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PROBLEM FOR QUIVER REPRESENTATIONS
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MARTIN HERSCHEND (Uppsala)

Abstract. We study the Clebsch—Gordan problem for quiver representations, i.e.
the problem of decomposing the point-wise tensor product of any two representations of
a quiver into its indecomposable direct summands. For this purpose we develop results
describing the behaviour of the point-wise tensor product under Galois coverings. These
are applied to solve the Clebsch—Gordan problem for the double loop quivers with rela-
tions af = Ba = a™ = " = 0. These quivers were originally studied by I. M. Gelfand
and V. A. Ponomarev in their investigation of representations of the Lorentz group. We
also solve the Clebsch—Gordan problem for all quivers of type A,,.

1. Introduction. Given any Krull-Schmidt category equipped with a
tensor product, one can pose the Clebsch—Gordan problem, i.e. the prob-
lem of decomposing the tensor product of any two objects into a direct sum
of indecomposables. This problem originates from representation theory of
groups. Here we consider it for quiver representations where the tensor prod-
uct is defined point-wise and arrow-wise.

In this form it arises naturally in the investigation of lattices over curve
singularities [3]. For the loop quiver A it has been studied by Huppert [11]
and independently by Martsinkovsky and Vlassov [12]|. Previous results by
the author deal with the Kronecker quiver [8] and extended Dynkin quivers
of type A, (see [10]).

One of the most fundamental problems in representation theory is the
classification problem for the indecomposable objects of a Krull-Schmidt
category. By solving it we mean finding a list of indecomposable objects
such that each isomorphism class of indecomposables is represented exactly
once. Assuming that the classification problem is solved one can present a
solution to the Clebsch—Gordan problem in the following way: for any pair of
elements from the classifying list provide a formula for their decomposition
into a direct sum of indecomposables from the classifying list.
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The concept of coverings comes from topology and was introduced in
representation theory by P. Gabriel [5], [1]. In some cases it can be used as
a tool to solve the classification problem (cf. e.g. [4]).

In the present article we investigate the relationship between Galois cov-
erings and the tensor product of quiver representations. Our main results
(Theorem 2 and Corollary 2) allow the reduction of parts of the Clebsch—
Gordan problem for the base quiver to the Clebsch—Gordan problem for the
covering quiver, provided that a classification of indecomposables is given in
terms of the covering.

We apply these results to solve the Clebsch—-Gordan problem for the
double loop quivers with relations a3 = fa = " = " = 0 and quivers of
type A,,.

2. Preliminaries. We recall a few of the basic notions associated with
linear categories and quivers, some of which can be found in [6]. Let k be
a field. A category C is called linear if all its morphism sets are endowed
with a k-linear structure and all its composition maps are k-bilinear. For
linear categories A and B a functor F': A — B is called linear if the maps
A(z,y) — B(F(x),F(y)), a — F(«), are k-linear.

An ideal T of a linear category C is a family of subspaces Z(x,y) C
C(x,y) such that SZ(z,y)a C Z(w,z) for all B € C(y, z) and a € C(w, x).
For an ideal Z of a category C we define the quotient category C/Z by
Ob(C/Z) = ObC and (C/I)(x,y) = C(x,y)/Z(x,y). The composition of
morphisms in C/Z is the residue class of the composition of chosen represen-
tatives in C.

A quiver Q) is a quadruple (Qo, Q1,t, h), where Q) is the set of vertices and
Q1 the set of arrows. The maps ¢, h : )1 — Qo map an arrow « to its tail ta
and head ho respectively. We write z = y to state that ta = 2 and ha = y.
A path from z € Qg toy € Qg of length d > 1 is a sequence of arrows ay . . . a1
such that ta; =z, ha; = tayqq foralli=1,...,d—1 and hag = y. For each
vertex x € Qg there is moreover a path e, of length zero from x to x. With
each quiver () we associate its path category Cj whose set of objects is Q¢ and
whose morphism sets Q(x,y) consist of all paths from z to y. Composition
of paths is given by concatenation. We also consider the linearized path
category k@, which has the same objects as ) and whose morphism sets
kQ(x,y) are the vector spaces having @\(:c,y) as basis. The composition
maps in this category are the bilinear extensions of the composition maps
in @

A subquiver of a quiver @ is a quiver Q' = (Qf,Q},t',h’) such that
Q) C Qo, Q) C Q1 and t'(a) = t(a), W (a) = h(«) for all @ € Q). Let Q'
and Q" be subquivers of Q. Their union Q' U Q" and intersection Q' N Q"
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respectively are the subquivers of () determined by
QU@ =Q,uqQ! forie{0,1},
Q@ NQ"i=Q:nQ! forie{0,1}.
We say that Q" and Q" are disjoint if (Q' N Q") is empty. In that case we
write Q' U Q" for the union of Q' and Q".
Let @@ be a quiver. An ideal Z of k@ is called semimonomial if it is

generated by elements of the form « or o — 3, where «, 5 € C/Q\(x, Y).
Let I" be a small linear category. A I'-module is a linear functor

m : " — Modk

where Mod k denotes the category of all k-linear spaces. A morphism from
a I'-module m to a I'-module n is defined to be a natural transformation

¢:m —n.

We denote by Mod I the category of all I'-modules and by mod I" the full
subcategory formed by all finite-dimensional modules, i.e. modules m such
that @, m(x) is finite-dimensional.

If I' = kQ for some quiver @), then a I'-module m is uniquely determined
by the choice of vector spaces m(z) for all € Qo and linear maps m(«)
for all & € Q1. The collection of vector spaces m(z) and linear maps m(«)
is called a representation of ). If 7 is an ideal of k@), then the category
mod(kQ®/Z) is identified with the full subcategory of mod k@ formed by all
modules m satisfying m(a) = 0 for each o € 7.

For any two modules m,n € Mod I' we define their direct sum m @& n by

(m®n)(x) =m(z) dn(z) for each x € Ob T,

(m@n)(a) =m(a)®n(a) for each a € I'(x,y).
A module m € Mod I' is called indecomposable if m = m/@m” implies m’ = 0
or m” = 0 but not both. The full subcategories of Mod I" and mod I" formed
by all indecomposable modules are denoted by Ind I" and ind I" respectively.

For any linear functor F' : I' — A of small linear categories, we define
the associated pull-up functor

F*:Mod A — Mod I

by F*m = mo F for each A-module m and (F*(¢)): = ¢p(,) for each
morphism ¢ of A-modules.
For I' = kQ/Z, where @ is a quiver and Z a semimonomial ideal, we
define the tensor product m ® n of I'-modules by
(m®@n)(zr) =m(zr) @n(zr) for each x € Ob [T,
(m®@n)(a) =m(a) @n(a) for each a € Q.
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Since the tensor product of linear maps respects compositions we see that
(m ® n)(a) = m(a) ® n(a) for every path « in Q). Moreover, the tensor
product respects the zero morphism in the sense that (m ® n)(0) = 0 =
m(0) ® n(0). It follows that if o, & are paths in @ or zero morphisms such
that m(a) = m(a’) and n(a) = n(d’), then (m @ n)(a) = (m @ n)().
Since the ideal 7 is semimonomial we deduce that m ® n is a well-defined
I'-module. The canonical isomorphism m(z) ® n(x) = n(z) ® m(x) defines
an isomorphism of I'-modules m ® n =n ® m.

The Clebsch—Gordan problem for mod I is the problem of decomposing
m ® n into a direct sum of indecomposable modules, for all m,n € mod I'.
Since the tensor product commutes with direct sums, we may assume without
loss of generality that m,n € ind I

We recall from [9] the notion of characteristic representations. Let @’ be

a subquiver of a quiver Q. The characteristic representation associated with
Q' is the kQ-module x ¢ defined by

(2) {k if z € Q, () {lk if « € QY
\xr)= () =
Xe 0 ifzgqQ, 0 ifagq

The canonical vector space isomorphism k ® k =k gives rise to the isomor-
phism of representations

(1) XQ/ ® XQ// :> XQ’ﬂQ"'

3. Galois coverings

3.1. Generalities. Let us briefly recall some basic facts about the concept
of Galois coverings, as presented in [5] and [1]. A linear functor F' : I' — A
between linear categories is called a covering functor if the induced linear
maps

@ I'(xz,y") — A(a,b) and @ I'(2',y) — A(a,b)
y'EF-1(b) z'€F~1(a)

are bijective for all a,b € ObA and x € F~(a), y € F~1(b).

Let G be a group and I' a small linear category. A G-action on I is
a group morphism G — AutI’, g — Fj, such that all F, are linear. It
defines a G-action on ObI" by gz = Fy(z) for all z € ObI'. It is called
free if the stabilizer G, is trivial for all x € Ob[I', and locally bounded
if for all z,y € ObI the identities I'(gz,y) = I'(xz,g9y) = 0 hold for all
but finitely many g € G. For any m € modI and g € G we denote
by 9m the translated module m o F;-1. To simplify notation we identify
F, with g. If A is a linear subcategory of I', then gA is the subcategory
of I' defined by Ob(gA) = g(ObA) and (gA)(z,y) = g(A(z,y)) for all
g €aq.
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Following [6, p. 9], a spectroid is a small linear category I’ with the
following properties: all endomorphism algebras are local, different objects
are non-isomorphic and all morphism spaces are finite-dimensional.

Let GG be a group acting on a spectroid I'. We assume that this action
is free and locally bounded. Then the quotient category I'/G is defined as
follows. The objects of I'/G are the G-orbits of objects of I'. A morphism
a € (I'/G)(a,b) is a double sequence a = (aya) € [, yep (@, y) such that
g(oyz) = agygr forallg e G,z € aand y € b. If a € (I'/G)(a,b) and § €
(I'/G)(b,c), then the composition Sa is defined by (8).z = 3_, ) BoyQya-
All but finitely many terms in the sum are zero since the G-action is locally
bounded. The linear projection functor

F:I'—-TI/G

sends an object x to its orbit and a morphism « € I'(z,y) to the double
sequence F'(«) defined by

ga if g=h,
F(a)hy,gx = {

0 ifg#h.

It is shown in [5] that F' is a covering functor such that Fig = F for all g € G.
Moreover, it has the universal property that if A is a spectroid and a linear
functor E : I' — A satisfies Fg = FE for all ¢ € GG, then there is a unique
linear functor H : I'/G — A such that the diagram

r

|

commutes. If in addition E is a covering functor, surjective on the objects
of A and such that G acts transitively on E~!(x) for all z € Ob A, then H
is an isomorphism. In this case F is called a Galois covering.

If a group G acts on a small linear category I" we say that an ideal Z of
I' is G-invariant if gZ(x,y) C Z(gx, gy) for all ¢ € G and all z,y € Ob[I.
In this case we get an induced G-action on I'/Z defined by g(a+Z(x,y)) =
ga + Z(gz, gy). We proceed by investigating the case I' = kQ/Z in more
detail. Our goal is to find a canonical Galois covering I' — A where A is the
linear path category of a quiver modulo some ideal.

We say that a group G acts on a quiver @ if it acts on Qg and on
@1 in such a way that t(ga) = gt(a) and h(ga) = gh(a) for all g € G
and a € Q. If Q' is a subquiver of @, then gQ’ denotes the subquiver
determined by (9@); = ¢g(Q;) for i € {0,1}. The orbit quiver Q/G is defined
by (Q/G)o = Qo/G, (Q/G)1 = Q1/G, t(Ga) = G(ta) and h(Ga) = G(ha).
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Let P be the linear functor
P:kQ — k(Q/G)

which sends vertices and arrows to their respective orbits. For any ideal 7

of k@Q we define the ideal Z/G of k(Q/G) by
Z/G)X.Y)= > P(Z(zy)).

(z,y)eX XY

Let P be the functor

P:kQ/T - k(Q/G)/(1/G)
induced by P. If 7 is semimonomial then so is Z/G.

If a group G acts on a quiver @, then it induces a G-action on k@)
by g(Ba) = (g8)(ga) for all paths a, 3. We observe that Pg = P since
(Pg)(x) = Gx = P(z) for each vertex z € Qo, and (Pg)(a) = Ga = P(«)
for each arrow o € Q. If 7 is a G-invariant ideal of kQ, then Pg = P. We
proceed to show that, under suitable assumptions, P is a covering functor.

LEMMA 1. Let Q be a quiver and G a group acting on Q. For all x,y €
Qo and £ € (Q/G)(Gz,Gy), there are g € G and o € Q(x,gy) such that
P(a) = ¢.

Proof. The proof proceeds by induction on d, the length of £. If d = 0
then £ = eq, and Gz = Gy. Choose g € G such that gy =z and a = ¢, €

~ X

Q(z,x) = Q(z,gy). Assume that d > 0. Then ¢ = GB¢’ for some arrow
PR g1y in @ and some path ¢’ € (Q/G)(Gx,Gz). By induction hypothesis

there are go € G and o € @(x,ggz) such that P(a’) = ¢. Choose g = gag1
and o = (g20)/. Then P(a) = GBP(a/) =¢. =

LEMMA 2. Let Q) be a quiver and G a group acting freely on Q. Let
x,y € Qo and g € G. Then P(a) = P(B) implies o = 3 for all o € Q(x,y),

B € Qz,gy)

Proof. Since the functor P sends arrows to arrows, it sends paths of
length d to paths of length d for all d € N. We show that if P(a) = P(3)
then o = (8 by induction on d, the length of o, which coincides with the length
of 3. If d = 0 then o = e, = 3. Assume that d > 0. Then o = oo for some
arrow oy from z to z and some path o' € Q(z,y). Similarly, 3 = '3, for
some arrow 3 from  to 2’ and some path 3 € Q(z', gy). Since P(a) = P()
we have P(a1) = P(f1) and P(a/) = P(f'). Hence there is h € G such
that hay = (1 and thus hx = z. Since the G-action is free, h = 1 and
a1 = f1. It follows that z = 2/, and by induction that o/ = (3. Hence

a=day=0p =05 nu
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THEOREM 1. Let Q be a quiver and G a group acting freely on Q). Let T
be a G-invariant ideal of kQ). Then

P:kQ/I —k(Q/G)/(Z/G)
18 a covering functor.

_ Proof. Let X,Y € (Q/G)o and 2 € X, y € Y. Then P~'(X) = Gz and
P~1(Y) = Gy. Since the action of G is free we obtain

P k@) =Pk, gy), P ke@.y) = Pk(gz,y).
y'eP-1(Y) Ee 2/eP-1(X) g€eG
Our aim is to show that the linear maps
Py : PkQ/T)(z, gy) — (k(Q/G)/(T/G))(X,Y)
geG

and

Py, : P&Q/T)(gz,y) — (k(Q/G)/(T/G))(X,Y)

geG

induced by P are bijective.
The functor P induces a map

U Q. 9v) — (Q/G)(X,Y),

geG
which according to Lemmas 1 and 2 is a bijection. Since @(:U,gy) and
(Q/G)(X,Y) are bases of kQ(x,gy) and k(Q/G)(X,Y) respectively, the
linear map

Py - DKQ(, gy) — K(Q/G)(X,Y)
geG

defined by P,y (a) = P(«a) for all a € kQ(z, gy) is bijective. Using the fact
that 7 is G-invariant we obtain

(Z/G)(X,Y)= > P(Z(gz,hy)) = > Pg(Z(x,g 'hy))

g,heG g,heG
:ZP(nglhy ZP (z,9y))
g,heG geG

Hence P,y induces an isomorphism
Py : P I(z, gy) — (T/G)(X,Y).
geG

Consider the following commutative diagram of linear maps; note that
the columns are short exact sequences:
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B, (kQ/T)(x,99) % (K(Q/G)/(T/G))(X,Y)

! |

D,cc kQ(z, gy) — =~ K(Q/G)(X,Y)

R

Dyec Z(z. gy) (Z/G)(X,Y)

Since both P,y and ﬁmy are bijective so is P.y.
Define the linear map

¢ : P&Q/T)(gz,y) — PKQ/T)(, gy)

geG geqG

by ¢(a) = g~ ta for all a € (kQ/T)(gx,y). It is an isomorphism. The com-
position

Poy ¢ : P&Q/T)(9z,y) — (k(Q/G)/(Z/G))(a.b)

geG

sends a to Pg~la = Pa for all a € (kQ/Z)(gx,y). Therefore it coincides
with Px,, which is therefore bijective. m

COROLLARY 1. If in addition to the assumptions of Theorem 1, kQ/T is
a spectroid and the G-action on kQ/Z is locally bounded, then P is a Galois
covering.

Proof. We have already seen that Pg = P for all ¢ € G. Observe that
each a € Ob(k(Q/G)/(Z/@G)) is of the form a = Gx. Therefore P~!(a) =
Gz # 0. So P is surjective on the objects. Since G acts transitively on Gx
we conclude that P is a Galois covering. =

From now on we write P instead of P to simplify the notation.

Throughout the remainder of this section we make the following assump-
tions. Let @ be a quiver and G a group acting freely on Q. Let 7 be a
G-invariant semimonomial ideal of kQ@. Set I' =kQ/Z, A = k(Q/G)/(Z/G)
and let

P:I'—- A

be the covering functor defined above. Identifying mod I" with a full sub-
category of mod k@ and mod A with a full subcategory of modk(Q/G), as
explained in Section 2, for all m € mod I" and n € mod A we write

m(a) =m(a+Z(z,y)), n(Ga)=n(Ga+ (Z/G)(Gz,Gy))

(0% . .
whenever x — y is an arrow in Q.
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Denote by
P, :modI" — mod A

the push-down functor induced by P, i.e. the left adjoint of the pull-up
functor P* : mod A — mod I" associated with P.

Since P is a covering functor we have, according to [1],

(2) Pm)(Gr)= @ m) = Pmiga).

z'eP~1(Gx) gelG

Furthermore, for each arrow = — y in Q and each h € G the diagram

m(hx) mhe) m(hy)
incll lincl
P.m)(Ga
D e mlgr) LED @y migy)

commutes. Hence

(3) (Pem)(Ga) = P ml(ga) : P m(gz) — P mlgy).

geG geqG geqG
For the pull-up functor we have
(4) (P*n)(z) =n(Gz), (P'n)(a)=n(Ga).
So we see that
(P*Pom)(z) = P mlgz), (P*Pm)(a) = P m(ga),
geG geG
that is,

P*P.m = EBg_lm = @gm.

geG geG

This latter result can be found as a lemma in [5].

A A-module n is said to be of the first kind if n = P,m for some m in
mod I'. It is said to be of the second kind if it contains no direct summand
of the first kind. We denote by mod; A and mods A the full subcategories
of mod A formed by all modules of the first and second kind respectively.
Further we denote by ind; A and indy A the full subcategories of mod; A and
mods A respectively formed by all indecomposable modules.

3.2. Example. We illustrate the concept of Galois coverings with a con-
crete example, which can be found in [4]. Let @ be the quiver
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@01 (07 1) a1l (1’ 1) Q21 .
Boo B1o
@00 (07 0) @10 (1’ 0) @20 L.

Bo—1 Bi-1

ie. Qo = Z% and Q1 = {a.,3. | z € Z%}. The group G = Z? acts freely
on @) by translation. Let n > 2 and Z,, be the ideal of k@ generated by all
IIlOI'phiSIIlS ﬂijai+17j, O‘i,j—l—lﬂij; Q1,5 - Qignj and ﬂi,j—i—n e /Bi,j—i-l- Itisa G-
invariant ideal and hence Theorem 1 yields the covering functor P : I" — A,
where I' = kQ/Z,, and A = k(Q/G)/(Z,/G). Furthermore )/G is the quiver

«(Ca)s
where a = G(0,0), @ = Gagp and 5 = Gfyo. The ideal Z,,/G is generated by
the morphisms Sa, a3, o™ and 3. This quiver with relations appears in [7],
where the authors investigate representations of the Lorentz group.

A line of I' is a subquiver of @ of type Ay, AY or A, for some m such
that kL forms a subcategory of I'. According to [4] the category ind I is
classified up to isomorphism by the characteristic representations yr, where
L runs through all finite lines of I'. Hence every indecomposable A-module
of the first kind is isomorphic to Py(xz) for some finite line L.

3.3. Coverings and tensor product. In this section we investigate the
relationship between coverings and the tensor product. The following result
provides a means of computing the tensor product of a A-module of the first
kind and any other A-module.

THEOREM 2. For allm € mod I" and n € mod A there is an isomorphism
(Pom) @ n= Py(m ® (P*n)).

Proof. We compute the right hand side at Gz € Ob A and Ga € (Q/G)1
using the identities (2), (3) and (4):

Py(m ® (P*n))(Gz) = P(m(gz) ® (P n)(9z)) = Pm(gz) © n(Gz)),

geG geG

P.(m® (P*n))(Ga) = P (m(ga) @ (P*n)(ga)) = P(m(ga) © n(Ga)).

geG gelG
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On the other hand, the equalities (2) and (3) give
(P.m) @ n)(Ga) = (D mige)) @ n(Ga),

geG
((Pam) @ n)(Ga) = (@ mlga)) @ n(Ga).
geG
Now the identification
(Dmlon)) @ n(@r) = Pmlox) @ n(G))
geG gelG

constitutes the claimed isomorphism. =

COROLLARY 2. For all m,n € mod(I") there is an isomorphism

(Pem) @ (Pyn) L@P*(m(@gn))-

geG
Proof. We have seen that

P*Pn = @%.

geG
According to Theorem 2 we obtain

(Pom) ® (Pin) = P, (m ® @ gn) = @ P.(m ®9n),
geG geG

since P, commutes with direct sums. =m

If Q" and Q" are subquivers of @), then combining Corollary 2 with for-
mula (1) yields

(5) (Px@) @ (Pexqr) = €D Pe(xainge);
geG

upon noting that 9xgr = x40

It has been shown in [5] that if I is a spectroid, the G-action on I is
locally bounded and the G-action on ind I'/= is free, then P, preserves inde-
composability. In this case Corollary 2 yields the Clebsch—Gordan formulae
for A-modules of the first kind, provided that the Clebsch—-Gordan problem
is solved for mod I".

3.4. Ezxample revisited. To illustrate the usefulness of the results from
the previous section we return to the example of Section 3.2 and present a
solution the Clebsch—Gordan problem in that case. Let I" and A be as in
Section 3.2.

We already have a description of the indecomposable A-modules of the
first kind as Py (xr), where L runs through all finite lines of I". The following
proposition provides the Clebsch—Gordan formula for these modules.
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PROPOSITION 1. Let L and L’ be finite lines of I' and LNgL' = Uielg L
a decomposition of L N gL' into finite lines for all g € G. Then

(Poxr) ® (Poxw) = @D B Pe(xro)-

geGiely
Proof. Formula (5) gives
(P XL *XL’ @P XLﬂgL/
geG

Since P, commutes with direct sums the proposition follows from the fact
that
XLngL' = XUZ_GIQ Li — @Xu. n
‘ i€l,

Proposition 1 reduces the Clebsch—-Gordan problem for mod; A to the
simple combinatorial task of determining the decomposition L N gL' =
User, L for all finite lines L and L', and g € G.

We proceed to describe the modules of the second kind, based on the
description in [4], but adapted to our setting. The original classification
however is due to [7]. See also [2].

Let L be a G-periodic line in I', i.e. a line with non-trivial stabilizer Gp,,
and such that (0,0) € Lo. Then G|, acts as a group of automorphisms on L.
Since G, is non-trivial we obtain G, = Z as L is of type AZ. Forall z € Ly
set Z=2+Gp € G/GL.

For any indecomposable linear automorphism ¢ : V. — V of a finite-
dimensional k-linear space V' let By (L) be the A-module defined as follows.
Let U, be the k-linear space having

{uz | Z € Ly/GL}
as basis. Set
By(L)(a) =Ur® V.
The linear maps A = (Bg(L))() and B = (By4(L))(3) are determined by

U=y @ U if Z+# (1,0) and «, € Ly,

Auz @ v) = Uy ®¢ v if 7=(1,0) and a; € Ly,
0 otherwise,

Uy @ if Z # (0,0) and 3, € Ly,

Bluz®v) = umy@¢v i z=(0,0) and B, € Ly,
0 otherwise.

Since kL is a subcategory of I', By (L) is well-defined. The A-modules By(L)
are called band modules. Moreover, every indecomposable A-module of the
second kind is isomorphic to Bg(L) for some ¢ and L. Two band modules
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By (L) and By (L') are isomorphic precisely when ¢ and 1) are conjugate, and
L = gL for some g € G (cf. [4] and [2]).

In order to apply Theorem 2 we must determine P*(By(L)). For this
purpose let Cy(L) be the I'-module defined by

(Co(L))(2) = (xr(2)) @ V

and
L(Oéz)®]1\/ ff;é (170)7
(Co(D)) () —{ e D
_ a8 ®HV it = # (0,0),
(CoL))(5:) = { e es oD
It follows from this definition that 9Cy(L ) Cy(L) for all g € G For each

h € G/Gp, set "Cy(L) = 9C,(L), where g € G is a representative of h.

LEMMA 3. For all G-periodic lines L of I' containing (0,0) and all linear
automorphisms ¢ : V. — V there is an isomorphism

P*(By(L) = P "Cy(L)
heG/GL,
of I'-modules.

Proof. We construct the claimed isomorphism
) P*(By(L) — @B "Cu(L).
heG /Gy,
Let x be a point in . Observe that
(P*(By(L)))(x) = (By(L))(a) = UL @k V.
Let z € Ly, go == — z and hg = g9 + G1. Then
"0Cy(L)(x) = (xgor(2)) @k V = (x1.(2)) @& V =k @k V

since z € Ly.
We let

L0y (L)(@) — @D "Cy(L)(a)

heG /Gy,

be the inclusion and set
Yy (uz @v) = 1(1 @ ).

Let h € G/G, be represented by some g € G and such that "Cy(L)(z) # 0.
Then x € gL and there is z € Ly such that g + z = .

Hence 1, (uz ® V') = "Cy4(L)(x). Moreover, % is uniquely determined by
x — z 4+ G = h and thus 1, is a bijection.
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We proceed to show that ¢ = (v3)zeq, is a I-module morphism, and
hence an isomorphism. Let z LN y be an arrow in (). Moreover, let uz € Up,
and h = g + G, € G/Gp, be such that * = g + z. Then t(¢g~'u) = z, and
g 'uw=a, or g7y = p3,. Assume that g~ 'yt = a,. Then

(P*(By(L)) (1) (uz ®v) = A(uz @ v) € UL ® V = P*(By(L))(y)

and

a,) I if z 1,0),

o ={ o st it (1)

If a, & L1, then
Gy (Aluz ©0)) = 0 = ("Cy(L) (1)) (o (5 © v)).
Now assume that o, € Ly. If Z # (1,0), then
by (Aluz ® v)) = Py (us—5; @ v) = ("Co(L) (1) (W (uz @ v)).
If 7= (1,0), then
by (Aluz ©0)) = by (=g ® 60) = ("Co(L) (1) Wiz © ).
The case g~ 'y = 3. is treated analogously. m
For any G-periodic line L of I" and h = g+ G, € G/Gp, set hL = gL.

PROPOSITION 2. Let L and L' be lines in I" such that L is G-periodic
and contains (0,0), and L' is finite. Moreover, let L' N hL = U,c;, L be a
decomposition of L' N hL into finite lines for all h € G/Gy. Then there is
an isomorphism

(Pxp) ® (Bs(L) SdimV €D Puxu-

heG/Gy i€l

Proof. Theorem 2 yields
(Poxr) @ (Bo(L) = Polxis & (P (ByD)) = P @D xr ©"Co(L)
heG /Gy,
by Lemma 3. Observe that (yz ® "Cy(L))(z) # 0 if and only if z € S =
Uz‘elh L'. Furthermore, dim(x/ ® "Cy(L))(z) = dimV for all z € S, and all
arrows in S act as isomorphisms in yj/ ® h0¢(L). Due to the classification
of all indecomposable I'-modules the only possible decomposition of xj ®
hCy(L) is
XL & hC¢(L) = dimV @ XL
=
Hence
(Poxr) ® (By(L)) = P*<dimV D P XU) “dimV @ PP
heG /Gy €l heG /Gy i€l
The last step is valid since all but finitely many summands are zero. =
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To complete the solution of the Clebsch—Gordan problem for A it remains
to find a formula for the decomposition of (By(L)) ® (By(L’)). In this situa-
tion we cannot apply our results on coverings. Instead we will use elementary
methods to obtain the desired result.

Let L, L' be G-periodic lines in I" containing the point (0,0). Let X be
a cross-section of G/(Gr, + Gp/) such that 0 € X.

Let LNgL' = Uz‘e 7, L’ be a decomposition of L N gL’ into lines for all
g € G. Choose I, C J, such that {L | i € I,} forms a cross-section for the
G N Gpr-action on {L* | i € J,}.

Define the linear map

T: @@kL%HULQ@UL/
rxeX i€l,

by T(z) = uz ® u;—; for all z € L}, i € I, and € X. Here kL denotes the
vector space having L’é as basis. To see that T is well-defined note that if
z € L} then z € Lo and z € zL}. Hence z—z € L} and uz ®@u;— € U, @Up,.

Since By(L) = Bg(gL) for all g € G we can cover all interesting cases by
only considering the cases L # gL’ for all g € G, and L = L.

LEMMA 4. If L # gL' for allg € G, then T is an isomorphism. If L = L',
then T induces a linear isomorphism

T: @ @kLé —U
zeX\{0}i€l,
where U C U, ® Uy, is spanned by

Proof. Note that T is well-defined in case L = L/ ,since if 0 # xz € X,
then z # z — .

Let z € Lo and 2’ € L. Write 2/ = z + f — 2 + h for some f € Gy,
z€ X and h € Gp. Then z+ f —z € L and z + f € zL{,. Hence z+ f €
LonzLj = Uier L' Let y € GL NG be such that 20 = z + f +y € L for
some ¢ € I,. Then

Uz @ U = Uy @ Uy = Uy, © Uy = Uz @ uz— = T20).

Hence T is an epimorphism. If L = I/ and Z # 2/ then x # 0 and thus T is
also an epimorphism.

Assume that uz ® u
Ve I,s. Then

o y
7=z = Uy ® uy—; for some z € Lj), i € I, 2’ € Ly,

z2=zmod G, z—x=2 —2' modGp.
In particular x = 2’ mod G, + G/ and thus z = 2’/. We obtain
z =2 mod G, NGy .
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Hence there is some g € G, N G/ such that 2’ = z + ¢. In particular
2 e gLin Lg
and thus LV = gL*. We obtain ;” = i, since {L' | i € I,} forms a cross-section
for the G, N Gr-action on {L' |i € J,}. Hence
Li= gL'

If g # 0, then L' ¢ L NalL' is G-periodic and L = L' = zL'. Thus, if
L ¢ GL', then ¢ = 0 and z = 2. Hence T is a monomorphism and thus
an isomorphism in that case. If L = L' and g # 0, then z € G and thus

x = 0. This is a contradiction if uz ® u € U. Again ¢ = 0 and T is an
isomorphism. =

zZ—T

We now present the Clebsch—Gordan formula for band modules and thus
complete our solution to the Clebsch—Gordan problem for A.

THEOREM 3. Let L, L’ be periodic lines in Q) containing the point (0,0)
and ¢ : V. =V, : W — W be linear automorphisms. Let X be a cross-
section of G/(Gr + Gr/) such that 0 € X. Let LN gL' = U;e,, L' be a
decomposition of LN gL’ into lines for all g € G. Let I, C J, be such that
{L"|i € 1,} forms a cross-section for the G, N G/ -action on {L' |i € J,}.

If L # gL’ for all g € G, then

By(L) ® By(L') = dim V dim W €5 €P Paxr:-
rxeX 1€,
If L =1L, then
By(L) ® By(L') > (dideimW D @P*XU) @ (@B¢j (L)),
zeX\{0} i€ls J

where

s v > e
J

18 a decomposition of ¢ ® ¥ into indecomposable automorphisms.

The case By(L)®By(L') is now reduced to the simple task of determining
the set {L* | ¢ € I;} given L and L', and the more complicated problem of
finding

p® 9> P ¢
J

for all linear automorphisms ¢ and . This is equivalent to solving the
Clebsch—Gordan problem for the loop quiver Ay. In case the ground field
k is algebraically closed and of characteristic 0, it has been solved by Hup-
pert [11] and independently by Martsinkovsky and Vlassov [12]. In other
cases the solution is still unknown.
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Proof of Theorem 3. Assume that L # gL' for all ¢ € G. From Lemma
4 we obtain a linear isomorphism

S: (By(L) @ By(L))(a) = U@V oUy oW P PEkLieV e W)
rzeX i€l

defined by
Stuz@v@uz@w) =T "uz ®uz) v & w.
We define a A-module structure on
P PkLieVew)
zeX i€l,

via S, and denote this A-module by M.
Let z € Lg for some ¢ € I, v € V and w € W. Then

Suz@v@uzz @ w) = 2@ v w.
Let A= (By(L) ® By(L))(a). If a; € Ly and a,—, € L}, then
A(Uz@?) ®UE®’LU) = uz—(—l,O)® gzﬁmz(v) ®UM®T/JHZ(ZU)

for some integers m, and n,. Otherwise

A(u; ® uz—x) =0.
If a, € Ly and «, € zL), then 2z — (1,0) € L and
Sty © 6™ (1) ® U5 OV (W) = (= (1,0) 8 6™ (0) & ™ (w).

Hence

M(o)(z®@v®@w)
_ { (z—=1(1,0)) @ ¢"=(v) @ Y"*(w) if o, € Ly, ap € xL],
0 otherwise.
A similar calculation shows that

M(B)(z0v&w) = {(()Z+ (0,1)) ® " (v) @ ™ (w) if B. € Ly, B. € xL},

otherwise,

for some integers m’, and n’,.
As has been noted earlier, o, € Ly and o, € xL] implies z — (1,0) € L.
Similarly, 8, € L; and 8, € xL} implies z + (0,1) € L. Hence

M- @@
rxeX 1€l

where M; is the submodule of M corresponding to kLé QVeW.
For each x € X and ¢ € I, we define the I'-module N; by

NZ(Z) = XLi(Z) Ve W,
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and )
1® o™ @Y™ ifa, € L,
Nl(az) — { ¢ ¢ z . 1
0 otherwise,
Niwz):{ @™ @y if f; € I,
0 otherwise.
Then
M; = P,N;.

On the other hand, since N;(p) is an isomorphism for each pu € L,
N; = dim V dim W (Pixpi).
Hence
By(L) ® By(L') > M = dim V dim W @D € Px .
reX iel,

Now assume L = L. Then (Bg(L) ® By(L'))(a) =Ur @V UL @ W
and from Lemma 4 we obtain a linear isomorphism

S (By(L) ® By(L') (( D @kLZ)@D)@V@W
2 X\ {0} i€l,

where D C Up ® Uy, is the subspace spanned by all vectors uz ® uz, as in
the previous case. We define a A-module structure on

D @kLg) @D) RV e W.
zeX\{0} i€l

via g, and denote this A-module by M.
Let A= (By(L)® By(L))(cr) and B = (By(L) ® By(L))(53). Let z € Ly.
If a, € L1, then

Y|
“th
/\

o
S~—

—(1,0) OV O Uy @ W if
U =@1,0) ® ¢ v®uzf(170)®¢_lv if Z

A(UE®'U®U§®U])={

/\
(=)
~—

Otherwise
Aluz @ v @ uz @ w) = 0.
If 8, € Ly, then
U o @ VO U o) O W i
U1y @ PV ® Uy ® YU if z = (1,0).

B(Uz®U®Uz®w):{

Otherwise
Bluz®@v®uz @ w) = 0.
We obtain a submodule N of M determined by
Na)=DeVeW.
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Furthermore, we get the isomorphism
Byey(L) >N

determined by uz @ v Q w — uz @ Uz ® v Q w.
Let 7: VW S5V ® W be a linear automorphism such that

(02! =D e
J

Then 7 yields the isomorphism
0: Byoy(L) = By g,(L) = @D B, (L)
J

determined by
04 1 (Bpgy(L))(a) :)(B®j ¢j(L))(a), Uz VR W — uz @ T(v R w).

By arguments analogous to those in the previous case one shows that S
induces a A-module structure on (B, x\ 0y Dicr, kLo) ® V @ W which is
isomorphic to

dimVdimW @ P Pxp
zeX\{0} i€l,
Hence

By(L) ® By(L') = (dideimW D @P*XU-) ® (@B¢j(L)). .
J

2eX\{0} i€,

4. Quivers of type A,. In this section we revisit the Clebsch-Gordan

problem for quivers of type A, i.e. quivers whose underlying graph is

ao
a a
- an—1 "

for some n € N. We assume that k is algebraically closed. This problem
has originally been solved in [10], by means of explicit computations. Here
we present a more streamlined approach, using the results on coverings and
characteristic representations developed above. For the reader’s convenience
we include those computations from [10] which are indispensable even in the
present approach (cf. proof of Theorem 5(iii)).

4.1. Indecomposable modules. Let n € N and () be a quiver of type A,
i.e. a quiver with underlying graph

o1 0% e
X ao 0 a1 1
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Assume that the orientation of Q is periodic in the sense that a; =% @iyl

. . Qifn+1 o . . Qjpn+1
implies @;1pt1 —— Giynt2 and a; < a;1 implies aj4p41 ——— Aitn42

for all ¢ € Z. Then Z acts freely on @) by
ka; = Ajtk(n+1)> ka; = Qi k(n+1)

for all £ € Z. The quotient quiver )/Z is of type A,. Moreover, every quiver
of type A,, arises in this way. Theorem 1 yields a covering functor

P:kQ —k(Q/Z)
together with the associated push-down functor

P, : mod k@ — modk(Q/Z).

We interpret the classification of ind k@ found in [6] in terms of coverings.
For all integers 7, j such that ¢ < j let X;; = xgi € modkQ, where Q" is
the subquiver of ) with underlying graph

(67} Qj—1

a;

a,j_
Set
S(i,5) = Pu(Xy).
The modules S(7, j) are modules of the first kind and are called strings.
For each positive integer m and scalar A € k \ {0} let Bx(m) be the
k(Q/Z)-module defined by
L, if i #n,
Bx(m)(a;) =k™,  Bx(m)(a;) = e
Jy(m) ifi=n,

where I,,, is the identity matrix of size m and Jy(m) is the Jordan block
of size m with eigenvalue A. The modules By(m) are called bands and are
modules of the second kind.

THEOREM 4 ([6, p. 121]). The set
{S(4,4) 10 <i<n,i<jtU{Bx(m)[Xek\{0}, meN\{0}}
classifies indk(Q/Z), up to isomorphism.

4.2. Clebsch—Gordan formulae. Let iAj = min{i, j} and iVj = max{i,j}
for all integers ¢,j. The following result provides the Clebsch—Gordan for-

mulae for A, in terms of strings and bands.

THEOREM 5. Assume that char(k) = 0. For all integers i,i,j,j" such
that 0 < i <4 <n,i<jandi <j, scalars \, un € k\{0} andl,m € N\ {0}
the following formulae hold:
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[(G" =)/ (n+1)]
(i) SG,j) @ S, 5) = S, j A = k(n+1)))
k=0
[(G=i")/(n+1)]
& P SEJING-kn+1),
k=1
(i) S(,j) ® Bu(m) =mS(i, j),
(Inm)—1
(i) Ba(l) ® Bu(m)=> @ Bau(l+m—2k—1).
k=0
Here [z] denotes the integer part of x for all x € Q. The restriction
i < i’ does not affect the generality of formula (i), as the tensor product is
commutative.

Proof. (i) We extend the notation by letting S(i,7) and X;; be zero
whenever ¢ > j. Formula (5) yields

S(i,j) @S>, j) = (PXij) ® (PuXyj)

= @ Py (XQika"’J’ @ Py ZV(Z"HC "+1))7j/\(j'+k(”+1)))'
keZ keZ

From the inequality 7 > i’ we obtain
S(i,j) ® S(i',5)
= @ Po(Xi jn(r+k(n+1))) © @ Pu( X 4 k(1) jAG +k(n+1)))

k<0 k>0
—@SZ]/\(]— (n+1)) EB@S’ k(n+1)) A5
k>0 k>0

using the equality P.(*X) = P.(X) for all k € Z and X € modk@. The
limits & < [(j' —4)/(n+1)] and k& < [(j —i')/(n+ 1)] arise from the fact
that S(i,j A (' — k(n + 1))) and S(#',(j — k(n + 1)) A j') are zero when
(n+ 1)k >j —iand (n+ 1)k > j — i respectively.
(ii) From Theorem 2 we obtain
S(1,4) @ Ba(m) = (P.Xi5) @ Ba(m) = Pu(Xiy & (P*By(m))).
Since (X;; ® (P*Bx(m)))(ay) is of dimension m for all ¢ < k < j and zero
otherwise, and (X;; ® (P*Bx(m)))(ay) is an isomorphism for all i < k < j,
it follows that
Hence
S(i,j) X B)\(m) 1>P*(mXij) ng*(Xij) = mS(i,j)

since P, commutes with direct sums.
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(iii) Let I,m € N\ {0} and A, ;v € k\ {0}. Set A = By(I), B = Bu(m)
and T' = J\(I) ® Ju(m), the Kronecker product of the Jordan blocks. By
definition we have

(A® B)(ag) = k' @ k™ S k™,

In the standard basis (e; ® €;) (i j)eixm the linear map (A ® B)(ay) is given
by the identity matrix I;,, if k£ # n whereas (A ® B)(ay,) is given by T.

Any C € GLy, (k) determines a new representation (A ® B)® given by
(A® B)C(ay) = k'™ for all k € {0,...,n}, (A® B)’ (o) = I, if kK < n and
(A® B)(a,) = CTC™!, together with an isomorphism

C?:A® B — (A® B)°

given by (A® B)(ay) — (A® B)®(ay), x — Cux, for all k € {0,...,n}. Since
char(k) = 0 we know from [11, p. 51] that there exists a C' € GLj;, (k) such

that CTC~1 = @™ Jy, (1 +m — 2k — 1). Accordingly, (A ® B)C =
,(ﬁl;/gl)*l By, (I +m — 2k —1). We conclude that
(Ivm)—1
A@BS @ Bu(l+m-2k—1). =
k=0

Note that the assumption char(k) = 0 only enters in the proof of part (iii),

namely in order to ensure that the matrix 7" has the Jordan decomposition
](Cl;/gn)fl Jau(l+m —2k —1). The case char(k) = p can be treated similarly

as soon as the Jordan decomposition of Jy (1) ® J,(m) is provided. However,
at present I do not know any general formula for this decomposition.
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