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ON THE INDEX OF AN ODD PERFECT NUMBER

BY

FENG-JUAN CHEN (Suzhou) and YONG-GAO CHEN (Nanjing)

Abstract. Suppose that N is an odd perfect number and qα is a prime power with
qα ‖N . Define the index m = σ(N/qα)/qα. We prove that m cannot take the form p2u,
where u is a positive integer and 2u+ 1 is composite. We also prove that, if q is the Euler
prime, then m cannot take any of the 30 forms q1, q21 , q31 , q41 , q51 , q61 , q71 , q81 , q1q2, q21q2,
q31q2, q41q2, q51q2, q21q

2
2 , q31q

2
2 , q41q

2
2 , q1q2q3, q21q2q3, q31q2q3, q41q2q3, q21q

2
2q3, q21q

2
2q

2
3 , q1q2q3q4,

q21q2q3q4, q31q2q3q4, q21q
2
2q3q4, q1q2q3q4q5, q21q2q3q4q5, q1q2q3q4q5q6, q1q2q3q4q5q6q7, where

q1, q2, q3, q4, q5, q6, q7 are distinct odd primes. A similar result is proved if q is not the
Euler prime. These extend recent results of Broughan, Delbourgo, and Zhou. We also pose
a related problem.

1. Introduction. For a positive integer N , let σ(N) be the sum of all
positive divisors of N . We call N perfect if σ(N) = 2N . It is well known
that an even integer N is perfect if and only if N = 2p−1(2p − 1), where
p and 2p − 1 are both primes. The existence of odd perfect numbers is one
of the oldest open problems. If N is an odd perfect number, Euler gave
the standard factorization of N = γτ00 γ

2τ1
1 · · · γ2τss , where γ0, γ1, . . . , γs are

distinct odd primes and γ0 ≡ τ0 ≡ 1 (mod 4). We call γτ00 the Euler factor
of N , and γ0 the Euler prime. In 2007, Nielsen [Ni2] proved that s ≥ 8.
This has been superseded recently by proving that s ≥ 9 (see Nielsen [Ni1]).
Ochem and Rao [OR] proved that there are no odd perfect numbers below
101500.

Let N be an odd perfect number with qα ‖N , where qα is a prime power
and qα ‖N means that qα |N and qα+1 - N . Since σ(N) = 2N , we have

σ(N/qα)σ(qα) =
2N

qα
· qα.

By (qα, σ(qα))=1, we have qα |σ(N/qα). Define the index m=σ(N/qα)/qα.
Then m is a positive integer and

(1.1) mσ(qα) =
2N

qα
.

Dris and Luca [DL] proved that m ≥ 6. Chen and Chen [CC] improved
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the result of [DL] by showing that m 6= q1, q
2
1, q

3
1, q

4
1, q1q2, q

2
1q2, where q1, q2

are primes. By (1.1), 2 - m if and only if q is the Euler prime. Recently,
Broughan, Delbourgo and Zhou [BDZ] extended the list by proving the
following theorem.

Theorem A. Suppose that N is an odd perfect number and qα is a
prime power with qα ‖N . Let m = σ(N/qα)/qα.

(1) If q is the Euler prime, then m cannot take any of the eleven forms

q1, q
2
1, q

3
1, q

4
1, q

5
1, q

6
1, q1q2, q

2
1q2, q

3
1q2, q

2
1q

2
2, q1q2q3,

where q1, q2, q3 are distinct odd primes.
(2) If q is not the Euler prime and the Euler prime divides N to a power

greater than 1, then m cannot take any of the seven forms

2, 2q1, 2q
2
1, 2q

3
1, 2q

4
1, 2q1q2, 2q

2
1q2,

where q1, q2 are distinct odd primes.
(3) If q is not the Euler prime and the Euler prime divides N to the

power 1, then m cannot take any of the five forms

2, 2q1, 2q
2
1, 2q

3
1, 2q1q2,

where q1, q2 are distinct odd primes.

In this paper, we first prove two general theorems and then extend the
above list as a corollary.

Theorem 1.1. Suppose that N is an odd perfect number and qα is a
prime power with qα ‖N . Let m = σ(N/qα)/qα. Then m cannot take the
form p2u, where u is a positive integer and σ(p2u) is composite. In particular,
m cannot take the form p2u, where u is a positive integer and 2u + 1 is
composite.

Motivated by Theorem 1.1, we pose the following problem.

Problem 1.2. Is there any odd prime q such that

pq − 1

p− 1

is always composite for all primes p?

If q is such an odd prime, then m in Theorem 1.1 cannot take the form
pq−1.

Theorem 1.3. Suppose that N is an odd perfect number and qα is
a prime power with qα ‖N . Let m = σ(N/qα)/qα = 2βqβ11 · · · q

βu
u , where

q1, . . . , qu are distinct odd primes and β, β1, . . . , βu are integers with β1 ≥
· · · ≥ βv > βv+1 = · · · = βu = 1 and β ∈ {0, 1}. If 2 |m and the Euler prime
divides N to the power 1, let w = 1; otherwise, let w = 0. Then
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(i) v + w + β1 + · · ·+ βu > k1(s), where

k1(s) = bs− 1− (log(s+ 2)− log 2)/log 3c;
(ii) u+ w + β1 + · · ·+ βu > k2(s), where

k2(s) = bs− 1− (log(s+ 2)− log 3)/log 4c;
(iii) v + β1 + · · ·+ βu > k3(s) if 2 - m, where

k3(s) = bs− 1− (log(s+ 2)− log 4)/log 3c.
Here bxc denotes the largest integer not exceeding x.

In the following corollary, we underline the terms excluded by the con-
dition s ≥ 9.

Corollary 1.4. Suppose that N is an odd perfect number and qα is a
prime power with qα ‖N . Let m = σ(N/qα)/qα.

(1) If q is the Euler prime, then m cannot take any of the 19 forms

q71, q
8
1, q

4
1q2, q

5
1q2, q

3
1q

2
2, q

4
1q

2
2, q

2
1q2q3, q

3
1q2q3,

q41q2q3, q
2
1q

2
2q3, q

2
1q

2
2q

2
3, q1q2q3q4, q

2
1q2q3q4, q

3
1q2q3q4, q

2
1q

2
2q3q4,

q1q2q3q4q5, q
2
1q2q3q4q5, q1q2q3q4q5q6, q1q2q3q4q5q6q7,

where q1, q2, q3, q4, q5, q6, q7 are distinct odd primes.
(2) If q is not the Euler prime and the Euler prime divides N to a power

greater than 1, then m cannot take any of the 14 forms

2q51, 2q
6
1, 2q

3
1q2, 2q

4
1q2, 2q

2
1q

2
2, 2q

3
1q

2
2, 2q1q2q3, 2q

2
1q2q3,

2q31q2q3, 2q
2
1q

2
2q3, 2q1q2q3q4, 2q

2
1q2q3q4, 2q1q2q3q4q5, 2q1q2q3q4q5q6,

where q1, q2, q3, q4, q5, q6 are distinct odd primes.
(3) If q is not the Euler prime and the Euler prime divides N to the

power 1, then m cannot take any of the nine forms

2q41, 2q
5
1, 2q

2
1q2, 2q

3
1q2, 2q

2
1q

2
2, 2q1q2q3, 2q

2
1q2q3, 2q1q2q3q4, 2q1q2q3q4q5,

where q1, q2, q3, q4, q5 are distinct odd primes.

With more arguments, we can exclude m = q71, q
3
1q

2
2, q

2
1q

2
2q3 by assuming

only s ≥ 8.

2. Lemmas. For any positive integer n, denote by d(n) the number of
positive divisors of n. Suppose that N is an odd perfect number with qα ‖N ,
where qα is a prime power. In this paper, we always write the standard
factorization of N as

N = pλ11 · · · p
λs
s q

α,

such that

(2.1) σ(pλii ) = miq
µi , i = 1, . . . , k, σ(pλii ) = qµi , i = k + 1, . . . , s,
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where mi ≥ 2 and q - mi for i = 1, . . . , k. Then (1.1) becomes

(2.2) m
qα+1 − 1

q − 1
= 2pλ11 · · · p

λk
k p

λk+1

k+1 · · · p
λs
s .

By the definition of m and (2.1), we have

(2.3) mqα = σ(pλ11 · · · p
λs
s ) = m1 · · ·mkq

µ1+···+µs .

It follows from (2.2) that m | 2pλ11 · · · pλss . So q - m. Noting that q - mi for
i = 1, . . . , k, by (2.3) we have

(2.4) m = m1 · · ·mk, α = µ1 + · · ·+ µs.

Write m = p
αk+1

k+1 · · · p
αs
s m

′ with (m′, pk+1 · · · ps) = 1 and αk+1 ≥ · · ·
≥ αs. For convenience, let αi = 0 for all i > s. By (2.2) we have λi ≥ αi for
k + 1 ≤ i ≤ s. Now (2.2) becomes

(2.5) m′
qα+1 − 1

q − 1
= 2pλ11 · · · p

λk
k p

λk+1−αk+1

k+1 · · · pλs−αss .

Noting that pj and q are odd primes, by (2.1) we know that all λj (k+ 1 ≤
j ≤ s) are positive even integers.

Now we present some lemmas which will be used later.

Lemma 2.1. Let α, µ and γ be positive integers, and p and q be odd
primes such that

pλ+1 − 1

p− 1
= qµ, pγ

∣∣∣∣ qα+1 − 1

q − 1
.

Then pγ−1 |α+ 1 if µ > 1, and pγ |α+ 1 if µ = 1.

Lemma 2.1 follows from the proof of [BDZ, Lemma 2].

Lemma 2.2 ([CC, Lemma 4] or [Ni2, Lemma 4]). If N is an odd perfect
number with qα ‖N , then d(α+ 1) ≤ s+ 1.

Lemma 2.3 (Ljunggren [Lj], see also [EGSS, p. 359]). The only integer
solutions (x, n, y) with |x| > 1, n > 2, y > 0 to the equation (xn− 1)/(x− 1)
= y2 are (7, 4, 20) and (3, 5, 11), i.e. (74−1)/(7−1) = 202 and (35−1)/(3−1)
= 112.

Lemma 2.4 ([EGSS, p. 363]). The only solutions in non-zero integers
with n > 1 to the equation yn = x2 + x+ 1 are n = 3, y = 7 and x = 18 or
x = −19.

Lemma 2.5. At most one of the λj (k + 1 ≤ j ≤ s) is 2.

Proof. If λj is 2, then p2j + pj + 1 = qµj . Noting that pj is a positive
prime, by Lemma 2.4, we have µj = 1. Since q is fixed, there is at most one
prime p with p2 + p+ 1 = q. Now Lemma 2.5 follows.
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Lemma 2.6. Let δ = 1 if 2 - m, otherwise δ = 0, and let δi = 1 if λi > 2
and δi = 0 if λi = 2. Then

(2.6) 2δ
s∏

j=k+1

p
max{λj−αj−δj ,0}
j

∣∣α+ 1

and

(2.7) (δ + 1)
s∏

j=k+1

max{λj − αj − δj + 1, 1} ≤ d(α+ 1) ≤ s+ 1.

Proof. It is clear that 2 |α + 1 if and only if q is the Euler prime. So
2δ |α+ 1. From (2.1) and (2.5) we have

p
λj+1
j − 1

pj − 1
= qµj , j = k + 1, . . . , s,

p
λj−αj
j

∣∣∣∣ qα+1 − 1

q − 1
, j = k + 1, . . . , s.

If λi = 2, then, by Lemma 2.4 and pi being a prime, we have p2i +pi+1 = q.
Noting that all λj (k+ 1 ≤ j ≤ s) are positive even integers, by Lemma 2.1,
we have

p
max{λj−αj−δj ,0}
j |α+ 1, j = k + 1, . . . , s.

Thus (2.6) follows immediately and (2.7) follows from (2.6) and Lemma 2.2.

Remark. By Lemma 2.5, at most one of the δi is zero.

Lemma 2.7 ([BDZ, Lemma 8]). If the index m is a square, then α = 1.

Lemma 2.8. If the index m is a square, then k = s− 1 or s.

Proof. By Lemma 2.7, we have α = 1. By (2.4), exactly one of the µi
(1 ≤ i ≤ s) is 1 and the others are 0. Since µi > 0 (k + 1 ≤ i ≤ s), we have
k = s− 1 or s.

Lemma 2.9. Let the notations be as in Theorem 1.3 and Lemma 2.6.
Then none of the following three statements can happen:

(i) k ≤ k1(s) and αk1(s)+1 ≤ 1;
(ii) k ≤ k2(s) and αk2(s)+1 = 0;

(iii) 2 - m, k ≤ k3(s) and αk3(s)+1 ≤ 1.

Proof. By Lemma 2.5, at most one of the λj (k + 1 ≤ j ≤ s) is 2.

(i) Suppose that k ≤ k1(s) and αk1(s)+1 ≤ 1. Then 0 ≤ αi ≤ 1 for all
k1(s) + 1 ≤ i ≤ s. Thus, since all λj (k + 1 ≤ j ≤ s) are positive even
integers, the left side of (2.7) is
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(δ + 1)

s∏
j=k+1

max{λj − αj − δj + 1, 1}

≥
s∏

j=k1(s)+1

(λj − δj) ≥ 2 · 3s−k1(s)−1 ≥ s+ 2,

a contradiction with (2.7).
(ii) Suppose that k ≤ k2(s) and αk2(s)+1 = 0. Then αi = 0 for all

k2(s) + 1 ≤ i ≤ s. Thus, noting that all λj (k+ 1 ≤ j ≤ s) are positive even
integers, the left side of (2.7) is

(δ + 1)
s∏

j=k+1

max{λj − αj − δj + 1, 1}

≥
s∏

j=k2(s)+1

(λj − δj + 1) ≥ 3 · 4s−k2(s)−1 ≥ s+ 2,

a contradiction with (2.7).
(iii) Suppose that 2 - m, k ≤ k3(s) and αk3(s)+1 ≤ 1. Then 0 ≤ αi ≤ 1

for all k3(s)+1 ≤ i ≤ s. Thus, noting that all λj (k+1 ≤ j ≤ s) are positive
even integers, the left side of (2.7) is

(δ + 1)

s∏
j=k+1

max{λj − αj − δj + 1, 1}

≥ 2
s∏

j=k3(s)+1

(λj − δj) ≥ 2 · 2 · 3s−k3(s)−1 ≥ s+ 2,

a contradiction with (2.7).

3. Proof of Theorem 1.1. Suppose that m = p2u, where u is a positive
integer and σ(p2u) is composite. By (2.4) we have p |mi (1 ≤ i ≤ k). By
(2.1) we have pi 6= p (1 ≤ i ≤ k). So k ≤ s− 1, pk+1 = p and αk+1 = 2u. It
follows from Lemmas 2.7 and 2.8 that α = 1 and k = s − 1. Thus µs = 1
(by (2.4)), ps = p and αs = 2u. By (2.1), we see that σ(pλs) = q is a prime.
Noting λs ≥ αs = 2u and σ(p2u) is composite, we have λs > αs = 2u. It
follows from (2.5) and α = 1 that p | q + 1. By σ(pλs) = q we have p | q − 1.
Thus p | 2, a contradiction.

This completes the proof of Theorem 1.1.

4. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3. If qα is the Euler factor of N , then q ≡ 1 (mod 4),
2 |λi (1 ≤ i ≤ s), 2 - m and 2 |α + 1. If qα is not the Euler factor of N ,
then 2 |m, 4 - m and 2 - α + 1. We always assume that 2 |m1 if qα is not
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the Euler factor of N . It is known that m1 6= 2 if the Euler prime divides N
to a power greater than 1 (see [BDZ, p. 6]). Recall that m = 2βqβ11 · · · q

βu
u ,

where β, β1, . . . , βu are non-negative integers with β1 ≥ · · · ≥ βv > βv+1 =
· · · = βu = 1 and β ∈ {0, 1}, and w = 1 if 2 |m and the Euler prime divides
N to the power 1, otherwise w = 0. For convenience, let βi = 0 for all i > u.
By (2.4), we have

k ≤ w + β1 + · · ·+ βu, αk+i ≤ βi (i ≥ 1).

(i) Suppose that v + w + β1 + · · ·+ βu ≤ k1(s). Then

k + v ≤ v + w + β1 + · · ·+ βu ≤ k1(s).

Thus k ≤ k1(s) and αk1(s)+1 ≤ αk+v+1 ≤ βv+1 ≤ 1, a contradiction to
Lemma 2.9(i).

(ii) Suppose that u+ w + β1 + · · ·+ βu ≤ k2(s). Then

k + u ≤ u+ w + β1 + · · ·+ βu ≤ k2(s).

Thus k ≤ k2(s) and αk2(s)+1 ≤ αk+u+1 ≤ βu+1 = 0, a contradiction to
Lemma 2.9(ii).

Part (iii) can be proved similarly.

This completes the proof of Theorem 1.3.

Proof of Corollary 1.4. Nielsen [Ni2] proved that s ≥ 8. This has been
superseded by proving that s ≥ 9 (see Nielsen [Ni1]). We have k1(8) = 5,
k2(8) = 6, k3(8) = 6, k1(9) = 6, k2(9) = 7 and k3(9) = 7.

By Theorem 1.3(i), we have v+w+β1+· · ·+βu > k1(s). Thus, m cannot
be any one of 2q31q2, 2q41q2, 2q1q2q3, 2q21q2q3, 2q31q2q3, 2q1q2q3q4, 2q21q2q3q4,

2q1q2q3q4q5, 2q1q2q3q4q5q6 in Corollary 1.4(2) (w = 0) or any one of 2q21q2,

2q31q2, 2q1q2q3, 2q21q2q3, 2q1q2q3q4, 2q1q2q3q4q5 in Corollary 1.4(3) (w = 1).

By Theorem 1.3(ii), we have u+w+β1+· · ·+βu > k2(s). Thus, m cannot
be any one of 2q51, 2q61, 2q21q

2
2, 2q31q

2
2 in Corollary 1.4(2) (w = 0) and 2q41,

2q51, 2q21q
2
2 in Corollary 1.4(3) (w = 1).

If 2 - m, then, by Theorem 1.3(iii), v+β1+· · ·+βu > k3(s). Thus, m can-
not be any one of q41q2, q

5
1q2, q

3
1q

2
2, q21q2q3, q

3
1q2q3, q

4
1q2q3, q

2
1q

2
2q3, q1q2q3q4,

q21q2q3q4, q
3
1q2q3q4, q1q2q3q4q5, q

2
1q2q3q4q5, q1q2q3q4q5q6, q1q2q3q4q5q6q7 in

Corollary 1.4(1).

Suppose that m is a square. By s ≥ 8 and Lemma 2.7, we have k ≥
s − 1 ≥ 7. Thus, m cannot be any one of q41q

2
2, q21q

2
2q

2
3 in Corollary 1.4(1).

By Theorem 1.1, we have m 6= q81.

Finally, the remaining cases to exclude are m = q71, q
2
1q

2
2q3q4 in Corollary

1.4(1) and m = 2q21q
2
2q3 in Corollary 1.4(2). Suppose that m has one of these

forms. We will derive a contradiction.
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Case 1: m = q71. Then k ≤ 7 and δ = 1. By (2.1) and (2.4), we have

q1 |mi (1 ≤ i ≤ k) and pi 6= q1 (1 ≤ i ≤ k). So αk+1 = 7 and αi = 0
(k+ 2 ≤ i ≤ s). Since λk+1 ≥ αk+1 and λk+1 is even, we have λk+1 ≥ 8 and
δk+1 = 1. If λk+1 = 8, then

qµk+1 =
p9k+1 − 1

pk+1 − 1
=
p9k+1 − 1

p3k+1 − 1

p3k+1 − 1

pk+1 − 1
.

This implies that at least one of

p9k+1 − 1

pk+1 − 1
,

p9k+1 − 1

p3k+1 − 1
,

p3k+1 − 1

pk+1 − 1

is a square (q to an even power), a contradiction with Lemma 2.3. So λk+1

≥ 10 and then λk+1 − αk+1 − δk+1 + 1 ≥ 3. Since s ≥ 9 and k ≤ 7, the left
side of (2.7) is

(δ + 1)

s∏
j=k+1

max{λj − αj − δj + 1, 1}

≥ 2 · 3 ·
s∏

j=k+2

(λj − δj + 1) ≥ 2 · 3s−k > s+ 1,

a contradiction with (2.7). Now, we have proved that m 6= q71.

Case 2: m = q21q
2
2q3q4. Then k ≤ 6 and δ = 1. By Lemma 2.9(iii) and

k3(9) = 7, we have α8 ≥ 2. So k = 6, α7 = 2, α8 = 2 and αi ≤ 1 (9 ≤ i ≤ s).
By s ≥ 9, as all λj (k + 1 ≤ j ≤ s) are positive even integers and at most
one of λj (k + 1 ≤ j ≤ s) is 2, the left side of (2.7) is

(δ + 1)
s∏

j=k+1

max{λj − αj − δj + 1, 1}

≥ 2(λ7 − δ7 − 1)(λ8 − δ8 − 1)
s∏
j=9

(λj − δj)

≥ min{2 · 2 · 3s−8, 2 · 2 · 2 · 2 · 3s−9} > s+ 1,

a contradiction with (2.7).

Case 3: m = 2q21q
2
2q3, and q is not the Euler prime and the Euler prime

divides N to a power greater than 1. Then k ≤ 5. By Lemma 2.9(ii) and
k2(9) = 7, we may assume that α8 ≥ 1. So k = 5, α6 = 2, α7 = 2, α8 = 1
and αi = 0 (9 ≤ i ≤ s). By s ≥ 9, since all λj (k + 1 ≤ j ≤ s) are positive
even integers and at most one of λj (k + 1 ≤ j ≤ s) is 2, the left side of
(2.7) is
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(δ + 1)

s∏
j=k+1

max{λj − αj − δj + 1, 1}

≥ (λ6 − δ6 − 1)(λ7 − δ7 − 1)
s∏
j=8

(λj − δj) ≥ 2 · 2 · 3s−8 > s+ 1,

a contradiction with (2.7).
This completes the proof of Corollary 1.4.
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