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WIENER AMALGAM SPACES WITH RESPECT TO
QUASI-BANACH SPACES

BY

HOLGER RAUHUT (Wien)

Abstract. We generalize the theory of Wiener amalgam spaces on locally compact
groups to quasi-Banach spaces. As a main result we provide convolution relations for such
spaces. Also we weaken the technical assumption that the global component is invariant
under right translations, which is new even for the classical Banach space case. To illustrate
our theory we discuss in detail an example on the ax + b group.

1. Introduction. Wiener amalgam spaces consist of functions on a lo-
cally compact group defined by a (quasi-)norm that mixes, or amalgamates,
alocal criterion with a global criterion. The most general definition of Wiener
amalgams so far was provided by Feichtinger in the early 1980’s in a series of
papers [4-6]. We refer to [12] for some historical notes and for an introduction
to Wiener amalgams on the real line.

Wiener amalgams have proven to be a very useful tool for instance in
time-frequency analysis [11] (e.g. the Balian—Low theorem [12]) and sampling
theory. Our interest in those spaces arose from coorbit space theory [7-9, 14]
which provides a group-theoretical approach to function spaces like Besov
and Triebel-Lizorkin spaces as well as modulation spaces.

It seems that Wiener amalgams with respect to quasi-Banach spaces have
not yet been considered in full generality, except for a few results for Wiener
amalgams on R? in [10]. So this paper deals with basic properties of Wiener
amalgams W (B,Y') with a quasi-Banach space Y as global component and
one of the spaces B = L', L or M (the space of complex Radon measures)
as local component. Moreover, we also remove the technical assumption im-
posed by Feichtinger [4] that the global component Y has to be invariant
under right translation. Thus, some of our results are even new for the clas-
sical case of Banach spaces Y.

One of our main achievements is a convolution relation for Wiener amal-
gams. As a special case it turns out that W (L, LP) is a convolution algebra
for 0 < p < 1 if the underlying group is an IN group, e.g. R%. This result is
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interesting since for non-discrete groups there are no convolution relations
available for LP if p < 1. The problem comes from possible p-integrable sin-
gularities which are not integrable. So the integral defining the convolution
F % G does not even exist for all F' € LP even if G is very nice, e.g. continu-
ous with compact support. Of course, the local component L of W (L, LP)
prohibits such singularities. So our results indicate that whenever treating
quasi-Banach spaces in connection with convolution, one is almost forced to
use Wiener amalgam spaces.

To illustrate our results we also treat a class of spaces Y on the ax + b
group such that W(L*>,Y") is right translation invariant (and thus admits
convolution relations) although Y is not.

For a quasi-Banach space (B, | - |B]||), we denote the quasi-norm of a
bounded operator T' : B — B by ||T'| B||. The symbol A < B indicates
throughout the paper that there are constants C7,Cs > 0 such that C1 A <
B < (C3A (independent of other quantities on which A, B might depend).
We normally use the symbol C for a generic constant whose precise value
might be different at each occurrence.

2. Basic properties. Let G be a locally compact group. Integration
on G will always be with respect to a left Haar measure. We denote by
L,F(y) = F(z~'y) and R, F(y) = F(yx), =,y € G, the left and right trans-
lation operators. Furthermore, let A be the Haar module on G. For a Radon
measure p we define (Azp)(k) = p(Rzk), © € G, for a continuous function k
with compact support. We may identify a function F' € L' with a measure
pr € M by up(k) = (F(z)k(z)dz. Then clearly A,F = A(z™")R,-1F.
Further, we define the involutions FV(z) = F(z™'), FV(z) = F(z1),
F*(x) = A(x= Y ) F(z~1),

A quasi-norm || - || on some linear space Y is defined in the same way
as a norm, with the only difference that the triangle inequality is replaced
by ||f + gl < C(|fll + |lgl]) with some constant C' > 1. It is well-known
(see e.g. [1, p. 20] or [13]) that there exists an equivalent quasi-norm || - | Y|
on Y and an exponent p with 0 < p < 1 such that || - |Y|| satisfies the
p-triangle inequality, i.e., ||f + g |Y [P < |[f|Y|? + |lg|Y]P. (C and p are
related by C' = 2/p — 1.) We can choose p = 1 if and only if Y is a Banach
space. We always assume that such a p-norm on Y is chosen and denote it by
II- Y| If Y is complete with respect to the topology defined by the metric
d(f,g) =||f — g| Y|P then it is called a quasi-Banach space.

Let Y be a quasi-Banach space of measurable functions on G, which
contains the characteristic function of any compact subset of G. We assume
Y to be solid, i.e., if F' € Y and G is measurable and satisfies |G(z)| < |F(x)|
a.e. then also G € Y and |G| Y| < ||[F|Y].
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The Lebesgue spaces LP(G), 0 < p < oo, provide natural examples of
such spaces Y, and the usual quasi-norm in LP(G) is a p-norm if 0 < p < 1.
If w is some positive measurable weight function on G then we further define
L, = {F measurable : Fw € LP} with ||F| L%|| := ||[Fw| LP||. A continuous
weight w is called submultiplicative if w(zxy) < w(x)w(y) for all z,y € G.

Now let B be one of the spaces L>(G), L'(G) or M(G), the space of
complex Radon measures. Choose some relatively compact neighborhood @)
of e € G. We define the control function by

(2.1) K(F,Q,B)(z) := [[(Lax@)F [ Bl, =€,

if F is locally contained in B, in symbols F' € Bj,.. The Wiener amalgam
space W(B,Y) is then defined as

W(B,Y):=W(B,Y,Q) = {F € Bio: K(F,Q,B) €Y}

with quasi-norm

(2.2) IFIW(B,Y, Q)| = [[K(F,Q,B)|Y].
Here B is called the local component and Y the global component. It follows
from the solidity of Y and from the quasi-norm properties of || - | B|| and

|| - |Y| that (2.2) is indeed a quasi-norm. Since B is a Banach space it is
easy to see that (2.2) is also a p-norm (with p being the exponent of the
quasi-norm of Y'). We emphasize that in general we do not require here
that Y is right translation invariant in contrast to the classical papers of
Feichtinger [4, 5].

REMARK 2.1. The restriction of the local component B to the spaces
L',L> and M is done for the sake of simplicity. One can certainly extend
our considerations to more general spaces B, e.g. LP-spaces with 0 < p < o0
(cf. [4, 12]). However, convolution relations as in Section 5 will not hold any
more when taking B = LP for p < 1.

Let us first make some easy observations.

LEMMA 2.1. We have the following continuous embeddings:

(a) W(L*®,Y) =Y.

(b) W(L*®,Y) — W(LYY) — W(M,Y).

Proof. (a) Since |F(x)| < sup,ey |F(u™tx)| for a compact neighborhood
U of e € G the assertion follows from the solidity of Y.

The statement (b) follows immediately from L>°(Q) — LY(Q) — M(Q)
for any compact set Q C G. u

Let us now investigate whether W (B,Y,Q) is independent of ) and
whether it is complete. It will turn out that both properties are connected
to the right translation invariance of W (B,Y'). In order to clarify this we
need certain discrete sets in G and associated sequence spaces.
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DEFINITION 2.1. Let X = (x;);cs be some discrete set of points in G and
V' a relatively compact neighborhood of e in G.

(a) X is called V-dense if G = (J;c; z:V.

(b) X is called relatively separated if for all compact sets K C G there
exists a constant C such that sup;c; #{i € I : ;K Na; K # 0}
< Ck.

(c) X is called V-well-spread (or simply well-spread) if it is both rela-
tively separated and V-dense for some V.

The existence of V-well-spread sets for arbitrarily small V' is proven in [6].
Given the function space Y, a well-spread family X = (x;);c; and a
relatively compact neighborhood @ of e € G we define the sequence space

(2.3) Yy = Yy(X) = Yy(X, Q) = {()\Z-),-ej > ilva € Y},
1€l

with natural norm [[(Ai)ier | Yall := || 2o [Nilxzi@ | Y| Here, x4, denotes
the characteristic function of the set z;Q. If the quasi-norm of Y is a p-
norm, 0 < p < 1, then also Yy has a p-norm. Suppose for instance Y = LV,
0 < p < o0, with some positive continuous weight function m. If in addition
m is moderate, i.e., m(zxy) < m(x)w(y) for all x,y € G and some function w,
then it is easily seen that Yy = ¢2. with m(i) = m(x;).

Although we will not require the right translation invariance of Y in
general, we state the following easy observation in case it holds.

LEMMA 2.2. If Y is right translation invariant then the definition of
Yy =Ya(X,U) does not depend on U.

Proof. Let V, U be relatively compact sets with non-void interior. Then
there exist a finite number of points y;, 7 = 1,...,n, such that V =
U;L:1 Uy;. This implies

Z |)\i’X:ciV < Z Z |)\i|Xminj = ZRyj—l (Z p‘z’X:mU)
j=1

iel j=1 icl iel

By solidity and the p-triangle inequality we obtain

n /
|3 i | Y] = (1R, |Y\]|p‘)Z|A¢\Xin’YHp)1 b
iel j=1 il

= CH Z |\ XU ‘ Y )
i€l

Exchanging the roles of V and U shows the reverse inequality. m




WIENER AMALGAM SPACES 349

The following concept will also be very useful.

DEFINITION 2.2. Suppose U is a relatively compact neighborhood of
e € G. A collection of functions ¥ = (¢;)ier, i € Co(G), is called a bounded
uniform partition of unity of size U (for short U-BUPU) if the following
conditions are satisfied:

(1) 0<¢i(z) <1lforalliel, zeg,

(2) Xiervilz) =1,
(3) there exists a well-spread family (x;);cr such that supp; C x;U.

The construction of BUPU’s with respect to arbitrary well-spread sets is
standard.

We call W(B,Y) right translation invariant if for any relatively compact
neighborhood @ of e the space W(B,Y,Q) is right translation invariant
and the right translations R, : W(B,Y,Q) — W(B,Y,Q) are bounded
operators. (In case B = M we replace R, by A, in this definition.)

Now we are prepared to state the basic properties of Wiener amalgams.

THEOREM 2.3. The following statements are equivalent:

(i) W(L*®,Y) = W(L*,Y, Q) is independent of the choice of the neigh-
borhood @ of e (with equivalent norms for different choices).

(ii) For all relatively separated sets X the space Yy = Yy(X,Q) is in-
dependent of the choice of the neighborhood Q) of e (with equivalent
norms for different choices).

(iii) W(L*>®,Y) = W(L*>®,Y,Q) is right translation invariant (for all
choices of Q).

If one (and hence all) of these conditions are satisfied then also W (B,Y) =
W(B,Y,Q) is independent of the choice of Q. Moreover, the expression

(2.4) IEIW(B, Ya)|l := (1 F%i | BlD)ier | Ya(X)

defines an equivalent quasi-norm on W(B,Y), where (¢;)icr is a BUPU
corresponding to the well-spread set X.

Proof. We first prove that (ii) implies that (2.4) defines an equivalent
quasi-norm on W(B,Y). Let @ be a relatively compact neighborhood of
e € G. Then there exists an open set U = U~ with U? C Q. Choose a
BUPU (¢;)ier of size U. If x;U C 2Q then for F' € Bj,. we have

[F'¢i | Bl| < [[Fxau | Bll < [[Fx2q | Bl = K(F,Q, B)(z).
This yields

(25) > IF¢i| Blxew(z) = Y |F¢i| Bl < CK(F,Q,B)(2)

i€l i, ;€201
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since (x;);cs is relatively separated. By solidity we obtain
[([[F'di | Bl))ier | Ya(X, U)|| < C||F |W(B,Y, Q)]

Moreover, we have

(26) K(F.QB)(z) = [x-oF | Bl = -0 Y Fo: | B|
icl
< > IFG] Bl < Y IF | Blxe,g-(2).
i, 2QNx; U#AD el

By solidity this yields
IF W (B, Y. Q) < [(1F6:| Bll)ict | Ya(X,UQ™H].
Thus, the independence of Y;(X,U) from U implies that the norm in (2.4)
is equivalent to the norm in W(B,Y'). Moreover, since ) was arbitrary this
also shows that W(B,Y) = W(B,Y, Q) is independent of the choice of Q.
Specializing to B = L* we have thus also shown (ii)=-(i).
As the next step we prove that (iii) implies (ii). Let U,V be relatively

compact neighborhoods of e. Choose a neighborhood Q@ = Q! of e € G such
that Q2 C V. Observe that

K( 3o Wi @) ) = sup 3 Nixea(@) < 3 Wibgr (0

el ze] i€l
< Milxar @)
el
The right translation invariance of W (LY, Q) together with Lemma 2.2
applied to W(L,Y’) and the trivial inequality |F'(z)| < sup,¢,q |F(2)| thus
imply

| b | Y] <[5 (X ibxaw@.2%) | ¥
el icl

<[5 oo @2 | V] < [ v ¥
el el

Exchanging the roles of U and V' shows the reverse inequality.
Finally, we prove (i)=-(iii). Let ' € W(L*,Y) and y € G. We can find
a compact neighborhood V¥ of e such that Qy C V). We obtain
K(RyF, Q, L)) = | (Lox@)(RyF)lloo = I(Ry-1 Lox@) Flloc
= [[(Lax@u) Flloo < [[(LaXyw) Flloo-
By assumption and solidity, this yields
IR,F |W(L>®,Y)| < C|K(R,F,Q,L®) |Y| < C|K(F,V¥,L®)|Y]|
< C'WIIF WL, V).

This concludes the proof. m
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REMARK 2.2.

(a) The proof of the equivalence of the quasi-norm in (2.4) still works
(with slight changes) upon replacing the BUPU (1););cr by the char-
acteristic functions ;7. Thus, if Yy = Y4(X, Q) is independent of
the choice of ) then also the expression

I EXz:@ | Bll)ier | Yall
defines an equivalent quasi-norm on W(B,Y).

(b) Analyzing the proof that (ii) implies (i) one recognizes that it is actu-
ally enough to require that for all neighborhoods @ of e there exists
some relatively separated @)-dense set X such that Y;(X, U) is inde-
pendent of the choice of U. The theorem then shows that Y, (X, U)
is automatically independent of U for all relatively separated sets X.

COROLLARY 2.4. If W(L*,Y) is right translation invariant then
(W(L>,Y))q = Ya.

Proof. This follows immediately from inequality (2.7). m

Let us now investigate the completeness of the spaces W (B,Y) and Y.

LEMMA 2.5. Yy is complete, and convergence in Yy tmplies coordinate-
wise convergence.

Proof. Let A" = ()\gn))ig, n € N, be a Cauchy sequence in Y. This
means that the functions F,, = >, ; )\En)xin form a Cauchy sequence in Y.
Since Y is complete the limit F' = lim,cy F), exists. It follows from the
solidity that F has the form F' = ), ; Aixz,v with A; = lim, .o )\En).
Clearly, (\;)ier € Yy is the limit of A™. =

THEOREM 2.6. If W(L*,Y) is right translation invariant then W (B,Y)
is complete.

Proof. Let (¢;)ier be a BUPU of size U. By Theorem 2.3, ||- | W(B, Yy)||
defined in (2.4) is an equivalent quasi-norm on W (B,Y’). Assume that F},,
n € N, is a Cauchy sequence in W(B,Y'). This implies that (||F,; | B||)icr
is a Cauchy sequence in Y; and by Lemma 2.5 the sequence (F,;)nen
is a Cauchy sequence in B for each ¢ € I. Since B is complete the limit
limy, oo Frtp; = F) exists for each i € I. Set F := Zz‘el F), Clearly,

supp F (@) x;U. Furthermore,
1Py Bl = | Y FOw | B =] S PO
Jel JrzUNz,

d

< E | lim Fnipjeps | Bl < C||1 A
n—oo
j:ZjUﬂIiU
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By completeness of Yy, the sequence (||[F®|B||);cs is contained in Yy, and
hence F' € W(B,Y). Furthermore, we have

P3P0 =S i P =l £ 0= lin
icl icl icl
Thus, F' is the limit of F,, in W(B,Y), and hence W (B,Y) is complete. m

3. Left translation invariance. Also the left translation invariance is
an important property. In this section we assume that W(L*,Y) is right
translation invariant, so that W(B,Y) is complete and independent of the
choice of the neighborhood ) according to Theorems 2.6 and 2.3.

LEMMA 3.1. If W(L®>®,Y) is left translation invariant then Yy is contin-
uously embedded into (), with (i) := IL,—1 | W(L>,Y)].

Proof. Let U be some compact neighborhood of e and (\;);er € Yy. With
C :=|xv | W(L*,Y)| we obtain by Corollary 2.4 and solidity
CIil = [l lIxo [ WL, V) = Xl [ Ly -1xav [ WL, V)|
S WAL Y il Xt | WAL Y

< ()| X Wl | W= Y)|| < r(@) | (Aier | Yal.
Jel

This completes the proof. =

LEMMA 3.2. If W(L>®,Y) is left translation invariant then W(L*>,Y)
is continuously embedded into L77 , where r(z) == ||Ly—1 | W(L*®,Y)|.

Proof. By Theorem 2.3, Y; = Yy(X, @) is independent of the choice of
@ and the quasi-norm || - | W(L*>,Yy)| defined in (2.4) is equivalent to the
quasi-norm of W (L*>,Y"). Since Yy is continuously embedded into E(f% by

Lemma 3.1 and ( ‘1’77,)(1 = {79, we obtain

3.1) G [W(L, Ly )| < [|[F WL, £2)]] < |[F| W (L™, Ya)|
< Gof [ FIW (L, Y

for all F € W(L*,Y). Further, it is easy to see that W (L, Li’?r) =Lgj,. =

In some cases one has translation invariant spaces Y. Then we have
the following estimates of the norm of the left translation operators in
W(L>,Y).

LEMMA 3.3. If Y is left translation invariant then W (B,Y') is left trans-
lation invariant and || L, | W (B,Y)| < | Ly | Y]
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Proof. We have
K(LyF,Q, B)( )—H( 2XQ) LF)!BH—H y—12XQ)F| B
This yields
Ly F|W(B,Y)|| = [|LyK(F,Q,B) | Y| < |Ly | Y[|IF'|W(B,Y)],

and the proof is complete. =

4. Conditions ensuring translation invariance. Given a concrete
space Y, according to the previous results, there is a need to check whether
W(L*>,Y) is right translation invariant. Moreover, we will see later that also
the right translation invariance of W (M,Y') is important in order to have
convolution relations.

LEMMA 4.1. If W(L*®,Y) is right translation invariant then W (M,Y")
1s also Tight translation invariant.

Proof. Let p € W(M,Y), y € G and @ be a compact neighborhood
of e. Then there exist a finite number of points yi, £k = 1,...,n, such that
Qy~!lc Uk—1 yxQ- For the control function we obtain

K(Ayp, Q, M) () = [|(Lax@)Ayp | M| = || (RyLaxq) = |ul(Laxgy—1)

< pl(Laxye) = Y Ry K (1, Q, M)(z).
k=1 k=1

By solidity, the p-triangle inequality and independence of W (M,Y, @) from
the choice of ) we get

Ay | W (MY P < | > Ry K. M) M
k=1

<Y Ry K (1, Q, M) | W (L=, )P
k=1

< D MRy [ WL V)P K (1, Q, M) | W (L, Y|P
k=1

<Y Ry, | WELZ,Y)PIK (1, Q% M) [ Y|P
k=1
<O Ry, WL V)P | W (M, Y|P
k=1
This concludes the proof. m
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Another criterion for the right translation invariance of W (B,Y') is:

COROLLARY 4.2. If Y is right translation invariant then also W(B,Y)
= W(B,Y,Q) is right translation invariant and independent of Q.

Proof. By Lemma 2.2, Y; = Yy(X,U) is independent of U. Thus, The-
orem 2.3 implies that W(B,Y) = W(B,Y,Q) is independent of @ and
W(L*,Y) is right translation invariant. Lemma 4.1 implies that W (M, Y) is
also right translation invariant. Clearly, W (L!,Y") is a subspace of W (M,Y)
that is right translation invariant if W (M, Y) is right translation invariant.
Thus, we proved the assertion for all admissible choices B = L>®, L', M. =

Recall that G is called an IN group if there exists a compact neighborhood
of e such that xQ = Qx for all z € G.

LEMMA 4.3. Let G be an IN group and assume Y to be right transla-
tion invariant. Then [|Ry |W(L>,Y)|| < [[Ry Y] and [[Ay |[W (M, Y)]| <
IRy [ Y-

Proof. Choose () to be a compact invariant neighborhood of ¢, i.e., y@ =
Qy for all y € G. This yields

K(RyF,Q, L7)(x) = |(Lax@) Ry Fllco = [[(LaX@y) Flloo = |(LaXy@) Flloo
= [(Ley@)Flloo = K(F,Q, L*)(zy)
and thus,
Ry F'[W (L=, Y)|| = [|[RyK(F,Q, L) | Y| < || Ry | Y|[[[F'| W (L™=, Y)]|.
The proof for B = M is similar. =

We remark that Y does not necessarily need to be translation invariant
for W(L*°,Y) to be translation invariant (see Section 6). The following cri-
terions allow us to check left or right translation invariance of W(L*>,Y)
without using translation invariance of Y.

LEMMA 4.4. Let U be some compact neighborhood of e € G. Let X =
(7:)icr be some well-spread set in G. Denote by =1 X, x € G, the well-spread
set (x7Yw;)ier. If there is a function k(x) such that

I(Ni)ier | Ya(a™' X, U)I| < k()| (M)ier | Ya(X, U)|
for all (N\;)ier € Ya(X) then W(B,Y) is left translation invariant with
I Lo [W(B,Y)]| < Ck(x).

Proof. Let (1);er be some BUPU corresponding to X. Since (2.4) defines
an equivalent norm on W (B,Y’) we obtain

Lo | W(B,Y)|| < ClI([[(Le )i | Bllier | Ya(X, U)]
< Cl(IF(Ly-14i) | Bl)ier [ Ya(X, U)]|
< Ck(@)|(IF (Lo-1#3))ier | Ya(a™' X, U)]].
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The system (L,-11;);cr is a BUPU corresponding to the well-spread set
271 X. Thus, using once more the equivalence of the norm (2.4) with the
norm in W (B,Y) we obtain || L,F |W(B,Y)| < C'k(z)||F |W(B,Y)|. =

REMARK 4.1. If Yy(X,U) is independent of the choice of the neighbor-
hood U then we already know from Theorem 2.3 that W(L*>,Y") is right
translation invariant. If h(x) is a function such that

[Ai)ier | Ya(X, Uz)|| < h(x)|(Xier | Ya(X, U]

for all (A;)ier € Y4(X) then a similar argument to the previous proof shows
that

IR [W(L, V)| < Ch(z).

5. Convolution relations. Let us now prove the main results of this
article concerning convolution relations of Wiener amalgams with quasi-
Banach spaces as global components (cf. [7, 8] for the classical case of Banach
spaces).

THEOREM 5.1. Let 0 < p < 1 be such that the quasi-norm of Y satis-
fies the p-triangle inequality and assume that W (L*>®,Y) is right translation
1nvariant.

(a) Set w(x) :=||Ay |W(M,Y)||. Then
W(M,Y)« W(L>®, L) — W(L*,Y)
with a corresponding estimate for the quasi-norms.
(b) Set v(x) := A(z V) ||Ry—1 | W(L®,Y)||. Then
W(L>®,Y)« W(L>®, LP) — W(L>,Y)
with a corresponding estimate for the quasi-norms.

Proof. (a) It follows from Theorem 2.3 that any G € W(L>, L%,) has
a decomposition G = ) ,.; L;,G; with G; € L™, suppG; C Q = Q! for
some compact Q and Y, ||Gilbow(x;)P < C||G | W (L, Ly)||P < 0.

For p € W(M,Y) we estimate the control function of u * (L,,G;) by

K (p* (L, Gi), Q, L) (2) = sup | (L, Gi) (2)]

= sup | [ (Ly L2, Gi)(2) dpu(y)| < 1Gillow 5up | Ly ¥ (0a) il ()
z€xQ q€Q

N

< [|Gilloo  xg2 (yaa) ™' 2) dlpl(y) = |Gl oo § X2 (& yas) ]l (y)
= [|1Gilloo § Res Laxq2 (v) dlinl(y) = | Gilloo | (Laxg2) (Aws) | M|
= ||Gilloo K (Ag, 11, Q%, M)(2).
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Thus, we have

I+ L, Gi | WL, )| < (|Gl ool 1K (Ag, 1, @, M) | Y|
< OlGillool| Ag;pn [ W(M, Y]]

Pasting the pieces together yields

(5.1)  |lu*G|W(L®Y

v

<D lln*Ls,Gi W(L‘”, P < C Y NGB Avyin | W (M, Y|P

iel i€l
< O NGillZll Az | W (M, Y) || | W (M, Y )7
el

< Ollp| WM, Y)PIG W (L, L)

(b) Since W(L*,Y) C W(M,Y) all the computations done in (a) are
still valid. We only have to replace || Ag, | W(M,Y)|| by || Ag;pu | W(L>®,Y)||
= Az, Y||Ry-1pu | W(L®,Y)| in (5.1) to deduce (b). =

THEOREM 5.2. Assume Y is such that W (L>,Y) is left and right trans-
lation invariant. Set v(z) := || Ly-1 |W(L>®,Y)|. Then

W (L>®, LP) + W(L®,YV)Y — W(L*,Y).

Proof. Let F € W(L*,L%) and G € W(L*,Y). Similarly to the proof
of Theorem 5.1 we may write F' = ), _; L, F; with suppF; C Q = Q!
(compact) and Y, ||Fill5v(z;)? < C||F | W(L>, LY)|]. We obtain

= sup |F; * G(2)| < sup S Fi(y)L,G(z) dy‘
2€xQ z€xQ 2:Q

IN

1Eill o SESSXQ(y)!(RqG)(y_lw)\ dy < C||Fllos | x@2 W)IG” (z™"y)| dy
q

< C|IFyllo0 | Lom1xq2(WIGY (9)] dy < C'|| Fil o K(GY, Q% L) (x 7).
This yields

1F; G W (L, Y)|| < CO||FilloollE(GY, Q% L) | Y]
< ClIFi]lollG W (L=, Y)Y

Pasting the pieces together we get
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P
IF+GIW LS V)P = || S (LaiF) + G| W(L%,Y)|
el
<D NLa(Fx G) [ W (L=, V)P
1€l
< O ML, [W (LS Y) P F B NG W (L2, YY) Y|P
el
< CF WL, LYIPIIG W (L, Y ) Y||P.
This concludes the proof. m
From the previous theorem we see that the involution ¥ has some rele-
vance. In the case of IN groups we have the following result.
LEMMA 5.3. If G is an IN group then W (L*>®, YY)V = W(L>®,Y) with
equivalent norms.

Proof. Let @ be an invariant compact neighborhood of e. Then also Q!
is invariant. For the control function we obtain

K(FY,Q,L®)(x) = [(Lax@) F ¥ llo = I(Lax@)" Fllco = [[(RaXg-1)F lloo
= IXg-12-1Flloo = lIXa-10-1F lloc = K(F,Q™', L) (z™).
This shows the claim. =

Theorem 5.2 implies a convolution relation for Wiener amalgam spaces
with respect to weighted LP-spaces.

COROLLARY b5.4. Let w be a submultiplicative weight and 0 < p < 1.
Then
W(L>®, L) « W(L>®, LV ) — W (L™, LL).

In particular, if G is an IN group then W (L, L%) x W(L>®,L},) —
W(L*>®, L%,) with a corresponding quasi-norm estimate.

Proof. The first assertion is a direct consequence of Theorem 5.2, and
the second then follows from Lemma 5.3. =

In particular, if G is an IN group then W(L>®,L%), 0 < p < 1, is
a quasi-Banach algebra under convolution. Since commutative groups are
clearly IN groups this result applies in particular to Wiener amalgams on
G = R4 Moreover, if G is discrete then we recover the well-known relation

2(G) x 15(G) — £5,(G), 0 < p < 1.

6. An example on the azx + b group. In this section we provide an
example of a non-translation invariant space Y such that W(L>,Y") is right
translation invariant. We consider the n-dimensional ax + b group G = R" x
R% where R’ denotes the multiplicative group of positive real numbers. The
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group law in G reads (z,a) - (y,b) = (z + ay, ab). The azx + b group has left

Haar measure
o0

Sf(x)d:rz S S f(x,a)%d:r

g R” 0
and modular function A(z,a) = a~". The ax + b group plays an impor-
tant role in wavelet analysis and the theory of Besov and Triebel-Lizorkin
spaces.

Let 0 < p, ¢ < 0o. With some positive measurable weight function v on G

we define the mixed norm space LP*?(v) on G as the collection of measurable
functions whose quasi-norm

T a/p 1a
IF1a= ([ (] 1P apuea ) )

0 R»
is finite (with obvious modification in the cases p = oo or ¢ = ). This quasi-
norm is actually an r-norm where r := min{1, p,q}. If v = 1 we write LP9.
If p = g then clearly LP? = LP(G). It is easy to see by an integral transfor-
mation that LPY is invariant under left and right translations. We remark
that for reasons to become clear later v is treated as a measure here, so if v
does not vanish on a set of positive measure then L (v) = L*°(G).

With a similar argument to [12, Proposition 2.4] (see also [3]), one shows
(using the right translation invariance of the unweighted LP'? space) that
LP1(v), 0 < p,q < o0, is right translation invariant if and only if

(6.1) v((z,a) - (y,b)) < v(x,a)w(y,b)

for some submultiplicative function w (possibly depending on p,q). Now
assume that v(x, a) is a function of x only. Then condition (6.1) means that
the quotient

v((z,a)(y; b)) _ v(z+ay)
v(z,a) v(x)

(6.2)

is bounded by a submultiplicative function w of y only. However, since the
right hand side also depends on a € (0,00) this can be satisfied only in
special cases (e.g. if v is bounded from above and below). In particular,
the typical choice vs(z,a) = vs(z) = (1 + |z])®, s € R, does not satisfy
(6.1) for any submultiplicative weight w on G if s # 0 (although it is even
submultiplicative as a function on R™ if s > 0). In particular, L”9(v) is not
right translation invariant for many non-trivial choices of v.

In the following we introduce a class of weight functions v for which
W(L*>, LP4(v)) is right translation invariant. This class, however, contains
weights v that do not satisfy (6.1), i.e., L”9(v) is not right translation in-
variant, in general.
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Let B(x,r) denote the ball in R™ of radius r centered at z € R™. A
positive measurable weight function v on R" is said to satisfy the doubling
condition if there exists a constant C' such that

(63) | vway<c | vy
B(x,2r) B(z,r)

for all z € R™ and r € (0, 00). This condition is equivalent to the existence
of constants ¢, o such that

(6.4) S v(y)dy < ct® S v(y)dy forallz € R" r € (0,00),¢t> 1.
B(z,tr) B(z,r)

For instance the weights in the Muckenhoupt classes A,, p > 1, satisfy the
doubling condition [2]. A typical example of a weight in Ao = U5, 4p is
v®)(x) = |z|®, s > —n. So doubling weights may have zeros or poles. A
further example of a doubling weight is vs(z) = (1 + |z|)°, s € R. For a
construction of a doubling weight which is not contained in A, we refer
to [2].

We extend a doubling weight v on R" to G = R"™ x R by setting
v(z,t) = v(z) for (x,t) € G. Let LP4(v) be the associated mixed norm space
as defined above. We will use Theorem 2.3 to prove that W (L>, LP9(v)) is
right translation invariant. In particular, let us study the associated sequence
space (LP9(v))q.

LEMMA 6.1. Let 0<p<oo, 0<g<oo and v be a weight function on R".
Let X = (%15, a5)(k,j)er:=znx7 be some well-spread set in G = R"™ x RY. If
v satisfies the doubling condition (6.3) then (LP%(v))q = (LP1(v))q(X,U) is
independent of the choice of the neighborhood U of e in G, and an equivalent
norm on (LP4(v))q4(X) is given by

[(A\)ier [ €74(0)|| = (Z<Z Ak g [P UkJ)Q/paj_n)l/q

JET keZn

where vy, j = SB(xk ) v(y) dy (with the usual modification for ¢ = o).

Moreover, W (L, LP1(v)) is right translation invariant if and only if v
satisfies the doubling condition.

Proof. It suffices to show the assertion for neighborhoods of the form
U(r,B) = B(0,r) x (871,3) € G with r € (0,00) and 3 € (1, c0) since for an
arbitrary compact neighborhood U of e = (0,1) € G we can find r1, 79, 51, 52
such that U(ry,51) C U C U(ra, B2). Observe that

(z,a)U(r,B) = B(z,ar) x (aﬂ_l,aﬂ).
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Using the relative separatedness of X we obtain, for 0 < ¢ < oo,
[(Xo)ier | (L7 (v))a(X, U(r, B))||

00 /v d 1/q
= <S (S DD Mkl Xk am ()X (51,0, (@0 () dy)q pan—il)

0 R»j€Z keZn

a;f3 1/
= <Z(Z | Ak ” S v(y) dy)q/p JS %) !
JeL keLn B(z,j,a57) a;6-1
/ /
(S el T etwdy) )

JEZ keZ™ B(xp,;,a;7)

The computation for ¢ = oo is similar. Thus, (LP9(v))q(X,U(r, 3)) is inde-
pendent of r and f if and only if for all 7, s € (0,00) there exist constants

Cy(r,s),Ca(r, s) > 0 such that

(6.5) Ci(r,s) | wlpdy< | ody
B(xy,;,a;T) B(xk,;,a55)
<Cors) | vy
B(mk,jva]'r)

for all (k,j) € Z™ x Z. Let us assume without loss of generality that r < s.
Then the first inequality is clear. Moreover, by the doubling condition, in its
equivalent form (6.4), we have

Vo owdy<cls/m® | oy dy.
B(xg,;,055) B(xg,;,a;7)
So (6.5) is satisfied with Ci(r,s) = 1 and Ca(r,s) = c(s/r)“.

Since we may choose relatively separated sets of the form (x5, a;) of
arbitrarily small density (e.g. (ab™7k, b7 )pezn, jez with small @ > 0, b > 1),
W(L*>, LP4(v)) is right translation invariant by Theorem 2.3 and Re-
mark 2.2(b) if v is doubling. Conversely, if W (L, LP9(v)) is right transla-
tion invariant then (6.5) must hold for any choice of the relatively separated
set X = (1, a;) by Theorem 2.3. In particular, choosing s = 2, 7 =1 in
(6.5) we obtain

| vdy<cy | v()dy
B(z,2a) B(z,a)
for all z € R™, a € (0,00), which clearly is the doubling condition. =

Since L>4(v) = L°9 the analogue of Lemma 6.1 for p = oo is trivial. It
seems that in general W (L, LP9(v)) is not left invariant.

In order to state the convolution relation in Theorem 5.1 for our case
we estimate the norm of the right translation operators on W (L, LP4(v))
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using Remark 4.1. Let U = U(r,3), r > 0, § > 1, be a neighborhood of
e = (0,1) as in the previous proof. For (z,a), (y,b) € G we obtain
(ﬁva) : U(Ta ﬁ) : (y’ b) = (B(IE,G,T’) X a(ﬁ_l’ﬂ)) : (yvb)
= {(z+ sy, sb) : z € B(x,ar),s € ab(~ %, 5)}
- U B(z + sy,ar) x ab(871, 8) € B(z,a(Bly| + 1)) x ab(871, ).
s€a(B~1,8)

Let X = (xy;,a;) be a relatively separated set in G. Proceeding as in the
previous proof we deduce

[(Ai)ier | (LP9(0)a(X, U (r, 5) - (y, b))l

q/p a0 La
<o(T(Z mar ) 5 )
JEL kelr B(zk,j,ajr<é|y\+1>> LE
ﬁ o q/p 1/q
C(Z(Z |>\k,j|p<; |y!+1> ) e n)
JEL “kezr B(:pk ,a;T)

< C(L+[y)*Po ™| (NYier | (TP (0))a( X, U (r, B))]],
where « is the exponent from (6.4). By Remark 4.1 we conclude that
IRy | W (L, LPU (o)) < C(L + y)*/Pb—/9,
and since (y,b)"! = (—=b~1y,b7!) we have
Ay, D) IR -1 [ WL, LP(0))]| < CO" D1+ 57 y|) /7.

Set w(y,b) := v"IHYD(1 + b~ 1y|)*/? and r := min{1,p,q}. Then Theo-
rem 5.1 tells us that

W (L, LP(v)) « W(L*, L)) — W(L>, LP%(v)).

To the author’s knowledge this is a new convolution relation on the ax + b-
group even for p,q > 1.
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