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SCATTERING THEORY FOR A NONLINEAR SYSTEM

OF WAVE EQUATIONS WITH CRITICAL GROWTH

BY

CHANGXING MIAO and YOUBIN ZHU (Beijing)

Abstract. We consider scattering properties of the critical nonlinear system of wave
equations with Hamilton structure

{

utt −∆u = −F1(|u|
2, |v|2)u,

vtt −∆v = −F2(|u|
2, |v|2)v,

for which there exists a function F (λ, µ) such that

∂F (λ, µ)

∂λ
= F1(λ, µ),

∂F (λ, µ)

∂µ
= F2(λ, µ).

By using the energy-conservation law over the exterior of a truncated forward light cone
and a dilation identity, we get a decay estimate for the potential energy. The resulting
global-in-time estimates imply immediately the existence of the wave operators and the
scattering operator.

1. Introduction. In this note, we continue our study from [3, 4] on the
following nonlinear system of wave equations with Hamilton structure:

(1.1)





utt −∆u = −F1(|u|2, |v|2)u,
vtt −∆v = −F2(|u|2, |v|2)v,
u(0) = ϕ1(x), ut(0) = ψ1(x),

v(0) = ϕ2(x), vt(0) = ψ2(x),

(ϕj , ψj) ∈ Ḣ1 × L2, j = 1, 2,

where we assume the existence of a function F (λ, µ) such that

∂F (λ, µ)

∂λ
= F1(λ, µ),

∂F (λ, µ)

∂µ
= F2(λ, µ).

To ensure that the potential energy of problem (1.1) tends to zero as t→∞,
which will play an important role in the proof of our result, we need to
assume that F, F1, F2 satisfy the following assumptions similar to those
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in [3, 4]:

(H1) |F1|+ |u2F11|+ |uvF12|+ |F2|+ |uvF21|+ |v2F22|
≤ C(|u|2∗−2 + |v|2∗−2),

where F11 = ∂F1/∂λ, F12 = ∂F1/∂µ, F21 = ∂F2/∂λ, F22 = ∂F2/∂µ;

F (|u|2, |v|2) ≥ 0, F (0, 0) = 0;(H2)

|u|2∗ + |v|2∗ ≤ C0F (|u|2, |v|2);(H3)

n− 1
2
|u|2F1(|u|2, |v|2) +

n− 1
2
|v|2F2(|u|2, |v|2) ≥

n+ 1

2
F (|u|2, |v|2)(H4)

for |u| or |v| larger than a fixed constant M ;
(H5) |F1(|u1|2, |v1|2)u1 − F1(|u2|2, |v2|2)u2|

+ |F2(|u1|2, |v1|2)v1 − F2(|u2|2, |v2|2)v2|

≤ C(|u1|2
∗−2 + |v1|2

∗−2 + |u2|2
∗−2 + |v2|2

∗−2)(|u1 − u2|+ |v1 − v2|).
Note that (H1) and (H2) imply an inequality which is reverse to (H3):

(1.2) F (|u|2, |v|2) ≤ C(|u|2∗ + |v|2∗).
It is easy to verify that e.g. the function F (|u|2, |v|2) = |u|6 + |u|4|v|2 +
|u|2|v|4 + |v|6 satisfies (H1)–(H5) in the space dimension n = 3. For the
physical background and related research on the wave equation, we refer
the reader to [1, 3–7] and the references therein.

Let us end this section by recalling what we have done in our previous pa-
pers. On the basis of a dilation identity derived through the Lagrangian asso-
ciated with problem (1.1), we prove in [3] that the “potential energy” cannot
concentrate at any given point. We combine this fact with the Strichartz es-
timate to improve the regularity of a solution with finite-energy initial data.
That reasoning is completed by standard energy estimates.

In [4], we study the well-posedness of problem (1.1) in the energy space
under assumptions on nonlinearities slightly more general than those in
(H1)–(H5). By showing through an approximation argument that the en-
ergy and the dilation identities hold true for weak solutions, we prove that
problem (1.1) has a unique solution (u, v) such that

(u, v, ut, vt) ∈ C(R; Ḣ1 × Ḣ1 × L2 × L2)(1.3)

∩ Lqloc(R; Ḃ1/2q × Ḃ1/2q × Ḃ−1/2q × Ḃ−1/2q ).

Here, the Besov space Ḃsp,q is defined as the set of those functions for which
the following norm is finite:

‖f‖Ḃsp,q ≡
{∞\
0

sup
|y|≤t

[t−s‖τyf − f‖Lp ]q
dt

t

}1/q
,
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where τy denotes the space translation by y ∈ R
n (cf. [2, p. 493, eq. (3.15)]).

We limit ourselves to the particular case of this space for p = q and we
write Ḃsq(R

n) = Ḃsq,q(R
n) ∩ Lq∗(Rn) for q = 2(n + 1)/(n − 1) and q∗ =

2n(n+ 1)/(n2 − 2n− 1).

2. Global space-time estimate. Our first goal is to improve the result
from [4] and to obtain global-in-time estimates of solutions to (1.1).

Theorem 2.1. Assume that F, F1, F2 satisfy (H1)–(H5). Then problem
(1.1) has a unique solution satisfying

(u, v, ut, vt) ∈ C(R; Ḣ1 × Ḣ1 × L2 × L2)(2.1)

∩ Lq(R; Ḃ1/2q × Ḃ1/2q × Ḃ−1/2q × Ḃ−1/2q ),

where Ḃsq(R
n) = Ḃsq,q(R

n) ∩ Lq∗(Rn) with q = 2(n + 1)/(n − 1) and q∗ =
2n(n+ 1)/(n2 − 2n− 1).
Note that, by [4], problem (1.1) has a unique solution satisfying (1.3).

Hence, to prove Theorem 2.1, we only need to verify that there exists T0 > 0
such that for I = [T0,∞), the following quantities are finite:

(2.2)
‖u‖
Lq(I;Ḃ

1/2
q (Rn))

, ‖v‖
Lq(I;Ḃ

1/2
q (Rn))

,

‖ut‖Lq(I;Ḃ−1/2q (Rn))
, ‖vt‖Lq(I;Ḃ−1/2q (Rn))

.

As we shall see below, to this end, we should first prove that ‖u(t)‖L2∗ (Rn)
and ‖v(t)‖L2∗(Rn) tend to zero as t → ∞. However, it follows from our
assumptions (1.2) and (H3) that it suffices to show the following result.

Proposition 2.2. Let (u, v) be a solution of (1.1), and let F, F1, F2 sat-
isfy (H2)–(H4). Then

(2.3) g(t) = lim
t→∞

1

2

\
Rn

F (|u(x, t)|2, |v(x, t)|2) dx = 0.

Proof. Since the initial data have finite energy, we obtain

(2.4)
\

|x|≥R

e(u, v)(x, 0) dx→ 0 as R→∞,

where

(2.5) e(u, v) =
1

2
(|ut|2 + |vt|2 + |∇u|2 + |∇v|2 + F ).

Applying the energy conservation law on the exterior of a truncated forward
light cone, for every t ≥ 0 one gets
(2.6)

\
|x|>R+t

e(u, v) dx+ Flux(u, v;M t0)→ 0 as R→∞,
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where the Flux on the mantle is given by (cf. [7, p. 137])

(2.7) Flux(u, v;M ba)

=
1√
2

\
Mba

{
(−ut∇u− vt∇v) ·

−x
|x| + e(u, v)× 1

}
dσ

=
1√
2

\
Mba

{
1

2

∣∣∣∣
x

|x| ut +∇u
∣∣∣∣
2

+
1

2

∣∣∣∣
x

|x| vt +∇v
∣∣∣∣
2

+
1

2
F

}
dσ

with

(2.8) M ba = {(x, t) ∈ R
n × [a, b] : |x| = R+ t}.

By identity (2.7), the Flux is nonnegative. Since e(u, v) contains the poten-
tial energy term 1

2F , it follows from (2.5)–(2.7) that

1

2

\
|x|>R+t

F dx ≤
\

|x|>R+t

e(u, v) dx

≤
\

|x|>R+t

e(u, v) dx+ Flux(u, v;M t0)→ 0 as R→∞.

Therefore, to complete the proof of Proposition 2.2, it suffices to show that

(2.9)
1

2

\
|x|≤R+t

Fdx→ 0 as t→∞.

If we replace t by t+R, (2.6), (2.8) and (2.9) can be rewritten as\
|x|>t

e(u, v) dx+ Flux(u, v;M tR)→ 0 as R→∞,(2.6′)

M ba = {(x, t) ∈ R
n × [a, b] : |x| = t},(2.8′)

1

2

\
|x|≤t

F dx→ 0, t→∞.(2.9′)

To prove (2.9′), we use the following dilation identity obtained in [3, 4]:

(2.10) divx,t

(
−tP0, tQ0 +

n− 1
2

utu+
n− 1
2

vtv

)
−R0 = 0,

where

Q0 =
1

2
|u′|2 + 1

2
|v′|2 + 1

2
F + ut

x · ∇u
t
+ vt

x · ∇v
t

,

P0 =

(
1

2
|ut|2 +

1

2
|vt|2 −

1

2
|∇u|2 − 1

2
|∇v|2 − 1

2
F

)
x

t

+

(
n− 1
2

u

t
+ ut +

x · ∇u
t

)
∇u+

(
n− 1
2

v

t
+ vt +

x · ∇v
t

)
∇v

R0 =
n− 1
2

F1|u|2 +
n− 1
2

F2|v|2 −
n+ 1

2
F.
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Integrating identity (2.10) over K(T, S) = {(x, t) ∈ R
n × [T, S] : T ≤ t ≤ S,

|x| < t}, we obtain

0 =
\
DS

(
SQ0 +

n− 1
2

utu+
n− 1
2

vtv

)
dx(2.11)

−
\
DT

(
TQ0 +

n− 1
2

utu+
n− 1
2

vtv

)
dx

− 1√
2

\
MST

(
tQ0 +

n− 1
2

utu+
n− 1
2

vtv + x · P0
)
dσ

+
\ \
K(T,S)

R0 dx dt ≡ I1 + I2 + I3 + I4,

where

DT = {(x, t) : |x| ≤ T}, MST = {(x, t) : T ≤ t ≤ S, |x| = t}.
Note that t = |x| on MST , hence we rewrite the term I3 in (2.11) as

(2.12) I3 = −
1√
2

\
MST

(
tQ0 +

n− 1
2

utu+
n− 1
2

vtv + x · P0
)
dσ

= − 1√
2

\
MST

( |x|
2
|u′|2 + |x|

2
|v′|2 + |x|

2
F + utx · ∇u+ vtx · ∇v +

n− 1
2

utu

+
n− 1
2

vtv +
n− 1
2

u

|x| x · ∇u+ utx · ∇u+
1

|x| (x · ∇u)
2

+
n− 1
2

v

|x| x · ∇v + vtx · ∇v +
1

|x| (x · ∇v)
2

− |x|
2
|∇u|2 − |x|

2
|∇v|2 + |x|

2
|ut|2 +

|x|
2
|vt|2 −

|x|
2
F

)
dσ

= − 1√
2

\
MST

(
|x| |ut|2 + |x| |vt|2 + 2utx · ∇u+ 2utx · ∇v +

n− 1
2

utu

+
n− 1
2

vtv +
1

|x| (x · ∇u)
2 +
1

|x| (x · ∇v)
2

+
n− 1
2

u

|x| x · ∇u+
n− 1
2

v

|x| x · ∇v
)
dσ

= − 1√
2

\
MST

[
|x|
(
x · ∇u
|x| + ut

)2
+
n− 1
2

u

(
x · ∇u
|x| + ut

)

+ |x|
(
x · ∇v
|x| + vt

)2
+
n− 1
2

v

(
x · ∇v
|x| + vt

)]
dσ,
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where |u′|2 = |∇u|2 + |ut|2. If we parameterize MST by y 7→ (y, |y|) and set
u(y) = u(y, |y|), v(y) = v(y, |y|), then

dσ =
√
2 dy,

ur ≡ y ·
∇u
|y| =

x · ∇u
|x| + ut = ur + ut,

vr ≡ y ·
∇v
|y| =

x · ∇v
|x| + vt = vr + vt

where ∇u =∑nj=0 ∂ju and ∇u =
∑n
j=1 ∂ju. Therefore

I3 = −
S\
T

\
Σn−1

(
ru2r +

n− 1
2

uur + rv
2
r +

n− 1
2

v vr

)
rn−1 dr dσ(ω)(2.13)

= −
S\
T

\
Σn−1

r

(∣∣∣∣ur +
n− 1
2r

u

∣∣∣∣
2

+

∣∣∣∣vr +
n− 1
2r

v

∣∣∣∣
2)
rn−1 dr dσ(ω)

+

S\
T

\
Σn−1

n− 1
2
(uur + v vr)r

n−1 dr dσ(ω)

+

S\
T

\
Σn−1

(n− 1)2
4

(u2 + v2)rn−2 dr dσ(ω).

Note that
S\
T

\
Σn−1

n− 1
2

uurr
n−1 dr dσ(ω)

=
1

2

\
Σn−1

S\
T

n− 1
2

∂r(u
2(rω))rn−1 dr dσ(ω)

=
1

2

\
Σn−1

n− 1
2

u2(Sω)Sn−1 dσ(ω)− 1
2

\
Σn−1

n− 1
2

u2(Tω)Tn−1 dσ(ω)

−
(
n− 1
2

)2 \
Σn−1

S\
T

u2(rω)rn−2 dr dσ(ω)

=
n− 1
4

\
∂DS

u2 dσ − n− 1
4

\
∂DT

u2 dσ

− (n− 1)
2

4

\
Σn−1

S\
T

u2(rω)rn−2 dr dσ(ω),

and
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S\
T

\
Σn−1

n− 1
2

vvrr
n−1 dr dσ(ω) =

n− 1
4

\
∂DS

v2 dσ − n− 1
4

\
∂DT

v2 dσ

− (n− 1)
2

4

\
Σn−1

S\
T

v2(rω)rn−2 dr dσ(ω).

Hence, the expression in (2.13) reduces to

I3 = −
S\
T

\
Σn−1

r

(∣∣∣∣ur +
n− 1
2r

u

∣∣∣∣
2

+

∣∣∣∣vr +
n− 1
2r

v

∣∣∣∣
2)
rn−1 dr dσ(ω)(2.14)

+
n− 1
4

\
∂DS

(u2 + v2) dσ − n− 1
4

\
∂DT

(u2 + v2) dσ.

Next using the fact that |∇µ|2 − µ2r = |∇ωµ|2/r2, we obtain

I1 =
\
DS

(
SQ0 +

n− 1
2

utu+
n− 1
2

vtv

)
dx(2.15)

=
\
DS

{
S

[
1

2
|ut|2 +

1

2

(
ur +

n− 1
2r

u

)2
+
1

2r2
|∇ωu|2

+
1

2
|vt|2 +

1

2

(
vr +

n− 1
2r

v

)2
+
1

2r2
|∇ωv|2 +

1

2
F

]

+ r

(
ur +

n− 1
2r

u

)
ut + r

(
vr +

n− 1
2r

v

)
vt

}
dx

− n− 1
4

\
∂DS

(u2 + v2) dσ +
(n− 1)(n− 3)

8

\
DS

S
|u|2 + |v|2

r2
dx.

Similarly, we have

I2 = −
\
DT

(
TQ0 +

n− 1
2

utu+
n− 1
2

vtv

)
dx(2.16)

= −
\
DT

{
T

[
1

2
|ut|2 +

1

2

(
ur +

n− 1
2r

u

)2
+
1

2r2
|∇ωu|2

+
1

2
|vt|2 +

1

2

(
vr +

n− 1
2r

v

)2
+
1

2r2
|∇ωv|2 +

1

2
F

]

+ r

(
ur +

n− 1
2r

u

)
ut + r

(
vr +

n− 1
2r

v

)
vt

}
dx

+
n− 1
4

\
∂DT

(u2 + v2) dσ − (n− 1)(n− 3)
8

\
DT

T
|u|2 + |v|2

r2
dx.

Finally, assumption (H4) means I4 ≥ 0.
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Now, let T = εS for some 0 < ε < 1. Substituting (2.14)–(2.16) into
(2.11) and using Hardy’s inequality\|µ|2

|x|2 dx ≤ C
\
|∇µ|2 dx

we deduce that

(2.17) S
\
DS

1

2
F dx ≤ CεSE0

+

S\
εS

\
Σn−1

r

(∣∣∣∣ur +
n− 1
2r

u

∣∣∣∣
2

+

∣∣∣∣vr +
n− 1
2r

v

∣∣∣∣
2)
rn−1 dr dσ(ω).

Observe that by direct computation, we have

S\
εS

\
Σn−1

r

(∣∣∣∣ur +
n− 1
2r

u

∣∣∣∣
2

+

∣∣∣∣vr +
n− 1
2r

v

∣∣∣∣
2)
rn−1 dr dσ(ω)

=
1√
2

\
MSεS

r

(∣∣∣∣ur + ut +
n− 1
2r

u

∣∣∣∣
2

+

∣∣∣∣vr + vt +
n− 1
2r

v

∣∣∣∣
2)

dσ

≤
√
2
\
MSεS

r(|ur + ut|2 + |vr + vt|2) dσ

+
2√
2

(
n− 1
2

)2 \
MSεS

r

(∣∣∣∣
u

r

∣∣∣∣
2

+

∣∣∣∣
v

r

∣∣∣∣
2)

dσ

≤
√
2S

\
MSεS

(∣∣∣∣
x

|x| ut +∇u
∣∣∣∣
2

+

∣∣∣∣
x

|x| vt +∇v
∣∣∣∣
2)

dσ

+
(n− 1)2
2
√
2

\
MSεS

(
u2

|x| +
v2

|x|

)
dσ

≡ I + II.

It is easy to see (cf. equation (2.7)) that

I =
√
2S

\
MSεS

(∣∣∣∣
x

|x| ut +∇u
∣∣∣∣
2

+

∣∣∣∣
x

|x| vt +∇v
∣∣∣∣
2)

dσ(2.18)

≤ CS[Flux(u, v;MSεS)],
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and

II =
(n− 1)2
2
√
2

\
MSεS

(
u2

t
+
v2

t

)
dσ =

(n− 1)2
2
√
2

( \
MSεS

t−n/2 dσ
)2/n

(2.19)

×
{( \
MSεS

u2
∗

dσ
)(n−2)/n

+
( \
MSεS

v2
∗

dσ
)(n−2)/n}

≤ C
(S\
0

\
Σn−1

t−n/2tn−1 dt dσ(ω)
)2/n( \

MSεS

(u2
∗

+ v2
∗

) dσ
)(n−2)/n

≤ CS
{ \
MSεS

F

2
dσ

}(n−2)/n
≤ CS[Flux(u, v;MSεS)](n−2)/n.

Substituting estimates (2.18) and (2.19) into (2.17) and dividing by S,
we obtain

(2.20)
\
DS

1

2
F dx ≤ CεE0+C[Flux(u, v;MSεS)]+C[Flux(u, v;MSεS)](n−2)/n.

From (2.6′), letting S →∞ and then ε→ 0, we get (2.9′).
Assumption (H3) and Proposition 2.2 immediately imply the following

result.

Proposition 2.3. Let (u, v) be a solution of (1.1), and let F, F1, F2 sat-
isfy (H2)–(H4). Then

lim
|t|→∞

\
Rn

(|u(x, t)|2∗ + |v(x, t)|2∗) dx = 0.

Proof of Theorem 2.1. We ought to show that u, v ∈ Lq([T0,∞); Ḃ1/2q )
for some T0. By Proposition 2.3, for any fixed ε0 > 0 one can choose T0 such
that \

Rn

(|u(x, t)|2∗ + |v(x, t)|2∗) dx ≤ ε0, ∀t > T0.

As in [3, proof of Proposition 3.1], for every T > T0, we can derive the
inequalities

‖u‖q,T0,T + ‖v‖q,T0,T ≤ CE
1/2
0 + C sup

T0≤t≤T
‖u‖β
L2∗ (Rn)

‖u‖γq,T0,T

+ C sup
T0≤t≤T

‖v‖β
L2∗ (Rn)

‖v‖γq,T0,T

≤ CE1/20 + Cε
β/2∗

0 (‖u‖γq,T0,T + ‖v‖
γ
q,T0,T

)

≤ CE1/20 + Cε
β/2∗

0 (‖u‖q,T0,T + |v‖q,T0,T )γ ,
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where ‖u‖q,T0,T = (
TT
T0
‖u(t)‖q

Ḃ
1/2
q

dt)1/q and

β = (1− α)(2∗ − 2) > 0, γ = α(2∗ − 2) + 1 > 1, α = (n− 2)/(n− 1).
For ε0 sufficiently small, the above inequality implies

‖u‖q,T0,T + ‖v‖q,T0,T ≤ 2CE0
for all T > T0. Letting T →∞ we complete the proof of Theorem 2.1.

3. Scattering theory. As we have proved the global-in-time existence
of solutions to problem (1.1), the following questions arise. What is the
asymptotic behavior of the solution (u, v) as t→ ±∞? Does it converge to
a solution of the corresponding free system

(3.1)

{
utt −∆u = 0,
vtt −∆v = 0,

in the sense of Ḣ1 × Ḣ1 norm? These questions will be discussed in this
section; in other words, we will construct the scattering operator for problem
(1.1) and we shall study its properties.

For simplicity of exposition, let (u±, v±) be the solutions of system (3.1)
with the initial data (ϕ±1 , ϕ

±
2 , ψ

±
1 , ψ

±
2 ), respectively. We also denote by (u, v)

the solution to problem (1.1) with the initial data (ϕ1, ϕ2, ψ1, ψ2).

Definition.

(a) If for any (ϕ±1 , ϕ
±
2 , ψ

±
1 , ψ

±
2 ) ∈ X = Ḣ1 × Ḣ1 × L2 × L2(Rn) there

exists (ϕ1, ϕ2, ψ1, ψ2) ∈ X such that
(3.2) ‖(u, v, ut, vt)− (u±, v±, u±t , v±t )‖X → 0 as t→ ±∞,

then problem (1.1) is said to have the wave operator. The functions
(ϕ±1 , ϕ

±
2 , ψ

±
1 , ψ

±
2 ) are called the asymptotic states of (u, v, ut, vt) at

t = ±∞.
(b) If for any (ϕ1, ϕ2, ψ1, ψ2) ∈ X, there exist (ϕ±1 , ϕ±2 , ψ±1 , ψ±2 ) ∈ X such
that (3.2) holds true, then problem (1.1) is said to be asymptotically
complete.

If the conditions in both (a) and (b) hold true, then the wave operators
W± are

W+(ϕ
+
1 , ϕ

+
2 , ψ

+
1 , ψ

+
2 ) =W−(ϕ

−
1 , ϕ

−
2 , ψ

−
1 , ψ

−
2 ) = (ϕ1, ϕ2, ψ1, ψ2).

The main result of this section reads as follows.

Theorem 3.1. The wave operators W± and the scattering operator S ≡
W−1+ ◦W− for problem (1.1) exist and are isomorphisms of X = Ḣ1× Ḣ1×
L2 × L2(Rn).



NON-LINEAR WAVE EQUATIONS 79

Proof. We set A = (−∆)1/2 and define
(3.3) U0(t)(ϕ1, ϕ2, ψ1, ψ2)

≡ (cos(At)ϕ1 +A−1 sin(At)ψ1, cos(At)ϕ2 +A−1 sin(At)ψ2,
−A sin(At)ϕ1 + cos(At)ψ1,−A sin(At)ϕ2 + cos(At)ψ2).

It is well known that the solution to the free system associated with (1.1),

(3.4)





µtt −∆µ = 0,
νtt −∆ν = 0,
µ(0) = ϕ1(x), µt(0) = ψ1(x),

ν(0) = ϕ2(x), νt(0) = ψ2(x),

is given by

(3.5) (µ, ν) = (cos(At)ϕ1 +A
−1 sin(At)ψ1, cos(At)ϕ2 +A

−1 sin(At)ψ2).

Hence,

(3.6) (µ, ν, µt, νt) = U0(t)(ϕ1, ϕ2, ψ1, ψ2).

Step 1: Asymptotic completeness. For any (ϕ1, ϕ2, ψ1, ψ2) ∈ X, let
(3.7) (u±(t), v±(t), u±t (t), v

±
t (t)) = U0(t)(ϕ1, ϕ2, ψ1, ψ2)

−
±∞\
0

U0(t− τ)(0, 0, F1(|u|2, |v|2)u, F2(|u|2, |v|2)v) dτ.

Combining the Strichartz estimates, the nonlinear estimates from [3, Propo-
sition 3.1], and Proposition 2.3, we obtain

(3.8) ‖(u, v, ut, vt)− (u±, v±, u±t , v±t )‖X

≤
∥∥∥
±∞\
t

(
A−1 sinA(t− τ)F1(|u|2, |v|2)u,A−1 sinA(t− τ)F2(|u|2, |v|2)v,

cosA(t− τ)F1(|u|2, |v|2)u, cosA(t− τ)F2(|u|2, |v|2)v
)
dτ
∥∥∥
X

≤ C sup
τ∈[t,±∞)

‖u‖β
L2∗
‖u‖γ
Lq([t,±∞);Ḃ

1/2
q )

+ C sup
τ∈[t,±∞)

‖v‖β
L2
∗‖v‖γ

Lq([t,±∞);Ḃ
1/2
q )
→ 0 as t→ ±∞

where

1

q
=

n− 1
2(n+ 1)

, α =
n− 2
n− 1 , β = (1− α)(2∗ − 2) > 0,

γ = α(2∗ − 2) + 1 > 1.
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If we introduce the notation

(3.9) (Φ±1 , Φ
±
2 , Ψ

±
1 , Ψ

±
2 )

=

±∞\
0

(
−A−1 sin(Aτ)F1(|u|2, |v|2)u,−A−1 sin(Aτ)F2(|u|2, |v|2)v,

cos(Aτ)F1(|u|2, |v|2)u, cos(Aτ)F2(|u|2, |v|2)v
)
dτ,

then (3.7) reduces to

(u±(t), v±(t), u±t (t), v
±
t (t)) = U0(t)(ϕ1 − Φ±1 , ϕ2 − Φ±2 , ψ1 − Ψ±1 , ψ2 − Ψ±2 ).

Therefore, we can define the operator W̃−1± on X by the formula

(ϕ±1 , ϕ
±
2 , ψ

±
1 , ψ

±
2 ) = W̃

−1
± (ϕ1, ϕ2, ψ1, ψ2)(3.10)

≡ (ϕ1 − Φ±1 , ϕ2 − Φ±2 , ψ1 − Ψ±1 , ψ2 − Ψ±2 ).

Step 2:Wave operator. For any (ϕ±1 , ϕ
±
2 , ψ

±
1 , ψ

±
2 ) ∈ X, the existence of

the wave operators is equivalent to the existence of solutions to the integral
equation

(3.11) (u, v, ut, vt) = U0(t)(ϕ
±
1 , ϕ

±
2 , ψ

±
1 , ψ

±
2 )

+

±∞\
t

U0(t− τ)(0, 0, F1(|u|2, |v|2)u, F2(|u|2, |v|2)v) dτ

which satisfy

lim
t→±∞

∥∥∥
±∞\
t

U0(t− τ)(0, 0, F1(|u|2, |v|2)u, F2(|u|2, |v|2)v) dτ
∥∥∥
X
= 0.

To deal with (3.11), consider the space

Y(I) = {(u, v, ut, vt) ∈ C(I;X) :
(u, v, ut, vt) ∈ Lq(I; Ḃ1/2q × Ḃ1/2q × Ḃ−1/2q × Ḃ−1/2q )}

as well as its closed subset

B = {(u, v, ut, vt) ∈ Y(I) : ‖(u, v, ut, vt)‖Y(I) ≤ Ct0},
where either I = [t0,∞) or I = (−∞,−t0] and lim|t0|→∞ Ct0 = 0 for

Ct0 = ‖U0(t0)(ϕ±1 , ϕ±2 , ψ±1 , ψ±2 )‖Lq(I;Ḃ1/2q ×Ḃ
1/2
q ×Ḃ

−1/2
q ×Ḃ

−1/2
q )

.

By a standard argument, we can get the local well-posedness of (3.11) in
B ⊂ Y(I). Therefore, if we define the wave operators by

W± : (ϕ
±
1 , ϕ

±
2 , ψ

±
1 , ψ

±
2 ) 7→ (ϕ1, ϕ2, ψ1, ψ2) = (u(0), v(0), ut(0), vt(0)),
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then W−1± exists and is equal to W̃
−1
± in (3.10). In fact, the initial data of

equation (3.11) are given by

(ϕ̃1, ϕ̃2, ψ̃1, ψ̃2) = (ϕ
±
1 , ϕ

±
2 , ψ

±
1 , ψ

±
2 )

+

±∞\
0

U0(−τ)(0, 0, F1(|u|2, |v|2)u, F2(|u|2, |v|2)v) dτ.

Hence, we obtain from (3.9) the identity

(ϕ±1 , ϕ
±
2 , ψ

±
1 , ψ

±
2 ) = (ϕ̃1 − Φ±1 , ϕ̃2 − Φ±2 , ψ̃1 − Ψ±1 , ψ̃2 − Ψ±2 ),

which means W± is invertible. Thus W
−1
± = W̃−1± are isomorphisms on

X = Ḣ1×Ḣ1×L2×L2. Consequently, the scattering operator S =W−1+ ◦W−
is also an isomorphism on X.
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