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ON THE INDEX OF AN ODD PERFECT NUMBER

FENG-JUAN CHEN (Suzhou) and YONG-GAO CHEN (Nanjing)

Abstract. Suppose that N is an odd perfect number and ¢“ is a prime power with
¢* || N. Define the index m = o(N/q*)/q™. We prove that m cannot take the form p>*
where u is a positive integer and 2u + 1 is composite. We also prove that, if q is the Euler
prlme then m cannot take any of the 30 forms q1, qz, ql, qt, q17 ql, qh ql, qlqz, 4 q2,

Q1Q27 7iqs, Q1Q27 Q1Q27 Cth CI1Q27 419293, Q1q2q37 09203, 414293, G193, GBI, 01920344,
(Z1q2qu47 Q1q2q$q47 (11(12%(]4: 41492434495, Q1(J2(J3q4%a 919293949596, 914293949596q7, where
Q1, 92, q3, q4, G5, g6, g7 are distinct odd primes. A similar result is proved if ¢ is not the
FEuler prime. These extend recent results of Broughan, Delbourgo, and Zhou. We also pose
a related problem.

1. Introduction. For a positive integer N, let o(N) be the sum of all
positive divisors of N. We call N perfect if o(N) = 2N. It is well known
that an even integer N is perfect if and only if N = 2P~1(2P — 1), where
p and 2P — 1 are both primes. The existence of odd perfect numbers is one
of the oldest open problems. If N is an odd perfect number, Euler gave
the standard factorization of N = ’y ’y271 ---27s where 0,71, .. .,7s are
distinct odd primes and 9 = 79 = 1 (mod 4). We call 7° the Euler factor
of N, and vy the Euler prime. In 2007, Nielsen [Ni2] proved that s > 8.
This has been superseded recently by proving that s > 9 (see Nielsen [Nil]).
Ochem and Rao [OR] proved that there are no odd perfect numbers below
101500'

Let N be an odd perfect number with ¢% || N, where ¢“ is a prime power
and ¢® || N means that ¢® | N and ¢®"! { N. Since o(N) = 2N, we have

o(N/g®)o(®) = 2qN .

By (¢%,0(¢%))=1, we have ¢* | 0(N/q*). Define the index m=o(N/q")/q*
Then m is a positive integer and

(1.1) mo(¢®) = —.
Dris and Luca [DL] proved that m > 6. Chen and Chen [CC| improved
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the result of [DI]] by showing that m # q1,4%, ¢}, 4%, 12, 4> qa, where q1, g2
are primes. By , 2 1 m if and only if ¢ is the Euler prime. Recently,
Broughan, Delbourgo and Zhou [BDZ] extended the list by proving the
following theorem.

THEOREM A. Suppose that N is an odd perfect number and ¢ is a
prime power with ¢“ || N. Let m = o(N/q%)/q®*.
(1) If q is the Euler prime, then m cannot take any of the eleven forms

qi1, Q%7 q?a qilv qi)v Q?7 q142, Q%(Da Q?Q% Q%Q% 414243,

where q1,q2,q3 are distinct odd primes.
(2) If q is not the Euler prime and the Euler prime divides N to a power
greater than 1, then m cannot take any of the seven forms

27 2%; 2q%7 2Q%7 2q%7 2(11(]27 2(]%(]2,
where q1,qs are distinct odd primes.
(3) If q is not the Euler prime and the Fuler prime divides N to the
power 1, then m cannot take any of the five forms
27 2(]17 2Q%7 QQ%7 2(]1(]27
where q1,qs are distinct odd primes.

In this paper, we first prove two general theorems and then extend the
above list as a corollary.

THEOREM 1.1. Suppose that N is an odd perfect number and ¢% is a
prime power with ¢* || N. Let m = o(N/q®“)/q*. Then m cannot take the
form p**, where u is a positive integer and o (p?*) is composite. In particular,
m cannot take the form p?“, where u is a positive integer and 2u + 1 is
composite.

Motivated by Theorem we pose the following problem.
PROBLEM 1.2. Is there any odd prime q such that
p?—1
p—1
s always composite for all primes p?

If ¢ is such an odd prime, then m in Theorem [1.1| cannot take the form
P

THEOREM 1.3. Suppose that N is an odd perfect number and q% is
a prime power with ¢*||N. Let m = o(N/q%)/q* = Qqul gl where
qi,---,qu are distinct odd primes and 3, 51,..., B, are integers with $1 >
o> By > Pyrr == Pu=1and g € {0,1}. If 2|m and the Euler prime
divides N to the power 1, let w = 1; otherwise, let w = 0. Then
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(i) v+w+ P14+ By > ki(s), where
ki(s) = |s —1— (log(s+2) —log2)/log3];
(i) w4+ w4+ pi+ -+ Bu > ka(s), where
ka(s) = |s — 1 — (log(s 4+ 2) —log 3)/log4];
(ili) v+ f1+ -+ Pu > k3(s) if 21 m, where
k3(s) = |s —1 — (log(s + 2) — log4)/log 3.
Here |x| denotes the largest integer not exceeding x.

In the following corollary, we underline the terms excluded by the con-
dition s > 9.

COROLLARY 1.4. Suppose that N is an odd perfect number and ¢% is a
prime power with ¢* || N. Let m = o(N/q*)/q*.

(1) If q is the Euler prime, then m cannot take any of the 19 forms
a4, i@, B e, a3, 4163, 410203, 410203
010203, G 9593, BB 01924304, 419243494, 11920394 T 59304,

4192434445, CI%Q2Q3Q4Q5, 4149293449596, 919293949596 97,

where q1, 42,93, 44, G5, Gs, q7 are distinct odd primes.
(2) If q is not the Euler prime and the Euler prime divides N to a power
greater than 1, then m cannot take any of the 14 forms

247,245, 20} a2, 241 a2, 203 43, 247 65, 2014243, 247 23,
2474203, 243 4543, 241924394, 241924394, 29142430495, 2919293949596

where q1,q2, q3,q4, G5, g are distinct odd primes.
(3) If q is not the Euler prime and the Euler prime divides N to the
power 1, then m cannot take any of the nine forms

241,247, 247 42, 243 02, 23 45 201423, 247 4243, 201424344 24142439405,
where qi1,qs2,q3, G4, q5 are distinct odd primes.

With more arguments, we can exclude m = q7, ¢}¢3, ¢}q5q3 by assuming
only s > 8.

2. Lemmas. For any positive integer n, denote by d(n) the number of
positive divisors of n. Suppose that N is an odd perfect number with ¢® || N,
where ¢% is a prime power. In this paper, we always write the standard
factorization of N as

N =p' - pig”,
such that
(2.1) O’(pi\i) =mq", i=1,...,k, O‘(p;\i) =q¢", i=k+1,...,s,
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where m; > 2 and ¢{m; for i = 1,... k. Then (1.1)) becomes

qa+1 -1 N N
(2.2) mﬁ = 2p) - pEph .
By the definition of m and ([2.1)), we have

It follows from (2.2)) that m | Qpi‘l ---p}. So q { m. Noting that ¢ { m; for
i=1,...,k, by (2.3) we have
(24) m=mj---Mmg, a:ul_k..._‘_'us'

Write m = pZi*ll---p?Sm’ with (m/,pry1---ps) = 1 and agyq > -
> «a,. For convenience, let a; = 0 for all i > s. By ([2.2]) we have \; > «; for
kE+1<i<s. Now (2.2) becomes

a+l _ 1
(2.5) ml =
qg—1
Noting that p; and ¢ are odd primes, by (2.1]) we know that all A; (k+1 <
j < s) are positive even integers.
Now we present some lemmas which will be used later.

oA Ak, Akl —Qk41 As—Qs

LEMMA 2.1. Let a, p and vy be positive integers, and p and q be odd
primes such that
A+1 +1
ol |
p—1 q—1
Then =t a+1ifu>1, andp” |a+1if p=1.
Lemma [2.1] follows from the proof of [BDZ, Lemma 2].

LEMMA 2.2 ([CC| Lemma 4] or [Ni2l Lemma 4)). If N is an odd perfect
number with ¢* || N, then d(a+ 1) < s+ 1.

LEMMA 2.3 (Ljunggren [Lj], see also [EGSS, p. 359]). The only integer
solutions (z,n,y) with |x| > 1, n > 2,y > 0 to the equation (z" —1)/(x —1)
=92 are (7,4,20) and (3,5,11), i.e. (7*—1)/(7—1) = 202 and (3°—1)/(3—1)
=112

LeEmMA 2.4 ([EGSS, p. 363]). The only solutions in non-zero integers

with n > 1 to the equation y" = 2> +x+1 aren =3,y =7 and v = 18 or
r=—19.

LEMMA 2.5. At most one of the \j (k+1<j <) is 2.

Proof. If \; is 2, then p]z +pj +1 = ¢". Noting that p; is a positive
prime, by Lemma [2.4} we have u; = 1. Since g is fixed, there is at most one
prime p with p? +p + 1 = ¢. Now Lemma follows. =
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LEMMA 2.6. Let § =1 if 24 m, otherwise 6 =0, and let 6; = 1 if A; > 2
and §; =0 if \; =2. Then

(2.6) 2 T »r % a1
j=k+1
and
(2.7) @+1) J max{j—oa; =6+ 1,1} <dla+1)<s+1.
j=k+1

Proof. Tt is clear that 2|a + 1 if and only if ¢ is the Euler prime. So

29| + 1. From (2.1)) and (2.5) we have

?j+1_1 | .

- T :q”J’ ji=k+1,...,s,
pj —

e, qa—i-l_l '

pjj e (1_71, j:k+1,...,8.

If A\; = 2, then, by Lemma and p; being a prime, we have p? +pi+1=gq.
Noting that all A\; (k+1 < j < s) are positive even integers, by Lemma
we have

max{\;—o;—dj,

: MNa+1, j=k+1,...,s
Thus (2.6) follows immediately and (2.7)) follows from (2.6)) and Lemma "

REMARK. By Lemma [2.5] at most one of the §; is zero.
LEMMA 2.7 ([BDZ, Lemma 8]). If the index m is a square, then a = 1.
LEMMA 2.8. If the index m is a square, then k = s —1 or s.

Proof. By Lemma we have o = 1. By (2.4), exactly one of the u;
(1 <i<s)is 1 and the others are 0. Since p; > 0 (k+1 <7 < s), we have
k=s—1lors. =

LEMMA 2.9. Let the notations be as in Theorem and Lemma 2.6l
Then none of the following three statements can happen:

(1) k <ki(s) and oy ()11 < 15
(i) k < ko(s) and agy(s11 = 0;
(iii) 2{m, k < k3(s) and a1 < 1.

Proof. By Lemma[2.5] at most one of the A; (k+ 1< j <s) is 2.

(i) Suppose that k < ki(s) and ay, (541 < 1. Then 0 < a; < 1 for all
ki(s) +1 < i < s. Thus, since all A\; (k+1 < j < s) are positive even
integers, the left side of is
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(0+1) J] max{)—a;—d+1,1}

j=k+1 s

> I -6)=2-3 & >542
j=k1(s)+1
a contradiction with .
(ii) Suppose that k < ka(s) and ap,(g41 = 0. Then a; = 0 for all
ka(s) +1 < i < s. Thus, noting that all A\; (k+1 < j < s) are positive even
integers, the left side of is

O+1) J] max{rj—a;—6+1,1}

Jj=k+1 s

> I -6+ 1)=3-47RE 1 >5402
J=ka(s)+1
a contradiction with .
(iii) Suppose that 2 m, k < k3(s) and a1 < 1. Then 0 < oy < 1
for all k3(s)+1 < i < s. Thus, noting that all A; (k+1 < j < s) are positive
even integers, the left side of is

(0+1) H max{\; —o; —6; + 1,1}

Jj=k+1 s

>2 [ y-d)=2-2.3RO >4
ks (s)+1
a contradiction with (2.7). =

3. Proof of Theorem Suppose that m = p?*, where u is a positive
integer and o(p®*) is composite. By we have p|m; (1 <7 < k). By
Wehavepi;ép(lgigk). Sok<s—1, pgr1 =pand a1 = 2u. It
follows from Lemmas and that « = 1 and k = s — 1. Thus ps = 1
(by (2-4)), ps = p and a;s = 2u. By (2.1)), we see that o(p*) = q is a prime.
Noting Ay > a5 = 2u and o(p**) is composite, we have \; > as = 2u. It
follows from and « = 1 that p|q + 1. By o(p*) = q we have p|q — 1.
Thus p| 2, a contradiction.

This completes the proof of Theorem

4. Proofs of Theorem and Corollary

Proof of Theorem . If ¢* is the Euler factor of NV, then ¢ = 1 (mod 4),
210 1 <i<s),2tmand 2|a+ 1. If ¢* is not the Euler factor of N,
then 2|m, 41 m and 2 { a + 1. We always assume that 2|m; if ¢* is not
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the Euler factor of N. It is known that my # 2 if the Euler prime divides N

to a power greater than 1 (see [BDZl, p. 6]). Recall that m = 25qlﬁ1 e qﬁ“,

where (3, f1, ..., B, are non-negative integers with 51 > --- > 8, > fy41 =
- =p,=1and g €{0,1}, and w = 1 if 2| m and the Euler prime divides
N to the power 1, otherwise w = 0. For convenience, let 8; = 0 for all i > w.

By , we have
E<wA4pr+4---+Bu, arpi <P (12>1).
(i) Suppose that v +w + 51 + -+ -+ By < k1(s). Then
E+v<v+w+pi+- -+ Bu < ki(s).

Thus k < ki(s) and o, (5)41 < Qgor1 < Bur1 < 1, a contradiction to
Lemma [2.9[1).
(ii) Suppose that w +w + 1 + -+ - + By < ka(s). Then

E+u<u+w+pfr+- -+ Bu < ka(s).

Thus k < ka(s) and apy(g)+1 < agrur1 < Buy1 = 0, a contradiction to
Lemma [2.9[(ii).

Part (iii) can be proved similarly.

This completes the proof of Theorem .

Proof of Corollary[1.4 Nielsen [Ni2] proved that s > 8. This has been
superseded by proving that s > 9 (see Nielsen [Nil]). We have k(8) = 5,
k2(8) =6, k3(8) =6, k1(9) =6, k2(9) = 7 and k3(9) = 7.

By Theorem [L.3[(i), we have v+w+ 1+ -+ B, > ki1(s). Thus, m cannot
be any one of 2¢7q2, 2¢1q2, 2914243, 2474243, 2979243, 201424304, 243424344,
24192439445, 2919243949595 in Corollary [L4(2) (w = 0) or any one of 2¢7gs,
243 g2, 2019243, 2479243, 201424394, 2¢19293¢ags in Corollary (3) (w=1).

By Theorem [1.3|(ii), we have u+w+ 1+ - -+, > ka(s). Thus, m cannot
be any one of 2¢7, 27(_1?, 24243, 2¢3q3 in Corollary (2) (w = 0) and 24,
@, 2¢3q¢5 in Corollary (3) (w=1).

If 2 1 m, then, by Theorem |1.3(iii), v+ 51+ - -+ By > k3(s). Thus, m can-
not be any one of ¢igz, 4742, 4743, 419243, 419243, 414243, 19593, 4142434,
Q%Q2Q3(J47 Q?CI2Q3Q4, 4192939445, CI%Q2Q3Q4Q5, 419293949596, 91929394959697 In
Corollary [L.4(1).

Suppose that m is a square. By s > 8 and Lemma we have k >
s —1 > 7. Thus, m cannot be any one of ¢jq3, q%ngg in Corollary (1)
By Theorem |11} we have m # ¢f.

Finally, the remaining cases to exclude are m = ¢, ¢2q3¢3q4 in Corollary

(1) and m = 2¢%q3q3 in Corollary (2) Suppose that m has one of these
orms. We will derive a contradiction.
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CASE 1: m = qi Then £ < 7 and § = 1. By (2.1) and (2.4)), we have
glm; (1 <i<k)andp, # @ (1 <i < k). Soapy; =7and o =0
(k+2<i<s). Since \pr1 > agy1 and Agyq is even, we have A\ > 8 and

6k+1 =1.1If )\k+1 = 8, then

9 9 3
Piyr — 1 _ Py ™ 1 ppyq —1
Pry1— 1 phy =1 pryr — 1

q#k+1 —

This implies that at least one of

9 9 3
Piy1 — 1 Py =1 Py —1
Pey1— 1 p =1 prep—1

is a square (¢ to an even power), a contradiction with Lemma S0 Agy1
> 10 and then A\g11 — ok — 01 + 1 > 3. Since s > 9 and k < 7, the left

side of ([2.7) is

G+1) [ max{A;—a;—6+1,1}

j=k+1
J=k+ s

>2-3- [ V—-6+1)=22-3F>5+1,
j=k+2

a contradiction with (2.7). Now, we have proved that m # ¢f.

CASE 2: m = ¢2¢3g3qs- Then k < 6 and § = 1. By Lemma (iii) and
k3(9) =7, we have ag > 2. Sok=6,a7 =2, ag =2and o; <1 (9 <i < 3).
By s >9,as all A\; (k+1 < j < s) are positive even integers and at most
one of \j (k+1<j <s)is 2, the left side of is

(0+1) H max{\; —o; —6; + 1,1}
j=k+1 s
> 2\ — 67— D(As — ds — 1) [ (A — 6))
J=9
>min{2-2-3°7%,2.2.2.2.359 > 541,

a contradiction with (2.7)).

CASE 3: m = QQ%Q%CB, and ¢ is not the Euler prime and the Euler prime
divides N to a power greater than 1. Then k£ < 5. By Lemma (ii) and
k2(9) = 7, we may assume that ag > 1. So k=5, a6 =2, ay =2, a3 =1
and a; =0 (9 <1i<s). By s > 09, since all \;j (k+1 < j < s) are positive
even integers and at most one of \; (k+1 < j < s) is 2, the left side of

ED s
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@ +1) J] max{)—a;—d;+1,1}
J=k+1 s
>N =0 — D(Ar =07 =) [N —6;) 22-2:37F > s 41,
=8
a contradiction with ([2.7]).
This completes the proof of Corollary .
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