VOL. 106

2006

NO. 1

THE AR-PROPERTY OF THE SPACES OF CLOSED CONVEX SETS

ΒY

KATSURO SAKAI and MASATO YAGUCHI (Tsukuba)

Abstract. Let $\operatorname{Conv}_{H}(X)$, $\operatorname{Conv}_{AW}(X)$ and $\operatorname{Conv}_{W}(X)$ be the spaces of all nonempty closed convex sets in a normed linear space X admitting the Hausdorff metric topology, the Attouch–Wets topology and the Wijsman topology, respectively. We show that every component of $\operatorname{Conv}_{H}(X)$ and the space $\operatorname{Conv}_{AW}(X)$ are AR. In case X is separable, $\operatorname{Conv}_{W}(X)$ is locally path-connected.

1. Introduction. Throughout the paper, $X = (X, \|\cdot\|)$ is a normed linear space. There are various topologies on the set $\operatorname{Cld}(X)$ of all nonempty closed sets in X (cf. [2]). Let C(X) be the set of all continuous real-valued functionals of X. Each $A \in \operatorname{Cld}(X)$ can be identified with the continuous functional $X \ni x \mapsto d(x, A) = \inf_{a \in A} \|x - a\|$. Thus, we can regard $\operatorname{Cld}(X) \subset C(X)$. The Hausdorff metric topology τ_{H} , the Attouch-Wets topology τ_{AW} and the Wijsman topology τ_{W} are respectively defined by restricting the topologies on C(X) of uniform convergence, of uniform convergence on bounded sets and of pointwise convergence (¹). Obviously, $\tau_{\mathrm{H}} \supset \tau_{\mathrm{AW}} \supset \tau_{\mathrm{W}}$. The spaces $\operatorname{Cld}(X)$ with these topologies are denoted by $\operatorname{Cld}_{\mathrm{H}}(X)$, $\operatorname{Cld}_{\mathrm{AW}}(X)$ and $\operatorname{Cld}_{\mathrm{W}}(X)$, respectively. The first two spaces are always metrizable, but the last is metrizable if and only if X is separable ([2, Theorem 2.1.5]). In [4], [1] and [3], we have studied when these spaces (or their components) are AR's.

Given $\mathcal{S}(X) \subset \operatorname{Cld}(X)$, the set $\mathcal{S}(X)$ with the topologies τ_{H} , τ_{AW} and τ_{W} is denoted by $\mathcal{S}_{\mathrm{H}}(X)$, $\mathcal{S}_{\mathrm{AW}}(X)$ and $\mathcal{S}_{W}(X)$, respectively. In this paper, we consider the subset $\operatorname{Conv}(X) \subset \operatorname{Cld}(X)$ consisting of all non-empty closed convex sets in X. Note that $\operatorname{Conv}_{\mathrm{H}}(X)$ is not connected. In fact, $\operatorname{Conv}_{\mathrm{H}}(\mathbb{R})$ has four components and $\operatorname{Conv}_{\mathrm{H}}(\mathbb{R}^{n})$ has uncountably many components if n > 1 (see Remarks 1 and 2). In this paper, we show that every component

²⁰⁰⁰ Mathematics Subject Classification: 54B20, 54C55, 46A55.

Key words and phrases: the space of closed convex sets, normed linear space, Hausdorff metric, Attouch–Wets topology, Wijsman topology, AR, uniform AR, homotopy dense, locally path-connected.

This work is supported by Grant-in-Aid for Scientific Research (No. 14540059).

 $^(^{1})$ These definitions are valid for an arbitrary metric space X and they depend on a metric on X.

of $\operatorname{Conv}_{\mathrm{H}}(X)$ and the space $\operatorname{Conv}_{\mathrm{AW}}(X)$ are AR (Theorems 2.2 and 3.4). In case X is separable, it is proved that $\operatorname{Conv}_{\mathrm{W}}(X)$ is locally path-connected (Theorem 4.5). As a related subject, the space of compact convex sets with the Hausdorff metric is studied in [6].

2. The Hausdorff metric topology. Recall that the *Hausdorff metric* $d_{\rm H}$ is defined on ${\rm Cld}(X)$ as follows:

$$d_{H}(A, B) = \sup_{x \in X} |d(x, A) - d(x, B)|$$

= max { $\sup_{x \in B} d(x, A), \sup_{x \in A} d(x, B)$ },

where we allow $d_{\rm H}(A, B) = \infty$, but $d_{\rm H}$ induces a topology on ${\rm Cld}(X)$ like a metric does. It should be noted that $d_{\rm H}$ is a metric on each component of ${\rm Cld}_{\rm H}(X)$ (cf. [4, Introduction]).

The convex hull of $A \subset X$ is denoted by $\langle A \rangle$, so the closure $cl \langle A \rangle$ is the closed convex hull of A.

LEMMA 2.1. For each $A, B \in \operatorname{Cld}_{\operatorname{H}}(X), d_{\operatorname{H}}(\operatorname{cl}\langle A \rangle, \operatorname{cl}\langle B \rangle) \leq d_{\operatorname{H}}(A, B).$

Proof. Let $a = \sum_{i=1}^{n} t_i a_i \in \langle A \rangle$, where $a_i \in A$, $t_i > 0$ and $\sum_{i=1}^{n} t_i = 1$. For each $\varepsilon > 0$ and i = 1, ..., n, we can choose $b_i \in B$ so that $||a_i - b_i|| < d_{\mathrm{H}}(A, B) + \varepsilon$. Let $b = \sum_{i=1}^{n} t_i b_i \in \langle B \rangle$. Then

$$||a - b|| \le \sum_{i=1}^{n} t_i ||a_i - b_i|| < d_{\mathrm{H}}(A, B) + \varepsilon,$$

hence $d(a, \operatorname{cl}\langle B \rangle) = d(a, \langle B \rangle) < d_{\operatorname{H}}(A, B) + \varepsilon$. Thus, $d(a, \operatorname{cl}\langle B \rangle) \leq d_{\operatorname{H}}(A, B)$ for every $a \in \langle A \rangle$. Similarly, $d(b, \operatorname{cl}\langle A \rangle) \leq d_{\operatorname{H}}(A, B)$ for every $b \in \langle B \rangle$. Consequently, $d_{\operatorname{H}}(\operatorname{cl}\langle A \rangle, \operatorname{cl}\langle B \rangle) \leq d_{\operatorname{H}}(A, B)$.

By Lemma 2.1 above, the map

$$\operatorname{Cld}_{\operatorname{H}}(X) \ni A \mapsto \operatorname{cl}\langle A \rangle \in \operatorname{Conv}_{\operatorname{H}}(X)$$

is a uniformly continuous retraction. In [4], it is proved that $\operatorname{Cld}_{\mathrm{H}}(X)$ is an ANR and each component of $\operatorname{Cld}_{\mathrm{H}}(X)$ is a uniform AR (in the sense of Michael [5]) with respect to the Hausdorff metric d_{H} , hence so is the space $\operatorname{Conv}_{\mathrm{H}}(X)$, that is,

THEOREM 2.2. The space $\operatorname{Conv}_{\mathrm{H}}(X)$ is an ANR and each component of $\operatorname{Conv}_{\mathrm{H}}(X)$ is a uniform AR with respect to the Hausdorff metric d_{H} .

Now, let $\operatorname{Conv}^{\mathrm{B}}(X) \subset \operatorname{Conv}(X)$ be the subset consisting of all bounded closed convex sets. As is easily observed, $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$ is closed and open in $\operatorname{Conv}_{\mathrm{H}}(X)$. Moreover, the space $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$ is path-connected. Indeed, for each $A, B \in \operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$,

$$\mathbf{I} \ni t \mapsto \operatorname{cl}((1-t)A + tB) \in \operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$$

is continuous. Thus, $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$ is a component of $\operatorname{Conv}_{\mathrm{H}}(X)$. Hence, we have the following:

THEOREM 2.3. The space $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$ is a uniform AR.

REMARK 1. As is easily observed,

$$\operatorname{Conv}_{\mathrm{H}}(\mathbb{R}) = \{\mathbb{R}\} \cup \{(-\infty, a] \mid a \in \mathbb{R}\} \\ \cup \{[a, \infty) \mid a \in \mathbb{R}\} \cup \{[a, b] \mid a \le b \in \mathbb{R}\},\$$

where \mathbb{R} is an isolated point of $\operatorname{Conv}_{\mathrm{H}}(\mathbb{R})$, the second and third summands are isometric to \mathbb{R} , and the last one (= $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(\mathbb{R})$) is isometric to the space $\{(a,b) \in \mathbb{R}^2 \mid a \leq b\}$ with the metric defined as follows:

 $d((a,b),(a',b')) = \max\{|a-a'|,|b-b'|\}.$

Every 1-dimensional normed linear space X is linearly isometric to \mathbb{R} , hence $\operatorname{Conv}_{\mathrm{H}}(X)$ can be identified with $\operatorname{Conv}_{\mathrm{H}}(\mathbb{R})$. Thus, $\operatorname{Conv}_{\mathrm{H}}(X)$ when dim X = 1 is of no interest.

REMARK 2. For Euclidean space \mathbb{R}^n with n > 1, $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(\mathbb{R}^n)$ is the space of compact convex sets. It is proved in [6] that $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(\mathbb{R}^n)$ is homeomorphic to the Hilbert cube with one point removed. Every *n*-dimensional normed linear space X is Lipschitz homeomorphic to \mathbb{R}^n by a linear isomorphism, which implies that $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$ is homeomorphic to $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(\mathbb{R}^n)$. Thus, the space $\operatorname{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$ is known for dim $X < \infty$.

Moreover, in case dim X > 1, $\operatorname{Conv}_{\mathrm{H}}(X)$ has uncountably many components. Indeed, let \mathbf{S}_X be the unit sphere of X. Then $\operatorname{card} \mathbf{S}_X > \aleph_0$. For each pair $v \neq v' \in \mathbf{S}_X$, $\mathbb{R}_+ v$ and $\mathbb{R}_+ v'$ do not belong to the same component, hence $\operatorname{Conv}_{\mathrm{H}}(X)$ has at least $\operatorname{card} \mathbf{S}_X$ many components.

In any case, $\operatorname{Conv}_{\mathrm{H}}(X)$ has the unique singular point X, that is,

PROPOSITION 2.4. As a point, X is isolated in $\text{Conv}_{\text{H}}(X)$.

Proof. It suffices to show that $d_{\mathrm{H}}(A, X) = \infty$ if $A \in \mathrm{Conv}_{\mathrm{H}}(X) \setminus \{X\}$. Let $a_0 \in A$. There exists some $x_0 \in X \setminus \{0\}$ such that $a_0 + [1, \infty)x_0 \subset X \setminus A$. Otherwise, for every $x \in X$, $a_0 + [1, \infty)x$ and $a_0 + [1, \infty)(-x)$ meet A, which implies $a_0 + x \in A$ by the convexity of A. Hence, $a_0 + X \subset A$, which contradicts $A \neq X$.

For each $t \ge 1$, since $d(a_0 + tx_0, A) > 0$, there exists $a \in A$ such that

$$||a_0 + tx_0 - a|| < 2d(a_0 + tx_0, A) \le 2d_{\mathrm{H}}(A, X)$$

Since $(1 - t^{-1})a_0 + t^{-1}a \in A$ by the convexity of A, it follows that

$$a_0 + tx_0 - a \| = t \|a_0 + x_0 - ((1 - t^{-1})a_0 + t^{-1}a)\|$$

$$\geq td(a_0 + x_0, A).$$

This means that $d_{\mathrm{H}}(A, X) = \infty$.

3. The Attouch–Wets Topology. The space $Cld_{AW}(X)$ has the following admissible metric:

$$d_{AW}(A, A') = \sup_{k \in \mathbb{N}} \min \Big\{ k^{-1}, \sup_{x \in k \mathbf{B}_X} |d(x, A) - d(x, A')| \Big\},\$$

where \mathbf{B}_X is the closed unit ball in X. It should be noted that the operator

$$\operatorname{Cld}_{\operatorname{AW}}(X) \ni A \mapsto \operatorname{cl}\langle A \rangle \in \operatorname{Conv}_{\operatorname{AW}}(X)$$

is not continuous even if $X = (\mathbb{R}, |\cdot|)$. Indeed, $[0, n] = \operatorname{cl}\langle\{0, n\}\rangle$ for each $n \in \mathbb{N}$. As is easily observed, $\lim_{n\to\infty} \{0, n\} = \{0\}$ but $\lim_{n\to\infty} [0, n] = [0, \infty)$ in $\operatorname{Cld}_{AW}(\mathbb{R})$. Therefore, we need a different approach than in the case of $\operatorname{Conv}_{H}(X)$.

We observe the following relation between the metrics d_{AW} and d_{H} :

LEMMA 3.1. Let $A \in \text{Conv}(X)$, $r \ge d(0, A) + 1$ and $0 < \delta \le (3r+2)^{-1} < 1/4$. Then

$$\begin{aligned} A' \in \operatorname{Conv}(X), \ d_{\operatorname{AW}}(A, A') < \delta, \ |r - r'| < \delta \\ \Rightarrow \ d_{\operatorname{H}}(A \cap 3r \mathbf{B}_X, A' \cap 3r' \mathbf{B}_X) < 9\delta. \end{aligned}$$

Proof. Choose $m \in \mathbb{N}$ so that $3r \leq m < 3r + 1$, whence $\delta < (m+1)^{-1}$. On the other hand, there exists $a \in A$ with $||a|| < d(0, A) + 1/4 \leq r - 3/4$, whence $a \in r\mathbf{B}_X \subset (m+1)\mathbf{B}_X$. Since $d_{AW}(A, A') < \delta < (m+1)^{-1}$, it follows that

$$\sup_{x \in (m+1)\mathbf{B}_X} |d(x,A) - d(x,A')| < \delta.$$

Thus, $||a - a'|| < \delta$ for some $a' \in A'$, whence

$$||a'|| \le ||a|| + \delta < r - 3/4 + \delta < r - 1/2 < r'.$$

These a, a' are fixed in the following argument.

For each $x \in A \cap 3r\mathbf{B}_X \subset m\mathbf{B}_X$, there is $x' \in A'$ such that $||x - x'|| < \delta$. If $||x'|| \leq 3r'$ then $x' \in A' \cap 3r'\mathbf{B}_X$, hence $d(x, A' \cap 3r'\mathbf{B}_X) < \delta$. In case ||x'|| > 3r', we want to find $y \in A' \cap 3r'\mathbf{B}_X$ replacing x'. Note that $||x'|| > 3r' > 3(r - \delta) \geq 3(1 - \delta) > 9\delta$. Since A' is convex and $a' \in A' \cap r'\mathbf{B}_X$, we have

$$y = \left(1 - \frac{6\delta}{\|x'\|}\right)x' + \frac{6\delta}{\|x'\|}a' \in A',$$

whence

$$||y|| \le ||x'|| - 6\delta + \frac{6\delta ||a'||}{||x'||} \le ||x'|| - 6\delta + 6\delta \frac{r'}{3r'}$$
$$= ||x'|| - 4\delta \le ||x|| - 3\delta \le 3(r - \delta) < 3r',$$

hence $y \in A' \cap 3r' \mathbf{B}_X$. Moreover, observe that

$$||x' - y|| \le \frac{6\delta}{||x'||} ||x' - a'|| \le 6\delta + \frac{6\delta ||a'||}{||x'||} < 6\delta + 6\delta \frac{r'}{3r'} = 8\delta.$$

It follows that

$$||x - y|| \le ||x - x'|| + ||x' - y|| < \delta + 8\delta = 9\delta.$$

Thus, we have $d(x, A' \cap 3r'\mathbf{B}_X) < 9\delta$ for each $x \in A \cap 3r\mathbf{B}_X$.

In the above argument, replace A, a, x, r with A', a', x', r', respectively. The inclusion $A' \cap 3r' \mathbf{B}_X \subset m\mathbf{B}_X$ might be false, but we have $A' \cap 3r' \mathbf{B}_X \subset 3(r+\delta)\mathbf{B}_X \subset (m+1)\mathbf{B}_X$. The rest of the argument is valid under this replacement. Thus, we can show that $d(x', A \cap 3r\mathbf{B}_X) < 9\delta$ for each $x' \in A' \cap 3r'\mathbf{B}_X$. Consequently, $d_{\mathrm{H}}(A \cap 3r\mathbf{B}_X, A' \cap 3r'\mathbf{B}_X) < 9\delta$.

THEOREM 3.2. As topological spaces, $\operatorname{Conv}_{AW}^{B}(X) = \operatorname{Conv}_{H}^{B}(X)$, hence the space $\operatorname{Conv}_{AW}^{B}(X)$ is an AR.

Proof. Since $\tau_{\mathrm{H}} \supset \tau_{\mathrm{AW}}$, it is enough to see that id : $\mathrm{Conv}_{\mathrm{AW}}^{\mathrm{B}}(X) \rightarrow \mathrm{Conv}_{\mathrm{H}}^{\mathrm{B}}(X)$ is continuous at each $A \in \mathrm{Conv}_{\mathrm{AW}}^{\mathrm{B}}(X)$. For each $\varepsilon > 0$, choose $n \in \mathbb{N}$ so that

$$n > d(0, A) + 1, \quad A \subset (3n - 1)\mathbf{B}_X, \quad 9(3n + 2)^{-1} < \varepsilon.$$

Let $A' \in \operatorname{Conv}_{AW}^{B}(X)$ with $d_{AW}(A, A') < (3n + 2)^{-1}$. Then $A' \subset 3n\mathbf{B}_{X}$. Indeed, since $A \subset (3n - 1)\mathbf{B}_{X}$ and $d_{AW}(A, A') < 1$, we have $a' \in A'$ with $\|a'\| < 3n$. If $\|a''\| > 3n$ for some $a'' \in A'$, then we can find $a''' \in A'$ with $\|a'''\| = 3n$ because of the convexity of A'. Since $d_{AW}(A, A') < (3n+2)^{-1}$ and $a''' \in A' \cap 3n\mathbf{B}_{X}$, there exists $a \in A$ such that $\|a - a'''\| < (3n+2)^{-1} \leq 1/5$, whence $\|a\| > \|a'''\| - 1/5 = 3n - 1/5$, which contradicts $A \subset (3n - 1)\mathbf{B}_{X}$. Now, it follows from Lemma 3.1 that

 $d_{\rm H}(A, A') = d_{\rm H}(A \cap 3n\mathbf{B}_X, A' \cap 3n\mathbf{B}_X) < 9(3n+2)^{-1} < \varepsilon.$

Thus, we have the result.

The following fact was observed in the proof of [1, Fact 2]:

FACT. For every $A \in \operatorname{Cld}(X)$ with $A \cap k\mathbf{B}_X \neq \emptyset$,

 $d(x, A) = d(x, A \cap 3k\mathbf{B}_X)$ for each $x \in k\mathbf{B}_X$.

THEOREM 3.3. $\operatorname{Conv}_{AW}^{B}(X)$ is homotopy dense in $\operatorname{Conv}_{AW}(X)$, that is, there is a homotopy $\varphi : \operatorname{Conv}_{AW}(X) \times \mathbf{I} \to \operatorname{Conv}_{AW}(X)$ such that

 $\varphi_0 = \mathrm{id} \quad and \quad \varphi(\mathrm{Conv}_{\mathrm{AW}}(X) \times (0,1]) \subset \mathrm{Conv}_{\mathrm{AW}}^{\mathrm{B}}(X).$

Proof. Define φ : Conv_{AW}(X) × **I** \rightarrow Conv_{AW}(X) as follows:

$$\varphi(A,t) = \begin{cases} A & \text{if } t = 0, \\ A \cap 3 \cdot \frac{d(0,A) + 1}{t} \mathbf{B}_X & \text{if } t > 0. \end{cases}$$

Then $\varphi(\operatorname{Conv}_{AW}(X) \times (0,1]) \subset \operatorname{Conv}_{AW}^{B}(X)$. It remains to show the continuity of φ .

For each $A \in \text{Conv}_{AW}(X)$, $t \in (0, 1]$ and $\varepsilon > 0$, let

$$\delta = \min\left\{\frac{\varepsilon}{9}, \left(3 \cdot \frac{d(0, A) + 1}{t} + 2\right)^{-1}\right\} > 0$$

Choose $\gamma > 0$ so that $\gamma < \delta$ and

$$|d(0,A) - s| < \gamma, \ |t - t'| < \gamma \ \Rightarrow \ t' > 0, \ \left|\frac{d(0,A) + 1}{t} - \frac{s + 1}{t'}\right| < \delta.$$

Let $A' \in \text{Conv}_{AW}(X)$ and $t' \in \mathbf{I}$ with $d_{AW}(A, A') < \gamma$ and $|t - t'| < \gamma$. Then $|d(0, A) - d(0, A')| < \gamma$ and t' > 0, hence

$$\left|\frac{d(0,A)+1}{t} - \frac{d(0,A')+1}{t'}\right| < \delta.$$

By Lemma 3.1, we have $d_{\rm H}(\varphi(A,t),\varphi(A',t')) < 9\delta \leq \varepsilon$. This means that φ is continuous at (A,t) because id : ${\rm Conv}_{\rm H}(X) \to {\rm Conv}_{\rm AW}(X)$ is continuous.

To see the continuity of φ at (A, 0), for each $\varepsilon > 0$, choose $k \in \mathbb{N}$ so that $k^{-1} < \varepsilon$ and $A \cap (k-1)\mathbf{B}_X \neq \emptyset$. Let $A' \in \operatorname{Conv}_{AW}(X)$ with $d_{AW}(A, A') < k^{-1}$ and $0 < t' < k^{-1}$. Then

$$A' \cap k\mathbf{B}_X \neq \emptyset$$
 and $3k\mathbf{B}_X \subset 3 \cdot \frac{d(0,A')+1}{t'}\mathbf{B}_X.$

Using the Fact, for every $x \in k\mathbf{B}_X$, we have

$$|d(x,\varphi(A,0)) - d(x,\varphi(A',t'))| = |d(x,A) - d(x,A' \cap 3k\mathbf{B}_X)| = |d(x,A) - d(x,A')| \le d_{AW}(A,A') < k^{-1},$$

hence $d_{AW}(\varphi(A, 0), \varphi(A', t')) < k^{-1} < \varepsilon$. This completes the proof.

Recall that a metrizable space is an AR if it contains an AR as a homotopy dense subset. Then, combining Theorems 3.3 and 3.2, we have the following result:

THEOREM 3.4. The space $Conv_{AW}(X)$ is an AR.

As is easily observed, $\operatorname{Cld}_{AW}^{B}(X)$ is not open in the space $\operatorname{Cld}_{AW}(X)$. Nevertheless, we have the following:

PROPOSITION 3.5. The subspace $\operatorname{Conv}_{AW}^{B}(X) \subset \operatorname{Conv}_{AW}(X)$ is open.

Proof. For each $A \in \operatorname{Conv}_{AW}^{B}(X)$, choose $k \in \mathbb{N}$ so that $A \subset k\mathbf{B}_{X}$. If $A' \in \operatorname{Conv}_{AW}(X)$ and $d_{AW}(A, A') < (k+1)^{-1}$ then $A' \subset (k+1)\mathbf{B}_{X}$. Indeed, take $a \in A$. Since $||a|| \leq k < k+1$, it follows that $d(a, A') < (k+1)^{-1}$, that is, $||a - a'|| < (k+1)^{-1}$ for some $a' \in A'$. Then ||a'|| < k+1. Now, assume that $A' \not\subset (k+1)\mathbf{B}_{X}$, that is, ||a''|| > k+1 for some $a'' \in A'$. Choose 0 < s < 1 so that ||(1 - s)a' + sa''|| = k + 1. Then $(1 - s)a' + sa'' \in A'$ because A' is convex. However,

$$d((1-s)a' + sa'', A) \ge d((1-s)a' + sa'', k\mathbf{B}_X) = 1 > (k+1)^{-1},$$

which contradicts $d_{AW}(A, A') < (k+1)^{-1}$. Thus, $A' \in \text{Conv}_{AW}^{B}(X)$.

4. The Wijsman topology. For each $x \in X$ and r > 0, we define

$$U^{-}(x,r) = \{A \in \operatorname{Cld}(X) \mid d(x,A) < r\},\$$
$$U^{+}(x,r) = \{A \in \operatorname{Cld}(X) \mid d(x,A) > r\}.$$

These sets form an open subbasis for $\operatorname{Cld}_W(X)$. As mentioned in the introduction, $\operatorname{Cld}_W(X)$ is (separable) metrizable if and only if X is separable. This is true even if $\operatorname{Cld}_W(X)$ is replaced with $\operatorname{Conv}_W(X)$. In fact, the following holds:

PROPOSITION 4.1. If $Conv_W(X)$ is first countable then X is separable.

Proof. Assume that $\operatorname{Conv}_W(X)$ is first countable and X is non-separable. Then there is a δ -discrete uncountable subset $D \subset X$ for some $\delta > 0$, i.e., $||x - y|| \geq \delta$ for each $x \neq y \in D$. By the first countability of $\operatorname{Conv}_W(X)$, we have a countable neighborhood basis $\{W_i \mid i \in \mathbb{N}\}$ of $X \in \operatorname{Conv}_W(X)$. For each $i \in \mathbb{N}$, we can choose a finite set $F_i \subset X$ and $\varepsilon_i > 0$ so that $\bigcap_{p \in F_i} U^-(p, \varepsilon_i) \subset W_i$ and $\lim_{i \to \infty} \varepsilon_i = 0$. Observe that $P = \bigcup_{i \in \mathbb{N}} \langle F_i \rangle$ is separable, that is, it contains a countable dense subset Q. Then $d(x_0, Q) > \delta/3$ for some $x_0 \in D$. Otherwise, there would be a function $q: D \to Q$ such that $||x - q(x)|| < \delta/2$, which implies that q is injective by the δ -discreteness of D. This is a contradiction because D is uncountable and Q is countable. Note that $U^-(x_0, \delta/3)$ is a neighborhood of X in $\operatorname{Conv}_W(X)$. Now, we can choose $i \in \mathbb{N}$ so that $\varepsilon_i < \delta/3$ and

$$\bigcap_{p \in F_i} U^-(p, \varepsilon_i) \subset W_i \subset U^-(x_0, \delta/3),$$

whence $\langle F_i \rangle \in U^-(x_0, \delta/3)$. It follows that

$$d(x_0, Q) = d(x_0, P) \le d(x_0, \langle F_i \rangle) < \delta/3,$$

which is a contradiction.

REMARK 3. The space $\operatorname{Conv}_{W}^{B}(\ell_{2})$ is separable. However, $\operatorname{Conv}_{AW}^{B}(\ell_{2})$ is not separable. Indeed, let $V = \{e_{n} \mid n \in \mathbb{N}\}$ be the canonical orthonormal basis. Let $A \neq A' \subset V$. We may assume $A \setminus A' \neq \emptyset$. Let $e_{n} \in A \setminus A'$. For each $x = (x_{i})_{i \in \mathbb{N}} \in \langle A' \rangle$, we have $||e_{n} - x|| \geq 1$ because $x_{n} = 0$. Therefore, $d(e_{n}, \operatorname{cl}\langle A' \rangle) \geq 1$. It follows that $d_{AW}(\operatorname{cl}\langle A \rangle, \operatorname{cl}\langle A' \rangle) \geq 1/2$. Thus, $D = \{\operatorname{cl}\langle A \rangle \mid A \subset V\}$ is discrete in $\operatorname{Conv}_{AW}^{B}(\ell_{2})$ and $\operatorname{card} D = 2^{\aleph_{0}}$.

It should be noticed that if dim $X < \infty$ then $\text{Conv}_W(X) = \text{Conv}_{AW}(X)$ as spaces [2, Theorem 3.1.4].

Let $\operatorname{Conv}^{\operatorname{P}}(X)$ be the subset of $\operatorname{Conv}(X)$ consisting of all convex polyhedra in X, that is,

$$\operatorname{Conv}^{\mathcal{P}}(X) = \{ \langle F \rangle \in \operatorname{Conv}(X) \mid F \in \operatorname{Fin}(X) \},\$$

where $\operatorname{Fin}(X)$ is the set of all non-empty finite sets in X. We denote by $\operatorname{Conv}^{\mathrm{s}}(X)$ the subset of $\operatorname{Conv}(X)$ consisting of all separable closed convex sets.

PROPOSITION 4.2. For each $A \in \operatorname{Cld}_{W}^{s}(X)$ and $a_{1}, \ldots, a_{n} \in A$, there exists a path $f : \mathbf{I} \to \operatorname{Conv}_{W}^{s}(X)$ such that f(0) = A, $f(1) = \langle \{a_{1}, \ldots, a_{n}\} \rangle$, $f((0,1]) \subset \operatorname{Conv}_{W}^{P}(X)$ and $f(t) \supset f(t')$ for t < t'.

Proof. Let $\{x_i \mid i \in \mathbb{N}\}$ be a dense set in A. For each $k \in \mathbb{N}$, let $A_k = A_0 \cup \{x_1, \ldots, x_k\}$, where $A_0 = \{a_1, \ldots, a_n\}$. The desired path $f : \mathbf{I} \to \operatorname{Conv}_W(X)$ can be defined as follows:

$$f(t) = \begin{cases} A & \text{if } t = 0, \\ \langle A_{k-1} \cup \{ (2-2^k t) x_k + (2^k t - 1) a_1 \} \rangle & \text{if } 2^{-k} \le t \le 2^{-k+1}. \end{cases}$$

We have to verify the continuity of f. By Lemma 2.1, $f|(0,1] : (0,1] \rightarrow \text{Conv}_{\mathrm{H}}(X)$ is continuous. Since $\tau_{\mathrm{H}} \supset \tau_{\mathrm{W}}$, $f|(0,1] : (0,1] \rightarrow \text{Conv}_{\mathrm{W}}(X)$ is also continuous, hence f is continuous at t > 0. To see the continuity of f at t = 0, let

$$f(0) = A \in \bigcap_{i=1}^{n} U^{-}(p_i, r_i) \cap \bigcap_{j=1}^{m} U^{+}(q_j, s_j), \quad p_i, q_j \in X, \ r_i, s_j > 0.$$

Since $\{x_i \mid i \in \mathbb{N}\}$ is dense in A, we can choose $\nu(1), \ldots, \nu(n) \in \mathbb{N}$ so that $\|p_i - x_{\nu(i)}\| < r_i$. Let $k = \max\{\nu(1), \ldots, \nu(n)\}$. Then, as is easily observed,

$$0 < t \le 2^{-k} \Rightarrow f(t) \in \bigcap_{i=1}^{n} U^{-}(p_i, r_i) \cap \bigcap_{j=1}^{m} U^{+}(q_j, s_j),$$

hence f is continuous at 0.

COROLLARY 4.3. If X is separable, then for each $A \in \operatorname{Conv}_W(X)$, there is a path $f : \mathbf{I} \to \operatorname{Conv}_W(X)$ such that f(0) = A and $f((0,1]) \subset \operatorname{Conv}_W^P(X)$.

When X is separable, the assertion below follows from the above corollary, but it can be easily proved without separability.

PROPOSITION 4.4. The subspace $\operatorname{Conv}_{W}^{P}(X) \subset \operatorname{Conv}_{W}(X)$ is dense.

Proof. For each $A \in \text{Conv}_W(X)$ and each neighborhood \mathcal{U} of A in $\text{Cld}_W(X)$, there are $p_i, q_j \in X$ and $r_i, s_j > 0$ such that

$$A \in \bigcap_{i=1}^{n} U^{-}(p_i, r_i) \cap \bigcap_{j=1}^{m} U^{+}(q_j, s_j) \subset \mathcal{U}.$$

Choose $a_1, \ldots, a_n \in A$ so that $||p_i - a_i|| < r_i$ and define $A_0 = \{a_1, \ldots, a_n\} \in$

Fin(X). Then, as is easily observed,

$$\langle A_0 \rangle \in \bigcap_{i=1}^n U^-(p_i, r_i) \cap \bigcap_{j=1}^m U^+(q_j, s_j) \subset \mathcal{U},$$

that is, \mathcal{U} meets $\operatorname{Conv}_{W}^{P}(X)$. Hence, $\operatorname{Conv}_{W}^{P}(X)$ is dense in $\operatorname{Conv}_{W}(X)$.

Now, we show the following:

THEOREM 4.5. The space $\operatorname{Conv}_{W}^{s}(X)$ is locally path-connected. Thus, if X is separable then $\operatorname{Conv}_{W}(X)$ is locally path-connected.

Proof. For each $A \in \operatorname{Conv}_{W}^{s}(X)$ and each neighborhood \mathcal{U} of A in $\operatorname{Cld}_{W}(X)$, take $p_{i}, q_{j} \in X$, $r_{i}, s_{j} > 0$ and $A_{0} = \{a_{1}, \ldots, a_{n}\} \subset A$ as in the proof of Proposition 4.4. Since $\tau_{H} \supset \tau_{W}$, we can choose $\delta > 0$ so that

$$d_{\mathrm{H}}(\langle A_0 \rangle, B) < \delta \implies B \in \bigcap_{i=1}^n U^-(p_i, r_i) \cap \bigcap_{j=1}^m U^+(q_j, s_j) \subset \mathcal{U}$$

and $\delta < r_i - ||p_i - a_i||$ for each i = 1, ..., n. Then A has the following neighborhood \mathcal{V} in $\operatorname{Cld}_W(X)$:

$$\mathcal{V} = \bigcap_{i=1}^{n} U^{-}(a_i, \delta) \cap \bigcap_{j=1}^{m} U^{+}(q_j, s_j) \subset \mathcal{U}.$$

We shall show that each $B \in \mathcal{V} \cap \operatorname{Conv}_{W}^{s}(X)$ can be connected with A by a path in $\mathcal{U} \cap \operatorname{Conv}_{W}^{s}(X)$, which means that $\operatorname{Conv}_{W}^{s}(X)$ is locally path-connected. Choose $x_{1}, \ldots, x_{n} \in B$ so that $||x_{i} - a_{i}|| < \delta$ and let $B_{0} = \{x_{1}, \ldots, x_{n}\}$. By Lemma 2.1, we can define a path $h : \mathbf{I} \to \operatorname{Conv}_{H}^{P}(X)$ as follows:

$$h(t) = \langle (1-t)a_1 + tx_1, \dots, (1-t)a_n + tx_n \rangle.$$

Then $h(0) = \langle A_0 \rangle$ and $h(1) = \langle B_0 \rangle$. Since diam_H $h(\mathbf{I}) < \delta$, we have

$$h(\mathbf{I}) \subset \bigcap_{i=1}^{m} U^{-}(p_i, r_i) \cap \bigcap_{j=1}^{m} U^{+}(q_j, s_j) \subset \mathcal{U}.$$

Since $\tau_{\rm H} \supset \tau_{\rm W}$, $h: \mathbf{I} \to \operatorname{Conv}_{\rm W}^{\rm P}(X)$ is also continuous. On the other hand, by Proposition 4.2, we have paths $f, g: \mathbf{I} \to \operatorname{Conv}_{\rm W}^{\rm s}(X)$ such that

 $f(0) = A \supset f(t) \supset \langle A_0 \rangle = f(1)$ and $g(0) = B \supset g(t) \supset \langle B_0 \rangle = g(1)$, whence

whence

$$f(t), g(t) \in \bigcap_{i=1}^{n} U^{-}(p_i, r_i) \cap \bigcap_{j=1}^{m} U^{+}(q_j, s_j) \subset \mathcal{U}$$

By connecting the paths f, g and h, we obtain a path from A to B contained in $\mathcal{U} \cap \operatorname{Conv}^{s}_{W}(X)$.

Finally, we show the following:

PROPOSITION 4.6. The subset $\text{Conv}(X) \subset \text{Cld}(X)$ is closed with respect to any one of the topologies τ_{H} , τ_{AW} and τ_{W} .

Proof. Since $\tau_{\rm H} \supset \tau_{\rm AW} \supset \tau_{\rm W}$, it suffices to prove that ${\rm Conv}(X)$ is closed in ${\rm Cld}_{\rm W}(X)$, equivalently ${\rm Cld}(X) \setminus {\rm Conv}(X)$ is open in ${\rm Cld}_{\rm W}(X)$.

For each $A \in \operatorname{Cld}(X) \setminus \operatorname{Conv}(X)$, there are $x, y \in A$ and $t \in \mathbf{I}$ such that $z = (1-t)x + ty \notin A$. Let $\delta = \frac{1}{2}d(z, A) > 0$ and

$$\mathcal{U} = U^{-}(x,\delta) \cap U^{-}(y,\delta) \cap U^{+}(z,\delta).$$

Then \mathcal{U} is a neighborhood of A in $\operatorname{Cld}_W(X)$. For each $A' \in \mathcal{U}$, there are $x', y' \in A'$ such that $||x - x'|| < \delta$ and $||y - y'|| < \delta$. Since $d(z, A') > \delta$ and

$$|(1-t)x' + ty' - z|| \le (1-t)||x' - x|| + t||y' - y|| < \delta,$$

it follows that $(1 - t)x' + ty' \notin A'$, hence A' is not convex, that is, $A' \in \operatorname{Cld}(X) \setminus \operatorname{Conv}(X)$. Thus, $\operatorname{Cld}(X) \setminus \operatorname{Conv}(X)$ is open in $\operatorname{Cld}_W(X)$.

COROLLARY 4.7. For every Banach space X, the spaces $\operatorname{Conv}_{\operatorname{H}}(X)$ and $\operatorname{Conv}_{\operatorname{AW}}(X)$ are completely metrizable. If X is a separable Banach space then $\operatorname{Conv}_{\operatorname{W}}(X)$ is also completely metrizable.

REFERENCES

- T. Banakh, M. Kurihara and K. Sakai, Hyperspaces of normed linear spaces with the Attouch-Wets topology, Set-Valued Anal. 11 (2003), 21–36.
- [2] G. Beer, Topologies on Closed and Closed Convex Sets, Math. Appl. 268, Kluwer, Dordrecht, 1993.
- [3] W. Kubiś, K. Sakai and M. Yaguchi, Hyperspaces of separable Banach spaces with the Wijsman topology, Topology Appl. 148 (2005), 7–32.
- [4] M. Kurihara, K. Sakai and M. Yaguchi, Hyperspaces with the Hausdorff metric and uniform ANR's, J. Math. Soc. Japan 57 (2005), 523–535.
- [5] E. Michael, Uniform AR's and ANR's, Compos. Math. 39 (1979), 129–139.
- [6] S. B. Nadler, Jr., J. E. Quinn and N. M. Stavrakas, Hyperspaces of compact convex sets, Pacific J. Math. 83 (1979), 441–462.

Institute of Mathematics University of Tsukuba Sakuragawa 2-3-22-502 Tsukuba, 305-8571 Japan E-mail: sakaiktr@sakura.cc.tsukuba.ac.jp masato@math.tsukuba.ac.jp

> Received 6 November 2003; revised 23 February 2006

(4392)