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Abstract. Let Φ be a system of ideals on a commutative Noetherian ring R, and
let S be a multiplicatively closed subset of R. The first result shows that the topologies
defined by {Ia}I∈Φ and {S(Ia)}I∈Φ are equivalent if and only if S is disjoint from the
quintasymptotic primes of Φ. Also, by using the generalized Lichtenbaum–Hartshorne
vanishing theorem we show that, if (R, m) is a d-dimensional local quasi-unmixed ring,
then Hd

Φ(R), the dth local cohomology module of R with respect to Φ, vanishes if and
only if there exists a multiplicatively closed subset S of R such that S ∩ m 6= ∅ and the
S(Φ)-topology is finer than the Φa-topology.

1. Introduction. Throughout this paper, all rings considered will be
commutative and Noetherian and will have non-zero identity elements. Such
a ring will be denoted by R and a typical ideal of R will be denoted by I.
Let (Λ,≤) be a (non-empty) directed partially ordered set. A system of

ideals of R over Λ is an inverse family Φ = {Iα : α ∈ Λ} of ideals of R
with the additional property that, for all α, γ ∈ Λ, there exists δ ∈ Λ such
that Iδ ⊆ IαIγ . Systems of ideals are a very useful generalization of the
sets of powers of an ideal I in a ring R, and there are many important
systems of ideals that are not powers. They have played an important role
in many research papers, and there are numerous results concerning them
in the literature (e.g., see [2], [3] and [7]).

Let Φ denote a system of ideals (of R) and S a multiplicatively closed
subset of R. For an ideal I of R, the S-component of I, denoted by S(I), is
defined to be the union of (I :R s), where s varies in S. The integral closure

of I in R is the ideal

Ia := {x ∈ R : x satisfies an equation of the form

xn + b1x
n−1 + · · · + bn = 0, where bi ∈ Ii for i = 1, . . . , n}.

Also, the radical of I, denoted by Rad(I), is defined to be the ideal {x ∈ R :
xn ∈ I for some n ∈ N}. Furthermore, we denote by V (Φ) the subset
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⋃
I∈ΦV (I) of Spec R, where V (I) = {p ∈ SpecR : p ⊇ I}. Finally, we

define

Φa := {Ia : I ∈ Φ} and S(Φ) := {S(I) : I ∈ Φ}.

It is easily seen that the sets S(Φ), Φa and S(Φa) induce topologies on R
which are called the S(Φ)-symbolic, Φa-integral closure and S(Φa)-symbolic

integral closure topologies, respectively. The purpose of the present paper is
to study the relationship between the vanishing of the general local coho-
mology modules H i

Φ(R), and the comparison of the topologies induced by
the sets S(Φ), Φa and S(Φa).

Let (R, m) be a local ring and let N be a non-zero finitely generated
R-module. Then we denote by R∗ (respectively N∗) the completion of R
(respectively N) with respect to the m-adic topology. In particular, for any
p ∈ SpecR, R∗

p and N∗
p denote the pRp-adic completions of Rp and Np,

respectively. Also, we denote by mAssR N , the set of minimal elements of
AssR N . The ring R is said to be quasi-unmixed if dim R∗/p = dimR for
any p ∈ mAss R∗. More generally, if R is not necessarily local, it is a locally

quasi-unmixed ring if Rp is quasi-unmixed for any p ∈ SpecR. For any prime
ideal p of R, and k ≥ 0 an integer, we define

p
〈k〉 =

⋃

s∈R\p

((pk)a : s).

For any ideal I of R, the set

Q∗(I) := {p ∈ SpecR : there is a z ∈ mAssR∗
p withRad(IR∗

p + z) = pR∗
p},

the quintasymptotic prime ideals of I, was systematically studied by S.
McAdam in [15]. He proved that if I is an ideal of a Noetherian ring R
and S is a multiplicatively closed subset of R, then S is disjoint from the
quintasymptotic prime ideals of I if and only if the topologies defined by
the filtrations {(In)a}n≥1 and {S(In)a}n≥1 are equivalent (cf. [15, Theorem
1.5]).

The main purpose of the second section is to introduce the concept of
the quintasymptotic prime ideals with respect to a system of ideals and
generalize McAdam’s theorem to arbitrary systems of ideals Φ in a Noethe-
rian ring R. More precisely, we will show that for any system of ideals Φ
of a Noetherian ring R, and any multiplicatively closed subset S in R, the
following conditions are equivalent:

(i) The S(Φ)-symbolic topology is finer than the Φa-integral closure
topology.

(ii) The S(Φa)-symbolic integral closure topology is finer than the Φa-
integral closure topology.

(iii) S is disjoint from the quintasymptotic primes of Φ.
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We denote by C(R) the category of all R-modules and R-homomorphisms
between them. The system of ideals Φ determines the Φ-torsion functor
ΓΦ : C(R) → C(R). This is a subfunctor of the identity functor on C(R), for
which ΓΦ(G) = {g ∈ G : ag = 0 for some a ∈ Φ} for each R-module G. Note
that in [2], ΓΦ is denoted by LΦ and called the “general local cohomology
functor with respect to Φ”. For each i ≥ 0, the ith right derived functor of ΓΦ

is denoted by H i
Φ. See [5] and [8] for the basic results on local cohomology.

Recently, Marti-Farre generalized Schenzel’s theorem (cf. [17, Corollary
4.3]) to Noetherian quasi-unmixed local rings. Namely, he showed that if I
is an ideal in a d-dimensional Noetherian quasi-unmixed local ring (R, m),
then Hd

I (R) = 0 if and only if there exists a multiplicatively closed subset
S of R such that m ∩ S 6= ∅, and that the topologies defined by {(In)a}n≥1

and {S(In)a}n≥1 are equivalent (cf. [12, Proposition 2.1]). In the third sec-
tion we establish the relationship between the vanishing of the general local
cohomology modules H i

Φ(R) and the comparison of the S(Φ)-symbolic and
the Φa-integral closure topologies. Then we obtain the following result which
generalizes the characterization given by Marti-Farre.

Let (R, m) be a local quasi-unmixed ring with dimR = d. Then for any
system of ideals Φ of R, the following conditions are equivalent:

(i) Hd
Φ(R) = 0.

(ii) There is a multiplicatively closed subset S of R such that m∩S 6= ∅
and the S(Φ)-symbolic topology is finer than the Φa-integral closure
topology.

At the end of Section 3 we give some applications to generalized local coho-
mology.

Throughout this paper, R will always be a commutative Noetherian ring
with non-zero identity, Φ will be an arbitrary system of ideals of R, and N
will be a finitely generated R-module.

2. Quintasymptotic primes and ideal topologies. The purpose of
this section is to introduce the concept of quintasymptotic primes of Φ with
respect to a module N over R. The main point of our investigations is to es-
tablish a relationship between the topologies induced by {Ia}I∈Φ, {S(I)}I∈Φ

and {S(Ia)}I∈Φ by using the quintasymptotic primes of Φ with respect to R.
The main results are Theorems 2.5 and 2.8. Before stating them, let us give
a definition.

Definition. A prime ideal p of R is called a quintasymptotic prime

ideal of Φ with respect to N if there exists z ∈ mAssR∗
p
N∗

p such that
Rad(IR∗

p + z) = pR∗
p for all proper ideals I ∈ Φ. The set of quintasymp-

totic primes of Φ with respect to N is denoted by Q
∗
(Φ, N). Note that

Q∗(Φ, N) ⊆
⋂

I∈ΦQ∗(I, N), and if J is a proper ideal of R and Φ = {Jn}n≥0,
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then Q∗(Φ, N) = Q∗(J, N), where Q∗(J, N) is the set of quintasymptotic
prime ideals of J with respect to N (see [1, 3.1]).

Lemma 2.1. Let S be a multiplicatively closed subset of R. Then:

(i) For any prime ideal p of R disjoint from S, p ∈ Q∗(Φ, N) if and

only if S−1p ∈ Q∗(S−1Φ, S−1N). Here S−1Φ := {S−1I : I ∈ Φ} is

a system of ideals of S−1R.

(ii) If p ∈ mAssR N/IN for all proper ideals I ∈ Φ, then p ∈ Q∗(Φ, N).
(iii) Let Ψ be a system of ideals of R such that for any p ∈ SpecR, the

ideals IRp and JRp are proper for all I ∈ Φ and J ∈ Ψ . If Ψ is

comparable to Φ, then Q∗(Φ, N) = Q∗(Ψ, N).
(iv) If z ∈ mAssR N , and p ∈ mAssR R/I +z for all proper ideals I ∈ Φ,

then p ∈ Q∗(Φ, N).

Proof. Statement (i) follows from the isomorphisms (S−1N)S−1p
∼= Np

and (S−1R)S−1p
∼= Rp for all p ∈ SpecR with p ∩ S = ∅. For (ii), let

p ∈ mAssR N/IN for all proper ideals I ∈ Φ. Then it is easy to see that
pR∗

p = Rad(IR∗
p + AnnR∗

p
N∗

p) for all proper ideals I ∈ Φ. Now it is easy to

show that p ∈ Q∗(Φ, N).

In order to show (iii) assume p ∈ Q∗(Φ, N). Then there exists z ∈
mAssR∗

p
N∗

p such that pR∗
p = Rad(IR∗

p + z) for all proper ideals I ∈ Φ.
Now, let J be an arbitrary proper ideal in Ψ . Then there is an ideal K in Φ
such that K ⊆ J . Therefore pR∗

p = Rad(JR∗
p + z) for some z ∈ mAssR∗

p
N∗

p

and for all proper ideals J ∈ Ψ , and so p ∈ Q∗(Ψ, N). The opposite inclusion
is proved in a similar way.

Finally, to prove (iv) let z ∈ mAssR N and assume that p ∈ mAssR R/I+
z for all proper ideals I ∈ Φ. In view of (i), we may assume that (R, p) is
local. Let q ∈ SpecR be a minimal ideal of zR∗. Then q ∈ AssR∗ R∗/zR∗

and pR∗ ∈ mAssR∗ R∗/IR∗ + q for all proper ideals I ∈ Φ. Now by [4,
Corollary 1, p. 280], q ∈ mAssR∗ N∗. Accordingly, pR∗ = Rad(IR∗ + q)
for some q ∈ mAssR∗ N∗ and for all proper ideals I ∈ Φ. Consequently,
p ∈ Q∗(Φ, N), as desired.

Before stating the next result we fix some notation. For an ideal J of R,
we use Φ + J to denote {I + J : I ∈ Φ}. It is easy to see that Φ + J is a
system of ideals of R.

Proposition 2.2. Let p ∈ SpecR. Then p ∈ Q∗(Φ, N) if and only if

there exists q ∈ mAssR N such that q ⊆ p and p/q ∈ Q∗(Φ + q/q, R/q).

Proof. In view of Lemma 2.1(i), we may assume that R is local at p. Let
p ∈ Q∗(Φ, N). Then there exists z ∈ mAssR∗ N∗ such that Rad(IR∗ + z) =
pR∗ for all proper ideals I ∈ Φ. In view of [4, Corollary 1, p. 280], we
have w := z ∩ R ∈ mAssR N and z ∈ mAssR∗(R∗/wR∗). Hence z/wR∗ ∈
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mAssR∗/wR∗(R∗/wR∗) and Rad((I +q/q)R∗/wR∗+z/wR∗) = pR∗/wR∗ for

all proper ideals I ∈ Φ, and so p/w ∈ Q∗(Φ + w/w, R/w), as desired.

Conversely, let q ∈ mAssR N with p ⊇ q and p/q ∈ Q∗(Φ + q/q, R/q).
Then there exists z ∈ SpecR∗ such that z/qR∗ ∈ mAssR∗/qR∗ R∗/qR∗ and
Rad((IR∗ + qR∗)/qR∗ + z/qR∗) = pR∗/qR∗ for all proper ideals I ∈ Φ.
Consequently, z ∈ mAssR∗ R∗/qR∗ and Rad(IR∗ + z) = pR∗ for all proper
ideals I ∈ Φ. It is easy to see that z ∈ mAssR N∗, and so p ∈ Q∗(Φ, N). This
completes the proof.

The following lemma, which is a generalization of Chevalley’s theorem
(see [16, Theorem 30.1] and [4, Ch. IV, Section 2.5, Corollary 4]), plays a
key role in this section.

Lemma 2.3 (see [11, Lemma 3.3] and [7, Proposition 2.9]). Let (R, m)
be a complete local ring and let M be a submodule of a finitely generated

R-module N . Let {Ni : i ∈ Λ}, where Λ is some index set , be a set of

submodules of N such that for all j, k ∈ Λ, there exists i ∈ Λ for which

Ni ⊆ Nj ∩ Nk. Suppose that the family {M + Ni : i ∈ Λ} has a minimal

element. Then there exists j ∈ Λ such that Nj ⊆ M +
⋂

i∈Λ Ni.

Before we state Theorem 2.5, which is one of our main tools, we prove
the following proposition that will be used in the proof of that theorem.
Proposition 2.4 gives a characterization of Q∗(Φ).

Proposition 2.4. Let p ∈ V (Φ). Then the following conditions are

equivalent :

(i) p ∈ Q∗(Φ).
(ii) There is an integer k ≥ 0 such that I :R 〈p〉 6⊆ p〈k〉 for all I ∈ Φ.

(iii) There is an integer k ≥ 0 such that Ia :R 〈p〉 6⊆ p〈k〉 for all I ∈ Φ.

Proof. (i)⇒(ii). Let p ∈ Q∗(Φ). Then in view of Lemma 2.1(i) and [13,
Theorem 7.4(iii)] and the fact that (pkRp)a ∩ R = p〈k〉, without loss of
generality, we may assume that (R, p) is local. Then there exists z ∈ mAssR∗

such that for all proper ideals I ∈ Φ we have Rad(IR∗ + z) = pR∗. By [15,
Lemma 3.1] there exists a non-zero x ∈ R∗ \ z such that for every ideal J
of R∗ with Rad(J + z) = pR∗, either x ∈ J or pR∗ ∈ AssR R∗/J . Then,
by [15, Lemma 1.4(i)], x 6∈

⋂
n≥1

(pnR∗)a. Hence for sufficiently large k, we

have x 6∈ (pkR∗)a.

Now suppose, to the contrary, that (ii) is not true. Then, for such k,
there is an ideal Ik ∈ Φ with Ik :R 〈p〉 ⊆ (pk)a. Then by [13, Theo-
rem 7.4(iii)] and [14, Lemma 3.15] we deduce that x 6∈ IkR

∗ :R∗ 〈pR∗〉.
Because of Rad(IkR

∗ :R∗ 〈pR∗〉 + z) = pR∗ by [15, Lemma 3.1] we have
pR∗ ∈ AssR∗ R∗/IkR

∗ :R∗ 〈pR∗〉. (Note that Rad(IkR
∗ + z) = pR∗.) Con-
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sequently, p ∈ AssR R/Ik :R 〈p〉, which provides the required contradiction.
The implication (ii)⇒(iii) is obviously true.

In order to prove that (iii)⇒(i), suppose the contrary, that is, p 6∈ Q∗(Φ).
Since Q∗(Φ) and the integral closure behave well under localization (see
Lemma 2.1(i) and [18, Lemma 2.3]), without loss of generality, we may
assume that (R, p) is local. Now, let mAss R∗ = {z1, . . . , zn}. Then, for each
i = 1, . . . , n, there exists Ii ∈ Φ such that Rad(IiR

∗ + zi) 6= pR∗. Since Φ is
a system of ideals, it follows that there is I ∈ Φ such that I ⊆

⋂n
i=1

Ii. Then
Rad(IR∗ + zi) 6= pR∗ for every i = 1, . . . , n. Again, because Φ is a system
of ideals, for each n, k ∈ N, one easily sees that there is J ∈ Φ such that
J ⊆ In ∩ pk. Hence

⋂

J∈Φ

((JR∗)a :R∗ 〈pR∗〉) ⊆
⋂

n≥1

((InR∗)a :R∗ 〈pR∗〉).

So, [15, Lemma 3.2(c)] implies that
⋂

J∈Φ((JR∗)a :R∗ 〈pR∗〉) =
⋂n

i=1
zi =

nil(R∗). Using Lemma 2.3, we see that for all k ≥ 0 there exists J ∈ Φ
such that (JR∗)a :R∗ 〈pR∗〉 ⊆ nil(R∗) + (pkR∗)a. Note that the module
((pkR∗)a :R∗ 〈pR∗〉+(pkR∗)a)/(pkR∗)a has finite length. Therefore, for each
integer k ≥ 0 there is J ∈ Φ such that (JR∗)a :R∗ 〈pR∗〉 ⊆ (pkR∗)a =
(pR∗)〈k〉; note that pR∗ is the unique maximal ideal of R∗. Now, it is easy
to see that [14, Lemma 3.15] provides a contradiction.

We are now in a position to state and prove the first main theorem of
this section. Theorem 2.5 shows that Q∗(Φ) behaves nicely with respect to
faithfully flat extensions.

Theorem 2.5. Let R ⊆ T be a faithfully flat extension of Noetherian

rings.

(i) If q ∈ Q∗(ΦT ), then q ∩ R ∈ Q∗(Φ).
(ii) If p ∈ Q∗(Φ), then for each minimal prime ideal q of pT, q ∈ Q∗(ΦT )

and q ∩ R = p.

Proof. (i) Let q ∈ Q∗(ΦT ). It follows from Proposition 2.4 that there is
an integer k ≥ 0 such that (IT :T 〈q〉) 6⊆ q〈k〉 for all I ∈ Φ. Let q ∩ R = p.
Then in view of Proposition 2.4 it is sufficient to show that (I :R 〈p〉) 6⊆ p〈k〉.
Suppose this is not the case. Then, by [13, Theorem 7.4] and [14, Lemma
3.15], it is easy to see that (IT :T 〈q〉) ⊆ q〈k〉, which is a contradiction. So
q ∩ R ∈ Q∗(Φ) and (i) follows.

In order to prove (ii), let p ∈ Q∗(Φ) and let q ∈ SpecT be a minimal
prime of pT . Then p ⊆ q ∩R, so that using the going-down theorem we get
p = q∩R. Since Rp ⊆ Tq is a faithfully flat extension (see [13, Theorem 9.5]),
it is easy to see that so is R∗

p ⊆ T ∗
q ; and Rad(pTq) = qTq. Moreover, because

Q∗(Φ) and Q∗(ΦT ) behave well under localization, we may assume that
(R, p) and (T, q) are local rings, and Rad(pT ) = q. Then, since p ∈ Q∗(Φ)
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by definition, there exists z ∈ mAssR∗ such that Rad(IR∗ + z) = pR∗

for all proper ideals I ∈ Φ. By [13, Theorem 23.2], there is w ∈ mAssT ∗

such that w ∩ R∗ = z. Then zT ∗ ⊆ w, and so Rad(IT ∗ + w) = qT ∗

for all proper ideals I ∈ Φ. Therefore by definition q ∈ Q∗(IT ) as re-
quired.

Corollary 2.6. Let R ⊆ T be a faithfully flat extension of Noetherian

rings and N a non-zero finitely generated R-module.

(i) If q ∈ Q∗(ΦT, N ⊗R T ) then q ∩ R ∈ Q∗(Φ, N).
(ii) If p ∈ Q∗(Φ, N) then, for each minimal prime ideal q of pT , q ∈

Q∗(IT, N ⊗R T ) and q ∩ R = p.

Proof. By the definition, ΦT is a system of ideals of T . In order to
prove (i) let q ∈ Q∗(ΦT, N ⊗R T ). Then, by Proposition 2.2, there exists
z ∈ mAssT (N ⊗R T ) such that z ⊆ q and q/z ∈ Q∗(ΦT + z/z, T/z). By [13,
Theorem 23.2], there exists w ∈ mAssR N such that z∩R = w, and q/wT ∈
mAssT/wT (T/wT ). Hence q/wT ∈ Q∗(ΦT +wT/wT, T/wT ). Since T/wT is
a faithfully flat extension of R/w, in view of Theorem 2.5, q/wT ∩ R/w ∈
Q∗(Φ + w/w, R/w). That is, q ∩ R/w ∈ Q∗(Φ + w/w, R/w). Consequently,
by Proposition 2.2, we have q ∩ R ∈ Q∗(Φ, N) as required.

For the proof of (ii), let p ∈ Q∗(Φ, N) and q ∈ SpecT be a minimal
prime ideal of pT . Then, by Proposition 2.2, there is z ∈ mAssR N such
that p/z ∈ Q∗(Φ+z/z, R/z). Since q/zT is a minimal prime ideal of pT/zT ,
and T/zT is a faithfully flat extension of R/z, by Theorem 2.5 we have
q/zT ∈ Q∗(ΦT + zT/zT, T/zT ). Hence by Proposition 2.2, there exists a
minimal prime ideal w/zT of T/zT such that q/w ∈ Q∗(ΦT + w/w, T/w).
But, since w ∈ mAssT (N ⊗R T ) by [4, Corollary 1, p. 280], we deduce that
q ∈ Q∗(ΦT, N ⊗R T ). This completes the proof.

The following lemma, which is a consequence of [15, Lemma 1.4] and of
the definition of a system of ideals, is of assistance in the proof of the second
main theorem of this section.

Lemma 2.7. Let (R, m) be a local ring and let S be a multiplicatively

closed subset of R such that S ∩m = ∅. Then
⋂

I∈Φ S(Ia) is the intersection

of all minimal primes of R, i.e., the nilradical nil(R).

Proof. Let J be a proper ideal of R such that J ∈ Φ. Then it is easy to see
that

⋂
I∈Φ S−1(Ia)⊆

⋂
n≥0

(S−1Jn)a. Hence
⋂

I∈Φ S−1(Ia)⊆
⋂

n≥0
(S−1mn)a.

Since S ∩m = ∅, from [15, Lemma 1.4(i)] we deduce that
⋂

n≥0
(S−1mn)a =

nil(S−1R). Hence we have
⋂

I∈Φ S−1(Ia) = nil(S−1R). Pulling back to R,
and noting that S is disjoint from every minimal prime of R, we get⋂

I∈Φ S(Ia) = nil(R), as desired.
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We are now ready to state and prove the second main theorem of this
section, which gives a characterization of quintasymptotic primes in terms
of the equivalence between the topologies induced by Φa, S(Φ) and S(Φa).

Theorem 2.8. Let S be a multiplicatively closed subset of R and assume

that each element of V (Φ) contains an element of Q∗(Φ). Then the following

conditions are equivalent:

(i) S ⊆ R \
⋃
{p ∈ Q∗(Φ)}.

(ii) The S(Φa)-topology is finer than the topology induced by p〈n〉, n ≥ 1,
for all p ∈ Q∗(Φ).

(iii) The S(Φ)-topology is finer than the topology induced by p〈n〉, n ≥ 1,
for all p ∈ Q∗(Φ).

(iv) The S(Φa)-topology is finer than the Φa-topology.

(v) The S(Φ)-topology is finer than the Φa-topology.

Proof. (i)⇒(ii). Let p ∈ SpecR with p ∈ Q∗(Φ) and let k ≥ 1. We need
to show that there exists an ideal I ∈ Φ such that S(Ia) ⊆ p〈k〉. To this end,
let S′ be the natural image of S in Rp. Then, in view of assumption (i) and
Lemma 2.1, we have S′ ⊆ Rp \

⋃
{q ∈ Q∗(ΦRp)}. Here ΦRp = {IRp : I ∈ Φ}

is a system of ideals of Rp. Also, one easily sees that S′((IRp)a) ⊆ (pkRp)a

implies that S(Ia) ⊆ p〈k〉 (see [18, Lemma 2.3]). Therefore we may assume
that R is local at p. Furthermore, by [14, Lemma 3.15], we may assume in
addition in view of [13, Theorem 7.4] and Theorem 2.5 that R is complete.
Now, since p ∈ Q∗(Φ), we see that p ∩ S = ∅. Putting this together with
Lemma 2.7, we find that

⋂
I∈Φ S(Ia) = nil(R). Therefore by Lemma 2.3,

for each k there exists I ∈ Φ such that S(Ia) ⊆ nil(R) + (pk)a. Because
nil(R) ⊆ (pk)a, it follows that S(Ia) ⊆ (pk)a, as required.

The implication (ii)⇒(iii) is obviously true. To prove (iii)⇒(i), let p ∈
Q∗(Φ). We have to show that p ∩ S = ∅. Suppose not and let s ∈ S ∩ p.
Then by Proposition 2.4 there is an integer k ≥ 0 such that (I :R 〈p〉) 6⊆ p〈k〉

for all I ∈ Φ . On the other hand, (iii) says that S(J) ⊆ (pk)a for some
J ∈ Φ. Consequently, for such J , we have (J :R 〈p〉) 6⊆ S(J). Now, let
x ∈ (J :R 〈p〉) \ S(J). Then plx ⊆ J for sufficiently large l. Hence slx ∈ J ,
and so x ∈ S(J), which is a contradiction. Consequently, p ∩ S = ∅, as
desired.

In order to prove (ii)⇒(iv), let I ∈ Φ. We need to show that there is
an ideal J ∈ Φ such that S(Ja) ⊆ Ia. To achieve this, consider a normal
primary decomposition Ia = q1∩· · ·∩qr of Ia in which each component qi is
integrally closed (see [19, Lemma 5.2]). Suppose that qi is pi-primary for all

1 ≤ i ≤ r. Then, for sufficiently large ki, we have (pki

i )a ⊆ (qi)a = qi for all
1 ≤ i ≤ r. Moreover, by Lemma 2.1 and the assumption there exists an ideal
Ji ∈ Φ such that S((Ji)a) ⊆ (pki

i )a. Hence S((Ji)a) ⊆ qi for all i = 1, . . . , r.
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Since Φ is a system of ideals of R, there is an ideal J ∈ Φ such that J ⊆ Ji

for all i = 1, . . . , r. Consequently, S(Ja) ⊆ S((Ji)a) for every i = 1, . . . , r,
and so S(Ja) ⊆

⋂r
i=1

qi. Therefore S(Ja) ⊆ Ia, as desired.

Next, we prove (iv)⇒(ii). To do this, let p ∈ Q∗(Φ) and k ≥ 1. Then there
exists I ∈ Φ such that I ⊆ p. Hence Ik ⊆ pk. Since Φ is a system of ideals,
there is an ideal J ∈ Φ with J ⊆ Ik. Condition (iv) says that S(Ka) ⊆ Ja

for some K ∈ Φ . Hence S(Ka) ⊆ (Ik)a. Consequently, S(Ka) ⊆ (pk)a, as
required.

In the final step we have to show the equivalence between (iii) and (v).
The proof of (iii)⇒(v) is similar to the proof of (ii)⇒(iv). In order to prove
that (v)⇒(iii), let p ∈ Q∗(Φ) and k ≥ 1. Then p ⊇ I for some I ∈ Φ.
Since Φ is a system of ideals, there exists J ∈ Φ such that J ⊆ Ik ⊆ pk.
But, by assumption (v), there is K ∈ Φ with S(K) ⊆ Ja. Consequently,
S(K) ⊆ (pk)a, and the result follows.

3. Local cohomology and ideal topologies. The main purpose of
this section is to establish a connection between the vanishing of the local
cohomology modules and the comparison of topologies. The main result of
this section is Theorem 3.3. Before stating it we recall the definition and we
provide a short introduction about local cohomology.

The important concept of local cohomology was first introduced by
Grothendieck in the early 1960s, partly to answer a conjecture of Pierre
Samuel [8]. More details about the definition and basic results on local co-
homology can be found in the book [5] by M. P. Brodmann and R. Y. Sharp;
we just briefly summarize some of the main aspects.

Let I be an ideal of a Noetherian ring R and let N be an R-module. The
ith local cohomology module of N with respect to I is by definition

H i
I(N) := lim

−→
n

Exti
R(R/In, N).

There are some fundamental vanishing and non-vanishing results for local
cohomology. A necessary and sufficient condition is given by the Lichten-
baum–Hartshorne vanishing theorem. It states that if (R, m) is a local (Noe-
therian) ring with dimR = d, then Hd

I (R) = 0 if and only if dimR∗/(IR∗+p)
> 0 for all p ∈ Ass R∗ with dim R∗/p = d. The proofs of this theorem use the
fact that, under certain circumstances, the I-adic topology on R is equivalent
to the topology defined by a certain filtration. Recently, Schenzel [17] has
shown that if (R, m) is a local (Noetherian) complete quasi-Gorenstein ring
with dim R = d, then Hd

I (R) = 0 if and only if the topology defined by the
filtration {In :R 〈m〉}n≥1 is equivalent to the I-adic topology on R. Here, for
any ideal J of R, J :R 〈m〉 =

⋃
n≥0

(J :R mn). Later, Marti-Farre generalized
the result of Schenzel to Noetherian quasi-unmixed local rings.
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Let Z = V (I) be a closed subscheme of an affine scheme X = SpecR.
Then, for any R-module N , the local cohomology groups H∗

Z(X, M) are
isomorphic to the limit Ext-groups in the category of R-modules:

lim
−→
n∈N

Ext∗R(R/In, N).

Thus it is quite natural to consider the groups

H∗
Φ(N) := lim

−→
I∈Φ

Ext∗R(R/I, N)

for more general inverse systems of ideals. These groups (introduced in [2]),
called generalized local cohomology groups, are considered below.

The following lemma, which is a generalization of the Lichtenbaum–
Hartshorne vanishing theorem, will be used in the proof of Theorem 3.2.

Lemma 3.1 (see [7, Theorem 2.8]). Let (R, m) be a local (Noetherian)
ring such that dimR = d. Then the following statements are equivalent:

(i) Hd
Φ(R) = 0.

(ii) For all prime ideals p of R∗ with dimR∗/p = d, there is an ideal I
in Φ such that dimR∗/(IR∗ + p) > 0.

We are now ready to state and prove the main theorem of this section,
which gives a generalization of [12, Proposition 2.1] in the context of general
local cohomology modules.

Theorem 3.2. Let (R, m) be local of dimension d and assume that each

element of V (Φ) contains an element of Q∗(Φ). Consider the following con-

ditions:

(i) There exists a multiplicatively closed subset S of R such that m ∩ S
6= ∅ and the S(Φ)-topology is finer than the Φa-topology.

(ii) Hd
Φ(R) = 0.

Then (i)⇒(ii); and these conditions are equivalent whenever R is quasi-

unmixed.

Proof. In order to prove (i)⇒(ii), suppose that there is a multiplicatively
closed subset S of R with m ∩ S 6= ∅ and such that the S(Φ)-topology is
finer than the Φa-topology. Then it follows from Theorem 2.8 that S ⊆
R \

⋃
{p ∈ Q∗(Φ)}. Since m ∩ S 6= ∅, we deduce that m 6∈ Q∗(Φ). Hence,

for all z ∈ mAss R∗ there exists I ∈ Φ such that Rad(IR∗ + z) 6= mR∗.
Now, using the generalized Lichtenbaum–Hartshorne vanishing theorem (see
Lemma 3.1) it follows that Hd

Φ(R) = 0, as desired.
Next, we show the converse when R is quasi-unmixed. It then follows that

dimR∗/z = dimR = d for every z ∈ mAss R∗. Hence, in view of Lemma
3.1, condition (ii) says that dimR∗/(IR∗ + z) > 0 for all z ∈ mAssR∗

and for some I ∈ Φ. Now, let S be the multiplicatively closed subset of
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R defined by S := R \
⋃
{p ∈ Q∗(Φ)}. Since m 6∈ Q∗(Φ) it follows that

m ∩ S 6= ∅. Moreover, in view of Theorem 2.8, the S(Φ)-topology is finer
than the Φa-topology. This completes the proof.

Theorem 3.3. Under the assumptions of Theorem 3.2, consider the fol-

lowing conditions:

(i) The S(Φ)-topology is finer than the Φa-topology.

(ii) Hht p

ΦRp
(Rp) = 0 for all p ∈ V (Φ) with p∩S 6= ∅, where ht p = dim Rp.

Then (i)⇒(ii); and these conditions are equivalent whenever R is locally

quasi-unmixed.

Proof. For the first part, suppose the S(Φ)-topology is finer than the Φa-
topology. Then, from Theorem 2.8, we have S ⊆ R \

⋃
{q ∈ Q∗(Φ)}. Now,

let p ∈ V (Φ) with p∩S 6= ∅. Then we see that p 6∈ Q∗(Φ). Hence by Lemma
2.1, pRp 6∈ Q∗(ΦRp). Therefore, in view of the generalized Lichtenbaum–

Hartshorne vanishing theorem (see Lemma 3.1), we have Hht p

ΦRp
(Rp) = 0.

Hence (i) implies (ii).
Now, let R be a locally quasi-unmixed ring, and assume that for all

p ∈ V (Φ) with p ∩ S 6= ∅, we have Hht p

ΦRp
(Rp) = 0. Then, by the generalized

Lichtenbaum–Hartshorne vanishing theorem, for all z ∈ mAss R∗
p there ex-

ists an ideal I ∈ Φ such that dim R∗
p/(IR∗

p + z) > 0. (Note that R is locally

quasi-unmixed.) Hence pRp 6∈ Q∗(ΦRp), and so by Lemma 2.1, p 6∈ Q∗(Φ).
Consequently, we have S ⊆ R \

⋃
{p ∈ Q∗(Φ)}. Now, the result follows from

Theorem 2.8.

Before giving an application of Theorem 3.3 we need the following defi-
nition.

Definition. The cohomological dimension of Φ is defined as

cdΦ(R) = sup{cdI(R) : I ∈ Φ},

where cdI(R) is the cohomological dimension of I (see [6], [9], [10]).

Corollary 3.4. Suppose (R, m) is quasi-unmixed local with dimR = d.
Let S be a multiplicatively closed subset of R defined by S = R \

⋃
{p ∈

mAss R/I for all I ∈ Φ} and suppose each element of V (Φ) contains an ele-

ment of Q∗(Φ). Suppose that every ideal in Φ is unmixed. Then the following

statements are equivalent :

(i) The S(Φ)-topology is finer than the Φa-topology.

(ii) Supp H i
Φ(R) ⊆ {p ∈ V (Φ) : ht p ≥ i + 1} for all I ∈ Φ and i with

ht I < i ≤ d.

Proof. First we show (i)⇒(ii). Let p ∈ Supp H i
Φ(R). Then, in view of [2,

Lemma 2.1] and the fact that the local cohomology functor commutes with
direct limits and by the flat base change theorem (see [5, Theorem 4.2.1]),
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we have p ∈ V (Φ). Hence SuppH i
Φ(R) ⊆ V (Φ). Furthermore, if p ∈ V (Φ)

is such that ht p < i then, by [5, Theorems 4.3.2 and 6.1.2] and [2, Lemma
2.1] and the fact that H i

Φ(·) commutes with direct limits, we deduce that
(H i

Φ(R))p = 0, since dimRp = ht p < i. Thus

SuppH i
Φ(R) ⊆ {q ∈ V (Φ) : ht q ≥ i}.

Now, in view of the definition of S and Theorems 2.8 and 3.3, (Hht q

Φ (R))q = 0
for all q ∈ V (Φ) with q∩S 6= ∅. Hence for all I ∈ Φ and i with ht I < i ≤ d,

SuppH i
Φ(R) ⊆ {q ∈ V (Φ) : ht q = i and q ∩ S = ∅}

∪ {q ∈ V (Φ) : ht q ≥ i + 1}.

Now, if q ∈ V (Φ) and q∩S = ∅, then, since every element of Φ is an unmixed
ideal, it follows that ht q = htJ for some J ∈ Φ. Hence {q ∈ V (Φ) : ht q = i
and q ∩ S = ∅} = ∅ for all I ∈ Φ and i with ht I < i ≤ d. Consequently,

Supp H i
Φ(R) ⊆ {q ∈ V (Φ) : ht q ≥ i + 1}

for all I ∈ Φ and i with ht I < i ≤ d, as required.

In order to prove (ii)⇒(i), in view of Theorem 3.3, it is sufficient to

show that Hht p

ΦRp
(Rp) = 0 for all p ∈ V (Φ) with p ∩ S 6= ∅. Indeed, for

p ∈ V (Φ) there is I ∈ Φ such that I ⊆ p. Since p ∩ S 6= ∅, it follows that
p 6∈ mAssR R/I, and so ht I < ht p. Therefore, by assumption (ii), we have

p 6∈ Supp Hht p

Φ (R). Consequently, (Hht p

Φ (R))p = 0. Now, the result follows
from [5, Theorem 4.3.2] and [2, Lemma 2.1].
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