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GALOIS COVERINGS AND THE CLEBSCH�GORDANPROBLEM FOR QUIVER REPRESENTATIONSBYMARTIN HERSCHEND (Uppsala)Abstra
t. We study the Clebs
h�Gordan problem for quiver representations, i.e.the problem of de
omposing the point-wise tensor produ
t of any two representations ofa quiver into its inde
omposable dire
t summands. For this purpose we develop resultsdes
ribing the behaviour of the point-wise tensor produ
t under Galois 
overings. Theseare applied to solve the Clebs
h�Gordan problem for the double loop quivers with rela-tions αβ = βα = αn = βn = 0. These quivers were originally studied by I. M. Gelfandand V. A. Ponomarev in their investigation of representations of the Lorentz group. Wealso solve the Clebs
h�Gordan problem for all quivers of type Ãn.1. Introdu
tion. Given any Krull�S
hmidt 
ategory equipped with atensor produ
t, one 
an pose the Clebs
h�Gordan problem, i.e. the prob-lem of de
omposing the tensor produ
t of any two obje
ts into a dire
t sumof inde
omposables. This problem originates from representation theory ofgroups. Here we 
onsider it for quiver representations where the tensor prod-u
t is de�ned point-wise and arrow-wise.In this form it arises naturally in the investigation of latti
es over 
urvesingularities [3℄. For the loop quiver Ã0 it has been studied by Huppert [11℄and independently by Martsinkovsky and Vlassov [12℄. Previous results bythe author deal with the Krone
ker quiver [8℄ and extended Dynkin quiversof type Ãn (see [10℄).One of the most fundamental problems in representation theory is the
lassi�
ation problem for the inde
omposable obje
ts of a Krull�S
hmidt
ategory. By solving it we mean �nding a list of inde
omposable obje
tssu
h that ea
h isomorphism 
lass of inde
omposables is represented exa
tlyon
e. Assuming that the 
lassi�
ation problem is solved one 
an present asolution to the Clebs
h�Gordan problem in the following way: for any pair ofelements from the 
lassifying list provide a formula for their de
ompositioninto a dire
t sum of inde
omposables from the 
lassifying list.
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194 M. HERSCHENDThe 
on
ept of 
overings 
omes from topology and was introdu
ed inrepresentation theory by P. Gabriel [5℄, [1℄. In some 
ases it 
an be used asa tool to solve the 
lassi�
ation problem (
f. e.g. [4℄).In the present arti
le we investigate the relationship between Galois 
ov-erings and the tensor produ
t of quiver representations. Our main results(Theorem 2 and Corollary 2) allow the redu
tion of parts of the Clebs
h�Gordan problem for the base quiver to the Clebs
h�Gordan problem for the
overing quiver, provided that a 
lassi�
ation of inde
omposables is given interms of the 
overing.We apply these results to solve the Clebs
h�Gordan problem for thedouble loop quivers with relations αβ = βα = αn = βn = 0 and quivers oftype Ãn.2. Preliminaries. We re
all a few of the basi
 notions asso
iated withlinear 
ategories and quivers, some of whi
h 
an be found in [6℄. Let k bea �eld. A 
ategory C is 
alled linear if all its morphism sets are endowedwith a k-linear stru
ture and all its 
omposition maps are k-bilinear. Forlinear 
ategories A and B a fun
tor F : A → B is 
alled linear if the maps
A(x, y)→ B(F (x), F (y)), α 7→ F (α), are k-linear.An ideal I of a linear 
ategory C is a family of subspa
es I(x, y) ⊂
C(x, y) su
h that βI(x, y)α ⊂ I(w, z) for all β ∈ C(y, z) and α ∈ C(w, x).For an ideal I of a 
ategory C we de�ne the quotient 
ategory C/I by
Ob(C/I) = Ob C and (C/I)(x, y) = C(x, y)/I(x, y). The 
omposition ofmorphisms in C/I is the residue 
lass of the 
omposition of 
hosen represen-tatives in C.A quiverQ is a quadruple (Q0, Q1, t, h), whereQ0 is the set of verti
es and
Q1 the set of arrows. The maps t, h : Q1 → Q0 map an arrow α to its tail tαand head hα respe
tively. We write x α

→ y to state that tα = x and hα = y.A path from x ∈ Q0 to y ∈ Q0 of length d ≥ 1 is a sequen
e of arrows αd . . . α1su
h that tα1 = x, hαi = tαi+1 for all i = 1, . . . , d−1 and hαd = y. For ea
hvertex x ∈ Q0 there is moreover a path ex of length zero from x to x. Withea
h quiver Q we asso
iate its path 
ategory Q̂ whose set of obje
ts is Q0 andwhose morphism sets Q̂(x, y) 
onsist of all paths from x to y. Compositionof paths is given by 
on
atenation. We also 
onsider the linearized path
ategory kQ, whi
h has the same obje
ts as Q̂ and whose morphism sets
kQ(x, y) are the ve
tor spa
es having Q̂(x, y) as basis. The 
ompositionmaps in this 
ategory are the bilinear extensions of the 
omposition mapsin Q̂.A subquiver of a quiver Q is a quiver Q′ = (Q′

0, Q
′
1, t

′, h′) su
h that
Q′

0 ⊂ Q0, Q′
1 ⊂ Q1 and t′(α) = t(α), h′(α) = h(α) for all α ∈ Q′

1. Let Q′and Q′′ be subquivers of Q. Their union Q′ ∪ Q′′ and interse
tion Q′ ∩ Q′′
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tively are the subquivers of Q determined by
(Q′ ∪Q′′)i = Q′

i ∪Q
′′
i for i ∈ {0, 1},

(Q′ ∩Q′′)i = Q′
i ∩Q

′′
i for i ∈ {0, 1}.We say that Q′ and Q′′ are disjoint if (Q′ ∩ Q′′)0 is empty. In that 
ase wewrite Q′ ∪̇Q′′ for the union of Q′ and Q′′.Let Q be a quiver. An ideal I of kQ is 
alled semimonomial if it isgenerated by elements of the form α or α− β, where α, β ∈ Q̂(x, y).Let Γ be a small linear 
ategory. A Γ -module is a linear fun
tor

m : Γ → Mod kwhere Mod k denotes the 
ategory of all k-linear spa
es. A morphism froma Γ -module m to a Γ -module n is de�ned to be a natural transformation
φ : m→ n.We denote by ModΓ the 
ategory of all Γ -modules and by modΓ the fullsub
ategory formed by all �nite-dimensional modules, i.e. modules m su
hthat ⊕

x∈Γ m(x) is �nite-dimensional.If Γ = kQ for some quiver Q, then a Γ -module m is uniquely determinedby the 
hoi
e of ve
tor spa
es m(x) for all x ∈ Q0 and linear maps m(α)for all α ∈ Q1. The 
olle
tion of ve
tor spa
es m(x) and linear maps m(α)is 
alled a representation of Q. If I is an ideal of kQ, then the 
ategory
mod(kQ/I) is identi�ed with the full sub
ategory of mod kQ formed by allmodules m satisfying m(α) = 0 for ea
h α ∈ I.For any two modules m,n ∈ ModΓ we de�ne their dire
t sum m⊕ n by

(m⊕ n)(x) = m(x)⊕ n(x) for ea
h x ∈ ObΓ,

(m⊕ n)(α) = m(α)⊕ n(α) for ea
h α ∈ Γ (x, y).Amodulem ∈ModΓ is 
alled inde
omposable ifm ∼
→m′⊕m′′ impliesm′ = 0or m′′ = 0 but not both. The full sub
ategories of ModΓ and modΓ formedby all inde
omposable modules are denoted by IndΓ and indΓ respe
tively.For any linear fun
tor F : Γ → Λ of small linear 
ategories, we de�nethe asso
iated pull-up fun
tor

F ∗ : ModΛ→ ModΓby F ∗m = m ◦ F for ea
h Λ-module m and (F ∗(φ))x = φF (x) for ea
hmorphism φ of Λ-modules.For Γ = kQ/I, where Q is a quiver and I a semimonomial ideal, wede�ne the tensor produ
t m⊗ n of Γ -modules by
(m⊗ n)(x) = m(x)⊗ n(x) for ea
h x ∈ ObΓ,

(m⊗ n)(α) = m(α)⊗ n(α) for ea
h α ∈ Q1.
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e the tensor produ
t of linear maps respe
ts 
ompositions we see that
(m ⊗ n)(α) = m(α) ⊗ n(α) for every path α in Q. Moreover, the tensorprodu
t respe
ts the zero morphism in the sense that (m ⊗ n)(0) = 0 =
m(0)⊗ n(0). It follows that if α, α′ are paths in Q or zero morphisms su
hthat m(α) = m(α′) and n(α) = n(α′), then (m ⊗ n)(α) = (m ⊗ n)(α′).Sin
e the ideal I is semimonomial we dedu
e that m ⊗ n is a well-de�ned
Γ -module. The 
anoni
al isomorphism m(x) ⊗ n(x)

∼
→n(x) ⊗m(x) de�nesan isomorphism of Γ -modules m⊗ n ∼

→n⊗m.The Clebs
h�Gordan problem for modΓ is the problem of de
omposing
m ⊗ n into a dire
t sum of inde
omposable modules, for all m,n ∈ modΓ .Sin
e the tensor produ
t 
ommutes with dire
t sums, we may assume withoutloss of generality that m,n ∈ indΓ .We re
all from [9℄ the notion of 
hara
teristi
 representations. Let Q′ bea subquiver of a quiver Q. The 
hara
teristi
 representation asso
iated with
Q′ is the kQ-module χQ′ de�ned by

χQ′(x) =

{
k if x ∈ Q′

0,
0 if x 6∈ Q′

0,
χQ′(α) =

{
1k if α ∈ Q′

1,
0 if α 6∈ Q′

1.The 
anoni
al ve
tor spa
e isomorphism k⊗ k
∼
→k gives rise to the isomor-phism of representations(1) χQ′ ⊗ χQ′′

∼
→χQ′∩Q′′ .3. Galois 
overings3.1. Generalities. Let us brie�y re
all some basi
 fa
ts about the 
on
eptof Galois 
overings, as presented in [5℄ and [1℄. A linear fun
tor F : Γ → Λbetween linear 
ategories is 
alled a 
overing fun
tor if the indu
ed linearmaps

⊕

y′∈F−1(b)

Γ (x, y′)→ Λ(a, b) and ⊕

x′∈F−1(a)

Γ (x′, y)→ Λ(a, b)

are bije
tive for all a, b ∈ ObΛ and x ∈ F−1(a), y ∈ F−1(b).Let G be a group and Γ a small linear 
ategory. A G-a
tion on Γ isa group morphism G → AutΓ , g 7→ Fg, su
h that all Fg are linear. Itde�nes a G-a
tion on ObΓ by gx = Fg(x) for all x ∈ ObΓ . It is 
alledfree if the stabilizer Gx is trivial for all x ∈ ObΓ , and lo
ally boundedif for all x, y ∈ ObΓ the identities Γ (gx, y) = Γ (x, gy) = 0 hold for allbut �nitely many g ∈ G. For any m ∈ modΓ and g ∈ G we denoteby gm the translated module m ◦ Fg−1 . To simplify notation we identify
Fg with g. If Λ is a linear sub
ategory of Γ , then gΛ is the sub
ategoryof Γ de�ned by Ob(gΛ) = g(ObΛ) and (gΛ)(x, y) = g(Λ(x, y)) for all
g ∈ G.



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 197Following [6, p. 9℄, a spe
troid is a small linear 
ategory Γ with thefollowing properties: all endomorphism algebras are lo
al, di�erent obje
tsare non-isomorphi
 and all morphism spa
es are �nite-dimensional.Let G be a group a
ting on a spe
troid Γ . We assume that this a
tionis free and lo
ally bounded. Then the quotient 
ategory Γ/G is de�ned asfollows. The obje
ts of Γ/G are the G-orbits of obje
ts of Γ . A morphism
α ∈ (Γ/G)(a, b) is a double sequen
e α = (αyx) ∈

∏
x∈a,y∈b Γ (x, y) su
h that

g(αyx) = αgy,gx for all g ∈ G, x ∈ a and y ∈ b. If α ∈ (Γ/G)(a, b) and β ∈
(Γ/G)(b, c), then the 
omposition βα is de�ned by (βα)zx =

∑
y∈b βzyαyx.All but �nitely many terms in the sum are zero sin
e the G-a
tion is lo
allybounded. The linear proje
tion fun
tor

F : Γ → Γ/Gsends an obje
t x to its orbit and a morphism α ∈ Γ (x, y) to the doublesequen
e F (α) de�ned by
F (α)hy,gx =

{
gα if g = h,
0 if g 6= h.It is shown in [5℄ that F is a 
overing fun
tor su
h that Fg = F for all g ∈ G.Moreover, it has the universal property that if Λ is a spe
troid and a linearfun
tor E : Γ → Λ satis�es Eg = E for all g ∈ G, then there is a uniquelinear fun
tor H : Γ/G→ Λ su
h that the diagram

Γ

F
��

E

!!C
CC

CC
CC

CC

Γ/G
H

// Λ
ommutes. If in addition E is a 
overing fun
tor, surje
tive on the obje
tsof Λ and su
h that G a
ts transitively on E−1(x) for all x ∈ ObΛ, then His an isomorphism. In this 
ase E is 
alled a Galois 
overing.If a group G a
ts on a small linear 
ategory Γ we say that an ideal I of
Γ is G-invariant if gI(x, y) ⊂ I(gx, gy) for all g ∈ G and all x, y ∈ ObΓ .In this 
ase we get an indu
ed G-a
tion on Γ/I de�ned by g(α+ I(x, y)) =
gα + I(gx, gy). We pro
eed by investigating the 
ase Γ = kQ/I in moredetail. Our goal is to �nd a 
anoni
al Galois 
overing Γ → Λ where Λ is thelinear path 
ategory of a quiver modulo some ideal.We say that a group G a
ts on a quiver Q if it a
ts on Q0 and on
Q1 in su
h a way that t(gα) = gt(α) and h(gα) = gh(α) for all g ∈ Gand α ∈ Q1. If Q′ is a subquiver of Q, then gQ′ denotes the subquiverdetermined by (gQ)i = g(Qi) for i ∈ {0, 1}. The orbit quiver Q/G is de�nedby (Q/G)0 = Q0/G, (Q/G)1 = Q1/G, t(Gα) = G(tα) and h(Gα) = G(hα).



198 M. HERSCHENDLet P be the linear fun
tor
P : kQ→ k(Q/G)whi
h sends verti
es and arrows to their respe
tive orbits. For any ideal Iof kQ we de�ne the ideal I/G of k(Q/G) by

(I/G)(X,Y ) =
∑

(x,y)∈X×Y

P (I(x, y)).

Let P be the fun
tor
P : kQ/I → k(Q/G)/(I/G)indu
ed by P . If I is semimonomial then so is I/G.If a group G a
ts on a quiver Q, then it indu
es a G-a
tion on kQby g(βα) = (gβ)(gα) for all paths α, β. We observe that Pg = P sin
e

(Pg)(x) = Gx = P (x) for ea
h vertex x ∈ Q0, and (Pg)(α) = Gα = P (α)for ea
h arrow α ∈ Q1. If I is a G-invariant ideal of kQ, then Pg = P . Wepro
eed to show that, under suitable assumptions, P is a 
overing fun
tor.Lemma 1. Let Q be a quiver and G a group a
ting on Q. For all x, y ∈
Q0 and ξ ∈ (Q̂/G)(Gx,Gy), there are g ∈ G and α ∈ Q̂(x, gy) su
h that
P (α) = ξ.Proof. The proof pro
eeds by indu
tion on d, the length of ξ. If d = 0then ξ = eGx and Gx = Gy. Choose g ∈ G su
h that gy = x and α = ex ∈
Q̂(x, x) = Q̂(x, gy). Assume that d > 0. Then ξ = Gβξ′ for some arrow
z

β
→ g1y in Q and some path ξ′ ∈ (Q̂/G)(Gx,Gz). By indu
tion hypothesisthere are g2 ∈ G and α′ ∈ Q̂(x, g2z) su
h that P (α′) = ξ′. Choose g = g2g1and α = (g2β)α′. Then P (α) = GβP (α′) = ξ.Lemma 2. Let Q be a quiver and G a group a
ting freely on Q. Let

x, y ∈ Q0 and g ∈ G. Then P (α) = P (β) implies α = β for all α ∈ Q̂(x, y),
β ∈ Q̂(x, gy).Proof. Sin
e the fun
tor P sends arrows to arrows, it sends paths oflength d to paths of length d for all d ∈ N. We show that if P (α) = P (β)then α = β by indu
tion on d, the length of α, whi
h 
oin
ides with the lengthof β. If d = 0 then α = ex = β. Assume that d > 0. Then α = α′α1 for somearrow α1 from x to z and some path α′ ∈ Q̂(z, y). Similarly, β = β′β1 forsome arrow β1 from x to z′ and some path β′ ∈ Q̂(z′, gy). Sin
e P (α) = P (β)we have P (α1) = P (β1) and P (α′) = P (β′). Hen
e there is h ∈ G su
hthat hα1 = β1 and thus hx = x. Sin
e the G-a
tion is free, h = 1 and
α1 = β1. It follows that z = z′, and by indu
tion that α′ = β′. Hen
e
α = α′α1 = β′β1 = β.



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 199Theorem 1. Let Q be a quiver and G a group a
ting freely on Q. Let Ibe a G-invariant ideal of kQ. Then
P : kQ/I → k(Q/G)/(I/G)is a 
overing fun
tor.Proof. Let X,Y ∈ (Q/G)0 and x ∈ X, y ∈ Y . Then P−1(X) = Gx and

P−1(Y ) = Gy. Sin
e the a
tion of G is free we obtain
⊕

y′∈P−1(Y )

kQ(x, y′) =
⊕

g∈G

kQ(x, gy),
⊕

x′∈P−1(X)

kQ(x′, y) =
⊕

g∈G

kQ(gx, y).

Our aim is to show that the linear maps
P xY :

⊕

g∈G

(kQ/I)(x, gy)→ (k(Q/G)/(I/G))(X,Y )

and
PXy :

⊕

g∈G

(kQ/I)(gx, y)→ (k(Q/G)/(I/G))(X,Y )

indu
ed by P are bije
tive.The fun
tor P indu
es a map
⋃

g∈G

Q̂(x, gy)→ (Q̂/G)(X,Y ),

whi
h a

ording to Lemmas 1 and 2 is a bije
tion. Sin
e Q̂(x, gy) and
(Q̂/G)(X,Y ) are bases of kQ(x, gy) and k(Q/G)(X,Y ) respe
tively, thelinear map

PxY :
⊕

g∈G

kQ(x, gy)→ k(Q/G)(X,Y )

de�ned by PxY (α) = P (α) for all α ∈ kQ(x, gy) is bije
tive. Using the fa
tthat I is G-invariant we obtain
(I/G)(X,Y ) =

∑

g,h∈G

P (I(gx, hy)) =
∑

g,h∈G

Pg(I(x, g−1hy))

=
∑

g,h∈G

P (I(x, g−1hy)) =
∑

g∈G

P (I(x, gy)).

Hen
e PxY indu
es an isomorphism
P̃xY :

⊕

g∈G

I(x, gy)→ (I/G)(X,Y ).

Consider the following 
ommutative diagram of linear maps; note thatthe 
olumns are short exa
t sequen
es:
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⊕

g∈G(kQ/I)(x, gy)
PxY // (k(Q/G)/(I/G))(X,Y )

⊕
g∈G kQ(x, gy)

OO

PxY // k(Q/G)(X,Y )

OO

⊕
g∈G I(x, gy)

OO

P̃xY // (I/G)(X,Y )

OO

Sin
e both PxY and P̃xY are bije
tive so is P xY .De�ne the linear map
φ :

⊕

g∈G

(kQ/I)(gx, y)→
⊕

g∈G

(kQ/I)(x, gy)

by φ(α) = g−1α for all α ∈ (kQ/I)(gx, y). It is an isomorphism. The 
om-position
P xY φ :

⊕

g∈G

(kQ/I)(gx, y)→ (k(Q/G)/(I/G))(a, b)

sends α to Pg−1α = Pα for all α ∈ (kQ/I)(gx, y). Therefore it 
oin
ideswith PXy, whi
h is therefore bije
tive.Corollary 1. If in addition to the assumptions of Theorem 1, kQ/I isa spe
troid and the G-a
tion on kQ/I is lo
ally bounded , then P is a Galois
overing.Proof. We have already seen that Pg = P for all g ∈ G. Observe thatea
h a ∈ Ob(k(Q/G)/(I/G)) is of the form a = Gx. Therefore P−1(a) =
Gx 6= ∅. So P is surje
tive on the obje
ts. Sin
e G a
ts transitively on Gxwe 
on
lude that P is a Galois 
overing.From now on we write P instead of P to simplify the notation.Throughout the remainder of this se
tion we make the following assump-tions. Let Q be a quiver and G a group a
ting freely on Q. Let I be a
G-invariant semimonomial ideal of kQ. Set Γ = kQ/I, Λ = k(Q/G)/(I/G)and let

P : Γ → Λbe the 
overing fun
tor de�ned above. Identifying modΓ with a full sub-
ategory of mod kQ and modΛ with a full sub
ategory of mod k(Q/G), asexplained in Se
tion 2, for all m ∈ modΓ and n ∈ modΛ we write
m(α) = m(α+ I(x, y)), n(Gα) = n(Gα+ (I/G)(Gx,Gy))whenever x α

→ y is an arrow in Q.



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 201Denote by
P∗ : modΓ → modΛthe push-down fun
tor indu
ed by P , i.e. the left adjoint of the pull-upfun
tor P ∗ : modΛ→ modΓ asso
iated with P .Sin
e P is a 
overing fun
tor we have, a

ording to [1℄,(2) (P∗m)(Gx) =

⊕

x′∈P−1(Gx)

m(x′) =
⊕

g∈G

m(gx).

Furthermore, for ea
h arrow x
α
→ y in Q and ea
h h ∈ G the diagram

m(hx)

incl
��

m(hα) // m(hy)

incl
��⊕

g∈Gm(gx)
(P∗m)(Gα) //

⊕
g∈Gm(gy)
ommutes. Hen
e(3) (P∗m)(Gα) =

⊕

g∈G

m(gα) :
⊕

g∈G

m(gx)→
⊕

g∈G

m(gy).

For the pull-up fun
tor we have(4) (P ∗n)(x) = n(Gx), (P ∗n)(α) = n(Gα).So we see that
(P ∗P∗m)(x) =

⊕

g∈G

m(gx), (P ∗P∗m)(α) =
⊕

g∈G

m(gα),

that is,
P ∗P∗m =

⊕

g∈G

g−1

m =
⊕

g∈G

gm.

This latter result 
an be found as a lemma in [5℄.A Λ-module n is said to be of the �rst kind if n ∼
→P∗m for some m in

modΓ . It is said to be of the se
ond kind if it 
ontains no dire
t summandof the �rst kind. We denote by mod1 Λ and mod2 Λ the full sub
ategoriesof modΛ formed by all modules of the �rst and se
ond kind respe
tively.Further we denote by ind1 Λ and ind2 Λ the full sub
ategories of mod1 Λ and
mod2 Λ respe
tively formed by all inde
omposable modules.3.2. Example. We illustrate the 
on
ept of Galois 
overings with a 
on-
rete example, whi
h 
an be found in [4℄. Let Q be the quiver



202 M. HERSCHEND... ...
· · · (0, 1)

α01oo

β01

OO

(1, 1)
α11oo

β11

OO

· · ·
α21oo

· · · (0, 0)
α00oo

β00

OO

(1, 0)
α10oo

β10

OO

· · ·
α20oo

...β0−1

OO

...β1−1

OO

i.e. Q0 = Z2 and Q1 = {αz, βz | z ∈ Z2}. The group G = Z2 a
ts freelyon Q by translation. Let n ≥ 2 and In be the ideal of kQ generated by allmorphisms βijαi+1,j , αi,j+1βij , αi+1,j . . . αi+n,j and βi,j+n . . . βi,j+1. It is aG-invariant ideal and hen
e Theorem 1 yields the 
overing fun
tor P : Γ → Λ,where Γ = kQ/In and Λ = k(Q/G)/(In/G). Furthermore Q/G is the quiver
aα

%%
β

yywhere a = G(0, 0), α = Gα00 and β = Gβ00. The ideal In/G is generated bythe morphisms βα, αβ, αn and βn. This quiver with relations appears in [7℄,where the authors investigate representations of the Lorentz group.A line of Γ is a subquiver of Q of type A∞, A∞
∞ or Am for some m su
hthat kL forms a sub
ategory of Γ . A

ording to [4℄ the 
ategory indΓ is
lassi�ed up to isomorphism by the 
hara
teristi
 representations χL, where

L runs through all �nite lines of Γ . Hen
e every inde
omposable Λ-moduleof the �rst kind is isomorphi
 to P∗(χL) for some �nite line L.3.3. Coverings and tensor produ
t. In this se
tion we investigate therelationship between 
overings and the tensor produ
t. The following resultprovides a means of 
omputing the tensor produ
t of a Λ-module of the �rstkind and any other Λ-module.Theorem 2. For all m ∈ modΓ and n ∈ modΛ there is an isomorphism
(P∗m)⊗ n

∼
→P∗(m⊗ (P ∗n)).Proof. We 
ompute the right hand side at Gx ∈ ObΛ and Gα ∈ (Q/G)1using the identities (2), (3) and (4):

P∗(m⊗ (P ∗n))(Gx) =
⊕

g∈G

(m(gx)⊗ (P ∗n)(gx)) =
⊕

g∈G

(m(gx)⊗ n(Gx)),

P∗(m⊗ (P ∗n))(Gα) =
⊕

g∈G

(m(gα)⊗ (P ∗n)(gα)) =
⊕

g∈G

(m(gα)⊗ n(Gα)).
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((P∗m)⊗ n)(Gx) =

( ⊕

g∈G

m(gx)
)
⊗ n(Gx),

((P∗m)⊗ n)(Gα) =
( ⊕

g∈G

m(gα)
)
⊗ n(Gα).Now the identi�
ation( ⊕

g∈G

m(gx)
)
⊗ n(Gx)

∼
→

⊕

g∈G

(m(gx)⊗ n(Gx))
onstitutes the 
laimed isomorphism.Corollary 2. For all m,n ∈ mod(Γ ) there is an isomorphism
(P∗m)⊗ (P∗n)

∼
→

⊕

g∈G

P∗(m⊗
gn)).Proof. We have seen that

P ∗P∗n =
⊕

g∈G

gn.A

ording to Theorem 2 we obtain
(P∗m)⊗ (P∗n)

∼
→P∗

(
m⊗

⊕

g∈G

gn
)

∼
→

⊕

g∈G

P∗(m⊗
gn),sin
e P∗ 
ommutes with dire
t sums.If Q′ and Q′′ are subquivers of Q, then 
ombining Corollary 2 with for-mula (1) yields(5) (P∗χQ′)⊗ (P∗χQ′′)

∼
→

⊕

g∈G

P∗(χQ′∩gQ′′),upon noting that gχQ′′ = χgQ′′ .It has been shown in [5℄ that if Γ is a spe
troid, the G-a
tion on Γ islo
ally bounded and the G-a
tion on indΓ/→̃ is free, then P∗ preserves inde-
omposability. In this 
ase Corollary 2 yields the Clebs
h�Gordan formulaefor Λ-modules of the �rst kind, provided that the Clebs
h�Gordan problemis solved for modΓ .3.4. Example revisited. To illustrate the usefulness of the results fromthe previous se
tion we return to the example of Se
tion 3.2 and present asolution the Clebs
h�Gordan problem in that 
ase. Let Γ and Λ be as inSe
tion 3.2.We already have a des
ription of the inde
omposable Λ-modules of the�rst kind as P∗(χL), where L runs through all �nite lines of Γ . The followingproposition provides the Clebs
h�Gordan formula for these modules.
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Proposition 1. Let L and L′ be �nite lines of Γ and L∩gL′ =

⋃̇
i∈Ig

Lia de
omposition of L ∩ gL′ into �nite lines for all g ∈ G. Then
(P∗χL)⊗ (P∗χL′)

∼
→

⊕

g∈G

⊕

i∈Ig

P∗(χLi).

Proof. Formula (5) gives
(P∗χL)⊗ (P∗χL′)

∼
→

⊕

g∈G

P∗(χL∩gL′).Sin
e P∗ 
ommutes with dire
t sums the proposition follows from the fa
tthat
χL∩gL′ = χ⋃̇

i∈Ig
Li =

⊕

i∈Ig

χLi .Proposition 1 redu
es the Clebs
h�Gordan problem for mod1 Λ to thesimple 
ombinatorial task of determining the de
omposition L ∩ gL′ =⋃
i∈Ig

Li for all �nite lines L and L′, and g ∈ G.We pro
eed to des
ribe the modules of the se
ond kind, based on thedes
ription in [4℄, but adapted to our setting. The original 
lassi�
ationhowever is due to [7℄. See also [2℄.Let L be a G-periodi
 line in Γ , i.e. a line with non-trivial stabilizer GL,and su
h that (0, 0) ∈ L0. Then GL a
ts as a group of automorphisms on L.Sin
e GL is non-trivial we obtain GL ∼
→Z as L is of type A∞

∞. For all z ∈ L0set z = z +GL ∈ G/GL.For any inde
omposable linear automorphism φ : V → V of a �nite-dimensional k-linear spa
e V let Bφ(L) be the Λ-module de�ned as follows.Let UL be the k-linear spa
e having
{uz | z ∈ L0/GL}as basis. Set
Bφ(L)(a) = UL ⊗ V.The linear maps A = (Bφ(L))(α) and B = (Bφ(L))(β) are determined by

A(uz ⊗ v) =





u
z−(1,0)

⊗ v if z 6= (1, 0) and αz ∈ L1,
u
z−(1,0)

⊗ φ−1v if z = (1, 0) and αz ∈ L1,
0 otherwise,

B(uz ⊗ v) =





uz+(0,1) ⊗ v if z 6= (0, 0) and βz ∈ L1,
u
z+(0,1)

⊗ φv if z = (0, 0) and βz ∈ L1,
0 otherwise.Sin
e kL is a sub
ategory of Γ , Bφ(L) is well-de�ned. The Λ-modules Bφ(L)are 
alled band modules. Moreover, every inde
omposable Λ-module of these
ond kind is isomorphi
 to Bφ(L) for some φ and L. Two band modules
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Bφ(L) and Bψ(L′) are isomorphi
 pre
isely when φ and ψ are 
onjugate, and
L = gL′ for some g ∈ G (
f. [4℄ and [2℄).In order to apply Theorem 2 we must determine P ∗(Bφ(L)). For thispurpose let Cφ(L) be the Γ -module de�ned by

(Cφ(L))(z) = (χL(z))⊗k Vand
(Cφ(L))(αz) =

{
χL(αz)⊗ IV if z 6= (1, 0),
χL(αz)⊗ φ

−1 if z = (1, 0),

(Cφ(L))(βz) =

{
χL(βz)⊗ IV if z 6= (0, 0),
χL(βz)⊗ φ if z = (0, 0).It follows from this de�nition that gCφ(L) = Cφ(L) for all g ∈ GL. For ea
h

h ∈ G/GL set hCφ(L) = gCφ(L), where g ∈ G is a representative of h.Lemma 3. For all G-periodi
 lines L of Γ 
ontaining (0, 0) and all linearautomorphisms φ : V → V there is an isomorphism
P ∗(Bφ(L))

∼
→

⊕

h∈G/GL

hCφ(L)

of Γ -modules.Proof. We 
onstru
t the 
laimed isomorphism
ψ : P ∗(Bφ(L))→

⊕

h∈G/GL

hCφ(L).

Let x be a point in Q. Observe that
(P ∗(Bφ(L)))(x) = (Bφ(L))(a) = UL ⊗k V.Let z ∈ L0, g0 = x− z and h0 = g0 +GL. Then

h0Cφ(L)(x) = (χg0L(x))⊗k V = (χL(z))⊗k V = k⊗k Vsin
e z ∈ L0.We let
ι : h0Cφ(L)(x)→

⊕

h∈G/GL

hCφ(L)(x)

be the in
lusion and set
ψx(uz ⊗ v) = ι(1⊗ v).Let h ∈ G/GL be represented by some g ∈ G and su
h that hCφ(L)(x) 6= 0.Then x ∈ gL0 and there is z ∈ L0 su
h that g + z = x.Hen
e ψx(uz ⊗ V ) = hCφ(L)(x). Moreover, z is uniquely determined by

x− z +GL = h and thus ψx is a bije
tion.
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eed to show that ψ = (ψx)x∈Q0
is a Γ -module morphism, andhen
e an isomorphism. Let x µ

→ y be an arrow in Q. Moreover, let uz ∈ ULand h = g + GL ∈ G/GL be su
h that x = g + z. Then t(g−1µ) = z, and
g−1µ = αz or g−1µ = βz. Assume that g−1µ = αz. Then

(P ∗(Bφ(L))(µ))(uz ⊗ v) = A(uz ⊗ v) ∈ UL ⊗ V = P ∗(Bφ(L))(y)and
hCφ(L)(µ) =

{
χL(αz)⊗ IV if z 6= (1, 0),
χL(αz)⊗ φ

−1 if z = (1, 0).If αz 6∈ L1, then
ψy(A(uz ⊗ v)) = 0 = (hCφ(L)(µ))(ψx(uz ⊗ v)).Now assume that αz ∈ L1. If z 6= (1, 0), then

ψy(A(uz ⊗ v)) = ψy(uz−(1,0)
⊗ v) = (hCφ(L)(µ))(ψx(uz ⊗ v)).If z = (1, 0), then

ψy(A(uz ⊗ v)) = ψy(uz−(1,0)
⊗ φ−1v) = (hCφ(L)(µ))(ψx(uz ⊗ v)).The 
ase g−1µ = βz is treated analogously.For any G-periodi
 line L of Γ and h = g +GL ∈ G/GL, set hL = gL.Proposition 2. Let L and L′ be lines in Γ su
h that L is G-periodi
and 
ontains (0, 0), and L′ is �nite. Moreover , let L′ ∩ hL =

⋃̇
i∈Ih

Li be ade
omposition of L′ ∩ hL into �nite lines for all h ∈ G/GL. Then there isan isomorphism
(P∗χL′)⊗ (Bφ(L))

∼
→dimV

⊕

h∈G/GL

⊕

i∈Ih

P∗χLi .Proof. Theorem 2 yields
(P∗χL′)⊗ (Bφ(L))

∼
→P∗(χL′ ⊗ (P ∗(Bφ(L))))

∼
→P∗

( ⊕

h∈G/GL

χL′ ⊗ hCφ(L)
)

by Lemma 3. Observe that (χL′ ⊗ hCφ(L))(z) 6= 0 if and only if z ∈ S =⋃̇
i∈Ih

Li. Furthermore, dim(χL′ ⊗ hCφ(L))(z) = dimV for all z ∈ S, and allarrows in S a
t as isomorphisms in χL′ ⊗ hCφ(L). Due to the 
lassi�
ationof all inde
omposable Γ -modules the only possible de
omposition of χL′ ⊗
hCφ(L) is

χL′ ⊗ hCφ(L)
∼
→dimV

⊕

i∈Ih

χLi .Hen
e
(P∗χL′)⊗ (Bφ(L))

∼
→P∗

(
dimV

⊕

h∈G/GL

⊕

i∈Ih

χLi

)
∼
→dimV

⊕

h∈G/GL

⊕

i∈Ih

P∗χLi .The last step is valid sin
e all but �nitely many summands are zero.
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omplete the solution of the Clebs
h�Gordan problem for Λ it remainsto �nd a formula for the de
omposition of (Bφ(L))⊗ (Bψ(L′)). In this situa-tion we 
annot apply our results on 
overings. Instead we will use elementarymethods to obtain the desired result.Let L,L′ be G-periodi
 lines in Γ 
ontaining the point (0, 0). Let X bea 
ross-se
tion of G/(GL +GL′) su
h that 0 ∈ X.Let L ∩ gL′ =
⋃̇
i∈Jg

Li be a de
omposition of L ∩ gL′ into lines for all
g ∈ G. Choose Ig ⊂ Jg su
h that {Li | i ∈ Ig} forms a 
ross-se
tion for the
GL ∩GL′-a
tion on {Li | i ∈ Jg}.De�ne the linear map

T :
⊕

x∈X

⊕

i∈Ix

kLi0 → UL ⊗ UL′

by T (z) = uz ⊗ uz−x for all z ∈ Li0, i ∈ Ix and x ∈ X. Here kLi0 denotes theve
tor spa
e having Li0 as basis. To see that T is well-de�ned note that if
z ∈ Li0 then z ∈ L0 and z ∈ xL′

0. Hen
e z−x ∈ L′
0 and uz⊗uz−x ∈ UL⊗UL′ .Sin
e Bφ(L)

∼
→Bφ(gL) for all g ∈ G we 
an 
over all interesting 
ases byonly 
onsidering the 
ases L 6= gL′ for all g ∈ G, and L = L′.Lemma 4. If L 6= gL′ for all g ∈ G, then T is an isomorphism. If L = L′,then T indu
es a linear isomorphism

T̃ :
⊕

x∈X\{0}

⊕

i∈Ix

kLi0 → Uwhere U ⊂ UL ⊗ UL is spanned by
{uz ⊗ uz′ | z 6= z′}.Proof. Note that T̃ is well-de�ned in 
ase L = L′, sin
e if 0 6= x ∈ X,then z 6= z − x.Let z ∈ L0 and z′ ∈ L′

0. Write z′ = z + f − x + h for some f ∈ GL,
x ∈ X and h ∈ GL′ . Then z + f − x ∈ L′

0 and z + f ∈ xL′
0. Hen
e z + f ∈

L0 ∩ xL
′
0 =

⋃̇
i∈Jx

Li. Let y ∈ GL ∩GL′ be su
h that z0 = z+ f + y ∈ Li0 forsome i ∈ Ix. Then
uz ⊗ uz′ = uz+y ⊗ uz′+y = uz+f+y ⊗ uz+f−x+y = uz0 ⊗ uz0−x = T (z0).Hen
e T is an epimorphism. If L = L′ and z 6= z′ then x 6= 0 and thus T̃ isalso an epimorphism.Assume that uz ⊗ uz−x = uz′ ⊗ uz′−x′ for some z ∈ Li0, i ∈ Ix, z′ ∈ Li′0 ,

i′ ∈ Ix′ . Then
z ≡ z mod GL, z − x ≡ z′ − x′ mod GL′ .In parti
ular x ≡ x′ mod GL +GL′ and thus x = x′. We obtain

z ≡ z′ mod GL ∩GL′ .
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e there is some g ∈ GL ∩GL′ su
h that z′ = z + g. In parti
ular
z′ ∈ gLi0 ∩ L

i′
0and thus Li′ = gLi. We obtain i′ = i, sin
e {Li | i ∈ Ig} forms a 
ross-se
tionfor the GL ∩GL′-a
tion on {Li | i ∈ Jg}. Hen
e

Li = gLi.If g 6= 0, then Li ⊂ L ∩ xL′ is G-periodi
 and L = Li = xL′. Thus, if
L 6∈ GL′, then g = 0 and z = z′. Hen
e T is a monomorphism and thusan isomorphism in that 
ase. If L = L′ and g 6= 0, then x ∈ GL and thus
x = 0. This is a 
ontradi
tion if uz ⊗ uz−x ∈ U . Again g = 0 and T̃ is anisomorphism.We now present the Clebs
h�Gordan formula for band modules and thus
omplete our solution to the Clebs
h�Gordan problem for Λ.Theorem 3. Let L,L′ be periodi
 lines in Q 
ontaining the point (0, 0)and φ : V → V , ψ : W → W be linear automorphisms. Let X be a 
ross-se
tion of G/(GL + GL′) su
h that 0 ∈ X. Let L ∩ gL′ =

⋃̇
i∈Jg

Li be ade
omposition of L ∩ gL′ into lines for all g ∈ G. Let Ig ⊂ Jg be su
h that
{Li | i ∈ Ig} forms a 
ross-se
tion for the GL ∩GL′-a
tion on {Li | i ∈ Jg}.If L 6= gL′ for all g ∈ G, then

Bφ(L)⊗Bψ(L′)
∼
→dimV dimW

⊕

x∈X

⊕

i∈Ix

P∗χLi .If L = L′, then
Bφ(L)⊗Bψ(L′)

∼
→

(
dimV dimW

⊕

x∈X\{0}

⊕

i∈Ix

P∗χLi

)
⊕

( ⊕

j

Bφj
(L)

)
,

where
φ⊗ ψ

∼
→

⊕

j

φjis a de
omposition of φ⊗ ψ into inde
omposable automorphisms.The 
ase Bφ(L)⊗Bψ(L′) is now redu
ed to the simple task of determiningthe set {Li | i ∈ Ig} given L and L′, and the more 
ompli
ated problem of�nding
φ⊗ ψ

∼
→

⊕

j

φjfor all linear automorphisms φ and ψ. This is equivalent to solving theClebs
h�Gordan problem for the loop quiver Ã0. In 
ase the ground �eld
k is algebrai
ally 
losed and of 
hara
teristi
 0, it has been solved by Hup-pert [11℄ and independently by Martsinkovsky and Vlassov [12℄. In other
ases the solution is still unknown.
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S : (Bφ(L)⊗Bψ(L))(a) = UL ⊗ V ⊗ UL′ ⊗W

∼
→

⊕

x∈X

⊕

i∈Ix

(kLi0 ⊗ V ⊗W )de�ned by
S(uz ⊗ v ⊗ uz′ ⊗ w) = T−1(uz ⊗ uz′)⊗ v ⊗ w.We de�ne a Λ-module stru
ture on

⊕

x∈X

⊕

i∈Ix

(kLi0 ⊗ V ⊗W )via S, and denote this Λ-module by M .Let z ∈ Li0 for some i ∈ Ix, v ∈ V and w ∈W . Then
S(uz ⊗ v ⊗ uz−x ⊗ w) = z ⊗ v ⊗ w.Let A = (Bφ(L)⊗Bψ(L))(α). If αz ∈ L1 and αz−x ∈ L′

1, then
A(uz ⊗ v ⊗ uz−x ⊗ w) = u

z−(1,0)
⊗ φmz(v)⊗ u

z−x−(1,0)
⊗ ψnz(w)for some integers mz and nz. Otherwise

A(uz ⊗ uz−x) = 0.If αz ∈ L1 and αz ∈ xL′
1, then z − (1, 0) ∈ Li0 and

S(u
z−(1,0)

⊗φmz (v)⊗u
z−(1,0)−x

⊗ψnz(w)) = (z− (1, 0))⊗φmz(v)⊗ψnz(w).Hen
e
M(α)(z ⊗ v ⊗ w)

=

{
(z − (1, 0))⊗ φmz(v)⊗ ψnz(w) if αz ∈ L1, αz ∈ xL

′
1,

0 otherwise.A similar 
al
ulation shows that
M(β)(z⊗v⊗w) =

{
(z + (0, 1))⊗ φm

′
z(v)⊗ ψn

′
z(w) if βz ∈ L1, βz ∈ xL

′
1,

0 otherwise,for some integers m′
z and n′z.As has been noted earlier, αz ∈ L1 and αz ∈ xL′

1 implies z− (1, 0) ∈ Li0.Similarly, βz ∈ L1 and βz ∈ xL′
1 implies z + (0, 1) ∈ Li0. Hen
e

M =
⊕

x∈X

⊕

i∈Ix

Mi,where Mi is the submodule of M 
orresponding to kLi0 ⊗ V ⊗W .For ea
h x ∈ X and i ∈ Ix we de�ne the Γ -module Ni by
Ni(z) = χLi(z)⊗ V ⊗W,
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Ni(αz) =

{
1⊗ φmz ⊗ ψnz if αz ∈ Li1,
0 otherwise,

Ni(βz) =

{
1⊗ φm

′
z ⊗ ψn

′
z if βz ∈ Li1,

0 otherwise.Then
Mi

∼
→P∗Ni.On the other hand, sin
e Ni(µ) is an isomorphism for ea
h µ ∈ Li1,

Ni
∼
→dimV dimW (P∗χLi).Hen
e

Bφ(L)⊗Bψ(L′)
∼
→M

∼
→dimV dimW

⊕

x∈X

⊕

i∈Ix

P∗χLi .

Now assume L = L′. Then (Bφ(L) ⊗ Bψ(L′))(a) = UL ⊗ V ⊗ UL ⊗Wand from Lemma 4 we obtain a linear isomorphism
S̃ : (Bφ(L)⊗Bψ(L′))(a)

∼
→

(( ⊕

x∈X\{0}

⊕

i∈Ix

kLi0

)
⊕D

)
⊗ V ⊗W,

where D ⊂ UL ⊗ UL is the subspa
e spanned by all ve
tors uz ⊗ uz, as inthe previous 
ase. We de�ne a Λ-module stru
ture on
(( ⊕

x∈X\{0}

⊕

i∈Ix

kLi0

)
⊕D

)
⊗ V ⊗W.

via S̃, and denote this Λ-module by M .Let A = (Bφ(L)⊗Bψ(L))(α) and B = (Bφ(L)⊗Bψ(L))(β). Let z ∈ L0.If αz ∈ L1, then
A(uz ⊗ v ⊗ uz ⊗ w) =

{
u
z−(1,0)

⊗ v ⊗ u
z−(1,0)

⊗ w if z 6= (1, 0),
u
z−(1,0)

⊗ φ−1v ⊗ u
z−(1,0)

⊗ ψ−1v if z = (1, 0).Otherwise
A(uz ⊗ v ⊗ uz ⊗ w) = 0.If βz ∈ L1, then

B(uz ⊗ v ⊗ uz ⊗ w) =

{
u
z+(0,1)

⊗ v ⊗ u
z+(0,1)

⊗ w if z 6= (1, 0),
u
z+(0,1)

⊗ φv ⊗ u
z+(0,1)

⊗ ψv if z = (1, 0).Otherwise
B(uz ⊗ v ⊗ uz ⊗ w) = 0.We obtain a submodule N of M determined by
N(a) = D ⊗ V ⊗W.
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Bφ⊗ψ(L)

∼
→Ndetermined by uz ⊗ v ⊗ w 7→ uz ⊗ uz ⊗ v ⊗ w.Let τ : V ⊗W

∼
→V ⊗W be a linear automorphism su
h that

τ(φ⊗ ψ)τ−1 =
⊕

j

φj .Then τ yields the isomorphism
θ : Bφ⊗ψ(L)

∼
→B⊕

j φj
(L) =

⊕

j

Bφj
(L)determined by

θa : (Bφ⊗ψ(L))(a)
∼
→(B⊕

j φj
(L))(a), uz ⊗ v ⊗ w 7→ uz ⊗ τ(v ⊗ w).By arguments analogous to those in the previous 
ase one shows that S̃indu
es a Λ-module stru
ture on (

⊕
x∈X\{0}

⊕
i∈Ix

kLi0) ⊗ V ⊗W whi
h isisomorphi
 to
dimV dimW

⊕

x∈X\{0}

⊕

i∈Ix

P∗χLi .

Hen
e
Bφ(L)⊗Bψ(L′)

∼
→

(
dimV dimW

⊕

x∈X\{0}

⊕

i∈Ix

P∗χLi

)
⊕

( ⊕

j

Bφj
(L)

)
.

4. Quivers of type Ãn. In this se
tion we revisit the Clebs
h�Gordanproblem for quivers of type Ãn, i.e. quivers whose underlying graph is
a0

α0

{{
{{

{{
{{

a1 α1
· · ·

αn−1
an

αn

CCCCCCCC

for some n ∈ N. We assume that k is algebrai
ally 
losed. This problemhas originally been solved in [10℄, by means of expli
it 
omputations. Herewe present a more streamlined approa
h, using the results on 
overings and
hara
teristi
 representations developed above. For the reader's 
onvenien
ewe in
lude those 
omputations from [10℄ whi
h are indispensable even in thepresent approa
h (
f. proof of Theorem 5(iii)).4.1. Inde
omposable modules. Let n ∈ N and Q be a quiver of type A∞
∞,i.e. a quiver with underlying graph

· · ·
α−1 a0

α0 a1
α1 · · · .
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Assume that the orientation of Q is periodi
 in the sense that ai αi→ ai+1implies ai+n+1

αi+n+1

−−−−→ ai+n+2 and ai αi← ai+1 implies ai+n+1
αi+n+1

←−−−− ai+n+2for all i ∈ Z. Then Z a
ts freely on Q by
kai = ai+k(n+1), kαi = αi+k(n+1)for all k ∈ Z. The quotient quiver Q/Z is of type Ãn. Moreover, every quiverof type Ãn arises in this way. Theorem 1 yields a 
overing fun
tor

P : kQ→ k(Q/Z)together with the asso
iated push-down fun
tor
P∗ : mod kQ→ mod k(Q/Z).We interpret the 
lassi�
ation of ind kQ found in [6℄ in terms of 
overings.For all integers i, j su
h that i ≤ j let Xij = χQij ∈ mod kQ, where Qij isthe subquiver of Q with underlying graph

ai
αi · · ·

αj−1 aj.Set
S(i, j) = P∗(Xij).The modules S(i, j) are modules of the �rst kind and are 
alled strings.For ea
h positive integer m and s
alar λ ∈ k \ {0} let Bλ(m) be the

k(Q/Z)-module de�ned by
Bλ(m)(ai) = km, Bλ(m)(αi) =

{
Im if i 6= n,
Jλ(m) if i = n,where Im is the identity matrix of size m and Jλ(m) is the Jordan blo
kof size m with eigenvalue λ. The modules Bλ(m) are 
alled bands and aremodules of the se
ond kind.Theorem 4 ([6, p. 121℄). The set

{S(i, j) | 0 ≤ i ≤ n, i ≤ j} ∪ {Bλ(m) | λ ∈ k \ {0}, m ∈ N \ {0}}
lassi�es ind k(Q/Z), up to isomorphism.4.2. Clebs
h�Gordan formulae. Let i∧j = min{i, j} and i∨j = max{i, j}for all integers i, j. The following result provides the Clebs
h�Gordan for-mulae for Ãn in terms of strings and bands.Theorem 5. Assume that char(k) = 0. For all integers i, i′, j, j′ su
hthat 0 ≤ i ≤ i′ ≤ n, i ≤ j and i′ ≤ j′, s
alars λ, µ ∈ k\{0} and l,m ∈ N\{0}the following formulae hold :
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(i) S(i, j)⊗ S(i′, j′)
∼
→

[(j′−i)/(n+1)]⊕

k=0

S(i, j ∧ (j′ − k(n+ 1)))

⊕

[(j−i′)/(n+1)]⊕

k=1

S(i′, j′ ∧ (j − k(n+ 1))),

(ii) S(i, j)⊗Bµ(m)
∼
→mS(i, j),(iii) Bλ(l)⊗Bµ(m)
∼
→

(l∧m)−1⊕

k=0

Bλµ(l +m− 2k − 1).Here [x] denotes the integer part of x for all x ∈ Q. The restri
tion
i ≤ i′ does not a�e
t the generality of formula (i), as the tensor produ
t is
ommutative.Proof. (i) We extend the notation by letting S(i, j) and Xij be zerowhenever i > j. Formula (5) yields

S(i, j)⊗ S(i′, j′) = (P∗Xij)⊗ (P∗Xi′j′)
∼
→

⊕

k∈Z

P∗(χQij∩kQi′j′ ) =
⊕

k∈Z

P∗(Xi∨(i′+k(n+1)),j∧(j′+k(n+1))).From the inequality i ≥ i′ we obtain
S(i, j)⊗ S(i′, j′)

∼
→

⊕

k≤0

P∗(Xi,j∧(j′+k(n+1)))⊕
⊕

k>0

P∗(Xi′+k(n+1),j∧(j′+k(n+1)))

=
⊕

k≥0

S(i, j ∧ (j′ − k(n+ 1)))⊕
⊕

k>0

S(i′, (j − k(n+ 1)) ∧ j′)

using the equality P∗(
kX) = P∗(X) for all k ∈ Z and X ∈ mod kQ. Thelimits k ≤ [(j′ − i)/(n+ 1)] and k ≤ [(j − i′)/(n+ 1)] arise from the fa
tthat S(i, j ∧ (j′ − k(n + 1))) and S(i′, (j − k(n + 1)) ∧ j′) are zero when

(n+ 1)k > j′ − i and (n+ 1)k > j − i′ respe
tively.(ii) From Theorem 2 we obtain
S(i, j)⊗Bλ(m) = (P∗Xij)⊗Bλ(m)

∼
→P∗(Xij ⊗ (P ∗Bλ(m))).Sin
e (Xij ⊗ (P ∗Bλ(m)))(ak) is of dimension m for all i ≤ k ≤ j and zerootherwise, and (Xij ⊗ (P ∗Bλ(m)))(αk) is an isomorphism for all i ≤ k < j,it follows that

Xij ⊗ (P ∗Bλ(m))
∼
→mXij.Hen
e

S(i, j)⊗Bλ(m)
∼
→P∗(mXij)

∼
→mP∗(Xij) = mS(i, j)sin
e P∗ 
ommutes with dire
t sums.



214 M. HERSCHEND(iii) Let l,m ∈ N \ {0} and λ, µ ∈ k \ {0}. Set A = Bλ(l), B = Bµ(m)and T = Jλ(l) ⊗ Jµ(m), the Krone
ker produ
t of the Jordan blo
ks. Byde�nition we have
(A⊗B)(ak) = kl ⊗ km

∼
→klm.In the standard basis (ei ⊗ ej)(i,j)∈l×m the linear map (A⊗B)(αk) is givenby the identity matrix Ilm if k 6= n whereas (A⊗B)(αn) is given by T .Any C ∈ GLlm(k) determines a new representation (A ⊗ B)C given by

(A⊗B)C(ak) = klm for all k ∈ {0, . . . , n}, (A⊗B)C(αk) = Ilm if k < n and
(A⊗B)C(αn) = CTC−1, together with an isomorphism

C? : A⊗B → (A⊗B)Cgiven by (A⊗B)(ak)→ (A⊗B)C(ak), x 7→ Cx, for all k ∈ {0, . . . , n}. Sin
e
char(k) = 0 we know from [11, p. 51℄ that there exists a C ∈ GLlm(k) su
hthat CTC−1 =

⊕(l∨m)−1
k=0 Jλµ(l + m − 2k − 1). A

ordingly, (A ⊗ B)C =⊕(l∨m)−1

k=0 Bλµ(l +m− 2k − 1). We 
on
lude that
A⊗B

∼
→

(l∨m)−1⊕

k=0

Bλµ(l +m− 2k − 1).

Note that the assumption char(k) = 0 only enters in the proof of part (iii),namely in order to ensure that the matrix T has the Jordan de
omposition⊕(l∨m)−1
k=0 Jλµ(l+m−2k−1). The 
ase char(k) = p 
an be treated similarlyas soon as the Jordan de
omposition of Jλ(l)⊗ Jµ(m) is provided. However,at present I do not know any general formula for this de
omposition.
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