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ITERATED TILTED AND
TILTED STABLY HEREDITARY ALGEBRAS

BY

JESSICA LÉVESQUE (Sherbrooke)

Abstract. We prove that a stably hereditary bound quiver algebra A = KQ/I
is iterated tilted if and only if (Q, I) satisfies the clock condition, and that in this case
it is of type Q. Furthermore, A is tilted if and only if (Q, I) does not contain any double-
zero.

Introduction. Two algebras A and B over a field K are called stably
equivalent if there is a K-linear equivalence between the quotient categories
modA and modB deduced from the categories of modules modA and modB
by annihilating the projective modules. An algebra A is called stably hered-
itary if it is stably equivalent to a hereditary algebra H. Stably hereditary
algebras have been studied from many points of view (see, for instance,
[5, 7, 17, 18]), but not from the tilting point of view. Tilted and iterated
tilted algebras have been one of the main objects of study in representation
theory since their introduction (see, for instance, [2, 9, 11]). Thus, it is nat-
ural to ask whether a stably hereditary algebra is iterated tilted or not. For
instance, it is shown in [3] that an iterated tilted algebra of type Ãn satisfies
the clock condition, that is, on the unique cycle of its bound quiver, the
number of clockwise oriented relations equals the number of counterclock-
wise oriented relations. Furthermore, it is shown in [15, 20] that if such an
algebra is tilted, then its bound quiver cannot contain a double-zero, that is,
two consecutive monomial relations pointing in the same direction. In this
paper, we prove the following result:

Theorem. Let A = KQ/I be a stably hereditary algebra. Then

(a) A is iterated tilted if and only if (Q, I) satisfies the clock condition.
In this case the type of A is Q.

(b) A is tilted if and only if (Q, I) satisfies the clock condition and does
not contain any double-zero.
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It is worthwhile to note that a hereditary algebra that is tilting-cotilting
equivalent to A is connected when A is connected, which is not the case in
general for the hereditary algebra H that is stably equivalent to A.

This paper consists of two sections. The first is devoted to preliminaries
and the second to the proof of the main result.

1. Preliminaries

1.1. Notation. All algebras in this paper are basic, connected, associa-
tive, finite-dimensional algebras with identities over a fixed algebraically
closed field K, and all modules are finitely generated right modules. For
an algebra A, we denote by modA its module category, by indA a full
subcategory of modA consisting of a complete set of representatives of the
isomorphism classes of indecomposable objects in modA, and by projA
the full subcategory of indA consisting of the projective objects. Given an
A-module M , we denote by pdM its projective dimension and by idM its
injective dimension.

We recall that a quiver Q is defined by a set of points Q0 and a set of
arrows Q1. A relation from x ∈ Q0 to y ∈ Q0 is a linear combination of paths
from x to y of length at least two. Let I denote an ideal of KQ generated
by a set of relations; then the pair (Q, I) is called a bound quiver. A relation
% =

∑m
i=1 λiwi in I (where the λi are non-zero scalars and the wi are paths)

with m ≥ 2 is called minimal if there is no proper non-empty subset J ⊂
{1, . . . ,m} such that

∑
i∈J λiwi is also a relation in I, and is called monomial

if it equals a path (m = 1). It is well known that, if A is a basic and connected
finite-dimensional K-algebra, then there exists a connected bound quiver
(QA, I) such that A ∼= KQA/I (see [6]). For a point a in the quiver of A,
we denote by P (a) the corresponding indecomposable projective A-module,
and by I(a) the corresponding indecomposable injective A-module. Given
an A-module M , we denote by SuppM the full bound subquiver of QA

generated by the points a such that HomA(P (a),M) 6= 0. We say that A is
triangular whenever its quiver QA has no oriented cycles.

For an arrow α of Q, we denote by s(α) its source, by t(α) its target and
by α−1 its formal inverse of source s(α−1) = t(α) and of target t(α−1) =
s(α). A walk in Q is a sequence w = c1 . . . cn with ci an arrow or the inverse
of an arrow such that t(ci) = s(ci+1) for all i such that 1 ≤ i < n. A walk
w in Q is called reduced if w = c1 . . . cn with ci 6= c−1

i+1 for all i such that
1 ≤ i < n. It is called a non-zero walk if it does not contain any zero-
relation. Finally, a reduced walk is called a double-zero if it contains exactly
two zero-relations that point in the same direction in w. The double-zero
has been used for the classification of tilted and quasi-tilted special biserial
algebras, string algebras and gentle algebras [1, 12–15].
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For general properties of the category modA of finitely generated right
A-modules, we refer the reader to [6, 19]. For tilted and iterated tilted alge-
bras, we refer the reader to [2, 9, 11, 19].

1.2. The bound quiver of a stably hereditary algebra. In our main results,
we use some properties of the bound quiver of a stably hereditary algebra
that are easy to identify. This subsection is therefore devoted to the bound
quiver of a stably hereditary algebra.

Let A = KQ/I be a stably hereditary algebra. Then, by [7], we have
I = IΣA with

ΣA = {x ∈ Q0 | S(x) is a non-projective submodule of A},
IΣA = 〈αβ | t(α) ∈ ΣA, s(β) ∈ ΣA〉.

That is, IΣA is the ideal generated by all paths αβ with t(α) = s(β)∈ΣA. In
particular, A is a monomial algebra (that is, IΣA is generated by monomial
relations).

Definition. A cycle C in (Q, IΣA) satisfies the clock condition if the
number of clockwise oriented relations on C equals the number of counter-
clockwise oriented relations. We say that (Q, IΣA) satisfies the clock condi-
tion if all cycles in (Q, IΣA) satisfy the clock condition.

The following theorem, due to Skowroński, allows us to characterize the
bound quiver of A using the clock condition.

Theorem ([21]). For an algebra A tilting equivalent to a hereditary or
canonical algebra, and for any idempotent e of A and special cycle C in GeAe,
C satisfies the clock condition. In particular , QA has no oriented cycles.

Actually, in our context of stably hereditary algebras, it is easily seen to
be equivalent to say that if A is tilting equivalent to a hereditary algebra,
then any cycle of (Q, IΣA) satisfies the clock condition. Therefore, if (Q, IΣA)
does not satisfy the clock condition, A is not iterated tilted. Hence, from
now on, we suppose that (Q, IΣA) satisfies the clock condition. In particular,
A is a triangular algebra.

We want to decompose Q into maximal subquivers which do not contain
any relation, that is, the ordinary quivers of the algebras A1, . . . , An such
that A is stably equivalent to A1 × . . .× An (see [7]).

Let α ∈ Q1, and let Qα be the subquiver of Q such that

(Qα)1 =

{
β ∈ Q1

∣∣∣∣
there exists a non-zero walk w such that

w = α∗w′β∗ where α∗ ∈ {α, α−1}, β∗ ∈ {β, β−1}

}
.

Remarks. (1) Since A is a stably hereditary algebra, we easily see that
Qα is a full subquiver of Q. Moreover, since (Q, IΣA) satisfies the clock
condition, Qα is convex in Q.
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(2) Since (Q, IΣA) satisfies the clock condition, every walk w containing
zero-relations that point in the same direction in w:

w = • //
h c _ [ V R

p1 // • • //n i d _ Z U P
p2 // • • //n i d _ Z U P

ps // •

is such that p1 6= p2 6= . . . 6= ps. In particular, every double-zero in (Q, IΣA)
contains two distinct vertices of ΣA.

(3) Let α ∈ Q1 and β ∈ (Qα)1. Then Qα = Qβ.
(4) If Qα 6= Qβ, then (Qα)1 ∩ (Qβ)1 = ∅ and (Qα)0 ∩ (Qβ)0 ⊆ ΣA.
(5) For all α ∈ Q1 and x ∈ (Qα)0 \ ΣA, we have I(x) ∈ indKQα and

P (x) ∈ indKQα.

Let α1, . . . , αt ∈ Q1 be such that Qαi 6= Qαj when i 6= j, and such
that for all β ∈ Q1, there exists i ∈ {1, . . . , t} such that β ∈ (Qαi)1. Let
Iα = {α1, . . . , αt}.

Then Q1 =
⋃t
i=1(Qαi)1 and Q0 =

⋃t
i=1(Qαi)0, and it follows from the

remarks above and from [7] that A is stably equivalent to KQα1×. . .×KQαt .
Example. Let (Q, I) be the following bound quiver:

11 ] [ Y V T Q N
β11

&&NNNNNN 6
β5 // 5 β4

%%KKKKKK 1

10
β10 // 9 a d f i l o rβ6

99ssssss

β9 %%KKKKKK 4
r o l i f d a

L O R U X Z ]

β3 // 3
β1

99ssssss
β2

%%KKKKKK

12 a c e h k m pβ12 88pppppp
8

r o l i f d a

β8

// 7
β7

99ssssss
2

A possible choice for Iα is Iα = {β1, β3, β6, β11}, and then we have

11 β11

&&NNNNNN

Qβ11 = 10

12
β12

88pppppp

6

Qβ6 = 10
β10 // 9

β6
99ssssss

β9 %%KKKKKK

8
β8

// 7

6
β5 // 5 β4

%%KKKKKK

Qβ3 = 4
β3 // 3

7
β7

99ssssss

1

Qβ1 = 3

β1
99ssssss

β2 %%KKKKKK

2

Now, we want to characterize (Q, IΣA) in such a way as to show that
there always exists αi ∈ Iα such that any indecomposable KQαi-module M
is of projective dimension at most one when considered as an A-module,
and that, dually, there always exists αj ∈ Iα such that any indecomposable
KQαj -module N is of injective dimension at most one when considered as
an A-module. This characterization will also allow us to state a sufficient
and necessary condition to see if (Q, IΣA) contains a double-zero.
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So, first, let

V1 = {αi ∈ Iα | there exists β ∈ (Qαi)1 such that t(β) ∈ ΣA},
V2 = {αi ∈ Iα | there exists β ∈ (Qαi)1 such that s(β) ∈ ΣA}.

In the previous example, we have V1 ={β3, β6, β11} and V2 ={β1, β3, β6}.
1.3. Lemma. (a) There exists αi ∈ Iα ∩ (V2 \ V1).
(b) There exists αi ∈ Iα ∩ (V1 \ V2).

Proof. (a) Let αi1 ∈ Iα. If αi1 ∈ V2 \ V1, we are done. Otherwise, Qαi1

contains an arrow βi1 such that t(βi1) ∈ ΣA:

•
βi1

//n i d _ Z U P
pi1

β′i1

// •

Let αi2 ∈ Iα \{αi1} be such that β′i1 ∈ (Qαi2)1. If αi2 ∈ V2 \V1, we are done.
Otherwise, Qαi2 contains an arrow βi2 such that t(βi2) ∈ ΣA, and so there
is a double-zero of the form

•
βi1

//n i d _ Z U P
pi1

β′i1
// • •

βi2
//n i d _ Z U P
pi2

β′i2
// • (pi1 6= pi2).

We then consider αi3 ∈ Iα \ {αi1, αi2} such that β′i2 ∈ (Qαi3)1. We repeat
the argument, and since |Iα| and |ΣA| are finite, the statement follows from
induction.

(b) Dual proof.

1.4. Lemma. The bound quiver (Q, IΣA) does not contain any double-
zero if and only if V1 ∩ V2 = ∅.

Proof. If V1 ∩ V2 6= ∅, there exists αi ∈ Iα such that Qαi contains an
arrow whose target is in ΣA, and an arrow whose source is in ΣA. This
implies the existence of a double-zero in (Q, IΣA).

On the other hand, if (Q, IΣA) contains a double-zero:

• //n i d _ Z U P
p1

β1

// • •
β2

//n i d _ Z U P
p2 // •

then we see that there exists a non-zero walk containing the arrows β1

and β2. Hence there exists αi ∈ Iα such that β1, β2 ∈ (Qαi)1, and so αi ∈
V1 ∩ V2.

1.5. Lemma. (a) Let αi ∈ Iα ∩ (V2 \ V1) and let M ∈ indKQαi . Then
pdMA ≤ 1 and τAM ∈ indKQαi .

(b) Let αi ∈ Iα ∩ (V1 \ V2) and let M ∈ indKQαi . Then idMA ≤ 1 and
τ−1
A M ∈ indKQαi .

Proof. (a) Let P be the projective cover of M and f : P → M be
the canonical projection. Since M ∈ indKQαi and αi ∈ V2 \ V1, we have
P ∈ projKQαi .
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Assume that pdMA > 1. Then Ker f has a non-projective direct sum-
mand S. Since A is stably hereditary, S = S(p) with p ∈ ΣA.

Hence S(p) is a direct summand of socP , and therefore Qαi contains an
arrow whose target is in ΣA, which contradicts the fact that αi ∈ V2 \ V1.
Hence pdM ≤ 1.

Therefore 0 → Ker f → P → M → 0 is a minimal projective resolution
of M . If there exists p ∈ (SuppP )0 ∩ΣA, then S(p) is a direct summand of
topM since αi ∈ V2 \ V1. Hence p 6∈ (Supp Ker f)0.

Therefore, there exists V ⊆ (Qαi)0 \ΣA such that Ker f =
⊕

v∈V P (v).
Applying the Nakayama functor νA yields the exact sequence

0→ τAM → νA Ker f → νAP

and νA Ker f = νA(
⊕

v∈V P (v)) ∼=
⊕

v∈V I(v).
Since V ⊆ (Qαi)0 \ ΣA, we have

⊕
v∈V I(v) ∈ modKQαi . Therefore

τAM ∈ indKQαi .
(b) Dual proof.

2. Main results. To show that A is iterated tilted of type Q, we need
a particular tilting (or cotilting) A-module T , and we give its construction
in Lemma 2.1. We see in Lemma 2.3 that EndT is still a stably hereditary
algebra, with the same ordinary quiver as A. Moreover, this new stably
hereditary algebra has less non-projective simple submodules. This is the
key to the proof that A is iterated tilted.

2.1. Lemma. (a) Let J ⊆ {1, . . . , t} be such that for all j ∈ J, αj ∈
V2 \ V1. Let QJ0 =

⋃
j∈J(Qαj )0. Then

T =
( ⊕

i∈Q0\QJ0

P (i)
)
⊕
( ⊕

p∈ΣA∩QJ0

S(p)
)
⊕
( ⊕

k∈QJ0
\ΣA

I(k)
)

is a tilting A-module.
(b) Let J ⊆ {1, . . . , t} be such that for all j ∈ J, αj ∈ V1 \ V2. Let

QJ0 =
⋃
j∈J(Qαj)0. Then

T =
( ⊕

i∈QJ0
\ΣA

P (i)
)
⊕
( ⊕

p∈ΣA∩QJ0

S(p)
)
⊕
( ⊕

k∈Q0\QJ0

I(k)
)

is a cotilting A-module.

Proof. (a) It is clear that T has |Q0| pairwise non-isomorphic indecom-
posable summands.

By Remark (5) and Lemma 1.5, we have pdTA ≤ 1.
Let

P =
⊕

i∈Q0\QJ0

P (i), S =
⊕

p∈ΣA∩QJ0

S(p), I =
⊕

k∈QJ0
\ΣA

I(k).
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Then Ext1
A(T, T ) = Ext1

A(I ⊕ S, P ⊕ S) ∼= DHomA(P ⊕ S, τAI ⊕ τAS).
It follows from the proof of Lemma 1.5 that the socles of τAI and τAS
have no non-projective simple summand which is a submodule of A (that
is, has the form S(p) with p ∈ ΣA). This and Lemma 1.5 imply that
HomA(P, τAI)=0, HomA(P, τAS)=0, HomA(S, τAI)=0 and HomA(S, τAS)
= 0.

Hence Ext1
A(T, T ) = 0, and so T is a tilting A-module.

(b) Dual proof.

When (Q, IΣA) does not contain any double-zero, the tilting module and
the cotilting module of the previous lemma coincide. This is the following
corollary:

2.2. Corollary. Assume that (Q, IΣA) does not contain any double-
zero, and let JV1 = {x ∈ (Qαi)0\ΣA | αi ∈ V1} and JV2 = {x ∈ (Qαi)0\ΣA |
αi ∈ V2}. Then

T =
(⊕

i∈JV1

P (i)
)
⊕
(⊕

p∈ΣA
S(p)

)
⊕
( ⊕

k∈JV2

I(k)
)

is a tilting and cotilting A-module.

2.3. Lemma. (a) Let J ⊆ {1, . . . , t} be such that for all j ∈ J, αj ∈
V2 \ V1. Let QJ0 =

⋃
j∈J(Qαj )0, and

T =
( ⊕

i∈Q0\QJ0

P (i)
)
⊕
( ⊕

p∈ΣA∩QJ0

S(p)
)
⊕
( ⊕

k∈QJ0
\ΣA

I(k)
)
.

Then EndT ∼= KQ/IΣEnd T
with ΣEndT = ΣA \ (ΣA∩QJ0), and (Q, IΣEndT

)
respects the clock condition.

(b) Let J ⊆ {1, . . . , t} be such that for all j ∈ J, αj ∈ V1 \ V2. Let
QJ0 =

⋃
j∈J(Qαj)0, and

T =
( ⊕

i∈QJ0
\ΣA

P (i)
)
⊕
( ⊕

p∈ΣA∩QJ0

S(p)
)
⊕
( ⊕

k∈Q0\QJ0

I(k)
)
.

Then EndT ∼= KQ/IΣEnd T
with ΣEndT = ΣA \(ΣA∩QJ0), and (Q, IΣEndT

)
respects the clock condition.

Proof. We start by showing that QEndT = Q.
We already know that |Q0| = |(QEndT )0|. We identify i ∈ Q0 with the

corresponding direct summand T (i) of T . We have T (i) = P (i) if i ∈ Q0 \
QJ0 , T (i) = S(i) if i ∈ ΣA ∩QJ0 , and T (i) = I(i) if i ∈ QJ0 \ΣA.

First, let us show that Q1 ⊆ (QEndT )1. We have Q1 =
⋃t
i=1(Qαi)1. Let

α : k → l ∈ Q1. There exists αi ∈ Iα such that α ∈ (Qαi)1.
If i ∈ J , we have T (l) = I(l), and T (k) = S(k) if k ∈ ΣA∩ (Qαi)0, other-

wise T (k) = I(k). In both cases, T (k) is a direct summand of I(l)/soc I(l).
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Hence there exists an irreducible morphism from I(l) to I(k) in modA.
Therefore we have an arrow α′ : T (k)→ I(l) in QEndT .

If i 6∈ J , we have T (k) = P (k), and T (l) = P (l) if l ∈ Q0 \QJ0 , otherwise
l ∈ ΣA ∩QJ0 and T (l) = S(l).

When T (l) = P (l), we can have l ∈ ΣA or not. If not, then P (l) is a
direct summand of radP (k), and so we have an arrow α′ : P (k) → P (l)
in QEndT .

If l ∈ ΣA, then S(l) is a direct summand of radP (k) (but remem-
ber, here, T (l) = P (l)). Since S(l) = P (l)/radP (l), we have a morphism
g : P (l) → S(l) in modA. It is clear that g does not factorize through
any other indecomposable projective direct summand of T . Moreover, since
l ∈ ΣA \ QJ0 , S(l) cannot be a direct summand of the top of an injective
direct summand of T . Therefore g cannot factorize through an injective di-
rect summand of T , and of course cannot factorize through a simple direct
summand of T . Hence, since we have an irreducible morphism from S(l) to
P (k) and since g does not factorize through any other direct summand of T ,
we have an arrow α′ : P (k)→ P (l) in QEndT .

Finally, there is the case l ∈ ΣA ∩QJ0 . In this case, we have T (l) = S(l)
and S(l) is a direct summand of radP (k). Therefore we have an arrow
α′ : P (k)→ S(l) in QEndT .

This shows that Q1 ⊆ (QEndT )1. Let us show the reverse inclusion.
Let T (k) and T (l) be indecomposable direct summands of T such that

there exists an arrow α′ : T (k)→ T (l) in QEndT . The possible cases are:

(1) T (k) = P (k), T (l) = P (l);
(2) T (k) = P (k), T (l) = S(l);
(3) T (k) = S(k), T (l) = I(l);
(4) T (k) = I(k), T (l) = I(l).

In case (1), we have a morphism from P (l) to P (k) in modA, and this
morphism does not factorize through any other direct summand of T . As-
sume there is no arrow from k to l in Q. Since we have a morphism from
P (l) to P (k), we have a non-zero path v : k → · · · → l of length at least 2
in (Q, IΣA). We have l, k ∈ Q0 \QJ0 , and the same holds for every vertex j
lying on v. Therefore T (j) = P (j) for all j lying on v, and all morphisms
from P (l) to P (k) must factorize through these modules, a contradiction.
Hence there is an arrow α : k → l in Q.

We prove the other cases similarly. Thus, (QEndT )1 ⊆ Q1.
Therefore, we have QEndT = Q, and so EndT ∼= KQ/J with J an

admissible ideal. It remains to show that J = IΣEnd T
.

Let us first show that IΣEnd T
⊆ J .

Let % = αβ ∈ IΣEnd T
(then t(α) = s(β) = p ∈ ΣEndT ). Let i be the

source of α and j be the target of β. Since p ∈ ΣEnd T , we have T (i) = P (i)
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and T (j) = P (j) or T (j) = S(j). In both cases, we see that P (i) has no
composition factors in common with T (j). Hence HomA(T (j), P (i)) = 0,
and so αβ ∈ J and IΣEnd T

⊆ J .

Now it remains to show the reverse inclusion.

Let % ∈ J be a minimal relation of source T (k) and of target T (l). In
particular, this means that % contains a path from k to l in Q. Hence the
possible cases are:

(1) T (k) = P (k), T (l) = P (l);

(2) T (k) = P (k), T (l) = S(l);

(3) T (k) = P (k), T (l) = I(l);

(4) T (k) = S(k), T (l) = I(l);

(5) T (k) = I(k), T (l) = I(l).

Let us identify % to the following full subquiver of Q:

k11
// k12 k1(s1−1) // k1s1

��::::::::::

k21
// k22 k2(s2−1) // k2s2

&&MMMMMM

k

88rrrrrr

BB����������

&&LLLLLL l

kj1 // kj2 kj(sj−1) // kjsj

88rrrrrr

In cases (1) and (2), we have T (kimi) = P (kimi) for all i and mi such that
1 ≤ i ≤ j, 1 ≤ mi ≤ si. Since % is minimal, we deduce that all paths from k
to l are non-zero in (Q, IΣA). Moreover, since A is stably hereditary, we see
that for all i ∈ {1, . . . , j}, we have a monomorphism fi : T (l) → P (k) such
that {f1, . . . , fj} are linearly independent in HomA(T (l), P (k)). But if % is
a non-monomial relation, the set {f1, . . . , fj} has to be linearly dependent,
a contradiction.

Hence % is monomial, and so HomA(T (l), P (k)) = 0. By minimality of %,
we have % ∈ IΣA . But since k ∈ Q0 \QJ0 and l is in Q0 \QJ0 or in ΣA∩QJ0 ,
we must have % ∈ IΣEndT

.

In case (3), we have T (k) = P (k) and T (l) = I(l). Therefore, for each
i ∈ {1, . . . , j}, there exists exactly one kimi (with 1 ≤ mi ≤ si) such that
T (kimi) = S(kimi), T (kin) = P (kin) for all n such that 1 ≤ n < mi, and
T (kin) = I(kin) for all n such that mi < n ≤ si. Therefore, for all i ∈
{1, . . . , j}, S(kimi) is a direct summand of both socP (k) and top I(l). This
yields j linearly independant morphisms from I(l) to P (k), a contradiction
which implies that % must be monomial.

Therefore j = 1. But, as we already saw, S(k1m1) is a direct summand
of both socP (k) and top I(l), and so HomA(I(l), P (k)) 6= 0. Hence there is
no minimal relation of source P (k) and of target I(l).
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For cases (4) and (5), we show similarly that % must be a monomial
relation, and that in fact there is no minimal relation of source S(k) or I(k)
and of target I(l).

Therefore J ⊆ IΣEnd T
and thus EndT ∼= KQ/IΣEnd T

.

The proof that (Q, IΣEndT
) respects the clock condition follows from the

construction of (Q, IΣA) and from the fact that for all j ∈ J , αj ∈ V2 \ V1.

(b) Dual proof.

2.4. Corollary. If (Q, IΣA) does not contain any double-zero, then A
is tilted of type Q.

Proof. Follows from Corollary 2.2 and Lemma 2.3.

The proof of the following lemma is similar to those of [15, 2.3] and [13,
2.6], which are done in the contexts of gentle and special biserial algebras
respectively.

2.5. Lemma. If (Q, IΣA) contains a double-zero, then A is not tilted.

Proof. Suppose that (Q, IΣA) contains a double-zero of the form

1 //o j _ T O
2 // 3 • • t− 2 //

g c _ [ W S
t− 1 // t

with t ≥ 4.

Since A is monomial, if t = 4, then, by [8], gl.dimA > 2, hence A is not
tilted.

Thus, suppose that t ≥ 5, and let M be the indecomposable A-module
of support

3 • • t− 2

such that M(x) = K for all x with 3 ≤ x ≤ t − 2 (this indecomposable
module exists since A is monomial).

Let s be the source of SuppM such that there exists a path from s
to t − 2 in SuppM . Since A is monomial, we see that the kernel of the
canonical morphism P (s) → M has a non-projective direct summand and
hence pdM > 1.

Similarly, one proves that idN > 1. Thus, by [10, III, 2.3], A is not
quasi-tilted, and therefore is not tilted.

It is now possible to prove the main result of this paper:

2.6. Theorem. Let A = KQ/I be a stably hereditary algebra. Then:

(a) A is iterated tilted if and only if (Q, I) satisfies the clock condition.
In this case the type of A is Q.

(b) A is tilted if and only if (Q, I) satisfies the clock condition and does
not contain any double-zero.
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Proof. The first statement follows from Lemmata 1.3, 2.1 and 2.3, from
[21, Cor. 1] (Theorem of the first section) and from the fact that |ΣA| is
finite. The second statement follows from Corollary 2.4 and Lemma 2.5.

We easily obtain the following corollary, which, in particular, answers a
conjecture of Dieter Happel saying that an algebra A = KQ/I with Q a
tree and such that rad2A = 0 is iterated tilted.

2.7. Corollary. Let A = KQ/I be a stably hereditary algebra with Q
a tree. Then A is iterated tilted of type Q, and is tilted if and only if (Q, I)
does not contain any double-zero.

Let A = KQ/I be an algebra with Q a tree such that I is generated by
paths of length two, and such that (Q, I) does not contain any double-zero.
If A is not stably hereditary, then it is not tilted in general, as shown in the
following example.

2.8. Example. Let (Q, I) be the following quiver:

4

β1

��888888888

5

β2 %%JJJJJJ 1

3

α1
99tttttt

α2 %%JJJJJJ

6

β3
99tttttt

2

7

β4

CC���������

bound by β1α1 = 0, β1α2 = 0, β4α1 = 0 and β4α2 = 0. Then A = KQ/I is
isomorphic to

A1 = H[S(3)][S(3)]

with H the hereditary algebra with ordinary quiver

5

β2 %%JJJJJJ 1

3

α1
99tttttt

α2 %%JJJJJJ

6

β3
99tttttt

2

By the proof of [4, 3.2], the component of Γ (modA1) containing S(3) is
not directed. Hence, it follows from [16, 3.7] that for A1 to be tilted, this
component should be quasi-serial or obtained from a quasi-serial translation
quiver by ray or coray insertions, which is not the case. Therefore A1 =
H[S(3)][S(3)] is not tilted.
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2.9. Example. Let A = KQ/IΣA be the stably hereditary algebra ap-
pearing in the first section:

11 ] [ Y V T Q Nβ11
&&NNNNNN 6

β5 // 5 β4

%%KKKKKK 1

10
β10 // 9 a d f i l o rβ6

99ssssss

β9 %%KKKKKK 4
r o l i f d a

L O R U X Z ]

β3 // 3
β1

99ssssss
β2

%%KKKKKK

12 a c e h k m pβ12
88pppppp

8
r o l i f d a

β8

// 7
β7

99ssssss
2

We have ΣA = {3, 6, 7, 10}, and {β1, β3, β6, β11} is a possible choice for Iα.
Hence V1 = {β3, β6, β11}, V2 = {β1, β3, β6} and V2 \ V1 = {β1}, (Qβ1)0 =
{1, 2, 3}, ΣA ∩ (Qβ1)0 = {3}, and thus by Lemma 2.1(a),

T1 =
( 12⊕

i=4

P (i)
)
⊕ S(3)⊕

( 2⊕

k=1

I(k)
)

is a tilting A-module. Moreover, by Lemma 2.3(a), EndT1
∼= KQ/IΣEnd T1

with ΣEndT1 = ΣA \ (ΣA ∩ (Qβ1)0) = {6, 7, 10}. Therefore (Q, IΣEndT1
) is

the following bound quiver:

11 ] [ Y V T Q Nβ11
&&NNNNNN 6

β5 // 5 β4

%%KKKKKK 1

10
β10 // 9 a d f i l o rβ6

99ssssss

β9 %%KKKKKK 4
β3 // 3

β1
99ssssss

β2 %%KKKKKK

12 a c e h k m pβ12 88pppppp
8

r o l i f d a

β8

// 7
β7

99ssssss
2

Hence EndT1 is a stably hereditary algebra with ΣEndT1 = {6, 7, 10}, and
{β1, β6, β11} is a possible choice for Iα; then V1 = {β6, β11}, V2 = {β1, β6}
and V2 \ V1 = {β1}. Here we have (Qβ1)0 = {1, 2, 3, 4, 5, 6, 7} and ΣEnd T1 ∩
(Qβ1)0 = {6, 7}, and thus by Lemma 2.1(a),

T2 =
( 12⊕

i=8

P (i)
)
⊕ S(6)⊕ S(7)⊕

( 5⊕

k=1

I(k)
)

is a tilting EndT1-module. Moreover, by Lemma 2.3(a), we have EndT2
∼=

KQ/IΣEnd T2
with ΣEndT2 = ΣEndT1 \ (ΣEndT1 ∩ (Qβ1)0) = {10}. Therefore

(Q, IΣEndT2
) is the following bound quiver:

11 ] [ Y V T Q Nβ11
&&NNNNNN 6

β5 // 5 β4

%%KKKKKK 1

10
β10 // 9

β6
99ssssss

β9 %%KKKKKK 4
β3 // 3

β1
99ssssss

β2 %%KKKKKK

12 a c e h k m pβ12 88pppppp
8

β8

// 7
β7

99ssssss
2

We see that EndT2 is a stably hereditary algebra with ΣEndT2 = {10},
and {β1, β11} is a possible choice for Iα; then V1 = {β11}, V2 = {β1} and
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thus V1 ∩ V2 = ∅. Hence by Lemma 1.4, (Q, IΣEndT2
) does not contain any

double-zero (which is easy to see here by taking a look at (Q, IΣEndT2
)), and

therefore it follows from Corollary 2.2 that

T3 =
( 12⊕

i=11

P (i)
)
⊕ S(10)⊕

( 9⊕

k=1

I(k)
)

is a tilting-cotilting EndT2-module. Finally, by Lemma 2.3 we see that
EndT2 is a tilted algebra of type Q, and so A is iterated tilted of type Q.
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[7] K. Bongartz et C. Riedtmann, Algèbres stablement héréditaires, C. R. Acad. Sci.
Paris Sér. A-B 288 (1979), 703–706.

[8] E. L. Green, D. Happel and D. Zacharia, Projective resolutions over Artin algebras
with zero relations, Illinois J. Math. 29 (1985), 180–190.

[9] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimen-
sional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press,
1988.

[10] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted
algebras, Mem. Amer. Math. Soc. 575 (1996).

[11] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982),
399–443.

[12] F. Huard, Tilted gentle algebras, Comm. Algebra 26 (1998), 63–72.
[13] F. Huard and S. Liu, Tilted string algebras, J. Pure Appl. Algebra 153 (2000),

151–164.
[14] —, —, Tilted special biserial algebras, J. Algebra 217 (1999), 679–700.
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[21] A. Skowroński, Generalization of Yamagata’s theorem on trivial extensions, Arch.
Math. (Basel) 48 (1987), 68–76.
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