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GLOBAL ATTRACTOR FOR THE PERTURBED VISCOUSCAHN�HILLIARD EQUATIONBYMARIA B. KANIA (Katowi
e)Abstra
t. We 
onsider the initial-boundary value problem for the perturbed vis
ousCahn�Hilliard equation in spa
e dimension n ≤ 3. Applying semigroup theory, we for-mulate this problem as an abstra
t evolutionary equation with a se
torial operator inthe main part. We show that the semigroup generated by this problem admits a globalattra
tor in the phase spa
e (H2(Ω) ∩ H
1
0 (Ω)) × L

2(Ω) and 
hara
terize its stru
ture.1. Introdu
tion. Let Ω ⊂ R
n be a nonempty bounded open set withthe boundary ∂Ω of 
lass C4. In this paper we study the perturbed vis
ousCahn�Hilliard equation

εutt + ut + ∆(∆u + f(u) − δut) = 0, x ∈ Ω, t > 0,(1)where ε, δ ∈ (0, 1], n ≤ 3, and the derivative of f grows like |u|q, with
0 < q < 2 if n = 3. This equation is 
onsidered with the initial-boundary
onditions

u(0, x) = u0(x), ut(0, x) = v0(x) for x ∈ Ω,(2)
u(t, x) = 0, ∆u(t, x) = 0 for x ∈ ∂Ω.(3) Equation (1) in one spa
e dimension (Ω = (0, π)) and with the polyno-mial nonlinear term f(u) = −u3 + u extending the 
lassi
al Cahn�Hilliardparaboli
 equation ([10℄, [6℄) has been introdu
ed in [12℄. The authors stud-ied there the following four equations, named a

ording to whether ε or δvanishes or not:

• the nonvis
ous Cahn�Hilliard equation (ε = δ = 0),
• the vis
ous Cahn�Hilliard equation (ε = 0, δ > 0),
• the perturbed nonvis
ous Cahn�Hilliard equation (ε > 0, δ = 0),
• the perturbed vis
ous Cahn�Hilliard equation (ε > 0, δ > 0).Zheng and Milani showed that the semigroup generated by the initial-boundary value problem for the perturbed (vis
ous and nonvis
ous) Cahn�Hilliard equation admits a global attra
tor in the phase spa
e H1
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H−1(0, π) and that the family of su
h attra
tors (depending on ε > 0) isupper-semi
ontinuous with respe
t to the perturbation parameter as
ε → 0+. In the 
ase of the perturbed vis
ous Cahn�Hilliard equation, theyalso obtained the regularity of the attra
tor.Our main goal here is to generalize part of results of [12℄ 
on
erning theexisten
e of the global attra
tor generated by problem (1)�(3) (ε, δ > 0).Considering this problem in higher spa
e dimension n ≤ 3 and with amore general nonlinear term f , but with the initial 
onditions from a moreregular phase spa
e (u0, v0) ∈ (H2(Ω) ∩ H1

0 (Ω)) × L2(Ω), we prove thatthe semigroup generated by this problem admits a global attra
tor A in
(H2(Ω) ∩ H1

0 (Ω)) × L2(Ω). Moreover, we show that A = M(N ), where
M(N ) is an unstable manifold emanating from the set N of the equilibriumpoints for the semigroup {T (t)}. We assume that f : R → R satis�es thefollowing assumptions:(i) f ∈ C2(R, R),(ii) ∃C∈R

∀s∈R F (s) :=
Ts
0 f(z) dz ≤ C,(iii) ∃σ≥(2K2

1
+1)/(3

√
ε) ∃Cσ∈R+ ∀s∈R sf(s) − 4

3F (s) ≤ −σs2 + Cσ, where
K1 is an embedding 
onstant for L2(Ω) ⊂ H−1(Ω) (see (9)),(iv) ∃

Ĉ∈R
∀s∈R |f ′(s)| ≤ Ĉ(1+|s|q), where q is arbitrarily large if n = 1, 2,and 0 < q < 2 if n = 3.Noti
e that the fun
tion f(u) = −u3 + u used by Zheng and Milani satis�esthe above assumptions for n = 1, 2.Moreover, the te
hnique used here is 
ompletely di�erent. Pre
isely, work-ing within semigroup theory, we 
onsider problem (1)�(3) in the form of anabstra
t evolutionary equation; this approa
h makes our 
al
ulations easierthan those in [12℄.In this arti
le all the Sobolev spa
es Hk and Ck-type spa
es are 
on-sidered for fun
tions de�ned on a �xed domain Ω ⊂ R

n, so we use thesimpli�ed notation Hk = Hk(Ω) and Cm = Cm(Ω) throughout. The normin L2 is denoted by ‖ · ‖ and the s
alar produ
t on this spa
e by (·, ·). Wereserve the letter K with suitable subs
ripts to denote 
onstants su
h thatthe appropriate embedding estimate holds.We denote by −∆ the Lapla
e operator with domain D(−∆) = H1
0 , andvalues in H−1. We also 
onsider the L2-realization, −∆L2 , of −∆ with theDiri
hlet 
ondition (see [1℄), i.e. the linear operator in L2 de�ned by

D(−∆L2) := {u ∈ L2 ∩ D(−∆) : −∆u ∈ L2}, −∆L2u := −∆u.We preserve the notation −∆ for this L2-realization. Sin
e −∆ is an un-bounded, 
losed, positive self-adjoint linear operator with 
ompa
t resolventin L2, we 
an de�ne for s ∈ R the fra
tional powers (−∆)s. The domain
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D((−∆)s) of (−∆)s endowed with the s
alar produ
t and norm
{

(u, v)D((−∆)s) = ((−∆)su, (−∆)sv),

‖u‖D((−∆)s) = ((u, u)D((−∆)s))
1/2,

(4)is a Hilbert spa
e for any s > 0. Let D((−∆)−s) denote the dual spa
e of
D((−∆)s) (s > 0). This Hilbert spa
e 
an be endowed with the produ
t andnorm as above, where s is repla
ed by −s (see [10, Se
tion 2.1℄). Moreover,we infer from [8, Se
tion 1.4℄ that for α > 0, Hα ⊃ D((−∆)α/2) and theinner produ
t on H−1 
an be introdu
ed as(5) (φ, ϕ)H−1 = ((−∆)−1/2φ, (−∆)−1/2ϕ), ϕ, φ ∈ H−1.2. Operators A, B and their properties. Usually se
ond order intime (�hyperboli
�) equations are rewritten in the form of a �rst order system.Su
h a formulation and properties of operators appearing in it will now bedis
ussed. Let A and B denote the operators (−∆)2 and (1/

√
ε)(δ(−∆)+ I)with domains D(A) = {u ∈ H3 : u|∂Ω = ∆u|∂Ω = 0} and D(B) = H1

0 in thespa
e H−1, respe
tively. Making a suitable 
hange of time variable, we 
anwrite (1) as an abstra
t equation in H1
0 × H−1 in the following way:(6) d

dt

[
u

v

]
= AB

[
u

v

]
+

[
0

−∆(f(u))

]
, t > 0,where(7) AB :=

[
0 I

−A −B

]
: H1

0 × H−1 ⊃ (H3 ∩ H2
0 ) × H1

0 → H1
0 × H−1.We dis
uss the properties of A and B ne
essary to prove that −AB is ase
torial, positive operator (i.e. Re σ(−AB) > 0) and has 
ompa
t resolvent.If we show that A and B are stri
tly positive de�nite self-adjoint operatorson H−1, the resolvent of A is 
ompa
t and B is �
omparable� with A1/2, then

−AB will be se
torial and Re σ(−AB) > 0 (see [2, Theorem 1.1℄). Sin
e C∞
0is dense in L2 and L2 is dense in H−1, we dedu
e that A and B have densedomains.Lemma 2.1.(i) The operator B : H−1 → H−1 is stri
tly positive de�nite.(ii) The operator A : H−1 → H−1 is stri
tly positive de�nite.(iii) There exist two 
onstants ̺1 and ̺2, 0 < ̺1 < ̺2 < ∞, su
h that

(8) ̺1(A
1/2ϕ, ϕ)H−1 ≤ (Bϕ, ϕ)H−1 ≤ ̺1(A

1/2ϕ, ϕ)H−1for all ϕ ∈ L2.
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Proof. (i) For ϕ ∈ H1

0 , ϕ 6= 0, we have
(Bϕ, ϕ)H−1 =

δ√
ε
‖ϕ‖2 +

1√
ε
‖ϕ‖2

H−1 .Thus from the embedding estimate
‖ϕ‖H−1 ≤ K1‖ϕ‖ for any ϕ ∈ L2(9)we obtain

(Bϕ, ϕ)H−1 ≥
(

δ

K2
1

√
ε

+
1√
ε

)
‖ϕ‖2

H−1 > 0.(ii) Let ϕ ∈ D(A) and ϕ 6= 0. Using the Poin
aré inequality ‖∇ϕ‖2 ≥
λ1‖ϕ‖2, we obtain

(Aϕ, ϕ)H−1 = ‖(−∆)1/2ϕ‖2 ≥ C‖∇ϕ‖2 ≥ C1‖ϕ‖2 ≥ C2‖ϕ‖2
H−1 > 0.(iii) From the embedding estimate (9), for ϕ ∈ L2, we obtain

(Bϕ, ϕ)H−1 ≤ δ + K2
1√

ε
‖ϕ‖2 and (A1/2ϕ, ϕ)H−1 = (−∆ϕ, ϕ)H−1 = ‖ϕ‖2,so that inequality (8) holds with ̺1 := δ/

√
ε and ̺2 := (δ + K2

1 )/
√

ε.Our next goal will be to show that A and B are self-adjoint. To thisend, we introdu
e the di�erential operators S1 : H−1 ⊃ C4 ∩C2
0 → H−1 and

S2 : H−1 ⊃ C2 ∩ C0 → H−1, de�ned by
S1φ := (−∆)2φ, φ ∈ C4 ∩ C2

0 ,and
S2ϕ :=

1√
ε
(δ(−∆) + I)ϕ, ϕ ∈ C2 ∩ C0.It su�
es to show that Si is a symmetri
 operator in H−1, stri
tly positivede�nite for i = 1, 2. Then there exists a unique, self-adjoint operator Ai su
hthat Si ⊂ Ai (see [9, Se
tion 8.10℄). Sin
e C∞

0 is dense in L2 and L2 is densein H−1, we dedu
e that S1 and S2 have dense domains.Proposition 2.1. The operators Si, i = 1, 2, are symmetri
 and stri
tlypositive de�nite.Proof. We just prove that Si, i = 1, 2, are symmetri
, be
ause fromLemma 2.1 it follows that they are stri
tly positive de�nite. Integrating byparts, for φ, ϕ ∈ C4 ∩ C2
0 we obtain

(S1φ, ϕ)H−1 = (∆2(−∆)−1/2φ, (−∆)−1/2ϕ)

= ((−∆)−1/2φ, ∆2(−∆)−1/2ϕ) = (φ, S1ϕ)H−1 .
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Using integration by parts again, for φ, ϕ ∈ C2 ∩ C0 we get
(S2φ, ϕ)H−1 =

δ√
ε

((−∆)(−∆)−1/2φ, (−∆)−1/2ϕ) +
1√
ε

(φ, ϕ)H−1

=
δ√
ε

((−∆)−1/2φ, (−∆)(−∆)−1/2ϕ) +
1√
ε

(φ, ϕ)H−1

= (φ, S2ϕ)H−1 .We next show that the resolvent of −AB is 
ompa
t. Noti
e that for
u ∈ Y := {ϕ ∈ H−1 : ϕ ∈ D(A), Aϕ ∈ D(B), Bϕ ∈ D(A)} the operators Aand B 
ommute (i.e. ABu = BAu). It is easy to see that Y ⊂ H5.Lemma 2.2. If AB = BA then for all λ ∈ ̺(−AB) and su�
ientlysmooth fun
tions we have(i) (λ2I − λB + A)−1A = A(λ2I − λB + A)−1,(ii) (λ2I − λB + A)−1(λI − B) = (λI − B)(λ2I − λB + A)−1,(iii) A(λI − B) = (λI − B)A.Proof. If λ = 0 then the above equalities are obvious. Let λ 6= 0.(i) We �rst show that

(λ2I − λB + A)A = A(λ2I − λB + A).Indeed, from AB = BA we obtain
(λ2I − λB + A)A = λ2A − λBA + A2 = λ2A − λAB + A2

= A(λ2I − λB + A),hen
e
(λ2I − λB + A)−1A

= (λ2I − λB + A)−1A(λ2I − λB + A)(λ2I − λB + A)−1

= (λ2I − λB + A)−1(λ2I − λB + A)A(λ2I − λB + A)−1.(ii) This property is a dire
t 
onsequen
e of (i).(iii) This is obvious.Proposition 2.2. The resolvent of −AB is 
ompa
t.Proof. From the properties of A and B we infer that for λ ∈ ̺(−AB)the resolvent operator (λI + AB)−1 of −AB is given by the formula
(λI + AB)−1 =

[
(λI − B)(λ2I − λB + A)−1 −(λ2I − λB + A)−1

A(λ2I − λB + A)−1 λ(λ2I − λB + A)−1

]
.



222 M. B. KANIA
For (φ, ϕ)T ∈ H1

0 × H−1 we obtain
‖(λI + AB)−1[φ, ϕ]T ‖H3×H1

≤ δ√
ε
‖(λ2I − λB + A)−1φ‖H5 +

∣∣∣∣λ − 1√
ε

∣∣∣∣‖(λ2I − λB + A)−1φ‖H3

+ ‖(λ2I − λB + A)−1φ‖H5

+ ‖(λ2I − λB + A)−1ϕ‖H3 + |λ| ‖(λ2I − λB + A)−1ϕ‖H1

≤ δ√
ε
‖φ‖H1 +

∣∣∣∣λ − 1√
ε

∣∣∣∣‖φ‖H−1 + ‖φ‖H1 + ‖ϕ‖H−1 + |λ| ‖ϕ‖H−3

≤ C‖(φ, ϕ)T ‖H1×H−1 ,hen
e for any bounded subset G ⊂ H1
0 × H−1 the set (λI + AB)−1(G) isbounded in H3 × H1. Now, the 
ompa
tness of the embedding H3 × H1 ⊂

H1
0 × H−1 implies that −AB has 
ompa
t resolvent.3. Lo
al solutions and a priori estimates. Consider the semilinearCau
hy problem for the perturbed vis
ous Cahn�Hilliard equation





utt +
1√
ε

ut + ∆

(
∆u + f(u) − δ√

ε
ut

)
= 0, x ∈ Ω, t > 0,

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω,

u(t, x) = 0, ∆u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

(10)
where ε, δ ∈ (0, 1] , Ω is a nonempty, bounded, open subset of R

n for n ≤ 3,
∂Ω ∈ C4 and f ∈ C2(R, R). Then the problem (10) will be written in anabstra
t form in X := H1

0 × H−1 as
d

dt

[
u

v

]
= AB

[
u

v

]
+ F (u, v), t > 0,

[
u

v

]

|t=0

=

[
u0

v0

]
,(11)

where the operator AB is given by formula (7) and the fun
tion F : X1/2 :=
(H2 ∩ H1

0 ) × L2 → X is de�ned as(12) F (u, v) =

[
0

−∆(f(u))

]
.

Note that F is well de�ned. Indeed, taking (u, v)T ∈ X1/2, we have
‖F (u, v)‖X = ‖(−∆)f(u)‖H−1 ≤ C1‖∇f(u)‖ = C1‖f ′(u)|∇u| ‖.(13)Using the Hölder inequality and the embedding estimate(14) ‖u‖W 1,6 ≤ K2‖u‖H2 , n ≤ 3,
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we obtain
‖F (u, v)‖X ≤ C1

( \
Ω

|f ′(u)|3 dx
)1/3( \

Ω

|∇u|6 dx
)1/6

≤ C‖f ′(u)‖L∞‖u‖H2 .

Thus, from the assumption that f ∈ C2(R, R) and the estimate(15) ‖u‖L∞ ≤ K3‖u‖H2 , n ≤ 4,we dedu
e that the right-hand side of the last inequality is �nite.Theorem 3.1. Let (u0, v0) ∈ X1/2. Then there exists a unique lo
alsolution (u, v)T of the problem (11) in X, de�ned on the maximal interval ofexisten
e (0, τmax) and
(u, v)T ∈ C([0, τmax), X

1/2) ∩ C1((0, τmax), X) ∩ C((0, τmax), D(AB)).Proof. Sin
e −AB is a se
torial, positive operator, it su�
es to show that
F : X1/2 → X is Lips
hitz 
ontinuous on bounded subsets of X1/2 (see [7,Se
tion 4.2℄). Fix a bounded set G ⊂ X1/2 and let (u1, v1)

T , (u2, v2)
T ∈ G.Then we have

‖F (u1, v1) − F (u2, v2)‖X = ‖(−∆)(f(u1) − f(u2))‖H−1

≤ C1(‖f ′(u1)|∇(u1 − u2)| ‖ + ‖(f ′(u1) − f ′(u2))|∇u2| ‖).Using the Hölder inequality, 
ontinuity of f ′ and the fa
t that for any (u, v) ∈
G, thanks to (15), there is a 
onstant m su
h that ‖u‖L∞ ≤ m, we have
‖F (u1, v1) − F (u2, v2)‖X ≤ C1

( \
Ω

|f ′(u1)|2|∇(u1 − u2)|2 dx
)1/2

+ C1

( \
Ω

|f ′′(ζ)|3|u1 − u2|3 dx
)1/3

‖u2‖W 1,6

≤ sup
|s|≤m

|f ′(s)| ‖u1 − u2‖H1
0

+ sup
|s|≤m

|f ′′(s)| ‖u1 − u2‖L3‖u2‖W 1,6 .Consequently, from (14) and the assumption that f ∈ C2(R, R), we dedu
e
‖F (u1, v1) − F (u2, v2)‖X ≤ C(G)‖u1 − u2‖H2 .Throughout the remainder of this se
tion we need a 
ondition on thenonlinear term f weaker than (iv), that is,(16) |f(s)| ≤ C̃(1 + |s|q+1), s ∈ R,where q > 0 
an be arbitrarily large. Moreover, assume from now on thedissipativity 
onditions(17) ∃σ≥(2K2

1
+1)/(3

√
ε) ∃Cσ∈R+ ∀s∈R sf(s) − 4

3
F (s) ≤ −σs2 + Cσ,
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where K1 was introdu
ed in (9), and(18) ∃C∈R

∀s∈R F (s) :=

s\
0

f(z) dz ≤ C.Denote by 〈·, ·〉H−1×H1
0
the duality pairing between H−1 and H1

0 , and for
u, v ∈ H−1 set(19) [u, v] := 〈v, (−∆)−1u〉H−1×H1

0
.Our next goal will be to investigate the behavior of the Lyapunov typefun
tional Φ0 : X1/2 → R 
onne
ted with (10) and de�ned by(20) Φ0(u, v) = E0(u, v) +

δ

2
√

ε
‖u‖2 − 2

\
Ω

F (u) dx,where(21) E0(u, v) = ‖v‖2
H−1 + [u, v] +

1

2
√

ε
‖u‖2

H−1 + ‖u‖2
H1

0

,and derive uniform in time estimates of lo
al solutions to (11) in X. Noti
ethat the square root of E0 de�nes an equivalent norm on X. We infer from(16) that the fun
tional Φ0 is well de�ned. It is easy to 
he
k that it isbounded from below. Indeed, by (18) and (20), we obtain
Φ0(u, v) ≥ −2

\
Ω

F (u) dx ≥ −2C|Ω| =: −M0.(22)Now we estimate Φ0 from above.Lemma 3.1. Under the assumptions (17) and as long as a lo
al solution
(u, v)T to (11) exists, we have(23) Φ0(u(t), v(t)) ≤

(
Φ0(u0, v0) −

3

2
M1

)
e−2t/3 +

3

2
M1,where M1 is a positive 
onstant.Proof. Consider the equation formally obtained by applying (−∆)−1to (10), i.e.(24) (−∆)−1utt +

1√
ε

(−∆)−1ut + (−∆)u − f(u) +
δ√
ε

ut = 0.Multiplying (24) in L2 �rst by 2ut, then by u we obtain(25) d

dt

(
‖ut‖2

H−1 + ‖u‖2
H1

0

− 2
\
Ω

F (u) dx
)

+
2√
ε
‖ut‖2

H−1 +
2δ√

ε
‖ut‖2 = 0and

d

dt

(
[u, ut] +

1

2
√

ε
‖u‖2

H−1 +
δ

2
√

ε
‖u‖2

)
−‖ut‖2

H−1 + ‖u‖2
H1

0

−
\
Ω

f(u)u dx = 0.
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Adding these identities and re
alling (20), we get
d

dt
Φ0(u, ut) +

2 −√
ε√

ε
‖ut‖2

H−1 +
2δ√

ε
‖ut‖2 + ‖u‖2

H1
0

−
\
Ω

f(u)u dx = 0,but sin
e ε ≤ 1 and δ > 0, we have
d

dt
Φ0(u, ut) ≤ −‖ut‖2

H−1 − ‖u‖2
H1

0

+
\
Ω

f(u)u dx.(26)Further, we dedu
e from (20), (21) and [u, ut] ≤ 1
2‖u‖2

H−1 + 1
2‖ut‖2

H−1 that
2

3
Φ0(u, ut) ≤ ‖ut‖2

H−1 +
1 +

√
ε

3
√

ε
‖u‖2

H−1 +
2

3
‖u‖2

H1
0

(27)
+

1

3
√

ε
‖u‖2 − 4

3

\
Ω

F (u) dx.Adding (26) and (27), we get
d

dt
Φ0(u, ut) +

2

3
Φ0(u, ut) ≤

2K2
1 + 1

3
√

ε
‖u‖2 +

\
Ω

f(u)u dx − 4

3

\
Ω

F (u) dx.From the dissipativity 
ondition (17) it follows that
d

dt
Φ0(u, ut) +

2

3
Φ0(u, ut) ≤ Cσ|Ω| =: M1.(28)Integrating the last inequality over [0, t], we obtain (23).Corollary 3.1. Under the assumptions (16)�(18) and as long as a lo
alsolution (u, v)T to (11) exists, we have

‖(u, v)T‖X ≤ c(‖(u0, v0)
T ‖X1/2),where c : [0,∞) → [0,∞) is a lo
ally bounded fun
tion.Proof. From Lemma 3.1 we obtain(29) E0(u(t), v(t)) ≤

(
Φ0(u0, v0) −

3

2
M1

)
e−2t/3 +

3

2
M1 + M0.Sin
e u ∈ H2 
onditions (15) and (16) give

∣∣∣
\
Ω

uf(u) dx
∣∣∣ ≤ C̃(‖u‖L1 + ‖u‖q+2

Lq+2),hen
e from (17), re
alling that σ > 0, we have
−2
\
Ω

F (u) dx ≤ 3

2
(C̃‖u‖L1 + C̃‖u‖q+2

Lq+2 + M1),so that
Φ0(u, v) ≤ E0(u, v) +

δ

2
√

ε
‖u‖2 +

3

2
(C̃‖u‖L1 + C̃‖u‖q+2

Lq+2 + M1).
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From (15), (29) and the last inequality we dedu
e that
(30) E0(u(t), v(t))

≤
(

E0(u0, v0) +
δ

2
√

ε
‖u0‖2 +

3

2
C̃(‖u0‖L1 + ‖u0‖q+2

Lq+2)

)
e−2t/3

+
3

2
M1 + M0

≤ C1(‖(u0, v0)
T ‖2

H2×L2 + ‖u0‖2
H2 + ‖u0‖H2 + ‖u0‖q+2

H2 )e−2t/3

+
3

2
M1 + M0,sin
e the square root of E0 de�nes an equivalent norm on X.4. Global solutions. Under an additional growth restri
tion on thederivative of f lo
al solutions will now be extended to global ones.Theorem 4.1. Under assumptions (17), (18) and the growth restri
tion(31) |f ′(s)| ≤ Ĉ(1 + |s|q), s ∈ R,where q 
an be arbitrarily large if n = 1, 2, and 0 < q < 2 if n = 3, a lo
alsolution to (11) exists globally in time.Proof. Note that for every s ≥ 1/2q and r ≥ 1 if n = 1, 2, and for every

s ∈ [1/2q, 3/q] and r ∈ [1, 3) if n = 3, we have(32) ‖u‖L2sq ≤ K4‖u‖H1
0

for u ∈ H1
0 ,and

‖u‖W 1,2r ≤ Č‖u‖η
H2‖u‖1−η

H1
0

for u ∈ H2 ∩ H1
0 ,(33)with some η ∈ [0, 1). By (13), (31) we get

‖F (u, v)‖X ≤ C1

[( \
Ω

|∇u|2 dx
)1/2

+
( \

Ω

|u|2q|∇u|2 dx
)1/2]

.Using the Hölder inequality with s > max{1/2q, 1} if n = 1, 2, and s = 3/qif n = 3 (r = s/(s − 1)), we obtain
‖F (u, v)‖X ≤ C1(‖u‖H1

0
+ ‖u‖q

L2sq‖u‖W 1,2r).Consequently, from (32) and (33),
‖F (u, v)‖X ≤ C max {‖u‖H1

0
, ‖u‖q+1−η

H1
0

}(1 + ‖u‖η
H2)

≤ g(‖(u, v)T‖X)(1 + ‖(u, v)T‖η

X1/2
),where g : [0,∞) → [0,∞) is some nonde
reasing fun
tion, so that any lo
alsolution to (11) exists globally in time (see [3, Theorem 3.1.1℄).
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Denote by {T (t)} the C0 semigroup of global solutions to (11), whi
h isde�ned on X1/2 = (H2 ∩ H1
0 ) × L2 by the relation

T (t)(u0, v0) = (u(t), v(t)), t ≥ 0.Theorem 4.2. The semigroup {T (t)} has a global attra
tor A in X1/2.Proof. Sin
e the resolvent of AB is 
ompa
t, we know (see [3, Theo-rem 3.3.1℄) that the semigroup is 
ompa
t. If we show that {T (t)} is pointdissipative, then {T (t)} will have a global attra
tor in X1/2 (see [3, Corol-lary 1.1.6℄). To this end, it su�
es to prove (see [3, Corollary 4.1.4℄) that forall (u0, v0) ∈ X1/2,
lim sup

t→∞
‖(u, v)‖X ≤ 3

2
M1 + M0,where M0 and M1 are the 
onstants from (22) and (28), respe
tively. Notethat this inequality follows dire
tly from (30).4.1. Geometri
 stru
ture of the global attra
tor. Following [4, Se
tion1.6℄ we now study the stru
ture of the global attra
tor for the semigroup

{T (t)}. To this end, we dis
uss the properties of the Lyapunov type fun
-tional Φ1 : X1/2 → R de�ned as(34) Φ1(u, v) = ‖v‖2
H−1 + ‖u‖2

H1
0

− 2
\
Ω

F (u) dx.

Proposition 4.1.(i) Φ1 is bounded from below.(ii) Φ1 is 
ontinuous.(iii) For ea
h (u0, v0) ∈ X1/2 the fun
tion 0 < t 7→ Φ1(T (t)(u0, v0)) isnonin
reasing.(iv) If Φ1(T (t)(u0, v0)) = Φ1(u0, v0) for all t > 0 and some (u0, v0) ∈
X1/2 then T (t)(u0, v0) = (u0, v0) for all t > 0.Proof. (i) We show that Φ1, like Φ0, is bounded from below by −M0.Indeed, by (18), (34) and the de�nition of M0 (see (22)) we obtain

Φ1(u, v) ≥ −2
\
Ω

F (u) dx ≥ −M0.

(ii) Let (u, v), (un, vn) ∈ X1/2 be su
h that ‖(un − u, vn − v)‖X1/2 → 0as n → ∞, hen
e we may assume that ‖un‖L∞ , ‖u‖L∞ ≤ M . Sin
e
|Φ1(un, vn) − Φ1(u, v)| ≤ ‖vn − v‖H−1(‖vn‖H−1 + ‖v‖H−1)

+ ‖un − u‖H1
0
(‖un‖H1

0
+ ‖u‖H1

0
) + 2

\
Ω

|F (un) − F (u)| dx,
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it su�
es to show that TΩ |F (un) − F (u)| dx → 0 as n → ∞. From (16) wehave\

Ω

|F (un(x)) − F (u(x))| dx ≤
\
Ω

∣∣∣
un(x)\

0

f(s) ds −
u(x)\

0

f(s) ds
∣∣∣ dx

≤
\
Ω

∣∣∣
un(x)\
u(x)

|f(s)| ds
∣∣∣ dx ≤

\
Ω

∣∣∣
un(x)\
u(x)

(1 + |s|q) ds
∣∣∣ dx

≤ |Ω| sup
|s|≤M

(1 + |s|q)‖un − u‖L∞ .(iii) For (u0, v0) ∈ X1/2 from (25) and the de�nition of the semigroup
{T (t)}, we dedu
e that

d

dt
Φ1(u(t), ut(t)) = − 2√

ε
‖ut‖2

H−1 −
2δ√

ε
‖ut‖2 ≤ 0.(iv) Let (u0, v0) ∈ X1/2 be su
h that Φ1(T (t)(u0, v0)) = Φ1(u0, v0) for

t > 0. Then from (25) we obtain
0 =

d

dt
Φ1(T (t)(u0, v0)) = − 2√

ε
‖ut‖2

H−1 −
2δ√

ε
‖ut‖2,but the left hand side is independent of t, hen
e ‖ut‖H−1 = ‖ut‖ = 0, sothat ut(t, x) = 0 a.e. for t > 0.Let N be the set of equilibrium points for the semigroup {T (t)}, i.e.

N = {(ϕ, φ) ∈ X1/2 : T (t)(ϕ, φ) = (ϕ, φ) for t ≥ 0}.We de�ne the unstable manifold M(N ) emanating from the set N as theset of all (u0, v0) ∈ X1/2 su
h that there exists a full traje
tory γ =
{(u(t), v(t)) : t ∈ R} with the properties

(u(0), v(0)) = (u0, v0) and lim
t→−∞

distX1/2((u(t), v(t)),N ) = 0.Proposition 4.2. We have A = M(N ). Moreover , the global attra
tor
onsists of full traje
tories γ = {(u(t), v(t)) : t ∈ R} su
h that
lim
t→∞

distX1/2((u(t), v(t)),N ) = 0 and lim
t→−∞

distX1/2((u(t), v(t)),N ) = 0.Proof. This follows dire
tly from [4, Theorem 6.1℄ and Proposition 4.1.
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