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Abstract. We obtain interpolation inequalities for derivatives:
[ MoV 1 @) do < C[{ My (@1 (2, 171, 1V 1)) di 4 | Mr (@, 11,192 1)) d]

and their counterparts expressed in Orlicz norms:

IV f1tg.e) < ClI@r(, [£1, 1V Dl o) D22, 111V D)

where || - ||(s,x) is the Orlicz norm relative to the function M, .(t) = t*(In(2 +¢))". The
parameters p, q,r, «, 3,y and the Carathéodory functions @1, ®s are supposed to satisfy
certain consistency conditions. Some of the classical Gagliardo—Nirenberg inequalities fol-
low as a special case. Gagliardo—Nirenberg inequalities in logarithmic spaces with higher
order gradients are also considered.

1. Introduction and statement of results. The purpose of this paper
is to obtain variants of interpolation inequalities for derivatives:

—k/m m k/m
(1.1) IV® fllze < CIFI IV £
(where f € I/Vlznc’l(]R”), the symbol V¥ f stands for the k-th gradient of
f:R™ =R, ie. the vector (D®f)q=k, P, q,7 € [1,00], % = (1 — %)% + %%,

0 < k < m and k,m are positive integers), expressed in logarithmic-type
Orlicz spaces instead of LP, L9 and L".

Inequalities of the form (1.1) have been extensively investigated and have
evolved in many directions (see [5, 6, 8, 10, 11, 19, 21, 24, 27, 29, 30, 33, 36]
and their references), but their generalizations to Orlicz spaces are nearly

missing in the literature. In 1996 Bang [1] (see also [2-4|) proved variants of
(1.1) for a one-variable function, within the same Orlicz space L.
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The authors have recently obtained inequalities of the form
(1:2) MV ) de < C(§HS) do+§ 79 5] da),
(1.3) IV Flfary < ClAln IV £l

for functions of n variables in Orlicz spaces LM, L¥ and L7 defined by
possibly distinct N-functions M, H,J which satisfy certain compatibility
conditions (see [26]). In this work we adapt this abstract approach to the
N-functions Mj . (t) = t*(In(2 + t))", with related Orlicz norms denoted by
- e

%he) parameters in Theorems 1.1-1.3 below will be subject to the follow-
ing two consistency conditions:

(A) B,veR, pr>1,(¢g>2,a€Ror ¢g=2,a>0)and

2 1 1 2«
2_1, 12 0,1

q p T oq p r 1 1
(B) 6,7€R,a<0,1<p,7“,q:2,;—i—;:l,ﬁ(r—l)—i—’yZO.

)

We are mostly concerned with logarithmic variants of inequality (1.1) in
the case when k = 1, m = 2. One of our results is the following logarithmic
variant of the Gagliardo—Nirenberg inequality.

THEOREM 1.1. Suppose that p,q,r,a, 3,7 are real numbers such that
Condition (A) or (B) is satisfied. Then for any smooth function f : R™ — R
with bounded support one has

(1) [IVA 2 + V)" do
< C[fIAPanE@+ 1) o+ [I9@ £ (n(2 + [V 1)) da]

and also

(1.5) IV f 1.0y < CU Nl IV Fll
with a constant C independent of f.

In the particular case a = 8 = v = 0, we obtain the classical Gagliardo—
Nirenberg inequality (1.1) restricted here to ¢ > 2, while for p = g =1 > 2,
a = 3 = 7 (negative values of a permitted only for ¢ > 2) and a scalar
function f, we retrieve Bang’s result from [1]. Observe that ¢ is in this case
the harmonic mean of p and r, and if p = ¢ = r and (A) holds then « does
not exceed the arithmetic mean of 5 and ~.

The special cases of (1.4) when «, (3 or 7 is zero follow from our previ-
ous work [25], where we dealt with variants of (1.4) in logarithmic spaces
L*(In(p+ L*))* with p € {1, 2}, under the restriction that one of the spaces
considered: for f, |V f| or [V f|, was the homogeneous space L° (see Re-
mark 4.3).
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We will prove the following more general variant of Theorem 1.1:

THEOREM 1.2. Suppose that p,q,r,a, 3,7 are real numbers satisfying
(A) or (B) and let @1,P3 : R"xR? — R be Carathéodory functions (i.e. mea-
surable with respect to x € R™ and continuous with respect to (A1, \2) € R?)
such that ®q(x, A\, \2)Pa(x, A1, A2) = A A2 a.e. Take any smooth function
f:R™ — R with bounded support. Then, setting

wi(2) = D1, | [, IVESD),  wal) = Do, |£1, VP 1)),

we have
(1.6)  [|Mya(VF(@)]) do < C|[ My(wi () do + | My (ws(2)) da,
and also
(1.7) IV 12,0 < Cllwtllips) lwsl e,
both inequalities holding with a constant C' independent of f.
For @1 (x, A1, Aa) = w(@)AA2, Bz, Ay, X)) = A" A7% where

w(z)
w : R" — (0,00) is a measurable, a.e. positive function, we obtain the
following theorem.

THEOREM 1.3. Suppose that p,q,r,a, 3,7 are given real numbers such
that Condition (A) or (B) is satisfied, let (61,02) € [0,1]%\ {(0,0),(1,1)}
and let w be an arbitrary a.e. positive measurable function. Then for any
smooth function f :R"™ — R with bounded support one has

(18)  [Mya(| V1)) do
< C [ My (L1719 f1%0) da + M (110 VO f 207 dr],

and also
(1.9) [IVFIZ,0) < CHATIV® F20] o) | AT 10207,
both inequalities holding with a constant C independent of f, (01,62) and w.

Observe that Theorem 1.1 is a particular case of Theorem 1.3 (it corre-
sponds to #; = 1, 63 = 0 and w = 1), but Theorem 1.3 (and so also Theorem
1.2) is more general.

Yet another choice of parameters: 61 =6, =1/2, p=qg=r,a =05 =1
and w = 1 in Theorem 1.3 yields the following result.

THEOREM 1.4. Suppose that either ¢ > 2, € R or ¢ = 2, > 0. Then
for every smooth function f:R"™ — R with bounded support we have

(1.10) VMo (IV£]) do < C\ Moo (VF VO f]) do,

and also

(1.11) IV £llge) < CIVIFIVE £l (g0

both inequalities holding with a constant C' independent of f.
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For completeness we write down the statement of Theorem 1.3 in homo-
geneous spaces (« = =7 =0).

COROLLARY 1.1. If p,q,r are real numbers such that ¢ > 2, p,7 > 1 and
2/q=1/p+1/r, then for any (61,02) € [0,1]?\ {(0,0), (1,1)}, f € C§°(R")
and any a.e. positive measurable function w we have

(1.12) (S\Vf\de)Q/q
1r

1/
< (S v o dn) (Y1109 oy )
with a constant C independent of f, (01,02) and w.
We also point out two special cases of Corollary 1.1.

COROLLARY 1.2 (0 =0 = 1/2, w =1, p=q=7). If ¢ > 2 and
f € CF(R"), then

JIVrltde < CY (VL) dr,
with a constant C independent of f.

COROLLARY 1.3 (03 = 0). If p,q,r are real numbers such that q > 2,
p,r>1and 2/q = 1/p+ 1/r, then for any 6 € [0,1], f € C§°(R™) and an
arbitrary measure p(dx) = w(x) dz with a positive weight w, we have

w13 (§vsrar)” < o(§reman) " (Jam=v@ o)

with a constant C independent of f, 0 and w.

Note that on the right hand side of (1.13) we can have the terms {|f|* du
with s = fp smaller than 1 and an arbitrary weighted measure p(dz) =
w(z)dr, with a positive weight w. In that case ||f|[rs = (§ | £|® dp)'/* is no
longer a norm.

In this paper we deal mostly with derivatives of order 0, 1 and 2, but some
generalizations to higher order derivatives are also possible. In Theorem 4.3
we generalize some cases of Theorem 1.1 to higher order derivatives. We also
obtain stronger variants of inequalities (1.4), (1.6) and (1.8) (Theorem 4.1).
Moreover, we get nonlinear variants of inequalities (1.6), namely inequalities
between Young functionals I} = (M, (|Vf|)dz, Iy = (M, g(w;)dz and
Iy = \ M, (ws)dz, with w; and ws introduced in Theorem 1.2, where Ij
is estimated from above by a nonlinear expression involving Iy and Is. The
precise statement is given in Theorem 4.2.

In the proof of Theorem 1.3 we adapt abstract techniques described in
[26]. These techniques specialized to logarithmic Orlicz spaces require an
additional and independent analysis (see also Remark 4.3). The results ob-
tained (Theorems 1.1-1.4) are in general new, while the results in homo-
geneous spaces (Corollaries 1.1-1.3) are covered by the abstract approach
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of [26]. On the other hand, the additional results in Section 4 (Theorems
4.1-4.3) are based on the special structure of logarithmic Orlicz spaces and
have no abstract counterparts in [26]. In our opinion, the importance of log-
arithmic Orlicz spaces in various disciplines of analysis and PDE’s (e.g. 7],
[9], [12, Section 4.3], [13]-[18], [20], [22], [23], [31], [37, Theorems 11.7 and
Corollary 15.4], and references therein) justifies separate investigation of the
logarithmic-type Gagliardo—Nirenberg inequalities.

Notation. If A is a vector or a matrix, we denote by |A| its Euclidean
norm induced by the standard scalar product (,-), while A’ stands for its
transposition.

By ¢* we will denote the Holder conjugate of 1 < g < oo, and by C' a
general constant whose value can change even within the same line. When
the domain of integration is not specified, it is meant to be the whole of R".
If F is an N-function, we denote by F* its Legendre transform, defined by
F*(t) = sup,sofst — F(s)].

Let M, N : [0,00) — [0,00) be two given functions. If N(\) < CM (kX)
for A > Ao (resp. for 0 < A < Ag; for A > 0) with constants C, k independent
of z, then we say that M dominates N at infinity (resp. near zero; globally).
This relation is denoted by M > N. We say that M is equivalent to N
(written M ~ N) when M = N and N = M. It is not hard to check (see e.g.
Theorems 2.1 and 3.1 of [28]) that this domination is reversed by taking the
Legendre transform of N-functions: M >~ N (at infinity, near zero, globally)
implies N* = M* (at infinity, near zero, globally). Note that if M satisfies
the Ag-condition then M > N if and only if N(\) < CM()\) with some
constant C independent of .

2. Preliminaries. We will be dealing with the functions
(2.1) Mg o(t) :=t1(In(2+¢))* whereg>1, a€R.

Within this range of parameters ¢, « they are all N-functions (i.e. convex,
M, o(0) =0, limy—04 My o(t)/t =0, limy_,oo My o(t)/t = 00). Therefore the
set

Liga)= {f : R™ — R measurable:
for some K > 0, SMq,a(|f(as)|/K) dzr < oo}

becomes a Banach space when equipped with the Luxemburg norm

1 lligy := it { K >0+ | Myl f )|/ K) d < 1.

This is an Orlicz space defined by M, .. Note that for o = 0 it coincides
with the usual L7 space. The functions M, . satisfy the As-condition, i.e.
M, o(2t) < CM,(t) with a constant C' = C(q, ) independent of ¢t > 0. It



98 A. KALAMAJSKA AND K. PIETRUSKA-PALUBA

is known that
|f(2)]

22) Wq’“(ﬂfn(q,a)

For details we refer the reader to [28, Chapter 1].
For later use observe that

(2.3) My,a © My ~ Moy ,gr+a-

) dr =1, [ flger < | Moo(lf@)])da+ 1.

Finally, let us prove a lemma.

LEMMA 2.1. Suppose that > 1, k € R and k > k1 = —k(u* —1). Then
there exists a constant C' > 0 such that for all u,v > 0,

(2.4) uv < My, . (u) + C M- z(v).
Proof. This is immediate: as M, .(u) ~ u*(Inu)® for u large, we have

M}, .(v) ~ My i, (v) for v large (see [28, Theorem 7.1]). On the other hand,

for u small we have M), ,,(u) ~ u”, thus M (v) ~ V"~ My 5, for v small.
Therefore M}, . ~ M ., globally.
If K > k1, then M« ; dominates M« ., globally, and so, for u,v > 0,

uv < My, o (u) + M:,m(v) < My(u) + CMys oy (v) < My i(u) + C My 5(v)
with a constant C' > 0. u

3. Proofs of Theorems 1.1-1.4. As indicated in Section 1, we only
need to show Theorem 1.2. The remaining results: Theorems 1.1, 1.3, 1.4
(together with Corollaries 1.1-1.3) follow as consequences.

Proof of Theorem 1.2. The proof is carried out in several steps.
STEP 1. We show that
(81 I:={Mua(VS)de < O\ My2a(VIIFIVEf|do

with a constant C' not depending on f (with a slight abuse of notation: the
number ¢ — 2 can be smaller than 1 here, but the formula (2.1) defining
M,_5 o remains valid).

The proof of this inequality is basically taken from [25]; we sketch it here
to make the paper self-contained.

As My o(|A]) = Mg—2.a(A) (A, A), where A = (A1, ..., \y), after integrating
by parts we obtain

(32) I = - {div(S(V(2)))f(x) dz,

where S = (51,...,5,) and S;(A) = My_2.4(|A[)A; (since ¢ > 2 this inte-
gration by parts is allowed according to the Nikodym ACL Characterization
Theorem, see [32, Th. 2, Sec. 1.1.3]).
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In particular S;(Vf) = M, Qa(]Vf])am , and so

M _5(IVf])
!Vf!
Elementarily we check that M, , ,(t) ~ M2 4(t)t~! on the positive half-line.
Moreover |[vtAv| < |A]|v|? and ltr A| < /n|A| (so that |Af| < v/ |V f)).

This gives

div S(Vf) = VA VSV ] + My—2,0(V ) A

[div S(VF)| < CMya,a([V DIV S,

and together with (3.2) completes the proof of (3.1).

STEP 2. Now assume that (A) holds. We show that in this case, for all
u,v,w > 0,
(3.3) Mg—2.a(uw)ow < Mga(u) + C[Myp(v) + Myy(w)].

To see this, first observe that
(3.4) Mq—27a(5)t2 < Mga(s) + Mga(t).
This is immediate: if ¢ < s, then M,_5 4 (s)t? = M, (s )(t/s) My o(s).
Since My, is increasing, for s < ¢ one has M, 2 (s s)t? < M, ga( 2 =
Mqva(t)'

Next, take u = 2p/q, k = (8 — «)/q, K = (7 — «)/q. Under current re-
striction on the parameters, it is not hard to check that K >x;=—r(u* —1).

Therefore the assumptions of Lemma 2.1 are satisfied and (2.4) can be ap-
plied, resulting in the following series of inequalities:

My—2.0(u)vw < My o(u) + CMyo(vV/ow)
< My (u) + CMy o (M (V) + My 5(Vw))
< Mq,a( ) + C[ g, © M,u,m(\/;) + Mq,a o M,u*,E(\/E)]

(the last inequality follows from the fact that for every nondecreasing func-
tion F' satisfying the As-condition one has F'(a + b) < F(2max(a,b)) <
F(2a)+ F(2b) < C(F(a)+ F(b))). Using now the property (2.3) we see that

My,o 0 M, (v/v) ~ My 3(v) and Mg o 0 M« (v/w) ~ M, (w), so that (3.3)
follows.

STEP 3: Conclusion under condition (A). Applying (3.1) we get
1
(3-5) I< §SMq—2,a(|Vf|) (2C|f1 IV f) do

Since, by definition of wy and wy, |f(z)||[V® f(z)| = wi(z)ws(z), applying
(3.3) and using the Ag-condition we find that I is not greater than

31+ CYMyp(wa(2) da + O My (w(w) i,
(with C possibly different than in (3.5)), which after rearranging yields (1.6).
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In order to prove (1.7), fix t1,t2 > 0 and write the inequality (3.5) for
f = f/tita. We get

I < S\ My oIV F1) (200 @) da,

N —

where w; = w; /t? (because 1FIIVOf| = @y10).
Using (3.3) and repeating the subsequent steps with f, w; and we replaced
by f,w; and wy we obtain

[ My a(IV]]) dz < c(g M, 5(1) da + | My () d:v),

with a constant C' independent of f and t1,t3. Now choose 1 = |lw1l|(4.5)
t5 = |lwall()- As t; = 0 implies wiwy = 0, which by (3.1) forces f = 0
(as f is compactly supported and smooth), we can assume that ¢1,ty > 0.
Moreover, we have {M,g(wi)dx = §M,sz(wi/|lwilpe)de = 1, and
similarly § M, (W) dz = § M, (wa/||will(ry))dz = 1. We end up with
{Myo(|Vfl)dz < C. This together with (2.2) gives ||V f]ga) < C + 1,
so that

IV 1) < (C+ Dllwills) lw2lleq-

STEP 4: Conclusion under condition (B). First, apply (3.1), but instead
of using (3.3) observe that for ¢ = 2 and a < 0 the function M, o, is
bounded. Therefore (using the same notation as above)

I§08|f| ]V(Q)f|d:r:C’Sw1w2dx.

The conditions imposed on the parameters § and « imply that (see Lem-
ma 2.1) wiwe < M, g(w1) + C Mg (w2), and consequently

1< C([Mypwr) do+ My (w3) do),

which proves (1.6) in this case. The proof of (1.7) goes now along the same
lines as in Step 3 and so we skip it. =

4. Extensions and remarks. We start with the following result which
shows that inequality (1.6) in Theorem 1.2 and its special variants: inequal-
ities (1.4) and (1.8), can be transformed into a stronger form, where one of
the summands can be made arbitrarily small. We obtain:

THEOREM 4.1. Suppose that p,q,r,a, 3,7 are real numbers satisfying
(A) or (B) and let &1, 5 : R* x R? — R be Carathéodory functions such that
D1(x, A1, A2)Pa(, A1, A2) = M A2 a.e. Take any smooth function f: R™ — R
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with bounded support and define
wi(z) = D1z, S|, IVOS)),  wale) = Sa(a, |£], VP ),
Ms K 0 > 0,
(4.1) ha e (6) :{ A0 fors
’ *In(2+4+1/6)~"% for k <O.
Then there exists a constant C' = C(8,7) such that for any § > 0,

(42) (M9 7)) do
< C(po0) | My, 501 (2)) da + By (671) | My (w2(w)) ).

In particular, for every € > 0 there exists a constant C., depending on
e, p, 1,0 and vy, such that

43)  \Myo(IVf(2)]) do < e\ M, p(wi (2)) dz + C- | My (wa () da,
(44) [ Myo(|Vf(2)])de < C\ M, g(wi(2)) do + | M, (wa(2)) da.

Proof. Take any § > 0 and apply (1.6) with w; = dw; and wy = wa/0
replacing wy and wsy. Then it suffices to prove that for s > 1 and k € R we
have

(4.5) M; 1 (0X) < Chg i (6)Ms . (N)  for 6,A >0,
with C' depending on x only. To obtain (4.5), first note that
(4.6) In(2460A) < Cln(2+6)In(2 + A),

with C independent of § and A. Indeed, if § < A, then the left hand side is
not greater than In(2 + A?) ~ In(2 + A). Also, In(2 + 6) > In2 > 0, which
completes the proof of (4.6).
Now (4.5) follows immediately from (4.6) when x > 0, while for negative
k we have
In(2 + M) \" In(2+A)\ "
M, (0N) = 8| —— ) Msw(N) <06° — M (A
#(03) <ln(2+)\)) <) (i‘i%ln@—l—é)\) <)
In(2+ A6~1) > "
< 0% sup ————— se(A
- <)\>IS In(2 4+ A) )
< C6¥(In(2+ 67 1)) T Mg (M),

where for the last inequality we have used (4.6).

This gives (4.2). To derive (4.3) and (4.4) we observe that lims_. s . (9)
= 0, so we can find § such that Chy, 3(5) = & (for (4.3)) or Ch,,(67!) = ¢
(for (4.4)). =

Now we will derive multiplicative variants of inequality (1.6) in Theo-
rem 1.2, involving not Orlicz norms, but Orlicz functionals. Consequently,
inequalities (1.4) and (1.8) will also have multiplicative counterparts involv-
ing Orlicz functionals.
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The result presented below is restricted to the case 5,7 > 0. If 3 <0 or
v < 0, then a similar statement holds, but with the third and fourth factors
in (4.7) different.

THEOREM 4.2. Suppose that p,q,r,a, 3,7 are real numbers satisfying
(A) or (B), 8,7 > 0, and let 1, 2, w1, we and [ be as in Theorem 4.1.
Then there exists a constant C = C(p,r,3,7) > 0 such that

@n) (M Vs )

< ([ s (@) dr) " ([0 s(a)) i) "

y <m<2+ SMpmwl(x))da:) )W (1n<2+ SMrn(wg(x))dx))ﬁ/p.

[ My (ws(2)) da § My 5(w1 () do

Proof. Set

a =\ Myo(|Vf(2)]) dz, b:= C\M,s(wi(2))dz, c:=C|M,,(ws(x))dx,
where C' is the constant from (4.2). Then (4.2) reads

(4.8) a < My 5(8)b+ My (67",

where 9 > 0 can be taken arbitrary.
Now observe that M , () ~ M . ())/A, and so the minimum of the right

hand side of (4.8) with respect to 6 > 0 is achieved at a point Jy for which
c c M, 5(N)

4. — < R(d9) < Cy— h A) 1= 222

(4.9) 4 = R(dp) < Cy ;) Where R(X) My ()

with constants C7,Cy independent of ¢ and b. As

A 1 for A cl
~Y = t )

WP~ @y et
and R(\) ~ APt (In \)? for A large, and (A|ln A|)~! ~ A/[In \| for both small
and large values of \ (here ¢! denotes the inverse function to ¢), we verify
that the inverse function to R satisfies

R())

_ (In(2 + A7) 1/(p+r)
(4.10) R\ ~ ()\ m) :
Using (4.6) and (4.9) we establish that
(4.11) C1R Y (c/b) < 8y < CoR™(¢/b),

with 6’1, 5’2 independent of b and c¢. Moreover, we have
Br

(4.12) M, 50 R Y(A) ~ AP (In(2 + A1) 7 (In(2 + A)) 7
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On the other hand, according to (4.11), and using the fact that M), g satisfies
the As-condition, we get

(4.13) M, 5(50)b < My, 5(CoR™ (c/b))b < C3(M, 50 R~ (c/b))b := A,
and by (4.9),
(4.14) M, (65 )e < CT M, 5(50)b < O LA
Now we apply (4.8) with § = dp, and also (4.13), (4.14) and (4.12), to get
a < M, 5(00)b+ M, (5y he<cyA
< Cs b7 e (In(2 + b/c)) 757 (In(2 + ¢ /b)) 777,

with C5 independent of b and ¢, which completes the proof of (4.7). m

REMARK 4.1. Note that for 5 =~ = 0, (4.7) is exactly the Gagliardo—
Nirenberg inequality restricted to g > 2.

The results of Theorem 1.1 can be iterated to higher derivatives. In par-
ticular we obtain the following theorem:

THEOREM 4.3. Suppose that k,m € Z4, 0 < k < m and p,q,r,, 3,7y
are real numbers such that

(4.15) 1:(1—E>1+ﬁ1, > 2, 9§<1_£>§+£
q m

q m/)p mrTr m/)p

Then for any smooth function f : R" — R with bounded support,
(416) | MoV f(2)]) da

< O (M, (17 @)]) dz + | My (V) f()]) i),
417)  [IV® @)l < CIL N5 " IV FIE,

A

with a constant C independent of f.

Proof. We give the proof of (4.3) only, leaving (4.17) to the reader. As
M, 5 < My whenever a < q, it suffices to prove the theorem under the
condition

1 kN1 k1 k k
(4.18) —:<1——>—+—_, P> 2, 9:<1__>§+_
q m

212

q m)p mr m)p

For simplicity we will use the following notation. Let D = {(

R\ {0}, y € R} and define h: D — D and G, : R* x R? — R? forsE[O 1]
by

(4.19) h<”;> _ (;ji) Gy Re) = shp + (1 — 5)h,
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where A1, Ay € R2. Then conditions (4.18) read

(4.20) h(i) :Gk/m<h<g>,h<;>>, pr>2,v,8€R.

We proceed by induction on m > 2 and prove that for k € {1,...,m—1},
all k,m,q,p,r, o, 3,7 satisfying (4.20) and arbitrary € > 0 there exists a
constant C; = C(e, k, m,p,r,v, ) > 0 such that for all f € C§°(R"),

(4.21) Lo (VW f1) < elys(f1) + Celry (1IN 1)),

where I, .(g) = { M .(|g]) d.

If m =2 and k = 1, then (4.21) is just (4.3) and there is nothing to prove.
Suppose then that (4.21) holds for all m € {2,...,M} and all 0 < k < m,
provided that the parameters k,m, q, p, r, c, 3,y satisfy (4.20). Now we take
m=M+1,0<k<M+1 and set

wn wm (2) s (3)(0))

In particular

=)= () = ()= ()
Qo B) - QM+1 y
To abbreviate, we write Iy, = I, o, (|V* f]). In this notation, the induction
step reduces to the proof of
(423) I <elp+ C€IM+1
with C. = C(e,k, M,p,r,3,7) and for all k € {1,..., M}.
To get it, we first check that ¢; > 2 for ¢ € {0,..., M + 1}, and moreover,
for all s,1,t such that 0 < s <l <t < M 4+ 1 we have

h(W) = Gros (h(R), h(R).
By the inductive assumption, this implies that (4.21) holds true with param-
eters:q:ql,a:al,p:ps,ﬂzas,r:qt,’y:at, k:l—s,m:t—s,

provided 0 < t — s < M. An application of (4.21) to all ¢ = D*f with
|a| = s, with this range of parameters, together with the inequality

Moo (IVOF) S C Y Moo (IVIDf)),

a, lal=s

with C independent of f, implies that once 0 < s < <t < M + 1 and
t — s < M, then we have

(4.24) I <el,+ C.1,
with C. = C(e, s,t,l,p,r, a0, 3). This gives, for all 0 < k < M,
I < 6ly+ Csly < 0lp+ Cg(&[k + CEIM+1)
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for every £, > 0. Choosing ¢ = &5 such that Cse = 1/2 and rearranging
we obtain (4.23) for all 0 < k < M. To get (4.23) with k = M we use the
inequalities
Iy <ely 1 +Cclypr and  Inyyq <61p + Cslyy.
They imply
Ing < ebly+eCslpr + Celprin
for every ,6 > 0. Take € < €5, where g5 satisfies ¢sCs5 = 1/2. After rear-
ranging we obtain
Ing < 2e6ly + 2C 141,

which completes the induction argument and concludes the proof of the
theorem. m

REMARK 4.2. In [26] we have shown that if M is an N-function satisfying
the Ag-condition with M’(t)/t bounded near zero and F is an arbitrary
N-function, then for every f € C5°(R"™) we have

[0V ) dx < C(§ M) do+§ M E (V) dr ),

IV £1Gary < ClUA VP £l

where H(t) = M(F(vt)), J(t) = M(F*(\/t)), and the constant C' is inde-
pendent of f. Analogous results remain true for arbitrary Carathéodory func-
tions @1, Py : R” x R? — R such that &1 (z, A1, A2)P2(x, A1, A2) = A1 Ao and
wi(z) = &1(z,|f], |V S]) and wy(z) = o(z,|f],|VP f]) replacing |f(z)]
and |[V®) f(z)|. In the present paper we have shown that in the particular
case of logarithmic-type functions M (t) = M, (t) and F(t) = M, .(t), with
parameters p and « suitably chosen, we end up with (1.4)—(1.13), illustrating
the abstract approach of [26].

REMARK 4.3. In our previous work [25] we have dealt with the following
logarithmic inequalities:

(425) [V F10ne+ (9 51)° dr

< o((§1smte+ 17 @) IV gl + VOS],
(426)  JIVF15ne+ (V)" d

< (19 11t + 19210y d) 111 + 1£1).
JIv 17z < € (§1 £ n(+ 1£17) do + IV f7(n(p + [V £11))7 de)

where u € {1,2}. In the particular case when p = 2, a = b = 1, by the
classical Young inequality (zy < zP/p + y* /p*, p > 1) applied to (4.25)
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and (4.26) we see that they both imply (1.4) for 3 or 7 equal to 0. The last
inequality in this series with a = b =1 and p = 2 is just (1.4) for a = 0.
Note that (4.25) and (4.26) for a = b =1 and p = 2 are in general stronger
than the special case of (1.4) when (3 or v equals zero. It turns out that the
ranges of parameters in inequalities (4.25) and (4.26) under the restrictions
a =0b=1and y = 2 obtained in [25] and that in (1.4) of this paper are

consistent.
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