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Abstract. Let G be an additive abelian group of order k, and S be a sequence over
G of length k + r, where 1 ≤ r ≤ k − 1. We call the sum of k terms of S a k-sum. We
show that if 0 is not a k-sum, then the number of k-sums is at least r + 2 except for S
containing only two distinct elements, in which case the number of k-sums equals r + 1.
This result improves the Bollobás–Leader theorem, which states that there are at least
r + 1 k-sums if 0 is not a k-sum.

1. Introduction. Let k ≥ 2 and r be integers with 1 ≤ r ≤ k − 1, and
let G be an additive abelian group of order k. For any given sequence S of
elements of G of length k+r, we call the sum of k terms of the sequence S a
k-sum. Then the renowned Erdős–Ginzburg–Ziv theorem [3] can be stated
as follows: If G is a cyclic group of order k and r = k− 1, then some k-sum
is 0. The study of k-sums has received a lot of attention from several authors:
see, for example, [1, 4, 5, 7, 8, 9]. For detailed background information about
k-sums, we refer the readers to [2] and [6].

For convenience, we use the following notation and terminology, which
are consistent with [5] and [7]. Let F(G) denote the free abelian monoid with
basis G; its elements are called sequences over G. An element S ∈ F(G) will
be written in the form

S = g1 · . . . · gl =

l∏
i=1

gi =
∏
g∈G

gvg(S) ∈ F(G),

where vg(S) ∈ N0 = N ∪ {0} is called the multiplicity of g in S. We say
that S contains some g ∈ G if vg(S) ≥ 1. A sequence T ∈ F(G) is called
a subsequence of S if vg(T ) ≤ vg(S) for every g ∈ G, denoted by T |S.
Whenever T |S, the element R = ST−1 ∈ F(G) denotes the sequence with
T deleted from S. Clearly, RT = S.
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We define

|S| = l =
∑
g∈G

vg(S) ∈ N0, the length of S,

σ(S) =

k∑
i=1

gi =
∑
g∈G

vg(S)g ∈ G, the sum of S,

supp(S) = {g ∈ G : vg(S) > 0}, the support of S,∑
k(S) =

{∑
i∈I

gi : I ⊂ [1, l] with |I| = k
}
,

the set of k-sums of S, for all k ∈ N.

For sets A and B in an abelian group G, we write A + B for the set
{a+b : a ∈ A, b ∈ B}. Similarly, for b ∈ G, we write b−A for {b−a : a ∈ A}.
Moreover, we denote by |A| the cardinality of A.

In 1999, Bollobás and Leader [2] posed the interesting problem of esti-
mating the number of k-sums, and obtained the following result.

Theorem A. Let k ≥ 2 and r be integers with 1 ≤ r ≤ k− 1, and let G
be an additive abelian group of order k. Let S ∈ F(G) with |S| = k + r. If
0 6∈

∑
k(S), then |

∑
k(S)| ≥ r + 1.

In the same paper, Bollobás and Leader [2] also raised a conjecture re-
lated to the problem of minimizing the number of sums from a sequence
of given length in G and the problem of minimizing the number of k-sums,
which was solved by Gao and Leader [6]. In 2003, Yu [11] gave a simple
proof of Theorem A.

In this paper, we mainly focus on the estimate for the number of
k-sums. Using the natural bijection between

∑
k(S) and

∑
r(S), it is enough

to estimate |
∑

r(S)|. By counting the number of r-sums, we get our main
result.

Theorem 1.1. Let G be an additive abelian group of order k, and let
1 ≤ r ≤ k − 1. Let S ∈ F(G) with |S| = k + r. If 0 6∈

∑
k(S), then

|
∑

k(S)| ≥ r + 2 unless |supp(S)| = 2, in which case |
∑

k(S)| = r + 1.

Actually, Theorem 1.1 gives us a characterization of sequences S that do
not have 0 as a k-sum such that |

∑
k(S)| = r+1 in Theorem A. In Section 2,

we will give the proof of Theorem 1.1, and an application.

2. Proof of Theorem 1.1, and an application. We first give the
proof of Theorem 1.1, and then give some corollaries and examples. For the
proof we need the following result due to Scherk [10].
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Lemma 2.1. Let A and B be subsets of an abelian group G of order k.
If A ∩ (−B) = {0}, then |A+B| ≥ min{k, |A|+ |B| − 1}.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Since 0 6∈
∑

k(S) and |S| = k + r ≥ k + 1, we
have |supp(S)| ≥ 2. From |G| = k, one can easily deduce that the k-sums
do not change when the sequence S is translated. So we may assume that
l = v0(S) = max{vg(S) : g ∈ G} (if necessary, we can translate S by a if
va(S) = max{vg(S) : g ∈ G}). From 0 6∈

∑
k(S), one gets l ≤ k − 1. Since

|S| = k + r, we have

(2.1) |
∑

k(S)| = |σ(S)−
∑

r(S)| = |
∑

r(S)|.
Therefore, to estimate the cardinality of

∑
k(S), it suffices to count the

number of distinct elements in
∑

r(S).

Let U be a subsequence of S0−l with maximal length satisfying σ(U) = 0
and |U | = u ≤ k− 1. Note that U may be an empty sequence. We now have

(2.2) l + u ≤ k − 1.

Otherwise, 0k−uU will be a subsequence of S satisfying σ(0k−uU) = 0 and
|0k−uU | = k, which is impossible since 0 6∈

∑
k(S). Let W = SU−10−l. Then

by (2.2),

(2.3) |W | = |SU−10−l| = k + r − (l + u) ≥ r + 1.

We divide the proof of Theorem 1.1 into the following two cases.

Case 1: |supp(W )| = 1. Let W = ah. Then by (2.3) we obtain h ≥ r+1.
We claim that ja 6= 0 for any integer j with 1 ≤ j ≤ r. Suppose that j0a = 0
for some integer j0 ∈ [1, r]. Then from (2.2) we deduce that σ(aj0U) = 0
and

|U | < |aj0U | = j0 + u ≤ r + u ≤ l + u ≤ k − 1

since l ≥ h ≥ r + 1. This gives us a subsequence aj0U of S0−l satisfying
σ(aj0U) = 0 and |U | < |aj0U | ≤ k − 1, which contradicts the choice of U ,
and the claim is proved.

By the claim, we know that i1a 6= i2a for any integers i1 and i2 satisfying
0 ≤ i1 < i2 ≤ r. Hence we have

(2.4) |{σ(0r−jaj) : 0 ≤ j ≤ r}| =
∣∣∣ r⋃
i=0

{ia}
∣∣∣ = r + 1.

We now consider the following two subcases.

Subcase 1.1: supp(U) ⊆ {a}. Then S = 0lah+u. Since l ≥ h ≥ r + 1,
we have

{S′ |S : |S′| = r} = {0r−jaj : 0 ≤ j ≤ r}.
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So from (2.4) we deduce that

|
∑

r(S)| = |{σ(0r−jaj) : 0 ≤ j ≤ r}| = r + 1.

It then follows from (2.1) that |
∑

k(S)| = r + 1.

Subcase 1.2: supp(U) 6⊆ {a}. Then there is an element b ∈ supp(U)
such that b 6= a. Since

{S′ |S : |S′| = r} ⊇ {0r−1b, 0r, 0r−1a, . . . , ar},
we have

|
∑

r(S)| ≥
∣∣∣{b} ∪ r⋃

i=0

{ia}
∣∣∣.

Now it remains to prove that b 6= ja for any integer j with 0 ≤ j ≤ r, from
which and (2.4) one can easily deduce that |

∑
r(S)| ≥ r+2. Clearly, we have

b 6= 0, a. Suppose that b = i0a for some 2 ≤ i0 ≤ r. Then by (2.2), we get
σ(Ub−1ai0) = 0 and |Ub−1ai0 | = u+ i0 − 1 ≤ u+ r ≤ u+ h ≤ u+ l ≤ k− 1.
But |Ub−1ai0 | ≥ |U |+ 1. By the maximality of |U |, this is impossible. Hence
b 6= ja for any integer j with 0 ≤ j ≤ r. So by (2.1), we get |

∑
k(S)| ≥ r+2.

Case 2: |supp(W )| > 1. By (2.3), we can choose a subsequence T of W
such that

|T | = r + 1 and |supp(T )| > 1.

Let h = max{vg(T ) : g ∈ G}. Then there exists a decomposition T =
T1 · . . . · Th such that |supp(Ti)| = |Ti| for each integer i ∈ [1, h], where
T1, . . . , Th ∈ F(G). For each integer i ∈ [1, h], let Ai = supp(Ti) ∪ {0}.

Since h ≤ l, we deduce from (2.2) that h + u ≤ k − 1. We claim that
0 6∈

∑
j(T ) for any integer j with 1 ≤ j ≤ h. Suppose that there is a

subsequence T ′ of T such that σ(T ′) = 0 and |T ′| = j0 for some 1 ≤ j0 ≤ h.
It will give us a subsequence T ′U of S0−l satisfying σ(T ′U) = 0 and u =
|U | < |T ′U | = j0 + u ≤ h + u ≤ k − 1, which is absurd by the choice of U .
So the claim is true.

It now follows from the claim that(j−1∑
i=1

Ai

)
∩ (−Aj) = {0}

for each integer j with 2 ≤ j ≤ h. Hence by Lemma 2.1, we obtain∣∣∣ h∑
i=1

Ai

∣∣∣ ≥ ∣∣∣h−1∑
i=1

Ai

∣∣∣+ |Ah| − 1 ≥ · · · ≥
h∑

i=1

|Ai| − (h− 1) = r + 2.

Thus for the subsequence 0hT of S, we have

(2.5) |
∑

h(0hT )| =
∣∣∣ h∑
i=1

Ai

∣∣∣ ≥ r + 2.
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From |T | = r + 1, |supp(T )| > 1 and h = max{vg(T ) : g ∈ G}, one can
easily deduce that h ≤ |T | − 1 = r. On the other hand, since r ≤ k − 1, we
have

|ST−10−h| = k + r − (r + 1 + h) = k − 1− h ≥ r − h ≥ 0.

Choosing a subsequence V of ST−10−h with |V | = r − h, we have

|
∑

r(S)| ≥ |
∑

r(0
hTV )| ≥ |

∑
h(0hT )| ≥ r + 2.

Thus by (2.1), we get |
∑

k(S)| ≥ r + 2. From the above discussion, we
can see that |supp(S)| = 2 and |

∑
k(S)| = r + 1 in Subcase 1.1, while

we have |
∑

k(S)| ≥ r + 2 and |supp(S)| ≥ 3 in Subcase 1.2 and Case 2.
Thus we conclude that |

∑
k(S)| ≥ r+ 2 unless |supp(S)| = 2, in which case

|
∑

k(S)| = r + 1. This completes the proof of Theorem 1.1.

We can immediately get the following consequences of Theorem 1.1.

Corollary 2.2. Let G be an additive abelian group of order k ≥ 3, and
let S ∈ F(G) with |S| = 2k− 2. Then either 0 is a k-sum, or S = ak−1bk−1

and
∑

k(S) = G \ {0}.

Note that Bialostocki and Dierker [1] proved that if S is a sequence over
a cyclic group G of order k and |S| = 2k − 2, then either 0 is a k-sum, or
S = ak−1bk−1 and

∑
k(S) = G\{0}. Evidently, if we let G be a cyclic group

of order k, Corollary 2.2 becomes the Bialostocki–Dierker theorem [1].

Corollary 2.3. Let G be an additive abelian group of order k ≥ 4, and
let S ∈ F(G) with |S| = 2k− 3. If 0 6∈

∑
k(S), then every non-zero element

of G can be expressed as a k-sum except for S = ak−1bk−2 with a and b
being elements of G, in which case only one non-zero element of G cannot
be expressed as a k-sum.

In [2], Bollobás and Leader pointed out that the lower bound r + 1
may not be best possible in the non-cyclic case. Applying Theorem 1.1, we
construct a class of sequences such that |

∑
k(S)| ≥ r + 2.

Proposition 2.4. Let n ≥ 2 and t ≥ 2 be integers, and let G = Zt
n. Let

S ∈ F(G) with |S| = nt + r, where n− 1 ≤ r ≤ nt − 1. If 0 6∈
∑

nt(S), then
|
∑

nt(S)| ≥ r + 2.

Proof. Suppose that |
∑

nt(S)| = r + 1. Then by Theorem 1.1, S must
be of the form albh, where n ≤ h ≤ l ≤ nt − 1. Take x = (nt−1 − bh/nc)n
and y = bh/ncn. Clearly, 1 ≤ x ≤ l and 1 ≤ y ≤ h. But x + y = nt and
xa + yb = 0, a contradiction, since 0 6∈

∑
nt(S). Thus by Theorem 1.1, we

obtain |
∑

nt(S)| ≥ r + 2, as desired.
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