COLLOQUIUM MATHEMATICUM

BUTLER GROUPS SPLITTING OVER A BASE ELEMENT

BY
CLORINDA DE VIVO and CLAUDIA METELLI (Napoli)

Abstract

We characterize a particular kind of decomposition of a Butler group that is the general case for Butler $B(1)$-groups; and exhibit a decomposition of a $B(2)$-group which is not of that kind.

Introduction. All groups in the following are torsionfree Abelian of finite rank. A Butler $B(n)$-group G is a torsionfree Abelian group that is the sum of $m \geq n$ rank 1 groups, $G=\left\langle g_{1}\right\rangle_{*}+\cdots+\left\langle g_{m}\right\rangle_{*}$ (where $*$ indicates pure closure), subject to n independent relations involving all of the m rank 1 groups. $B(0)$ is the class of completely decomposable groups; in the following we suppose $n \geq 1$. $B(1)$-groups have been amply studied (for history, see [1]), using, as a basic equivalence, quasi-isomorphism [6] instead of isomorphism; this is also what we do in this paper; in fact, we will write isomorphic, indecomposable, direct decomposition,... instead of "quasi-isomorphic, strongly indecomposable, quasi-direct decomposition,...".

Direct decompositions of $B(1)$-groups were studied in [7], [3], and many other papers; when a $B(1)$-group G splits, it always has a decomposition $G=G^{\prime} \oplus G^{\prime \prime}$ such that all but one of the base elements g_{1}, \ldots, g_{m} belong either to G^{\prime} or to $G^{\prime \prime}$; we call this a decomposition over a base element. This is not the case in general: in Section 2 we give a necessary and sufficient condition for a Butler $B(n)$-group to split over a base element. The condition consists of two parts, mirroring the double nature of Butler groups: an ordertheoretical one, which is the one that is necessary and sufficient in the $B(1)$ case, and guarantees $G=G^{\prime}+G^{\prime \prime}$; and an additional linear one, ensuring that $G^{\prime} \cap G^{\prime \prime}=0$. In Section 3 we give two examples showing a decomposition of a $B(2)$-group that does not occur over a base element.

1. Notation and first remarks. Lower case Greek letters will denote rational numbers. We will use extensively the notation and tools developed in our previous papers on $B(1)$-groups (see in particular [2], [3]); we recall here some of them.
[^0]By type we mean the isomorphism type of an additive subgroup of \mathbb{Q}. $\mathbb{T}(\vee, \wedge)$ denotes the lattice of all types, with the added maximum ∞ for the type of the 0 group; if w is an element of a group $W, t_{W}(w)$ denotes the type of w in W.

Throughout, $I=\{1, \ldots, m\}$; partitions of I are ordered by "bigger $=$ coarser"; blocks of partitions are nonempty by definition.

If w_{1}, \ldots, w_{m} are elements of a group W and $E \subseteq I$, we define

$$
\begin{gathered}
w_{E}=\sum\left\{w_{i} \mid i \in E\right\}, \quad \text { with } \quad w_{\emptyset}=0, \\
W_{E}=\left\langle w_{i} \mid i \in E\right\rangle_{*}=\sum\left\{\left\langle w_{i}\right\rangle_{*} \mid i \in E\right\}+\left\langle w_{E}\right\rangle_{*}
\end{gathered}
$$

(the last equality is proved in [5]).
If $W=\left\langle w_{1}\right\rangle_{*}+\cdots+\left\langle w_{m}\right\rangle_{*}$, and $w=\beta_{1} w_{C_{1}}+\cdots+\beta_{h} w_{C_{h}}$ with $\beta_{i} \neq \beta_{j}$ if $i \neq j$, then $\mathcal{C}=\left\{C_{1}, \ldots, C_{h}\right\}$ will be called a partition of I into equalcoefficient blocks for w.

In our $B(n)$-group

$$
G=\left\langle g_{1}\right\rangle_{*}+\cdots+\left\langle g_{m}\right\rangle_{*}
$$

the elements g_{1}, \ldots, g_{m} are the base elements, and are fixed throughout; setting $t_{i}=t_{G}\left(g_{i}\right)$ for all $i \in I$, the t_{i} are the base types of $G ;\left(t_{1}, \ldots, t_{m}\right)$ is the type-base of G.

It is not difficult to show (see also [5]) that there is no loss of generality in supposing that the relations are of the form

$$
\begin{aligned}
g_{I}=g_{1}+\cdots+g_{m} & =0 \quad(\text { the first, or diagonal, relation) }, \\
\alpha_{2,1} g_{A_{1}}+\cdots+\alpha_{2, k} g_{A_{k}} & =0 \\
\alpha_{3,1} g_{A_{1}}+\cdots+\alpha_{3, k} g_{A_{k}} & =0 \\
& \vdots \\
\alpha_{n, 1} g_{A_{1}}+\cdots+\alpha_{n, k} g_{A_{k}} & =0
\end{aligned}
$$

where each $A_{j} \subseteq I$ collects some indices of generators with equal coefficients, and moreover if $j \neq j^{\prime}=1, \ldots, k$ there is at least one row $r=2, \ldots, n$ such that $\alpha_{r, j} \neq \alpha_{r, j^{\prime}}$. Clearly, $n \leq k \leq m$. The ensuing partition

$$
\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}
$$

of I is the basic partition of (the given base of) G; its blocks A_{j} are called the sections of G. Note that if $0=\beta_{1} g_{C_{1}}+\cdots+\beta_{h} g_{C_{h}}$ with $\beta_{i} \neq \beta_{j}$ if $i \neq j$ then $\mathcal{C}=\left\{C_{1}, \ldots, C_{h}\right\} \geq \mathcal{A}$. Replacing each nondiagonal relation with the difference

$$
\alpha_{r, 1} g_{A_{1}}+\cdots+\alpha_{r, k} g_{A_{k}}-\alpha_{r, 1}\left(g_{1}+\cdots+g_{m}\right)=0
$$

we may suppose that $\alpha_{r, 1}=0$ for all $r=2, \ldots, n$. Then the matrix

$$
M=\left[\begin{array}{ccc}
\alpha_{2,2} & \cdots & \alpha_{2, k} \\
\cdots & \ddots & \cdots \\
\alpha_{n, 2} & \cdots & \alpha_{n, k}
\end{array}\right]
$$

a reduced matrix of G, is of rank $n-1$.
2. Splitting over a base element. For completeness, let us first sketch the situation of a nontrivial splitting $G=G^{\prime} \oplus G^{\prime \prime}$ in which all of the base elements belong either to G^{\prime} or to $G^{\prime \prime}$; the conditions will turn out to be only linear. Note that this is, in fact, the case when we consider the direct sum of a $B\left(n^{\prime}\right)$-group G^{\prime} and a $B\left(n^{\prime \prime}\right)$-group $G^{\prime \prime}$, and choose for a base the union of the two bases and for the linear system the union of the two systems; in this case the $B(n)$-group G will be called degenerate.

Examining necessary conditions, setting $E^{\prime}=\left\{i \in I \mid g_{i} \in G^{\prime}\right\}, E^{\prime \prime}=$ $\left\{i \in I \mid g_{i} \in G^{\prime \prime}\right\}$, we have $G^{\prime}=G_{E^{\prime}}\left(=\sum\left\{\left\langle g_{i}\right\rangle_{*} \mid i \in E\right\}+\left\langle g_{E}\right\rangle_{*}\right)$, $G^{\prime \prime}=G_{E^{\prime \prime}}$. The diagonal relation $g_{I}=g_{E^{\prime}}+g_{E^{\prime \prime}}=0$ provides a common element to the two summands, hence we have the two relations $g_{E^{\prime}}=-g_{E^{\prime \prime}}=0$; in particular, this yields $\left\{E^{\prime}, E^{\prime \prime}\right\} \geq \mathcal{A}$. Analogously, each nondiagonal relation in G yields two relations, one in $G_{E^{\prime}}$ and one in $G_{E^{\prime \prime}}$, therefore among the n relations thus obtained there will be r^{\prime} independent ones in $G_{E^{\prime}}$, and $r^{\prime \prime}$ in $G_{E^{\prime \prime}}$, with $r^{\prime}+r^{\prime \prime}=n$. Replacing the initial relations with these makes the matrix M block-diagonal, where the columns of one block are indexed by j 's such that $A_{j} \subseteq E^{\prime}$, and those of the other by j 's such that $A_{j} \subseteq E^{\prime \prime}$. Conversely, if the matrix M of G is (equivalent to) a block-diagonal one, with E^{\prime} resp. $E^{\prime \prime}$ gathering the indices of base elements involved in the first resp. second block, it is not difficult to prove that $G=G_{E^{\prime}} \oplus G_{E^{\prime \prime}}$. Note that this situation cannot occur for $B(1)$-groups; for more about degenerate $B(2)$-groups see [4]. Thus we have

Proposition 2.1. A decomposition in which all base elements belong to some summand is possible if and only if the matrix is equivalent to a block-diagonal one, that is, if and only if the group is degenerate.

An interesting observation can be drawn from the above considerations. Recall that a $B(1)$-group G is decomposable [7] if and only if there exist a subset E of I and an index $i \in I$ with $i \notin E$ such that $t_{i} \leq t_{G}\left(g_{E}\right)$. Necessity derives from the following two facts:
I) If $\operatorname{rk} G\left(t_{i}\right)=1$ for all $i \in I$, then G is indecomposable. (The proof consists in noting that if G did decompose then each base element would have to belong to some summand, an impossibility, as noted above.) De-
composability then follows from the existence of elements of maximal type different from (not proportional to) base elements.
II) The maximal types of G are of the form $t_{G}\left(g_{E}\right)$ for some $E \subseteq I$.

Neither of these two facts holds any more if G is a $B(n)$-group with $n \geq 2$: I) has been examined above, II) is shown to fail in Example 1. Therefore, while for $n \geq 2$ a condition $t_{i} \leq t_{G}\left(g_{E}\right)$ may stand a chance among sufficient conditions, for necessary conditions we must look elsewhere.

Let now G split over a base element, that is, $G=G^{\prime} \oplus G^{\prime \prime}$, and for some $i^{\prime} \in I$ and all $i \in I, i \neq i^{\prime}, g_{i}$ belongs either to G^{\prime} or to $G^{\prime \prime}$. There is no loss of generality in supposing

$$
i^{\prime}=1 \in A_{1}
$$

then for

$$
E=\left\{i \in I \mid g_{i} \in G^{\prime}\right\}, \quad F=\left\{i \in I \mid g_{i} \in G^{\prime \prime}\right\}
$$

we have $I=\{1\} \cup E \cup F$, a disjoint union.
Observe that in the above notation $G_{E} \leq_{*} G^{\prime}$ and $G_{F} \leq_{*} G^{\prime \prime}$; the diagonal relation $g_{1}=-g_{E}-g_{F}$ yields $\left(G_{E}+G_{F}\right)_{*}=G$; then for the splitting we need $G_{E}=G^{\prime}$ and $G_{F}=G^{\prime \prime}$; that is, $G_{E}+G_{F}=G$ and $G_{E} \cap G_{F}=0$.

Lemma 2.2. If $I=\{1\} \cup E \cup F$ is a disjoint union, then $t_{1}=t_{G}\left(g_{E}\right) \wedge$ $t_{G}\left(g_{F}\right)$ if and only if $t_{1} \leq t_{G}\left(g_{E}\right)$.

Proof. One way is obvious; the other follows from the fact that, if $t_{1}=$ $t_{G}\left(g_{1}\right) \leq t_{G}\left(g_{E}\right)$, then $t_{1} \leq t_{G}\left(g_{E}+g_{1}\right)=t_{G}\left(g_{F}\right)$; but $g_{1}=-g_{E}-g_{F}$ implies $t_{1} \geq t_{G}\left(g_{E}\right) \wedge t_{G}\left(g_{F}\right)$.

Clearly, a necessary condition for $G=G_{E} \oplus G_{F}$ is $t_{1} \leq t_{G}\left(g_{E}\right)$; moreover from Lemma 2.2 we have

Proposition 2.3. If $I=\{1\} \cup E \cup F$ is a disjoint union, then $t_{1} \leq$ $t_{G}\left(g_{E}\right)$ implies $G=G_{E}+G_{F}$.

Proof. By Lemma 2.2, we have $t_{1}=t_{G}\left(g_{E}\right) \wedge t_{G}\left(g_{F}\right)$, hence $\left\langle g_{1}\right\rangle_{*}$ is contained in $G_{E}+G_{F}$, which then equals G.

Consider now the condition $G_{E} \cap G_{F}=0$. It does not involve the diagonal relation; but if we set $E_{j}=E \cap A_{j}$ and $F_{j}=F \cap A_{j}$ for all $j=1, \ldots, k$, then any other relation (with zero as the first coefficient)

$$
\alpha_{r, 2} g_{A_{2}}+\cdots+\alpha_{r, k} g_{A_{k}}=0
$$

may yield a nonzero common element $g=\alpha_{r, 2} g_{E_{2}}+\cdots+\alpha_{r, k} g_{E_{k}}=-\left(\alpha_{r, 2} g_{F_{2}}\right.$ $+\cdots+\alpha_{r, k} g_{F_{k}}$, unless
(*) either E or F is contained in A_{1}.
If $(*)$ holds, then $G_{E} \cap G_{F}=0$: for if, say, $E=E_{1}$, a common element $0 \neq \sum\left\{\beta_{i} g_{i} \mid i \in E_{1}\right\}=\sum\left\{\gamma_{i} g_{i} \mid i \in F\right\}$ would yield $0=\sum\left\{\beta_{i} g_{i} \mid i \in E_{1}\right\}$
$-\sum\left\{\gamma_{i} g_{i} \mid i \in F\right\}$, absurd since this element has a partition that is not $\geq \mathcal{A}$ (it splits A_{1}). Note that ($*$) obviously always holds in a $B(1)$-group, where $I=A_{1}$.

If ($*$) does not hold, the above element $g \in G_{E} \cap G_{F}$ is certainly nonzero if there is a $j \in\{2, \ldots, k\}$ such that both E_{j} and F_{j} are nonempty, for then g has a partition that is not $\geq \mathcal{A}$. Therefore a first necessary condition for $G_{E} \cap G_{F}=0$ is that, for every $j=2, \ldots, k$, one of E_{j}, F_{j} be empty; that is, each A_{j} with $j \neq 1$ must be contained either in E or in F.

Let then without loss of generality $A_{2}, \ldots, A_{s} \subseteq E, A_{s+1}, \ldots, A_{k} \subseteq F$ with $2 \leq s \leq k$. As above, each relation except the diagonal one provides an element $a_{r} \in G_{E} \cap G_{F}$ with $2 \leq r \leq n$,

$$
a_{r}=\sum\left\{\alpha_{r, j} g_{A_{j}} \mid 2 \leq j \leq s\right\}=\sum\left\{\alpha_{r, j} g_{A_{j}} \mid s+1 \leq j \leq k\right\}
$$

To get $G_{E} \cap G_{F}=0$ we need $a_{r}=0$ for all $r=2, \ldots, n$. At this point we can already draw a conclusion for $n=2$: the unique second relation does not allow $a_{2}=0$ for any choice of E and F, therefore $(*)$ is a necessary condition.

For $n>2$ the conditions $a_{r}=0$ for all $r=2, \ldots, n$ yield a set of $2(n-1)$ relations, among which there will be $n-1$ independent ones; then the matrix M can be replaced by a block-diagonal matrix

$$
M^{\prime}=\left[\begin{array}{cc}
M(E) & 0 \\
0 & M(F)
\end{array}\right]
$$

where (after possibly re-ordering rows) the columns of $M(E)$ are indexed by j 's such that $A_{j} \subseteq E$, and those of $M(F)$ are indexed by j 's such that $A_{j} \subseteq F$.

We can now reach a conclusion:
Theorem 2.4. Let $G=\left\langle g_{1}\right\rangle_{*}+\cdots+\left\langle g_{m}\right\rangle_{*}$ be a $B(n)$-group. Then G splits over one of its base elements - without loss of generality over g_{1} —if and only if there is a partition $\{\{1\}, E, F\}$ of I such that
(a) $t_{1} \leq t_{G}\left(g_{E}\right)$,
(b) one of the following two conditions holds:
$(*)$ one of E, F is contained in A_{1};
$(* *)$ a reduced matrix of G is block-diagonal of the form

$$
M=\left[\begin{array}{cc}
M(E) & 0 \\
0 & M(F)
\end{array}\right]
$$

with the above notation.
In particular: if G is a $B(1)$-group, then (a) is also sufficient; if G is $B(2)$, then G splits over t_{1} if and only if (a) and (*) hold.

Proof. Necessity has been proved above. For sufficiency, note that Proposition 2.3(a) implies $G=G_{E}+G_{F}$. Now if $(*)$ holds, we proved above that $G_{E} \cap G_{F}=0$. If $(* *)$ holds, let $g \in G_{E} \cap G_{F}$; then $g=\sum\left\{\beta_{i} g_{i} \mid i \in E\right\}=$ $\sum\left\{\beta_{j} g_{j} \mid j \in F\right\}$, hence $\sum\left\{\beta_{i} g_{i} \mid i \in E\right\}-\sum\left\{\beta_{j} g_{j} \mid j \in F\right\}=0$. This relation is then a linear combination of nondiagonal basic relations, which by $(* *)$ separate into those indexed in E and those indexed in F. This in turn implies that each of the two terms is 0 , that is, $g=0$.
3. Examples. With our definitions, not all m-tuples of types are bases of $B(n)$-groups; "regularity" must be imposed [5], and all our examples are checked for it. We will use the notation of [2]-[5], where a type with all zeros but a finite number of infinities is denoted by replacing each infinity by its prime and each zero by a dot, while eliminating infinite tails of zeros [3]; e.g.

$$
\sigma=00 \infty \infty 0 \ldots \text { zeros } \ldots=\cdot \cdot 57=\cdot \cdot p q
$$

Example 1 (of a type which is maximal but not of the form $t_{G}\left(g_{E}\right)$). Let $m=8, n=2, k=4, \mathcal{A}=\{\{1,2\},\{3,4\},\{5,6\},\{7,8\}\}$, with relations

$$
g_{1}+\cdots+g_{8}=0, \quad g_{\{3,4\}}-2 g_{\{5,6\}}+g_{\{7,8\}}=0
$$

Let the base types be:

A_{1}	$\begin{aligned} t_{1} & =\cdots \\ t_{2} & =\cdots \end{aligned}$
A_{2}	$\begin{aligned} t_{3} & =p_{1} \cdot p_{3} \\ t_{4} & =p_{1} p_{2} . \end{aligned}$
A_{3}	$\begin{aligned} & t_{5}=p_{1} \cdot p_{3} \\ & t_{6}=\cdot p_{2} p_{3} \end{aligned}$
A_{4}	$\begin{aligned} & t_{7}=p_{1} p_{2} . \\ & t_{8}=\cdot p_{2} p_{3} \end{aligned}$

The element $g=-2 g_{3}-3 g_{4}+4 g_{5}-3 g_{7}=-g_{4}-4 g_{6}-g_{7}+2 g_{8}=g_{3}-$ $2 g_{5}-6 g_{6}+3 g_{8}$ (obtained by adding $2\left(g_{\{3,4\}}-2 g_{\{5,6\}}+g_{\{7,8\}}\right)$ resp. $3\left(g_{\{3,4\}}-\right.$ $\left.2 g_{\{5,6\}}+g_{\{7,8\}}\right)$) is clearly divisible by p_{1}, p_{2} and p_{3}, hence has maximum type, while a computation shows that no element of the form g_{E} reaches the maximum type.

Example 2 (showing that, in the above notation, $t_{1} \leq t_{G}\left(g_{E}\right)$ does not imply $t_{1} \leq t_{G}\left(g_{E_{1}}\right)$, which proves that condition (b) cannot be eliminated). Let $m=7, n=2$, with relations

$$
\begin{gathered}
g_{1}+\cdots+g_{7}=0 \\
\alpha_{1} g_{\{1,2,3\}}+\alpha_{2} g_{4}+\alpha_{3} g_{5}+\alpha_{4} g_{6}+\alpha_{5} g_{7}=0
\end{gathered}
$$

with pairwise different coefficients, thus $\mathcal{A}=\{\{1,2,3\},\{4\},\{5\},\{6\},\{7\}\}$; let $E=\{2,4,5\}$ (thus $E_{1}=\{2\}$), $F=\{3,6,7\}$;

	$t_{1}=p q$
A_{1}	$t_{2}=\cdot q$
	$t_{3}=p$.
A_{2}	$t_{4}=\cdot q$
A_{3}	$t_{5}=\cdot q$
A_{4}	$t_{6}=p$.
A_{5}	$t_{7}=p$.

Here $t_{1}=p q=t_{G}\left(g_{E}\right)>t_{G}\left(g_{E_{1}}\right)=t_{2}$; in fact we have $0 \neq\left(\alpha_{2}-\alpha_{1}\right) g_{4}+$ $\left(\alpha_{3}-\alpha_{1}\right) g_{5}=\left(\alpha_{1}-\alpha_{4}\right) g_{6}+\left(\alpha_{1}-\alpha_{5}\right) g_{7} \in G_{\{2,4,5\}} \cap G_{\{3,6,7\}}$.

We now give two examples of $B(2)$-group-splittings that do not occur over a single base element, showing that our study does not exhaust the decomposition problem.

Example 3. Let $n=2, I=\{1, \ldots, 8\}, \mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}=\{\{1,2,3\}$, $\{4,5\},\{6,7,8\}\} ; E=\{3,5,7\}, F=\{2,4,6\} ; E_{j}=E \cap A_{j}, F_{j}=F \cap A_{j}$ for $j=1,2,3$; with the two relations $g_{I}=0, g_{A_{1}}+\alpha_{2} g_{A_{2}}=0$, with $\alpha_{2} \neq 0,1$.

Let

	$t_{1}=p^{\prime} p^{\prime \prime}$	$g_{1}^{\prime}=g_{1}+g_{2}+\alpha_{2} g_{4}$,
A_{1}	$t_{2}=\cdot p^{\prime \prime} \cdot q^{\prime \prime}$	$g_{1}^{\prime \prime}=g_{1}+g_{3}+\alpha_{2} g_{5}$,
	$t_{3}=p^{\prime} \cdot q^{\prime}$.	$g_{8}^{\prime}=\left(\alpha_{2}-1\right) g_{5}-g_{7}$,
A_{2}	$\begin{array}{lr} t_{4}=\cdot p^{\prime \prime} \cdot q^{\prime \prime} \\ t_{5}=p^{\prime \prime} \cdot q^{\prime} \\ \hline \end{array}$	$g_{8}^{\prime \prime}=\left(\alpha_{2}-1\right) g_{4}-g_{6}$,
A_{3}	$t_{6}=\cdot p^{\prime \prime} \cdot q^{\prime \prime}$	
	$t_{7}=p^{\prime} \cdot q^{\prime}$	$G^{\prime}=\left\langle g_{1}^{\prime}\right\rangle_{*}+G_{E}+\left\langle g_{8}^{\prime}\right\rangle_{*}$
	$t_{8}=\cdot \cdot q^{\prime} q^{\prime \prime}$	$G^{\prime \prime}=\left\langle g_{1}^{\prime \prime}\right\rangle_{*}+G_{F}+\left\langle g_{8}^{\prime \prime}\right\rangle_{*}$.

Here $G=G^{\prime} \oplus G^{\prime \prime}$, where G^{\prime} and $G^{\prime \prime}$ are $B(2)$-groups with relations $g_{1}^{\prime}+$ $g_{E}+g_{8}^{\prime}=0=g_{1}^{\prime \prime}+g_{F}+g_{8}^{\prime \prime}$ (the diagonal relations) and $g_{1}^{\prime}+g_{E_{1}}+\alpha_{2} g_{E_{2}}=$ $0=g_{1}^{\prime \prime}+g_{F_{1}}+\alpha_{2} g_{F_{2}}$ (the secondary relations). The relations ensure that the sum of the ranks of G^{\prime} and $G^{\prime \prime}$ does not exceed the rank of G; we will have a direct sum if we show that the types t_{1} of $g_{1}=g_{1}^{\prime}+g_{1}^{\prime \prime}$ and t_{8} of $g_{8}=g_{8}^{\prime}+g_{8}^{\prime \prime}$ are fully recovered in $G^{\prime} \oplus G^{\prime \prime}$. But this is the case because $g_{1}^{\prime}=g_{1}+g_{2}+\alpha_{2} g_{4}=g_{1}^{\prime}-\left(g_{A_{1}}+\alpha_{2} g_{A_{2}}\right)=-\left(g_{3}+g_{5}\right)$ has the prime $p^{\prime \prime}$ in its first form and p^{\prime} in its second form, thus completing $t_{1}=p^{\prime} p^{\prime \prime}$; and analogously does $g^{\prime \prime}$. The same works for g_{8}^{\prime} and $g_{8}^{\prime \prime}$ with respect to $q^{\prime}, q^{\prime \prime}$ and $t_{8}=q^{\prime} q^{\prime \prime}$.

In order to see that G does not split over any of its base elements, it is enough to verify that no t_{i} is $\leq t_{E}$ with E a subset of the section A_{j} containing i, with E disjoint from $\{i\}$. This is clear if E is a singleton. If not, then we are left with the sections A_{1} and A_{3}, whose situation is analogous. Starting with $i=1$, we have $t_{1}=p^{\prime} p^{\prime \prime}$; to get p^{\prime} to divide the
type of

$$
\begin{aligned}
g_{E} & =g_{\{2,3\}}=g_{\{2,3\}}+\lambda g_{I}+\mu\left(g_{\{1,2,3\}}+\alpha_{2} g_{\{4,5\}}\right) \\
& =(\lambda+\mu) g_{1}+(\lambda+\mu+1) g_{\{2,3\}}+\left(\lambda+\mu \alpha_{2}\right) g_{\{4,5\}}+\lambda g_{\{6,7,8\}}
\end{aligned}
$$

we must determine λ, μ in such a way as to eliminate $g_{2}, g_{4}, g_{6}, g_{8}$, that is,

$$
\lambda+\mu+1=\lambda+\mu \alpha_{2}=\lambda=0,
$$

which is impossible. For $i=2$ we have $t_{2}=p^{\prime \prime} q^{\prime \prime}$; for $p^{\prime \prime}$ to divide the type of

$$
\begin{aligned}
g_{E} & =g_{\{1,3\}}=g_{\{1,3\}}+\lambda g_{I}+\mu\left(g_{\{1,2,3\}}+\alpha_{2} g_{\{4,5\}}\right) \\
& =(\lambda+\mu) g_{2}+(\lambda+\mu+1) g_{\{1,3\}}+\left(\lambda+\mu \alpha_{2}\right) g_{\{4,5\}}+\lambda g_{\{6,7,8\}}
\end{aligned}
$$

we must determine λ, μ in such a way as to eliminate $g_{3}, g_{5}, g_{7}, g_{8}$, which is impossible; the same happens for $i=3$.

Example 4. Let $n=2, m=k=6, \mathcal{A}=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\} ;$ $E=\{2,3\}, F=\{4,5\} ; E_{j}=E \cap A_{j}, F_{j}=F \cap A_{j}$ for $j=1, \ldots, 6$; with the two relations $g_{I}=0, \alpha_{2} g_{2}+\alpha_{3} g_{3}+\alpha_{4} g_{4}+\alpha_{5} g_{5}+\alpha_{6} g_{6}=0$, with coefficients nonzero and pairwise different.

Let

A_{1}	$t_{1}=p_{1} q_{1} \cdot \cdot$
A_{2}	$t_{2}=p_{1} \cdot p_{6} \cdot$
A_{3}	$t_{3}=p_{1} \cdot p_{6} \cdot$
A_{4}	$t_{4}=\cdot q_{1} \cdot q_{6}$
A_{5}	$t_{5}=\cdot q_{1} \cdot q_{6}$
A_{6}	$t_{6}=\cdot \cdot p_{6} q_{6}$

$$
\begin{gathered}
g_{1}^{\prime}=\alpha_{6}^{-1}\left(\left(\alpha_{2}-\alpha_{6}\right) g_{2}+\left(\alpha_{3}-\alpha_{6}\right) g_{3}\right), \\
g_{1}^{\prime \prime}=\alpha_{6}^{-1}\left(\left(\alpha_{4}-\alpha_{6}\right) g_{4}+\left(\alpha_{5}-\alpha_{6}\right) g_{5}\right), \\
g_{6}^{\prime}=-\alpha_{6}^{-1}\left(\alpha_{2} g_{2}+\alpha_{3} g_{3}\right), \\
g_{6}^{\prime \prime}=-\alpha_{6}^{-1}\left(\alpha_{4} g_{4}+\alpha_{5} g_{5}\right), \\
G^{\prime}=\left\langle g_{1}^{\prime}\right\rangle_{*}+G_{E}+\left\langle g_{6}^{\prime}\right\rangle_{*}, \\
G^{\prime \prime}=\left\langle g_{1}^{\prime \prime}\right\rangle_{*}+G_{F}+\left\langle g_{6}^{\prime \prime}\right\rangle_{*} .
\end{gathered}
$$

We have $\alpha_{6} g_{1}^{\prime}=\left(\alpha_{2}-\alpha_{6}\right) g_{2}+\left(\alpha_{3}-\alpha_{6}\right) g_{3}=-\alpha_{6}\left(g_{2}+g_{3}+g_{6}\right)=$ $-\alpha_{6}\left(g_{1}+g_{4}+g_{5}\right)$, hence $t_{G}\left(g_{1}^{\prime}\right) \geq p_{1} q_{1} p_{6}$; analogously, $t_{G}\left(g_{1}^{\prime \prime}\right) \geq p_{1} q_{1} q_{6}$; $t_{G}\left(g_{6}^{\prime}\right) \geq p_{1} p_{6} q_{6} ; t_{G}\left(g_{6}^{\prime \prime}\right) \geq q_{1} p_{6} q_{6}$. We thus recover the types of $g_{1}=g_{1}^{\prime}+g_{1}^{\prime \prime}$ and of $g_{6}=g_{6}^{\prime}+g_{6}^{\prime \prime}$, hence $G^{\prime}+G^{\prime \prime}=G$. Now, G^{\prime} and $G^{\prime \prime}$ are $B(2)$-groups with relations $g_{1}^{\prime}+g_{E}+g_{6}^{\prime}=0=g_{1}^{\prime \prime}+g_{F}+g_{6}^{\prime \prime}$ (the diagonal relations) and $\alpha_{6} g_{1}^{\prime}-\left(\alpha_{2}-\alpha_{6}\right) g_{E_{2}}-\left(\alpha_{3}-\alpha_{6}\right) g_{E_{3}}=0=\alpha_{6} g_{1}^{\prime \prime}-\left(\alpha_{4}-\alpha_{6}\right) g_{F_{4}}-\left(\alpha_{5}-\alpha_{6}\right) g_{F_{5}}$ (the secondary relations). The relations ensure that the sum of the ranks of G^{\prime} and $G^{\prime \prime}$ does not exceed the rank of G, hence the splitting is proved.

REFERENCES

[1] D. M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books Math., Springer, New York, 2000.
[2] C. De Vivo and C. Metelli, Finite partition lattices and Butler gruops, Comm. Algebra 27 (1999), 1571-1590.
[3] C. De Vivo and C. Metelli, Decomposing B(1)-groups: an algorithm, ibid. 30 (2002), 5621-5637.
[4] -, 一, On degenerate B(2)-groups, Houston J. Math. 32 (2006), 633-649.
[5] -, 一, The typeset of a Butler group, preprint.
[6] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, London, 1973.
[7] L. Fuchs and C. Metelli, On a class of Butler groups, Manuscripta Math. 71 (1991), 1-28.

Dipartimento di Matematica e Applicazioni
Università Federico II di Napoli
80100 Napoli, Italy
E-mail: clorinda.devivo@dma.unina.it
cmetelli@math.unipd.it

> Received 4 May 2006;
> revised 9 March 2007

[^0]: 2000 Mathematics Subject Classification: Primary 20Kxx.
 Key words and phrases: Butler group, $B(1)$-group, $B(2)$-group, direct decompositions, base change, partition lattice, finite algorithm.

