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GAGLIARDO�NIRENBERG INEQUALITIESIN LOGARITHMIC SPACESBYAGNIESZKA KA�AMAJSKA and KATARZYNA PIETRUSKA-PA�UBA (Warszawa)Abstra
t. We obtain interpolation inequalities for derivatives:\
Mq,α(|∇f(x)|) dx ≤ C

[\
Mp,β(Φ1(x, |f |, |∇(2)

f |)) dx +
\
Mr,γ(Φ2(x, |f |, |∇(2)

f |)) dx
]
,and their 
ounterparts expressed in Orli
z norms:

‖∇f‖2
(q,α) ≤ C‖Φ1(x, |f |, |∇(2)

f |)‖(p,β) ‖Φ2(x, |f |, |∇(2)
f |)‖(r,γ),where ‖ · ‖(s,κ) is the Orli
z norm relative to the fun
tion Ms,κ(t) = ts(ln(2 + t))κ. Theparameters p, q, r, α, β, γ and the Carathéodory fun
tions Φ1, Φ2 are supposed to satisfy
ertain 
onsisten
y 
onditions. Some of the 
lassi
al Gagliardo�Nirenberg inequalities fol-low as a spe
ial 
ase. Gagliardo�Nirenberg inequalities in logarithmi
 spa
es with higherorder gradients are also 
onsidered.1. Introdu
tion and statement of results. The purpose of this paperis to obtain variants of interpolation inequalities for derivatives:(1.1) ‖∇(k)f‖Lq ≤ C‖f‖1−k/m

Lp ‖∇(m)f‖k/m
Lr(where f ∈ Wm,1

loc (Rn), the symbol ∇(k)f stands for the k-th gradient of
f : R

n → R, i.e. the ve
tor (Dαf)|α|=k, p, q, r ∈ [1,∞], 1
q =

(
1− k

m

)
1
p + k

m
1
r ,

0 < k < m and k, m are positive integers), expressed in logarithmi
-typeOrli
z spa
es instead of Lp, Lq and Lr.Inequalities of the form (1.1) have been extensively investigated and haveevolved in many dire
tions (see [5, 6, 8, 10, 11, 19, 21, 24, 27, 29, 30, 33, 36℄and their referen
es), but their generalizations to Orli
z spa
es are nearlymissing in the literature. In 1996 Bang [1℄ (see also [2�4℄) proved variants of(1.1) for a one-variable fun
tion, within the same Orli
z spa
e LM .
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The authors have re
ently obtained inequalities of the form\

M(|∇f |) dx ≤ C
(\

H(|f |) dx +
\
J(|∇(2)f |) dx

)
,(1.2)

‖∇f‖2
(M) ≤ C‖f‖(H)‖∇(2)f‖(J)(1.3)for fun
tions of n variables in Orli
z spa
es LM , LH and LJ de�ned bypossibly distin
t N-fun
tions M, H, J whi
h satisfy 
ertain 
ompatibility
onditions (see [26℄). In this work we adapt this abstra
t approa
h to theN-fun
tions Ms,κ(t) = ts(ln(2 + t))κ, with related Orli
z norms denoted by

‖ · ‖(s,κ).The parameters in Theorems 1.1�1.3 below will be subje
t to the follow-ing two 
onsisten
y 
onditions:(A) β, γ ∈ R, p, r > 1, (q > 2, α ∈ R or q = 2, α ≥ 0) and
2

q
=

1

p
+

1

r
,
2α

q
≤ β

p
+

γ

r
,(B) β, γ ∈ R, α < 0, 1 < p, r, q = 2,

1

p
+

1

r
= 1, β(r − 1) + γ ≥ 0.We are mostly 
on
erned with logarithmi
 variants of inequality (1.1) inthe 
ase when k = 1, m = 2. One of our results is the following logarithmi
variant of the Gagliardo�Nirenberg inequality.Theorem 1.1. Suppose that p, q, r, α, β, γ are real numbers su
h thatCondition (A) or (B) is satis�ed. Then for any smooth fun
tion f : R

n → Rwith bounded support one has
(1.4)

\
|∇f |q(ln(2 + |∇f |))α dx

≤ C
[\
|f |p(ln(2 + |f |))β dx +

\
|∇(2)f |r(ln(2 + |∇(2)f |))γ dx

]
,and also(1.5) ‖∇f‖2

(q,α) ≤ C‖f‖(p,β)‖ ‖∇(2)f‖(r,γ),with a 
onstant C independent of f .In the parti
ular 
ase α = β = γ = 0, we obtain the 
lassi
al Gagliardo�Nirenberg inequality (1.1) restri
ted here to q ≥ 2, while for p = q = r ≥ 2,
α = β = γ (negative values of α permitted only for q > 2) and a s
alarfun
tion f, we retrieve Bang's result from [1℄. Observe that q is in this 
asethe harmoni
 mean of p and r, and if p = q = r and (A) holds then α doesnot ex
eed the arithmeti
 mean of β and γ.The spe
ial 
ases of (1.4) when α, β or γ is zero follow from our previ-ous work [25℄, where we dealt with variants of (1.4) in logarithmi
 spa
es
Ls(ln(µ+La))α with µ ∈ {1, 2}, under the restri
tion that one of the spa
es
onsidered: for f , |∇f | or |∇(2)f |, was the homogeneous spa
e Ls (see Re-mark 4.3).
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We will prove the following more general variant of Theorem 1.1:Theorem 1.2. Suppose that p, q, r, α, β, γ are real numbers satisfying(A) or (B) and let Φ1, Φ2 : R
n×R

2 → R be Carathéodory fun
tions (i.e. mea-surable with respe
t to x ∈ R
n and 
ontinuous with respe
t to (λ1, λ2) ∈ R

2)su
h that Φ1(x, λ1, λ2)Φ2(x, λ1, λ2) = λ1λ2 a.e. Take any smooth fun
tion
f : R

n → R with bounded support. Then, setting
w1(x) = Φ1(x, |f |, |∇(2)f |), w2(x) = Φ2(x, |f |, |∇(2)f |),we have(1.6) \
Mq,α(|∇f(x)|) dx ≤ C

[\
Mp,β(w1(x)) dx +

\
Mr,γ(w2(x)) dx

]
,and also(1.7) ‖∇f‖2

(q,α) ≤ C‖w1‖(p,β) ‖w2‖(r,γ),both inequalities holding with a 
onstant C independent of f .For Φ1(x, λ1, λ2) = ω(x)λθ1
1 λθ2

2 , Φ2(x, λ1, λ2) = 1
ω(x)λ

1−θ1
1 λ1−θ2

2 , where
ω : R

n → (0,∞) is a measurable, a.e. positive fun
tion, we obtain thefollowing theorem.Theorem 1.3. Suppose that p, q, r, α, β, γ are given real numbers su
hthat Condition (A) or (B) is satis�ed , let (θ1, θ2) ∈ [0, 1]2 \ {(0, 0), (1, 1)}and let ω be an arbitrary a.e. positive measurable fun
tion. Then for anysmooth fun
tion f : R
n → R with bounded support one has

(1.8)
\
Mq,α(|∇f |) dx

≤ C
[\

Mp,β(|f |θ1|∇(2)f |θ2ω) dx +
\
Mr,γ(|f |1−θ1|∇(2)f |1−θ2ω−1) dx

]
,and also(1.9) ‖∇f‖2

(q,α) ≤ C‖ |f |θ1|∇(2)f |θ2ω‖(p,β)‖ ‖ |f |1−θ1|∇(2)f |1−θ2ω−1‖(r,γ),both inequalities holding with a 
onstant C independent of f , (θ1, θ2) and ω.Observe that Theorem 1.1 is a parti
ular 
ase of Theorem 1.3 (it 
orre-sponds to θ1 = 1, θ2 = 0 and ω ≡ 1), but Theorem 1.3 (and so also Theorem1.2) is more general.Yet another 
hoi
e of parameters: θ1 = θ2 = 1/2, p = q = r, α = β = γand ω ≡ 1 in Theorem 1.3 yields the following result.Theorem 1.4. Suppose that either q > 2, α ∈ R or q = 2, α ≥ 0. Thenfor every smooth fun
tion f : R
n → R with bounded support we have(1.10) \

Mq,α(|∇f |) dx ≤ C
\
Mq,α(

√
|f | |∇(2)f |) dx,and also(1.11) ‖∇f‖(q,α) ≤ C‖

√
|f | |∇(2)f | ‖(q,α),both inequalities holding with a 
onstant C independent of f .
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For 
ompleteness we write down the statement of Theorem 1.3 in homo-geneous spa
es (α = β = γ = 0).Corollary 1.1. If p, q, r are real numbers su
h that q ≥ 2, p, r > 1 and

2/q = 1/p + 1/r, then for any (θ1, θ2) ∈ [0, 1]2 \ {(0, 0), (1, 1)}, f ∈ C∞
0 (Rn)and any a.e. positive measurable fun
tion ω we have

(1.12)
(\

|∇f |q dx
)2/q

≤ C
(\

(|f |θ1|∇(2)f |θ2ω)p dx
)1/p(\

(|f |1−θ1|∇(2)f |1−θ2ω−1)r dx
)1/r

,with a 
onstant C independent of f , (θ1, θ2) and ω.We also point out two spe
ial 
ases of Corollary 1.1.Corollary 1.2 (θ1 = θ2 = 1/2, ω ≡ 1, p = q = r). If q ≥ 2 and
f ∈ C∞

0 (Rn), then \
|∇f |q dx ≤ C

\
(|f | |∇(2)f |)q/2 dx,with a 
onstant C independent of f .Corollary 1.3 (θ2 = 0). If p, q, r are real numbers su
h that q ≥ 2,

p, r > 1 and 2/q = 1/p + 1/r, then for any θ ∈ [0, 1], f ∈ C∞
0 (Rn) and anarbitrary measure µ(dx) = ω(x) dx with a positive weight ω, we have

(1.13)
(\

|∇f |q dx
)2/q

≤ C
(\

|f |θp dµ
)1/p(\

(|f |1−θ|∇(2)f |)rω−r/p dx
)1/r

,with a 
onstant C independent of f , θ and ω.Note that on the right hand side of (1.13) we 
an have the terms T|f |s dµwith s = θp smaller than 1 and an arbitrary weighted measure µ(dx) =
ω(x)dx, with a positive weight ω. In that 
ase ‖f‖Ls

µ
= (
T
|f |s dµ)1/s is nolonger a norm.In this paper we deal mostly with derivatives of order 0, 1 and 2, but somegeneralizations to higher order derivatives are also possible. In Theorem 4.3we generalize some 
ases of Theorem 1.1 to higher order derivatives. We alsoobtain stronger variants of inequalities (1.4), (1.6) and (1.8) (Theorem 4.1).Moreover, we get nonlinear variants of inequalities (1.6), namely inequalitiesbetween Young fun
tionals I1 =

T
Mq,α(|∇f |) dx, I0 =

T
Mp,β(w1) dx and

I2 =
T
Mr,γ(w2) dx, with w1 and w2 introdu
ed in Theorem 1.2, where I1is estimated from above by a nonlinear expression involving I0 and I2. Thepre
ise statement is given in Theorem 4.2.In the proof of Theorem 1.3 we adapt abstra
t te
hniques des
ribed in[26℄. These te
hniques spe
ialized to logarithmi
 Orli
z spa
es require anadditional and independent analysis (see also Remark 4.3). The results ob-tained (Theorems 1.1�1.4) are in general new, while the results in homo-geneous spa
es (Corollaries 1.1�1.3) are 
overed by the abstra
t approa
h
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of [26℄. On the other hand, the additional results in Se
tion 4 (Theorems4.1�4.3) are based on the spe
ial stru
ture of logarithmi
 Orli
z spa
es andhave no abstra
t 
ounterparts in [26℄. In our opinion, the importan
e of log-arithmi
 Orli
z spa
es in various dis
iplines of analysis and PDE's (e.g. [7℄,[9℄, [12, Se
tion 4.3℄, [13℄�[18℄, [20℄, [22℄, [23℄, [31℄, [37, Theorems 11.7 andCorollary 15.4℄, and referen
es therein) justi�es separate investigation of thelogarithmi
-type Gagliardo�Nirenberg inequalities.Notation. If A is a ve
tor or a matrix, we denote by |A| its Eu
lideannorm indu
ed by the standard s
alar produ
t 〈·, ·〉, while At stands for itstransposition.By q∗ we will denote the Hölder 
onjugate of 1 < q < ∞, and by C ageneral 
onstant whose value 
an 
hange even within the same line. Whenthe domain of integration is not spe
i�ed, it is meant to be the whole of R
n.If F is an N-fun
tion, we denote by F ∗ its Legendre transform, de�ned by

F ∗(t) = sups≥0[st − F (s)].Let M, N : [0,∞) → [0,∞) be two given fun
tions. If N(λ) ≤ CM(kλ)for λ ≥ λ0 (resp. for 0 ≤ λ ≤ λ0; for λ ≥ 0) with 
onstants C, k independentof x, then we say that M dominates N at in�nity (resp. near zero; globally).This relation is denoted by M ≻ N. We say that M is equivalent to N(written M ∼ N) when M ≻ N and N ≻ M. It is not hard to 
he
k (see e.g.Theorems 2.1 and 3.1 of [28℄) that this domination is reversed by taking theLegendre transform of N-fun
tions: M ≻ N (at in�nity, near zero, globally)implies N∗ ≻ M∗ (at in�nity, near zero, globally). Note that if M satis�esthe ∆2-
ondition then M ≻ N if and only if N(λ) ≤ CM(λ) with some
onstant C independent of λ.2. Preliminaries. We will be dealing with the fun
tions(2.1) Mq,α(t) := tq(ln(2 + t))α where q > 1, α ∈ R.Within this range of parameters q, α they are all N-fun
tions (i.e. 
onvex,
Mq,α(0) = 0, limt→0+ Mq,α(t)/t = 0, limt→∞ Mq,α(t)/t = ∞). Therefore theset

L(q,α) =
{
f : R

n → R measurable:for some K > 0,
\
Mq,α(|f(x)|/K) dx < ∞

}

be
omes a Bana
h spa
e when equipped with the Luxemburg norm
‖f‖(q,α) := inf

{
K > 0 :

\
Mq,α(|f(x)|/K) dx ≤ 1

}
.This is an Orli
z spa
e de�ned by Mq,α. Note that for α = 0 it 
oin
ideswith the usual Lq spa
e. The fun
tions Mq,α satisfy the ∆2-
ondition, i.e.

Mq,α(2t) ≤ CMq,α(t) with a 
onstant C = C(q, α) independent of t ≥ 0. It
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is known that(2.2) \

Mq,α

( |f(x)|
‖f‖(q,α)

)
dx = 1, ‖f‖(q,α) ≤

\
Mq,α(|f(x)|) dx + 1.For details we refer the reader to [28, Chapter 1℄.For later use observe that(2.3) Mq,α ◦ Mµ,κ ∼ Mqµ,qκ+α.Finally, let us prove a lemma.Lemma 2.1. Suppose that µ > 1, κ ∈ R and κ̃ ≥ κ1 = −κ(µ∗ − 1). Thenthere exists a 
onstant C > 0 su
h that for all u, v ≥ 0,(2.4) uv ≤ Mµ,κ(u) + CMµ∗,κ̃(v).Proof. This is immediate: as Mµ,κ(u) ∼ uµ(lnu)κ for u large, we have

M∗
µ,κ(v) ∼ Mµ∗,κ1(v) for v large (see [28, Theorem 7.1℄). On the other hand,for u small we have Mµ,κ(u) ∼ uµ, thus M∗

µ,κ(v) ∼ vµ∗ ∼ Mµ∗,κ1 for v small.Therefore M∗
µ,κ ∼ Mµ∗,κ1 globally.If κ̃ ≥ κ1, then Mµ∗,κ̃ dominates Mµ∗,κ1 globally, and so, for u, v ≥ 0,

uv ≤ Mµ,κ(u) + M∗
µ,κ(v) ≤ Mµ,κ(u) + CMµ∗,κ1(v) ≤ Mµ,κ(u) + CMµ∗,κ̃(v)with a 
onstant C > 0.3. Proofs of Theorems 1.1�1.4. As indi
ated in Se
tion 1, we onlyneed to show Theorem 1.2. The remaining results: Theorems 1.1, 1.3, 1.4(together with Corollaries 1.1�1.3) follow as 
onsequen
es.Proof of Theorem 1.2. The proof is 
arried out in several steps.

Step 1. We show that(3.1) I :=
\
Mq,α(|∇f |) dx ≤ C

\
Mq−2,α(|∇f |)|f | |∇(2)f | dxwith a 
onstant C not depending on f (with a slight abuse of notation: thenumber q − 2 
an be smaller than 1 here, but the formula (2.1) de�ning

Mq−2,α remains valid).The proof of this inequality is basi
ally taken from [25℄; we sket
h it hereto make the paper self-
ontained.As Mq,α(|λ|) = Mq−2,α(λ)〈λ, λ〉, where λ = (λ1, . . . , λn), after integratingby parts we obtain(3.2) I = −
\
div(S(∇f(x)))f(x) dx,where S = (S1, . . . , Sn) and Si(λ) = Mq−2,α(|λ|)λi (sin
e q ≥ 2 this inte-gration by parts is allowed a

ording to the Nikodym ACL Chara
terizationTheorem, see [32, Th. 2, Se
. 1.1.3℄).
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In parti
ular Si(∇f) = Mq−2,α(|∇f |) ∂f
∂xi

, and sodivS(∇f) =
M ′

q−2,α(|∇f |)
|∇f | [∇f ]t [∇(2)f ][∇f ] + Mq−2,α(|∇f |)∆f.Elementarily we 
he
k that M ′

q−2,α(t)∼Mq−2,α(t)t−1 on the positive half-line.Moreover |vtAv| ≤ |A| |v|2 and |trA| ≤ √
n |A| (so that |∆f | ≤ √

n |∇(2)f |).This gives
|divS(∇f)| ≤ CMq−2,α(|∇f |)|∇(2)f |,and together with (3.2) 
ompletes the proof of (3.1).

Step 2. Now assume that (A) holds. We show that in this 
ase, for all
u, v, w ≥ 0,(3.3) Mq−2,α(u)vw ≤ Mq,α(u) + C [Mp,β(v) + Mr,γ(w)] .To see this, �rst observe that(3.4) Mq−2,α(s)t2 ≤ Mq,α(s) + Mq,α(t).This is immediate: if t ≤ s, then Mq−2,α(s)t2 = Mq,α(s)(t/s)2 ≤ Mq,α(s).Sin
e Mq−2,α is in
reasing, for s ≤ t one has Mq−2,α(s)t2 ≤ Mq−2,α(t)t2 =
Mq,α(t).Next, take µ = 2p/q, κ = (β − α)/q, κ̃ = (γ − α)/q. Under 
urrent re-stri
tion on the parameters, it is not hard to 
he
k that κ̃≥κ1 =−κ(µ∗− 1).Therefore the assumptions of Lemma 2.1 are satis�ed and (2.4) 
an be ap-plied, resulting in the following series of inequalities:

Mq−2,α(u)vw ≤ Mq,α(u) + CMq,α(
√

vw)

≤ Mq,α(u) + CMq,α

(
Mµ,κ(

√
v) + Mµ∗,κ̃(

√
w)

)

≤ Mq,α(u) + C[Mq,α ◦ Mµ,κ(
√

v) + Mq,α ◦ Mµ∗,κ̃(
√

w)](the last inequality follows from the fa
t that for every nonde
reasing fun
-tion F satisfying the ∆2-
ondition one has F (a + b) ≤ F (2max(a, b)) ≤
F (2a)+F (2b) ≤ C(F (a)+F (b))). Using now the property (2.3) we see that
Mq,α ◦Mµ,κ(

√
v) ∼ Mp,β(v) and Mq,α ◦Mµ∗,κ̃(

√
w) ∼ Mr,γ(w), so that (3.3)follows.

Step 3: Con
lusion under 
ondition (A). Applying (3.1) we get(3.5) I ≤ 1

2

\
Mq−2,α(|∇f |) · (2C|f | |∇(2)f |) dx.Sin
e, by de�nition of w1 and w2, |f(x)| |∇(2)f(x)| = w1(x)w2(x), applying(3.3) and using the ∆2-
ondition we �nd that I is not greater than

1

2
I + C

\
Mp,β(w1(x)) dx + C

\
Mr,γ(w2(x)) dx,(with C possibly di�erent than in (3.5)), whi
h after rearranging yields (1.6).



100 A. KA�AMAJSKA AND K. PIETRUSKA-PA�UBA
In order to prove (1.7), �x t1, t2 > 0 and write the inequality (3.5) for

f̃ = f/t1t2. We get
I ≤ 1

2

\
Mq−2,α(|∇f̃ |)(2Cw̃1w̃2) dx,where w̃i = wi/t2i (be
ause |f̃ | |∇(2)f̃ | = w̃1w̃2).Using (3.3) and repeating the subsequent steps with f, w1 and w2 repla
edby f̃ , w̃1 and w̃2 we obtain\

Mq,α(|∇f̃ |) dx ≤ C
(\

Mp,β(w̃1) dx +
\
Mr,γ(w̃2) dx

)
,with a 
onstant C independent of f and t1, t2. Now 
hoose t21 = ‖w1‖(q,β),

t22 = ‖w2‖(r,γ). As ti = 0 implies w1w2 = 0, whi
h by (3.1) for
es f ≡ 0(as f is 
ompa
tly supported and smooth), we 
an assume that t1, t2 > 0.Moreover, we have TMp,β(w̃1) dx =
T
Mp,β(w1/‖w1‖(p,β)) dx = 1, andsimilarly TMr,γ(w̃2) dx =

T
Mr,γ(w2/‖w1‖(r,γ)) dx = 1. We end up withT

Mq,α(|∇f̃ |) dx ≤ C. This together with (2.2) gives ‖∇f̃‖(q,α) ≤ C + 1,so that
‖∇f‖2

(q,α) ≤ (C + 1)‖w1‖(p,β) ‖w2‖(r,γ).

Step 4: Con
lusion under 
ondition (B). First, apply (3.1), but insteadof using (3.3) observe that for q = 2 and α < 0 the fun
tion Mq−2,α isbounded. Therefore (using the same notation as above)
I ≤ C

\
|f | |∇(2)f | dx = C

\
w1w2 dx.The 
onditions imposed on the parameters β and γ imply that (see Lem-ma 2.1) w1w2 ≤ Mp,β(w1) + CMq,γ(w2), and 
onsequently

I ≤ C
(\

Mp,β(w1) dx +
\
Mr,γ(w2) dx

)
,whi
h proves (1.6) in this 
ase. The proof of (1.7) goes now along the samelines as in Step 3 and so we skip it.

4. Extensions and remarks. We start with the following result whi
hshows that inequality (1.6) in Theorem 1.2 and its spe
ial variants: inequal-ities (1.4) and (1.8), 
an be transformed into a stronger form, where one ofthe summands 
an be made arbitrarily small. We obtain:Theorem 4.1. Suppose that p, q, r, α, β, γ are real numbers satisfying(A) or (B) and let Φ1, Φ2 : R
n×R

2 → R be Carathéodory fun
tions su
h that
Φ1(x, λ1, λ2)Φ2(x, λ1, λ2) = λ1λ2 a.e. Take any smooth fun
tion f : R

n → R
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with bounded support and de�ne
w1(x) = Φ1(x, |f |, |∇(2)f |), w2(x) = Φ2(x, |f |, |∇(2)f |),

hs,κ(δ) =

{
Ms,κ(δ) for κ ≥ 0,
δs ln(2 + 1/δ)−κ for κ < 0.

(4.1)Then there exists a 
onstant C = C(β, γ) su
h that for any δ > 0,
(4.2)

\
Mq,α(|∇f(x)|) dx

≤ C
(
hp,β(δ)

\
Mp,β(w1(x)) dx + hr,γ(δ−1)

\
Mr,γ(w2(x)) dx

)
.In parti
ular , for every ε > 0 there exists a 
onstant Cε, depending on

ε, p, r, β and γ, su
h that\
Mq,α(|∇f(x)|) dx ≤ ε

\
Mp,β(w1(x)) dx + Cε

\
Mr,γ(w2(x)) dx,(4.3) \

Mq,α(|∇f(x)|) dx ≤ Cε

\
Mp,β(w1(x)) dx + ε

\
Mr,γ(w2(x)) dx.(4.4)Proof. Take any δ > 0 and apply (1.6) with w̃1 = δw1 and w̃2 = w2/δrepla
ing w1 and w2. Then it su�
es to prove that for s > 1 and κ ∈ R wehave(4.5) Ms,κ(δλ) ≤ Chs,κ(δ)Ms,κ(λ) for δ, λ ≥ 0,with C depending on κ only. To obtain (4.5), �rst note that(4.6) ln(2 + δλ) ≤ C ln(2 + δ) ln(2 + λ),with C independent of δ and λ. Indeed, if δ ≤ λ, then the left hand side isnot greater than ln(2 + λ2) ∼ ln(2 + λ). Also, ln(2 + δ) ≥ ln 2 > 0, whi
h
ompletes the proof of (4.6).Now (4.5) follows immediately from (4.6) when κ ≥ 0, while for negative

κ we have
Ms,κ(δλ) = δs

(
ln(2 + δλ)

ln(2 + λ)

)κ

Ms,κ(λ) ≤ δs

(
sup
λ>0

ln(2 + λ)

ln(2 + δλ)

)−κ

Ms,κ(λ)

≤ δs

(
sup
λ>0

ln(2 + λδ−1)

ln(2 + λ)

)−κ

Ms,κ(λ)

≤ Cκδs(ln(2 + δ−1))−κMs,κ(λ),where for the last inequality we have used (4.6).This gives (4.2). To derive (4.3) and (4.4) we observe that limδ→0 hs,κ(δ)
= 0, so we 
an �nd δ su
h that Chp,β(δ) = ε (for (4.3)) or Chr,γ(δ−1) = ε(for (4.4)).Now we will derive multipli
ative variants of inequality (1.6) in Theo-rem 1.2, involving not Orli
z norms, but Orli
z fun
tionals. Consequently,inequalities (1.4) and (1.8) will also have multipli
ative 
ounterparts involv-ing Orli
z fun
tionals.



102 A. KA�AMAJSKA AND K. PIETRUSKA-PA�UBA
The result presented below is restri
ted to the 
ase β, γ ≥ 0. If β < 0 or

γ < 0, then a similar statement holds, but with the third and fourth fa
torsin (4.7) di�erent.Theorem 4.2. Suppose that p, q, r, α, β, γ are real numbers satisfying(A) or (B), β, γ ≥ 0, and let Φ1, Φ2, w1, w2 and f be as in Theorem 4.1.Then there exists a 
onstant C = C(p, r, β, γ) > 0 su
h that
(4.7)

(\
Mq,α(|∇f(x)|) dx

)2/q

≤ C
(\

Mp,β(w1(x)) dx
)1/p(\

Mr,γ(w2(x)) dx
)1/r

×
(

ln

(
2 +

T
Mp,β(w1(x)) dxT
Mr,γ(w2(x)) dx

))γ/r(
ln

(
2 +

T
Mr,γ(w2(x)) dxT
Mp,β(w1(x)) dx

))β/p

.Proof. Set
a :=

\
Mq,α(|∇f(x)|) dx, b := C

\
Mp,β(w1(x)) dx, c := C

\
Mr,γ(w2(x)) dx,where C is the 
onstant from (4.2). Then (4.2) reads(4.8) a ≤ Mp,β(δ)b + Mr,γ(δ−1)c,where δ > 0 
an be taken arbitrary.Now observe that M ′

s,κ(λ) ∼ Ms,κ(λ)/λ, and so the minimum of the righthand side of (4.8) with respe
t to δ > 0 is a
hieved at a point δ0 for whi
h(4.9) C1
c

b
≤ R(δ0) ≤ C2

c

b
, where R(λ) :=

Mp,β(λ)

Mr,γ(λ−1)
,with 
onstants C1, C2 independent of c and b. As

R(λ) ∼ λp+r

|lnλ|γ =
1

(1/λ)p+r(ln(1/λ))γ
for λ 
lose to 0,and R(λ) ∼ λp+r(lnλ)β for λ large, and (λ|lnλ|)−1 ∼ λ/|lnλ| for both smalland large values of λ (here φ−1 denotes the inverse fun
tion to φ), we verifythat the inverse fun
tion to R satis�es(4.10) R−1(λ) ∼

(
λ

(ln(2 + λ−1))γ

(ln(2 + λ))β

)1/(p+r)

.Using (4.6) and (4.9) we establish that(4.11) C̃1R
−1(c/b) ≤ δ0 ≤ C̃2R

−1(c/b),with C̃1, C̃2 independent of b and c. Moreover, we have(4.12) Mp,β ◦ R−1(λ) ∼ λ
p

p+r (ln(2 + λ−1))
γp

p+r (ln(2 + λ))
βr

p+r .
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On the other hand, a

ording to (4.11), and using the fa
t that Mp,β satis�esthe ∆2-
ondition, we get(4.13) Mp,β(δ0)b ≤ Mp,β(C̃2R
−1(c/b))b ≤ C3(Mp,β ◦ R−1(c/b))b := A,and by (4.9),(4.14) Mr,γ(δ−1

0 )c ≤ C−1
1 Mp,β(δ0)b ≤ C−1

1 A.Now we apply (4.8) with δ = δ0, and also (4.13), (4.14) and (4.12), to get
a ≤ Mp,β(δ0)b + Mr,γ(δ−1

0 )c ≤ C4A

≤ C5 b
r

p+r c
p

p+r (ln(2 + b/c))
γr

p+r (ln(2 + c/b))
βr

p+r ,with C5 independent of b and c, whi
h 
ompletes the proof of (4.7).Remark 4.1. Note that for β = γ = 0, (4.7) is exa
tly the Gagliardo�Nirenberg inequality restri
ted to q ≥ 2.The results of Theorem 1.1 
an be iterated to higher derivatives. In par-ti
ular we obtain the following theorem:Theorem 4.3. Suppose that k, m ∈ Z+, 0 < k < m and p, q, r, α, β, γare real numbers su
h that
1

q
=

(
1 − k

m

)
1

p
+

k

m

1

r
, p, r > 2,

α

q
≤

(
1 − k

m

)
β

p
+

k

m

γ

r
.(4.15)Then for any smooth fun
tion f : R

n → R with bounded support ,
(4.16)

\
Mq,α(|∇(k)f(x)|) dx

≤ C
(\

Mp,β(|f(x)|) dx +
\
Mr,γ(|∇(m)f(x)|) dx

)
,

(4.17) ‖∇(k)f(x)‖(q,α) ≤ C‖f‖1−k/m
(p,β)

‖∇(m)f‖k/m
(r,γ)

,with a 
onstant C independent of f .Proof. We give the proof of (4.3) only, leaving (4.17) to the reader. As
Mq,α̃ ≤ Mq,α whenever α̃ ≤ α, it su�
es to prove the theorem under the
ondition(4.18) 1

q
=

(
1 − k

m

)
1

p
+

k

m

1

r
, p, r > 2,

α

q
=

(
1 − k

m

)
β

p
+

k

m

γ

r
.For simpli
ity we will use the following notation. Let D = {

(
x
y

)
: x ∈

R \ {0}, y ∈ R
} and de�ne h : D → D and Gs : R

2 × R
2 → R

2 for s ∈ [0, 1]by(4.19) h

(
x

y

)
=

(
1/x

y/x

)
, Gs(λ1, λ2) = sλ1 + (1 − s)λ2,
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where λ1, λ2 ∈ R

2. Then 
onditions (4.18) read(4.20) h

(
q

α

)
= Gk/m

(
h

(
p

β

)
, h

(
r

γ

))
, p, r > 2, γ, β ∈ R.We pro
eed by indu
tion on m ≥ 2 and prove that for k ∈ {1, . . . , m−1},all k, m, q, p, r, α, β, γ satisfying (4.20) and arbitrary ε > 0 there exists a
onstant Cε = C(ε, k, m, p, r, γ, β) > 0 su
h that for all f ∈ C∞

0 (Rn),(4.21) Iq,α(|∇(k)f |) ≤ εIp,β(|f |) + CεIr,γ(|∇(m)f |),where Is,κ(g) =
T
Ms,κ(|g|) dx.If m = 2 and k = 1, then (4.21) is just (4.3) and there is nothing to prove.Suppose then that (4.21) holds for all m ∈ {2, . . . , M} and all 0 < k < m,provided that the parameters k, m, q, p, r, α, β, γ satisfy (4.20). Now we take

m = M + 1, 0 ≤ k ≤ M + 1 and set(4.22) λk :=

(
qk

αk

)
= h−1 ◦ Gk/(M+1)

(
h

(
p

β

)
, h

(
r

γ

))
.In parti
ular

λ0 =

(
q0

α0

)
=

(
p

β

)
, λM+1 =

(
qM+1

αM+1

)
=

(
r

γ

)
.To abbreviate, we write Ik = Iqk,αk

(|∇(k)f |). In this notation, the indu
tionstep redu
es to the proof of(4.23) Ik ≤ εI0 + CεIM+1with Cε = C(ε, k, M, p, r, β, γ) and for all k ∈ {1, . . . , M}.To get it, we �rst 
he
k that qi > 2 for i ∈ {0, . . . , M +1}, and moreover,for all s, l, t su
h that 0 ≤ s < l < t ≤ M + 1 we have
h(λl) = G l−s

t−s
(h(λs), h(λt)).By the indu
tive assumption, this implies that (4.21) holds true with param-eters: q = ql, α = αl, p = ps, β = αs, r = qt, γ = αt, k = l − s, m = t − s,provided 0 < t − s ≤ M . An appli
ation of (4.21) to all g = Dαf with

|α| = s, with this range of parameters, together with the inequality
Mql,αl

(|∇(l)f |) ≤ C
∑

α, |α|=s

Mql,αl
(|∇(l−s)Dαf |),

with C independent of f , implies that on
e 0 ≤ s < l < t ≤ M + 1 and
t − s ≤ M , then we have(4.24) Il ≤ εIs + CεItwith Cε = C(ε, s, t, l, p, r, α, β). This gives, for all 0 < k < M ,

Ik ≤ δI0 + CδIM ≤ δI0 + Cδ(εIk + CεIM+1)
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for every ε, δ > 0. Choosing ε = εδ su
h that Cδε = 1/2 and rearrangingwe obtain (4.23) for all 0 < k < M . To get (4.23) with k = M we use theinequalities
IM ≤ εIM−1 + CεIM+1 and IM−1 ≤ δI0 + CδIM .They imply

IM ≤ εδI0 + εCδIM + CεIM+1for every ε, δ > 0. Take ε ≤ εδ, where εδ satis�es εδCδ = 1/2. After rear-ranging we obtain
IM ≤ 2εδI0 + 2CεIM+1,whi
h 
ompletes the indu
tion argument and 
on
ludes the proof of thetheorem.Remark 4.2. In [26℄ we have shown that if M is an N-fun
tion satisfyingthe ∆2-
ondition with M ′(t)/t bounded near zero and F is an arbitraryN-fun
tion, then for every f ∈ C∞

0 (Rn) we have\
M(|∇f |) dx ≤ C

(\
M(F (

√
|f |)) dx +

\
M(F ∗(

√
|∇(2)f |)) dx

)
,

‖∇f‖2
(M) ≤ C‖f‖(H)‖∇(2)f‖(J),where H(t) = M(F (

√
t)), J(t) = M(F ∗(

√
t)), and the 
onstant C is inde-pendent of f . Analogous results remain true for arbitrary Carathéodory fun
-tions Φ1, Φ2 : R

n × R
2 → R su
h that Φ1(x, λ1, λ2)Φ2(x, λ1, λ2) = λ1λ2 and

w1(x) = Φ1(x, |f |, |∇(2)f |) and w2(x) = Φ2(x, |f |, |∇(2)f |) repla
ing |f(x)|and |∇(2)f(x)|. In the present paper we have shown that in the parti
ular
ase of logarithmi
-type fun
tions M(t) = Mq,α(t) and F (t) = Mµ,κ(t), withparameters µ and κ suitably 
hosen, we end up with (1.4)�(1.13), illustratingthe abstra
t approa
h of [26℄.Remark 4.3. In our previous work [25℄ we have dealt with the followinglogarithmi
 inequalities:
(4.25)

\
|∇f |q(ln(µ + |∇f |a))α dx

≤ C
((\

|f |p(ln(µ + |f |b))β dx
)1/p∗

‖∇(2)f‖r + ‖∇(2)f‖r
r

)
,

(4.26)
\
|∇f |q(ln(µ + |∇f |a))α dx

≤ C
((\

|∇(2)f |r(ln(µ + |∇(2)f |b))γ dx
)1/p∗

‖f‖p + ‖f‖p
p

)
,\

|∇f |q dx ≤ C
(\

| f |p(ln(µ + |f |a))β dx +
\
|∇(2)f |r(ln(µ + |∇(2)f |b))γ dx

)

where µ ∈ {1, 2}. In the parti
ular 
ase when µ = 2, a = b = 1, by the
lassi
al Young inequality (xy ≤ xp/p + yp∗/p∗, p > 1) applied to (4.25)
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and (4.26) we see that they both imply (1.4) for β or γ equal to 0. The lastinequality in this series with a = b = 1 and µ = 2 is just (1.4) for α = 0.Note that (4.25) and (4.26) for a = b = 1 and µ = 2 are in general strongerthan the spe
ial 
ase of (1.4) when β or γ equals zero. It turns out that theranges of parameters in inequalities (4.25) and (4.26) under the restri
tions
a = b = 1 and µ = 2 obtained in [25℄ and that in (1.4) of this paper are
onsistent.
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