COLLOQUIUM MATHEMATICUM

ITERATED TILTED AND
 TILTED STABLY HEREDITARY ALGEBRAS

BY
JESSICA LÉVESQUE (Sherbrooke)

Abstract

We prove that a stably hereditary bound quiver algebra $A=K Q / I$ is iterated tilted if and only if (Q, I) satisfies the clock condition, and that in this case it is of type Q. Furthermore, A is tilted if and only if (Q, I) does not contain any doublezero.

Introduction. Two algebras A and B over a field K are called stably equivalent if there is a K-linear equivalence between the quotient categories $\underline{\bmod } A$ and $\underline{\bmod } B$ deduced from the categories of modules $\bmod A$ and $\bmod B$ by annihilating the projective modules. An algebra A is called stably hereditary if it is stably equivalent to a hereditary algebra H. Stably hereditary algebras have been studied from many points of view (see, for instance, $[5,7,17,18]$), but not from the tilting point of view. Tilted and iterated tilted algebras have been one of the main objects of study in representation theory since their introduction (see, for instance, $[2,9,11]$). Thus, it is natural to ask whether a stably hereditary algebra is iterated tilted or not. For instance, it is shown in [3] that an iterated tilted algebra of type $\widetilde{\mathbb{A}}_{n}$ satisfies the clock condition, that is, on the unique cycle of its bound quiver, the number of clockwise oriented relations equals the number of counterclockwise oriented relations. Furthermore, it is shown in [15, 20] that if such an algebra is tilted, then its bound quiver cannot contain a double-zero, that is, two consecutive monomial relations pointing in the same direction. In this paper, we prove the following result:

Theorem. Let $A=K Q / I$ be a stably hereditary algebra. Then
(a) A is iterated tilted if and only if (Q, I) satisfies the clock condition. In this case the type of A is Q.
(b) A is tilted if and only if (Q, I) satisfies the clock condition and does not contain any double-zero.

[^0]It is worthwhile to note that a hereditary algebra that is tilting-cotilting equivalent to A is connected when A is connected, which is not the case in general for the hereditary algebra H that is stably equivalent to A.

This paper consists of two sections. The first is devoted to preliminaries and the second to the proof of the main result.

1. Preliminaries

1.1. Notation. All algebras in this paper are basic, connected, associative, finite-dimensional algebras with identities over a fixed algebraically closed field K, and all modules are finitely generated right modules. For an algebra A, we denote by $\bmod A$ its module category, by ind A a full subcategory of $\bmod A$ consisting of a complete set of representatives of the isomorphism classes of indecomposable objects in $\bmod A$, and by $\operatorname{proj} A$ the full subcategory of ind A consisting of the projective objects. Given an A-module M, we denote by pd M its projective dimension and by id M its injective dimension.

We recall that a quiver Q is defined by a set of points Q_{0} and a set of arrows Q_{1}. A relation from $x \in Q_{0}$ to $y \in Q_{0}$ is a linear combination of paths from x to y of length at least two. Let I denote an ideal of $K Q$ generated by a set of relations; then the pair (Q, I) is called a bound quiver. A relation $\varrho=\sum_{i=1}^{m} \lambda_{i} w_{i}$ in I (where the λ_{i} are non-zero scalars and the w_{i} are paths) with $m \geq 2$ is called minimal if there is no proper non-empty subset $J \subset$ $\{1, \ldots, m\}$ such that $\sum_{i \in J} \lambda_{i} w_{i}$ is also a relation in I, and is called monomial if it equals a path $(m=1)$. It is well known that, if A is a basic and connected finite-dimensional K-algebra, then there exists a connected bound quiver $\left(Q_{A}, I\right)$ such that $A \cong K Q_{A} / I$ (see $[6]$). For a point a in the quiver of A, we denote by $P(a)$ the corresponding indecomposable projective A-module, and by $I(a)$ the corresponding indecomposable injective A-module. Given an A-module M, we denote by $\operatorname{Supp} M$ the full bound subquiver of Q_{A} generated by the points a such that $\operatorname{Hom}_{A}(P(a), M) \neq 0$. We say that A is triangular whenever its quiver Q_{A} has no oriented cycles.

For an arrow α of Q, we denote by $s(\alpha)$ its source, by $t(\alpha)$ its target and by α^{-1} its formal inverse of source $s\left(\alpha^{-1}\right)=t(\alpha)$ and of target $t\left(\alpha^{-1}\right)=$ $s(\alpha)$. A walk in Q is a sequence $w=c_{1} \ldots c_{n}$ with c_{i} an arrow or the inverse of an arrow such that $t\left(c_{i}\right)=s\left(c_{i+1}\right)$ for all i such that $1 \leq i<n$. A walk w in Q is called reduced if $w=c_{1} \ldots c_{n}$ with $c_{i} \neq c_{i+1}^{-1}$ for all i such that $1 \leq i<n$. It is called a non-zero walk if it does not contain any zerorelation. Finally, a reduced walk is called a double-zero if it contains exactly two zero-relations that point in the same direction in w. The double-zero has been used for the classification of tilted and quasi-tilted special biserial algebras, string algebras and gentle algebras [1, 12-15].

For general properties of the category $\bmod A$ of finitely generated right A-modules, we refer the reader to $[6,19]$. For tilted and iterated tilted algebras, we refer the reader to $[2,9,11,19]$.
1.2. The bound quiver of a stably hereditary algebra. In our main results, we use some properties of the bound quiver of a stably hereditary algebra that are easy to identify. This subsection is therefore devoted to the bound quiver of a stably hereditary algebra.

Let $A=K Q / I$ be a stably hereditary algebra. Then, by [7], we have $I=I_{\Sigma_{A}}$ with

$$
\begin{aligned}
\Sigma_{A} & =\left\{x \in Q_{0} \mid S(x) \text { is a non-projective submodule of } A\right\} \\
I_{\Sigma_{A}} & =\left\langle\alpha \beta \mid t(\alpha) \in \Sigma_{A}, s(\beta) \in \Sigma_{A}\right\rangle
\end{aligned}
$$

That is, $I_{\Sigma_{A}}$ is the ideal generated by all paths $\alpha \beta$ with $t(\alpha)=s(\beta) \in \Sigma_{A}$. In particular, A is a monomial algebra (that is, $I_{\Sigma_{A}}$ is generated by monomial relations).

Definition. A cycle C in $\left(Q, I_{\Sigma_{A}}\right)$ satisfies the clock condition if the number of clockwise oriented relations on C equals the number of counterclockwise oriented relations. We say that $\left(Q, I_{\Sigma_{A}}\right)$ satisfies the clock condition if all cycles in $\left(Q, I_{\Sigma_{A}}\right)$ satisfy the clock condition.

The following theorem, due to Skowroński, allows us to characterize the bound quiver of A using the clock condition.

Theorem ([21]). For an algebra A tilting equivalent to a hereditary or canonical algebra, and for any idempotent e of A and special cycle C in $G_{e A e}$, C satisfies the clock condition. In particular, Q_{A} has no oriented cycles.

Actually, in our context of stably hereditary algebras, it is easily seen to be equivalent to say that if A is tilting equivalent to a hereditary algebra, then any cycle of $\left(Q, I_{\Sigma_{A}}\right)$ satisfies the clock condition. Therefore, if $\left(Q, I_{\Sigma_{A}}\right)$ does not satisfy the clock condition, A is not iterated tilted. Hence, from now on, we suppose that $\left(Q, I_{\Sigma_{A}}\right)$ satisfies the clock condition. In particular, A is a triangular algebra.

We want to decompose Q into maximal subquivers which do not contain any relation, that is, the ordinary quivers of the algebras A_{1}, \ldots, A_{n} such that A is stably equivalent to $A_{1} \times \ldots \times A_{n}$ (see [7]).

Let $\alpha \in Q_{1}$, and let Q_{α} be the subquiver of Q such that

$$
\left(Q_{\alpha}\right)_{1}=\left\{\beta \in Q_{1} \left\lvert\, \begin{array}{l}
\text { there exists a non-zero walk } w \text { such that } \\
w=\alpha^{*} w^{\prime} \beta^{*} \text { where } \alpha^{*} \in\left\{\alpha, \alpha^{-1}\right\}, \beta^{*} \in\left\{\beta, \beta^{-1}\right\}
\end{array}\right.\right\}
$$

Remarks. (1) Since A is a stably hereditary algebra, we easily see that Q_{α} is a full subquiver of Q. Moreover, since $\left(Q, I_{\Sigma_{A}}\right)$ satisfies the clock condition, Q_{α} is convex in Q.
(2) Since $\left(Q, I_{\Sigma_{A}}\right)$ satisfies the clock condition, every walk w containing zero-relations that point in the same direction in w :

is such that $p_{1} \neq p_{2} \neq \ldots \neq p_{s}$. In particular, every double-zero in $\left(Q, I_{\Sigma_{A}}\right)$ contains two distinct vertices of Σ_{A}.
(3) Let $\alpha \in Q_{1}$ and $\beta \in\left(Q_{\alpha}\right)_{1}$. Then $Q_{\alpha}=Q_{\beta}$.
(4) If $Q_{\alpha} \neq Q_{\beta}$, then $\left(Q_{\alpha}\right)_{1} \cap\left(Q_{\beta}\right)_{1}=\emptyset$ and $\left(Q_{\alpha}\right)_{0} \cap\left(Q_{\beta}\right)_{0} \subseteq \Sigma_{A}$.
(5) For all $\alpha \in Q_{1}$ and $x \in\left(Q_{\alpha}\right)_{0} \backslash \Sigma_{A}$, we have $I(x) \in$ ind $K Q_{\alpha}$ and $P(x) \in \operatorname{ind} K Q_{\alpha}$.

Let $\alpha_{1}, \ldots, \alpha_{t} \in Q_{1}$ be such that $Q_{\alpha_{i}} \neq Q_{\alpha_{j}}$ when $i \neq j$, and such that for all $\beta \in Q_{1}$, there exists $i \in\{1, \ldots, t\}$ such that $\beta \in\left(Q_{\alpha_{i}}\right)_{1}$. Let $I_{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$.

Then $Q_{1}=\bigcup_{i=1}^{t}\left(Q_{\alpha_{i}}\right)_{1}$ and $Q_{0}=\bigcup_{i=1}^{t}\left(Q_{\alpha_{i}}\right)_{0}$, and it follows from the remarks above and from [7] that A is stably equivalent to $K Q_{\alpha_{1}} \times \ldots \times K Q_{\alpha_{t}}$.

Example. Let (Q, I) be the following bound quiver:

A possible choice for I_{α} is $I_{\alpha}=\left\{\beta_{1}, \beta_{3}, \beta_{6}, \beta_{11}\right\}$, and then we have

Now, we want to characterize $\left(Q, I_{\Sigma_{A}}\right)$ in such a way as to show that there always exists $\alpha_{i} \in I_{\alpha}$ such that any indecomposable $K Q_{\alpha_{i}}$-module M is of projective dimension at most one when considered as an A-module, and that, dually, there always exists $\alpha_{j} \in I_{\alpha}$ such that any indecomposable $K Q_{\alpha_{j}}$-module N is of injective dimension at most one when considered as an A-module. This characterization will also allow us to state a sufficient and necessary condition to see if $\left(Q, I_{\Sigma_{A}}\right)$ contains a double-zero.

So, first, let
$V_{1}=\left\{\alpha_{i} \in I_{\alpha} \mid\right.$ there exists $\beta \in\left(Q_{\alpha_{i}}\right)_{1}$ such that $\left.t(\beta) \in \Sigma_{A}\right\}$,
$V_{2}=\left\{\alpha_{i} \in I_{\alpha} \mid\right.$ there exists $\beta \in\left(Q_{\alpha_{i}}\right)_{1}$ such that $\left.s(\beta) \in \Sigma_{A}\right\}$.
In the previous example, we have $V_{1}=\left\{\beta_{3}, \beta_{6}, \beta_{11}\right\}$ and $V_{2}=\left\{\beta_{1}, \beta_{3}, \beta_{6}\right\}$.
1.3. Lemma. (a) There exists $\alpha_{i} \in I_{\alpha} \cap\left(V_{2} \backslash V_{1}\right)$.
(b) There exists $\alpha_{i} \in I_{\alpha} \cap\left(V_{1} \backslash V_{2}\right)$.

Proof. (a) Let $\alpha_{i 1} \in I_{\alpha}$. If $\alpha_{i 1} \in V_{2} \backslash V_{1}$, we are done. Otherwise, $Q_{\alpha_{i 1}}$ contains an arrow $\beta_{i 1}$ such that $t\left(\beta_{i 1}\right) \in \Sigma_{A}$:

$$
\bullet \underset{\beta_{i 1}}{-\cdots p_{i 1} \stackrel{-}{\beta_{i 1}^{\prime}}} \bullet
$$

Let $\alpha_{i 2} \in I_{\alpha} \backslash\left\{\alpha_{i 1}\right\}$ be such that $\beta_{i 1}^{\prime} \in\left(Q_{\alpha_{i 2}}\right)_{1}$. If $\alpha_{i 2} \in V_{2} \backslash V_{1}$, we are done. Otherwise, $Q_{\alpha_{i 2}}$ contains an arrow $\beta_{i 2}$ such that $t\left(\beta_{i 2}\right) \in \Sigma_{A}$, and so there is a double-zero of the form

We then consider $\alpha_{i 3} \in I_{\alpha} \backslash\left\{\alpha_{i 1}, \alpha_{i 2}\right\}$ such that $\beta_{i 2}^{\prime} \in\left(Q_{\alpha_{i 3}}\right)_{1}$. We repeat the argument, and since $\left|I_{\alpha}\right|$ and $\left|\Sigma_{A}\right|$ are finite, the statement follows from induction.
(b) Dual proof.
1.4. Lemma. The bound quiver $\left(Q, I_{\Sigma_{A}}\right)$ does not contain any doublezero if and only if $V_{1} \cap V_{2}=\emptyset$.

Proof. If $V_{1} \cap V_{2} \neq \emptyset$, there exists $\alpha_{i} \in I_{\alpha}$ such that $Q_{\alpha_{i}}$ contains an arrow whose target is in Σ_{A}, and an arrow whose source is in Σ_{A}. This implies the existence of a double-zero in $\left(Q, I_{\Sigma_{A}}\right)$.

On the other hand, if ($Q, I_{\Sigma_{A}}$) contains a double-zero:

then we see that there exists a non-zero walk containing the arrows β_{1} and β_{2}. Hence there exists $\alpha_{i} \in I_{\alpha}$ such that $\beta_{1}, \beta_{2} \in\left(Q_{\alpha_{i}}\right)_{1}$, and so $\alpha_{i} \in$ $V_{1} \cap V_{2}$.
1.5. Lemma. (a) Let $\alpha_{i} \in I_{\alpha} \cap\left(V_{2} \backslash V_{1}\right)$ and let $M \in \operatorname{ind} K Q_{\alpha_{i}}$. Then $\operatorname{pd} M_{A} \leq 1$ and $\tau_{A} M \in \operatorname{ind} K Q_{\alpha_{i}}$.
(b) Let $\alpha_{i} \in I_{\alpha} \cap\left(V_{1} \backslash V_{2}\right)$ and let $M \in \operatorname{ind} K Q_{\alpha_{i}}$. Then id $M_{A} \leq 1$ and $\tau_{A}^{-1} M \in \operatorname{ind} K Q_{\alpha_{i}}$.

Proof. (a) Let P be the projective cover of M and $f: P \rightarrow M$ be the canonical projection. Since $M \in \operatorname{ind} K Q_{\alpha_{i}}$ and $\alpha_{i} \in V_{2} \backslash V_{1}$, we have $P \in \operatorname{proj} K Q_{\alpha_{i}}$.

Assume that $\operatorname{pd} M_{A}>1$. Then Ker f has a non-projective direct summand S. Since A is stably hereditary, $S=S(p)$ with $p \in \Sigma_{A}$.

Hence $S(p)$ is a direct summand of soc P, and therefore $Q_{\alpha_{i}}$ contains an arrow whose target is in Σ_{A}, which contradicts the fact that $\alpha_{i} \in V_{2} \backslash V_{1}$. Hence $\operatorname{pd} M \leq 1$.

Therefore $0 \rightarrow \operatorname{Ker} f \rightarrow P \rightarrow M \rightarrow 0$ is a minimal projective resolution of M. If there exists $p \in(\operatorname{Supp} P)_{0} \cap \Sigma_{A}$, then $S(p)$ is a direct summand of top M since $\alpha_{i} \in V_{2} \backslash V_{1}$. Hence $p \notin(\operatorname{Supp} \operatorname{Ker} f)_{0}$.

Therefore, there exists $V \subseteq\left(Q_{\alpha_{i}}\right)_{0} \backslash \Sigma_{A}$ such that Ker $f=\bigoplus_{v \in V} P(v)$.
Applying the Nakayama functor ν_{A} yields the exact sequence

$$
0 \rightarrow \tau_{A} M \rightarrow \nu_{A} \operatorname{Ker} f \rightarrow \nu_{A} P
$$

and $\nu_{A} \operatorname{Ker} f=\nu_{A}\left(\bigoplus_{v \in V} P(v)\right) \cong \bigoplus_{v \in V} I(v)$.
Since $V \subseteq\left(Q_{\alpha_{i}}\right)_{0} \backslash \Sigma_{A}$, we have $\bigoplus_{v \in V} I(v) \in \bmod K Q_{\alpha_{i}}$. Therefore $\tau_{A} M \in$ ind $K Q \alpha_{i}$.
(b) Dual proof.
2. Main results. To show that A is iterated tilted of type Q, we need a particular tilting (or cotilting) A-module T, and we give its construction in Lemma 2.1. We see in Lemma 2.3 that End T is still a stably hereditary algebra, with the same ordinary quiver as A. Moreover, this new stably hereditary algebra has less non-projective simple submodules. This is the key to the proof that A is iterated tilted.
2.1. Lemma. (a) Let $J \subseteq\{1, \ldots, t\}$ be such that for all $j \in J, \alpha_{j} \in$ $V_{2} \backslash V_{1}$. Let $Q_{J_{0}}=\bigcup_{j \in J}\left(Q_{\alpha_{j}}\right)_{0}$. Then

$$
T=\left(\bigoplus_{i \in Q_{0} \backslash Q_{J_{0}}} P(i)\right) \oplus\left(\bigoplus_{p \in \Sigma_{A} \cap Q_{J_{0}}} S(p)\right) \oplus\left(\bigoplus_{k \in Q_{J_{0} \backslash \Sigma_{A}}} I(k)\right)
$$

is a tilting A-module.
(b) Let $J \subseteq\{1, \ldots, t\}$ be such that for all $j \in J, \alpha_{j} \in V_{1} \backslash V_{2}$. Let $Q_{J_{0}}=\bigcup_{j \in J}\left(Q_{\alpha_{j}}\right)_{0}$. Then

$$
T=\left(\bigoplus_{i \in Q_{J_{0}} \backslash \Sigma_{A}} P(i)\right) \oplus\left(\bigoplus_{p \in \Sigma_{A} \cap Q_{J_{0}}} S(p)\right) \oplus\left(\bigoplus_{k \in Q_{0} \backslash Q_{J_{0}}} I(k)\right)
$$

is a cotilting A-module.
Proof. (a) It is clear that T has $\left|Q_{0}\right|$ pairwise non-isomorphic indecomposable summands.

By Remark (5) and Lemma 1.5, we have $\operatorname{pd} T_{A} \leq 1$.
Let

$$
P=\bigoplus_{i \in Q_{0} \backslash Q_{J_{0}}} P(i), \quad S=\bigoplus_{p \in \Sigma_{A} \cap Q_{J_{0}}} S(p), \quad I=\bigoplus_{k \in Q_{J_{0}} \backslash \Sigma_{A}} I(k)
$$

Then $\operatorname{Ext}_{A}^{1}(T, T)=\operatorname{Ext}_{A}^{1}(I \oplus S, P \oplus S) \cong \operatorname{DHom}_{A}\left(P \oplus S, \tau_{A} I \oplus \tau_{A} S\right)$. It follows from the proof of Lemma 1.5 that the socles of $\tau_{A} I$ and $\tau_{A} S$ have no non-projective simple summand which is a submodule of A (that is, has the form $S(p)$ with $\left.p \in \Sigma_{A}\right)$. This and Lemma 1.5 imply that $\operatorname{Hom}_{A}\left(P, \tau_{A} I\right)=0, \operatorname{Hom}_{A}\left(P, \tau_{A} S\right)=0, \operatorname{Hom}_{A}\left(S, \tau_{A} I\right)=0$ and $\operatorname{Hom}_{A}\left(S, \tau_{A} S\right)$ $=0$.

Hence $\operatorname{Ext}_{A}^{1}(T, T)=0$, and so T is a tilting A-module.
(b) Dual proof.

When $\left(Q, I_{\Sigma_{A}}\right)$ does not contain any double-zero, the tilting module and the cotilting module of the previous lemma coincide. This is the following corollary:
2.2. Corollary. Assume that $\left(Q, I_{\Sigma_{A}}\right)$ does not contain any doublezero, and let $J_{V_{1}}=\left\{x \in\left(Q_{\alpha_{i}}\right)_{0} \backslash \Sigma_{A} \mid \alpha_{i} \in V_{1}\right\}$ and $J_{V_{2}}=\left\{x \in\left(Q_{\alpha_{i}}\right)_{0} \backslash \Sigma_{A} \mid\right.$ $\left.\alpha_{i} \in V_{2}\right\}$. Then

$$
T=\left(\bigoplus_{i \in J_{V_{1}}} P(i)\right) \oplus\left(\bigoplus_{p \in \Sigma_{A}} S(p)\right) \oplus\left(\bigoplus_{k \in J_{V_{2}}} I(k)\right)
$$

is a tilting and cotilting A-module.
2.3. Lemma. (a) Let $J \subseteq\{1, \ldots, t\}$ be such that for all $j \in J, \alpha_{j} \in$ $V_{2} \backslash V_{1}$. Let $Q_{J_{0}}=\bigcup_{j \in J}\left(Q_{\alpha_{j}}\right)_{0}$, and

$$
T=\left(\bigoplus_{i \in Q_{0} \backslash Q_{J_{0}}} P(i)\right) \oplus\left(\bigoplus_{p \in \Sigma_{A} \cap Q_{J_{0}}} S(p)\right) \oplus\left(\bigoplus_{k \in Q_{J_{0} \backslash \Sigma_{A}}} I(k)\right) .
$$

Then $\operatorname{End} T \cong K Q / I_{\Sigma_{\mathrm{End} T}}$ with $\Sigma_{\mathrm{End} T}=\Sigma_{A} \backslash\left(\Sigma_{A} \cap Q_{J_{0}}\right)$, and $\left(Q, I_{\Sigma_{\mathrm{End} T}}\right)$ respects the clock condition.
(b) Let $J \subseteq\{1, \ldots, t\}$ be such that for all $j \in J, \alpha_{j} \in V_{1} \backslash V_{2}$. Let $Q_{J_{0}}=\bigcup_{j \in J}\left(Q_{\alpha_{j}}\right)_{0}$, and

$$
T=\left(\bigoplus_{i \in Q_{J_{0} \backslash \Sigma_{A}}} P(i)\right) \oplus\left(\bigoplus_{p \in \Sigma_{A} \cap Q_{J_{0}}} S(p)\right) \oplus\left(\bigoplus_{k \in Q_{0} \backslash Q_{J_{0}}} I(k)\right) .
$$

Then $\operatorname{End} T \cong K Q / I_{\Sigma_{\mathrm{End} T}}$ with $\Sigma_{\mathrm{End} T}=\Sigma_{A} \backslash\left(\Sigma_{A} \cap Q_{J_{0}}\right)$, and $\left(Q, I_{\Sigma_{\mathrm{End} T}}\right)$ respects the clock condition.

Proof. We start by showing that $Q_{\operatorname{End} T}=Q$.
We already know that $\left|Q_{0}\right|=\left|\left(Q_{\operatorname{End} T}\right)_{0}\right|$. We identify $i \in Q_{0}$ with the corresponding direct summand $T(i)$ of T. We have $T(i)=P(i)$ if $i \in Q_{0} \backslash$ $Q_{J_{0}}, T(i)=S(i)$ if $i \in \Sigma_{A} \cap Q_{J_{0}}$, and $T(i)=I(i)$ if $i \in Q_{J_{0}} \backslash \Sigma_{A}$.

First, let us show that $Q_{1} \subseteq\left(Q_{\operatorname{End} T}\right)_{1}$. We have $Q_{1}=\bigcup_{i=1}^{t}\left(Q_{\alpha_{i}}\right)_{1}$. Let $\alpha: k \rightarrow l \in Q_{1}$. There exists $\alpha_{i} \in I_{\alpha}$ such that $\alpha \in\left(Q_{\alpha_{i}}\right)_{1}$.

If $i \in J$, we have $T(l)=I(l)$, and $T(k)=S(k)$ if $k \in \Sigma_{A} \cap\left(Q_{\alpha_{i}}\right)_{0}$, otherwise $T(k)=I(k)$. In both cases, $T(k)$ is a direct summand of $I(l) / \operatorname{soc} I(l)$.

Hence there exists an irreducible morphism from $I(l)$ to $I(k)$ in $\bmod A$. Therefore we have an arrow $\alpha^{\prime}: T(k) \rightarrow I(l)$ in $Q_{\operatorname{End} T}$.

If $i \notin J$, we have $T(k)=P(k)$, and $T(l)=P(l)$ if $l \in Q_{0} \backslash Q_{J_{0}}$, otherwise $l \in \Sigma_{A} \cap Q_{J_{0}}$ and $T(l)=S(l)$.

When $T(l)=P(l)$, we can have $l \in \Sigma_{A}$ or not. If not, then $P(l)$ is a direct summand of $\operatorname{rad} P(k)$, and so we have an arrow $\alpha^{\prime}: P(k) \rightarrow P(l)$ in $Q_{\mathrm{End} T}$.

If $l \in \Sigma_{A}$, then $S(l)$ is a direct summand of $\operatorname{rad} P(k)$ (but remember, here, $T(l)=P(l))$. Since $S(l)=P(l) / \operatorname{rad} P(l)$, we have a morphism $g: P(l) \rightarrow S(l)$ in $\bmod A$. It is clear that g does not factorize through any other indecomposable projective direct summand of T. Moreover, since $l \in \Sigma_{A} \backslash Q_{J_{0}}, S(l)$ cannot be a direct summand of the top of an injective direct summand of T. Therefore g cannot factorize through an injective direct summand of T, and of course cannot factorize through a simple direct summand of T. Hence, since we have an irreducible morphism from $S(l)$ to $P(k)$ and since g does not factorize through any other direct summand of T, we have an arrow $\alpha^{\prime}: P(k) \rightarrow P(l)$ in $Q_{\operatorname{End} T}$.

Finally, there is the case $l \in \Sigma_{A} \cap Q_{J_{0}}$. In this case, we have $T(l)=S(l)$ and $S(l)$ is a direct summand of $\operatorname{rad} P(k)$. Therefore we have an arrow $\alpha^{\prime}: P(k) \rightarrow S(l)$ in $Q_{\text {End } T}$.

This shows that $Q_{1} \subseteq\left(Q_{\operatorname{End} T}\right)_{1}$. Let us show the reverse inclusion.
Let $T(k)$ and $T(l)$ be indecomposable direct summands of T such that there exists an arrow $\alpha^{\prime}: T(k) \rightarrow T(l)$ in $Q_{\operatorname{End} T}$. The possible cases are:
(1) $T(k)=P(k), T(l)=P(l)$;
(2) $T(k)=P(k), T(l)=S(l)$;
(3) $T(k)=S(k), T(l)=I(l)$;
(4) $T(k)=I(k), T(l)=I(l)$.

In case (1), we have a morphism from $P(l)$ to $P(k)$ in $\bmod A$, and this morphism does not factorize through any other direct summand of T. Assume there is no arrow from k to l in Q. Since we have a morphism from $P(l)$ to $P(k)$, we have a non-zero path $v: k \rightarrow \cdots \rightarrow l$ of length at least 2 in $\left(Q, I_{\Sigma_{A}}\right)$. We have $l, k \in Q_{0} \backslash Q_{J_{0}}$, and the same holds for every vertex j lying on v. Therefore $T(j)=P(j)$ for all j lying on v, and all morphisms from $P(l)$ to $P(k)$ must factorize through these modules, a contradiction. Hence there is an arrow $\alpha: k \rightarrow l$ in Q.

We prove the other cases similarly. Thus, $\left(Q_{\operatorname{End} T}\right)_{1} \subseteq Q_{1}$.
Therefore, we have $Q_{\operatorname{End} T}=Q$, and so End $T \cong K Q / J$ with J an admissible ideal. It remains to show that $J=I_{\Sigma_{\text {End } T}}$.

Let us first show that $I_{\Sigma_{\text {End } T}} \subseteq J$.
Let $\varrho=\alpha \beta \in I_{\Sigma_{\operatorname{End} T}}$ (then $\left.t(\alpha)=s(\beta)=p \in \Sigma_{\operatorname{End} T}\right)$. Let i be the source of α and j be the target of β. Since $p \in \Sigma_{\mathrm{End} T}$, we have $T(i)=P(i)$
and $T(j)=P(j)$ or $T(j)=S(j)$. In both cases, we see that $P(i)$ has no composition factors in common with $T(j)$. Hence $\operatorname{Hom}_{A}(T(j), P(i))=0$, and so $\alpha \beta \in J$ and $I_{\Sigma_{\text {End } T} \subseteq J}$.

Now it remains to show the reverse inclusion.
Let $\varrho \in J$ be a minimal relation of source $T(k)$ and of target $T(l)$. In particular, this means that ϱ contains a path from k to l in Q. Hence the possible cases are:
(1) $T(k)=P(k), T(l)=P(l)$;
(2) $T(k)=P(k), T(l)=S(l)$;
(3) $T(k)=P(k), T(l)=I(l)$;
(4) $T(k)=S(k), T(l)=I(l)$;
(5) $T(k)=I(k), T(l)=I(l)$.

Let us identify ϱ to the following full subquiver of Q :

In cases (1) and (2), we have $T\left(k_{i m_{i}}\right)=P\left(k_{i m_{i}}\right)$ for all i and m_{i} such that $1 \leq i \leq j, 1 \leq m_{i} \leq s_{i}$. Since ϱ is minimal, we deduce that all paths from k to l are non-zero in $\left(Q, I_{\Sigma_{A}}\right)$. Moreover, since A is stably hereditary, we see that for all $i \in\{1, \ldots, j\}$, we have a monomorphism $f_{i}: T(l) \rightarrow P(k)$ such that $\left\{f_{1}, \ldots, f_{j}\right\}$ are linearly independent in $\operatorname{Hom}_{A}(T(l), P(k))$. But if ϱ is a non-monomial relation, the set $\left\{f_{1}, \ldots, f_{j}\right\}$ has to be linearly dependent, a contradiction.

Hence ϱ is monomial, and so $\operatorname{Hom}_{A}(T(l), P(k))=0$. By minimality of ϱ, we have $\varrho \in I_{\Sigma_{A}}$. But since $k \in Q_{0} \backslash Q_{J_{0}}$ and l is in $Q_{0} \backslash Q_{J_{0}}$ or in $\Sigma_{A} \cap Q_{J_{0}}$, we must have $\varrho \in I_{\Sigma_{\mathrm{End} T}}$.

In case (3), we have $T(k)=P(k)$ and $T(l)=I(l)$. Therefore, for each $i \in\{1, \ldots, j\}$, there exists exactly one $k_{i m_{i}}$ (with $1 \leq m_{i} \leq s_{i}$) such that $T\left(k_{i m_{i}}\right)=S\left(k_{i m_{i}}\right), T\left(k_{i n}\right)=P\left(k_{i n}\right)$ for all n such that $1 \leq n<m_{i}$, and $T\left(k_{i n}\right)=I\left(k_{i n}\right)$ for all n such that $m_{i}<n \leq s_{i}$. Therefore, for all $i \in$ $\{1, \ldots, j\}, S\left(k_{i m_{i}}\right)$ is a direct summand of both soc $P(k)$ and top $I(l)$. This yields j linearly independant morphisms from $I(l)$ to $P(k)$, a contradiction which implies that ϱ must be monomial.

Therefore $j=1$. But, as we already saw, $S\left(k_{1 m_{1}}\right)$ is a direct summand of both $\operatorname{soc} P(k)$ and top $I(l)$, and so $\operatorname{Hom}_{A}(I(l), P(k)) \neq 0$. Hence there is no minimal relation of source $P(k)$ and of target $I(l)$.

For cases (4) and (5), we show similarly that ϱ must be a monomial relation, and that in fact there is no minimal relation of source $S(k)$ or $I(k)$ and of target $I(l)$.

Therefore $J \subseteq I_{\Sigma_{\mathrm{End} T}}$ and thus End $T \cong K Q / I_{\Sigma_{\mathrm{End} T}}$.
The proof that $\left(Q, I_{\Sigma_{\text {End } T}}\right)$ respects the clock condition follows from the construction of $\left(Q, I_{\Sigma_{A}}\right)$ and from the fact that for all $j \in J, \alpha_{j} \in V_{2} \backslash V_{1}$.
(b) Dual proof.
2.4. Corollary. If $\left(Q, I_{\Sigma_{A}}\right)$ does not contain any double-zero, then A is tilted of type Q.

Proof. Follows from Corollary 2.2 and Lemma 2.3.
The proof of the following lemma is similar to those of [15, 2.3] and [13, 2.6], which are done in the contexts of gentle and special biserial algebras respectively.
2.5. Lemma. If $\left(Q, I_{\Sigma_{A}}\right)$ contains a double-zero, then A is not tilted.

Proof. Suppose that $\left(Q, I_{\Sigma_{A}}\right)$ contains a double-zero of the form

with $t \geq 4$.
Since A is monomial, if $t=4$, then, by [8], gl. $\operatorname{dim} A>2$, hence A is not tilted.

Thus, suppose that $t \geq 5$, and let M be the indecomposable A-module of support

$$
3-\bullet \quad \bullet-t-2
$$

such that $M(x)=K$ for all x with $3 \leq x \leq t-2$ (this indecomposable module exists since A is monomial).

Let s be the source of $\operatorname{Supp} M$ such that there exists a path from s to $t-2$ in $\operatorname{Supp} M$. Since A is monomial, we see that the kernel of the canonical morphism $P(s) \rightarrow M$ has a non-projective direct summand and hence pd $M>1$.

Similarly, one proves that id $N>1$. Thus, by [10, III, 2.3], A is not quasi-tilted, and therefore is not tilted.

It is now possible to prove the main result of this paper:
2.6. Theorem. Let $A=K Q / I$ be a stably hereditary algebra. Then:
(a) A is iterated tilted if and only if (Q, I) satisfies the clock condition. In this case the type of A is Q.
(b) A is tilted if and only if (Q, I) satisfies the clock condition and does not contain any double-zero.

Proof. The first statement follows from Lemmata 1.3, 2.1 and 2.3, from [21, Cor. 1] (Theorem of the first section) and from the fact that $\left|\Sigma_{A}\right|$ is finite. The second statement follows from Corollary 2.4 and Lemma 2.5.

We easily obtain the following corollary, which, in particular, answers a conjecture of Dieter Happel saying that an algebra $A=K Q / I$ with Q a tree and such that $\operatorname{rad}^{2} A=0$ is iterated tilted.
2.7. Corollary. Let $A=K Q / I$ be a stably hereditary algebra with Q a tree. Then A is iterated tilted of type Q, and is tilted if and only if (Q, I) does not contain any double-zero.

Let $A=K Q / I$ be an algebra with Q a tree such that I is generated by paths of length two, and such that (Q, I) does not contain any double-zero. If A is not stably hereditary, then it is not tilted in general, as shown in the following example.
2.8. Example. Let (Q, I) be the following quiver:

bound by $\beta_{1} \alpha_{1}=0, \beta_{1} \alpha_{2}=0, \beta_{4} \alpha_{1}=0$ and $\beta_{4} \alpha_{2}=0$. Then $A=K Q / I$ is isomorphic to

$$
A_{1}=H[S(3)][S(3)]
$$

with H the hereditary algebra with ordinary quiver

By the proof of $[4,3.2]$, the component of $\Gamma\left(\bmod A_{1}\right)$ containing $S(3)$ is not directed. Hence, it follows from $[16,3.7]$ that for A_{1} to be tilted, this component should be quasi-serial or obtained from a quasi-serial translation quiver by ray or coray insertions, which is not the case. Therefore $A_{1}=$ $H[S(3)][S(3)]$ is not tilted.
2.9. Example. Let $A=K Q / I_{\Sigma_{A}}$ be the stably hereditary algebra appearing in the first section:

We have $\Sigma_{A}=\{3,6,7,10\}$, and $\left\{\beta_{1}, \beta_{3}, \beta_{6}, \beta_{11}\right\}$ is a possible choice for I_{α}. Hence $V_{1}=\left\{\beta_{3}, \beta_{6}, \beta_{11}\right\}, V_{2}=\left\{\beta_{1}, \beta_{3}, \beta_{6}\right\}$ and $V_{2} \backslash V_{1}=\left\{\beta_{1}\right\},\left(Q_{\beta_{1}}\right)_{0}=$ $\{1,2,3\}, \Sigma_{A} \cap\left(Q_{\beta_{1}}\right)_{0}=\{3\}$, and thus by Lemma 2.1(a),

$$
T_{1}=\left(\bigoplus_{i=4}^{12} P(i)\right) \oplus S(3) \oplus\left(\bigoplus_{k=1}^{2} I(k)\right)
$$

is a tilting A-module. Moreover, by Lemma 2.3(a), End $T_{1} \cong K Q / I_{\Sigma_{\text {End } T_{1}}}$ with $\Sigma_{\operatorname{End} T_{1}}=\Sigma_{A} \backslash\left(\Sigma_{A} \cap\left(Q_{\beta_{1}}\right)_{0}\right)=\{6,7,10\}$. Therefore $\left(Q, I_{\Sigma_{\operatorname{End} T_{1}}}\right)$ is the following bound quiver:

Hence End T_{1} is a stably hereditary algebra with $\Sigma_{\operatorname{End} T_{1}}=\{6,7,10\}$, and $\left\{\beta_{1}, \beta_{6}, \beta_{11}\right\}$ is a possible choice for I_{α}; then $V_{1}=\left\{\beta_{6}, \beta_{11}\right\}, V_{2}=\left\{\beta_{1}, \beta_{6}\right\}$ and $V_{2} \backslash V_{1}=\left\{\beta_{1}\right\}$. Here we have $\left(Q_{\beta_{1}}\right)_{0}=\{1,2,3,4,5,6,7\}$ and $\Sigma_{\operatorname{End} T_{1}} \cap$ $\left(Q_{\beta_{1}}\right)_{0}=\{6,7\}$, and thus by Lemma 2.1(a),

$$
T_{2}=\left(\bigoplus_{i=8}^{12} P(i)\right) \oplus S(6) \oplus S(7) \oplus\left(\bigoplus_{k=1}^{5} I(k)\right)
$$

is a tilting End T_{1}-module. Moreover, by Lemma 2.3(a), we have End $T_{2} \cong$ $K Q / I_{\Sigma_{\operatorname{End} T_{2}}}$ with $\Sigma_{\operatorname{End} T_{2}}=\Sigma_{\operatorname{End} T_{1}} \backslash\left(\Sigma_{\operatorname{End} T_{1}} \cap\left(Q_{\beta_{1}}\right)_{0}\right)=\{10\}$. Therefore $\left(Q, I_{\Sigma_{\mathrm{End} T_{2}}}\right)$ is the following bound quiver:

We see that End T_{2} is a stably hereditary algebra with $\Sigma_{\text {End } T_{2}}=\{10\}$, and $\left\{\beta_{1}, \beta_{11}\right\}$ is a possible choice for I_{α}; then $V_{1}=\left\{\beta_{11}\right\}, V_{2}=\left\{\beta_{1}\right\}$ and
thus $V_{1} \cap V_{2}=\emptyset$. Hence by Lemma 1.4, $\left(Q, I_{\Sigma_{\text {End } T_{2}}}\right)$ does not contain any double-zero (which is easy to see here by taking a look at $\left(Q, I_{\Sigma_{\mathrm{End} T_{2}}}\right)$), and therefore it follows from Corollary 2.2 that

$$
T_{3}=\left(\bigoplus_{i=11}^{12} P(i)\right) \oplus S(10) \oplus\left(\bigoplus_{k=1}^{9} I(k)\right)
$$

is a tilting-cotilting End T_{2}-module. Finally, by Lemma 2.3 we see that End T_{2} is a tilted algebra of type Q, and so A is iterated tilted of type Q.

Acknowledgments. This paper is part of my Ph.D. thesis. I would like to thank Professor I. Assem for his precious help and direction, and Professors D. Zacharia and S. Liu for useful discussions. I would also like to thank the NSERC (Gov. of Canada), FCAR (Gov. of Québec) and ISM (Institut des Sciences Mathématiques) for financial support.

REFERENCES

[1] I. Assem, Tilted algebras of type \mathbb{A}_{n}, Comm. Algebra 10 (1982), 2121-2139.
[2] -, Tilting theory - an introduction, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 127-180.
[3] I. Assem and A. Skowroński, Iterated tilted algebras of type $\widetilde{\mathbb{A}}_{n}$, Math. Z. 195 (1987), 269-290.
[4] —, 一, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
[5] M. Auslander and I. Reiten, Stable equivalence of Artin algebras, in: Proc. Conf. on Orders, Group Rings and Related Topics (Columbus, OH, 1972), Lecture Notes in Math. 353, Springer, 1973, 8-71.
[6] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebra, Cambridge Univ. Press, 1995.
[7] K. Bongartz et C. Riedtmann, Algèbres stablement héréditaires, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), 703-706.
[8] E. L. Green, D. Happel and D. Zacharia, Projective resolutions over Artin algebras with zero relations, Illinois J. Math. 29 (1985), 180-190.
[9] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988.
[10] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
[11] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
[12] F. Huard, Tilted gentle algebras, Comm. Algebra 26 (1998), 63-72.
[13] F. Huard and S. Liu, Tilted string algebras, J. Pure Appl. Algebra 153 (2000), 151-164.
[14] —, 一, Tilted special biserial algebras, J. Algebra 217 (1999), 679-700.
[15] J. Lévesque, Tilted algebras of type $\widetilde{\mathbb{A}}_{n}$, Comm. Algebra 31 (2003), 545-552.
[16] S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 161 (1993), 505-523.
[17] M. I. Platzeck, Representation theory of algebras stably equivalent to an hereditary Artin algebra, Trans. Amer. Math. Soc. 238 (1978), 89-128.
[18] -, On algebras stably equivalent to an hereditary Artin algebra, Canad. J. Math. 30 (1978), 817-829.
[19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[20] O. Roldán, Tilted algebras of types $\widetilde{\mathbb{A}}_{n}, \widetilde{\mathbb{B}}_{n}, \widetilde{\mathbb{C}}_{n}$ and $\widetilde{\mathbb{B}}_{n}$, Ph.D. thesis, Carleton Univ., 1983.
[21] A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68-76.

Département de Mathématiques et Informatique
Université de Sherbrooke
Sherbrooke, Québec
J1K 2R1, Canada
E-mail: jessica.levesque@dmi.usherb.ca

Received 23 April 2003;
revised 5 August 2003

[^0]: 2000 Mathematics Subject Classification: 16G20, 16G70, 16S50.
 Key words and phrases: stably hereditary algebras, tilted and iterated tilted algebras, tilting module, double-zero, clock condition.

