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WIENER AMALGAM SPACES WITH RESPECT TOQUASI-BANACH SPACESBYHOLGER RAUHUT (Wien)Abstrat. We generalize the theory of Wiener amalgam spaes on loally ompatgroups to quasi-Banah spaes. As a main result we provide onvolution relations for suhspaes. Also we weaken the tehnial assumption that the global omponent is invariantunder right translations, whih is new even for the lassial Banah spae ase. To illustrateour theory we disuss in detail an example on the ax + b group.1. Introdution. Wiener amalgam spaes onsist of funtions on a lo-ally ompat group de�ned by a (quasi-)norm that mixes, or amalgamates,a loal riterion with a global riterion. The most general de�nition of Wieneramalgams so far was provided by Feihtinger in the early 1980's in a series ofpapers [4�6℄. We refer to [12℄ for some historial notes and for an introdutionto Wiener amalgams on the real line.Wiener amalgams have proven to be a very useful tool for instane intime-frequeny analysis [11℄ (e.g. the Balian�Low theorem [12℄) and samplingtheory. Our interest in those spaes arose from oorbit spae theory [7�9, 14℄whih provides a group-theoretial approah to funtion spaes like Besovand Triebel�Lizorkin spaes as well as modulation spaes.It seems that Wiener amalgams with respet to quasi-Banah spaes havenot yet been onsidered in full generality, exept for a few results for Wieneramalgams on R
d in [10℄. So this paper deals with basi properties of Wieneramalgams W (B, Y ) with a quasi-Banah spae Y as global omponent andone of the spaes B = L1, L∞ or M (the spae of omplex Radon measures)as loal omponent. Moreover, we also remove the tehnial assumption im-posed by Feihtinger [4℄ that the global omponent Y has to be invariantunder right translation. Thus, some of our results are even new for the las-sial ase of Banah spaes Y .One of our main ahievements is a onvolution relation for Wiener amal-gams. As a speial ase it turns out that W (L∞, Lp) is a onvolution algebrafor 0 < p ≤ 1 if the underlying group is an IN group, e.g. R

d. This result is2000 Mathematis Subjet Classi�ation: 46A16, 46E27, 46E30.Key words and phrases: Wiener amalgam spaes, quasi-Banah spaes, onvolutionrelations, doubling weights. [345℄ © Instytut Matematyzny PAN, 2007
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interesting sine for non-disrete groups there are no onvolution relationsavailable for Lp if p < 1. The problem omes from possible p-integrable sin-gularities whih are not integrable. So the integral de�ning the onvolution
F ∗G does not even exist for all F ∈ Lp even if G is very nie, e.g. ontinu-ous with ompat support. Of ourse, the loal omponent L∞ ofW (L∞, Lp)prohibits suh singularities. So our results indiate that whenever treatingquasi-Banah spaes in onnetion with onvolution, one is almost fored touse Wiener amalgam spaes.To illustrate our results we also treat a lass of spaes Y on the ax + bgroup suh that W (L∞, Y ) is right translation invariant (and thus admitsonvolution relations) although Y is not.For a quasi-Banah spae (B, ‖ · |B‖), we denote the quasi-norm of abounded operator T : B → B by |||T |B|||. The symbol A ≍ B indiatesthroughout the paper that there are onstants C1, C2 > 0 suh that C1A ≤
B ≤ C2A (independent of other quantities on whih A,B might depend).We normally use the symbol C for a generi onstant whose preise valuemight be di�erent at eah ourrene.

2. Basi properties. Let G be a loally ompat group. Integrationon G will always be with respet to a left Haar measure. We denote by
LxF (y) = F (x−1y) and RxF (y) = F (yx), x, y ∈ G, the left and right trans-lation operators. Furthermore, let ∆ be the Haar module on G. For a Radonmeasure µ we de�ne (Axµ)(k) = µ(Rxk), x ∈ G, for a ontinuous funtion kwith ompat support. We may identify a funtion F ∈ L1 with a measure
µF ∈ M by µF (k) =

T
F (x)k(x) dx. Then learly AxF = ∆(x−1)Rx−1F .Further, we de�ne the involutions F∨(x) = F (x−1), F∇(x) = F (x−1),

F ∗(x) = ∆(x−1)F (x−1).A quasi-norm ‖ · ‖ on some linear spae Y is de�ned in the same wayas a norm, with the only di�erene that the triangle inequality is replaedby ‖f + g‖ ≤ C(‖f‖ + ‖g‖) with some onstant C ≥ 1. It is well-known(see e.g. [1, p. 20℄ or [13℄) that there exists an equivalent quasi-norm ‖ · |Y ‖on Y and an exponent p with 0 < p ≤ 1 suh that ‖ · |Y ‖ satis�es the
p-triangle inequality, i.e., ‖f + g |Y ‖p ≤ ‖f |Y ‖p + ‖g |Y ‖p. (C and p arerelated by C = 21/p − 1.) We an hoose p = 1 if and only if Y is a Banahspae. We always assume that suh a p-norm on Y is hosen and denote it by
‖ · |Y ‖. If Y is omplete with respet to the topology de�ned by the metri
d(f, g) = ‖f − g |Y ‖p then it is alled a quasi-Banah spae.Let Y be a quasi-Banah spae of measurable funtions on G, whihontains the harateristi funtion of any ompat subset of G. We assume
Y to be solid, i.e., if F ∈ Y and G is measurable and satis�es |G(x)| ≤ |F (x)|a.e. then also G ∈ Y and ‖G |Y ‖ ≤ ‖F |Y ‖.
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The Lebesgue spaes Lp(G), 0 < p ≤ ∞, provide natural examples ofsuh spaes Y , and the usual quasi-norm in Lp(G) is a p-norm if 0 < p ≤ 1.If w is some positive measurable weight funtion on G then we further de�ne
Lp

w = {F measurable : Fw ∈ Lp} with ‖F |Lp
w‖ := ‖Fw |Lp‖. A ontinuousweight w is alled submultipliative if w(xy) ≤ w(x)w(y) for all x, y ∈ G.Now let B be one of the spaes L∞(G), L1(G) or M(G), the spae ofomplex Radon measures. Choose some relatively ompat neighborhood Qof e ∈ G. We de�ne the ontrol funtion by(2.1) K(F,Q,B)(x) := ‖(LxχQ)F |B‖, x ∈ G,if F is loally ontained in B, in symbols F ∈ Bloc. The Wiener amalgamspae W (B, Y ) is then de�ned as

W (B, Y ) := W (B, Y,Q) := {F ∈ Bloc : K(F,Q,B) ∈ Y }with quasi-norm(2.2) ‖F |W (B, Y,Q)‖ := ‖K(F,Q,B) |Y ‖.Here B is alled the loal omponent and Y the global omponent. It followsfrom the solidity of Y and from the quasi-norm properties of ‖ · |B‖ and
‖ · |Y ‖ that (2.2) is indeed a quasi-norm. Sine B is a Banah spae it iseasy to see that (2.2) is also a p-norm (with p being the exponent of thequasi-norm of Y ). We emphasize that in general we do not require herethat Y is right translation invariant in ontrast to the lassial papers ofFeihtinger [4, 5℄.Remark 2.1. The restrition of the loal omponent B to the spaes
L1, L∞ and M is done for the sake of simpliity. One an ertainly extendour onsiderations to more general spaes B, e.g. Lp-spaes with 0 < p ≤ ∞(f. [4, 12℄). However, onvolution relations as in Setion 5 will not hold anymore when taking B = Lp for p < 1.Let us �rst make some easy observations.Lemma 2.1. We have the following ontinuous embeddings:(a) W (L∞, Y ) →֒ Y .(b) W (L∞, Y ) →֒W (L1, Y ) →֒W (M,Y ).Proof. (a) Sine |F (x)| ≤ supu∈U |F (u−1x)| for a ompat neighborhood
U of e ∈ G the assertion follows from the solidity of Y .The statement (b) follows immediately from L∞(Q) →֒ L1(Q) →֒M(Q)for any ompat set Q ⊂ G.Let us now investigate whether W (B, Y,Q) is independent of Q andwhether it is omplete. It will turn out that both properties are onnetedto the right translation invariane of W (B, Y ). In order to larify this weneed ertain disrete sets in G and assoiated sequene spaes.
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Definition 2.1. Let X = (xi)i∈I be some disrete set of points in G and

V a relatively ompat neighborhood of e in G.(a) X is alled V -dense if G =
⋃

i∈I xiV .(b) X is alled relatively separated if for all ompat sets K ⊂ G thereexists a onstant CK suh that supj∈I #{i ∈ I : xiK ∩ xjK 6= ∅}
≤ CK .() X is alled V -well-spread (or simply well-spread) if it is both rela-tively separated and V -dense for some V .The existene of V -well-spread sets for arbitrarily small V is proven in [6℄.Given the funtion spae Y , a well-spread family X = (xi)i∈I and arelatively ompat neighborhood Q of e ∈ G we de�ne the sequene spae

Yd := Yd(X) := Yd(X,Q) :=
{

(λi)i∈I :
∑

i∈I

|λi|χxiQ ∈ Y
}
,(2.3)

with natural norm ‖(λi)i∈I |Yd‖ := ‖
∑

i∈I |λi|χxiQ |Y ‖. Here, χxiQ denotesthe harateristi funtion of the set xiQ. If the quasi-norm of Y is a p-norm, 0 < p ≤ 1, then also Yd has a p-norm. Suppose for instane Y = Lp
m,

0 < p ≤ ∞, with some positive ontinuous weight funtion m. If in addition
m is moderate, i.e., m(xy) ≤ m(x)w(y) for all x, y ∈ G and some funtion w,then it is easily seen that Yd = ℓpm̃ with m̃(i) = m(xi).Although we will not require the right translation invariane of Y ingeneral, we state the following easy observation in ase it holds.Lemma 2.2. If Y is right translation invariant then the de�nition of
Yd = Yd(X,U) does not depend on U .Proof. Let V , U be relatively ompat sets with non-void interior. Thenthere exist a �nite number of points yj , j = 1, . . . , n, suh that V =⋃n

j=1 Uyj . This implies
∑

i∈I

|λi|χxiV ≤
n∑

j=1

∑

i∈I

|λi|χxiUyj
=

n∑

j=1

Ry−1
j

(∑

i∈I

|λi|χxiU

)
.

By solidity and the p-triangle inequality we obtain
∥∥∥

∑

i∈I

|λi|χxiV

∣∣∣Y
∥∥∥ ≤

( n∑

j=1

|||Ry−1
j

|Y |||p
∥∥∥

∑

i∈I

|λi|χxiU

∣∣∣Y
∥∥∥

p)1/p

= C
∥∥∥

∑

i∈I

|λi|χxiU

∣∣∣Y
∥∥∥.

Exhanging the roles of V and U shows the reverse inequality.
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The following onept will also be very useful.Definition 2.2. Suppose U is a relatively ompat neighborhood of
e ∈ G. A olletion of funtions Ψ = (ψi)i∈I , ψi ∈ C0(G), is alled a boundeduniform partition of unity of size U (for short U -BUPU) if the followingonditions are satis�ed:(1) 0 ≤ ψi(x) ≤ 1 for all i ∈ I, x ∈ G,(2) ∑

i∈I ψi(x) ≡ 1,(3) there exists a well-spread family (xi)i∈I suh that suppψi ⊂ xiU.The onstrution of BUPU's with respet to arbitrary well-spread sets isstandard.We all W (B, Y ) right translation invariant if for any relatively ompatneighborhood Q of e the spae W (B, Y,Q) is right translation invariantand the right translations Rx : W (B, Y,Q) → W (B, Y,Q) are boundedoperators. (In ase B = M we replae Rx by Ax in this de�nition.)Now we are prepared to state the basi properties of Wiener amalgams.Theorem 2.3. The following statements are equivalent :(i) W (L∞, Y ) = W (L∞, Y,Q) is independent of the hoie of the neigh-borhood Q of e (with equivalent norms for di�erent hoies).(ii) For all relatively separated sets X the spae Yd = Yd(X,Q) is in-dependent of the hoie of the neighborhood Q of e (with equivalentnorms for di�erent hoies).(iii) W (L∞, Y ) = W (L∞, Y,Q) is right translation invariant (for allhoies of Q).If one (and hene all) of these onditions are satis�ed then also W (B, Y ) =
W (B, Y,Q) is independent of the hoie of Q. Moreover , the expression(2.4) ‖F |W (B, Yd)‖ := ‖(‖Fψi |B‖)i∈I |Yd(X)‖de�nes an equivalent quasi-norm on W (B, Y ), where (ψi)i∈I is a BUPUorresponding to the well-spread set X.Proof. We �rst prove that (ii) implies that (2.4) de�nes an equivalentquasi-norm on W (B, Y ). Let Q be a relatively ompat neighborhood of
e ∈ G. Then there exists an open set U = U−1 with U2 ⊂ Q. Choose aBUPU (φi)i∈I of size U . If xiU ⊂ zQ then for F ∈ Bloc we have

‖Fφi |B‖ ≤ ‖FχxiU |B‖ ≤ ‖FχzQ |B‖ = K(F,Q,B)(z).This yields(2.5) ∑

i∈I

‖Fφi |B‖χxiU (z) =
∑

i, xi∈zU−1

‖Fφi |B‖ ≤ CK(F,Q,B)(z)
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sine (xi)i∈I is relatively separated. By solidity we obtain

‖(‖Fφi |B‖)i∈I |Yd(X,U)‖ ≤ C‖F |W (B, Y,Q)‖.Moreover, we have
K(F,Q,B)(z) = ‖χzQF |B‖ =

∥∥∥χzQ

∑

i∈I

Fφi

∣∣∣B
∥∥∥(2.6)

≤
∑

i, zQ∩xiU 6=∅

‖Fφi |B‖ ≤
∑

i∈I

‖Fφi |B‖χxiUQ−1(z).By solidity this yields
‖F |W (B, Y,Q)‖ ≤ ‖(‖Fφi |B‖)i∈I |Yd(X,UQ

−1)‖.Thus, the independene of Yd(X,U) from U implies that the norm in (2.4)is equivalent to the norm in W (B, Y ). Moreover, sine Q was arbitrary thisalso shows that W (B, Y ) = W (B, Y,Q) is independent of the hoie of Q.Speializing to B = L∞ we have thus also shown (ii)⇒(i).As the next step we prove that (iii) implies (ii). Let U, V be relativelyompat neighborhoods of e. Choose a neighborhood Q = Q−1 of e ∈ G suhthat Q2 ⊂ V . Observe that
K

( ∑

i∈I

|λi|χxiQ, Q
)
(y) = sup

z∈yQ

∑

i∈I

|λi|χxiQ(z) ≤
∑

i∈I

|λi|χxiQ2(y)

≤
∑

i∈I

|λi|χxiV (y).The right translation invariane of W (L∞, Y,Q) together with Lemma 2.2applied toW (L∞, Y ) and the trivial inequality |F (x)| ≤ supz∈xQ |F (z)| thusimply
(2.7)

∥∥∥
∑

i∈I

|λi|χxiU

∣∣∣Y
∥∥∥ ≤

∥∥∥K
( ∑

i∈I

|λi|χxiU , Q, L
∞

) ∣∣∣Y
∥∥∥

≤
∥∥∥K

( ∑

i∈I

|λi|χxiQ, Q, L
∞

) ∣∣∣Y
∥∥∥ ≤

∥∥∥
∑

i∈I

|λi|χxiV

∣∣∣Y
∥∥∥.Exhanging the roles of U and V shows the reverse inequality.Finally, we prove (i)⇒(iii). Let F ∈ W (L∞, Y ) and y ∈ G. We an �nda ompat neighborhood V (y) of e suh that Qy ⊂ V (y). We obtain

K(RyF,Q,L
∞)(x) = ‖(LxχQ)(RyF )‖∞ = ‖(Ry−1LxχQ)F‖∞

= ‖(LxχQy)F‖∞ ≤ ‖(LxχV (y))F‖∞.By assumption and solidity, this yields
‖RyF |W (L∞, Y )‖ ≤ C‖K(RyF,Q,L

∞) |Y ‖ ≤ C‖K(F, V (y), L∞) |Y ‖

≤ C ′(y)‖F |W (L∞, Y )‖.This onludes the proof.
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Remark 2.2.(a) The proof of the equivalene of the quasi-norm in (2.4) still works(with slight hanges) upon replaing the BUPU (ψi)i∈I by the har-ateristi funtions χxiU . Thus, if Yd = Yd(X,Q) is independent ofthe hoie of Q then also the expression
‖(‖FχxiQ |B‖)i∈I |Yd‖de�nes an equivalent quasi-norm on W (B, Y ).(b) Analyzing the proof that (ii) implies (i) one reognizes that it is atu-ally enough to require that for all neighborhoods Q of e there existssome relatively separated Q-dense set X suh that Yd(X,U) is inde-pendent of the hoie of U . The theorem then shows that Yd(X,U)is automatially independent of U for all relatively separated sets X.Corollary 2.4. If W (L∞, Y ) is right translation invariant then

(W (L∞, Y ))d = Yd.Proof. This follows immediately from inequality (2.7).Let us now investigate the ompleteness of the spaes W (B, Y ) and Yd.Lemma 2.5. Yd is omplete, and onvergene in Yd implies oordinate-wise onvergene.Proof. Let Λn = (λ
(n)
i )i∈I , n ∈ N, be a Cauhy sequene in Yd. Thismeans that the funtions Fn =

∑
i∈I λ

(n)
i χxiU form a Cauhy sequene in Y .Sine Y is omplete the limit F = limn∈N Fn exists. It follows from thesolidity that F has the form F =

∑
i∈I λiχxiU with λi = limn→∞ λ

(n)
i .Clearly, (λi)i∈I ∈ Yd is the limit of Λn.Theorem 2.6. If W (L∞, Y ) is right translation invariant then W (B, Y )is omplete.Proof. Let (ψi)i∈I be a BUPU of size U . By Theorem 2.3, ‖· |W (B, Yd)‖de�ned in (2.4) is an equivalent quasi-norm on W (B, Y ). Assume that Fn,

n ∈ N, is a Cauhy sequene in W (B, Y ). This implies that (‖Fnψi |B‖)i∈Iis a Cauhy sequene in Yd and by Lemma 2.5 the sequene (Fnψi)n∈Nis a Cauhy sequene in B for eah i ∈ I. Sine B is omplete the limit
limn→∞ Fnψi = F (i) exists for eah i ∈ I. Set F :=

∑
i∈I F

(i). Clearly,
suppF (i) ⊂ xiU . Furthermore,

‖Fψi |B‖ =
∥∥∥

∑

j∈I

F (j)ψi

∣∣∣B
∥∥∥ =

∥∥∥
∑

j : xiU∩xiU

F (j)ψi

∣∣∣B
∥∥∥

≤
∑

j : xjU∩xiU

‖ lim
n→∞

Fnψjψi |B‖ ≤ C‖F (i) |B‖.
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By ompleteness of Yd, the sequene (‖F (i)|B‖)i∈I is ontained in Yd, andhene F ∈W (B, Y ). Furthermore, we have

F =
∑

i∈I

F (i) =
∑

i∈I

lim
n→∞

Fnψi = lim
n→∞

Fn

∑

i∈I

ψi = lim
n→∞

Fn.Thus, F is the limit of Fn in W (B, Y ), and hene W (B, Y ) is omplete.3. Left translation invariane. Also the left translation invariane isan important property. In this setion we assume that W (L∞, Y ) is righttranslation invariant, so that W (B, Y ) is omplete and independent of thehoie of the neighborhood Q aording to Theorems 2.6 and 2.3.Lemma 3.1. If W (L∞, Y ) is left translation invariant then Yd is ontin-uously embedded into ℓ∞1/r with r(i) := |||Lx−1
i

|W (L∞, Y )|||.Proof. Let U be some ompat neighborhood of e and (λi)i∈I ∈ Yd. With
C := ‖χU |W (L∞, Y )‖ we obtain by Corollary 2.4 and solidity

C|λi| = |λi| ‖χU |W (L∞, Y )‖ = |λi| ‖Lx−1
i
χxiU |W (L∞, Y )‖

≤ |||Lx−1
i

|W (L∞, Y )||| ‖ |λi|χxiU |W (L∞, Y )‖

≤ r(i)
∥∥∥

∑

j∈I

|λj |χxjU

∣∣∣W (L∞, Y )
∥∥∥ ≤ r(i)‖(λi)i∈I |Yd‖.This ompletes the proof.Lemma 3.2. If W (L∞, Y ) is left translation invariant then W (L∞, Y )is ontinuously embedded into L∞

1/r, where r(x) := |||Lx−1 |W (L∞, Y )|||.Proof. By Theorem 2.3, Yd = Yd(X,Q) is independent of the hoie of
Q and the quasi-norm ‖ · |W (L∞, Yd)‖ de�ned in (2.4) is equivalent to thequasi-norm of W (L∞, Y ). Sine Yd is ontinuously embedded into ℓ∞1/r byLemma 3.1 and (L∞

1/r)d = ℓ∞1/r we obtain
C1‖F |W (L∞, L∞

1/r)‖ ≤ ‖F |W (L∞, ℓ∞r )‖ ≤ ‖F |W (L∞, Yd)‖(3.1)
≤ C2‖F |W (L∞, Y )‖for all F ∈W (L∞, Y ). Further, it is easy to see that W (L∞, L∞

1/r) = L∞
1/r.In some ases one has translation invariant spaes Y . Then we havethe following estimates of the norm of the left translation operators in

W (L∞, Y ).Lemma 3.3. If Y is left translation invariant then W (B, Y ) is left trans-lation invariant and |||Ly |W (B, Y )||| ≤ |||Ly |Y |||.
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Proof. We have
K(LyF,Q,B)(x) = ‖(LxχQ)(LyF ) |B‖ = ‖(Ly−1xχQ)F |B‖

= (LyK(F,Q,B))(x).This yields
‖LyF |W (B, Y )‖ = ‖LyK(F,Q,B) |Y ‖ ≤ |||Ly |Y ||| ‖F |W (B, Y )‖,and the proof is omplete.4. Conditions ensuring translation invariane. Given a onretespae Y , aording to the previous results, there is a need to hek whether

W (L∞, Y ) is right translation invariant. Moreover, we will see later that alsothe right translation invariane of W (M,Y ) is important in order to haveonvolution relations.Lemma 4.1. If W (L∞, Y ) is right translation invariant then W (M,Y )is also right translation invariant.Proof. Let µ ∈ W (M,Y ), y ∈ G and Q be a ompat neighborhoodof e. Then there exist a �nite number of points yk, k = 1, . . . , n, suh that
Qy−1 ⊂

⋃n
k=1 ykQ. For the ontrol funtion we obtain

K(Ayµ,Q,M)(x) = ‖(LxχQ)Ayµ |M‖ = |µ|(RyLxχQ) = |µ|(LxχQy−1)

≤
n∑

k=1

|µ|(LxχykQ) =
n∑

k=1

Ryk
K(µ,Q,M)(x).By solidity, the p-triangle inequality and independene of W (M,Y,Q) fromthe hoie of Q we get

‖Ayµ |W (M,Y )‖p ≤
∥∥∥

n∑

k=1

Ryk
K(µ,Q,M)

∣∣∣Y
∥∥∥

p

≤
n∑

k=1

‖Ryk
K(µ,Q,M) |W (L∞, Y )‖p

≤
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖K(µ,Q,M) |W (L∞, Y )‖p

≤
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖K(µ,Q2,M) |Y ‖p

≤ C
n∑

k=1

|||Ryk
|W (L∞, Y )|||p‖µ |W (M,Y )‖p.This onludes the proof.
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Another riterion for the right translation invariane of W (B, Y ) is:Corollary 4.2. If Y is right translation invariant then also W (B, Y )

= W (B, Y,Q) is right translation invariant and independent of Q.Proof. By Lemma 2.2, Yd = Yd(X,U) is independent of U . Thus, The-orem 2.3 implies that W (B, Y ) = W (B, Y,Q) is independent of Q and
W (L∞, Y ) is right translation invariant. Lemma 4.1 implies thatW (M,Y ) isalso right translation invariant. Clearly, W (L1, Y ) is a subspae of W (M,Y )that is right translation invariant if W (M,Y ) is right translation invariant.Thus, we proved the assertion for all admissible hoies B = L∞, L1,M .Reall that G is alled an IN group if there exists a ompat neighborhoodof e suh that xQ = Qx for all x ∈ G.Lemma 4.3. Let G be an IN group and assume Y to be right transla-tion invariant. Then |||Ry |W (L∞, Y )||| ≤ |||Ry |Y ||| and |||Ay |W (M,Y )||| ≤
|||Ry |Y |||.Proof. Choose Q to be a ompat invariant neighborhood of e, i.e., yQ =
Qy for all y ∈ G. This yields
K(RyF,Q,L

∞)(x) = ‖(LxχQ)RyF‖∞ = ‖(LxχQy)F‖∞ = ‖(LxχyQ)F‖∞

= ‖(LxyQ)F‖∞ = K(F,Q,L∞)(xy)and thus,
‖RyF |W (L∞, Y )‖ = ‖RyK(F,Q,L∞) |Y ‖ ≤ |||Ry |Y ||| ‖F |W (L∞, Y )‖.The proof for B = M is similar.We remark that Y does not neessarily need to be translation invariantfor W (L∞, Y ) to be translation invariant (see Setion 6). The following ri-terions allow us to hek left or right translation invariane of W (L∞, Y )without using translation invariane of Y .Lemma 4.4. Let U be some ompat neighborhood of e ∈ G. Let X =

(xi)i∈I be some well-spread set in G. Denote by x−1X, x ∈ G, the well-spreadset (x−1xi)i∈I . If there is a funtion k(x) suh that
‖(λi)i∈I |Yd(x

−1X,U)‖ ≤ k(x)‖(λi)i∈I |Yd(X,U)‖for all (λi)i∈I ∈ Yd(X) then W (B, Y ) is left translation invariant with
|||Lx |W (B, Y )||| ≤ Ck(x).Proof. Let (ψ)i∈I be some BUPU orresponding to X. Sine (2.4) de�nesan equivalent norm on W (B, Y ) we obtain

‖LxF |W (B, Y )‖ ≤ C‖(‖(LxF )ψi |B‖i∈I |Yd(X,U)‖

≤ C‖(‖F (Lx−1ψi) |B‖)i∈I |Yd(X,U)‖

≤ Ck(x)‖(‖F (Lx−1ψi)‖)i∈I |Yd(x
−1X,U)‖.
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The system (Lx−1ψi)i∈I is a BUPU orresponding to the well-spread set
x−1X. Thus, using one more the equivalene of the norm (2.4) with thenorm in W (B, Y ) we obtain ‖LxF |W (B, Y )‖ ≤ C ′k(x)‖F |W (B, Y )‖.Remark 4.1. If Yd(X,U) is independent of the hoie of the neighbor-hood U then we already know from Theorem 2.3 that W (L∞, Y ) is righttranslation invariant. If h(x) is a funtion suh that

‖(λi)i∈I |Yd(X,Ux)‖ ≤ h(x)‖(λi)i∈I |Yd(X,U)‖for all (λi)i∈I ∈ Yd(X) then a similar argument to the previous proof showsthat
|||Rx |W (L∞, Y )||| ≤ Ch(x).5. Convolution relations. Let us now prove the main results of thisartile onerning onvolution relations of Wiener amalgams with quasi-Banah spaes as global omponents (f. [7, 8℄ for the lassial ase of Banahspaes).Theorem 5.1. Let 0 < p ≤ 1 be suh that the quasi-norm of Y satis-�es the p-triangle inequality and assume that W (L∞, Y ) is right translationinvariant.(a) Set w(x) := |||Ax |W (M,Y )|||. Then

W (M,Y ) ∗W (L∞, Lp
w) →֒W (L∞, Y )with a orresponding estimate for the quasi-norms.(b) Set v(x) := ∆(x−1)|||Rx−1 |W (L∞, Y )|||. Then

W (L∞, Y ) ∗W (L∞, Lp
v) →֒W (L∞, Y )with a orresponding estimate for the quasi-norms.Proof. (a) It follows from Theorem 2.3 that any G ∈ W (L∞, Lp

w) hasa deomposition G =
∑

i∈I Lxi
Gi with Gi ∈ L∞, suppGi ⊂ Q = Q−1 forsome ompat Q and ∑

i∈I ‖Gi‖
p
∞w(xi)

p ≤ C‖G |W (L∞, Lp
w)‖p <∞.For µ ∈W (M,Y ) we estimate the ontrol funtion of µ ∗ (Lxi

Gi) by
K(µ ∗ (Lxi

Gi), Q, L
∞)(x) = sup

z∈xQ
|µ ∗ (Lxi

Gi)(z)|

= sup
z∈xQ

∣∣∣
\
(LyLxi

Gi)(z) dµ(y)
∣∣∣ ≤ ‖Gi‖∞ sup

q∈Q

\
Lyxi

χQ(xq) d|µ|(y)

≤ ‖Gi‖∞
\
χQ2((yxi)

−1x) d|µ|(y) = ‖Gi‖∞
\
χQ2(x−1yxi) d|µ|(y)

= ‖Gi‖∞
\
Rxi

LxχQ2(y) d|µ|(y) = ‖Gi‖∞‖(LxχQ2)(Axi
µ) |M‖

= ‖Gi‖∞K(Axi
µ,Q2,M)(x).
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Thus, we have

‖µ ∗ Lxi
Gi |W (L∞, Y )‖ ≤ ‖Gi‖∞‖K(Axi

µ,Q2,M) |Y ‖

≤ C‖Gi‖∞‖Axi
µ |W (M,Y )‖.Pasting the piees together yields

(5.1) ‖µ ∗G |W (L∞, Y )‖p =
∥∥∥

∑

i∈I

µ ∗ Lxi
Gi

∣∣∣W (L∞, Y )
∥∥∥

p

≤
∑

i∈I

‖µ ∗ Lxi
Gi |W (L∞, Y )‖p ≤ C

∑

i∈I

‖Gi‖
p
∞‖Axi

µ |W (M,Y )‖p

≤ C
∑

i∈I

‖Gi‖
p
∞|||Axi

|W (M,Y )|||p‖µ |W (M,Y )‖p

≤ C‖µ |W (M,Y )‖p‖G |W (L∞, Lp
w)‖p.(b) Sine W (L∞, Y ) ⊂ W (M,Y ) all the omputations done in (a) arestill valid. We only have to replae ‖Axi

µ |W (M,Y )‖ by ‖Axi
µ |W (L∞, Y )‖

= ∆(x−1
i )‖Rx−1µ |W (L∞, Y )‖ in (5.1) to dedue (b).Theorem 5.2. Assume Y is suh that W (L∞, Y ) is left and right trans-lation invariant. Set v(x) := |||Lx−1 |W (L∞, Y )|||. Then

W (L∞, Lp
v) ∗W (L∞, Y ∨)∨ →֒W (L∞, Y ).Proof. Let F ∈ W (L∞, Lp

v) and G ∈ W (L∞, Y ). Similarly to the proofof Theorem 5.1 we may write F =
∑

i∈I Lxi
Fi with suppFi ⊂ Q = Q−1(ompat) and ∑

i∈I ‖Fi‖
p
∞v(xi)

p ≤ C‖F |W (L∞, Lp
v)‖. We obtain

K(Fi ∗G,Q,L
∞)(x)

= sup
z∈xQ

|Fi ∗G(z)| ≤ sup
z∈xQ

∣∣∣
\

xiQ

Fi(y)LyG(z) dy
∣∣∣

≤ ‖Fi‖∞ sup
q∈Q

\
χQ(y)|(RqG)(y−1x)| dy ≤ C‖Fi‖∞

\
χQ2(y)|G∨(x−1y)| dy

≤ C‖Fi‖∞
\
Lx−1χQ2(y)|G∨(y)| dy ≤ C ′‖Fi‖∞K(G∨, Q2, L∞)(x−1).This yields

‖Fi ∗G |W (L∞, Y )‖ ≤ C‖Fi‖∞‖K(G∨, Q2, L∞)∨ |Y ‖

≤ C‖Fi‖∞‖G |W (L∞, Y ∨)∨‖.Pasting the piees together we get
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‖F ∗G |W (L∞, Y )‖p =
∥∥∥

∑

i∈I

(Lxi
Fi) ∗G

∣∣∣W (L∞, Y )
∥∥∥

p

≤
∑

i∈I

‖Lxi
(Fi ∗G) |W (L∞, Y )‖p

≤ C
∑

i∈I

|||Lxi
|W (L∞, Y )|||p‖Fi‖

p
∞‖G |W (L∞, Y ∨)∨‖p

≤ C ′‖F |W (L∞, Lp
v)‖

p‖G |W (L∞, Y ∨)∨‖p.This onludes the proof.From the previous theorem we see that the involution ∨ has some rele-vane. In the ase of IN groups we have the following result.Lemma 5.3. If G is an IN group then W (L∞, Y ∨)∨ = W (L∞, Y ) withequivalent norms.Proof. Let Q be an invariant ompat neighborhood of e. Then also Q−1is invariant. For the ontrol funtion we obtain
K(F∨, Q, L∞)(x) = ‖(LxχQ)F∨‖∞ = ‖(LxχQ)∨F‖∞ = ‖(RxχQ−1)F‖∞

= ‖χQ−1x−1F‖∞ = ‖χx−1Q−1F‖∞ = K(F,Q−1, L∞)(x−1).This shows the laim.Theorem 5.2 implies a onvolution relation for Wiener amalgam spaeswith respet to weighted Lp-spaes.Corollary 5.4. Let w be a submultipliative weight and 0 < p ≤ 1.Then
W (L∞, Lp

w) ∗W (L∞, Lp
w∗)∨ →֒W (L∞, Lp

w).In partiular , if G is an IN group then W (L∞, Lp
w) ∗ W (L∞, Lp

w) →֒
W (L∞, Lp

w) with a orresponding quasi-norm estimate.Proof. The �rst assertion is a diret onsequene of Theorem 5.2, andthe seond then follows from Lemma 5.3.In partiular, if G is an IN group then W (L∞, Lp
w), 0 ≤ p ≤ 1, isa quasi-Banah algebra under onvolution. Sine ommutative groups arelearly IN groups this result applies in partiular to Wiener amalgams on

G = R
d. Moreover, if G is disrete then we reover the well-known relation

ℓpw(G) ∗ ℓpw(G) →֒ ℓpw(G), 0 < p ≤ 1.6. An example on the ax + b group. In this setion we provide anexample of a non-translation invariant spae Y suh that W (L∞, Y ) is righttranslation invariant. We onsider the n-dimensional ax+ b group G = R
n

⋊

R
∗
+ where R

∗
+ denotes the multipliative group of positive real numbers. The
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group law in G reads (x, a) · (y, b) = (x+ ay, ab). The ax+ b group has leftHaar measure \

G

f(x) dx =
\

Rn

∞\
0

f(x, a)
da

an+1
dx

and modular funtion ∆(x, a) = a−n. The ax + b group plays an impor-tant role in wavelet analysis and the theory of Besov and Triebel�Lizorkinspaes.Let 0 < p, q ≤ ∞. With some positive measurable weight funtion v on Gwe de�ne the mixed norm spae Lp,q(v) on G as the olletion of measurablefuntions whose quasi-norm
‖F |Lp,q(v)‖ :=

(∞\
0

( \
Rn

|F (x, a)|pv(x, a) dx
)q/p da

an+1

)1/q

is �nite (with obvious modi�ation in the ases p = ∞ or q = ∞). This quasi-norm is atually an r-norm where r := min{1, p, q}. If v ≡ 1 we write Lp,q.If p = q then learly Lp,p = Lp(G). It is easy to see by an integral transfor-mation that Lp,q is invariant under left and right translations. We remarkthat for reasons to beome lear later v is treated as a measure here, so if vdoes not vanish on a set of positive measure then L∞,∞(v) = L∞(G).With a similar argument to [12, Proposition 2.4℄ (see also [3℄), one shows(using the right translation invariane of the unweighted Lp,q spae) that
Lp,q(v), 0 < p, q <∞, is right translation invariant if and only if(6.1) v((x, a) · (y, b)) ≤ v(x, a)w(y, b)for some submultipliative funtion w (possibly depending on p, q). Nowassume that v(x, a) is a funtion of x only. Then ondition (6.1) means thatthe quotient(6.2) v((x, a)(y, b))

v(x, a)
=
v(x+ ay)

v(x)is bounded by a submultipliative funtion w of y only. However, sine theright hand side also depends on a ∈ (0,∞) this an be satis�ed only inspeial ases (e.g. if v is bounded from above and below). In partiular,the typial hoie vs(x, a) = vs(x) = (1 + |x|)s, s ∈ R, does not satisfy(6.1) for any submultipliative weight w on G if s 6= 0 (although it is evensubmultipliative as a funtion on R
n if s ≥ 0). In partiular, Lp,q(v) is notright translation invariant for many non-trivial hoies of v.In the following we introdue a lass of weight funtions v for whih

W (L∞, Lp,q(v)) is right translation invariant. This lass, however, ontainsweights v that do not satisfy (6.1), i.e., Lp,q(v) is not right translation in-variant, in general.
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Let B(x, r) denote the ball in R
n of radius r entered at x ∈ R

n. Apositive measurable weight funtion v on R
n is said to satisfy the doublingondition if there exists a onstant C suh that(6.3) \

B(x,2r)

v(y) dy ≤ C
\

B(x,r)

v(y) dy

for all x ∈ R
n and r ∈ (0,∞). This ondition is equivalent to the existeneof onstants c, α suh that(6.4) \

B(x,tr)

v(y) dy ≤ ctα
\

B(x,r)

v(y) dy for all x ∈ R
n, r ∈ (0,∞), t ≥ 1.

For instane the weights in the Mukenhoupt lasses Ap, p > 1, satisfy thedoubling ondition [2℄. A typial example of a weight in A∞ =
⋃

p>1Ap is
v(s)(x) = |x|s, s > −n. So doubling weights may have zeros or poles. Afurther example of a doubling weight is vs(x) = (1 + |x|)s, s ∈ R. For aonstrution of a doubling weight whih is not ontained in A∞ we referto [2℄.We extend a doubling weight v on R

n to G = R
n

⋊ R
∗
+ by setting

v(x, t) = v(x) for (x, t) ∈ G. Let Lp,q(v) be the assoiated mixed norm spaeas de�ned above. We will use Theorem 2.3 to prove that W (L∞, Lp,q(v)) isright translation invariant. In partiular, let us study the assoiated sequenespae (Lp,q(v))d.Lemma 6.1. Let 0<p<∞, 0<q≤∞ and v be a weight funtion on R
n.Let X = (xk,j , aj)(k,j)∈I:=Zn×Z be some well-spread set in G = R

n
⋊ R

∗
+. If

v satis�es the doubling ondition (6.3) then (Lp,q(v))d = (Lp,q(v))d(X,U) isindependent of the hoie of the neighborhood U of e in G, and an equivalentnorm on (Lp,q(v))d(X) is given by
‖(λi)i∈I | ℓ

p,q(ṽ)‖ =
(∑

j∈Z

( ∑

k∈Zn

|λk,j |
pṽk,j

)q/p
a−n

j

)1/q

where ṽk,j =
T
B(xk,j ,aj)

v(y) dy (with the usual modi�ation for q = ∞).Moreover , W (L∞, Lp,q(v)) is right translation invariant if and only if vsatis�es the doubling ondition.Proof. It su�es to show the assertion for neighborhoods of the form
U(r, β) = B(0, r)× (β−1, β) ⊂ G with r ∈ (0,∞) and β ∈ (1,∞) sine for anarbitrary ompat neighborhood U of e = (0, 1) ∈ G we an �nd r1, r2, β1, β2suh that U(r1, β1) ⊂ U ⊂ U(r2, β2). Observe that

(x, a)U(r, β) = B(x, ar) × (aβ−1, aβ).
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Using the relative separatedness of X we obtain, for 0 < q <∞,
‖(λi)i∈I | (L

p,q(v))d(X,U(r, β))‖

=

(∞\
0

( \
Rn

∑

j∈Z

∑

k∈Zn

|λk,j |
pχB(xk,j ,ajr)(y)χ(ajβ−1,ajβ)(a)v(y) dy

)q/p da

an+1

)1/q

≍

(∑

j∈Z

( ∑

k∈Zn

|λk,j |
p

\
B(xk,j ,ajr)

v(y) dy
)q/p

ajβ\
ajβ−1

da

an+1

)1/q

≍
(∑

j∈Z

( ∑

k∈Zn

|λk,j |
p

\
B(xk,j ,ajr)

v(y) dy
)q/p

a−n
j

)1/q
.

The omputation for q = ∞ is similar. Thus, (Lp,q(v))d(X,U(r, β)) is inde-pendent of r and β if and only if for all r, s ∈ (0,∞) there exist onstants
C1(r, s), C2(r, s) > 0 suh that

C1(r, s)
\

B(xk,j ,ajr)

v(y) dy ≤
\

B(xk,j ,ajs)

v(y) dy(6.5)
≤ C2(r, s)

\
B(xk,j ,ajr)

v(y) dy

for all (k, j) ∈ Z
n × Z. Let us assume without loss of generality that r ≤ s.Then the �rst inequality is lear. Moreover, by the doubling ondition, in itsequivalent form (6.4), we have\

B(xk,j ,ajs)

v(y) dy ≤ c(s/r)α
\

B(xk,j ,ajr)

v(y) dy.

So (6.5) is satis�ed with C1(r, s) = 1 and C2(r, s) = c(s/r)α.Sine we may hoose relatively separated sets of the form (xj,k, aj) ofarbitrarily small density (e.g. (ab−jk, b−j)k∈Zn, j∈Z with small a > 0, b > 1),
W (L∞, Lp,q(v)) is right translation invariant by Theorem 2.3 and Re-mark 2.2(b) if v is doubling. Conversely, if W (L∞, Lp,q(v)) is right transla-tion invariant then (6.5) must hold for any hoie of the relatively separatedset X = (xj,k, aj) by Theorem 2.3. In partiular, hoosing s = 2, r = 1 in(6.5) we obtain \

B(x,2a)

v(y) dy ≤ C2

\
B(x,a)

v(y) dy

for all x ∈ R
n, a ∈ (0,∞), whih learly is the doubling ondition.Sine L∞,q(v) = L∞,q the analogue of Lemma 6.1 for p = ∞ is trivial. Itseems that in general W (L∞, Lp,q(v)) is not left invariant.In order to state the onvolution relation in Theorem 5.1 for our asewe estimate the norm of the right translation operators on W (L∞, Lp,q(v))
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using Remark 4.1. Let U = U(r, β), r > 0, β > 1, be a neighborhood of
e = (0, 1) as in the previous proof. For (x, a), (y, b) ∈ G we obtain
(x, a) · U(r, β) · (y, b) = (B(x, ar) × a(β−1, β)) · (y, b)

= {(z + sy, sb) : z ∈ B(x, ar), s ∈ ab(β−1, β)}

⊂
⋃

s∈a(β−1,β)

B(x+ sy, ar) × ab(β−1, β) ⊂ B(x, a(β|y|+ r)) × ab(β−1, β).

Let X = (xk,j , aj) be a relatively separated set in G. Proeeding as in theprevious proof we dedue
‖(λi)i∈I | (L

p,q(v))d(X,U(r, β) · (y, b))‖

≤ C

(∑

j∈Z

( ∑

k∈Zn

|λk,j|
p

\
B(xk,j ,ajr( β

r
|y|+1))

v(y) dy
)q/p

ajbβ\
ajbβ−1

da

an+1

)1/q

≤ C

(∑

j∈Z

( ∑

k∈Zn

|λk,j |
p

(
β

r
|y| + 1

)α \
B(xk,j ,ajr)

v(y) dy

)q/p

b−na−n
j

)1/q

≤ C(1 + |y|)α/pb−n/q‖(λi)i∈I | (L
p,q(v))d(X,U(r, β))‖,where α is the exponent from (6.4). By Remark 4.1 we onlude that

|||R(y,b) |W (L∞, Lp,q(v))||| ≤ C(1 + |y|)α/pb−n/q,and sine (y, b)−1 = (−b−1y, b−1) we have
∆((y, b)−1)|||R(y,b)−1 |W (L∞, Lp,q(v))||| ≤ Cbn(1+1/q)(1 + b−1|y|)α/p.Set w(y, b) := bn(1+1/q)(1 + b−1|y|)α/p and r := min{1, p, q}. Then Theo-rem 5.1 tells us that

W (L∞, Lp,q(v)) ∗W (L∞, Lr
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