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GLOBAL ATTRACTOR FOR THE PERTURBED VISCOUS
CAHN-HILLIARD EQUATION

BY

MARIA B. KANIA (Katowice)

Abstract. We consider the initial-boundary value problem for the perturbed viscous
Cahn-Hilliard equation in space dimension n < 3. Applying semigroup theory, we for-
mulate this problem as an abstract evolutionary equation with a sectorial operator in
the main part. We show that the semigroup generated by this problem admits a global
attractor in the phase space (H?(£2) N H(2)) x L?(£2) and characterize its structure.

1. Introduction. Let 2 C R" be a nonempty bounded open set with
the boundary 012 of class C*. In this paper we study the perturbed viscous
Cahn—Hilliard equation

(1) euy +up + A(Au+ f(u) —odug) =0, x€82,¢t>0,

where €,0 € (0,1], n < 3, and the derivative of f grows like |u|?, with
0 < g < 2 if n = 3. This equation is considered with the initial-boundary
conditions

(2) u(0,z) =up(z), u(0,z) =wvo(x) forz e 2,
(3) u(t,z) =0, Au(t,z) =0 for z € 012.

Equation (1) in one space dimension ({2 = (0,7)) and with the polyno-
mial nonlinear term f(u) = —u® + u extending the classical Cahn—Hilliard

parabolic equation ([10], [6]) has been introduced in [12]. The authors stud-
ied there the following four equations, named according to whether ¢ or §
vanishes or not:

the nonviscous Cahn-Hilliard equation (¢ = § = 0),

the viscous Cahn—Hilliard equation (¢ =0, § > 0),

the perturbed nonviscous Cahn-Hilliard equation (¢ > 0, § = 0),
the perturbed viscous Cahn—Hilliard equation (¢ > 0, § > 0).

Zheng and Milani showed that the semigroup generated by the initial-
boundary value problem for the perturbed (viscous and nonviscous) Cahn—
Hilliard equation admits a global attractor in the phase space H}(0,7) x
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H~1(0,7) and that the family of such attractors (depending on € > 0) is
upper-semicontinuous with respect to the perturbation parameter as
e — 0T. In the case of the perturbed viscous Cahn-Hilliard equation, they
also obtained the regularity of the attractor.

Our main goal here is to generalize part of results of [12] concerning the
existence of the global attractor generated by problem (1)-(3) (e, > 0).
Considering this problem in higher space dimension n < 3 and with a
more general nonlinear term f, but with the initial conditions from a more
regular phase space (ug,vo) € (H2(£2) N H}(£2)) x L?(£2), we prove that
the semigroup generated by this problem admits a global attractor A in
(H%(2) N H}(2)) x L?(£2). Moreover, we show that A = M(N), where
M(N) is an unstable manifold emanating from the set N of the equilibrium
points for the semigroup {7 (¢)}. We assume that f: R — R satisfies the
following assumptions:

() f e C°(R,R), )
(i) 3gep Vser F(s) :=§; f(z)dz < C, B
(iii) 302(21(%+1)/(3\/E) Jo,er+ Vser sf(s) — %F(S) < —0s” + C,, where
K is an embedding constant for L2(£2) ¢ H~1(£2) (see (9)),
(iv) Jaeg Vser |f/(s)] < C(1+]s|?), where g is arbitrarily large if n = 1, 2,
and 0 < g < 2ifn=23.

Notice that the function f(u) = —u® +u used by Zheng and Milani satisfies
the above assumptions for n = 1, 2.

Moreover, the technique used here is completely different. Precisely, work-
ing within semigroup theory, we consider problem (1)—(3) in the form of an
abstract evolutionary equation; this approach makes our calculations easier
than those in [12].

In this article all the Sobolev spaces H¥ and C*-type spaces are con-
sidered for functions defined on a fixed domain {2 C R", so we use the
simplified notation H* = H*(£2) and C™ = C™(£2) throughout. The norm
in L? is denoted by || - || and the scalar product on this space by (-,-). We
reserve the letter K with suitable subscripts to denote constants such that
the appropriate embedding estimate holds.

We denote by —A the Laplace operator with domain D(—A) = H}, and
values in H~!. We also consider the L?-realization, —A;2, of —A with the
Dirichlet condition (see [1]), i.e. the linear operator in L? defined by

D(—=Ap) :={uc L*ND(-A): —Au € L*}, —Apu:=—Au.

We preserve the notation —A for this L?-realization. Since —A is an un-
bounded, closed, positive self-adjoint linear operator with compact resolvent
in L2, we can define for s € R the fractional powers (—A)*. The domain



CAHN-HILLIARD EQUATION 219

D((—A)%) of (—A)® endowed with the scalar product and norm

{ (u,v) p((—a)s) = ((=4A)°u, (=A)*v),

4
) lallpgaye) = () sy 2,

is a Hilbert space for any s > 0. Let D((—A)™*) denote the dual space of
D((—A)?®) (s > 0). This Hilbert space can be endowed with the product and
norm as above, where s is replaced by —s (see [10, Section 2.1]). Moreover,
we infer from [8, Section 1.4] that for o > 0, H* > D((—A)*/?) and the
inner product on H~! can be introduced as

(5) (& 0) 1 = ((=2)"%0,(=2)29), popeH .

2. Operators A, B and their properties. Usually second order in
time (“hyperbolic”) equations are rewritten in the form of a first order system.
Such a formulation and properties of operators appearing in it will now be
discussed. Let A and B denote the operators (—A)? and (1/1/2)(6(—A)+1)
with domains D(A) = {u € H*: upg = Aujpg = 0} and D(B) = H{ in the
space H~!, respectively. Making a suitable change of time variable, we can
write (1) as an abstract equation in Hi x H~! in the following way:

o all=ml gl o

(7) Ap:= [ OA IB} CHy x H' O (H* N HE) x Hy — Hy x H™.

We discuss the properties of A and B necessary to prove that —Apg is a
sectorial, positive operator (i.e. Re o(—Ap) > 0) and has compact resolvent.
If we show that A and B are strictly positive definite self-adjoint operators
on H~1, the resolvent of A is compact and B is “comparable” with A1/2, then
—Ap will be sectorial and Rec(—Ag) > 0 (see [2, Theorem 1.1]). Since C§°
is dense in L? and L? is dense in H~!, we deduce that A and B have dense
domains.

LEMMA 2.1.

(i) The operator B: H=' — H~1 is strictly positive definite.
(ii) The operator A: H=' — H~1 is strictly positive definite.
(iii) There exist two constants o1 and g2, 0 < g1 < p2 < 00, such that
(8) 01(A"%0,0) -1 < (B, 0) -1 < 01(AY %0, 0) 1
for all p € L2.
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Proof. (i) For ¢ € H}, ¢ # 0, we have
) 1
B 1= — 2y — 2.
(Be. o) = = el + 2 Il

Thus from the embedding estimate
(9) lelg— < Killgll  for any ¢ € L?

we Obt ain
13¢7S0 H 1 2\/_ + \/_ (p -1 0

(ii) Let ¢ € D(A) and ¢ # 0. Using the Poincaré inequality ||[V¢l/? >
A1l¢||?, we obtain

(Ap, )1 = I(=2)2¢l* = C|Ve|® = Cillgl® = CallplF-1 > 0.
(iii) From the embedding estimate (9), for ¢ € L%, we obtain

5+ K2
751 o]

(By, @)1 < 7 and (AY%p,0)1 = (=Ap,0) 1 = |loll?,

so that inequality (8) holds with g := 6/1/¢ and g3 := (6 + K?)/\/c. =

Our next goal will be to show that A and B are self-adjoint. To this
end, we introduce the differential operators S;: H~! > C*nN C3 — H™!and
So: H-' 5 C?NCy — H™', defined by

S1¢ = (—A)%p, ¢cCnNCE,

and

1
Sop = —=(8(—A) + I, e C?*NCy.
2 \/g( (—4) ) 2 0
It suffices to show that S; is a symmetric operator in H !, strictly positive
definite for ¢ = 1, 2. Then there exists a unique, self-adjoint operator A; such
that S; C A; (see [9, Section 8.10]). Since C§° is dense in L? and L? is dense

in H~!, we deduce that S; and S have dense domains.

PROPOSITION 2.1. The operators S;, © = 1,2, are symmetric and strictly
positive definite.

Proof. We just prove that S;, i = 1,2, are symmetric, because from
Lemma 2.1 it follows that they are strictly positive definite. Integrating by
parts, for ¢, ¢ € C* N C? we obtain

(S16, )1 = (A%(=4)729, (=2)71%)
= ((=2)""2, A%(=A)"2p) = (¢, S10) 1.
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Using integration by parts again, for ¢, p € C? N Cy we get
0

(S20, )1 = NG (=2)(=2)"" 2, (=A)7"2p) + % (&, )1

o 1
_ 7 —A_l/2 _A —A_l/2 - 3
\/E(< )"0, (=A)(=A) ) + \/E(¢790)H !
= (¢, SQSO)Hfl. |
We next show that the resolvent of —Apg is compact. Notice that for
weY :={pe H ' peD(A), Ap € D(B), By € D(A)} the operators A
and B commute (i.e. ABu = BAu). It is easy to see that Y C HP.

LEMMA 2.2. If AB = BA then for all A € o(—Ap) and sufficiently
smooth functions we have

(1) (NI =AB+ A)"'A= AN -AB+ A)™L,
(ii) (NI —=AB+A)"Y(A\[ - B)= (M - B)(A2I —AB+ A)™!,
(iii) A(M — B) = (A — B)A.

Proof. If A = 0 then the above equalities are obvious. Let A # 0.
(i) We first show that
(NI —AB+ A)A = AN’ T — AB + A).
Indeed, from AB = BA we obtain

(NI —AB+ A)A =) A -~ ABA+ A* = \2A - \AB + A?
= AN’T = AB + A),

hence

(MI-AB+A)'A
= (AT = AB+ A)PANT —AB + A)Y(NT —AB+ A)~!

= (NI = AB+ A)"Y NI = AB+ A)AN’T —AB + A)~ %
(ii) This property is a direct consequence of (i).
(iii) This is obvious. =
PROPOSITION 2.2. The resolvent of —Ag is compact.
Proof. From the properties of A and B we infer that for A\ € o(—Ap)
the resolvent operator (\I + Ag)~! of —Ap is given by the formula
(M —B)(NT —AB+ At —(N I -AB+A)!

M+ Ap) = .
( ) AL = AB + A)~! AN — AB + A)~!
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For (¢, )T € H} x H™! we obtain
AL+ AB) (6, "Il et

) B 1 _
< 7 (N1 — AB + A)~L¢|| s + ‘A — ﬁ‘n(w —AB + A1 ys

+ [[(XN2T = AB + A) 19| ys
+ [N = AB+ A) Yollgs + A (VT = AB+ A) ¢

) 1
< 7 1o/l + ‘A - %’H‘b”H—l + el +llella- + Al el -

< Cll(¢, ) g xcm-1

hence for any bounded subset G C H} x H~! the set (\I + Ag)~'(G) is
bounded in H3 x H'. Now, the compactness of the embedding H? x H' C
H& x H~! implies that —Ag has compact resolvent. m

3. Local solutions and a priori estimates. Consider the semilinear
Cauchy problem for the perturbed viscous Cahn—Hilliard equation

1 o
utt+7gut+A<Au+f(u)—7gut):0, $€Q,t>0,

u(0,2) = up(z), wu(0,2) = vo(z), x € (2,
u(t,z) =0, Au(t,z)=0, xed2,t>0,

(10)

where €,0 € (0,1] , £2 is a nonempty, bounded, open subset of R"™ for n < 3,
02 € C* and f € C*(R,R). Then the problem (10) will be written in an
abstract form in X := H} x H~! as

(11) %[Z}ZAB[Z}‘FF(U,U), t>0, H]“:O:Hﬂ,

where the operator Ap is given by formula (7) and the function F': X 1/2 .=
(H?N H}) x L? — X is defined as

(12) Flu,v) = [ _A(O }

Note that F is well defined. Indeed, taking (u,v)” € X/2, we have
(13)  [[F(wv)lx = (=) f(w)llz-1 < C1]IV ()] = Crllf'(w)|Vul|.
Using the Hoélder inequality and the embedding estimate

(14) lullwre < Kallullgz,  n <3,
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we obtain
! 3 1/3 6 1/6 !
1P 0)lx <G J17 @ Pde) " (§1vulde) ™ < Ol @)l lul e
2] 0
Thus, from the assumption that f € C?(R,R) and the estimate
(15) [ullzee < Ksllullg2,  n <4,
we deduce that the right-hand side of the last inequality is finite.
THEOREM 3.1. Let (ug,v) € X'/2. Then there exists a unique local

solution (u,v)T of the problem (11) in X, defined on the mazximal interval of
existence (0, Tmax) and

(u,v)" € C([0, Tmax), X /2) N CH((0, Tmax), X) N C((0, Tmax), D(AB)).

Proof. Since —Ap is a sectorial, positive operator, it suffices to show that
F: X'/?2 — X is Lipschitz continuous on bounded subsets of X'/2 (see [7,
Section 4.2]). Fix a bounded set G € X2 and let (uy,v1)7, (ug,v2)" € G.
Then we have

[E(ur,01) = Fluz, v2)llx = [(=2)(f(u1) = fu2))l[g-
< Cr(llf/ (u)IV (ua = ua) |+ [[(f'(u1) = £ (u2))[Vua| ).

Using the Holder inequality, continuity of f” and the fact that for any (u,v) €
G, thanks to (15), there is a constant m such that ||u|/p~ < m, we have

1/2
|F(ur, 01) = Fluz, v9)llx < Co((§ £ () PIV (0 = o) )
2
1/3
+ O § 17 P =zl d) " fuzlwne
N
< sup ()] Nlur — |l gy + Sup £ (8)] lur — ual|ps][uzllyre.

Consequently, from (14) and the assumption that f € C%(R,R), we deduce
[1F(u1,v1) = F(ug, v2) || x < C(G)lur — uz|[g2. =

Throughout the remainder of this section we need a condition on the
nonlinear term f weaker than (iv), that is,

(16) ()] < CL+[s|"),  s€eR,

where ¢ > 0 can be arbitrarily large. Moreover, assume from now on the
dissipativity conditions

F(s) < —0s® + Cy,

[SCRITEN

(17)  Foxer241)/3ve) Ic,ert Vser  Sf(s) —



224 M. B. KANIA

where K was introduced in (9), and

S

(18) Jeer Vser  F(s):=|f(2)dz < C.
0

Denote by (-,) -1, g1 the duality pairing between H~! and H}, and for
w,v € H! set
(19) ] 5= (0, (— ) ) gy

Our next goal will be to investigate the behavior of the Lyapunov type
functional @: X'/2 — R connected with (10) and defined by

_ 2
where
(21) Eo(u,v) = [|0]3-1 + [u, 0] + 5—= 2\[ lull -+ [l Fy.

and derive uniform in time estimates of local solutions to (11) in X. Notice
that the square root of Ej defines an equivalent norm on X. We infer from
(16) that the functional @ is well defined. It is easy to check that it is
bounded from below. Indeed, by (18) and (20), we obtain

(22) Bo(u,v) > =2 | F(u)de > —2C|02| =: — M.
0Q
Now we estimate @ from above.

LEMMA 3.1. Under the assumptions (17) and as long as a local solution
(u,v)T to (11) ewists, we have

3 3
@) Bu(t)o(0) < (Polua0) - § b )e 4 Do,
where My is a positive constant.

Proof. Consider the equation formally obtained by applying (—A)~!
o (10), i.e
1 (=) rug + (—A)u — f(u) + 0 up = 0.
Ve Ve

Multiplying (24) in L? first by 2u;, then by u we obtain

(24) (—A)_lutt +

d 2 2 il 2 2 _
(25) E(Huth-wuunH&—2§2F<u>dx)+ T Il + fuutu -
and

d < 1 2 0 2 2 2
[, we] + 5—= Il + 5= Jull®) = el + ul3p = § f(w)ude =o0.
dt 2./ 2./ o 2
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Adding these identities and recalling (20) we get

d
7 Dol ue) + ff el 71 + == \[ HutH2 + ullzy - éf(u)u dz =0,
but since € < 1 and § > 0, we have
d
(26) g Do, ur) < ~luelfy-s = lully + § f(w)ude.
2
Further, we deduce from (20), (21) and [u, ug) < |jul|%_; + 1|ju|[%_1 that
2 1+
e 2 n(un) < ol S e+l
4. _
2
— =\ F(u)dzx.
gy it = g | Pt
Adding (26) and (27), we get
2K} +1 4

d 2
— Do (u, us) + 3 Do(u, ug) <

- g I+ | e =5 §

2
From the dissipativity condition (17) it follows that

d
(28) a@g(u ut) + = 3 @o(u uy) < Cy|02| = My

Integrating the last inequality over [0,¢], we obtain (23). m

COROLLARY 3.1. Under the assumptions (16)—(18) and as long as a local
solution (u,v)T to (11) ewists, we have

() llx < e(ll(wo, v0) [l x1/2),s
where c: [0,00) — [0,00) is a locally bounded function.

Proof. From Lemma 3.1 we obtain
3 3
(29)  Eo(u(t),v(t)) < <¢0(U07vo) —3 M1>6_2t/3 +5 M1+ Mo.
Since v € H? conditions (15) and (16) give

| uf(w) da| < Cllullpr + ul i),
Q
hence from (17), recalling that ¢ > 0, we have

—2| F(u)dr < = (CHuHLl + Cllul|47, + M),
Q
so that

Po(u,v) < Ep(u,v) + (CHu”Ll + CllullfeZ + My).

\[ [l ™ +
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From (15), (29) and the last inequality we deduce that
(30)  Eo(u(t),v(t))
< (Eo(uoavo) NG luol® + 5 C(HuollLl + |!U0||%ﬁz)>€_2t/3

3
+ 5 My + My
< C1(/|(uo, v0) " I325 12 + lluollZ2 + Iluoll 2 + [[uol|%s?)e /3

3
+§M1+M07

since the square root of Fy defines an equivalent norm on X. =

4. Global solutions. Under an additional growth restriction on the
derivative of f local solutions will now be extended to global ones.

THEOREM 4.1. Under assumptions (17), (18) and the growth restriction
(31) FI<CA+]s,  seR,

where q can be arbitrarily large if n = 1,2, and 0 < q¢ < 2 if n = 3, a local
solution to (11) exists globally in time.

Proof. Note that for every s > 1/2q and r > 1 if n = 1,2, and for every
s €[1/2q,3/q] and r € [1,3) if n = 3, we have

(32) ||| p2sa < K4”“HH& for u € Hé,
and
(33) |y < C’HuH"HQIIUH},{_é” for u € H? N HE,

with some 7 € [0,1). By (13), (31) we get
1/2 1/2
1 (u, 0)||x < Ci [(g \vuy2dx) + (g \u!zq]VuIQdm) }

Q Q
Using the Holder inequality with s > max{1/2¢,1} if n = 1,2, and s = 3/q
if n=3(r=s/(s—1)), we obtain

17 (u, )| x < Cr(llullgg + [l ou lullnrzr).-
Consequently, from (32) and (33),
1—
IF (u, 0)l|x < Cmaxc {[[ull g, 3"~} + ullFrz)
< gl (u, o)) (X + 1w, 0) (% 2),

where g: [0,00) — [0,00) is some nondecreasing function, so that any local
solution to (11) exists globally in time (see [3, Theorem 3.1.1]). =
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Denote by {7 (t)} the C° semigroup of global solutions to (11), which is
defined on X/2 = (H% N H}) x L? by the relation

7 (t)(uo, v0) = (u(t),v(t)), t>0.
THEOREM 4.2. The semigroup {7 (t)} has a global attractor A in X/?.

Proof. Since the resolvent of Ap is compact, we know (see [3, Theo-
rem 3.3.1]) that the semigroup is compact. If we show that {7 (¢)} is point
dissipative, then {7 (t)} will have a global attractor in X'/2 (see [3, Corol-
lary 1.1.6]). To this end, it suffices to prove (see [3, Corollary 4.1.4]) that for
all (ug,vo) € X1/,

. 3
limsup || (u, v)||x < = My + Mo,
t—o0 2

where My and M; are the constants from (22) and (28), respectively. Note
that this inequality follows directly from (30). =

4.1. Geometric structure of the global attractor. Following [4, Section
1.6] we now study the structure of the global attractor for the semigroup
{7 (t)}. To this end, we discuss the properties of the Lyapunov type func-
tional @1 : X112 R defined as

(34) @1 (u,0) = [|olfF-2 + Jull3y —2 | Fu) da.
0

PROPOSITION 4.1.

(i) @1 is bounded from below.
(ii) @1 is continuous.
(iii) For each (ug,vo) € X2 the function 0 < t s &1 (T (t)(uo,vo)) is
NONINCTEASING.
(iv) If @1(7 (t)(uo,v0)) = D1(ug,vo) for all t > 0 and some (ug,vo) €
X2 then T (t)(uo, vo) = (ug,vo) for all t > 0.

Proof. (i) We show that &, like @y, is bounded from below by — M.
Indeed, by (18), (34) and the definition of My (see (22)) we obtain

b1 (u,v) > —2 X F(u)dx > —My.
Q

(ii) Let (u,v), (un,vn) € X2 be such that ||(un — u, vy — v)| x12 — 0
as n — 0o, hence we may assume that ||uy,| e, ||ulL~ < M. Since
D1 (un, v) = @1(u, V)| < [lon = vllg-1(onllg-1 + [0l g-1)
F

+ Nl = ull g Ol gzg + Nl ) +2 §
Q

(un) — F(u)| d,
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it suffices to show that {, |F(u,) — F(u)|dz — 0 as n — co. From (16) we
have

Un () u(z)
S | (un(z)) — F(u(x))| de < S ‘ S f(s)ds — S f(s) ds‘ dx
Q 2 0 0
< | ‘ i ]f(s)|ds‘dx§ i ( | (1—|—|S|q)ds‘d$

< |2| sup (14 |s|?)||un — ul|fe0.
[s|<M

(iii) For (ug,vo) € X'/? from (25) and the definition of the semigroup
{7 (t)}, we deduce that
d 2 2
S D1 (u(t), w(t)) = ~ el 31 — NG el |* < 0.

(iv) Let (uo,v0) € X'/2 be such that & (7 (t)(ug,v0)) = P1(ug,vo) for
t > 0. Then from (25) we obtain
d 2 24
0= —P1(T(t)(uo, v0)) = BV [ NG e,
but the left hand side is independent of ¢, hence ||u¢||g-1 = [Jue]| = 0, so
that u(t,x) =0 a.e. for t > 0. m

Let A\ be the set of equilibrium points for the semigroup {7 (¢)}, i.e.

N ={(p.9) € X'?: T(t)(¢,9) = (. ¢) for t > 0}.

We define the unstable manifold M(N') emanating from the set A/ as the
set of all (ug,vp) € X2 such that there exists a full trajectory y =
{(u(t),v(t)): t € R} with the properties

(u(0),v(0)) = (up,vp) and Jim dist y1/2 ((u(t), v(t)),N) = 0.

PROPOSITION 4.2. We have A = M(N'). Moreover, the global attractor
consists of full trajectories v = {(u(t),v(t)): t € R} such that

tliglo dist y1/2((u(t),v(t)),N)=0 and tggloo dist y1/2 ((u(t), v(t)),N) = 0.

Proof. This follows directly from [4, Theorem 6.1] and Proposition 4.1. =
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