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A VARIANT THEORY FOR THE GORENSTEIN FLAT DIMENSION

BY

SAMIR BOUCHIBA (Meknes)

Abstract. This paper discusses a variant theory for the Gorenstein flat dimension.
Actually, since it is not yet known whether the category GF(R) of Gorenstein flat modules
over a ring R is projectively resolving or not, it appears legitimate to seek alternate ways of
measuring the Gorenstein flat dimension of modules which coincide with the usual one in
the case where GF(R) is projectively resolving, on the one hand, and present nice behavior
for an arbitrary ring R, on the other. In this paper, we introduce and study one of these
candidates called the generalized Gorenstein flat dimension of a module M and denoted
by GGfdR(M) via considering exact sequences of modules of finite flat dimension. The
new entity stems naturally from the very definition of Gorenstein flat modules. It turns
out that the generalized Gorenstein flat dimension enjoys nice behavior in the general
setting. First, for each R-module M , we prove that GGfdR(M) = GidR(HomZ(M,Q/Z))
whenever GGfR(M) is finite. Also, we show that GF(R) is projectively resolving if and only
if the Gorenstein flat dimension and the generalized Gorenstein flat dimension coincide. In
particular, if R is a right coherent ring, then GGfdR(M) = GfdR(M) for any R-module M .
Moreover, the global dimension associated to the generalized Gorenstein flat dimension,
called the generalized Gorenstein weak global dimension and denoted by GG-wgldim(R),
turns out to be the best counterpart of the classical weak global dimension in Gorenstein
homological algebra. In fact, it is left-right symmetric and it is related to the cohomological
invariants r-sfli(R) and l-sfli(R) by the formula

GG-wgldim(R) = max{r-sfli(R), l-sfli(R)}.

1. Introduction. Throughout this paper, R denotes an associative ring
with identity element. All modules, if not otherwise specified, are assumed
to be left R-modules. Also, given an R-module M , we denote by fdR(M)
the flat dimension of M , that is, the least positive integer n such that
there is a short exact sequence 0 → Fn → · · · → F1 → F0 → M → 0
with F0, F1, . . . , Fn flat modules, and ∞ if no such short exact sequence
exists.

Recall that Gorenstein projective (resp., Gorenstein injective, Gorenstein
flat) modules originate from the classical notions of projective (resp., injec-
tive, flat) modules by standing as images and kernels of the differentials of
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complete projective (resp., injective, flat) resolutions. Effectively, a module
M is said to be Gorenstein projective if there exists an exact sequence of
projective modules, called a complete projective resolution,

P := · · · → P1 → P0 → P−1 → · · ·
such that P remains exact after applying the functor HomR(−, P ) for each
projective module P and M := Im(P0 → P−1). Gorenstein injective mod-
ules are defined dually. Also, a module M is said to be Gorenstein flat if
there exists an exact sequence of flat modules

F := · · · → F1 → F0 → F−1 → · · ·
such that F remains exact after applying the functor I ⊗R − for each in-
jective right R-module I and M := Im(F0 → F−1). These new concepts
allowed Enochs and Jenda [19, 20] to introduce new (Gorenstein homolog-
ical) dimensions in order to extend the G-dimension defined by Auslander
and Bridger [1, 2]. It turns out, in particular, that these Gorenstein ho-
mological dimensions are refinements of the classical dimensions of a mod-
ule M , in the sense that GpdR(M) ≤ pdR(M), GidR(M) ≤ idR(M) and
GfdR(M) ≤ fdR(M) with equality each time the corresponding classical
homological dimension is finite. The reader is referred to [3, 6, 12, 14, 15,
19, 20, 23–25, 28–30] for basics and recent investigations on Gorenstein
homological theory, as well as some topics related to resolutions of flat mod-
ules.

It remains one of the key open problems of Gorenstein homological alge-
bra whether the category GF(R) of Gorenstein flat modules is projectively
resolving or not. The absence of this latter property makes it intricate to
deal with the Gorenstein flat dimension except in the setting of right co-
herent rings where this property is satisfied. Motivated by the absence of
this latter property, we started exploring alternative ways of measuring the
Gorenstein flat dimension of a module M which coincide with the usual one
in the setting of a left GF-closed ring R. In [10], we introduced and studied
a new invariant called the cover Gorenstein flat dimension of a module M ,
denoted by CGfdR(M). In fact, given a module M , for any exact sequence
0→M → E → G→ 0 such that fdR(E) <∞ and G is Gorenstein flat, we
pointed out that fdR(E) is an invariant which depends only on M and not
on the choice of the exact sequence. This allowed us to define the new cover
Gorenstein dimension of a module M as follows: CGfdR(M) =: n if there
exists an exact sequence 0→ M → E → G→ 0 such that fdR(E) = n and
G is Gorenstein flat, and CGfdR(M) =∞ if no such exact sequence exists.
We proved that, for any R-module M ,

GidR(M+) ≤ GfdR(M) ≤ CGfdR(M) ≤ fdR(M)

with GidR(M+) = GfdR(M) = CGfdR(M) if CGfdR(M) < ∞. Moreover,
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we proved that GF(R) is projectively resolving if and only if the cover
Gorenstein flat dimension and the Gorenstein flat dimension coincide. We
gave many properties of the new dimension as well as its corresponding
global dimension called the cover Gorenstein weak global dimension.

In the present paper, in which we continue our work started in [10, 11],
we introduce and study a new invariant called the generalized Gorenstein
flat dimension of a module M , denoted by GGfdR(M), via considering ex-
act sequences of modules of finite flat dimension. This entity stems naturally
from the very definition of Gorenstein flat modules via replacing the concept
of a complete flat resolution by the new one of a generalized complete flat
resolution. The new dimension turns out to behave better than the Goren-
stein flat dimension. First, we show that, for each R-module M ,

GidR(HomZ(M,Q/Z)) ≤ GGfdR(M) ≤ fdR(M)

with

GidR(HomZ(M,Q/Z)) = GGfdR(M) whenever GGfdR(M) is finite.

Also, we prove that the following assertions are equivalent:

• GF(R) is projectively resolving;
• GfdR(M) = GGfdR(M) for each R-module M ;
• GfdR(M) = GidR(HomZ(M,Q/Z)) for each R-module M such that

GfdR(M) <∞.

On the other hand, we prove that the finitistic dimension associated to the
generalized Gorenstein flat dimension of an arbitrary ring R, defined by

FGGFD(R) := sup{GGfdR(M) :M is an R-module with GGfdR(M)<∞},
coincides with the known finitistic flat dimension FFD(R) of R. It is worth
reminding, in this regard, that the finitistic Gorenstein flat dimension

FGFD(R) := sup{GfdR(M) : M is an R-module with GfdR(M) <∞}
coincides with FFD(R) in the restricted setting of a right coherent ring
[25, Theorem 3.24]. Further, the generalized Gorenstein global weak dimen-
sion of R, defined by l-GG-wgldim(R) := sup{GGfdR(M) : M is a left
R-module}, manifests itself as the best counterpart of the classical global
weak dimension in Gorenstein homological algebra. Actually, it is left-right
symmetric, and it is connected to to the cohomological invariants l-sfli(R) :=
{fdR(I) : I is an injective left R-module} and r-sfli(R) := {fdR(I) : I is an
injective right R-module} by the equality

l-GG-wgldim(R) = r-GG-wgldim(R) = max{l-sfli(R), r-sfli(R)}.
GG-wgldim(R) will denote the common value of l-GG-wgldim(R) and
r-GG-wgldim(R). Moreover, if R is left Noetherian (resp., right Noetherian),
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we prove that

GG-wgldm(R) = l-G-gldim(R)

(resp., GG-wgldim(R) = r-G-gldim(R)). These two results are the Goren-
stein versions of [27, Theorems 9.15 and 9.22], the latter giving the relation
between the global dimension and the weak global dimension.

In the end, it may be interesting to note that the problems we investigate
in this paper are closely related to some problems on periodic resolutions of
flat modules studied by D. Benson and K. Goodearl [9] and D. Simson [32],
and recently generalized by the author and M. Khaloui [13].

2. Generalized Gorenstein flat dimension. The goal of this section
is to introduce and study the generalized Gorenstein flat dimension. The
newly introduced invariant behaves better than the known Gorenstein flat
dimension in the general setting.

First, it is worth reminding the reader of the adjointness isomorphism
for derived functors

HomZ(TorRn (A,B),Q/Z) ∼= ExtnR(A,HomZ(B,Q/Z))

for any left R-module B and any right R-module A. Throughout, for any
(left) R-module M , we denote by M+ the Pontryagin dual HomZ(M,Q/Z)
of M .

For the convenience of the reader, we begin by giving a brief account on
resolving classes of modules and basic properties of copure injective dimen-
sion and copure flat dimension. Recall that a class Γ of R-modules is called
projectively resolving if Γ includes all projective modules and for any short
exact sequence 0→ X ′ → X → X ′′ → 0 with X ′′ ∈ Γ we have X ∈ Γ if and
only if X ′ ∈ Γ . Similarly, Γ is called injectively resolving if Γ includes all
injective modules and for any short exact sequence 0→ X ′ → X → X ′′ → 0
with X ′ ∈ Γ we have X ∈ Γ if and only if X ′′ ∈ Γ . In this context, recall
that the category of Gorenstein projective (resp., injective) modules, de-
noted by GP(R) (resp., GI(R)), is projectively (resp., injectively) resolving.
As to the category of Gorenstein flat modules GF(R), it is still an open
problem whether it is projectively resolving or not.

Moreover, recall that the notions of copure injective and copure flat
module were introduced and studied by Enochs and Jenda [22]. A module
M is said to be copure injective (resp., copure flat) if Ext1R(I,M) = 0 (resp.,
TorR1 (I,M) = 0) for any injective left (resp., right) R-module I. A module
M is said to be strongly copure injective (resp., strongly copure flat) if
ExtnR(I,M) = 0 (resp., TorRn (I,M) = 0) for any injective left (resp., right)
R-module I and any integer n ≥ 1. Also, Enochs and Jenda introduced the
copure injective dimension and the copure flat dimension as follows: Let M
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be an R-module. Then

cidR(M) = sup{n ∈ N : ExtnR(I,M) 6= 0 for some injective module I},
cfdR(M) = sup{n ∈ N : TorRn (I,M) 6= 0 for some injective right module I}.

Notice that these two dimensions are refinements of the injective dimension
and flat dimension respectively in the sense that cidR(M) ≤ idR(M) (resp.,
cfdR(M) ≤ fdR(M)) with equality if idR(M) <∞ (resp., fdR(M) <∞).

Next, we collect the basic properties of the copure flat dimension.

Proposition 2.1.

(1) Let M be an R-module and n ≥ 1 an integer. Then the following
assertions are equivalent:

(a) cfdR(M) ≤ n.
(b) For each exact sequence 0 → K → En−1 → · · · → E1 → E0 →

M → 0 such that the Ei are strongly copure flat modules, K is
strongly copure flat.

(c) For each exact sequence 0 → K → Fn−1 → · · · → F1 → F0 →
M → 0 such that the Fi are flat modules, K is strongly copure
flat.

(2) Let 0→ N → E →M → 0 be an exact sequence of R-modules.

(a) If E is strongly copure flat and cfdR(M) ≥ 1, then cfdR(M) =
1 + cfdR(N).

(b) cfdR(M) ≤ 1 + max{cfdR(E), cfdR(N)}.
(c) cfdR(E) ≤ max{cfdR(M), cfdR(N)}.

(3) Let · · · → E1
d1−→ E0

d0−→ E−1 → · · · be an exact sequence of
R-modules with Mi := Im(di) for each integer i. Then

sup{cfdR(Ei) : i ∈ Z} ≤ sup{cfdR(Mi) : i ∈ Z}

with equality if sup{cfdR(Mi) : i ∈ Z} is finite.

Proof. The proofs of (1) and (2) are routine. Let us prove (3). By shifting
and summing we get the periodic exact sequence

· · ·
⊕

di−−−→
⊕
i∈Z

Ei

⊕
di−−−→
⊕
i∈Z

Ei

⊕
di−−−→
⊕
i∈Z

Ei

⊕
di−−−→ · · ·

with Im(
⊕
di) =

⊕
iMi. Considering the derived short exact sequence

0→
⊕
i

Mi →
⊕
i

Ei →
⊕
i

Mi → 0

and using (2)(c), we get cfdR(
⊕

iEi) ≤ cfdR(
⊕

iMi), that is, sup{cfdR(Ei) :
i ∈ Z} ≤ sup{cfdR(Mi) : i ∈ Z}.
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Now, assume that sup{cfdR(Mi) : i ∈ Z} is finite. Then cfdR(
⊕

iMi) is
finite. Via considering the associated long exact sequence to 0→

⊕
iMi →⊕

iEi →
⊕

iMi → 0 with respect to the functor Tor(I,−) for each injective
right R-module I, we get cfdR(

⊕
iEi) = cfdR(

⊕
iMi) yielding the desired

equality.

Definition 1. Let R be a ring.

(1) Let E = · · · → E1
d1−→ E0

d0−→ E−1 → · · · be an exact sequence of
R-modules, and Mi := Im(di) for each integer i. The sequence E is called
a generalized complete flat resolution if the sets {fdR(Ei) : i ∈ Z} and
{cfdR(Mi) : i ∈ Z} are bounded.

(2) An R-module M is called a generalized Gorenstein flat module if M
is the kernel or the image of a differential of a generalized complete flat
resolution.

Remark 1. Let E = · · · → E1
d1−→ E0

d0−→ E−1 → · · · be a generalized
complete flat resolution and let Mi := Im(di) for each integer i. Then, as
cfdR(Ei) = fdR(Ei) for each integer i and applying Proposition 2.1(3), we
get

sup{fdR(Ei) : i ∈ Z} = sup{cfdR(Mi) : i ∈ Z}.

Definition 2.

(1) Let E = · · · → E1
d1−→ E0

d0−→ E−1 → · · · be a generalized complete
flat resolution and let Mi := Im(di) for each integer i. The common
value sup{fdR(Ei) : i ∈ Z} = sup{cfdR(Mi) : i ∈ Z} is called the
degree of E.

(2) Let n ≥ 0 be an integer. An exact sequence E = · · · → E1
d1−→ E0

d0−→
E−1 → · · · is called a complete n-flat resolution if it is a generalized
complete flat resolution of degree n.

(3) Let n ≥ 0 be an integer. An R-module M is called a Gorenstein
n-flat R-module if M is the kernel or image of a differential of a
complete n-flat resolution.

Remark 2. It is clear from Definition 2 that if E = · · · → E1
d1−→

E0
d0−→ E−1 → · · · is a complete n-flat resolution, then fdR(Ei) ≤ n and

TorRk+1(I,Mi) = 0 for each Mi := Im(di), each integer k ≥ n and each
injective right R-module I. Complete 0-flat resolutions coincide with the
known complete flat resolutions.

If R is a ring, then l-sfli(R) is defined to be the supremum of the flat
lengths of injective left R-modules, that is,

l-sfli(R) := sup{fdR(I) : I is an injective left R-module}.
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Similarly,

r-sfli(R) := sup{fdR(I) : I is an injective right R-module}.
The following result characterizes complete flat resolutions in the setting of
a ring R such that r-sfli(R) <∞.

Proposition 2.2. Let R be a ring.

(1) Assume that r-sfli(R) < ∞. Let E = · · · → E1
d1−→ E0

d0−→
E−1 → · · · be an exact sequence and Mi = Im(di) for each inte-
ger i. Then E is a generalized complete flat resolution if and only
sup{fdR(Ei) : i ∈ Z} <∞.

(2) Assume that r-sfli(R) <∞ and l-sfli(R) <∞. Then any left (resp.,
right) R-module M is a left (resp., right) generalized Gorenstein flat
module.

Proof. (1) It suffices to observe that cfdR(M) ≤ r-sfli(R) < ∞ for each
left R-module M .

(2) Assume that r-sfli(R) < ∞ and l-sfli(R) < ∞. Let M be a left
R-module. Consider the exact sequence E = · · · → F1 → F0 → I0 →
I1 → · · · , where · · · → F1 → F0 → M → 0 is a flat resolution of M and
0 → M → I0 → I1 → · · · is an injective resolution of M . As l-sfli(R) <∞,
we get sup{fdR(Ij) : j ≥ 0 an integer} ≤ l-sfli(R) < ∞. It follows, by (1),
that E is a generalized complete flat resolution, and thus M is a left gener-
alized Gorenstein flat R-module. A similar argument shows that any right
R-module M is a right generalized Gorenstein flat module, as desired.

We next introduce the generalized Gorenstein flat dimension.

Definition 3.

(1) Let M be an R-module. We define the generalized Gorenstein flat
dimension of M as follows:

GGfdR(M)

=

{
cfdR(M) if M is a generalized Gorenstein flat R-module,

∞ otherwise.

(2) An R-module M is called G-Gorenstein flat if GGfdR(M) = 0. We
denote by GGF(R) the category of G-Gorenstein flat modules.

If A is a class of modules, we denote by A+ the class of all dual modules
M+ such that M ∈ A. Recall that, given a module M , if M+ is injec-
tive, then M is necessarily flat. The corresponding property in Gorenstein
homological algebra, that is,

M+ is Gorenstein injective ⇒ M is Gorenstein flat,
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is not yet verified, while its converse is known to be true (see [25, Proposi-
tion 3.11]). In this context, our next result shows that the Pontryagin dual
of any G-Gorenstein flat module is Gorenstein injective. This means that if
the above implication “M+ is Gorenstein injective ⇒M is Gorenstein flat”
is true, then the notions of Gorenstein flat module and G-Gorenstein flat
module coincide.

Proposition 2.3. Let R be a ring. Then:

(1) GF(R) ⊆ GGF(R).
(2) GF(R)+ ⊆ GGF(R)+ ⊆ GI(R).

Proof. (1) It is straightforward.

(2) Let M be a G-Gorenstein flat module. Then there exists a complete
n-flat resolution (for some positive integer n)

E = · · · → E1
d1−→ E0

d0−→ E−1 → · · ·

such that M = Im(d0). Let us consider the dual exact sequence

E+ = · · · → E+
−1 → E+

0 → E+
1 → · · · .

Then idR(E+
i ) = fdR(Ei) ≤ n and, by [22, Lemma 3.4], cidR(M+

i ) =
cfdR(Mi) ≤ n for each integer i. Hence E is a complete n-injective resolution
[11, Definition 2.1], and thus, by [11, Theorem 2.15], GidR(M+) <∞. Note
that, as GGfdR(M) = 0, we get cfdR(M) = cidR(M+) = 0 and it follows, by
[25, Theorem 2.22], that GidR(M+) = cidR(M+) = 0. Consequently, M+ is
Gorenstein injective.

We will prove that the categories GF(R) and GGF(R) coincide whenever
R is left GF-closed, in particular when R is right coherent. Next, we list
various properties of generalized Gorenstein flat modules.

Proposition 2.4. Let M be an R-module.

(1) If M is Gorenstein n-flat for some positive integer n, then GGfdR(M)
≤ n.

(2) The following assertions are equivalent:

(a) M is a generalized Gorenstein flat module.
(b) GGfdR(M) <∞.

(3) If fdR(M) = n < ∞, then M is a Gorenstein n-flat module and
GGfdR(M) = n.

(4) Let 0 → N → E
d→ M → 0 be an exact sequence such that fdR(E)

< ∞ and M is a generalized Gorenstein flat module. Then N is a
generalized Gorenstein flat module.
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Proof. (1) and (2) are straightforward.

(3) If fdR(M) = n, then it suffices to note that the exact sequence of
R-modules 0→M →M → 0 is a complete n-flat resolution.

(4) Let 0 → N → E
d→ M → 0 be an exact sequence such that fdR(E)

< ∞ and M is a generalized Gorenstein flat module. Let E = · · · → E1 →
E0 → E−1 → · · · be a Gorenstein n-flat resolution for some positive integer
n with M := Im(E0 → E−1) and let m := max{fdR(E), n}. Observe that
GGfdR(M) = cfdR(M) ≤ n, and thus cfdR(N) ≤ m. Let · · · → F1 →
F0 → N → 0 be a flat resolution of N . Then it is readily checked that
· · · → F1 → F0 → E → E−1 → E−2 → · · · is a generalized complete flat
resolution of degree r := sup{fdR(E), fdR(Ei) : i ≤ −1} ≤ m, so that N is
a generalized Gorenstein flat module, as desired.

It is well known that when the Gorenstein projective dimension (resp.,
the Gorenstein injective dimension) of a module M is finite, one might ex-
press GpdR(M) (resp., GidR(M)) in terms of the vanishing of the functor
Ext, or in terms of the Gorenstein projectivity (resp., Gorenstein injectiv-
ity) of syzygies (resp., cosyzygies) of projective (resp., injective) resolutions
of M [25, Theorems 2.20 and 2.22]. In this regard, note that for the Goren-
stein flat dimension this property still resists proof. Our next theorem shows
that the generalized Gorenstein flat dimension behaves better in this re-
spect.

Theorem 2.5. Let M be a generalized Gorenstein flat R-module issued
from a generalized complete flat resolution of degree r. Then:

(1) GfdR(M) <∞, and more precisely, GGfdR(M) ≤ GfdR(M) ≤ r.
(2) Let n ≥ 0 be an integer. The following assertions are equivalent:

(a) GGfdR(M) ≤ n.
(b) TorRk+1(I,M) = 0 for each injective right R-module I and each

integer k ≥ n.
(c) For each exact sequence 0 → K → Fn−1 → · · · → F1 → F0 →

M → 0 such that the Fi are flat modules, the nth yoke K is a
G-Gorenstein flat module.

Proof. (1) First, as GGfdR(M)<∞, we have

GGfdR(M) = cfdR(M)≤GfdR(M).

Moreover, there exists a complete r-flat resolution

E = · · · → E1
d1−→ E0

d0−→ E−1 → · · ·

such that M = Im(d0). Let Mi := Im(di) (with M = M0) for each integer i.
Fix i and consider the exact sequence 0 → Mi+1 → Ei → Mi → 0 and the
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commutative diagram

0 0 0

↓ ↓ ↓
0 → M ′i+1 → Fi → M ′i → 0

↓ ↓ ↓
0 → Pi+1,r−1 → Pi+1,r−1 ⊕ Pi,r−1 → Pi,r−1 → 0

↓ ↓ ↓
...

...
...

↓ ↓ ↓
0 → Pi+1,0 → Pi+1,0 ⊕ Pi,0 → Pi,0 → 0

↓ ↓ ↓
0 → Mi+1 → Ei → Mi → 0

↓ ↓ ↓
0 0 0

where the Pi,j and Pi+1,j are projective modules. As fdR(Ei) ≤ r, Fi is a flat
R-module for each integer i. Also, as cfdR(Mi) ≤ r and cfdR(Mi+1 ≤ r, we
get cfdR(M ′i) = cfdR(M ′i+1) = 0. It follows that the derived exact sequence

F = · · · → F1
d1−→ F0

d0−→ F−1 → · · ·

is a complete flat resolution, and thus each M ′i is Gorenstein flat over R.
Hence GfdR(M) ≤ r since 0→M ′0 → P0,r−1 → P0,r−2 → · · · → P0,0 →M0

= M → 0 is an exact sequence with M ′0 Gorenstein flat and the P0,j projec-
tive modules.

(2) (a)⇔(b) holds by definition.

(c)⇒(a). Consider a flat resolution 0 → K → Fn−1 → · · · → F1 →
F0 → M → 0 of M with nth yoke K. Note that GGfdR(M) = cfdR(M)
and GGfdR(K) = cfdR(K) = 0. Then, applying Proposition 2.1(1), we get
GGfdR(M) ≤ n.

(a)⇒(c). Suppose that GGfdR(M) ≤ n. Let 0 → K → Fn−1 → · · · →
F1 → F0 →M → 0 be an exact sequence of modules such that the Fi are flat.
A successive application of Proposition 2.4(4) shows that K is a generalized
Gorenstein flat module. Then GGfdR(K) = cfdR(K). As GGfdR(M) =
cfdR(M) ≤ n, we get, by Proposition 2.1, cfdR(K) = 0. It follows that
GGfdR(K) = 0, that is, K is G-Gorenstein flat, as desired.

Recall that, for each R-module M , idR(M+) = fdR(M). As to the Goren-
stein dimensions, it is only known that GidR(M+) ≤ GfdR(M) with equal-
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ity if R is a right coherent ring (cf. [25, Proposition 3.11]). Next, we prove
that GidR(M+) = GGfdR(M) for each R-module M with finite generalized
Gorenstein flat dimension without restrictions on the ring R.

Corollary 2.6. Let M be an R-module. Then:

(1) cfdR(M) ≤ GidR(M+) ≤ GGfdR(M) ≤ fdR(M).
(2) If GGfdR(M) <∞, then

cfdR(M) = GidR(M+) = GGfdR(M).

(3) If fdR(M) <∞, then

cfdR(M) = GidR(M+) = GfdR(M) = GGfdR(M) = fdR(M).

(4) If R is right coherent, then, for each R-module M , GGfdR(M) =
GfdR(M).

Proof. (1) Via the above adjointness isomorphism, we get

TorRn (I,M)+ ∼= ExtnR(I,M+)

for each right injective module I. Then

cfdR(M) = sup{k : ExtkR(I,M+) 6= 0 for some injective right module I}
≤ GidR(M+).

Assume that GGfdR(M) ≤ n for some positive integer n. Let 0 → K →
Fn−1 → · · · → F1 → F0 → M → 0 be an exact sequence of modules such
that the Fi are flat. Then the sequence 0 → M+ → F+

0 → F+
1 → · · · →

F+
n−1 → K+ → 0 is exact with the F+

i injective modules. By Theorem 2.5,
K is G-Gorenstein flat, and thus, by Proposition 2.3, K+ is Gorenstein
injective. Hence GidR(M+) ≤ n. It follows that GidR(M+) ≤ GGfdR(M).
Also, by Proposition 2.4(3), GGfdR(M) ≤ fdR(M).

(2) If GGfdR(M) < ∞, then, by Definition 1, GGfdR(M) = cfdR(M).
Hence, by (1), the desired equalities follow.

(3) If fdR(M) <∞, then GfdR(M) = fdR(M), so that, by (1),

cfdR(M) = GidR(M+) = GfdR(M) = GGfdR(M) = fdR(M).

(4) Assume that R is right coherent. Let M be an R-module such that
GfdR(M) <∞. Then, by [25, Theorem 3.14], GfdR(M) = cfdR(M) and, by
[15, Lemma 2.19], there exists an exact sequence 0 → M → E → G → 0
such that fdR(E) = GfdR(M) and G is Gorenstein flat. Applying Proposi-
tion 2.4(4), we find that M is generalized Gorenstein flat. It follows that
GGfdR(M) = cfdR(M) = GfdR(M). On the other hand, assume that
GGfdR(M) < ∞. Then, by Theorem 2.5(1), GfdR(M) < ∞. Hence, by
the first step, GGfdR(M) = GfdR(M).
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The following theorem explores the relations between the generalized
Gorenstein flat dimension of the different differential images within a com-
plete n-flat resolution. First, we give the following lemma relative to the
behavior of the generalized Gorenstein flat dimension vis-à-vis short exact
sequences.

Lemma 2.7. Let 0 → N → E → M → 0 be an exact sequence of
R-modules.

(1) If E is a generalized Gorenstein flat module, then

GGfdR(E) ≤ max{GGfdR(M),GGfdR(N)}.
(2) If M is a generalized Gorenstein flat R-module, then

GGfdR(M) ≤ 1 + max{GGfdR(E),GGfdR(N)}.

Proof. (1) Observe that, as E is generalized Gorenstein flat,

GGfdR(E) = cfdR(E).

Also, by Proposition 2.1(2)(c),

cfdR(E) ≤ max{cfdR(N), cfdR(M)}.
Since, by Corollary 2.6(1),

max{cfdR(N), cfdR(M)} ≤ max{GGfdR(N),GGfdR(M)},
it follows that

GGfdR(E) = cfdR(E) ≤ max{GGfdR(N),GGfdR(M)},
as desired.

(2) The proof is similar to that of (1), applying Corollary 2.6 and using
Proposition 2.1(2)(b).

Theorem 2.8.

(1) Let 0 → N → E
d→ M → 0 be an exact sequence such that

fdR(E) <∞ and M is a generalized Gorenstein flat module.

(a) If GGfdR(M) ≤ fdR(E), then max{GGfdR(N),GGfdR(M)} =
fdR(E).

(b) If GGfdR(M) > fdR(E), then GGfdR(M) = 1 + GGfdR(N).

(2) Let E = · · · → E1
d1−→ E0

d0−→ E−1 → · · ·
be a generalized complete flat resolution. Let Mi := Im(di) for each
integer i. Then

sup{GfdR(Mi) : i ∈ Z} = sup{GGfdR(Mi) : i ∈ Z}
= sup{fdR(Ei) : i ∈ Z}.
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Proof. First, note that, by Proposition 2.4(4), N is a generalized Goren-
stein flat module.

(1)(a) Assume that GGfdR(M) ≤ fdR(E). As GGfdR(M) = cfdR(M)
and GGfdR(N) = cfdR(N), we easily get GGfdR(N) ≤ fdR(E), so that

max{GGfdR(N),GGfdR(M)} ≤ fdR(E).

Now, as GGfdR(E) = fdR(E), Lemma 2.7(1) establishes the reverse inequal-
ity yielding the desired equality.

(b) The proof is routine since GGfdR(M) = cfdR(M), GGfdR(E) =
cfdR(E) and GGfdR(N) = cfdR(N).

(2) First, as GGfdR(Mi) = cfdR(Mi) for each integer i, by Remark 1 we
have

sup{GGfdR(Mi) : i ∈ Z} = sup{fdR(Ei) : i ∈ Z}.
Also, by Theorem 2.5(1), GGfdR(Mi)≤GfdR(Mi)≤ sup{fdR(Ek) : k ∈ Z}
for each integer i. Hence the desired equality follows.

The following two results are consequences of Theorem 2.8. The first one
exhibits a class of modules for which the new generalized Gorenstein flat
dimension and Gorenstein flat dimension coincide.

Corollary 2.9. Let 0→M → E →M → 0 be an exact sequence such
that fdR(E) <∞. Then

GGfdR(M) = GfdR(M).

Moreover, if cfdR(M) <∞, then

GGfdR(M) = GfdR(M) = cfdR(M) = fdR(E).

Proof. Denote by d the surjective homomorphism d : E → M with

kernel M . Assume that cfdR(M) < ∞. Then the exact sequence · · · d→ E
d→ E

d→ E
d→ · · · is a generalized complete flat resolution. Hence,

by Theorem 2.8(2), GGfdR(M) = GfdR(M) = fdR(E) = cfdR(M). If
cfdR(M) = ∞, then, as cfdR(M) ≤ GfdR(M) and cfdR(M) ≤ GGfdR(M),
we get GGfdR(M) = GfdR(M) =∞.

Corollary 2.10. Let F = · · · → F1
d1−→ F0

d0−→ F−1 → · · · be an exact
sequence of R-modules such that each Fi is flat. Then F is a complete flat
resolution if and only if F is a generalized complete flat resolution.

Proof. Apply Theorem 2.8(2).

Next, we aim at finding conditions on our introduced generalized Goren-
stein flat dimension for the category of Gorenstein flat modules GF(R) to
be projectively resolving.

Lemma 2.11 ([10, Lemma 1]). Let R be a ring. Let n ≥ 0 be an integer.
Then the following assertions are equivalent:
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(1) GF(R) is projectively resolving.
(2) Given a short exact sequence 0→ K → N → M → 0, if M and K

are Gorenstein flat, then so is N .

Lemma 2.12 ([10, Lemma 2]). Let 0 → K → N → M → 0 be an exact
sequence of R-modules such that M and K are Gorenstein flat modules.
Then GfdR(N) ≤ 1.

Recall that a ring R is said to be left GF-closed if GF(R) is projectively
resolving. In particular, a right coherent ring or a ring of finite weak global
dimension are left GF-closed. Note that the class of GF-closed rings properly
contains the class of right coherent rings (see [4]).

Theorem 2.13. Let R be a ring. Then the following assertions are equiv-
alent:

(1) R is left GF-closed.
(2) GF(R) is projectively resolving.
(3) GfdR(M) = GGfdR(M) for each R-module M .
(4) Given an R-module M , if GfdR(M) < ∞, then GfdR(M) =

GidR(M+).
(5) Given an R-module M , if GfdR(M) < ∞ and M+ is Gorenstein

injective, then M is Gorenstein flat.

Proof. (1)⇔(2) holds by definition.

(2)⇒(3). Let M be an R-module such that GfdR(M) = n < ∞. Then,
by [5, Lemma 2.2], there exists an exact sequence 0 → M → E → G → 0
such that fdR(E) = n and G is Gorenstein flat. It follows, by Propo-
sition 2.4(4), that M is a generalized Gorenstein flat module, and thus
GGfdR(M) = cfdR(M). Moreover, as cfdR(G) = 0, we get cfdR(M) =
cfdR(E) = fdR(E) = n. Hence GGfdR(M) = n = GfdR(M). Now, if
GGfdR(M) < ∞, then, by Theorem 2.5(1), GfdR(M) < ∞, and thus by
the first step, we get GGfdR(M) = GfdR(M), as desired.

(3)⇒(4). Apply Corollary 2.6(2).

(4)⇒(5). It is straightforward.

(5)⇒(1). Assume that (5) holds and let 0 → K → N → M → 0 be an
exact sequence of R-modules such that M and K are Gorenstein flat. Then,
by Lemma 2.12, GfdR(N) ≤ 1. Moreover, by [25, Proposition 3.11], M+ and
K+ are Gorenstein injective. Hence, considering the dual exact sequence

0→M+ → N+ → K+ → 0,

and since the category GI(R) of Gorenstein injective modules is injectively
resolving, we deduce that N+ is Gorenstein injective. Therefore, by (5), N is
Gorenstein flat. It follows that R is left GF-closed, as desired.
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We end this section by discussing upper bounds of the Gorenstein pro-
jective dimension of Gorenstein flat modules under some conditions on the
cardinality of the base ring R.

Remark 3. It is known from Simson’s notes [30] and [31] that the upper
bound of the projective dimension of flat R-modules can depend on the car-
dinality of R. In particular, when R is countable this upper bound is one [31,
Theorem]. As for Gorenstein flat modules, the upper bound of the projective
dimension of Gorenstein flat modules might be infinite even if R is countable.
In fact, let R be the countable quasi-Frobenius ring Q[X]/(X2). By [7, Ex-
ample 1.5], the ideal (X) is a strongly Gorenstein projective module, thus a
strongly Gorenstein flat module which is not a projective module. Therefore,
taking into account the short exact sequence 0→ (X)→ R→ (X)→ 0, we
deduce that pdR((X)) =∞.

A more pertinent question is: Let R be a countable ring and M be any
Gorenstein flat module. Is GpdR(M) ≤ 1? To answer this question, it suf-
fices to consider strongly Gorenstein flat modules since any Gorenstein flat
module is a direct summand of some strongly Gorenstein flat modules. By
[11, Theorem 2.4] and Simson’s theorem above, we are reduced to proving
that GpdR(M) <∞ for any strongly Gorenstein flat module M . This holds
for instance when R is a countable ring such that the cohomological invari-
ant l-silp(R) is finite, in particular, when the Gorenstein global dimension
l-G-gldim(R) is finite by [11, Theorem 3.3]. A general answer to the above
question depends heavily on answering the following open question which
is, in a sense, a copure version of the above result on upper bounds of the
projective dimension of flat modules: Let R be a countable ring and M be
a strongly copure flat module. Is the copure projective dimension of M less
than or equal to one?

Finally, it is worth pointing out that the generalized Gorenstein flat
dimension can be arbitrarily large for modules over a countable ring R.
Actually, for any positive integer n, R = Z[X1, . . . , Xn] is a countable ring of
weak global dimension n+1. Then the generalized Gorenstein flat dimension
coincides with the flat dimension, and thus the former invariant can take
any value between 0 and n+ 1.

3. Generalized Gorenstein weak global dimension. In this section,
we give some applications of results of Section 2 and we study properties of
the global dimension related to the generalized Gorenstein flat dimension.
This new global dimension behaves better than the Gorenstein weak global
dimension, G-wgldim(R), of R, and manifests itself to be the best candidate
for the counterpart of the classical weak global dimension in Gorenstein
homological algebra.
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We define the left finitistic generalized Gorenstein flat dimension of R
to be the invariant

l-FGGFD(R) := sup{GGfdR(M) : M is a left R-module of finite
generalized Gorenstein flat dimension}.

It is easily seen that, for an arbitrary ring R, FFD(R)≤FGFD(R), where
FFD(R) denotes the (left) finitistic flat dimension of R, and FGFD(R) de-
notes the (left) finitistic Gorenstein flat dimension of R. Holm proved that
FGFD(R) = FFD(R) for a right coherent ring R [25, Theorem 3.24]. On
the other hand, in the case of the (left) finitistic Gorenstein projective di-
mension, FGPD(R), and the (left) finitistic Gorenstein injective dimension,
FGID(R), it is known that FGPD(R) = FPD(R) and FGID(R) = FID(R)
for any ring R [25, Theorems 2.28 and 2.29]. Next, we provide the analog
of these two theorems for the generalized Gorenstein flat dimension, prov-
ing that FGGFD(R) = FFD(R) for an arbitrary ring R, and extending the
above theorem [25, Theorem 3.24] to left GF-closed rings.

Theorem 3.1. Let R be a ring. Then FGGFD(R) = FFD(R) ≤
FGFD(R). Moreover, if R is left GF-closed, then FGGFD(R) = FFD(R)
= FGFD(R).

Proof. One may easily prove, by Corollary 2.6(1) and Theorem 2.5(1),
that FFD(R) ≤ FGGFD(R) ≤ FGFD(R). Let M be an R-module such
that n := GGfdR(M) < ∞. Then there exists a generalized complete flat
resolution of R-modules

· · · → E1 → E0 → E−1 → · · ·
such that M = Im(E0 → E−1). By Theorem 2.8(2),

GGfdR(M) = n ≤ sup{fdR(Ei) : i ∈ Z} ≤ FFD(R),

so that FGGFD(R) ≤ FFD(R), and equality follows. The last assertion
easily follows since, via Theorem 2.13, the Gorenstein flat dimension and the
generalized Gorenstein flat dimension coincide when R is left GF-closed.

Let us define the left generalized Gorenstein weak global dimension of R
to be the invariant

l-GG-wgldim(R) := sup{GGfdR(M) : M is a left R-module}.

Our next theorem characterizes the generalized Gorenstein weak global
dimension of R in terms of the cohomological invariants r-sfli(R) :=
sup{fdR(I) : I is an injective right R-module} and l-sfli(R) := sup{fdR(I) :
I is an injective left R-module} for an arbitrary ring R. It turns out that the
generalized Gorenstein weak global dimension seems to be the best coun-
terpart of the classical weak global dimension in Gorenstein homological
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algebra. Actually, the following theorem represents the analog in Goren-
stein homological theory of [27, Theorem 15] which states that the left weak
global dimension coincides with the right weak global dimension. To prove
this theorem, we need the following two lemmas. The first one generalizes
[18, Lemma 5.1] which asserts that if GfdR(N) < ∞ for any R-module N ,
then r-sfli(R) <∞.

Lemma 3.2 ([10, Lemma 2]). Let R be a ring. Then

r-sfli(R) ≤ l-G-wgldim(R), l-sfli(R) ≤ r-G-wgldim(R).

Proof. Assume that l-G-wgldim(R) ≤ n for some positive integer n.
Then GfdR(M) ≤ n for each left R-module M . Hence TorRn+1(I,M) = 0 for
each injective right module I and each left module M , yielding fdR(I) ≤ n
for injective right module I. This means that r-sfli(R) ≤ n. It follows that
r-sfli(R) ≤ l-G-wgldim(R), as desired.

The next lemma proves that the newly introduced generalized Gorenstein
flat dimension and the flat dimension coincide for injective modules. This
property is reminiscent of a similar behavior of the Gorenstein projective
dimension (resp., Gorenstein injective dimension) when applied to injective
modules (resp., projective modules).

Lemma 3.3. Let R be a ring. Then

GGfdR(I) = fdR(I)

for each injective R-module I.

Proof. Let I be an injective module. If GGfdR(I) =∞, then, by Corol-
lary 2.6(1), fdR(I) =∞= GGfdR(I). Now, assume that GGfdR(I) = n <∞.
Then there exists a generalized complete flat resolution E = · · · → E1

→ E0 → E−1 → · · · such that I := Im(E0 → E−1). Hence, in parti-
cular, 0 → I → E−1 → M−1 → 0 is an exact sequence, where M−1 :=
Im(E−1 → E−2). Therefore, the latter exact sequence splits, implying that
fdR(I) ≤ fdR(E−1) < ∞. It follows, by Corollary 2.6(3), that GGfdR(I) =
fdR(I), as desired.

Theorem 3.4. Let R be a ring. Then the following coincide:

(1) l-GG-wgldim(R).
(2) r-GG-wgldim(R).
(3) max{l-sfli(R), r-sfli(R)}.
(4) max{l-G-wgldim(R), r-G-wgldim(R)}.
Proof. Let n ≥ 0 be an integer. Assume that l-GG-wgldim(R) ≤ n. Then

GGfdR(M) ≤ n for each left R-module M . Thus, cfdR(M) ≤ n, that is,
TorRr+1(I,M) = 0 for each R-module M , each injective right R-module I and
each integer r ≥ n. Hence fdR(I) ≤ n for each injective right R-module I,
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so that r-sfli(R) ≤ n. Further, by Lemma 3.3, fdR(Q) = GGfdR(Q) ≤ n
for each injective left R-module Q. Therefore l-sfli(R) ≤ n. It follows
that max{r-sfli(R), l-sfli(R)} ≤ n. Consequently, max{r-sfli(R), l-sfli(R)} ≤
l-GG-wgldim(R).

Conversely, assume that max{r-sfli(R), l-sfli(R)} ≤ n. Let M be an
R-module. Let · · · → F1 → F0 →M → 0 and 0→M → I0 → I1 → · · · be,
respectively, a flat resolution and injective resolution of M . Pasting these
two resolutions yields the exact sequence

F = · · · → F1 → F0 → I0 → I1 → · · ·
with Im(F0 → I0) = M . Note that, as l-sfli(R) ≤ n, fdR(Ij) ≤ n for
each integer j ≥ 0. Let I be an injective right R-module. Then fdR(I) ≤
r-sfli(R) ≤ n, so that TorRr+1(I,N) = 0 for each left R-module N and each
integer r ≥ n. This means that cfdR(N) ≤ n for each left R-module N .
It follows that F is a complete n-flat resolution, and thus M is Gorenstein
n-flat. Hence GGfdR(M)≤ n. Therefore l-GG-wgldim(R)≤ n. It follows that
l-GG-wgldim(R) ≤ max{r-sfli(R), l-sfli(R)}. Consequently, l-GG-wgldim(R)
= max{l-sfli(R), r-sfli(R)}. A similar argument establishes the second equal-
ity r-GG-wgldim(R) = max{r-sfli(R), l-sfli(R)}, and therefore

l-GG-wgldim(R) = r-GG-wgldim(R) = max{r-sfli(R), l-sfli(R)}.
Moreover, let M be a generalized Gorenstein flat module issued from a
generalized complete flat resolution E = · · · → E1 → E0 → E−1 → · · ·
of degree r := sup{fdR(Ei) : i ∈ Z}, and let Mi := Im(Ei → Ei−1) for each
integer i and with M = M0. Then, by Theorem 2.5(1),

GGfdR(M) ≤ GfdR(M) ≤ r := sup{fdR(Ei) : i ∈ Z}.
Also, by Theorem 2.8(2),

sup{fdR(Ei) : i ∈ Z} = sup{GGfdR(Mi) : i ∈ Z} ≤ l-GG-wgldim(R).

It follows that GfdR(M) ≤ l-GG-wgldim(R) for each left R-module M ,
so that l-G-wgldim(R) ≤ l-GG-wgldim(R). Similarly, r-G-wgldim(R) ≤
r-GG-wgldim(R). As, by the first step, l-GG-wgldim(R) = r-GG-wgldim(R)
= max{r-sfli(R), l-sfli(R)}, it follows from Lemma 3.2 that

max{l-sfli(R), r-sfli(R)} ≤ max{l-G-wgldim(R), r-G-wgldim(R)}
≤ l-GG-wgldim(R) = r-GG-wgldim(R)

= max{r-sfli(R), l-sfli(R)}.
Consequently,

max{l-sfli(R), r-sfli(R)} = max{l-G-wgldim(R), r-G-wgldim(R)}
= l-GG-wgldim(R) = r-GG-wgldim(R),

completing the proof.
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Definition 4. Let R be a ring. We define the generalized Gorenstein
weak global dimension of R, denoted by GG-wgldim(R), to be the common
value r-GG-wgldim(R) = l-GG-wgldim(R).

We deduce the following result which compares the left and right Goren-
stein weak global dimensions.

Corollary 3.5. Let R be a ring. If R is left GF-closed (resp., right
GF-closed), then

r-G-wgldim(R) ≤ l-G-wgldim(R) = GG-wgldim(R)

(resp., l-G-wgldim(R) ≤ r-G-wgldim(R) = GG-wgldim(R)).

Consequently, if R left and right GF-closed, then

r-G-wgldim(R) = l-G-wgldim(R) = GG-wgldim(R).

Proof. Assume that R is a left GF-closed ring. Then, by Theorem 2.13,
GGfdR(M) = GfdR(M) for each left R-module M , and thus, by Theo-
rem 3.3, l-G-wgldim(R) = GG-wgldim(R) ≥ qr-G-wgldim(R). The rest of
the proof is now clear.

In [11], we prove that the Gorenstein global dimension of an arbitrary
ring R is connected to the cohomological invariants l-silp(R) = max{idR(P ) :
P is a projective left R-module} and l-spli(R) = max{pdR(I) : I is an
injective right R-module} via the formula

l-G-gldim(R) = max{l-silp(R), l-spli(R)} [11, Theorem 3.3].

Our next result compares the generalized Gorenstein weak global dimension
with the Gorenstein global dimension.

Corollary 3.6. Let R be a ring. Then

GG-wgldim(R) ≤ max{l-G-gldim(R), r-G-gldim(R)}.

Proof. Note that, by [11, Theorem 3.3],

l-sfli(R) ≤ l-spli(R) ≤ l-G-gldim(R),

r-sfli(R) ≤ r-spli(R) ≤ r-G-gldim(R).

Then, by Theorem 3.3,

GG-wgldim(R) = max{l-sfli(R), r-sfli(R)}
≤ max{l-G-gldim(R), r-G-gldim(R)}.

Recall that if R is a left Noetherian (resp., right Noetherian) ring, then
l-gldim(R) = wgldim (R) (resp., r-gldim(R) = wgldim(R)); and thus if R
is left and right Noetherian, then l-gldim(R) = r-gldim(R) = wgldim(R)
[27, Theorem 9.22]. Our final result provides the analog of this theorem in
Gorenstein homological algebra.
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Theorem 3.7. Let R be a ring. If R is left Noetherian (resp., right
Noetherian), then

l-G-gldim(R) = GG-wgldim(R)

(resp., r-G-gldim(R) = GG-wgldim(R)).
Consequently, if R is left and right Noetherian, then

l-G-gldim(R) = r-G-gldim(R) = GG-wgldim(R) = max{idR(RR), id(RR)}.
Proof. Let R be a left Noetherian ring. By [16, Corollary 3.9] and [26,

Theorem 2.1],

r-sfli(R) = idR(RR) = GidR(RR) ≤ l-G-gldim(R).

Also,

l-sfli(R) ≤ l-spli(R) = sup{GpdR(I) : I is an injective left R-module}
[26, Theorem 2.2]

≤ l-G-gldim(R).

Hence, by Theorem 3.3, GG-gldim(R) ≤ l-G-gldim(R).
Conversely, assume that GG-gldim(R) = n <∞. Then, by Theorem 3.3,

l-sfli(R) ≤ n and r-sfli(R) ≤ n. Notice that, as R is left Noetherian, by
[21, Proposition 9.1.2] and [16, Corollary 3.9],

l-silp(R) = idR(RR) = r-sfli(R) ≤ n.
Hence, as l-sfli(R) ≤ n, by [17, Proposition 3.3 and Lemma 3.5],

l-spli(R) ≤ l-FPD(R) ≤ l-silp(R) ≤ n.
It follows, by [11, Theorem 3.3], that l-G-gldim(R) ≤ n. Hence l-G-gldim(R)
≤ GG-gldim(R), establishing the desired equality. Since the remaining part
of the theorem easily follows from the first one, the proof is complete.
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