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WIENER AMALGAM SPACES WITH RESPECT TOQUASI-BANACH SPACESBYHOLGER RAUHUT (Wien)Abstra
t. We generalize the theory of Wiener amalgam spa
es on lo
ally 
ompa
tgroups to quasi-Bana
h spa
es. As a main result we provide 
onvolution relations for su
hspa
es. Also we weaken the te
hni
al assumption that the global 
omponent is invariantunder right translations, whi
h is new even for the 
lassi
al Bana
h spa
e 
ase. To illustrateour theory we dis
uss in detail an example on the ax + b group.1. Introdu
tion. Wiener amalgam spa
es 
onsist of fun
tions on a lo-
ally 
ompa
t group de�ned by a (quasi-)norm that mixes, or amalgamates,a lo
al 
riterion with a global 
riterion. The most general de�nition of Wieneramalgams so far was provided by Fei
htinger in the early 1980's in a series ofpapers [4�6℄. We refer to [12℄ for some histori
al notes and for an introdu
tionto Wiener amalgams on the real line.Wiener amalgams have proven to be a very useful tool for instan
e intime-frequen
y analysis [11℄ (e.g. the Balian�Low theorem [12℄) and samplingtheory. Our interest in those spa
es arose from 
oorbit spa
e theory [7�9, 14℄whi
h provides a group-theoreti
al approa
h to fun
tion spa
es like Besovand Triebel�Lizorkin spa
es as well as modulation spa
es.It seems that Wiener amalgams with respe
t to quasi-Bana
h spa
es havenot yet been 
onsidered in full generality, ex
ept for a few results for Wieneramalgams on R
d in [10℄. So this paper deals with basi
 properties of Wieneramalgams W (B, Y ) with a quasi-Bana
h spa
e Y as global 
omponent andone of the spa
es B = L1, L∞ or M (the spa
e of 
omplex Radon measures)as lo
al 
omponent. Moreover, we also remove the te
hni
al assumption im-posed by Fei
htinger [4℄ that the global 
omponent Y has to be invariantunder right translation. Thus, some of our results are even new for the 
las-si
al 
ase of Bana
h spa
es Y .One of our main a
hievements is a 
onvolution relation for Wiener amal-gams. As a spe
ial 
ase it turns out that W (L∞, Lp) is a 
onvolution algebrafor 0 < p ≤ 1 if the underlying group is an IN group, e.g. R

d. This result is2000 Mathemati
s Subje
t Classi�
ation: 46A16, 46E27, 46E30.Key words and phrases: Wiener amalgam spa
es, quasi-Bana
h spa
es, 
onvolutionrelations, doubling weights. [345℄ 
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interesting sin
e for non-dis
rete groups there are no 
onvolution relationsavailable for Lp if p < 1. The problem 
omes from possible p-integrable sin-gularities whi
h are not integrable. So the integral de�ning the 
onvolution
F ∗G does not even exist for all F ∈ Lp even if G is very ni
e, e.g. 
ontinu-ous with 
ompa
t support. Of 
ourse, the lo
al 
omponent L∞ ofW (L∞, Lp)prohibits su
h singularities. So our results indi
ate that whenever treatingquasi-Bana
h spa
es in 
onne
tion with 
onvolution, one is almost for
ed touse Wiener amalgam spa
es.To illustrate our results we also treat a 
lass of spa
es Y on the ax + bgroup su
h that W (L∞, Y ) is right translation invariant (and thus admits
onvolution relations) although Y is not.For a quasi-Bana
h spa
e (B, ‖ · |B‖), we denote the quasi-norm of abounded operator T : B → B by |||T |B|||. The symbol A ≍ B indi
atesthroughout the paper that there are 
onstants C1, C2 > 0 su
h that C1A ≤
B ≤ C2A (independent of other quantities on whi
h A,B might depend).We normally use the symbol C for a generi
 
onstant whose pre
ise valuemight be di�erent at ea
h o

urren
e.

2. Basi
 properties. Let G be a lo
ally 
ompa
t group. Integrationon G will always be with respe
t to a left Haar measure. We denote by
LxF (y) = F (x−1y) and RxF (y) = F (yx), x, y ∈ G, the left and right trans-lation operators. Furthermore, let ∆ be the Haar module on G. For a Radonmeasure µ we de�ne (Axµ)(k) = µ(Rxk), x ∈ G, for a 
ontinuous fun
tion kwith 
ompa
t support. We may identify a fun
tion F ∈ L1 with a measure
µF ∈ M by µF (k) =

T
F (x)k(x) dx. Then 
learly AxF = ∆(x−1)Rx−1F .Further, we de�ne the involutions F∨(x) = F (x−1), F∇(x) = F (x−1),

F ∗(x) = ∆(x−1)F (x−1).A quasi-norm ‖ · ‖ on some linear spa
e Y is de�ned in the same wayas a norm, with the only di�eren
e that the triangle inequality is repla
edby ‖f + g‖ ≤ C(‖f‖ + ‖g‖) with some 
onstant C ≥ 1. It is well-known(see e.g. [1, p. 20℄ or [13℄) that there exists an equivalent quasi-norm ‖ · |Y ‖on Y and an exponent p with 0 < p ≤ 1 su
h that ‖ · |Y ‖ satis�es the
p-triangle inequality, i.e., ‖f + g |Y ‖p ≤ ‖f |Y ‖p + ‖g |Y ‖p. (C and p arerelated by C = 21/p − 1.) We 
an 
hoose p = 1 if and only if Y is a Bana
hspa
e. We always assume that su
h a p-norm on Y is 
hosen and denote it by
‖ · |Y ‖. If Y is 
omplete with respe
t to the topology de�ned by the metri

d(f, g) = ‖f − g |Y ‖p then it is 
alled a quasi-Bana
h spa
e.Let Y be a quasi-Bana
h spa
e of measurable fun
tions on G, whi
h
ontains the 
hara
teristi
 fun
tion of any 
ompa
t subset of G. We assume
Y to be solid, i.e., if F ∈ Y and G is measurable and satis�es |G(x)| ≤ |F (x)|a.e. then also G ∈ Y and ‖G |Y ‖ ≤ ‖F |Y ‖.
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The Lebesgue spa
es Lp(G), 0 < p ≤ ∞, provide natural examples ofsu
h spa
es Y , and the usual quasi-norm in Lp(G) is a p-norm if 0 < p ≤ 1.If w is some positive measurable weight fun
tion on G then we further de�ne
Lp

w = {F measurable : Fw ∈ Lp} with ‖F |Lp
w‖ := ‖Fw |Lp‖. A 
ontinuousweight w is 
alled submultipli
ative if w(xy) ≤ w(x)w(y) for all x, y ∈ G.Now let B be one of the spa
es L∞(G), L1(G) or M(G), the spa
e of
omplex Radon measures. Choose some relatively 
ompa
t neighborhood Qof e ∈ G. We de�ne the 
ontrol fun
tion by(2.1) K(F,Q,B)(x) := ‖(LxχQ)F |B‖, x ∈ G,if F is lo
ally 
ontained in B, in symbols F ∈ Bloc. The Wiener amalgamspa
e W (B, Y ) is then de�ned as

W (B, Y ) := W (B, Y,Q) := {F ∈ Bloc : K(F,Q,B) ∈ Y }with quasi-norm(2.2) ‖F |W (B, Y,Q)‖ := ‖K(F,Q,B) |Y ‖.Here B is 
alled the lo
al 
omponent and Y the global 
omponent. It followsfrom the solidity of Y and from the quasi-norm properties of ‖ · |B‖ and
‖ · |Y ‖ that (2.2) is indeed a quasi-norm. Sin
e B is a Bana
h spa
e it iseasy to see that (2.2) is also a p-norm (with p being the exponent of thequasi-norm of Y ). We emphasize that in general we do not require herethat Y is right translation invariant in 
ontrast to the 
lassi
al papers ofFei
htinger [4, 5℄.Remark 2.1. The restri
tion of the lo
al 
omponent B to the spa
es
L1, L∞ and M is done for the sake of simpli
ity. One 
an 
ertainly extendour 
onsiderations to more general spa
es B, e.g. Lp-spa
es with 0 < p ≤ ∞(
f. [4, 12℄). However, 
onvolution relations as in Se
tion 5 will not hold anymore when taking B = Lp for p < 1.Let us �rst make some easy observations.Lemma 2.1. We have the following 
ontinuous embeddings:(a) W (L∞, Y ) →֒ Y .(b) W (L∞, Y ) →֒W (L1, Y ) →֒W (M,Y ).Proof. (a) Sin
e |F (x)| ≤ supu∈U |F (u−1x)| for a 
ompa
t neighborhood
U of e ∈ G the assertion follows from the solidity of Y .The statement (b) follows immediately from L∞(Q) →֒ L1(Q) →֒M(Q)for any 
ompa
t set Q ⊂ G.Let us now investigate whether W (B, Y,Q) is independent of Q andwhether it is 
omplete. It will turn out that both properties are 
onne
tedto the right translation invarian
e of W (B, Y ). In order to 
larify this weneed 
ertain dis
rete sets in G and asso
iated sequen
e spa
es.
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Definition 2.1. Let X = (xi)i∈I be some dis
rete set of points in G and

V a relatively 
ompa
t neighborhood of e in G.(a) X is 
alled V -dense if G =
⋃

i∈I xiV .(b) X is 
alled relatively separated if for all 
ompa
t sets K ⊂ G thereexists a 
onstant CK su
h that supj∈I #{i ∈ I : xiK ∩ xjK 6= ∅}
≤ CK .(
) X is 
alled V -well-spread (or simply well-spread) if it is both rela-tively separated and V -dense for some V .The existen
e of V -well-spread sets for arbitrarily small V is proven in [6℄.Given the fun
tion spa
e Y , a well-spread family X = (xi)i∈I and arelatively 
ompa
t neighborhood Q of e ∈ G we de�ne the sequen
e spa
e

Yd := Yd(X) := Yd(X,Q) :=
{

(λi)i∈I :
∑

i∈I

|λi|χxiQ ∈ Y
}
,(2.3)

with natural norm ‖(λi)i∈I |Yd‖ := ‖
∑

i∈I |λi|χxiQ |Y ‖. Here, χxiQ denotesthe 
hara
teristi
 fun
tion of the set xiQ. If the quasi-norm of Y is a p-norm, 0 < p ≤ 1, then also Yd has a p-norm. Suppose for instan
e Y = Lp
m,

0 < p ≤ ∞, with some positive 
ontinuous weight fun
tion m. If in addition
m is moderate, i.e., m(xy) ≤ m(x)w(y) for all x, y ∈ G and some fun
tion w,then it is easily seen that Yd = ℓpm̃ with m̃(i) = m(xi).Although we will not require the right translation invarian
e of Y ingeneral, we state the following easy observation in 
ase it holds.Lemma 2.2. If Y is right translation invariant then the de�nition of
Yd = Yd(X,U) does not depend on U .Proof. Let V , U be relatively 
ompa
t sets with non-void interior. Thenthere exist a �nite number of points yj , j = 1, . . . , n, su
h that V =⋃n

j=1 Uyj . This implies
∑

i∈I

|λi|χxiV ≤
n∑

j=1

∑

i∈I

|λi|χxiUyj
=

n∑

j=1

Ry−1
j

(∑

i∈I

|λi|χxiU

)
.

By solidity and the p-triangle inequality we obtain
∥∥∥

∑

i∈I

|λi|χxiV

∣∣∣Y
∥∥∥ ≤

( n∑

j=1

|||Ry−1
j

|Y |||p
∥∥∥

∑

i∈I

|λi|χxiU

∣∣∣Y
∥∥∥

p)1/p

= C
∥∥∥

∑

i∈I

|λi|χxiU

∣∣∣Y
∥∥∥.

Ex
hanging the roles of V and U shows the reverse inequality.
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The following 
on
ept will also be very useful.Definition 2.2. Suppose U is a relatively 
ompa
t neighborhood of
e ∈ G. A 
olle
tion of fun
tions Ψ = (ψi)i∈I , ψi ∈ C0(G), is 
alled a boundeduniform partition of unity of size U (for short U -BUPU) if the following
onditions are satis�ed:(1) 0 ≤ ψi(x) ≤ 1 for all i ∈ I, x ∈ G,(2) ∑

i∈I ψi(x) ≡ 1,(3) there exists a well-spread family (xi)i∈I su
h that suppψi ⊂ xiU.The 
onstru
tion of BUPU's with respe
t to arbitrary well-spread sets isstandard.We 
all W (B, Y ) right translation invariant if for any relatively 
ompa
tneighborhood Q of e the spa
e W (B, Y,Q) is right translation invariantand the right translations Rx : W (B, Y,Q) → W (B, Y,Q) are boundedoperators. (In 
ase B = M we repla
e Rx by Ax in this de�nition.)Now we are prepared to state the basi
 properties of Wiener amalgams.Theorem 2.3. The following statements are equivalent :(i) W (L∞, Y ) = W (L∞, Y,Q) is independent of the 
hoi
e of the neigh-borhood Q of e (with equivalent norms for di�erent 
hoi
es).(ii) For all relatively separated sets X the spa
e Yd = Yd(X,Q) is in-dependent of the 
hoi
e of the neighborhood Q of e (with equivalentnorms for di�erent 
hoi
es).(iii) W (L∞, Y ) = W (L∞, Y,Q) is right translation invariant (for all
hoi
es of Q).If one (and hen
e all) of these 
onditions are satis�ed then also W (B, Y ) =
W (B, Y,Q) is independent of the 
hoi
e of Q. Moreover , the expression(2.4) ‖F |W (B, Yd)‖ := ‖(‖Fψi |B‖)i∈I |Yd(X)‖de�nes an equivalent quasi-norm on W (B, Y ), where (ψi)i∈I is a BUPU
orresponding to the well-spread set X.Proof. We �rst prove that (ii) implies that (2.4) de�nes an equivalentquasi-norm on W (B, Y ). Let Q be a relatively 
ompa
t neighborhood of
e ∈ G. Then there exists an open set U = U−1 with U2 ⊂ Q. Choose aBUPU (φi)i∈I of size U . If xiU ⊂ zQ then for F ∈ Bloc we have

‖Fφi |B‖ ≤ ‖FχxiU |B‖ ≤ ‖FχzQ |B‖ = K(F,Q,B)(z).This yields(2.5) ∑

i∈I

‖Fφi |B‖χxiU (z) =
∑

i, xi∈zU−1

‖Fφi |B‖ ≤ CK(F,Q,B)(z)



350 H. RAUHUT
sin
e (xi)i∈I is relatively separated. By solidity we obtain

‖(‖Fφi |B‖)i∈I |Yd(X,U)‖ ≤ C‖F |W (B, Y,Q)‖.Moreover, we have
K(F,Q,B)(z) = ‖χzQF |B‖ =

∥∥∥χzQ

∑

i∈I

Fφi

∣∣∣B
∥∥∥(2.6)

≤
∑

i, zQ∩xiU 6=∅

‖Fφi |B‖ ≤
∑

i∈I

‖Fφi |B‖χxiUQ−1(z).By solidity this yields
‖F |W (B, Y,Q)‖ ≤ ‖(‖Fφi |B‖)i∈I |Yd(X,UQ

−1)‖.Thus, the independen
e of Yd(X,U) from U implies that the norm in (2.4)is equivalent to the norm in W (B, Y ). Moreover, sin
e Q was arbitrary thisalso shows that W (B, Y ) = W (B, Y,Q) is independent of the 
hoi
e of Q.Spe
ializing to B = L∞ we have thus also shown (ii)⇒(i).As the next step we prove that (iii) implies (ii). Let U, V be relatively
ompa
t neighborhoods of e. Choose a neighborhood Q = Q−1 of e ∈ G su
hthat Q2 ⊂ V . Observe that
K

( ∑

i∈I

|λi|χxiQ, Q
)
(y) = sup

z∈yQ

∑

i∈I

|λi|χxiQ(z) ≤
∑

i∈I

|λi|χxiQ2(y)

≤
∑

i∈I

|λi|χxiV (y).The right translation invarian
e of W (L∞, Y,Q) together with Lemma 2.2applied toW (L∞, Y ) and the trivial inequality |F (x)| ≤ supz∈xQ |F (z)| thusimply
(2.7)

∥∥∥
∑

i∈I

|λi|χxiU

∣∣∣Y
∥∥∥ ≤

∥∥∥K
( ∑

i∈I

|λi|χxiU , Q, L
∞

) ∣∣∣Y
∥∥∥

≤
∥∥∥K

( ∑

i∈I

|λi|χxiQ, Q, L
∞

) ∣∣∣Y
∥∥∥ ≤

∥∥∥
∑

i∈I

|λi|χxiV

∣∣∣Y
∥∥∥.Ex
hanging the roles of U and V shows the reverse inequality.Finally, we prove (i)⇒(iii). Let F ∈ W (L∞, Y ) and y ∈ G. We 
an �nda 
ompa
t neighborhood V (y) of e su
h that Qy ⊂ V (y). We obtain

K(RyF,Q,L
∞)(x) = ‖(LxχQ)(RyF )‖∞ = ‖(Ry−1LxχQ)F‖∞

= ‖(LxχQy)F‖∞ ≤ ‖(LxχV (y))F‖∞.By assumption and solidity, this yields
‖RyF |W (L∞, Y )‖ ≤ C‖K(RyF,Q,L

∞) |Y ‖ ≤ C‖K(F, V (y), L∞) |Y ‖

≤ C ′(y)‖F |W (L∞, Y )‖.This 
on
ludes the proof.
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Remark 2.2.(a) The proof of the equivalen
e of the quasi-norm in (2.4) still works(with slight 
hanges) upon repla
ing the BUPU (ψi)i∈I by the 
har-a
teristi
 fun
tions χxiU . Thus, if Yd = Yd(X,Q) is independent ofthe 
hoi
e of Q then also the expression
‖(‖FχxiQ |B‖)i∈I |Yd‖de�nes an equivalent quasi-norm on W (B, Y ).(b) Analyzing the proof that (ii) implies (i) one re
ognizes that it is a
tu-ally enough to require that for all neighborhoods Q of e there existssome relatively separated Q-dense set X su
h that Yd(X,U) is inde-pendent of the 
hoi
e of U . The theorem then shows that Yd(X,U)is automati
ally independent of U for all relatively separated sets X.Corollary 2.4. If W (L∞, Y ) is right translation invariant then

(W (L∞, Y ))d = Yd.Proof. This follows immediately from inequality (2.7).Let us now investigate the 
ompleteness of the spa
es W (B, Y ) and Yd.Lemma 2.5. Yd is 
omplete, and 
onvergen
e in Yd implies 
oordinate-wise 
onvergen
e.Proof. Let Λn = (λ
(n)
i )i∈I , n ∈ N, be a Cau
hy sequen
e in Yd. Thismeans that the fun
tions Fn =

∑
i∈I λ

(n)
i χxiU form a Cau
hy sequen
e in Y .Sin
e Y is 
omplete the limit F = limn∈N Fn exists. It follows from thesolidity that F has the form F =

∑
i∈I λiχxiU with λi = limn→∞ λ

(n)
i .Clearly, (λi)i∈I ∈ Yd is the limit of Λn.Theorem 2.6. If W (L∞, Y ) is right translation invariant then W (B, Y )is 
omplete.Proof. Let (ψi)i∈I be a BUPU of size U . By Theorem 2.3, ‖· |W (B, Yd)‖de�ned in (2.4) is an equivalent quasi-norm on W (B, Y ). Assume that Fn,

n ∈ N, is a Cau
hy sequen
e in W (B, Y ). This implies that (‖Fnψi |B‖)i∈Iis a Cau
hy sequen
e in Yd and by Lemma 2.5 the sequen
e (Fnψi)n∈Nis a Cau
hy sequen
e in B for ea
h i ∈ I. Sin
e B is 
omplete the limit
limn→∞ Fnψi = F (i) exists for ea
h i ∈ I. Set F :=

∑
i∈I F

(i). Clearly,
suppF (i) ⊂ xiU . Furthermore,

‖Fψi |B‖ =
∥∥∥

∑

j∈I

F (j)ψi

∣∣∣B
∥∥∥ =

∥∥∥
∑

j : xiU∩xiU

F (j)ψi

∣∣∣B
∥∥∥

≤
∑

j : xjU∩xiU

‖ lim
n→∞

Fnψjψi |B‖ ≤ C‖F (i) |B‖.
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By 
ompleteness of Yd, the sequen
e (‖F (i)|B‖)i∈I is 
ontained in Yd, andhen
e F ∈W (B, Y ). Furthermore, we have

F =
∑

i∈I

F (i) =
∑

i∈I

lim
n→∞

Fnψi = lim
n→∞

Fn

∑

i∈I

ψi = lim
n→∞

Fn.Thus, F is the limit of Fn in W (B, Y ), and hen
e W (B, Y ) is 
omplete.3. Left translation invarian
e. Also the left translation invarian
e isan important property. In this se
tion we assume that W (L∞, Y ) is righttranslation invariant, so that W (B, Y ) is 
omplete and independent of the
hoi
e of the neighborhood Q a

ording to Theorems 2.6 and 2.3.Lemma 3.1. If W (L∞, Y ) is left translation invariant then Yd is 
ontin-uously embedded into ℓ∞1/r with r(i) := |||Lx−1
i

|W (L∞, Y )|||.Proof. Let U be some 
ompa
t neighborhood of e and (λi)i∈I ∈ Yd. With
C := ‖χU |W (L∞, Y )‖ we obtain by Corollary 2.4 and solidity

C|λi| = |λi| ‖χU |W (L∞, Y )‖ = |λi| ‖Lx−1
i
χxiU |W (L∞, Y )‖

≤ |||Lx−1
i

|W (L∞, Y )||| ‖ |λi|χxiU |W (L∞, Y )‖

≤ r(i)
∥∥∥

∑

j∈I

|λj |χxjU

∣∣∣W (L∞, Y )
∥∥∥ ≤ r(i)‖(λi)i∈I |Yd‖.This 
ompletes the proof.Lemma 3.2. If W (L∞, Y ) is left translation invariant then W (L∞, Y )is 
ontinuously embedded into L∞

1/r, where r(x) := |||Lx−1 |W (L∞, Y )|||.Proof. By Theorem 2.3, Yd = Yd(X,Q) is independent of the 
hoi
e of
Q and the quasi-norm ‖ · |W (L∞, Yd)‖ de�ned in (2.4) is equivalent to thequasi-norm of W (L∞, Y ). Sin
e Yd is 
ontinuously embedded into ℓ∞1/r byLemma 3.1 and (L∞

1/r)d = ℓ∞1/r we obtain
C1‖F |W (L∞, L∞

1/r)‖ ≤ ‖F |W (L∞, ℓ∞r )‖ ≤ ‖F |W (L∞, Yd)‖(3.1)
≤ C2‖F |W (L∞, Y )‖for all F ∈W (L∞, Y ). Further, it is easy to see that W (L∞, L∞

1/r) = L∞
1/r.In some 
ases one has translation invariant spa
es Y . Then we havethe following estimates of the norm of the left translation operators in

W (L∞, Y ).Lemma 3.3. If Y is left translation invariant then W (B, Y ) is left trans-lation invariant and |||Ly |W (B, Y )||| ≤ |||Ly |Y |||.
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Proof. We have
K(LyF,Q,B)(x) = ‖(LxχQ)(LyF ) |B‖ = ‖(Ly−1xχQ)F |B‖

= (LyK(F,Q,B))(x).This yields
‖LyF |W (B, Y )‖ = ‖LyK(F,Q,B) |Y ‖ ≤ |||Ly |Y ||| ‖F |W (B, Y )‖,and the proof is 
omplete.4. Conditions ensuring translation invarian
e. Given a 
on
retespa
e Y , a

ording to the previous results, there is a need to 
he
k whether

W (L∞, Y ) is right translation invariant. Moreover, we will see later that alsothe right translation invarian
e of W (M,Y ) is important in order to have
onvolution relations.Lemma 4.1. If W (L∞, Y ) is right translation invariant then W (M,Y )is also right translation invariant.Proof. Let µ ∈ W (M,Y ), y ∈ G and Q be a 
ompa
t neighborhoodof e. Then there exist a �nite number of points yk, k = 1, . . . , n, su
h that
Qy−1 ⊂

⋃n
k=1 ykQ. For the 
ontrol fun
tion we obtain

K(Ayµ,Q,M)(x) = ‖(LxχQ)Ayµ |M‖ = |µ|(RyLxχQ) = |µ|(LxχQy−1)

≤
n∑

k=1

|µ|(LxχykQ) =
n∑

k=1

Ryk
K(µ,Q,M)(x).By solidity, the p-triangle inequality and independen
e of W (M,Y,Q) fromthe 
hoi
e of Q we get

‖Ayµ |W (M,Y )‖p ≤
∥∥∥

n∑

k=1

Ryk
K(µ,Q,M)

∣∣∣Y
∥∥∥

p

≤
n∑

k=1

‖Ryk
K(µ,Q,M) |W (L∞, Y )‖p

≤
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖K(µ,Q,M) |W (L∞, Y )‖p

≤
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖K(µ,Q2,M) |Y ‖p

≤ C
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖µ |W (M,Y )‖p.This 
on
ludes the proof.
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Another 
riterion for the right translation invarian
e of W (B, Y ) is:Corollary 4.2. If Y is right translation invariant then also W (B, Y )

= W (B, Y,Q) is right translation invariant and independent of Q.Proof. By Lemma 2.2, Yd = Yd(X,U) is independent of U . Thus, The-orem 2.3 implies that W (B, Y ) = W (B, Y,Q) is independent of Q and
W (L∞, Y ) is right translation invariant. Lemma 4.1 implies thatW (M,Y ) isalso right translation invariant. Clearly, W (L1, Y ) is a subspa
e of W (M,Y )that is right translation invariant if W (M,Y ) is right translation invariant.Thus, we proved the assertion for all admissible 
hoi
es B = L∞, L1,M .Re
all that G is 
alled an IN group if there exists a 
ompa
t neighborhoodof e su
h that xQ = Qx for all x ∈ G.Lemma 4.3. Let G be an IN group and assume Y to be right transla-tion invariant. Then |||Ry |W (L∞, Y )||| ≤ |||Ry |Y ||| and |||Ay |W (M,Y )||| ≤
|||Ry |Y |||.Proof. Choose Q to be a 
ompa
t invariant neighborhood of e, i.e., yQ =
Qy for all y ∈ G. This yields
K(RyF,Q,L

∞)(x) = ‖(LxχQ)RyF‖∞ = ‖(LxχQy)F‖∞ = ‖(LxχyQ)F‖∞

= ‖(LxyQ)F‖∞ = K(F,Q,L∞)(xy)and thus,
‖RyF |W (L∞, Y )‖ = ‖RyK(F,Q,L∞) |Y ‖ ≤ |||Ry |Y ||| ‖F |W (L∞, Y )‖.The proof for B = M is similar.We remark that Y does not ne
essarily need to be translation invariantfor W (L∞, Y ) to be translation invariant (see Se
tion 6). The following 
ri-terions allow us to 
he
k left or right translation invarian
e of W (L∞, Y )without using translation invarian
e of Y .Lemma 4.4. Let U be some 
ompa
t neighborhood of e ∈ G. Let X =

(xi)i∈I be some well-spread set in G. Denote by x−1X, x ∈ G, the well-spreadset (x−1xi)i∈I . If there is a fun
tion k(x) su
h that
‖(λi)i∈I |Yd(x

−1X,U)‖ ≤ k(x)‖(λi)i∈I |Yd(X,U)‖for all (λi)i∈I ∈ Yd(X) then W (B, Y ) is left translation invariant with
|||Lx |W (B, Y )||| ≤ Ck(x).Proof. Let (ψ)i∈I be some BUPU 
orresponding to X. Sin
e (2.4) de�nesan equivalent norm on W (B, Y ) we obtain

‖LxF |W (B, Y )‖ ≤ C‖(‖(LxF )ψi |B‖i∈I |Yd(X,U)‖

≤ C‖(‖F (Lx−1ψi) |B‖)i∈I |Yd(X,U)‖

≤ Ck(x)‖(‖F (Lx−1ψi)‖)i∈I |Yd(x
−1X,U)‖.
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The system (Lx−1ψi)i∈I is a BUPU 
orresponding to the well-spread set
x−1X. Thus, using on
e more the equivalen
e of the norm (2.4) with thenorm in W (B, Y ) we obtain ‖LxF |W (B, Y )‖ ≤ C ′k(x)‖F |W (B, Y )‖.Remark 4.1. If Yd(X,U) is independent of the 
hoi
e of the neighbor-hood U then we already know from Theorem 2.3 that W (L∞, Y ) is righttranslation invariant. If h(x) is a fun
tion su
h that

‖(λi)i∈I |Yd(X,Ux)‖ ≤ h(x)‖(λi)i∈I |Yd(X,U)‖for all (λi)i∈I ∈ Yd(X) then a similar argument to the previous proof showsthat
|||Rx |W (L∞, Y )||| ≤ Ch(x).5. Convolution relations. Let us now prove the main results of thisarti
le 
on
erning 
onvolution relations of Wiener amalgams with quasi-Bana
h spa
es as global 
omponents (
f. [7, 8℄ for the 
lassi
al 
ase of Bana
hspa
es).Theorem 5.1. Let 0 < p ≤ 1 be su
h that the quasi-norm of Y satis-�es the p-triangle inequality and assume that W (L∞, Y ) is right translationinvariant.(a) Set w(x) := |||Ax |W (M,Y )|||. Then

W (M,Y ) ∗W (L∞, Lp
w) →֒W (L∞, Y )with a 
orresponding estimate for the quasi-norms.(b) Set v(x) := ∆(x−1)|||Rx−1 |W (L∞, Y )|||. Then

W (L∞, Y ) ∗W (L∞, Lp
v) →֒W (L∞, Y )with a 
orresponding estimate for the quasi-norms.Proof. (a) It follows from Theorem 2.3 that any G ∈ W (L∞, Lp

w) hasa de
omposition G =
∑

i∈I Lxi
Gi with Gi ∈ L∞, suppGi ⊂ Q = Q−1 forsome 
ompa
t Q and ∑

i∈I ‖Gi‖
p
∞w(xi)

p ≤ C‖G |W (L∞, Lp
w)‖p <∞.For µ ∈W (M,Y ) we estimate the 
ontrol fun
tion of µ ∗ (Lxi

Gi) by
K(µ ∗ (Lxi

Gi), Q, L
∞)(x) = sup

z∈xQ
|µ ∗ (Lxi

Gi)(z)|

= sup
z∈xQ

∣∣∣
\
(LyLxi

Gi)(z) dµ(y)
∣∣∣ ≤ ‖Gi‖∞ sup

q∈Q

\
Lyxi

χQ(xq) d|µ|(y)

≤ ‖Gi‖∞
\
χQ2((yxi)

−1x) d|µ|(y) = ‖Gi‖∞
\
χQ2(x−1yxi) d|µ|(y)

= ‖Gi‖∞
\
Rxi

LxχQ2(y) d|µ|(y) = ‖Gi‖∞‖(LxχQ2)(Axi
µ) |M‖

= ‖Gi‖∞K(Axi
µ,Q2,M)(x).
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Thus, we have

‖µ ∗ Lxi
Gi |W (L∞, Y )‖ ≤ ‖Gi‖∞‖K(Axi

µ,Q2,M) |Y ‖

≤ C‖Gi‖∞‖Axi
µ |W (M,Y )‖.Pasting the pie
es together yields

(5.1) ‖µ ∗G |W (L∞, Y )‖p =
∥∥∥

∑

i∈I

µ ∗ Lxi
Gi

∣∣∣W (L∞, Y )
∥∥∥

p

≤
∑

i∈I

‖µ ∗ Lxi
Gi |W (L∞, Y )‖p ≤ C

∑

i∈I

‖Gi‖
p
∞‖Axi

µ |W (M,Y )‖p

≤ C
∑

i∈I

‖Gi‖
p
∞|||Axi

|W (M,Y )|||p‖µ |W (M,Y )‖p

≤ C‖µ |W (M,Y )‖p‖G |W (L∞, Lp
w)‖p.(b) Sin
e W (L∞, Y ) ⊂ W (M,Y ) all the 
omputations done in (a) arestill valid. We only have to repla
e ‖Axi

µ |W (M,Y )‖ by ‖Axi
µ |W (L∞, Y )‖

= ∆(x−1
i )‖Rx−1µ |W (L∞, Y )‖ in (5.1) to dedu
e (b).Theorem 5.2. Assume Y is su
h that W (L∞, Y ) is left and right trans-lation invariant. Set v(x) := |||Lx−1 |W (L∞, Y )|||. Then

W (L∞, Lp
v) ∗W (L∞, Y ∨)∨ →֒W (L∞, Y ).Proof. Let F ∈ W (L∞, Lp

v) and G ∈ W (L∞, Y ). Similarly to the proofof Theorem 5.1 we may write F =
∑

i∈I Lxi
Fi with suppFi ⊂ Q = Q−1(
ompa
t) and ∑

i∈I ‖Fi‖
p
∞v(xi)

p ≤ C‖F |W (L∞, Lp
v)‖. We obtain

K(Fi ∗G,Q,L
∞)(x)

= sup
z∈xQ

|Fi ∗G(z)| ≤ sup
z∈xQ

∣∣∣
\

xiQ

Fi(y)LyG(z) dy
∣∣∣

≤ ‖Fi‖∞ sup
q∈Q

\
χQ(y)|(RqG)(y−1x)| dy ≤ C‖Fi‖∞

\
χQ2(y)|G∨(x−1y)| dy

≤ C‖Fi‖∞
\
Lx−1χQ2(y)|G∨(y)| dy ≤ C ′‖Fi‖∞K(G∨, Q2, L∞)(x−1).This yields

‖Fi ∗G |W (L∞, Y )‖ ≤ C‖Fi‖∞‖K(G∨, Q2, L∞)∨ |Y ‖

≤ C‖Fi‖∞‖G |W (L∞, Y ∨)∨‖.Pasting the pie
es together we get
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‖F ∗G |W (L∞, Y )‖p =
∥∥∥

∑

i∈I

(Lxi
Fi) ∗G

∣∣∣W (L∞, Y )
∥∥∥

p

≤
∑

i∈I

‖Lxi
(Fi ∗G) |W (L∞, Y )‖p

≤ C
∑

i∈I

|||Lxi
|W (L∞, Y )|||p‖Fi‖

p
∞‖G |W (L∞, Y ∨)∨‖p

≤ C ′‖F |W (L∞, Lp
v)‖

p‖G |W (L∞, Y ∨)∨‖p.This 
on
ludes the proof.From the previous theorem we see that the involution ∨ has some rele-van
e. In the 
ase of IN groups we have the following result.Lemma 5.3. If G is an IN group then W (L∞, Y ∨)∨ = W (L∞, Y ) withequivalent norms.Proof. Let Q be an invariant 
ompa
t neighborhood of e. Then also Q−1is invariant. For the 
ontrol fun
tion we obtain
K(F∨, Q, L∞)(x) = ‖(LxχQ)F∨‖∞ = ‖(LxχQ)∨F‖∞ = ‖(RxχQ−1)F‖∞

= ‖χQ−1x−1F‖∞ = ‖χx−1Q−1F‖∞ = K(F,Q−1, L∞)(x−1).This shows the 
laim.Theorem 5.2 implies a 
onvolution relation for Wiener amalgam spa
eswith respe
t to weighted Lp-spa
es.Corollary 5.4. Let w be a submultipli
ative weight and 0 < p ≤ 1.Then
W (L∞, Lp

w) ∗W (L∞, Lp
w∗)∨ →֒W (L∞, Lp

w).In parti
ular , if G is an IN group then W (L∞, Lp
w) ∗ W (L∞, Lp

w) →֒
W (L∞, Lp

w) with a 
orresponding quasi-norm estimate.Proof. The �rst assertion is a dire
t 
onsequen
e of Theorem 5.2, andthe se
ond then follows from Lemma 5.3.In parti
ular, if G is an IN group then W (L∞, Lp
w), 0 ≤ p ≤ 1, isa quasi-Bana
h algebra under 
onvolution. Sin
e 
ommutative groups are
learly IN groups this result applies in parti
ular to Wiener amalgams on

G = R
d. Moreover, if G is dis
rete then we re
over the well-known relation

ℓpw(G) ∗ ℓpw(G) →֒ ℓpw(G), 0 < p ≤ 1.6. An example on the ax + b group. In this se
tion we provide anexample of a non-translation invariant spa
e Y su
h that W (L∞, Y ) is righttranslation invariant. We 
onsider the n-dimensional ax+ b group G = R
n

⋊

R
∗
+ where R

∗
+ denotes the multipli
ative group of positive real numbers. The
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group law in G reads (x, a) · (y, b) = (x+ ay, ab). The ax+ b group has leftHaar measure \

G

f(x) dx =
\

Rn

∞\
0

f(x, a)
da

an+1
dx

and modular fun
tion ∆(x, a) = a−n. The ax + b group plays an impor-tant role in wavelet analysis and the theory of Besov and Triebel�Lizorkinspa
es.Let 0 < p, q ≤ ∞. With some positive measurable weight fun
tion v on Gwe de�ne the mixed norm spa
e Lp,q(v) on G as the 
olle
tion of measurablefun
tions whose quasi-norm
‖F |Lp,q(v)‖ :=

(∞\
0

( \
Rn

|F (x, a)|pv(x, a) dx
)q/p da

an+1

)1/q

is �nite (with obvious modi�
ation in the 
ases p = ∞ or q = ∞). This quasi-norm is a
tually an r-norm where r := min{1, p, q}. If v ≡ 1 we write Lp,q.If p = q then 
learly Lp,p = Lp(G). It is easy to see by an integral transfor-mation that Lp,q is invariant under left and right translations. We remarkthat for reasons to be
ome 
lear later v is treated as a measure here, so if vdoes not vanish on a set of positive measure then L∞,∞(v) = L∞(G).With a similar argument to [12, Proposition 2.4℄ (see also [3℄), one shows(using the right translation invarian
e of the unweighted Lp,q spa
e) that
Lp,q(v), 0 < p, q <∞, is right translation invariant if and only if(6.1) v((x, a) · (y, b)) ≤ v(x, a)w(y, b)for some submultipli
ative fun
tion w (possibly depending on p, q). Nowassume that v(x, a) is a fun
tion of x only. Then 
ondition (6.1) means thatthe quotient(6.2) v((x, a)(y, b))

v(x, a)
=
v(x+ ay)

v(x)is bounded by a submultipli
ative fun
tion w of y only. However, sin
e theright hand side also depends on a ∈ (0,∞) this 
an be satis�ed only inspe
ial 
ases (e.g. if v is bounded from above and below). In parti
ular,the typi
al 
hoi
e vs(x, a) = vs(x) = (1 + |x|)s, s ∈ R, does not satisfy(6.1) for any submultipli
ative weight w on G if s 6= 0 (although it is evensubmultipli
ative as a fun
tion on R
n if s ≥ 0). In parti
ular, Lp,q(v) is notright translation invariant for many non-trivial 
hoi
es of v.In the following we introdu
e a 
lass of weight fun
tions v for whi
h

W (L∞, Lp,q(v)) is right translation invariant. This 
lass, however, 
ontainsweights v that do not satisfy (6.1), i.e., Lp,q(v) is not right translation in-variant, in general.
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Let B(x, r) denote the ball in R
n of radius r 
entered at x ∈ R

n. Apositive measurable weight fun
tion v on R
n is said to satisfy the doubling
ondition if there exists a 
onstant C su
h that(6.3) \

B(x,2r)

v(y) dy ≤ C
\

B(x,r)

v(y) dy

for all x ∈ R
n and r ∈ (0,∞). This 
ondition is equivalent to the existen
eof 
onstants c, α su
h that(6.4) \

B(x,tr)

v(y) dy ≤ ctα
\

B(x,r)

v(y) dy for all x ∈ R
n, r ∈ (0,∞), t ≥ 1.

For instan
e the weights in the Mu
kenhoupt 
lasses Ap, p > 1, satisfy thedoubling 
ondition [2℄. A typi
al example of a weight in A∞ =
⋃

p>1Ap is
v(s)(x) = |x|s, s > −n. So doubling weights may have zeros or poles. Afurther example of a doubling weight is vs(x) = (1 + |x|)s, s ∈ R. For a
onstru
tion of a doubling weight whi
h is not 
ontained in A∞ we referto [2℄.We extend a doubling weight v on R

n to G = R
n

⋊ R
∗
+ by setting

v(x, t) = v(x) for (x, t) ∈ G. Let Lp,q(v) be the asso
iated mixed norm spa
eas de�ned above. We will use Theorem 2.3 to prove that W (L∞, Lp,q(v)) isright translation invariant. In parti
ular, let us study the asso
iated sequen
espa
e (Lp,q(v))d.Lemma 6.1. Let 0<p<∞, 0<q≤∞ and v be a weight fun
tion on R
n.Let X = (xk,j , aj)(k,j)∈I:=Zn×Z be some well-spread set in G = R

n
⋊ R

∗
+. If

v satis�es the doubling 
ondition (6.3) then (Lp,q(v))d = (Lp,q(v))d(X,U) isindependent of the 
hoi
e of the neighborhood U of e in G, and an equivalentnorm on (Lp,q(v))d(X) is given by
‖(λi)i∈I | ℓ

p,q(ṽ)‖ =
(∑

j∈Z

( ∑

k∈Zn

|λk,j |
pṽk,j

)q/p
a−n

j

)1/q

where ṽk,j =
T
B(xk,j ,aj)

v(y) dy (with the usual modi�
ation for q = ∞).Moreover , W (L∞, Lp,q(v)) is right translation invariant if and only if vsatis�es the doubling 
ondition.Proof. It su�
es to show the assertion for neighborhoods of the form
U(r, β) = B(0, r)× (β−1, β) ⊂ G with r ∈ (0,∞) and β ∈ (1,∞) sin
e for anarbitrary 
ompa
t neighborhood U of e = (0, 1) ∈ G we 
an �nd r1, r2, β1, β2su
h that U(r1, β1) ⊂ U ⊂ U(r2, β2). Observe that

(x, a)U(r, β) = B(x, ar) × (aβ−1, aβ).
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Using the relative separatedness of X we obtain, for 0 < q <∞,
‖(λi)i∈I | (L

p,q(v))d(X,U(r, β))‖

=

(∞\
0

( \
Rn

∑

j∈Z

∑

k∈Zn

|λk,j |
pχB(xk,j ,ajr)(y)χ(ajβ−1,ajβ)(a)v(y) dy

)q/p da

an+1

)1/q

≍

(∑

j∈Z

( ∑

k∈Zn

|λk,j |
p

\
B(xk,j ,ajr)

v(y) dy
)q/p

ajβ\
ajβ−1

da

an+1

)1/q

≍
(∑

j∈Z

( ∑

k∈Zn

|λk,j |
p

\
B(xk,j ,ajr)

v(y) dy
)q/p

a−n
j

)1/q
.

The 
omputation for q = ∞ is similar. Thus, (Lp,q(v))d(X,U(r, β)) is inde-pendent of r and β if and only if for all r, s ∈ (0,∞) there exist 
onstants
C1(r, s), C2(r, s) > 0 su
h that

C1(r, s)
\

B(xk,j ,ajr)

v(y) dy ≤
\

B(xk,j ,ajs)

v(y) dy(6.5)
≤ C2(r, s)

\
B(xk,j ,ajr)

v(y) dy

for all (k, j) ∈ Z
n × Z. Let us assume without loss of generality that r ≤ s.Then the �rst inequality is 
lear. Moreover, by the doubling 
ondition, in itsequivalent form (6.4), we have\

B(xk,j ,ajs)

v(y) dy ≤ c(s/r)α
\

B(xk,j ,ajr)

v(y) dy.

So (6.5) is satis�ed with C1(r, s) = 1 and C2(r, s) = c(s/r)α.Sin
e we may 
hoose relatively separated sets of the form (xj,k, aj) ofarbitrarily small density (e.g. (ab−jk, b−j)k∈Zn, j∈Z with small a > 0, b > 1),
W (L∞, Lp,q(v)) is right translation invariant by Theorem 2.3 and Re-mark 2.2(b) if v is doubling. Conversely, if W (L∞, Lp,q(v)) is right transla-tion invariant then (6.5) must hold for any 
hoi
e of the relatively separatedset X = (xj,k, aj) by Theorem 2.3. In parti
ular, 
hoosing s = 2, r = 1 in(6.5) we obtain \

B(x,2a)

v(y) dy ≤ C2

\
B(x,a)

v(y) dy

for all x ∈ R
n, a ∈ (0,∞), whi
h 
learly is the doubling 
ondition.Sin
e L∞,q(v) = L∞,q the analogue of Lemma 6.1 for p = ∞ is trivial. Itseems that in general W (L∞, Lp,q(v)) is not left invariant.In order to state the 
onvolution relation in Theorem 5.1 for our 
asewe estimate the norm of the right translation operators on W (L∞, Lp,q(v))
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using Remark 4.1. Let U = U(r, β), r > 0, β > 1, be a neighborhood of
e = (0, 1) as in the previous proof. For (x, a), (y, b) ∈ G we obtain
(x, a) · U(r, β) · (y, b) = (B(x, ar) × a(β−1, β)) · (y, b)

= {(z + sy, sb) : z ∈ B(x, ar), s ∈ ab(β−1, β)}

⊂
⋃

s∈a(β−1,β)

B(x+ sy, ar) × ab(β−1, β) ⊂ B(x, a(β|y|+ r)) × ab(β−1, β).

Let X = (xk,j , aj) be a relatively separated set in G. Pro
eeding as in theprevious proof we dedu
e
‖(λi)i∈I | (L

p,q(v))d(X,U(r, β) · (y, b))‖

≤ C

(∑

j∈Z

( ∑

k∈Zn

|λk,j|
p

\
B(xk,j ,ajr( β

r
|y|+1))

v(y) dy
)q/p

ajbβ\
ajbβ−1

da

an+1

)1/q

≤ C

(∑

j∈Z

( ∑

k∈Zn

|λk,j |
p

(
β

r
|y| + 1

)α \
B(xk,j ,ajr)

v(y) dy

)q/p

b−na−n
j

)1/q

≤ C(1 + |y|)α/pb−n/q‖(λi)i∈I | (L
p,q(v))d(X,U(r, β))‖,where α is the exponent from (6.4). By Remark 4.1 we 
on
lude that

|||R(y,b) |W (L∞, Lp,q(v))||| ≤ C(1 + |y|)α/pb−n/q,and sin
e (y, b)−1 = (−b−1y, b−1) we have
∆((y, b)−1)|||R(y,b)−1 |W (L∞, Lp,q(v))||| ≤ Cbn(1+1/q)(1 + b−1|y|)α/p.Set w(y, b) := bn(1+1/q)(1 + b−1|y|)α/p and r := min{1, p, q}. Then Theo-rem 5.1 tells us that

W (L∞, Lp,q(v)) ∗W (L∞, Lr
w) →֒W (L∞, Lp,q(v)).To the author's knowledge this is a new 
onvolution relation on the ax+ b-group even for p, q ≥ 1.A
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