COLLOQUIUM MATHEMATICUM

VOL. 109 2007 NO. 2
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Abstract. We prove that the study of the category C-Comod of left comodules over
a K-coalgebra C' reduces to the study of K-linear representations of a quiver with re-
lations if K is an algebraically closed field, and to the study of K-linear representa-
tions of a K-species with relations if K is a perfect field. Given a field K and a quiver
Q@ = (Qo, Q1), we show that any subcoalgebra C' of the path K-coalgebra K”(Q containing
K"Qo & K”Q1 is the path coalgebra K7(Q,B) of a profinite bound quiver (Q,B), and
the category C-Comod of left C'-comodules is equivalent to the category Repﬁ?” (Q,8B)
of locally nilpotent and locally finite K-linear representations of () bound by the profinite
relation ideal 8 C KQ.

Given a K-species M = (F},;M;) and a relation ideal B of the complete tensor K-

algebra T(M) = m) of M, the bound species subcoalgebra T (M, B) of the cotensor
K-coalgebra T (M) = Tp(M) of M is defined. We show that any subcoalgebra C of
T (M) containing T”(M)oDT" (M) is of the form T” (M, B), and the category C-Comod
is equivalent to the category Repi?ef (M, 8B) of locally nilpotent and locally finite K-linear
representations of M bound by the profinite relation ideal %. The question when a basic
K-coalgebra C is of the form TR (M,B), up to isomorphism, is also discussed.

1. Introduction. Throughout this paper, K is a field. Given a K-
coalgebra C, we denote by C-Comod and C-comod the categories of left
C-comodules and left C-comodules of finite K-dimension, respectively. The
problem we study is to view the category C-Comod, for C basic with left
Gabriel quiver () = ¢Q), as a full subcategory of the category Repi?ef (Q) of
locally nilpotent and locally finite K-linear representations of () that satisfy
some relations.

We call C basic if dimg S = dimg End ¢S for any simple left C-co-

module S (see [7], [24], [27, p. 404], [34, Lemma 1.2]). It is known that if K
is algebraically closed then any basic K-coalgebra is a relation subcoalgebra
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of the path K-coalgebra K“Q of the left Gabriel quiver QQ = ¢ @ of C, that
is, K"Qo ® K"Q1 € C C K'Q.

One of the main results of this paper is Corollary 4.10 asserting that,
given an arbitrary field K, any relation subcoalgebra C of K"Q is the
path coalgebra K"(Q,) of a profinite bound quiver (Q,B) in the sense
of Definition 4.2, and the category C-Comod is equivalent to the category
Repﬁ?ff (Q,B) of locally nilpotent and locally finite K-linear representa-
tions of @) bound by a profinite relation ideal B of the profinite K-algebra
K@ (the completion of the path K-algebra K@ in the finite subquiver
topology). If, in addition, @ is intervally finite then C' = K°(Q,{2) and
C-Comod = Repﬁ?ﬁf (Q, £2), where (2 is a relation ideal of K@Q. The results
complete and generalise those in [31]. As a consequence, we get Corollary
4.12 asserting that, if the field K is algebraically closed, then any basic K-
coalgebra C'is of the form K(Q,B) and there is an equivalence of categories
C-Comod = Repi?ﬁf (Q,B) with @ = ¢Q. This generalises the well-known
result of Gabriel [10] proved for finite-dimensional algebras over an alge-
braically closed field K.

In Section 5, we extend the above results to a more general class of coal-
gebras, by applying the K-species technique for coalgebras introduced in [9]
and [18]. Following [9], to any K-species M = (Fj},;M;), we associate the
complete tensor K-algebra f(/\/l) Then we define the cotensor (basic hered-
itary) K-coalgebra T"(M) of M in such a way that the path K-coalgebra
K°Q of any quiver @ is of the form 7°(M) for a suitable M associated
to (). Moreover, to any profinite relation ideal 8 in f(/\/l), we associate
a relation cotensor K-coalgebra Th(M,B) C Th(M), that is, Tp(M,B)
contains the subcoalgebra T(M)o @ T"(M); of Tp(M). By applying [18,
Proposition 4.16], we show that any hereditary basic K-coalgebra C' is of
the form C = T (M), where M is the dual to the Ext-species of C, under
some acyclicity assumption on the left valued Gabriel quiver of C.

The main results of Section 5 are Theorem 5.20 and Corollary 5.22 as-
serting that, given a relation subcoalgebra C of T"(M), there exists a profi-
nite relation ideal 8 in the complete tensor K-algebra T (M) such that
C = T°(M,B) and the category C-Comod is equivalent to the category
Repﬁ?zf (M, B) C Repy (M) of locally nilpotent and locally finite K-linear
representations of M [18] bound by the profinite relation ideal B. In view of
Woodcock [41, (4.6)], the above results imply Corollary 5.23 asserting that,
if the centre of the division algebra End ¢S is a separable extension of K for
any simple C-comodule S, then C' is of the form C = T%(M, ) and there
is an equivalence C-Comod £ Repi?ef (M, *B), where M is the dual to the
Ext-species of C' and B is a profinite relation ideal of the complete tensor
K-algebra T'(M). Obviously, this happens if K is a perfect field.
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Throughout this paper we assume that C' is a basic K-coalgebra, with
comultiplication A and counit €. We fix the direct sum decompositions
(1.1) «C= @ B(j) and soccC= @ S(),

Jjelc Jjele
where I¢ is a set, E(j) is an indecomposable injective comodule, S(j) is a
simple comodule, and E(j) is the injective envelope of S(j) for each j € I¢;
moreover, E(i) 2 E(j) and S(i) 2 S(j) for i # j. We set F; = End ¢S(j)
for each j € Ic. Note that {S(j)}jer. is a complete set of pairwise noniso-
morphic simple left C-comodules.

Here we use the coalgebra representation theory notation and terminol-
ogy introduced in [29]-[31]. Given a K-coalgebra C' with comultiplication A
and counit €, we denote by C* = Homg (C, K) the K-dual algebra with re-
spect to the convolution product (see [8], [23], [39]). The counit ¢ : C' — K of
C is the identity element of C*. We view C* as a pseudocompact K-algebra,
with

C* = lim Hj = lim C* /Hy,
Hpg Hpg
where Hg C C runs through all finite-dimensional subcoalgebras of C' and
Hg = {¢ € Homg (C, K); ¢(Hg) = 0} is viewed as a cofinite ideal of C*.

Let (—,—) : C* x C — K be the non-degenerate bilinear form defined
by (¢, c) = p(c). We denote by Cp € Cy C --- C C the coradical filtration
of C, where Cy = soc cC = soc Cc. The reader is referred to [5], [8], [23],
[39] for the coalgebra and comodule terminology, and to [1], [2], [28], [37],
and [38] for the standard representation theory terminology and notation. In
particular, given a unitary ring R, we denote by J(R) the Jacobson radical of
R, by Mod(R) the category of all unitary right R-modules, and by mod(R)
the full subcategory of Mod(R) formed by finitely generated R-modules.

2. Preliminaries on quivers and path coalgebras. To make the pa-
per self-contained, we recall briefly the terminology and notation introduced
in [29] and [31], and some facts we need throughout this paper. A quiver
Q = (Qo,Q1) is an oriented graph (in general infinite) with the set Qg of

vertices and the set ()1 of arrows. We denote by @, the set of all oriented

pathsw:ﬂ1ﬁ2-~ﬂmz(a:ioﬂil@---ﬂ—"iim:b) of length m > 1 in

Q = (Qo, Q1) from a vertex a = ig to a vertex b = i,,. To any vertex a € Qo,
we attach a stationary path e, starting and ending at a. Given a,b € Qq, we
denote by Q(a,b) the set of all oriented paths w in @ from a to b. A quiver
Q is called acyclic if there is no oriented cycle in @, that is, there is no path
w of positive length m > 1 with a = b. The vector space spanned by Q.
is denoted by KQ,,, and KQ,(a,b) is the subspace of KQ(a,b) generated
by all paths of length m. The path K-algebra of the quiver @) is the graded
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K-vector space

(2.1) KQ=KQy®KQ®--- with KQn= @ Kuw,
wEQm
equipped with the obvious addition and multiplication (see [10, 4.2], [1],
[2], [28]). It is clear that K@ is a graded K-algebra (with local units e,),
the stationary paths ey, a € Qp, form a complete set of primitive orthog-
onal idempotents of K@, and there is a right ideal decomposition KQ =
eaaer e KQ. If Qg is finite then the element Zaer €q 1s the identity of
KQ; if Qg is infinite the algebra K@) has no identity element. It is clear
that the dimension of K@ is finite if and only if @ is finite and acyclic. The
two-sided ideal of K () generated by all paths of length m > 1 has the form
KQZm = @jZm KQ]"
The path K-coalgebra of () is the graded K-coalgebra

(2.2) K'Q=(KQ, 4,¢),

where K@ is the graded K-vector space (path algebra) (2.1) endowed with
the comultiplication A : KQ — KQ ® K@ and the counit ¢ : KQ — K
defined as follows. Given a stationary path e, at a, we set A(e,) = e, ® €4
and e(e,) = 1. Given any path w = (3182 - - - G, of length m > 1 from a = i
to b = i,y,, we set

m—1

Aw)=e,Qw+w® ey + Z(&ﬁz‘--ﬁs) ® (Bog1---Pm) and e(w) =0,
s=1

where ® = ®x. Obviously, the K-vector space K"Q<,, = KQo ® KQ1 ®
- KQ,, is a subcoalgebra of K°Q for each m > 0. The coalgebra K°Q)
is hereditary, basic, K"Qo = KQq = soc K"Q = ®aer Ke,, S(a) = Ke, is
a simple subcoalgebra of K”Q for each a € )y, and the subcoalgebra chain
K°Qo € K'Q<1 C --- € K"Q<y, C -+ is the coradical filtration of K°Q
(see [29, Proposition 8.1]). The notation K"Q is inspired by the fact that
K"Q is isomorphic to the cotensor coalgebra

Tk, KQ1) = KQo® KQ1 ® KQ1\OKQ1 ® KQ1OKQ1OKQ1 © ... .,

where KQo = @ a€Qo Ke, is viewed as a direct sum of the one-dimensional
simple coalgebras Ke,, and KQ; = ®a,b€Qo KQ1(a,b) is viewed as a KQo-
K Qo-bicomodule in a natural way (see [7, Remark 4.2], [25], and [41]).

The following simple lemma is very useful.

LEMMA 2.3. Let Q be a finite quiver and K a field.

(a) If @Q is acyclic then dimg K°Q is finite and there is a K-algebra
isomorphism KQ = (K"Q)* defined by w — w* for any path w in Q.
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(b) If m > 2 then the subcoalgebra
K'Qcm-1=KQydKQ1® D KQm—1

of K°Q is finite-dimensional and there is a K-algebra isomorphism
(KDQSmfl)* = KQ/KQZWL
Proof. (a) Since @ is finite and acyclic, the set @, is finite for each
m > 0, and Q,, = 0 for m sufficiently large. Consequently, dimyx K°Q is
finite. It follows from the definition of the convolution product in (K°Q)* =
Hompg (K"Q, K) that the K-linear map K@ — (K"Q)*, defined on the paths
w (the elements of the standard K-basis of K"Q) by setting w — w*, is a
K-algebra isomorphism. Statement (b) follows in a similar way. m

Given a quiver @) and a field K, we define the finite subquiver topology
(K-linear and Hausdorff) on KQ as follows (see [29, p. 133] and [31, p. 475]).
First we note that there is a canonical algebra embedding KQ — (K"Q)*
defined by w — w* for any path w in @, and the non-degenerate bilinear
form (—,—) : (K"Q)* x K°Q — K defined by (p,c) = ¢(c) restricts to
the non-degenerate bilinear form (—,—); : KQ x K"Q — K defined by
(w,w")s = 8, (the Kronecker delta) for any paths w,w’ in KQ.

Given m > 2 and a finite subquiver Q®) of Q, we consider the finite-
dimensional subcoalgebra

EQY, = KQY e KQ" @ & KQW |

of K°Q. By Lemma 2.3, the finite-dimensional algebra K-dual to KDQS;)H_1
has the form -

(K°QL) )" = KQUW/KQS,,
Let Uqgf ) = Ker wf;f ) be the kernel of the composite algebra surjection

. sy ) en@ e po®) ) rO®
v = [KQ = (K'Q)" === (K'Q%,, )" = KQW/KQZ, ],
where ug,f) : Kqu'I)TL—l — K"Q is the coalgebra embedding and K@ —
(K°Q)* is the canonical algebra embedding. It is clear that the K-linear
topology defined by the ideals Uqgf ) = Ker zpﬁ,f) is Hausdorff; we call it the
finite subquiver topology of K@ (cf. [11, Section 10]; see also [20] and [21]).
The completion

(24) EQ= lim KQ/U
Q@) m>2

of KQ is obviously a pseudocompact K-algebra, where Q*) runs through the
finite subquivers of Q. We have the following improvement of Proposition 8.1
of [29].
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PROPOSITION 2.5. Let @@ be an arbitrary quiver and K a field.

(a) For each a € Qo, the indecomposable left ideal E(a) = (KQ)eq of the
path K-algebra KQ, spanned by all oriented paths in QQ ending at a,
is an indecomposable injective left coideal of K°Q, soc E(a) = S(a),
and K°Q = @,cq, E(a).

(b) The left Gabriel quiver ¢Q of C = K°Q is isomorphic to Q.

(¢) The path coalgebra K°Q is the directed union of the finite-dimen-
stonal subcoalgebras KDQ(QI, where m > 2 and Q@) runs through
the finite subquivers of Q.

(d) Let (K"Q)* be the pseudocompact K-algebra K-dual to K°Q and
let I/(Z) be the completion (2.4) of the path algebra KQ in the finite
subquiver topology. Then there are isomorphisms of pseudocompact
K-algebras

(K°Q)" = KQ = Tr5-(KQu),

where

~m

~2
Tig;(KQ1) = KQoUUKQITKQy  II---ITKQy I
(o) ~m
— —®
ZKQD@HKQl

is the complete tensor K- algebm [9, p. 96] of the topologzcal vector
space KQ1 =11, 0o KQl(a b) viewed as a KQO KQO bimodule
over the topological product KQO =1] Ke, of Qo copies of the
field K.
(e) J((KDQ)*)/:\ (K°Qo)* is closed in (K°Q)* and the isomorphism
(K"Q)* = KQ restricts to isowhisms/\
(e1) J((K°Q)") = J(KQ) = J(KQ) = KQx1,
(e2) (K*QooK*Qu)* = (K" Q)" = J(KQ)?=(J(KQ))* =K Q.
Proof. (a) and (b) are consequences of the proof of [29, Prop. 8.1 and
8.13].
(]c) It follows from the definition of the comultiplication in K°Q) that,

given a finite subset X of K"Q, there exist a finite subquiver Q) of Q
and an integer m > 2 such that X is contained in the finite-dimensional
subcoalgebra K qur)n_l of K”Q. Hence (c) follows.

(d) We follow the proof given in [29, p. 134]. By (c), K”Q is the directed
union of the finite-dimensional subcoalgebras

H7(7£LE) = KD(Q(x))Smfl C KDQ(Z’),
where m > 2 and Q@) is a finite subquiver of Q. By Lemma 2.3, for any such

a€Qo
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o ), there is an isomorphism of finite-dimensional K-algebras (Hfff ))* =
””)/KQ(ZQ%, and the restriction

@ KQ — (HP) = KQW/KQLY),

of the canonical algebra surjection (K"Q)* — (H}rf))* to the subalgebra K@
of (K"Q)* is surjective. Hence we get isomorphisms

26) & =( U HY) = lm (KQ/(HD)*

Q™) ,m>2 Q@) , m>2
> lim (HY)"= lm KQ/UY =KQ
Q™) m>2 Q@) m>2

of pseudocompact K-algebras, where Q®) runs through finite subquivers
of Q. Now (e) follows from [23, Proposition 5.2.9] (and its proof), by ap-
plying the foregoing definitions (see also [11, Section 10], [20], [21], [29]
and [41]). The details are left to the reader. Here we only recall that there
is a duality Coalgr = PC(I){p between the categories of K-coalgebras and of
pseudocompact K-algebras (see [29, Theorem 3.6]), and we note that the
coalgebra embeddings K"Qy — K"Qy ® K"Q1 — K"Q induce topological
algebra surjections

(K°Q) 15 (K°Qy @ K°Q1)* 2 (K°Qu)" = KQo = [ Ke
a€Qo
with Ker fof1 = (K°Qo)* = J((K°Q)*) and Ker f1 = (K°Qo ® K°Q1)* =
J((K7Q)*)*. -
To get an isomorphism f/\(K Q1) = KQ required in (d), we note that

the embedding KQo Qg P KO, Q1 — KQ Q uniquely extends to a continuous ho-
momorphism & : T/Q\(K Q) — K Q of pseudocompact K-algebras, which

is obviously surjective (see [9, p. 96]). By routine arguments, @ is injective,
and hence an isomorphism. This finishes the proof. m

REMARK 2.7. In [11, Section 10], a description of the pseudocompact
K-algebra [/(ZQ in terms of Cauchy nets is given, where the path algebra KQ
is equipped with a K-precompact topology, which is obviously equivalent to
our finite subquiver topology (see also [20] and [21]).

3. Comodules and representations of quivers. Given a quiver ) =
(Qo,Q1), we denote by Repg(Q) the category of K-linear representa-
tions of @), and by repg(Q) the full subcategory of Repy(Q) whose ob-
jects are the finitely generated representations. Given a representation X =
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(Xa, @g)aer,ﬁte in Repg(Q), we define its support to be the subquiver
Q¥ = (QF, Q)

of Q, with Qf = {a € Qu; Xa # 0} and QF = {5 € Q1; ¢j # 0}. We call
X of finite length if QX is a finite subquiver of @ and dimg X, is finite for
any a € Q. We denote by rep%(Q) D nilrepig(Q) the full subcategories
of repy (Q) whose objects are the finite length representations and nilpo-
tent representations of finite length, respectively. We denote by Rep%(@)
the category of locally finite length representations, that is, directed unions

of finite length representations in rep%(@). Finally, Repi?ef (Q) is the full

subcategory of Repg(Q) whose objects are the locally finite locally nilpo-

tent representations in nilrepﬁf(@), that is, directed unions of finite length
representations that are nilpotent.

Now we give an explicit description of a correspondence between left
K Q-comodules and K-linear representations of the quiver (). To define it,
we recall that given a K-coalgebra C, any left C-comodule X = (X,dx),
with dx : X — C ® X, can be viewed as a right rational (= discrete)
C*-module via the action z - p* = Z(z) ¢(cy)z(2), where p € C*, v € X,
and oy (2) = X2 c1) ® x() (see [29], [39], [40]). It is shown in [39] that
by associating to any left C-comodule X the underlying vector space X en-
dowed with rational right C*-module structure, we define a categorical iso-
morphism C-Comod = Rat(C*) = Dis(C*), where Rat(C*) is the category
of rational right C*-modules and Dis(C*) is the category of discrete right
C*-modules. The reader is referred to [15], [29, Theorem 4.3(a)] and [40] for
the equality Rat(C*) = Dis(C™). By using the right action of (K"Q)* & I/(Z)
on left K"Q-comodules X, we define the K-linear functor

(3.1) F : K"Q-Comod — Repg(Q)

as in [29], [41]. Given a comodule X in K"Q-Comod (viewed as a rational
right module over (K"Q)* = K(Q) we define F'(X) in Repg(Q) by setting

(3.2) F(X) = (Xa, 93 )acqo, Q1>

where X, =X -e, =X -€} and e, € KQ C I/(ZQ is the stationary path at a
(see Example 3.6 below). Here the algebra embedding K@ C I/(ZQ is defined
by w +— w* for any path w in Q. For any arrow 3 : a — b, the K-linear map
gog : X, — Xp is defined by goé((x eq) = (xz-eq) B = x-eqfep, where z € X
and x-e, € X, = X-e,. Since # € Q1 is viewed as an element of K (), we have
0 = e = Pep in KQ. Given a K°@Q-comodule homomorphism f: X — Y,
we set F'(f) = (fa)acq,, Where f, : X4 — Y, is the restriction of f to X, (see
the proof of Theorem III.1.6 in [1]). It is clear that F/(f) : F(X) — F(Y)isa
morphism in Repy (@) and that we have defined a covariant K-linear exact



PATH COALGEBRAS OF PROFINITE BOUND QUIVERS 315

faithful functor F' : K"@Q-Comod — Repg(Q) that restricts to a functor
F : K"Q-comod — repg(Q).

PROPOSITION 3.3. Let Q be an arbitrary quiver and K a field.

(a) The functor F of (3.1) commutes with arbitrary direct sums and
directed unions, and restricts to two equivalences of categories

K°Q-Comod LN Repi?zf(Q)

(3.4) J J
K"Q-comod iR nilrep?! (Q)
K
making the diagram commutative.

(b) The functor F~1 inverse to F associates to any representation X =
(Xa, goé()aer,gte n Repi?ﬁf(Q) the wvector space F~1(X) =
EBaer X, equipped with the left K°Q-comodule structure induced by
the natural discrete right module structure on the profinite K -algebra
(K°Q)" = KQ.

Proof. That F' commutes with arbitrary direct sums and directed unions
follows immediately from the definition (3.2) of F. To prove the second
part of (a), we note that if Q@ is a finite subquiver of Q and m > 2
then, by Lemma 2.3, the subcoalgebra K“°Q<;—1 = KQo ® KQ1 & --- &
K@ —1 of K°(Q) is finite-dimensional and there is a K-algebra isomorphism
(K"'Q<m-1)" = KQ/KQ>m.

Then K DQ(fg%l—comod C K"Q-comod and, by the definition of F', given
a comodule X in K DQ(f?zz_l—comod, the support QF X) of the representation

F(X) is a finite subquiver of Q@ C Q. Hence it follows easily that F
restricts to the K-linear functor

F®: k°QY) _ -comod — repif (Q®), KQ¥) ) = mod KQ@ /K QY)

>m>
where repg(Q(I), K Q(;)n) is the full subcategory of repg(Q(I)) consisting

of the representations X = (X,, gpé( ) z) such that the composite

aeQy” BeQ]
K-linear map
X X X
¥ v3 PBm
0y = [Xo —5 Xiy =5 - 5 X))
. . _ . Br . B2 Bm . _
is zero for any oriented path w = (a = ig = i1 = -+ = 4, = b) of length

m in Q). This shows that, given a finite subquiver Q*) of Q, m > 2, and
a comodule M in KDQ(fgl_l—comod, the representation Fy(,f)(M) =F(M) is
nilpotent, that is, F,gf) (X) = F(X) lies in nilrep%(Q(m)). Since, by Proposi-
tion 2.5(c), K@ is the directed union of the finite-dimensional subcoalgebras
K DQgr)n_l, where m > 2 and Q@) runs through the finite subquivers of Q,
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it follows that F(X) lies in nilrep; 7 1(Q) for any X in K"Q-comod. Hence,
given X in K”Q-Comod, the representation F'(X) lies in Repznzf (Q).
Conversely, assume that X = (X,, gog( )acQo, B, 15 a representation of
Q@ lying in nilrepﬁf(@). Then its support Q¥ is a finite subquiver of Q,
X is nilpotent, and hence there is an m > 2 such that the composite K-
linear map ¢ = @é(m @é(l : Xq — Xp is zero for any oriented path
w—(a—z’o’g—w'l&--‘ﬁ—"fim—b)oflengthmeIfwesetQ = Q¥
and m > 2 as above, then X lies in nﬂrep L) C mlrepK(Q) and the
definition of F' shows that X lies in the image of the composite functor

F(z) - K" (I) _,-comod — rep (Q () KQ(J:) ) = mlrep (Q(z))

because the vector space X = @aer a, viewed as a right module over
(K"Q)* in a natural way, is a finite-dimensional module over the finite-
dimensional quotient (KDQ(fT)n_l)* = KQ(“’)/KQ(;% of (K"Q)* = KQ (see
the proof of Th. III.1.6 in [i]) This shows that X lies in dis((K" gzl_l)*)
= rat((KDQggl_l)*), that is, X has a natural structure of a left Kubgm_l—

comodule such that F(X) = X. It follows that every X in nilrepg(Q) lies
in the image of F. Similarly, we show that any morphism f : X — Y
in nilrep%(@) lies in the image of F. Consequently, F' : K°Q-comod —

nilrep%(@) is an equivalence of categories and, by standard limit arguments,

so is ' : K°Q)-Comod — Repgngf (Q), because it commutes with directed
unions. m

The following corollary is a consequence of the above proof.

COROLLARY 3.5. Let K be a field and Q a quiver. For any representa-
tion X in nilrep%(Q) there exists a finite subquiver Q%) of Q and an integer

m > 2 such that X lies in rep%(Q(m),KQg)n) C nilrepﬁf(@).

Now we illustrate the definition of the functor F : K°Q-Comod —
Repmef (Q) of (3.4) by an example.

ExAMPLE 3.6. Let @ be an arbitrary quiver, b € Q¢ a fixed vertex in
Q and X = E(b) = (KQ)eyp the left indecomposable direct summand of the
path K-coalgebra K"Q. Note that (KQ)ey is the left ideal of the path algebra
K@ generated by the stationary path e, at b. Obviously, the vector space
(KQ)eyp is generated by all paths in @) that terminate at b. We view (KQ)ep
as a right rational module over the algebra (K"Q)*, K-dual to K"Q, and we
define the canonical K-algebra embedding K@ C (K"Q)* = I/(b by w — w*
for any path w in @. Then the left K"Q-comodule X = E(b) = (KQ)ep, has
a right module structure over K@Q. It is easy to see that, given a stationary
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path e, of K and a path

w=ﬁ1ﬁ2--ﬁm5(a:io@>i1&---@im:b)

of length m > 0in @ = (Qo, Q1), we have w-e, = w-e} = e.w, where e.w is a

product in K@, and w-e, = w- e} means the rational action of e, (identified

with e : K"Q) — K) on the path w € X = E(b) = (KQ)ep. Moreover, given

anarrow 3 :¢c— ¢ in @ and apathw = 5102+ B € X = E(b) = (KQ)ey
of length m > 1, we have

. B2 P if B =P,

wimws {o if 5 # 1.

It follows that the K-linear representation F'(X) € Repi?ef (Q) (see (3.2))

of the quiver @ has the form F(X) = (X,, (pé()aerﬂte, where
Xo=X-e,=X" € =e(KQ)e, = KQ(a,b)

is the K-vector space spanned by all oriented paths from a to b.
Given an arrow (8 : a — ¢, the K-linear map @é( : Xo = KQ(a,b) —
X. = KQ(c,b) is defined by the formula

X(w)_{52"ﬁm if ¢ =71 and 8 = f,
o if 44 B,

foranypathw:51ﬁ2-~-ﬁmz(a:igﬁh&--~B—T>nim:b) in Q(a,b).

An important role in the study of basic K-coalgebras C is played by
the full subcategory C-Comp of C-Comod (introduced in [33]) consist-
ing of all computable comodules, that is, the C-comodules X such that
dimg Home (X, E(j)) is finite for any indecomposable left C-comodule E(5)
(see (1.1)). In view of the functors (3.4), given a quiver @, we define the cat-
egory Comp (@) of computable representations of @ to be the full subcat-
egory of Repy (Q) formed by all representations X = (X, @?)QGQO,BEQI of
Q such that dimg X, is finite for each a € Qy. We call such a representation
X computable.

COROLLARY 3.7. Let K be a field and Q a quiver. The functor (3.4)
restricts to a K-linear equivalence of categories
o Inl Int
(3.8) F : K°Q-Comp — Comps/ (Q) = Compx(Q) N Rep'™ (Q).

Proof. We recall from Proposition 2.5(a) that F(a) = (KQ)e, is an
indecomposable summand of K”@Q. We show that the representation F'(X)
is computable if and only if X is a computable K°@Q-comodule, that is,
dimg Homgog (X, E(j)) is finite for any j € Qo. In this case, we show that,
for each j € Qo, there is a K-linear isomorphism

6.
(3.9) Xj =X - ¢; —> Homgog(X, E(4))”
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(in the notation of (3.2)), that is functorial in K"@Q-comodule homomor-
phisms f : X — Y. Given j € o, we set 0; = f}-k, where §; is the unique
K-linear isomorphism making the following diagram commutative:

Hompeg(X, B(j)) L (X -e;)

b -

Homgog(X, K°Q) %  X*

Here £x is the Yoneda isomorphism given by f — ef (see [39] and [29,
Lemma 4.9]), u; = Homgog(X,u;) with u; : E(j) — K"Q the inclusion,
and m; : X — X; = X -e; is the retraction given by x — x - e;. Hence,
dimg Homgog (X, E(j)) is finite if and only if dimg X is finite. It follows
that a comodule X is computable if and only if the representation F'(X) of
@ is computable. Since, by Proposition 3.3, F(X) is locally nilpotent and
locally finite, the corollary follows. m

4. Bound quiver coalgebras. We recall from [29] and [31, Definition
3.5] that a bound quiver (or a quiver with relations) is a pair (Q, 2), where
@ is a quiver (in general infinite) and {2 is a two-sided ideal of the path
K-algebra K@ such that 2 C KQ>2. Every such ideal (2 is called an ¢deal
of relations, or a relation ideal of KQ. It is easy to see that any relation
ideal 2 of KQ has a decomposition 2 = €D, ,cq, 2(a,b), where £2(a,b) =
2N KQ(a,b).

If (Q, £2) is a quiver with relations, we define repy (Q, 2) 2 repg(Q, 2)
D) nilrep%(@, 2) to be the corresponding full subcategories of repg(Q) 2
rep%(@) D nilrep%(@) formed by the K-linear representations of () satisfy-
ing all relations in {2 (see [10, 4.2] and [28, Section 14.1]). Analogously, we
define the categories Repy (@, 2) 2 Repﬁ?(@, 2)D Repi?zf(Q, 2).

DEFINITION 4.1.

(a) A profinite bound quiver (or a quiver with profinite relations) is a

pair (Q,), where @ is a quiver and B is a closed two-sided ideal
(called a profinite relation ideal) of the profinite K-algebra KQ of
(2.4) such that B C I@
(b) Let B C I@ C I?C\Q be a profinite relation ideal, Q) a finite
subquiver of @, and
O KQ — KQ/UW = KQW /KQY) |
with m > 2, the canonical algebra surjection. Fix a relation ideal

EB%) of KQ(I) such that
00(8) = 80 /KQY) ¢ KQW/KQY).
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The bound quiver (Q(m), *ijf) + KQ(;T),L) is called the projection of

(Q,B) on (Q), KQL),).
By Corollary 3.5, given a representation X in nilrep%(@), there exist an
m > 2 and a finite subquiver Q@) of Q such that X lies in repg(Q(z), Q(f}n)
- nilrepef (Q). We deﬁne X to satisfy the relations in B if X satisfies
the relations in ‘B )+ Q>m, that is, X lies in repK(Q(x),‘B%) + ngl) C
repzf (Q@), (f) ). A representation Y in Repz ntf (Q) is defined to satisfy the
relations in 9B if any subrepresentation X of Y lying in nilrepg(Q) satisfies

the relations in *B.

Given a profinite bound quiver (Q,*B), we denote by Repgn(f (Q,%) O
mlrepK(Q B) the full subcategories of Repz ntf (Q) whose objects are the
representations in Repgnff (Q) (resp. in n1lrep I (Q)) that satisfy the relations
in 8.

The following definition is very useful (see [29, p. 135], [30] and [31
Definition 3.8]).

DEFINITION 4.2. Let K be a field, (Q, £2) a bound quiver, and (Q,B)
a profinite bound quiver.

(a) The path K -coalgebra of the bound quiver (Q, {2) is the subcoalgebra
(4.3) K(Q,2) =C(Q,2) = {ce K°Q; (2,¢)5 = 0}
of K°Q, where (—, —)s : KQ x K"QQ — K is the standard non-
degenerate symmetric K-bilinear form defined by (u,w)s = 6y, for
all paths u, w in Q.
(b) The path K-coalgebra of the profinite bound quiver (Q,B) is the
subcoalgebra
(4.4) K°(Q, %) = {c € K°Q; (B/,¢) = 0}
of K°Q, where (—, —) : (K"Q)* x K°QQ — K is the non-degenerate
symmetric K-bilinear form defined by (¢, ) ¢(c), and B’ is the
image of B C KQ under the isomorphism KQ = (K"Q)* (see (2.6))
of pseudocompact K-algebras.
(¢) A K-coalgebra C is defined to be a bound quiver coalgebra if there are
a bound quiver (@, £2) and a coalgebra isomorphism C' = K"(Q, £2);
and C' is defined to be a profinite bound quiver coalgebra if there is
a profinite bound quiver (Q,B8) and a coalgebra isomorphism C =
K°(Q,*B).
We recall from [31, Definition 3.13] that H C K"Q is a relation subcoal-
gebra if H contains KQo ® KQ;. In this case H = ®a,b€Qo H(a,b), where
H(a,b) = HNKQ(a,b) (see [13] and [14]). A quiver @ is said to be intervally
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finite if, for each pair a,b of vertices of @, the set Q(a,b) of all paths from
a to b in @ is finite.
The following result follows from [31, Theorem 3.14] and its proof.

THEOREM 4.5. Let K be a field and Q a quiver.
(a) Given a relation ideal 2 of KQ, the subspace K"(Q, 2) (see (4.3))

of K°Q is a basic relation subcoalgebra of K°Q whose Gabriel quiver
18 isomorphic to Q).

(b) The K-linear category equivalences (3.4) restrict to the category equi-
valences

K°(Q, £2)-Comod LN Repi?ef(Q,Q)

(4.6) 1 1

K°(Q, £2)-comod SN nilrepﬁc(Q, 2)

(c) If C is a relation subcoalgebra of K°Q, then the vector space C+ =
{c € KQ; (¢,C)s = 0} is a two-sided relation ideal of KQ.

(d) If Q is an intervally finite quiver then the map 2 — K°(Q, 2) de-
fines a bijection between the set of relation ideals {2 of KQ and the
set of relation subcoalgebras C' of K°Q). The inverse map is given by

C— C+.

REMARKS 4.7. (a) Statement (d) of Theorem 4.5 is proved in [31, Theo-
rem 3.14(c), (d)] under the assumption that @ is locally finite. Unfortunately,
this assumption is not sufficient (see [13]). Under the assumption that @ is
intervally finite, made in Theorem 4.5, the proof given in [31, pp. 477-478]
goes through.

(b) A proof of (d) can also be found in [13], where a criterion is given
to decide whether or not a relation subcoalgebra of K°Q is of the form
K°(Q, 2). Tt is shown in [14] that if @ is acyclic, then any tame relation
subcoalgebra of K"Q is of the form K"(Q, {2).

(c) The problem whether or not any tame relation subcoalgebra of K"Q)
is of the form K"(@, {2) remains open.

Now we study profinite bound quiver coalgebras and their comodules.
One of the main results of this section is the following theorem, which ex-
tends Theorem 4.5 to profinite bound quiver coalgebras.

THEOREM 4.8. Let K be a field, Q a quiver, and (Q,B) a profinite
bound quiver with a profinite relation ideal B C KQ>2 C KQ.
(a) The subspace K”(Q,B) (see (4.4)) of the path K -coalgebra K°Q is a

basic relation subcoalgebra of K°Q whose Gabriel quiver is isomor-
phic to Q).
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(b) The coalgebra H = K°(Q,B) is the directed union of the finite-
dimensional subcoalgebras of the form

Hﬁff) — KDQ(;)n_I N KD(Q(I),‘B(I)),

m

where Q@) runs through the finite subquivers of Q, m > 2, and

%%) C KQ(QC) 18 a relation ideal such that (Q(z), %%) + Q(zxr)n) 1s the
projection of (Q,B) on (Q(z),Q(;T)n) (see (4.1)).

(¢) There are isomorphisms

(HO) = KQY) /(BE) + KQsm)

of finite-dimensional K -algebras that are functorial with respect to
coalgebra embeddings Hr(,f) — H(m,)

nyand induce isomorphisms

H =KQ/%= lm KQW/BY +KQsm)
Q@) m>2

of pseudocompact K -algebras, where Q) runs through the finite sub-

quivers of Q.
(d) The K-linear category equivalences (3.4) restrict to category equiva-

lences
K°(Q,%B)-Comod L5 Rep™(Q, )
(4.9) ] ]

K"(Q,B)-comod EiR nilrep%(@, B)

Proof. (a) We recall that the profinite topology on the profinite K-

algebra I/(Z? is defined by the kernels ﬁ,Sff ) = Ker @,(ﬁf) of the canonical
algebra surjections

0 KQ - KQ/UR = KQW/KQL,,

where Q) runs through the finite subquivers of Q and m > 2. Since B C
K(@Q>2 is a profinite relation ideal of K@, B is a closed ideal in K@), and
the K-linear topology on the quotient algebra

Ap = KQ/®,
induced by that of I/(b, is given by the ideals
(U 4+ 8)/B=UD/(BNTD),,.

It is clear that the topology on Ag is Hausdorff. Consider the commutative
diagram
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0— /AW — B — ®P+KQY)/KQY, — 0

1 1 I

= () == o (x) ()
0 — Un, — KQ — KQ /Ksz — 0

! ! l

~ — T (x)
0 — (U +98)/8 — KQ/B "~ KQ©/(B% +KQ¥)) — 0

l l I

0 0 0

where @Zﬁf) is the algebra surjection induced by 12,(7?) The rows and columns

of the diagram are exact. By the definitions of ﬁr(,:f ), J,(ff) and ‘B%) the
upper two rows are exact. The left hand column is exact, because there is

an isomorphism ([77530) +B)/B = U@ /(BNU®). Since the exactness of the
remaining two columns is obvious, the lower row is also exact. Hence, as

KQ= lm KQUY = lm KQW/KQY),
Q@) m>2 Q@) m>2
(see (2.4)), we have

Ap=KQ/B= lm KQ@W/B® +KQY)),
Q) m>2
and As is a pseudocompact K-algebra. In view of the duality Coalgrx =

PC;P between the categories Coalgk of K-coalgebras and PCk of pseu-
docompact K-algebras (see [29, Theorem 3.6]), the surjection (K"Q)* =
I/(ZQ — Ag induces a coalgebra injection A% — ((K"Q)*)° = K"Q, where
V° = homg (V, K) is the vector space of all continuous K-linear maps from
the topological K-vector space V to the field K. Moreover, there is an iso-
morphism of pseudocompact K-algebras Ag = (Ag)* = (K°Q)*/(Ay)*,
where

(A3)" = {p € (K°Q)"; ¢(A%) = 0} = {p € (K7Q)"; (¢, 45) = 0}.
Since Ay = ((Ayx)+)* (see [23, p. 57]) and, obviously, the isomorphism
KQ = (K°Q)* carries the ideal B of KQ to the ideal B’ = (Ag)L of
K Q)*, we get

EX(Q,B) = {c€ K°Q; (B,¢) =0} = {c € K°Q; ((A%) ", ¢) = 0}

= ((A%)1)" = 45
This shows that K°(Q,B) is a subcoalgebra of K°Q such that (K°(Q,%8))*
~ KQ/®B = Ag. Since B is a profinite relation ideal of K@), we have B’ C

—~
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J((K"Q)*)? = (KQo © KQ1)*, by Proposition 2.5(e2). It follows that
K'(Q,B) = {c€ K'Q; (B',¢) =0} = (B)" = (KQo® KQ1)**
2 KQo® K@
(see [23, p. 57]). Hence H = K"(Q,*B) is a relation subcoalgebra of K°Q
and there is an isomorphism J(H*)/J((H)*)? = J((K°Q)*)/J((K"Q)*)2.
Thus, by a description given in [29, p. 136] (see also the proof of [18, Propo-
sition 4.10]), the left Gabriel quiver of H is isomorphic to that of K°@Q), that
is, to @. This finishes the proof of (a).
To prove the remaining statements of the theorem, given a finite sub-
quiver Q@ of @ and m > 2, we consider the finite-dimensional subcoalgebra

Hﬁf) — K° (:p) . OKD(Q(Z),%%))
of H =K u(Q, B). It is easy to see that the algebra isomorphism (K"Q )
/KQ ) of Lemma 2. 3(b) restricts to the isomorphism (H(z))*

K Q / (Bm YK (Q)>m) of finite-dimensional K-algebras such that the coal-
(z)

1 IIZ

gebra embedding Hy,’ < H induces the algebra surjection

H* = QB Y KQ9 /(B + KQL)).
Moreover, it is easy to see by the definition of the equivalence of categories
F@ K“Q%)—comod — nilrep™ (KQ™)) (see (3.4)) that F) restricts to
an equivalence of categories Fr(,f) : H,(ﬁf)—comod — nilrepgf(KQ(x),‘Bgﬁ)).
Hence, (b)—(d) follow, and the proof is complete. =

COROLLARY 4.10. Let K be a field, Q a quiver and (Q,B) a profinite
bound quiver.

(a) If H is a relation subcoalgebra of K°Q, then the vector space H+ =
{p € (K"Q)*; (p,H) = 0} is a two-sided relation ideal of the profi-
nite algebra (K"Q)* = I?Z)

(b) The map B — K°(Q,B) defines a bijection between the set of profi-

nite relation ideals B of the profinite K-algebra I/(Z) and the set of
relation subcoalgebras H of the path coalgebra K™(Q,B). The inverse
map is given by H — H*.

Proof. (a) In view of the duality Coalgrx = PC;F, the coalgebra injection
H — K"Q induces a surjection (K"Q)* = KQ — H* of profinite K-algebras
and 1somorphlsms H* = (K°Q)*/H+ =2 K KQ /B of algebras, where

={<P€(KDQ) s p(H) =0} ={p € (K'Q)% (p, H) = 0}.

It follows that the isomorphism (K"Q)* = I?C\Q of pseudocompact algebras
carries the ideal H of (K”Q)* to an ideal B of KQ. Since H is a relation
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subcoalgebra of K"(Q), Proposition 2.5 shows that % is a profinite relation
ideal of KQ. It is easy to see, by applying the arguments used in the proof
of Theorem 4.8(a) to the profinite algebra Ap = KQ/B, that H = A% =
K°(Q,*B). Hence (a) follows.

(b) Apply (a) and Theorem 4.8. =

COROLLARY 4.11. Assume that K is arbitrary and C is a pointed K-

coalgebra, that is, every simple C-comodule is one-dimensional. Let Q = ¢Q
be the left Gabriel quiver of C'.

(a) There exist a profinite relation ideal B of the profinite K-algebra
KQ = (K°Q)*, a coalgebra isomorphism C = K°(Q,B) and K-

~Y

linear equivalences of categories C-comod = nilrepg(Q,’B) and
C-Comod = Repi?éf(Q, B).
(b) If Q is intervally finite then C' = K°(Q, £2) and there are K-linear

~ ~Y

equivalences C-comod = nilrep%(@, ) and C-Comod =
Repi?zf(Q, 2), where 2 is a relation ideal of KQ.

Proof. (a) Since C' is pointed, by [41, Theorem 4.13], C' is isomorphic
to a relation subcoalgebra H of K"Q. Hence, by applying Corollary 4.10(b)
and Theorem 4.8, statement (a) follows.

(b) Apply Theorem 4.5 to a relation subcoalgebra H of K"Q such that
H=C. n

COROLLARY 4.12. Assume that K is an algebraically closed field and C
s a basic K -coalgebra. Let QQ = ¢Q be the left Gabriel quiver of C.

(a) If C is hereditary then C = K°Q and C-Comod =2 Repi?ef(Q).

(b) If C 1is arbitrary, then there exist a profinite relation ideal B of
I/(a ~ (K"Q)*, a coalgebra isomorphism C = K°(Q,B) and K-
linear equivalences of categories C-comod = nilrep%(@, B) and
C-Comod = Rep?/ (Q,B).

If, in addition, @ is intervally finite then C = K°(Q, {2) and there
are K -linear equivalences C'-comod = nilrep%(Q, 2) and C-Comod
~ Repﬁ?ef(Q, 2), where 2 is a relation ideal of KQ.

Proof. (a) Apply [4] and [12] (see also [31, Theorem 4.9]).

(b) By applying [7, Theorem 4.2], [41, Section 4], and the arguments
used in the proof of [31, Theorem 4.9], we show that any basic coalgebra C
is isomorphic to a relation subcoalgebra of K°Q), because K is algebraically
closed. Then Theorems 4.8 and 4.5(d) apply. =

Note that the second part of (b) corrects [31, Theorem 4.9(c)].

REMARK 4.13. It follows from the definition (2.4) of K Q@ that a profinite
relation ideal B of KQ = (K*Q)* has the form B =[], ;o B(a,b), where



PATH COALGEBRAS OF PROFINITE BOUND QUIVERS 325

B(a,b) = BN K@b). This means that B is generated, as a topological
ideal, by the elements in ®B(a, b). It is easy to see (by using the Cauchy nets
technique) that every element f € B(a,b) is a formal power series

where w runs through all paths in Q(a,b) and )\ € K. The restriction of
f to any finite-dimensional algebra K Q(”")/ K Q>m, with a finite subquiver
Q@) of @, is the finite sum

f(m) — Z AW

weQ®@) (a,b)

and it belongs to the ideal %%) (see 4.1). Below, we illustrate it by an
example.

EXAMPLE 4.14. Let K be a field and let ) be the infinite quiver

B1 Bs—1 Bs+1
Q Q ﬂ Q )
h e he I
sz fs1T fs Jst1
1 g1 o9 92_ ... (s-1) = It s 9 (s+1)’ Jot1

We fix scalars A1, Ao, ... € K and, given s > 2, we set
w® =Y " NeBihs- b 1Bifigi1---gs € KQ(S,5).

Then the ideal % of the pseudocompact K-algebra I/(—@ generated (as a
topological ideal) by the formal power series w® w® s a profinite
relation ideal of KQ = (K"Q)*.

5. Cotensor coalgebras of species with profinite relations. As-
sume that K is an arbitrary field, C' is a basic K-coalgebra with fixed de-
compositions (1.1), and set F; = End ¢S(j) for each j € Ic. Denote by
(cQ, cd) the left Gabriel valued quiver of C' (see [31, Definition 4.3] and
32]).

The aim of this section is to show that, for the class of basic K-coalgebras
C, the study of the category C-Comod reduces to the study of locally nilpo-
tent locally finite representations of the K-species associated to C. To for-
mulate the results, we need some notation.

Following [9], a K -species is a system

(5.1) M = (Fy,iMj)ijern
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where Fj is a finite-dimensional division K-algebra for each i € Ixq, ;M; is
an F;-Fj-bimodule such that ;M; is a K-vector space for all i # j in Ipq,
and the field K acts centrally on each F; and on ;M for each pair i, 7 € L.
We set ;M; = Fj for each ¢ € Ipq.

We call M locally finite if every Fj-Fj-bimodule ;M is a directed union
of finite-dimensional Fj-Fj-subbimodules. If the index set x4 is finite and
each bimodule ;M is of finite K-dimension, M is called finite. Throughout
this section, we freely use the terminology and notation introduced in [18].
In particular, we denote by (QM, dM) the valued quiver of the species M,
where Qévl = I\ is the set of vertices of the quiver QM.

To any K-species M = (F’i,iMj),-Je]M, we associate the tensor K-
algebra

(5.2) TM)=Tp(M)=FeMaM” e M> &...
of M, where
e =0 et b (direct sum of the division rings Fj, viewed as a ring
with the local units e; = 1p; € Fj),
o M = ®i,jEIM iM; is a K-vector space viewed as a unitary F-I-
bimodule in the obvious way, and

o M® = M ®p ---®p M is the tensor product of s copies of M, for
each s > 1, and we set M’ = F (see [26] and [18]).

Note that the local units e; of I are primitive pairwise orthogonal idem-
potents of T'(M) and, given s > 1, the vector subspace

T(M)zs = @ M¥
j=s
of T(M) is the two-sided ideal generated by M®". Obviously, T'(M) has an
identity element if and only if the index set I, is finite.
We note that, given s > 1, there is a decomposition

(5.3) M® =M@ - Qp M = o) aMb(S)

a,bel
where alel) = oMy,
M = B WMy @My @@, M, for s> 2,
j17j27"~’js

and the sum is taken over all paths a = jo — j1 — -+ — js — b of length
s > 1 from a to b in the quiver QM.

To any K-species M = (F;,;Mj); jer,,, We associate the graded cotensor
K-coalgebra

(5.4) T°(M) = (T(M), A,e),
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endowed with the comultiplication A : T(M) — T(M) ® T(M) and the
counit € : T(M) — K defined as follows. Given a local unit e, € F at
a, we set A(eg) = €4 ® eq and e(eq) = 1. Given s > 1 and any element

oMMy € aleS) C M® of the form
oMy = aMyjy @ jiMj, @ - @ jmp € oMjy @ jy Mj, @ - @ 5, My
(see (5.3)), we set
s—1
A4Tip) = €a @ oy + Ty ® €+ Y _(aT115,) ® (5, 71),
r=1
E(amb) =0,
where aij = oMy, & - ®jr—1mjr and jrmb = Mg (S ®jsmb'
It follows that, given s > 1, the vector subspace
T (M)<s1= @ M
j<s—1
of T°(M) is a K-subcoalgebra of T°(M), and T"(M)<s_1 is the (s—1)th
term of the coradical filtration of T%(M) [41, Lemma 4.4]. Note also that
T°(M) is isomorphic to the cotensor coalgebra

To(M)=Fa&MaeMOM e MOMOM & - -

where F' = @, Im F, is viewed as the direct sum of the simple coalgebras
F,, and M = ®a,b6 I oMy is viewed as an F-F-bicomodule in a natural
way (see [25] and [41]). We denote by T7(M)* the algebra (T7(M))* K-dual
to T"(M) with respect to the convolution product.

The following lemma extends Lemma 2.3 to the K-species case.

LEMMA 5.5. Let M = (F;,iM;);jer,, be a finite K-species and K a
field.

(a) If the quiver QM is acyclic then dimp T°(M) is finite and there is
a K-algebra isomorphism T°(M)* = T(M).

(b) If s > 2 then the subcoalgebra T"(M)<s—1 = ;<4 1 M® of T°(M)
is  finite-dimensional and there is a K-algebra isomorphism

(T?(M)<s-1)" = T(M)/T(M)>s.
Proof. Apply the arguments used in the proof of Lemma 2.3. u

Imitating the concept of the finite subquiver topology on K@ defined
in Section 2, given a locally finite K-species M = (F}, ;M) jer,, and a
field K, we define the finite subspecies topology (K-linear and Hausdorff) on
T (M) as follows. First we recall that there is a canonical algebra embedding
T(M) — T°(M)* and the non-degenerate bilinear form (—, —) : T°(M)* x
T°(M) — K defined by (¢, c) = ¢(c).
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Given s > 2 and a finite K-subspecies M®) of M, we consider the
finite-dimensional subcoalgebra T7(M®)) <, | = D,<s1 M®" of T%(M).
By Lemma 5.5, the finite-dimensional algebra K-dual to T°(M )<, 1 has
the form (T°(M@)<,_1)* = T(M@)/T(M®)s,. Let U = Ker {*) C
T (M) be the kernel of the composite algebra surjection

(5.6) @ = [T(M) — T*(M)* L (2 (Mm@) o)

= T(M®)/T (MW,

where u{) T (ME)) gy« T%(M) is the coalgebra embedding and
T°(M) — T°(M)* is the canonical algebra embedding. It is clear that
the K-linear topology on T'(M) defined by the ideals U§x) = Ker ng) is
Hausdorff; we call it the finite subspecies topology of T'(M) (see [20] and
[21]). The completion

—

(5.7) T(M)=T(M)= lim T(M)/U®

S
M(@) s>2

of T(M) is obviously a pseudocompact K-algebra, where M(®) runs through
the finite K-subspecies of M, because we assume that the K-species M is
locally finite.

The following result extends Proposition 2.5 to the K-species case.

PROPOSITION 5.8. Let M = (F;,;M;); jer,, be a locally finite K -species
and K a field.

(a) The tensor K-algebra T'(M) is left and right hereditary. For each
a € In, the indecomposable left ideal E(a) = T(M)e, of T(M) is
an indecomposable injective left coideal of T (M), soc E(a) = S(a) =
Feq and T°(M) = @,¢1,, E(a).

(b) The left Gabriel valued quiver (¢Q, cd) of C = T"(M) is isomorphic
to the valued quiver (QM,dM) of the species M (see [18]).

(¢) The cotensor K-coalgebra T"(M) is hereditary and it is the directed
union of the finite-dimensional subcoalgebras TD(M(z))SS,l, where
s > 2 and M%) runs through the finite K -subspecies of M.

(d) Let T°(M)* be the pseudocompact K -algebra K -dual to T°(M) and
let T(M) be the completion (5.7) of T(M) in the finite subspecies
topology. Then there are isomorphisms of pseudocompact K -algebras

T (M)* = T(M) = Tp(M),

o0
~ — ~ — —~2 —~am ~ —~
(M)=FIOUMIOM® II---TTM® H---:F@HM®

s=1
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is the complete tensor K-algebra [9, p. 96] of the topological vector

space M = [aer,, ales) (see (5.3)), viewed as an F-F-bimodule
over the topological product F= HaeIM F, of the division rings F,
with a € Ip.
(e) J(T°(M)*) = (T (M)o)+ = F+ is closed in T°(M)* and the iso-
morphism T"(M)* = T (M) restricts to isomorphisms
(el) J(T2(M)*) = J(T(M)) = J(T(M)) = T(M)>1, and
(e2) (FeM)* =J(T(M)*)222J(T(M))?=(J(T(M))>=T(M)>s.
Proof. By a slight modification of the arguments in [3, Appendix], one
can prove that Tr(M) is left and right hereditary. To prove that T°(M) is
hereditary, we show that, for any simple left 77(M)-comodule S(b) = Fley,
there exists an exact sequence
(5.9) 0= 5(b) = BE(b) — @ B =0
JEIM
in T°(M)-Comod, where E(j) = T'(M)e; is the injective envelope of S(j),
djp = dimp, My, and U (m) denotes the direct sum of m copies of U for any

cardinal number m. For the proof, we note that (in the notation of (5.3))
the T%(M)-comodule Coker u has the form

Coker uy,
— B(h)/S(b) & Tw(M) - &,/ F - ¢,

~MaMP oM & ) e

= aee?M(aMb S aMb(2) ® aMb(3) b aMlE4) S--)
= EG? EG? (Fj@ij@an@)ij@aMJ@)®ijEBaM](3)®ij@...)
aclipm Jeim
= @ [Hede MP e MY @)@ M,
=~ g} (F,oMoMP® o M® @---)-¢;® ;M,...
J&im
~ g} FeMoM®oM® &) ¢;®;M,...
J€im
= @ Tp(M)-e; @M= @ B(j)© ;M= @ B
JEIMm JEIM JEIMm

(see also [19]). This proves that the sequence (5.9) of left T (M)-comodules
is exact, for any b € . Hence, it follows easily that the coalgebra T(M)
is hereditary (see also [12]).
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Now, the arguments given in the proof of Proposition 2.5 extend to
the K-species case almost verbatim. The details are left to the reader. We
only note that, by the assumption that the species M is locally finite, the
definition of the comultiplication in 7°(M) implies that, for any finite-
dimensional subcoalgebra H of T7(M), there exists a finite K-subspecies
M@ of M such that H is contained in T°(M®)) <, for some s > 2. It
follows that T(M) is the directed union of the finite-dimensional subcoal-
gebras Hs(x) = Tu(./\/l(m))gs_l C T°(M®), where s > 2 and M® runs
through the finite K-subspecies of M. Then (c) follows and we get isomor-
phisms

(5.10) My =( U HP) = lim o T(M)/(HE)

M@) s>2 M@) g>2
= lim (H®M)'=  lim  T(M)/US =T(M)
M@ 5>2 M@ 5>2

of pseudocompact K-algebras, where M®) runs through the finite K-sub-
species of M. Hence, (d) and (e) follow as in the proof of Proposition 2.5. m

Let K be a field and
M = (Fi,iMj)ijery
a locally finite K-species. We denote by Repy (M) the category of all K-

linear representations of M (see [18] for a precise definition). Following [18]
and the definition (3.2), we define the K-linear functor

(5.11) F : T°(M)-Comod — Repg (M)

as follows. Given a comodule X in T"(M)-Comod (viewed as a rational
right module over T7(M)* = T7(M)) we define F(X) in Repg (M) (see
[18, Definition 2.1]), by setting

(512) F(X) == (XOLJ ‘Pé%)a,beIMv

where X, = X - e, = X - ¢ and e, € T(M) € T(M)* =2 T(M) is the local
unit at a.

For any bimodule ,M,;, the K-linear map gpﬁ) D Xy ® oMy — Xy is
defined by the formula X (z - e,) = (z - eq) - m = x - mep, where z € X,
m € My, and x - e, = x-€; € X, = X - e, (see Example 3.6). Since
m € oMy is viewed as an element of T'(M), we have m = e,m = mey
in T(M). Given a T”(M)-comodule homomorphism f : X — Y, we set
F(f) = (fa)aciy, where fq : Xq — Y, is the restriction of f to X,. It is
clear that F(f) : F(X) — F(Y) is a morphism in Repg (M) defining a
covariant K-linear exact faithful functor such that the following proposition
holds.
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PROPOSITION 5.13. Let M = (F;,iM;j)ijer,, be a locally finite K-
species.

(a) The functor F' (5.11) commutes with arbitrary direct sums and di-
rected unions, and restricts to two equivalences of categories

T7(M)-Comod LN Repi?gf(./\/l)

(5.14) ] ]

T7(M)-comod EiR nilrepg(/\/l)

making the diagram commutative.

(b) The functor F~1 inverse to F associates to any representation X =
(Xa, P )abeln in Repi?ef(./\/l) the vector space F~(X) =Der Xa
equipped with the left T"(M)-comodule structure on induced by the
natural discrete right module structure over the profinite K-algebra
T (M)* = T(M).

(¢) For any representation X in nilrepg(/\/l) there exists a finite sub-
species M@ of M and an integer s > 2 such that X lies in
repg(M(x),T(M(m))Zs) - nilrepi( (M).

Proof. In view of Lemma 5.5 and Proposition 5.8, the arguments used
in the proof of Proposition 3.3 extend to the K-species case. m

By applying previous results, we are able to prove the following impor-
tant theorem extending Corollary 4.12(a) from the case of K algebrically
closed to arbitrary K.

THEOREM 5.15. Assume that K is an arbitrary field and C is a basic
indecomposable hereditary K -coalgebra such that the Ext-species o€zt of C
is locally finite and the left valued Gabriel quiver (¢Q,cd) of C is a valued
tree and contains no infinite path of the form

! 1! ! 1! ! 1!
(dg,dg))  (dp,.dg,) (ds,,,95,,)
° ° 0 - — @ T g

(a) There is a coalgebra isomorphism C = T(M), where M = cExt*
is the #-dual to cExt (see [18, (4.11)]).

(b) There is an equivalence of K -categories C-Comod = Repﬁ?gf(./\/l)
that restricts to an equivalence C-comod = nilrep’! (M).

Proof. Tt follows from [18, Proposition 4.16] that there is an equiva-
lence of K-categories C-Comod = Repi?ef (M). On the other hand, by
Proposition 5.8, there is an equivalence of K-categories T"(M)-Comod
Repﬁ?zf (M), and consequently, C-Comod = T (M )-Comod. Since the coal-
gebras C' and T°(M) are basic, there is a coalgebra isomorphism as in (a)
(see [27, p. 404], [5], and [7]). =
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Following [29] and Section 4, we introduce the following definition.

DEFINITION 5.16. Given a locally finite K-species M = (F}, iM;)i jern
a K-coalgebra H is defined to be a relation subcoalgebra of the cotensor
(hereditary) coalgebra T7(M) if T%(M)o@T" (M) = Fe&M C H C T (M).

We end this section by showing that any basic indecomposable K-coal-
gebra C over a perfect field K is a relation subcoalgebra of T7(M), where
M = cExt#. Moreover, there is an equivalence of categories C-Comod =2
Repmef (M, B), where Repzn[f (M, B) is the full subcategory of Repenef (M),
consisting of the representations that satisfy the relations of a profinite rela-

tion ideal B of the profinite K-algebra 77 (M)* = T/(/\7), defined as follows.
DEFINITION 5.17.

(a) A profinite bound K -species (or a K -species with profinite relations)
is a pair (M, B), where M is a K-species and B is a closed two-sided
ideal (called a profinite relation ideal) of the profinite K-algebra

T (M) (see (5 7)) such that that B C T(M)>2
(b) Let B C T(./\/()>2 - T(./\/l) be a profinite relation ideal, M®) a
finite subspecies of M, and
O T(M) = T(M)/UE) = T(M®)/T(M)s,
(z)

with s > 2, the canonical algebra surjection. Fix a relation ideal B
of T(M@®) such that
U (B) = B TMP) 5 € T(MP) ) T(MP),
The bound K-species (M), B 4+ T(M®))s,) is called the projec-
tion of (M, B) on (M@, T(M(Zs)) for s > 2 and a finite subspecies
M@ of M.
By Proposition 5.13(c), given a representation X in nilrepg (M), there
exist an s > 2 and a finite subspecies M®) of M such that X lies in
rep f(/\/l( z) (M(‘”))ZS) C nilrepg(/\/l).
We define X to satisfy the relations in 9B if X satisfies the relations in
B 4+ T(M@®)s, that is, X lies in
rep (M, B + T(M®)=) C replf (MO, T(ME)s,).
A representation Y in Repzn ! (M) is defined to satisfy the relations in B
if any subrepresentation X of Y lying in nilrepg (M) satisfies the relations
in B.
Given a profinite bound species (M, B), we denote by Repgn@f (M,B) D
nilrep’ % (M, ) the full subcategories of Repenef (M) whose objects are the
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representations in Repi?ef (M) (resp. in nilrepg (M)) that satisfy the rela-

tions in ‘B.

DEFINITION 5.18. Let K be a field, M a locally finite K-species, and
(M, B) a profinite bound species.

(a) The cotensor K-coalgebra of the profinite bound species (M, B) is
the subcoalgebra

(5.19) T(M,B) = {c € T"(M); (B, c) = 0}

of the cotensor hereditary K-coalgebra T°(M), where (—,—)
T°(M)* x T°(M) — K is the non-degenerate symmetric K-bilinear

—

form defined by (¢, c) = ¢(c), and B’ is the image of B C T%(M)

—

under the isomorphism T (M) = T°(M)* (see (5.10)) of pseudocom-
pact K-algebras.

(b) A K-coalgebra C' is defined to be a profinite bound species coalge-
bra if there are a profinite bound species (M, B) and a coalgebra
isomorphism C = T7(M, B). If the ideal B is contained in the ten-
sor algebra T'(M), the coalgebra C' = T7(M,B) is called a bound
species coalgebra.

The following result is a K-species analogy of Theorem 4.8.

THEOREM 5.20. Let K be a field, M a locally finite species and (M, B)
a profinite bound species with a profinite relation ideal B C T (M)>a C M.
(a) The subspace T°(Q,B) (see (5.19)) of T°(M) is a basic relation
subcoalgebra of T"(M) such that the Gabriel valued quiver (gQ, pd)
of H = T°(M,B) is isomorphic to the valued quiver (QM,dM) of
the species M.
(b) The coalgebra H = T°(M,B) is the directed union of the finite-
dimensional subcoalgebras of the form

H =T (MW) s N T (MW, B),
where M®) runs through the finite subspecies of M, s > 2, and
B CT (M) is a relation ideal such that (M), %§$)+T(M(I>)Zs)
is the projection of (M, B) on (M@ T(M®))s,) (see (5.17)).
(¢) There are functorial isomorphisms
(H)" 2 DM/ (B + T(M))

of finite-dimensional K-algebras that are functorial with respect to
( (')
S/

coalgebra embeddings Hsz) — H and induce isomorphisms

o —

H*=T(M)/B= lim T(MD)/( B +T(M)s,)
M@ 5>2
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of pseudocompact K -algebras, where M@ runs through the finite
subspecies of M.

(d) The K-linear category equivalences (5.14) restrict to category equiv-
alences

T°(M,B)-Comod - Repyr (M, B)

(5.21) ] ]

T°(M, B)-comod EiR nilreplg (M,B)

Proof. The arguments used in the proof of Theorem 4.8 generalize almost
verbatim. The details are left to the reader. m

COROLLARY 5.22. Let K be a field, M a species and (M, B) a profinite
bound species.

(a) If H is a relation subcoalgebra of T°(M), then the wvector space
H+ = {p € T°(M)*; (¢, H) = 0} is a two-sided relation ideal of
the profinite algebra T°(M)* = T(M).

(b) The map B +— T°(M,B) defines a bijection between the set of profi-
nite relation ideals B of the profinite K-algebra T'(M) and the set

of relation subcoalgebras H of the cotensor coalgebra T°(M,B). The
inverse map is given by H — H* .

Proof. Apply Theorem 5.20 and the arguments used in the proof of
Corollary 4.10.

COROLLARY 5.23. Assume that C is a basic K-coalgebra and K is a field
such that the centre of the division algebra End oS is a separable extension
of K for any simple C-comodule S. Let M = cExt¥ be the #-dual to the
left Ext-species cExt of C' (see [18, (4.11)]).

(a) There exist a profinite relation ideal B of the complete tensor K-

algebra T(M) and a coalgebra isomorphism C = T°(M, B).
(b) There exist two K-linear equivalences of categories C'-Comod =2
Repi?ef(/\/l, B) and C'-comod = nilrepg(/\/l, B).

Proof. (a) By [41, Proposition 4.5], there exists a relation subcoalgebra
H of T"(M) and a coalgebra isomorphism C' = H. On the other hand, by
Theorem 5.20 and Corollary 5.22, there exist a profinite relation ideal B of
T(M) and a coalgebra isomorphism H = T7(M,B). Hence there exists a
coalgebra isomorphism C' = T7 (M, B).

(b) Apply (a) and Theorem 5.20(d). m

The following corollary is an immediate consequence of Corollary 5.23.

COROLLARY 5.24. If C is a basic K-coalgebra, K is a perfect field, and
M = cExt¥ then there exist a profinite relation ideal B of T(M), a coal-
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gebra isomorphism C = T (M,B), and K -linear equivalences of categories
C-comod = nilrep’! (M, B) and C-Comod = Rep'?™/ (M, B).

6. Species with bimodule relations. The aim of this section is to
show that the study of K-species with bimodule relations (considered in [26,
Section 3]) leads to an interesting class of K-coalgebras, including a class of
cl-hereditary coalgebras and piecewise prime coalgebras in the sense of the
following definition (see [16, Section 3], [22], [26, Section 3], [36]).

DEFINITION 6.1. Let K be an arbitrary field and C' a K-coalgebra.

(a) A left C-comodule X is called colocal if X contains a unique simple
subcomodule, or equivalently, X is isomorphic to a subcomodule of
an indecomposable injective comodule.

(b) A K-coalgebra C' is defined to be cl-hereditary if every colocal epi-
morphic image of an injective left C-comodule is injective (see [36]).

(c) C is defined to be a piecewise prime coalgebra if C satisfies the
following two conditions:

e End oF is a division K-algebra, for any indecomposable injective
left C-comodule F,

e given a triple E, E', E” of indecomposable injective left C-co-
modules, the equality Home(E', E”) o Homg(E, E') = 0 implies
Hom¢(E', E") = 0 or Home(E, E') = 0, where Home(E', E") o
Home(FE, E') is the image of the K-bilinear map

o: Homg(E', E") ® Hom¢(E, E') — Home(E, E"), f®gw— fog.
Note that any hereditary coalgebra is cf-hereditary.
LEMMA 6.2. Let K be an arbitrary field and C' a K-coalgebra.

(a) The following three conditions are equivalent:

(al) C is cl-hereditary;
(a2) every non-zero homomorphism f : E — E’ between indecom-
posable injective left C'-comodules E and E' is surjective;
(a3) if E, E', E" are indecomposable injective left C-comodules and
f € Homg(E', E") and g € Home(E, E') are such that fog = 0
then f =0 or g =0.
(b) The definitions of a cl-hereditary coalgebra and a piecewise prime

coalgebra are left-right symmetric.
(¢) If C is cl-hereditary then C is piecewise prime.

Proof. The equivalence of (al)—(a3) is fairly easy; the proof is left to the
reader. Statement (c) follows from (a). For the proof of (b), we recall from
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[6, Proposition 3.1(c)] that there is a K-duality
D : C-inj — inj-C
between the categories of socle-finite injective left C'-comodules and socle-

finite injective right C-comodules. Hence, in view of (a), statement (b) easily
follows. m

Following [26, Section 3], [16], and [17, Section 3], we introduce the fol-
lowing definition.

DEFINITION 6.3. Let K be an arbitrary field and M = (F;, i Mj;); jer,,
a K-species with jM; = F} for each j € .
(a) A bimodule relation on M is defined to be a system
(6_4) c= (Cijr M @ My — iMT)i,j,TEIM
of F;-F.-bimodule homomorphisms such that
e ciir - iM; Q@ ; M, — ;M, and ¢y : M, ® M, — ;M, are the
canonical bimodule isomorphisms F; ® ;M, — ;M, and ;M, ®
Fr i iMT7
® Cirs 0 (Cijr ® 1) = cijs 0 (1 ® cjrs) for all 4, j,r, s € Ipg.

(b) A bimodule relation ¢ = (¢;jr )i jrern, on M is defined to be piecewise
prime if the equality ¢;j,(;M;® jM,) = 0 holds if and only if ;M; = 0
or er = 0.

(c) A bimodule relation ¢ = (cyjr )i jrer,, on M is defined to be a piece-
wise domain relation if the equality c;j (¢ ® y) = 0 implies ;M; =0
or jM, =0, for all 4, j,r € Ing and all x € ;M;, y € jM,.

(d) A K-species with a bimodule relation is a pair (M, c), where M is a
species and ¢ = (¢, )i jrery, is a bimodule relation on M.

(e) A K-linear representation X = (Xg, 9% )aper,, in Repg (M) is de-
fined to satisfy the relation ¢ = (cijr)ijrern, on M if goj-io(cp%@l) =
X 0 (1® cjjr) for all i, 4,7 € In.

We denote by Repy (M, c) the full subcategory of Rep (M) whose ob-

jects are the representations of M that satisfy c (see [26, Section 3]).

Obviously, any piecewise domain bimodule relation c is piecewise prime.
Following [26, Section 3], we associate to any K-species (M, c) with a
bimodule relation the K-algebra

(6.5) T(M,c)=T(M)/Ue,

where 2 is the two-sided ideal of the tensor K-algebra T'(M) = Tp(M)
generated by the elements ¢ (z @ y) —z®@y € iM, & ;M; ® jM, C M &
M®M CTp(M) with 4, j,r,s € Ip, @ € ;{Mj, and y € jM,. It is clear that
the local units e, of T'(M) with a € Iy form a complete set of pairwise
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orthogonal primitive idempotents of T'(M, c¢), and the following proposition
holds.

PROPOSITION 6.6. Let K be an arbitrary field, M = (F;,;M;); jer,, a
K-species (5.1) with jM; = F}; for each j € Ip, and ¢ a bimodule relation
on M.

(a) There is a K-linear equivalence of categories Repyr(M,c) =
Mod T'(M,c).

(b) ¢ is a piecewise prime relation on M if and only if the K-algebra
T(M,c) is piecewise prime, that is, given three pairwise different
indices 1, j,r in In, the equality e;T' (M, c)e;T(M,c)e, =0 holds if
and only if ;T (M, c)e; = 0 ore;T(M,c)e, = 0 (see [17, Section 3]).

(¢c) ¢ is a piecewise domain relation on M if and only if T(M,c) is
{-hereditary, that is, every local right ideal of T(M,c) is projective
(see [22]).

Proof. Statement (a) follows from [26, Lemma 3.1], and (c) is a con-
sequence of [26, Proposition 3.1]. Statement (b) follows from the fact that
Endrpe)(eaT(M,c)) = F, and there is a bimodule isomorphism
Homp( ey (€6T(M, ¢), e T(M,c)) = My for all a,b € In. The details
are left to the reader. =

Now we associate to any (M, c) the cotensor K-coalgebra

(6.7) T'(M,c) =T (M,c) ={z € T'(M); (™A, z) =0}
(see (5.19)). By applying the technique of Section 5, one can show that there
are K-linear equivalences of categories
0 ~ Inb
(6.8) T%(M, ¢)-Comod = Rep,~ f(/\/l, c),
] ~Y M e
T°(M, c)-comod = nllreplg(/\/l, c).

Now we give an equivalent description of the coalgebra T7(M,c). Let
M = (F;,iM;); jer,, be a K-species with ;M; = Fj for each j € In. We
denote by My, (M) the K-vector space of all square I by I matrices m =
[Mpglp.gern, With myg € ,M,. Note that the diagonal entry my, € ,M, = F),
is an element of the division algebra F,.

Let (M, c) be a K-species with a bimodule relation. We define the inci-
dence K-algebra of (M, c) to be the K-vector subspace
(6.9) K(M,c)

= {m = [myy] € My,,(M); mpy = 0 for almost all p,q € Irq}
of M, (M) equipped with the matrix multiplication defined by the formula

/ " o_ o o ) ! "
m’'-m” =m = [my], where my, = E Cpjg(Mipg ® My ).
J€lm
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Since ¢ is a bimodule relation, K(M,c) is an associative K-algebra with
local units e, = ey, where ey, is the matrix with the identity element 15,
of the division algebra F), in the (p, p)-entry, and zeros elsewhere. Note that
K (M, c) has an identity element if and only if /x4 is a finite set.

PROPOSITION 6.10. Let M be a K-species with a bimodule relation c.
(a) There is an isomorphism T (M, c) = K(M,c) of K-algebras.
(b) ¢ is a piecewise prime relation on M if and only if the K-algebra
K(M,c) is piecewise prime.
(c) ¢ is a piecewise domain relation on M if and only if K(M,c) is
{-hereditary.
Proof. (a) In view of the definition of the ideal 2 of T (M), any element
QT = oMy @ ;Mg ® -+ @ jmy € o Mjjy ® jy My, ® -+ © j, My C M’
= P MY
a,belpg
with s > 2 (see (5.3)) can be reduced (by applying the bimodule homo-
morphisms ¢;j 1 {M; ® jM, — ;M, of (6.4)) to a unique element c(,m;) of
the bimodule M, that is congruent to ,mp modulo .. It follows that any
element z € T(M) can be reduced to a unique element

ck)eFaM= @ F;e @ M,
VISV a,belrg

that is congruent to z modulo 2(.. Obviously, ¢(z) can be viewed as a matrix
m, € K(M,c). It is easy to see that the composite map z — c(z) — m,
defines an isomorphism T'(M, ¢) = K (M, c) of K-algebras.

Statements (b) and (c) follow from (a) and Proposition 6.6. =

It follows from Propositions 6.6 and 6.10 that there is a K-coalgebra
structure (A, ¢) on the incidence K-algebra K(M,c) such that the coalge-
bra K“(M,c) = (K(M,c), A,e) (called the incidence coalgebra of (M,c))
is isomorphic to the cotensor coalgebra T"(M,c) and there are K-linear
equivalences of categories

K“(M,c)-Comod = Repi?ef(./\/l, c),
a ~J : E
K"(M, c)-comod =2 mlrep[g(/\/l, c),
induced by (6.8). The structure of the coalgebra K“(M, c) will be discussed

in a subsequent paper. Here we describe it under the additional assumption
that (M, c) is epi-special, that is, the following four conditions are satisfied:

(cl) if My # 0 and yM, # 0 then a = b and M, = F,,
(c2) ¢ = (¢ijr)ijrely, is an epi-bimodule relation on M, that is, each
bimodule homomorphism ¢;;, is surjective,

(6.11)
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(c3) each non-zero F,-Fy-bimodule ,M, is simple and is generated by an
element ,&§ € ;M, such that ¢, (;§; ® j&) = & for all 4, j,r € Ip,
(c4) the valued quiver of M is intervally finite.

If (M, c) epi-special, we associate to (M, ¢) the incidence K -coalgebra
(6'12) KD(M,C) = (K(M,C),A,E),
where K(M,c) is the incidence K-algebra of (M,c), endowed with the
comultiplication A : K(M,c) — K(M,c) ® K(M,c) and the counit ¢ :
K(M,c) — K defined as follows. Given a local unit e, = €4, € K(M,c) at

a, we set Aeq) = e,®e, and e(e,) = 1. Given the matrix 4&peq € K(M,c),
with 4& in the (a,b)th entry and zeros elsewhere, we set

A(a&beab) = €q @ a&plab + alpeap @ €p + Z a&rear @ r&perp,

relym
5(a£beab) =0.

One can show that there is a coalgebra isomorphism K°(M,c) = T°(M,c).
Following [16], to any such coalgebra we associate a valued poset (Irq, <, d)
as follows. We set ¢ < j iff ;M; # 0. In this case we write a valued dashed

arrow

(i)

i—————]
where d;; = dim (;M;)F; and d;; = dimp, (;M;). If there is no r such that
1 < r < j, the dashed arrow is replaced by a continuous one.
It is clear that the valued Hasse quiver of the valued poset (Ixq, <,d) is
just the left valued Gabriel quiver (5@, gd) of the coalgebra H = K°(M, c).
We illustrate the definition by an example.

ExaAMPLE 6.13. Let R C C be the real and complex number fields,
respectively. Consider the R-species M = (Fj, ;M;); jer,,, where

e [, = Z is the set of integers,
{R for a = 0, {(C for a < b,
o [}, = aiVlpy =
C fora#0, 0 forb<a.
We define a bimodule relation ¢ = (¢ : i M; @ My — ;M;); jrez on M:
o ¢y iM; ® M, — ;M, and ¢ : ;{M, ® M, — ; M, are the canonical

bimodule isomorphisms F; ® ; M, =, iM, and ; M, ® F, — ; M, for all
1,7, € Z,
o if i < j < r, we define ¢;5, : C® C — C to be the multiplication
TRQYr—x-Yy,
o if ;M; =0 or ;M, =0, we set ¢;j = 0.
Note that c is a piecewise domain bimodule relation and the incidence R-
coalgebra R”(M, c) has the upper triangular matrix form
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-1 0
Loy
ccccccceccccc.
o cccccccccc. —-3
0O 0o CCCCTCCTCTCC. —2
0O 00 CCCCGCTCTCC. —1
0000 R CCGCTCTCC . o0
R*(M,c) = 00 0O0O0OCCCTCC C. 1
0000 O0O0CTCTCTCC . PN
0000 O0O0OTCTCTCC . s
0000 O0O0OTO0TCTCC . .
000 0 O0O0O0OTO0TO0TC C .
000 0 O0O0O0TUO0TO0O0 C .

and consists of all ZxZ matrices A = [\,q] with A\,; € C such that A\,; = 0 for
almost all p, ¢ € Z. The multiplication in the incidence R-algebra R(M, c)
is the usual matrix multiplication. The comultiplication A and the counit
in the incidence R-coalgebra R”(M, c) are defined as in (6.12).

By (6.11), there are R-linear equivalences of categories

R%(M, ¢)-Comod = Repﬁ?gf(/\/l, c), RYM,c)-comod = nilrepg (M, c).

The left valued Gabriel quiver (@, gd) of the coalgebra H = R"(M, c) has
the form

@1 (12
—2 1 ——50--51 2 3

Note also that the partial order relation =< in the valued poset (Irq, <,d)
associated to the R-coalgebra H = K"(M,c) is just the linear order of Z,
and we have

(2,1 (1,2)
e ——0———jforalli>1and j > 1,

(1,1)
e —j———jforalli>1and j>1.
Note that the valued Hasse quiver of the valued poset (I, <,d) is just the
left valued Gabriel quiver (@, gd).
One can check that the incidence R-coalgebra H = R”(M,c) has the
following properties:

(a) H is basic, indecomposable, cf-hereditary, and locally left (and right)
artinian.

(b) gl.dim H = 2.
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(c) H is a left Euler coalgebra (in the sense of [33]) and the Euler
quadratic form qp : Z9) — Z of H is positive definite.

(d) H is representation-directed in the sense of [33].

(e) The endomorphism R-algebra End g X is isomorphic to R or to C,
for any indecomposable finitely copresented H-comodule X.

PROBLEM 6.14. Give a characterisation of representation-directed inci-

dence coalgebras K"(M, c) of K-species M with a piecewise prime bimodule
relation c.

To solve the problem, one can apply the technique developed in [33,

Section 6], [35], [36], and the results of [17, Section 3] (see also [16]).
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