Frobenius.

In the following example, by applying the bijection $\varphi: X \rightarrow X$ of Lemma 4.5, we obtain structure systems of Frobenius \mathbb{A}-full matrix algebras in the case of $n=4,5$.

Example 4.7. (1) Let $n=4$ and $\sigma=\left(\begin{array}{ll}1 & 2\end{array} 34\right)$. First observe that the set X of Lemma 4.5 has the form $X=\{(1,4,3),(2,1,4),(3,2,1),(4,3,2)\}$. Next note that X itself is a unique φ-orbit, i.e.,

$$
(1,4,3) \mapsto(4,3,2) \mapsto(3,2,1) \mapsto(2,1,4)(\mapsto(1,4,3)) .
$$

If we put $a=a_{i j}^{(k)}$ for all $(i, k, j) \in X$, then Lemma 4.5(1) yields the following two structure systems:
where $a=0$ or 1 .
(2) $n=4$ and $\sigma=(12)(34)$: Observe that the set X is empty. Hence the structure system is unique.
(3) $n=5$ and $\sigma=(12345)$: Observe that the set X has two φ-orbits, i.e.,

$$
X_{1}=\left\{\varphi^{t}((2,1,4)) \mid 0 \leq t \leq 14\right\}, \quad X_{2}=\left\{\varphi^{t}((4,1,3)) \mid 0 \leq t \leq 4\right\} .
$$

Put $a=a_{i j}^{(k)}$ for all $(i, k, j) \in X_{1}$ and $b=a_{i j}^{(k)}$ for all $(i, k, j) \in X_{2}$. Since $(2,1,4) \in X_{1}$ and $(2,4,1) \in X_{2}$, we have

$$
a b=a_{24}^{(1)} a_{21}^{(4)}=a_{21}^{(1)} a_{11}^{(4)}=0
$$

Hence we obtain three structure systems depending on $(a, b)=(0,0),(1,0)$, or $(0,1)$.
(4) $n=5$ and $\sigma=(12)(345)$: Observe that the set X is a φ-orbit $\left\{\varphi^{t}((3,1,5)) \mid 0 \leq t \leq 17\right\}$. Put $a=a_{i j}^{(k)}$ for all $(i, k, j) \in X$. Since $(1,3,5)=$ $\varphi^{13}((3,1,5)) \in X$, we have $a^{2}=a_{15}^{(3)} a_{35}^{(1)}=a_{11}^{(3)} a_{15}^{(1)}=0$. Hence $a=0$. Therefore the structure system is unique.

We note that there are corresponding Gorenstein tiled orders in each case, which can be found in [9, Examples].

REFERENCES

[1] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
[2] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, Berlin, 1994.
[3] K. R. Goodearl and B. Huisgen-Zimmermann, Repetitive resolutions over classical orders and finite dimensional algebras, in: Algebras and Modules II (Geiranger, 1996), CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998, 205-225.
[4] V. A. Jategaonkar, Global dimension of tiled orders over a discrete valuation ring, Trans. Amer. Math. Soc. 196 (1974), 313-330.
[5] I. Kaplansky, Fields and Rings, 2nd ed., Chicago Lectures in Math., The Univ. of Chicago Press, Chicago and London, 1972.
[6] J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham (reprinted by Chelsea, New York, 1976).
[7] M. Ramras, Maximal orders over regular local rings of dimension two, Trans. Amer. Math. Soc. 142 (1969), 457-479.
[8] I. Reiner, Maximal Orders, Academic Press, London, 1975.
[9] K. W. Roggenkamp, V. V. Kirichenko, M. A. Khibina and V. N. Zhuravlev, Gorenstein tiled orders, Comm. Algebra 29 (2001), 4231-4247.
[10] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon \& Breach, 1992.
[11] A. G. Zavadskiĭ and V. V. Kirichenko, Semimaximal rings of finite type, Mat. Sb. 103 (1977), 323-345 (in Russian).

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305-8571 Japan
E-mail: fujita@math.tsukuba.ac.jp

