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ITERATED TILTED AND
TILTED STABLY HEREDITARY ALGEBRAS

BY

JESSICA LEVESQUE (Sherbrooke)

Abstract. We prove that a stably hereditary bound quiver algebra A = KQ/I
is iterated tilted if and only if (Q,I) satisfies the clock condition, and that in this case
it is of type Q. Furthermore, A is tilted if and only if (@, I) does not contain any double-
Zero.

Introduction. Two algebras A and B over a field K are called stably
equivalent if there is a K-linear equivalence between the quotient categories
mod A and mod B deduced from the categories of modules mod A and mod B
by annihilating the projective modules. An algebra A is called stably hered-
itary if it is stably equivalent to a hereditary algebra H. Stably hereditary
algebras have been studied from many points of view (see, for instance,
[5, 7, 17, 18]), but not from the tilting point of view. Tilted and iterated
tilted algebras have been one of the main objects of study in representation
theory since their introduction (see, for instance, [2, 9, 11]). Thus, it is nat-
ural to ask whether a stably hereditary algebra is iterated tilted or not. For
instance, it is shown in [3] that an iterated tilted algebra of type A,, satisfies
the clock condition, that is, on the unique cycle of its bound quiver, the
number of clockwise oriented relations equals the number of counterclock-
wise oriented relations. Furthermore, it is shown in [15, 20] that if such an
algebra is tilted, then its bound quiver cannot contain a double-zero, that is,
two consecutive monomial relations pointing in the same direction. In this
paper, we prove the following result:

THEOREM. Let A= KQ/I be a stably hereditary algebra. Then
(a) A is iterated tilted if and only if (Q,I) satisfies the clock condition.
In this case the type of A is Q).

(b) A is tilted if and only if (Q,I) satisfies the clock condition and does
not contain any double-zero.

2000 Mathematics Subject Classification: 16G20, 16GT70, 16S50.
Key words and phrases: stably hereditary algebras, tilted and iterated tilted algebras,
tilting module, double-zero, clock condition.
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It is worthwhile to note that a hereditary algebra that is tilting-cotilting
equivalent to A is connected when A is connected, which is not the case in
general for the hereditary algebra H that is stably equivalent to A.

This paper consists of two sections. The first is devoted to preliminaries
and the second to the proof of the main result.

1. Preliminaries

1.1. Notation. All algebras in this paper are basic, connected, associa-
tive, finite-dimensional algebras with identities over a fixed algebraically
closed field K, and all modules are finitely generated right modules. For
an algebra A, we denote by mod A its module category, by ind A a full
subcategory of mod A consisting of a complete set of representatives of the
isomorphism classes of indecomposable objects in mod A, and by proj A
the full subcategory of ind A consisting of the projective objects. Given an
A-module M, we denote by pd M its projective dimension and by id M its
injective dimension.

We recall that a quiver Q) is defined by a set of points Qg and a set of
arrows Q1. A relation from x € Qg toy € Qo is a linear combination of paths
from x to y of length at least two. Let I denote an ideal of K@ generated
by a set of relations; then the pair (@, I) is called a bound quiver. A relation
0= Nw; in I (where the \; are non-zero scalars and the w; are paths)
with m > 2 is called minimal if there is no proper non-empty subset J C
{1,...,m} such that ), _ ; A\;w; is also a relation in I, and is called monomial
if it equals a path (m = 1). It is well known that, if A is a basic and connected
finite-dimensional K-algebra, then there exists a connected bound quiver
(Qa,I) such that A = KQa/I (see [6]). For a point a in the quiver of A,
we denote by P(a) the corresponding indecomposable projective A-module,
and by I(a) the corresponding indecomposable injective A-module. Given
an A-module M, we denote by Supp M the full bound subquiver of Q)4
generated by the points a such that Hom 4(P(a), M) # 0. We say that A is
triangular whenever its quiver @) 4 has no oriented cycles.

For an arrow « of @, we denote by s(«) its source, by ¢(«) its target and
by a~! its formal inverse of source s(a~!) = t(a) and of target t(a~1) =
s(a). A walk in @ is a sequence w = ¢y ... ¢, with ¢; an arrow or the inverse
of an arrow such that ¢(¢;) = s(c;41) for all ¢ such that 1 <i < n. A walk
w in @ is called reduced if w = ¢y ...¢, with ¢; # c;rll for all ¢ such that
1 <4 < n. It is called a non-zero walk if it does not contain any zero-
relation. Finally, a reduced walk is called a double-zero if it contains exactly
two zero-relations that point in the same direction in w. The double-zero
has been used for the classification of tilted and quasi-tilted special biserial
algebras, string algebras and gentle algebras [1, 12-15].
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For general properties of the category mod A of finitely generated right
A-modules, we refer the reader to [6, 19]. For tilted and iterated tilted alge-
bras, we refer the reader to [2, 9, 11, 19].

1.2. The bound quiver of a stably hereditary algebra. In our main results,
we use some properties of the bound quiver of a stably hereditary algebra
that are easy to identify. This subsection is therefore devoted to the bound
quiver of a stably hereditary algebra.

Let A = KQ/I be a stably hereditary algebra. Then, by [7], we have
I =TIy, with

Ya={x € Qo S(x) is a non-projective submodule of A},
Iy, = {af | t(a) € Za, s(B) € Xa).
That is, Is;, is the ideal generated by all paths af with t(«) = s(8) € Z'4. In

particular, A is a monomial algebra (that is, I, is generated by monomial
relations).

DEFINITION. A cycle C in (@, Is,) satisfies the clock condition if the
number of clockwise oriented relations on C' equals the number of counter-
clockwise oriented relations. We say that (Q, I, ) satisfies the clock condi-
tion if all cycles in (Q, Iy, ) satisfy the clock condition.

The following theorem, due to Skowronski, allows us to characterize the
bound quiver of A using the clock condition.

THEOREM ([21]). For an algebra A tilting equivalent to a hereditary or
canonical algebra, and for any idempotent e of A and special cycle C in G ae,
C satisfies the clock condition. In particular, Q4 has no oriented cycles. m

Actually, in our context of stably hereditary algebras, it is easily seen to
be equivalent to say that if A is tilting equivalent to a hereditary algebra,
then any cycle of (@, I's;, ) satisfies the clock condition. Therefore, if (Q, I5,)
does not satisfy the clock condition, A is not iterated tilted. Hence, from
now on, we suppose that (Q, Iz, ) satisfies the clock condition. In particular,
A is a triangular algebra.

We want to decompose () into maximal subquivers which do not contain
any relation, that is, the ordinary quivers of the algebras Aq,..., A, such
that A is stably equivalent to Ay x ... x A, (see [7]).

Let a € 1, and let @@, be the subquiver of () such that

(Qa)1 = {5 €

there exists a non-zero walk w such that }
w = o*w' 3" where o € {a,a” '}, g {6,571} |

REMARKS. (1) Since A is a stably hereditary algebra, we easily see that
Qo is a full subquiver of (). Moreover, since (Q,Iyx,) satisfies the clock
condition, @), is convex in Q.
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(2) Since (Q, Is;, ) satisfies the clock condition, every walk w containing
zero-relations that point in the same direction in w:

— - — ~ — —

w:.ﬁplﬁ\../ﬁPQﬁ\. .......... './—>ps—\>.

is such that p; # p2 # ... # ps. In particular, every double-zero in (Q, Is,)
contains two distinct vertices of X 4.

(3) Let o € @1 and B € (Qn)1. Then Qo = Qp.

(4) If Qo # Qp, then (Qa)1 N (Qp)1 = 0 and (Qa)o N (Qp)o € La.

(5) For all @ € Q1 and = € (Qa)o \ X4, we have I(z) € ind KQ, and
P(z) € ind KQ,.

Let a1,...,a¢ € Q1 be such that Qn, # Qa; when i # j, and such
that for all 8 € @1, there exists i € {1,...,t} such that 8 € (Qq,;)1. Let

I, ={aq,...,oq}.
Then Q = Uzzl(Qaih and Qo = Ule(Qai)o, and it follows from the
remarks above and from [7] that A is stably equivalent to KQq, X... X KQq,-

EXAMPLE. Let (Q,I) be the following bound quiver:

11- - 3 --1
ﬁklo 510\ /j \3 /33 4
512 - B2

A possible choice for I, is I, = {f1, ﬂg, Be, B11}, and then we have

11 6
B B
\11 B1o y

Qs = 10 Qps = 10——9

8§ ——=7

Bs

Now, we want to characterize (@Q,Isx,) in such a way as to show that
there always exists a; € I, such that any indecomposable KQ,,-module M
is of projective dimension at most one when considered as an A-module,
and that, dually, there always exists «; € I, such that any indecomposable
KQq;-module N is of injective dimension at most one when considered as
an A-module. This characterization will also allow us to state a sufficient
and necessary condition to see if (@), Is, ) contains a double-zero.
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So, first, let
Vi ={a; € I, | there exists 5 € (Qq,)1 such that ¢(5) € Xa},
Vo = {a; € I, | there exists 5 € (Qq,)1 such that s(5) € X4}
In the previous example, we have Vi ={fs, B¢, f11} and Va={51, B3, B6 }-

1.3. LEMMA. (a) There exists c; € I, N (Vo \ V7).
(b) There exists a; € I, N (V1 \ Va).

Proof. (a) Let a1 € Iy. If a1 € Vo \ Vi, we are done. Otherwise, Qqa,,
contains an arrow [3;; such that t(3;1) € Ya:

— ~

o - Pi1 f; °
i1 il
Let ajo € I\ {1} be such that 5}, € (Qa,y)1- If ciia € Va2 \ V1, we are done.
Otherwise, QQn,, contains an arrow ;2 such that ¢(f;2) € X4, and so there

is a double-zero of the form

— ~ — ~

.Wpﬂ?. --------- ’%)pﬂﬂ/—). (Pir # pi2)-
We then consider ;3 € Iy \ {1, ayo} such that 5l € (Qa,s)1- We repeat
the argument, and since |I,| and | X 4| are finite, the statement follows from
induction.
(b) Dual proof. =

1.4. LEMMA. The bound quiver (Q,Ix,) does not contain any double-
zero if and only if Vi NVy = 0.

Proof. If Vi N Va # ), there exists o; € I, such that Q,, contains an
arrow whose target is in X4, and an arrow whose source is in X' 4. This
implies the existence of a double-zero in (Q, Ix,).

On the other hand, if (@, Ix,) contains a double-zero:

— ~ — ~

~ ~ ~ ~
.ﬁpl?..?p2ﬁ.
1 2

then we see that there exists a non-zero walk containing the arrows (i
and (2. Hence there exists a; € I, such that (1, 52 € (Qq,;)1, and so «; €
VinVs. u

1.5. LEMMA. (a) Let o € In N (Vo \ V1) and let M € ind KQq,. Then
pdMy <1 and 1AM € ind KQq, .

(b) Let a; € In N (Vi \ Va) and let M € ind KQq,. Then idMa <1 and
' M € ind KQo,.

Proof. (a) Let P be the projective cover of M and f : P — M be
the canonical projection. Since M € ind KQ,, and «; € V5 \ Vi, we have
P € proj KQq,-
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Assume that pd M4 > 1. Then Ker f has a non-projective direct sum-
mand S. Since A is stably hereditary, S = S(p) with p € X4.

Hence S(p) is a direct summand of soc P, and therefore @), contains an
arrow whose target is in X4, which contradicts the fact that a; € Vo \ V1.
Hence pd M < 1.

Therefore 0 — Ker f — P — M — 0 is a minimal projective resolution
of M. If there exists p € (Supp P)o N X4, then S(p) is a direct summand of
top M since a; € Vo \ V7. Hence p & (Supp Ker f)o.

Therefore, there exists V C (Qq,)o \ 24 such that Ker f = €

Applying the Nakayama functor v4 yields the exact sequence

veV P(’U)

0—7aM — vaKer f — vaP

and vg Ker f = va(P, ey P(v)) = Py L(v).

Since V' C (Qa,)o \ £, we have @, .y, I(v) € mod KQq,. Therefore
TaM € ind KQa,.

(b) Dual proof. =

2. Main results. To show that A is iterated tilted of type ), we need
a particular tilting (or cotilting) A-module T', and we give its construction
in Lemma 2.1. We see in Lemma 2.3 that End T is still a stably hereditary
algebra, with the same ordinary quiver as A. Moreover, this new stably
hereditary algebra has less non-projective simple submodules. This is the
key to the proof that A is iterated tilted.

2.1. LEMMA. (a) Let J C {1,...,t} be such that for all j € J, a; €
Vo\ V1. Let Qj, = UjeJ(Qaj)O- Then
T=( @ r)e( @ sw)e( B k)
1€Q0\Q g PEXANQ 54 k€Q i \Za
s a tilting A-module.
(b) Let J C {1,...,t} be such that for all j € J, o € Vi \ Va. Let
Qi = UjEJ(QOlj)O' Then
T = ( P P(i)) o ( b S(p)) @( P I(k))
1€Q 1\ XA PEZANQ ., k€Qo\Q s,
s a cotilting A-module.
Proof. (a) It is clear that T" has |Qp| pairwise non-isomorphic indecom-
posable summands.

By Remark (5) and Lemma 1.5, we have pd Ty < 1.
Let

p= & ru), S= G Sw, I= @ Ik).

i€Q0\Q.5y PEXANQ g, k€Q o\ XA
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Then ExtY(T,T) = Exti{(I ® S,P & S) = DHomu(P @ S,74l © 749).
It follows from the proof of Lemma 1.5 that the socles of 741 and 745
have no non-projective simple summand which is a submodule of A (that
is, has the form S(p) with p € X4). This and Lemma 1.5 imply that
Hom 4 (P, 741)=0, Hom4 (P, 745)=0, Homa(S,741)=0 and Homy (S, 745)
=0.

Hence Ext!y(T,T) = 0, and so T is a tilting A-module.

(b) Dual proof. m

When (Q, Ix,) does not contain any double-zero, the tilting module and
the cotilting module of the previous lemma coincide. This is the following
corollary:

2.2. COROLLARY. Assume that (Q,Ix,) does not contain any double-
zero, and let Jy, = {z € (Qqa;)0\ X4 | s € Vi} and Jv, = {z € (Qa;)0\ X4 |
a; € Va}. Then

T=( ro)e <p§§4 () & (k@ 1(k))

1€y, c€Jv,
18 a tilting and cotilting A-module. =

2.3. LEMMA. (a) Let J C {1,...,t} be such that for all j € J, a; €
V2 \ Vl. Let QJO = UjeJ(Qaj)Of and

T-( @ r)e( @ sw)e( P 1)
1€Q0\Q o PEXANQ 5y k€Qyp\¥a
Then EndT = KQ/Isy,  , with Zppar = XA\ (ZaNQy,), and (Q,Isy 1)
respects the clock condition.
(b) Let J C {1,...,t} be such that for all j € J, o € Vi \ Va. Let
Qi = UjeJ(Qaj)O; and

r=( @ ri)e( @ sw)e( G k)
1€Q 1\ XA PEZANQ ., k€Qo\Q s,
Then EndT = KQ/Ixy, ,, with Xgnar = XA\ (XaNQy,), and (Q, Isy, 1)
respects the clock condition.

Proof. We start by showing that Qgnar = Q-

We already know that |Qo| = |(Qgnar)o|- We identify i € Qo with the
corresponding direct summand 7°(7) of T. We have T'(i) = P(i) if i € Qo \
Q. T(i) = S(i) ifi € ZaNQy,, and T(i) = I(3) if i € Q, \ Ta.

First, let us show that Q1 C (Qrnar)1- We have Q1 = [J'_,(Qa,)1. Let
a:k— 1€ Q. There exists o; € I, such that a € (Qqu,)1-

If i € J, we have T'(I) = I(l), and T'(k) = S(k) if k € X4N(Qq, )0, other-
wise T'(k) = I(k). In both cases, T'(k) is a direct summand of I(l)/soc I(l).



56 J. LEVESQUE

Hence there exists an irreducible morphism from () to I(k) in mod A.
Therefore we have an arrow o/ : T'(k) — I(l) in Qgnar-

Ifi ¢ J, we have T'(k) = P(k), and T'(I) = P(l) if l € Qo \ Q.,, otherwise
le XanQy, and T(1) = S(1).

When T'(1) = P(l), we can have [ € X4 or not. If not, then P(l) is a
direct summand of rad P(k), and so we have an arrow o' : P(k) — P(l)
n QEnar-

If [ € X4, then S(I) is a direct summand of rad P(k) (but remem-
ber, here, T'(I) = P(l)). Since S(I) = P(l)/rad P(l), we have a morphism
g : P(l) — S(I) in mod A. It is clear that g does not factorize through
any other indecomposable projective direct summand of T'. Moreover, since
l e Xa\Qy, S(I) cannot be a direct summand of the top of an injective
direct summand of 7. Therefore g cannot factorize through an injective di-
rect summand of T, and of course cannot factorize through a simple direct
summand of 7. Hence, since we have an irreducible morphism from S(I) to
P(k) and since g does not factorize through any other direct summand of T,
we have an arrow o : P(k) — P(l) in Qgnar-

Finally, there is the case [ € ¥4 N Qj,. In this case, we have T'(I) = S(I)
and S(I) is a direct summand of rad P(k). Therefore we have an arrow
o P(k’) — S(l) in QEndT'

This shows that @1 C (Qgnar)1- Let us show the reverse inclusion.

Let T'(k) and T'(I) be indecomposable direct summands of 7" such that
there exists an arrow o : T(k) — T(l) in Qguqr- The possible cases are:

(1) T(k) = () T(l) = P(l);

(2) T(k) = P(k), T(1) = S(I);
(3) T(k) = ( ), T(1) = I(1);
(4) T(k) = I(k), T(1) = I(D)-

In case (1), we have a morphism from P(l) to P(k) in mod A, and this
morphism does not factorize through any other direct summand of T'. As-
sume there is no arrow from k to [ in (). Since we have a morphism from
P(l) to P(k), we have a non-zero path v : k — .-+ — [ of length at least 2
in (@,Is,). We have [,k € Qo \ QJ,, and the same holds for every vertex j
lying on v. Therefore T'(j) = P(j) for all j lying on v, and all morphisms
from P(l) to P(k) must factorize through these modules, a contradiction.
Hence there is an arrow « : k — [ in Q.

We prove the other cases similarly. Thus, (Qgna7)1 € Q1.

Therefore, we have Qpnar = @, and so EndT = K@Q/J with J an
admissible ideal. It remains to show that J = I's,_, .

Let us first show that Is, ,,. € J.

Let 0 = af € Ix,,,, (then t(a) = s(8) = p € Ygnar). Let i be the
source of av and j be the target of 3. Since p € X'gpq 1, we have T'(i) = P(i)
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and T(j) = P(j) or T(j) = S(j). In both cases, we see that P(i) has n
composition factors in common with 7'(j). Hence Homx(T'(j), P(i)) =
and so af € J and Iy, ,, C J.

Now it remains to show the reverse inclusion.

Let o € J be a minimal relation of source T'(k) and of target 7°({). In
particular, this means that ¢ contains a path from & to [ in (. Hence the
possible cases are:

(1) T(k) = P(k), T(1) = P(l);
(2) T(k) = P(k), T(1) = S();
(3) T(k) = P(k), T(1) = I(1);
(4) T(k) = S(k), T(1) = I(1);
(5) T(k) = I(k), T(1) = I(1).

Let us identify o to the following full subquiver of @Q:

In cases (1) and (2), we have T'(kim,;) = P(kim,) for all i and m; such that
1<i<j,1<m; <s;. Since g is minimal, we deduce that all paths from &
to [ are non-zero in (@, Ix,). Moreover, since A is stably hereditary, we see
that for all ¢ € {1,...,5}, we have a monomorphism f; : T(I) — P(k) such
that {fi,..., f;} are linearly independent in Hom(T'({), P(k)). But if o is
a non-monomial relation, the set {f1,..., f;} has to be linearly dependent,
a contradiction.

Hence p is monomial, and so Hom4(7'(1), P(k)) = 0. By minimality of p,
we have p € Iy,. But since k € Qo \ Qj, and [ is in Qo \ @, or in X4 NQ j,,
we must have o € Iy .-

In case (3), we have T'(k) = P(k) and T'(I) = I(l). Therefore, for each
i €{1,...,7}, there exists exactly one kip, (with 1 < m; < s;) such that
T(kim;) = S(kim,;), T(kin) = P(kin) for all n such that 1 < n < m;, and
T(kin) = I(kin) for all n such that m; < n < s;. Therefore, for all i €
{1,...,7}, S(kim,) is a direct summand of both soc P(k) and top I(l). This
yields j linearly independant morphisms from I(l) to P(k), a contradiction
which implies that ¢ must be monomial.

Therefore j = 1. But, as we already saw, S(kiy,,) is a direct summand
of both soc P(k) and top I(!), and so Hom4(I(l), P(k)) # 0. Hence there is
no minimal relation of source P(k) and of target I(1).
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For cases (4) and (5), we show similarly that ¢ must be a monomial
relation, and that in fact there is no minimal relation of source S(k) or I(k)
and of target I(1).

Therefore J C Iy, ., and thus EndT =2 KQ/Ix,, -

The proof that (Q, sy, ,,) respects the clock condition follows from the
construction of (@, Ix,) and from the fact that for all j € J, a; € Vo \ V1.

(b) Dual proof. m

2.4. COROLLARY. If (Q,Is,) does not contain any double-zero, then A
1s tilted of type Q.

Proof. Follows from Corollary 2.2 and Lemma 2.3. u

The proof of the following lemma is similar to those of [15, 2.3] and [13,
2.6], which are done in the contexts of gentle and special biserial algebras
respectively.

2.5. LEMMA. If (Q,Is,) contains a double-zero, then A is not tilted.

Proof. Suppose that (Q, Ix,) contains a double-zero of the form

— - ~ — —
- ~

1 2 3 @ °

with t > 4.

Since A is monomial, if ¢ = 4, then, by [8], gl.dim A > 2, hence A is not
tilted.

Thus, suppose that t > 5, and let M be the indecomposable A-module
of support

3 t—2
such that M(z) = K for all z with 3 < z < ¢t — 2 (this indecomposable
module exists since A is monomial).

Let s be the source of Supp M such that there exists a path from s
to t — 2 in Supp M. Since A is monomial, we see that the kernel of the
canonical morphism P(s) — M has a non-projective direct summand and
hence pd M > 1.

Similarly, one proves that id N > 1. Thus, by [10, III, 2.3], A is not
quasi-tilted, and therefore is not tilted. m

It is now possible to prove the main result of this paper:
2.6. THEOREM. Let A= KQ/I be a stably hereditary algebra. Then:

(a) A is iterated tilted if and only if (Q,I) satisfies the clock condition.
In this case the type of A is Q).

(b) A is tilted if and only if (Q,I) satisfies the clock condition and does
not contain any double-zero.
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Proof. The first statement follows from Lemmata 1.3, 2.1 and 2.3, from
[21, Cor. 1] (Theorem of the first section) and from the fact that | X 4] is
finite. The second statement follows from Corollary 2.4 and Lemma 2.5. u

We easily obtain the following corollary, which, in particular, answers a
conjecture of Dieter Happel saying that an algebra A = KQ/I with @ a
tree and such that rad? A = 0 is iterated tilted.

2.7. COROLLARY. Let A= KQ/I be a stably hereditary algebra with Q
a tree. Then A is iterated tilted of type Q, and is tilted if and only if (Q,I)
does not contain any double-zero. m

Let A = KQ/I be an algebra with @ a tree such that I is generated by
paths of length two, and such that (Q, I) does not contain any double-zero.
If A is not stably hereditary, then it is not tilted in general, as shown in the
following example.

2.8. EXAMPLE. Let (@, I) be the following quiver:

x/
/B\

bound by f1a1 =0, B1ae =0, Baa; = 0 and Byae = 0. Then A = KQ/I is
isomorphic to

A = H[S3)][S(3)]

with H the hereditary algebra with ordinary quiver

@\/
ﬁ%\

By the proof of [4, 3.2], the component of I'(mod A;) containing S(3) is
not directed. Hence, it follows from [16, 3.7] that for A; to be tilted, this
component should be quasi-serial or obtained from a quasi-serial translation
quiver by ray or coray insertions, which is not the case. Therefore A; =
H[S(3)][S(3)] is not tilted.



60 J. LEVESQUE

2.9. EXAMPLE. Let A = KQ/Ix, be the stably hereditary algebra ap-
pearing in the first section:

11- - = 3 ~ -1
%10 /@10\ /i \;4/& 34
B2 B2

- \ / \

We have X4 = {3,6,7,10}, and {ﬁl,ﬁg,ﬁﬁ,ﬂn} is a possible choice for I,.

Hence ‘/1 - {ﬁ3)/665/ﬁ11}5 ‘/2 — {ﬁlvﬂfﬂ?ﬁG} and ‘/2 \ ‘/l — {/61}) (Qﬁ1)0 -
{1,2,3}, X4 N (Qp,)o = {3}, and thus by Lemma 2.1(a),

_ (éé P(i)) @ S5(3) @ (EzBI(k))
i=4 k=1

is a tilting A-module. Moreover, by Lemma 2.3(a), EndT1 = KQ/Ix,,, 7
with Ypnar, = Za \ (Za N (Qp,)o) = {6,7,10}. Therefore (Q, Iy, p, ) is
the following bound quiver:

11—

B
s / \ /

512 10 —= -

\ / \

Hence End T} is a stably hereditary algebra with Ygnam, = {6,7,10}, and

{81, B6, B11} is a possible choice for I,; then Vi = {5, B11}, Vo = {B1, 86}
and Vo \ Vi = {B1}. Here we have (Qg,)o = {1,2,3,4,5,6,7} and Zgnq7, N
(Qs,)0 = {6,7}, and thus by Lemma 2.1(a),

- (éé P(z’)) @ S(6) ® S(7) @ (é I(’C))
i=8 k=1

is a tilting End T1-module. Moreover, by Lemma 2.3(a), we have End T, =

KQ/Isg,qr, With Ypnar, = Zgndry \ (ZEnay N (@py)o) = {10}. Therefore
(Q, Iy, TQ) is the following bound quiver:

12—

11-- =

B11 1\0ﬁ10\ / \644 /
> PN / \

We see that End Ty is a stably hereditary algebra with Xg,qp, = {10},
and {1,311} is a possible choice for I,; then Vi = {811}, Vo = {f1} and

12— -7
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thus V4 N V2 = . Hence by Lemma 1.4, (Q, Iy, 4, ) does not contain any
double-zero (which is easy to see here by taking a look at (Q, Isy,, 1, )), and
therefore it follows from Corollary 2.2 that

Ty = (ET} P(i)) @ 5(10) @ (é I(kz))
=11 k=1

is a tilting-cotilting End T>-module. Finally, by Lemma 2.3 we see that
EndT; is a tilted algebra of type @, and so A is iterated tilted of type Q.
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