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THE AR-PROPERTY OF THE SPACES OF CLOSED CONVEX SETS

BY

KATSURO SAKAI and MASATO YAGUCHI (Tsukuba)

Abstract. Let ConvH(X), ConvAW(X) and ConvW(X) be the spaces of all non-
empty closed convex sets in a normed linear space X admitting the Hausdorff metric
topology, the Attouch–Wets topology and the Wijsman topology, respectively. We show
that every component of ConvH(X) and the space ConvAW(X) are AR. In case X is
separable, ConvW(X) is locally path-connected.

1. Introduction. Throughout the paper, X = (X, ‖ · ‖) is a normed

linear space. There are various topologies on the set Cld(X) of all non-
empty closed sets in X (cf. [2]). Let C(X) be the set of all continuous
real-valued functionals of X. Each A ∈ Cld(X) can be identified with the
continuous functional X ∋ x 7→ d(x, A) = infa∈A ‖x − a‖. Thus, we can
regard Cld(X) ⊂ C(X). The Hausdorff metric topology τH, the Attouch–

Wets topology τAW and the Wijsman topology τW are respectively defined
by restricting the topologies on C(X) of uniform convergence, of uniform
convergence on bounded sets and of pointwise convergence (1). Obviously,
τH ⊃ τAW ⊃ τW. The spaces Cld(X) with these topologies are denoted by
CldH(X), CldAW(X) and CldW(X), respectively. The first two spaces are
always metrizable, but the last is metrizable if and only if X is separable
([2, Theorem 2.1.5]). In [4], [1] and [3], we have studied when these spaces
(or their components) are AR’s.

Given S(X) ⊂ Cld(X), the set S(X) with the topologies τH, τAW and τW

is denoted by SH(X), SAW(X) and SW (X), respectively. In this paper, we
consider the subset Conv(X) ⊂ Cld(X) consisting of all non-empty closed
convex sets in X. Note that ConvH(X) is not connected. In fact, ConvH(R)
has four components and ConvH(Rn) has uncountably many components if
n > 1 (see Remarks 1 and 2). In this paper, we show that every component
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(1) These definitions are valid for an arbitrary metric space X and they depend on a
metric on X.
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of ConvH(X) and the space ConvAW(X) are AR (Theorems 2.2 and 3.4). In
case X is separable, it is proved that ConvW(X) is locally path-connected
(Theorem 4.5). As a related subject, the space of compact convex sets with
the Hausdorff metric is studied in [6].

2. The Hausdorff metric topology. Recall that the Hausdorff metric

dH is defined on Cld(X) as follows:

dH(A, B) = sup
x∈X

|d(x, A) − d(x, B)|

= max
{

sup
x∈B

d(x, A), sup
x∈A

d(x, B)
}

,

where we allow dH(A, B) = ∞, but dH induces a topology on Cld(X) like a
metric does. It should be noted that dH is a metric on each component of
CldH(X) (cf. [4, Introduction]).

The convex hull of A ⊂ X is denoted by 〈A〉, so the closure cl〈A〉 is the
closed convex hull of A.

Lemma 2.1. For each A, B ∈ CldH(X), dH(cl〈A〉, cl〈B〉) ≤ dH(A, B).

Proof. Let a =
∑n

i=1 tiai ∈ 〈A〉, where ai ∈ A, ti > 0 and
∑n

i=1 ti = 1.
For each ε > 0 and i = 1, . . . , n, we can choose bi ∈ B so that ‖ai − bi‖ <
dH(A, B) + ε. Let b =

∑n
i=1 tibi ∈ 〈B〉. Then

‖a − b‖ ≤
n

∑

i=1

ti‖ai − bi‖ < dH(A, B) + ε,

hence d(a, cl〈B〉) = d(a, 〈B〉) < dH(A, B) + ε. Thus, d(a, cl〈B〉) ≤ dH(A, B)
for every a ∈ 〈A〉. Similarly, d(b, cl〈A〉) ≤ dH(A, B) for every b ∈ 〈B〉.
Consequently, dH(cl〈A〉, cl〈B〉) ≤ dH(A, B).

By Lemma 2.1 above, the map

CldH(X) ∋ A 7→ cl〈A〉 ∈ ConvH(X)

is a uniformly continuous retraction. In [4], it is proved that CldH(X) is
an ANR and each component of CldH(X) is a uniform AR (in the sense of
Michael [5]) with respect to the Hausdorff metric dH, hence so is the space
ConvH(X), that is,

Theorem 2.2. The space ConvH(X) is an ANR and each component of

ConvH(X) is a uniform AR with respect to the Hausdorff metric dH.

Now, let ConvB(X) ⊂ Conv(X) be the subset consisting of all bounded
closed convex sets. As is easily observed, ConvB

H(X) is closed and open in
ConvH(X). Moreover, the space ConvB

H(X) is path-connected. Indeed, for
each A, B ∈ ConvB

H(X),

I ∋ t 7→ cl((1 − t)A + tB) ∈ ConvB
H(X)
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is continuous. Thus, ConvB
H(X) is a component of ConvH(X). Hence, we

have the following:

Theorem 2.3. The space ConvB
H(X) is a uniform AR.

Remark 1. As is easily observed,

ConvH(R) = {R} ∪ {(−∞, a] | a ∈ R}

∪ {[a,∞) | a ∈ R} ∪ {[a, b] | a ≤ b ∈ R},

where R is an isolated point of ConvH(R), the second and third summands
are isometric to R, and the last one (= ConvB

H(R)) is isometric to the space
{(a, b) ∈ R

2 | a ≤ b} with the metric defined as follows:

d((a, b), (a′, b′)) = max{|a − a′|, |b − b′|}.

Every 1-dimensional normed linear space X is linearly isometric to R, hence
ConvH(X) can be identified with ConvH(R). Thus, ConvH(X) when dim X
= 1 is of no interest.

Remark 2. For Euclidean space R
n with n > 1, ConvB

H(Rn) is the space
of compact convex sets. It is proved in [6] that ConvB

H(Rn) is homeomorphic
to the Hilbert cube with one point removed. Every n-dimensional normed
linear space X is Lipschitz homeomorphic to R

n by a linear isomorphism,
which implies that ConvB

H(X) is homeomorphic to ConvB
H(Rn). Thus, the

space ConvB
H(X) is known for dimX < ∞.

Moreover, in case dimX > 1, ConvH(X) has uncountably many compo-
nents. Indeed, let SX be the unit sphere of X. Then cardSX > ℵ0. For each
pair v 6= v′ ∈ SX , R+v and R+v′ do not belong to the same component,
hence ConvH(X) has at least cardSX many components.

In any case, ConvH(X) has the unique singular point X, that is,

Proposition 2.4. As a point , X is isolated in ConvH(X).

Proof. It suffices to show that dH(A, X) = ∞ if A ∈ ConvH(X) \ {X}.
Let a0 ∈ A. There exists some x0 ∈ X \{0} such that a0 +[1,∞)x0 ⊂ X \A.
Otherwise, for every x ∈ X, a0 + [1,∞)x and a0 + [1,∞)(−x) meet A,
which implies a0 + x ∈ A by the convexity of A. Hence, a0 + X ⊂ A, which
contradicts A 6= X.

For each t ≥ 1, since d(a0 + tx0, A) > 0, there exists a ∈ A such that

‖a0 + tx0 − a‖ < 2d(a0 + tx0, A) ≤ 2dH(A, X).

Since (1 − t−1)a0 + t−1a ∈ A by the convexity of A, it follows that

‖a0 + tx0 − a‖ = t‖a0 + x0 − ((1 − t−1)a0 + t−1a)‖

≥ td(a0 + x0, A).

This means that dH(A, X) = ∞.
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3. The Attouch–Wets Topology. The space CldAW(X) has the fol-
lowing admissible metric:

dAW(A, A′) = sup
k∈N

min
{

k−1, sup
x∈kBX

|d(x, A) − d(x, A′)|
}

,

where BX is the closed unit ball in X. It should be noted that the operator

CldAW(X) ∋ A 7→ cl〈A〉 ∈ ConvAW(X)

is not continuous even if X = (R, | · |). Indeed, [0, n] = cl〈{0, n}〉 for each
n ∈ N. As is easily observed, limn→∞{0, n} = {0} but limn→∞[0, n] = [0,∞)
in CldAW(R). Therefore, we need a different approach than in the case of
ConvH(X).

We observe the following relation between the metrics dAW and dH:

Lemma 3.1. Let A ∈ Conv(X), r ≥ d(0, A)+1 and 0 < δ ≤ (3r+2)−1 <
1/4. Then

A′ ∈ Conv(X), dAW(A, A′) < δ, |r − r′| < δ

⇒ dH(A ∩ 3rBX , A′ ∩ 3r′BX) < 9δ.

Proof. Choose m ∈ N so that 3r ≤ m < 3r + 1, whence δ < (m + 1)−1.
On the other hand, there exists a ∈ A with ‖a‖ < d(0, A) + 1/4 ≤ r − 3/4,
whence a ∈ rBX ⊂ (m+1)BX . Since dAW(A, A′) < δ < (m+1)−1, it follows
that

sup
x∈(m+1)BX

|d(x, A) − d(x, A′)| < δ.

Thus, ‖a − a′‖ < δ for some a′ ∈ A′, whence

‖a′‖ ≤ ‖a‖ + δ < r − 3/4 + δ < r − 1/2 < r′.

These a, a′ are fixed in the following argument.
For each x ∈ A∩ 3rBX ⊂ mBX , there is x′ ∈ A′ such that ‖x− x′‖ < δ.

If ‖x′‖ ≤ 3r′ then x′ ∈ A′ ∩ 3r′BX , hence d(x, A′ ∩ 3r′BX) < δ. In case
‖x′‖ > 3r′, we want to find y ∈ A′ ∩ 3r′BX replacing x′. Note that ‖x′‖ >
3r′ > 3(r − δ) ≥ 3(1 − δ) > 9δ. Since A′ is convex and a′ ∈ A′ ∩ r′BX , we
have

y =

(

1 −
6δ

‖x′‖

)

x′ +
6δ

‖x′‖
a′ ∈ A′,

whence

‖y‖ ≤ ‖x′‖ − 6δ +
6δ‖a′‖

‖x′‖
≤ ‖x′‖ − 6δ + 6δ

r′

3r′

= ‖x′‖ − 4δ ≤ ‖x‖ − 3δ ≤ 3(r − δ) < 3r′,

hence y ∈ A′ ∩ 3r′BX . Moreover, observe that

‖x′ − y‖ ≤
6δ

‖x′‖
‖x′ − a′‖ ≤ 6δ +

6δ‖a′‖

‖x′‖
< 6δ + 6δ

r′

3r′
= 8δ.
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It follows that

‖x − y‖ ≤ ‖x − x′‖ + ‖x′ − y‖ < δ + 8δ = 9δ.

Thus, we have d(x, A′ ∩ 3r′BX) < 9δ for each x ∈ A ∩ 3rBX .

In the above argument, replace A, a, x, r with A′, a′, x′, r′, respectively.
The inclusion A′∩3r′BX ⊂ mBX might be false, but we have A′∩3r′BX ⊂
3(r + δ)BX ⊂ (m + 1)BX . The rest of the argument is valid under this
replacement. Thus, we can show that d(x′, A ∩ 3rBX) < 9δ for each x′ ∈
A′ ∩ 3r′BX . Consequently, dH(A ∩ 3rBX , A′ ∩ 3r′BX) < 9δ.

Theorem 3.2. As topological spaces, ConvB
AW(X) = ConvB

H(X), hence

the space ConvB
AW(X) is an AR.

Proof. Since τH ⊃ τAW, it is enough to see that id : ConvB
AW(X) →

ConvB
H(X) is continuous at each A ∈ ConvB

AW(X). For each ε > 0, choose
n ∈ N so that

n > d(0, A) + 1, A ⊂ (3n − 1)BX , 9(3n + 2)−1 < ε.

Let A′ ∈ ConvB
AW(X) with dAW(A, A′) < (3n + 2)−1. Then A′ ⊂ 3nBX .

Indeed, since A ⊂ (3n − 1)BX and dAW(A, A′) < 1, we have a′ ∈ A′ with
‖a′‖ < 3n. If ‖a′′‖ > 3n for some a′′ ∈ A′, then we can find a′′′ ∈ A′ with
‖a′′′‖ = 3n because of the convexity of A′. Since dAW(A, A′) < (3n+2)−1 and
a′′′ ∈ A′ ∩ 3nBX , there exists a ∈ A such that ‖a−a′′′‖ < (3n+2)−1 ≤ 1/5,
whence ‖a‖ > ‖a′′′‖ − 1/5 = 3n − 1/5, which contradicts A ⊂ (3n − 1)BX .
Now, it follows from Lemma 3.1 that

dH(A, A′) = dH(A ∩ 3nBX , A′ ∩ 3nBX) < 9(3n + 2)−1 < ε.

Thus, we have the result.

The following fact was observed in the proof of [1, Fact 2]:

Fact. For every A ∈ Cld(X) with A ∩ kBX 6= ∅,

d(x, A) = d(x, A ∩ 3kBX) for each x ∈ kBX .

Theorem 3.3. ConvB
AW(X) is homotopy dense in ConvAW(X), that is,

there is a homotopy ϕ : ConvAW(X) × I → ConvAW(X) such that

ϕ0 = id and ϕ(ConvAW(X) × (0, 1]) ⊂ ConvB
AW(X).

Proof. Define ϕ : ConvAW(X) × I → ConvAW(X) as follows:

ϕ(A, t) =

{

A if t = 0,

A ∩ 3 ·
d(0, A) + 1

t
BX if t > 0.

Then ϕ(ConvAW(X) × (0, 1]) ⊂ ConvB
AW(X). It remains to show the conti-

nuity of ϕ.
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For each A ∈ ConvAW(X), t ∈ (0, 1] and ε > 0, let

δ = min

{

ε

9
,

(

3 ·
d(0, A) + 1

t
+ 2

)−1}

> 0.

Choose γ > 0 so that γ < δ and

|d(0, A) − s| < γ, |t − t′| < γ ⇒ t′ > 0,

∣

∣

∣

∣

d(0, A) + 1

t
−

s + 1

t′

∣

∣

∣

∣

< δ.

Let A′ ∈ ConvAW(X) and t′ ∈ I with dAW(A, A′) < γ and |t− t′| < γ. Then
|d(0, A) − d(0, A′)| < γ and t′ > 0, hence

∣

∣

∣

∣

d(0, A) + 1

t
−

d(0, A′) + 1

t′

∣

∣

∣

∣

< δ.

By Lemma 3.1, we have dH(ϕ(A, t), ϕ(A′, t′)) < 9δ ≤ ε. This means that ϕ
is continuous at (A, t) because id : ConvH(X) → ConvAW(X) is continuous.

To see the continuity of ϕ at (A, 0), for each ε > 0, choose k ∈ N so that
k−1 < ε and A∩(k−1)BX 6= ∅. Let A′ ∈ ConvAW(X) with dAW(A, A′) < k−1

and 0 < t′ < k−1. Then

A′ ∩ kBX 6= ∅ and 3kBX ⊂ 3 ·
d(0, A′) + 1

t′
BX .

Using the Fact, for every x ∈ kBX , we have

|d(x, ϕ(A, 0)) − d(x, ϕ(A′, t′))| = |d(x, A) − d(x, A′ ∩ 3kBX)|

= |d(x, A) − d(x, A′)| ≤ dAW(A, A′) < k−1,

hence dAW(ϕ(A, 0), ϕ(A′, t′)) < k−1 < ε. This completes the proof.

Recall that a metrizable space is an AR if it contains an AR as a ho-
motopy dense subset. Then, combining Theorems 3.3 and 3.2, we have the
following result:

Theorem 3.4. The space ConvAW(X) is an AR.

As is easily observed, CldB
AW(X) is not open in the space CldAW(X).

Nevertheless, we have the following:

Proposition 3.5. The subspace ConvB
AW(X) ⊂ ConvAW(X) is open.

Proof. For each A ∈ ConvB
AW(X), choose k ∈ N so that A ⊂ kBX . If

A′ ∈ ConvAW(X) and dAW(A, A′) < (k+1)−1 then A′ ⊂ (k+1)BX . Indeed,
take a ∈ A. Since ‖a‖ ≤ k < k + 1, it follows that d(a, A′) < (k + 1)−1,
that is, ‖a − a′‖ < (k + 1)−1 for some a′ ∈ A′. Then ‖a′‖ < k + 1. Now,
assume that A′ 6⊂ (k+1)BX , that is, ‖a′′‖ > k+1 for some a′′ ∈ A′. Choose
0 < s < 1 so that ‖(1 − s)a′ + sa′′‖ = k + 1. Then (1 − s)a′ + sa′′ ∈ A′

because A′ is convex. However,

d((1 − s)a′ + sa′′, A) ≥ d((1 − s)a′ + sa′′, kBX) = 1 > (k + 1)−1,

which contradicts dAW(A, A′) < (k + 1)−1. Thus, A′ ∈ ConvB
AW(X).



SPACES OF CLOSED CONVEX SETS 21

4. The Wijsman topology. For each x ∈ X and r > 0, we define

U−(x, r) = {A ∈ Cld(X) | d(x, A) < r},

U+(x, r) = {A ∈ Cld(X) | d(x, A) > r}.

These sets form an open subbasis for CldW(X). As mentioned in the intro-
duction, CldW(X) is (separable) metrizable if and only if X is separable.
This is true even if CldW(X) is replaced with ConvW(X). In fact, the fol-
lowing holds:

Proposition 4.1. If ConvW(X) is first countable then X is separable.

Proof. Assume that ConvW(X) is first countable and X is non-separable.
Then there is a δ-discrete uncountable subset D ⊂ X for some δ > 0, i.e.,
‖x − y‖ ≥ δ for each x 6= y ∈ D. By the first countability of ConvW(X),
we have a countable neighborhood basis {Wi | i ∈ N} of X ∈ ConvW(X).
For each i ∈ N, we can choose a finite set Fi ⊂ X and εi > 0 so that
⋂

p∈Fi
U−(p, εi) ⊂ Wi and limi→∞ εi = 0. Observe that P =

⋃

i∈N
〈Fi〉 is

separable, that is, it contains a countable dense subset Q. Then d(x0, Q) >
δ/3 for some x0 ∈ D. Otherwise, there would be a function q : D → Q such
that ‖x−q(x)‖ < δ/2, which implies that q is injective by the δ-discreteness
of D. This is a contradiction because D is uncountable and Q is countable.
Note that U−(x0, δ/3) is a neighborhood of X in ConvW(X). Now, we can
choose i ∈ N so that εi < δ/3 and

⋂

p∈Fi

U−(p, εi) ⊂ Wi ⊂ U−(x0, δ/3),

whence 〈Fi〉 ∈ U−(x0, δ/3). It follows that

d(x0, Q) = d(x0, P ) ≤ d(x0, 〈Fi〉) < δ/3,

which is a contradiction.

Remark 3. The space ConvB
W(ℓ2) is separable. However, ConvB

AW(ℓ2)
is not separable. Indeed, let V = {en | n ∈ N} be the canonical orthonormal
basis. Let A 6= A′ ⊂ V . We may assume A \ A′ 6= ∅. Let en ∈ A \ A′.
For each x = (xi)i∈N ∈ 〈A′〉, we have ‖en − x‖ ≥ 1 because xn = 0.
Therefore, d(en, cl〈A′〉) ≥ 1. It follows that dAW(cl〈A〉, cl〈A′〉) ≥ 1/2. Thus,
D = {cl〈A〉 | A ⊂ V } is discrete in ConvB

AW(ℓ2) and cardD = 2ℵ0 .

It should be noticed that if dimX < ∞ then ConvW(X) = ConvAW(X)
as spaces [2, Theorem 3.1.4].

Let ConvP(X) be the subset of Conv(X) consisting of all convex poly-
hedra in X, that is,

ConvP(X) = {〈F 〉 ∈ Conv(X) | F ∈ Fin(X)},
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where Fin(X) is the set of all non-empty finite sets in X. We denote by
Convs(X) the subset of Conv(X) consisting of all separable closed convex
sets.

Proposition 4.2. For each A ∈ Clds
W(X) and a1, . . . , an ∈ A, there

exists a path f : I → Convs
W(X) such that f(0) = A, f(1) = 〈{a1, . . . , an}〉,

f((0, 1]) ⊂ ConvP
W(X) and f(t) ⊃ f(t′) for t < t′.

Proof. Let {xi | i ∈ N} be a dense set in A. For each k ∈ N, let Ak = A0∪
{x1, . . . , xk}, where A0 = {a1, . . . , an}. The desired path f : I → ConvW(X)
can be defined as follows:

f(t) =

{

A if t = 0,

〈Ak−1 ∪ {(2 − 2kt)xk + (2kt − 1)a1}〉 if 2−k ≤ t ≤ 2−k+1.

We have to verify the continuity of f . By Lemma 2.1, f |(0, 1] : (0, 1] →
ConvH(X) is continuous. Since τH ⊃ τW, f |(0, 1] : (0, 1] → ConvW(X) is
also continuous, hence f is continuous at t > 0. To see the continuity of f
at t = 0, let

f(0) = A ∈
n
⋂

i=1

U−(pi, ri) ∩
m
⋂

j=1

U+(qj , sj), pi, qj ∈ X, ri, sj > 0.

Since {xi | i ∈ N} is dense in A, we can choose ν(1), . . . , ν(n) ∈ N so that
‖pi − xν(i)‖ < ri. Let k = max{ν(1), . . . , ν(n)}. Then, as is easily observed,

0 < t ≤ 2−k ⇒ f(t) ∈
n
⋂

i=1

U−(pi, ri) ∩
m
⋂

j=1

U+(qj , sj),

hence f is continuous at 0.

Corollary 4.3. If X is separable, then for each A ∈ ConvW(X),
there is a path f : I → ConvW(X) such that f(0) = A and f((0, 1]) ⊂
ConvP

W(X).

When X is separable, the assertion below follows from the above corol-
lary, but it can be easily proved without separability.

Proposition 4.4. The subspace ConvP
W(X) ⊂ ConvW(X) is dense.

Proof. For each A ∈ ConvW(X) and each neighborhood U of A in
CldW(X), there are pi, qj ∈ X and ri, sj > 0 such that

A ∈
n
⋂

i=1

U−(pi, ri) ∩
m
⋂

j=1

U+(qj , sj) ⊂ U .

Choose a1, . . . , an ∈ A so that ‖pi −ai‖ < ri and define A0 = {a1, . . . , an} ∈
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Fin(X). Then, as is easily observed,

〈A0〉 ∈
n
⋂

i=1

U−(pi, ri) ∩
m
⋂

j=1

U+(qj , sj) ⊂ U ,

that is, U meets ConvP
W(X). Hence, ConvP

W(X) is dense in ConvW(X).

Now, we show the following:

Theorem 4.5. The space Convs
W(X) is locally path-connected. Thus, if

X is separable then ConvW(X) is locally path-connected.

Proof. For each A ∈ Convs
W(X) and each neighborhood U of A in

CldW(X), take pi, qj ∈ X, ri, sj > 0 and A0 = {a1, . . . , an} ⊂ A as in
the proof of Proposition 4.4. Since τH ⊃ τW, we can choose δ > 0 so that

dH(〈A0〉, B) < δ ⇒ B ∈
n
⋂

i=1

U−(pi, ri) ∩
m
⋂

j=1

U+(qj , sj) ⊂ U

and δ < ri − ‖pi − ai‖ for each i = 1, . . . , n. Then A has the following
neighborhood V in CldW(X):

V =
n
⋂

i=1

U−(ai, δ) ∩
m
⋂

j=1

U+(qj , sj) ⊂ U .

We shall show that each B ∈ V ∩ Convs
W(X) can be connected with

A by a path in U ∩ Convs
W(X), which means that Convs

W(X) is locally
path-connected. Choose x1, . . . , xn ∈ B so that ‖xi − ai‖ < δ and let B0 =
{x1, . . . , xn}. By Lemma 2.1, we can define a path h : I → ConvP

H(X) as
follows:

h(t) = 〈(1 − t)a1 + tx1, . . . , (1 − t)an + txn〉.

Then h(0) = 〈A0〉 and h(1) = 〈B0〉. Since diamH h(I) < δ, we have

h(I) ⊂
n
⋂

i=1

U−(pi, ri) ∩
m
⋂

j=1

U+(qj , sj) ⊂ U .

Since τH ⊃ τW, h : I → ConvP
W(X) is also continuous. On the other hand,

by Proposition 4.2, we have paths f, g : I → Convs
W(X) such that

f(0) = A ⊃ f(t) ⊃ 〈A0〉 = f(1) and g(0) = B ⊃ g(t) ⊃ 〈B0〉 = g(1),

whence

f(t), g(t) ∈
n
⋂

i=1

U−(pi, ri) ∩
m
⋂

j=1

U+(qj , sj) ⊂ U .

By connecting the paths f , g and h, we obtain a path from A to B contained
in U ∩ Convs

W(X).

Finally, we show the following:
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Proposition 4.6. The subset Conv(X) ⊂ Cld(X) is closed with respect

to any one of the topologies τH, τAW and τW.

Proof. Since τH ⊃ τAW ⊃ τW, it suffices to prove that Conv(X) is closed
in CldW(X), equivalently Cld(X) \ Conv(X) is open in CldW(X).

For each A ∈ Cld(X) \ Conv(X), there are x, y ∈ A and t ∈ I such that
z = (1 − t)x + ty 6∈ A. Let δ = 1

2d(z, A) > 0 and

U = U−(x, δ) ∩ U−(y, δ) ∩ U+(z, δ).

Then U is a neighborhood of A in CldW(X). For each A′ ∈ U , there are
x′, y′ ∈ A′ such that ‖x − x′‖ < δ and ‖y − y′‖ < δ. Since d(z, A′) > δ and

‖(1 − t)x′ + ty′ − z‖ ≤ (1 − t)‖x′ − x‖ + t‖y′ − y‖ < δ,

it follows that (1 − t)x′ + ty′ 6∈ A′, hence A′ is not convex, that is, A′ ∈
Cld(X) \ Conv(X). Thus, Cld(X) \ Conv(X) is open in CldW(X).

Corollary 4.7. For every Banach space X, the spaces ConvH(X) and

ConvAW(X) are completely metrizable. If X is a separable Banach space

then ConvW(X) is also completely metrizable.
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