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Abstract. E. Hille [Hi1] gave an example of an operator in L1[0, 1] satisfying the
mean ergodic theorem (MET) and such that supn ‖Tn‖ = ∞ (actually, ‖Tn‖ ∼ n1/4).
This was the first example of a non-power bounded mean ergodic L1 operator. In this
note, the possible rates of growth (in n) of the norms of Tn for such operators are studied.
We show that, for every γ > 0, there are positive L1 operators T satisfying the MET
with limn→∞ ‖Tn‖/n1−γ = ∞. In the class of positive operators these examples are the
best possible in the sense that for every such operator T there exists a γ0 > 0 such that
lim supn→∞ ‖Tn‖/n1−γ0 = 0.

A class of numerical sequences {αn}, intimately related to the problem of the growth
of norms, is introduced, and it is shown that for every sequence {αn} in this class one
can get ‖Tn‖ ≥ αn (n = 1, 2, . . .) for some T . Our examples can be realized in a class of
positive L1 operators associated with piecewise linear mappings of [0, 1].

0. Introduction. The mean ergodic theorem (MET) was originally
proved by von Neumann for unitary operators in Hilbert spaces. This the-
orem triggered a huge number of results, including those extending it to
various classes of spaces and operators (see, e.g., [Kr]). We say that a
bounded linear operator T in a Banach space X satisfies the MET (or
is mean ergodic) if limn→∞ n−1∑n

k=1 T
kf exists for all f ∈ X. An obvi-

ous necessary condition for T to satisfy the MET comes from the classi-
cal Banach–Steinhaus theorem; namely, one must have supn≥1 ‖An‖ < ∞,
where An = An(T ) = n−1∑n

k=1 T
k. Such operators T are called Cesàro

bounded . A stronger condition, supn≥1 ‖Tn‖ < ∞, which is called power
boundedness of T , turns out not to be necessary for the mean ergodicity
of T . The first, and nontrivial, example in this direction was given in an old
paper of E. Hille [Hi1]. He proved that the operator T defined on L1[0, 1]
by Tf(x) = f(x) −

� x
0 f(y) dy is mean ergodic, but the norms of the T n

grow as n1/4. This rate of growth (n1/4) is, of course, related to the concrete
analytical nature of Hille’s example (more precisely, it is connected with the
asymptotics of the Laguerre polynomials, which appear in the kernels of the
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iterations of the integral operator T ). Concerning the question about the
(highest) possible rates of growth, it was only noted in [Hi1, p. 247] that
“it is still a far cry from O(n1/4) to o(n)”. As far as we know, this question
remained unanswered.

In this note we show that for any γ > 0, the rate of growth (in n) of
‖Tn‖ for the L1 operators T satisfying the MET can actually be faster than
n1−γ .

Also, we will be concerned with positive L1 operators (Hille’s operator
is clearly nonpositive). We will show that the above estimate cannot be
improved in the class of positive operators.

For any fixed p, 1 ≤ p ≤ ∞, an Lp operator T is called positive if
T preserves the cone Lp+ = {f ∈ Lp : f ≥ 0}. If 1 < p < ∞ (but not
for p = 1), the existence of positive mean ergodic Lp operators which are
not power bounded follows from the results of [É]. The Cesàro bounded,
but not power bounded operators have also been studied in [N] and [DM].
Y. Derriennic [D] constructed a (nonpositive) mean ergodic operator T in
L2 with the highest possible rate of growth, namely, lim supn−1‖Tn‖ > 0.
Recently, Yu. Tomilov and J. Zemanek [TZ] suggested another, simpler way
of constructing L2 operators having the same properties as Derriennic’s
example.

The L1 case, originally considered by Hille, requires different methods.
Our L1 examples can be realized in a class of operators which appears natu-
rally in dynamics, in particular, in questions about cocycles for nonsingular
transformations (see, e.g., [KKry], [KL]).

Concerning the estimates from above for the rates of growth of ‖T n‖, it
was shown in [BHL, Lemma 5] that ‖Tn‖/n→ 0 as n→∞ for every positive
Cesàro bounded L1 operator. Actually, if one looks at their argument, based
on an observation made in [DL, Theorem 2.1(v)], one can see that it gives
a better estimate

sup
n

‖Tn‖ lnn
n

<∞.

It turns out that this estimate can be further strenghtened. Actually, we
strenghen it twice. First, in §1 (Theorem 1) we give a simple inductive argu-
ment to show that, for everyN , the sequence ‖T n‖must satisfy the condition
supn ‖Tn‖(lnn)N/n <∞. Then, in §2 (Theorem 2), we give a more analyt-
ical argument for the above-mentioned power estimate, which is the best in
the asymptotic sense. Formally, Theorem 1 is not a direct consequence of
Theorem 2, because both give not only the asymptotic statements, but more
concrete estimates. In §3 we give two examples of operators which show that
the rate of growth of ‖Tn‖ given by Theorem 2 cannot be further improved.

For our proofs we introduce a class of numerical sequences, which we call
the sequences of sublinear Cesàro growth (SCG-sequences), and estimate
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their possible rates of growth. In §4 we show that the SCG-sequences are
intimately related to the question about the growth of ‖T n‖. Namely, we
prove (Theorem 3) that for every SCG-sequence {αn} there is a positive L1

operator T satisfying the MET with ‖T n‖ ≥ αn for all n ≥ 1.

We would like to thank M. Lin and the referee for some useful comments
and remarks.

1. An upper estimate. We start with the following definition.

Definition. Let {αn}n≥1 be a sequence of positive numbers. We say
that this sequence has sublinear Cesàro growth (is a SCG-sequence) if there
is a constant K such that for any positive integers n, p we have

(1)
1
p

p−1∑

k=0

αn+k ≤ Kαn.

A constant K in (1) is called an SCG-constant for {αn}.
It is easy to check that if T is a positive Cesàro bounded L1 opera-

tor, and f ∈ L1, then αn = ‖Tnf‖ is a SCG-sequence. Indeed, let K =
supn≥0 ‖An(T )‖ (here we adopt, for convenience, that A0(T ) = Id; this
implies, in particular, that K ≥ 1). For f ∈ L1

+ we have

1
p

p−1∑

k=0

αn+k =
1
p

p−1∑

k=0

‖Tn+kf‖ =
1
p
‖Tnf‖+

∥∥∥∥
1
p

p−1∑

k=1

Tn+kf

∥∥∥∥

=
1
p
‖Tnf‖+

∥∥∥∥
p− 1
p

Ap−1(Tnf)
∥∥∥∥

≤ 1
p
‖Tnf‖+

p− 1
p

K‖Tnf‖ =
(

1
p

+
p− 1
p

K

)
αn ≤ Kαn.

For general f ∈ L1 we split it into its positive and negative parts and
use the fact that the class of SCG-sequences is linear. The above calculation
shows that, for a given T , all sequences αn = ‖Tnf‖ admit the same SCG-
constant.

In §3, after Example 1, we will see that, for a positive Cesàro bounded
operator T , the sequence βn = ‖Tn‖ (as opposed to the sequences ‖Tnf‖
for f ∈ L1) need not be an SCG-sequence.

Lemma 1. For any N,K ≥ 0 there is a constant CN,K such that if a
sequence {αn}∞n=1 has sublinear Cesàro growth, with an SCG-constant K,
then for any n = 1, 2, . . . and any p = 1, . . . , n,

(2) αn
(ln p)N

p
≤ CN,Kαn−p+1.
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Proof. For N = 0 the necessary inequality follows immediately from the
SCG-property. Indeed, for any n ≥ 1 and p, 1 ≤ p ≤ n, we get

αn
p
≤ 1
p

p−1∑

k=0

αn−p+k+1 ≤ Kαn−p+1.

Let us assume by induction that the inequality (2) is true for some N
with some constant CN,K . Then, using (1), we get

(3) αn

p∑

k=1

(ln k)N

k
≤ CN,K

p∑

k=1

αn−k+1 ≤ CN,KKpαn−p+1.

A routine argument shows that, for some constant D > 0,

(4)
p∑

k=1

(ln k)N

k
≥ D(ln p)N+1

for all p ≥ 1. Putting this into (3), we obtain the desired inequality (2) for
N + 1 with CN+1,K = D−1CN,KK.

For completeness, we include an elementary argument for (4). Since the
function g(x) = (lnx)N/x is decreasing for x ≥ L := eN , for any p > L we
can write

p∑

k=1

(ln k)N

k
≥

p∑

k=L

(ln k)N

k

≥
p�

L

(lnx)N

x
dx =

1
N + 1

[(ln p)N+1 −NN+1].

Therefore, for sufficiently large p, say, for p ≥M , we get
p∑

k=1

(ln k)N

k
≥ 1

2(N + 1)
(ln p)N+1.

Since there are only finitely many values p < M , the proof of (4) is complete.

Corollary 1. If {αn}n≥1 is an SCG-sequence with a constant K, then
for any n,N ≥ 1,

(5) αn(lnn)N/n ≤ CN,Kα1.

Proof. Take p = n in (2).

Now we can prove the first of the promised upper estimates for the norm
growth. It is true not only for the operators satisfying the MET, but for all
positive Cesàro bounded operators.
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Theorem 1. Let T be a positive Cesàro bounded operator in L1. Then:

(i) For every f ∈ L1 and every natural N ,

(6) ‖Tnf‖(lnn)N/n ≤ CN,K‖T‖‖f‖,
where CN,K is the constant from Lemma 1 for the sequence {‖Tnf‖}.

(ii) For every natural N we have supn ‖Tn‖(lnn)N/n <∞.

Proof. Fix N ≥ 1, take f ∈ L1, and define αn = ‖Tnf‖, n ≥ 1. As was
earlier mentioned, the sequence {αn} is an SCG-sequence. Hence, the above
corollary gives us

‖Tnf‖(lnn)N/n ≤ CN,K‖Tf‖ ≤ CN,K‖T‖‖f‖.
This proves (i). To prove (ii), we just take the supremum over all f with
‖f‖ = 1 of both parts of (6) and keep in mind that CN,K can be chosen
the same for all such f ’s, because K = supn ‖An(T )‖ can be used as an
SCG-constant for every such sequence.

2. The power upper estimate. The power estimate of the rate of
growth of ‖Tn‖ is a direct consequence of the following lemma about the
SCG-sequences.

Lemma 2. If a sequence {αn}∞n=1 is an SCG-sequence with an SCG-
constant K, then for any n = 1, 2, . . . and any p = 1, . . . , n− 1,

(7) αn−p ≥
αn
K

p!∏p
j=1(j + 1− 1/K)

.

Proof. Fix n. To see that inequality (7) is true for p = 1, let us notice
that

(αn + αn−1)/2 ≤ Kαn−1,

hence
αn−1 ≥ αn

1
2K − 1

=
αn
K

1
2− 1/K

.

It is also true that

αn + αn−1 ≥ αn(1 + 1/(2K − 1)) = αn(2K/(2K − 1)).

Let us now assume, by induction, that for j = p the inequality (7) is
true, and also that

(8)
p∑

j=0

αn−j ≥
αnK

p(p+ 1)!∏p
j=1[K(j + 1)− 1]

.

We have
1

p+ 2

p+1∑

j=0

αn−j ≤ Kαn−p−1.



68 I. KORNFELD AND W. KOSEK

Therefore, by (8),

αn−p−1 ≥
1

K(p+ 2)− 1

p∑

j=0

αn−j ≥
1

K(p+ 2)− 1
αnK

p(p+ 1)!∏p
j=1[K(j + 1)− 1]

= αn
Kp(p+ 1)!∏p+1

j=1 [K(j + 1)− 1]
=
αn
K

(p+ 1)!∏p+1
j=1 [(j + 1)− 1/K]

,

and also
p+1∑

j=0

αn−j ≥ αn−p−1 +
p∑

j=0

αn−j

≥ αn
Kp(p+ 1)!∏p+1

j=1 [K(j + 1)− 1]
+

αnK
p(p+ 1)!∏p

j=1[K(j + 1)− 1]

=
αnK

p(p+ 1)!∏p
j=1[K(j + 1)− 1]

(
1

K(p+ 2)− 1
+ 1
)

=
αnK

p(p+ 1)!∏p
j=1[K(j + 1)− 1]

K(p+ 2)
K(p+ 2)− 1

=
αnK

p+1(p+ 2)!∏p+1
j=1 [K(j + 1)− 1]

.

This completes the inductive step and proves the lemma.

Corollary 2. If a sequence {αn}∞n=1 has sublinear Cesàro growth with
an SCG-constant K, then

(9) lim sup
n

αn
n1−1/K

≤ α1
K

Γ (2− 1/K)
,

where Γ stands for the Gamma function.

Proof. First take p = n− 1 in Lemma 2, which gives

α1 ≥
αn
K

(n− 1)!∏n−1
j=1 (j + 1− 1/K)

.

This is equivalent to

αn ≤ α1K

∏n−1
j=1 (j + 1− 1/K)

(n− 1)!
= α1

K

Γ (2− 1/K)
Γ (n+ 1− 1/K)

Γ (n)
.

Using the formula

(∗) lim
x→∞

Γ (x+ a)
xaΓ (x)

= 1

(see, for example, [Hi2, p. 238]) we obtain

lim
n→∞

Γ (n+ 1− 1/K)
Γ (n)

n1/K−1 = 1,

from which (9) follows.
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Theorem 2. Let T be a positive Cesàro bounded L1 operator with
supn ‖An(T )‖ = K. Then lim sup ‖Tn‖/n1−1/K <∞.

Proof. As in the proof of Theorem 1, take f ∈ L1
+. The sequence {αn}

defined by αn = ‖Tnf‖ is an SCG-sequence with an SCG-constantK. Hence
Corollary 2 gives us

lim sup
n

‖Tnf‖
n1−1/K

≤ ‖Tf‖ K

Γ (2− 1/K)
≤ K‖T‖
Γ (2− 1/K)

‖f‖.

Again, for arbitrary f ∈ L1 we get the same inequality by splitting f
into positive and negative parts. By taking the supremum over all f ’s with
‖f‖ ≤ 1 we obtain

lim sup
n

‖Tn‖
n1−1/K

≤ K‖T‖
Γ (2− 1/K)

.

3. The examples. We give two examples which show that the estimate
of the rate of growth of ‖Tn‖ given in Theorem 2 is the best possible.
Example 1 is shorter, but we also include Example 2 to motivate the block-
type construction in the proof of Theorem 3 in §4.

We will look for our examples in the following class of operators. Con-
sider a nonsingular invertible transformation τ of a probability space (Ω,µ)
(nonsingularity of τ means that the measure µ ◦ τ is equivalent to µ). Let
w ∈ L∞(Ω). For all f ∈ L1(Ω) define an operator T by

Tf(x) = w(x)
dµ ◦ τ
dµ

(x)f(τx).

This is a bounded L1 operator, whose powers Tn, n ≥ 1, are given by

Tnf(x) = w(x, n)
dµ ◦ τn
dµ

(x)f(τnx),

where w(x, n) =
∏n−1
k=0 w(τkx) is the multiplicative cocycle for τ generated

by w (see, e.g., [S]). The abundance of nontrivial cocycles makes the class of
such operators T a natural source for producing examples of L1 operators
with nontrivial properties.

We start with a “discrete” version of the first example, for the space
L1(Z). The construction in the “continuous” case, for L1[0, 1], can be done
in essentially the same way. We prefer, however, (to simplify the exposi-
tion and notation) to obtain the continuous versions of both examples by
“transferring” the discrete ones.

Let X = L1(Z) be the space of all doubly infinite sequences {xj}∞j=−∞
of real numbers for which ‖x‖ =

∑∞
j=−∞ |xj | <∞.
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Every bounded sequence w = {wj}∞−∞ gives rise to a bounded linear
operator T = Tw in X (weighted shift operator). Namely, for x ∈ X we put
Tx = y, where yj = wjxj+1 for all j. If wj ≥ 0 for every j, the operator Tw
is positive.

We want to construct a nonnegative {wj} which will guarantee that the
norms of Tn will grow fast enough as n→∞. In addition, we want to ensure
that

(10) lim
n→∞

Anx = 0 for all x ∈ X.

Here, as before, An is the nth average operator, i.e., An = n−1∑n
k=1 T

k.

Note that the operator Tn (n > 0) is given by (Tnx)j = w
(n)
j xj+n, where

w
(n)
j =

∏j+n−1
s=j ws. The formula for An is (Anx)j = n−1∑n

k=1 w
(k)
j xj+k.

The norms of the operators Tn and An can be expressed in terms of
{wj}. We will assume that {wj} is nonnegative. Then, for x ∈ X, ‖T nx‖ =∑
j w

(n)
j |xj+n|, and we have

(11) ‖Tn‖ = sup
‖x‖≤1

∑

j

w
(n)
j |xj+n| = sup

j
w

(n)
j .

Similarly,

‖Anx‖ ≤
1
n

∑

j

n∑

k=1

w
(k)
j |xj+k| =

1
n

∞∑

s=−∞
(w(1)

s−1 + w
(2)
s−2 + . . .+ w

(n)
s−n)|xs|,

and for nonnegative x ∈ X the inequality becomes equality. This yields

(12) ‖An‖ = sup
s

1
n

(w(1)
s−1 + . . .+ w

(n)
s−n).

Let us notice that if wj = 0 for j ≤ 0, then, in order to prove that
Anx → 0 for every x ∈ X, it is enough to show that the norms of ‖An‖
are uniformly bounded. Indeed, assume that ‖An‖ ≤ K, take x ∈ X and fix
ε > 0. Choose N such that

∑
j>N |xj | < ε/(2K). Let

x(1)
n =

{
xn for 1 ≤ n ≤ N ,

0 otherwise,

and x(2) = x− x(1). Since wj = 0 for j ≤ 0, we have Tnx(1) = 0 for n ≥ N .
Let S = max0≤n<N{‖Tnx(1)‖}. Then for every n ≥ 2NS/ε we have

‖Anx‖ ≤ ‖Anx(1)‖+ ‖Anx(2)‖ ≤ ε/2 +Kε/(2K) = ε.

Example 1. The operator T will be a weighted shift T = Tw, and the
corresponding sequence w = {wn}∞n=−∞ will have the properties that wn = 0
for n ≤ 0 and {wn}∞n=1 is decreasing. It follows from (11) and (12) that for
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the operators T = Tw corresponding to such sequences we have

‖Tn‖ =
n∏

j=1

wj ,(13)

‖An(T )‖ =
1
n

n∑

j=1

w
(j)
n−j+1 =

w1w2 . . . wn + w2w3 . . . wn + . . .+ wn
n

.(14)

Fix a number K > 1. The sequence {wn}∞n=1 will be constructed with the
goal of having ‖An(T )‖ = K for every n. For the decreasing sequences
{wn}∞n=1 this requirement, due to (14), is equivalent to the conditions

w1 = K,
w1w2 + w2

2
= K,

w1w2w3 + w2w3 + w3

3
= K, . . . ,

which define {wn}∞n=1 uniquely. In fact, these conditions give us w2 =
2K/(K − 1), w3 = 3K/(2K − 1), . . . , and (as can be easily checked by
induction) lead to the formula

wn =





nK

(n− 1)K + 1
for n ≥ 1,

0 for n ≤ 0.
It is elementary to check that the sequence {wn}∞n=1 given by this formula
is decreasing. Therefore, (14) for ‖An(Tw)‖ can be applied, and by the con-
struction of w, we have ‖An(Tw)‖ = K for all n (this can be formally
checked by induction on n). Since wn = 0 for n ≤ 0, by the observation just
before Example 1, the uniform boundedness of the norms ‖An‖ implies that
Anx→ 0 for all x ∈ X.

It remains to calculate the norms of T n. We have

‖Tn‖ =
n∏

j=1

wj =
n∏

j=1

jK

(j − 1)K + 1
=

n!∏n
j=1((j − 1) + 1/K)

=
n!

K
∏n−1
q=1 (q + 1/K)

=
Γ (1 + 1/K)

K

Γ (n+ 1)
Γ (n+ 1/K)

.

Using again the formula (∗) for the Γ function, we get

(15) lim
n→∞

‖Tn‖
n1−1/K

=
Γ (1 + 1/K)

K
.

This completes the construction for the “discrete case”, X = L1(Z).

Remark. The sequence ‖Tn‖ for the above example is clearly not an
SCG-sequence, simply because for every SCG-sequence {αn} one must have
lim inf αn <∞.

Now consider the “continuous case”, X = L1[0, 1]. Choose an increasing
sequence {tj}∞j=−∞ of points in (0, 1) with limj→−∞ tj = 0, limj→∞ tj = 1,
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and represent [0, 1] (modulo a countable set) as the disjoint union of the
intervals Ij = (tj , tj+1), −∞ < j <∞.

Let λj = tj+1 − tj be the length of Ij . Let τ : [0, 1] → [0, 1] be the
piecewise linear transformation which maps each Ij to the next one, Ij+1,
linearly. Define w : [0, 1]→ R+ by w(x) = wj for x ∈ Ij , where {wj} is the
same sequence as before. Similarly to the discrete case, we define a bounded
linear operator T̃ = T̃w in the following way: for f ∈ X we put T̃ f = g,
where

g(x) = w(x)
λj+1

λj
f(τx)

for x ∈ Ij . Note that the operator T̃ is of the form described at the beginning
of this section.

To show that the analogs of properties (10) and (15) hold for T̃ , one
can repeat, with simple modifications, the argument in the discrete case.
A shorter way of dealing with the continuous case is to introduce a map
θ : L1[0, 1] → L1(Z) which takes T̃ to T . Namely, for f ∈ L1[0, 1] we put
θf = x, where x = {xj} with xj =

�
Ij
f . It is clear that θ is a positive

operator, i.e., f ≥ 0 implies θf ≥ 0, and θ is an isometry on the positive
cone L1

+[0, 1] = {f ∈ L1[0, 1] : f ≥ 0}. One can also easily check that
θ conjugates T̃ and T , i.e., T ◦ θ = θ ◦ T̃ . These properties imply that
‖T̃nf‖ = ‖Tn(θf)‖ for all f ∈ L1

+[0, 1] and all n ≥ 0. Hence, we get the
analog of (15) for T̃ .

Finally, take any f ∈ L1[0, 1] and split it into its positive and negative
parts: f = f+ − f−. Then, if Ãn := n−1∑n

k=1 T̃
k, we can use property (10)

for T to conclude that

‖Ãnf‖ = ‖Ãn(f+ − f−)‖ = ‖Ãnf+‖+ ‖Ãnf−‖
= ‖An(θf+)‖+ ‖An(θf−)‖ → 0

as n→∞.

Example 2. The operator T is again a weighted shift T = Tw. Let δ,
0 < δ < 1, be fixed, and let γ = δ/2. Define

(16) wj =





0 for j ≤ 0,

0 for j = 2p, p = 0, 1, . . . ,

21−γ for j = 2p + 2q, p = 1, 2, . . . , q = 0, 1, . . . , p− 1,

1 otherwise.

Less formally, one can visualize the part of {wj} for j > 1 as consisting
of blocks ∆p, p = 0, 1, . . . , where ∆p = {wj}2

p+1

j=2p+1. Slightly abusing termi-
nology, we will also denote by ∆p the interval {j ∈ Z : 2p + 1 ≤ j ≤ 2p+1}.
The block ∆p has length 2p and contains p coordinates which are equal to
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21−γ (at the places 2p + 20, . . . , 2p + 2p−1), one coordinate (the last one)
which is equal to 0; all other coordinates of the block ∆p are equal to 1.

Since wj ≥ 0 for all j, the operator Tw is positive. Also, using (11)
and (16), for n = 2p − 1 we get

‖Tn‖ ≥
2p+1−1∏

s=2p+1

ws = 2p(1−γ) ≥ n1−γ .

The proof of (10) requires more work. First, we will show that the norms
‖An‖ are uniformly bounded, which is a necessary condition for (10).

It is convenient to introduce some notation. For a finite set M we de-
note by |M | its cardinality. Let J = [a, b] be an interval in Z. For any r,
0 ≤ r < |J |, we denote by Jr the interval [a+r, b]. We define wJ :=

∏
j∈J wj

and put

(17) σJ :=
1
|J |

|J|−1∑

r=0

wJr .

In view of (12), we can write

(18) ‖An‖ = sup
J: |J|=n

σJ ,

and the condition of the uniform boundedness of the norms ‖An‖ can now
be written in the form

(19) sup
J
σJ <∞,

where the supremum is taken over all intervals J ⊂ Z.
Note that wJ = 0 unless J is a subinterval of some interval Jp :=

[2p + 1, 2p+1 − 1] (because w2p = 0). This shows that (19) follows from
the following lemma.

Lemma 3. Suppose J ⊆ Jp for some p. Then there exists a constant
C = Cγ depending on γ, but not on p, such that σJ ≤ C.

Proof. First, we consider the interval J = Jp and estimate σJp . Let us
partition Jp into p + 1 disjoint intervals Jp,q, 0 ≤ q ≤ p, where Jp,0 is a
singleton, Jp,0 = {2p + 1}, Jp,q = [2p + 2q−1 + 1, 2p + 2q], 1 ≤ q < p, and
Jp,p = [2p + 2p−1 + 1, 2p+1 − 1]. Note that |Jp,0| = 1, |Jp,q| = 2q−1 for
1 ≤ q < p, and |Jp,p| = 2p−1 − 1.

Now we split the sum (17) for σJp accordingly:

σJp =
1

2p − 1

p∑

q=0

Sq,
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where Sq =
∑
r wJrp , and the last summation is taken over r satisfying

2p + 1 + r ∈ Jp,q.
By (16), each term of the sum Sq is equal to 2(p−q)(1−γ) (0 ≤ q ≤ p).

Therefore,

σJp ≤
1

2p − 1

(
2p(1−γ) +

p∑

q=1

2q−1 · 2(p−q)(1−γ)
)

(20)

≤ 1
2p−1

(
2p(1−γ) + 2p−1

p∑

q=1

2−(p−q)γ
)
≤ Cγ ,

where Cγ = 1/(1− 2−γ) + 2.
The next step is to show that the same estimate wJ ≤ Cγ holds not only

for J = Jp, but for all J ⊆ Jp.
Let J , J̃ be two subintervals of Jp with the same right endpoint, i.e.,

J = [a, b], J̃ = [ã, b], and let a ≤ ã. Then σJ̃ ≤ σJ . To see this, it is enough

to observe that the sequence {wJr}|J|−1
r=0 , whose average is σJ , is decreasing:

wJ ≥ wJ1 ≥ . . . ≥ wJ|J|−1 ; this is simply because wj ≥ 1 for all j ∈ Jp.
Hence,

(21) σJ̃ =
1

|J̃ |

|J̃|−1∑

r=0

wJ̃r =
1

|J̃ |

|J|−1∑

r=ã−a
wJr ≤

1
|J |

|J|−1∑

r=0

wJr = σJ .

(In the last inequality we are using the following obvious fact: the average
value of a finite collection of numbers cannot increase if one removes several
biggest numbers of the collection.)

It follows from (21) that one can consider only the intervals [a, b] ⊆ Jp
whose left endpoints coincide with the left endpoint of Jp, i.e., the intervals
of the form [2p+ 1, b]. The same monotonicity argument shows that one can
consider only the intervals J of the form J = [2p + 1, bq] with bq = 2p + 2q,
0 ≤ q ≤ p − 1. Indeed, for any other interval J = [2p + 1, b] ⊆ Jp, by
moving its right endpoint to the left until it reaches one of the bq’s, one can
only increase the value of σJ , since all terms wJr which are removed in this
process are equal to minJ⊆Jp wJ = 1.

Finally, for the interval J = [2p + 1, 2p + 2q] with 0 ≤ q ≤ p − 1, one
can estimate σJ exactly as in (20), by partitioning J into q+ 1 subintervals
Jp,0, Jp,1, . . . , Jp,q. This gives

σJ ≤
1

2q−1

(
2q(1−γ) + 2q−1

q∑

m=1

2−(q−m)γ
)
≤ Cγ ,

which proves Lemma 3.
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Since wj = 0 for j ≤ 0 in this example, for the same reason as in
Example 1, the uniform boundedness of the norms ‖An‖ implies (10). This
completes the construction of the example in X = l1(Z). The transition
from L1(Z) to L1[0, 1] is the same as in Example 1.

4. SCG-sequences and the norm growth. In this section we prove
a theorem which gives one more connection between the SCG-sequences and
the norm growth problem.

Theorem 3. If {αn} is an SCG-sequence, then there exists a positive
L1 operator which satisfies the MET and such that ‖Tn‖ ≥ αn for all
n ≥ 1.

Proof. As in §3, it is enough to define T as a weighted shift operator
T = Tw in the space X = L1(Z). We keep the notation of Example 2
in §3. For convenience, let α0 = 1. Define a sequence {vn}n≥1 by vn =
αn/αn−1.

Let

wj =





0 for j ≤ 0,

0 for j = 2p, p ≥ 0,

vk for j = 2p+1 − k, p ≥ 1, k = 1, 2, . . . , 2p − 1.

In other words, using the terminology of §2, we can say that the sequence
{wn} consists of blocks ∆p, and in the block ∆p we put the numbers
v1, v2, . . . in reverse order. By (11),

‖Tn‖ = sup
−∞<j<∞

w
(n)
j = sup

j≥0

n∏

k=1

vj+k = sup
j≥0

αj+n
αj

.

In particular, putting j = 0, we get ‖T n‖ ≥ αn.
Since wj = 0 for j ≤ 0, the remark before Example 1 tells us that in

order to prove that An(x) → 0 for every x ∈ X, it is enough to show that
the norms ‖An‖ are bounded. By formula (18), we can write

‖An‖ = sup
J⊂Z, |J|=n

σJ = sup
s

1
n

(w(1)
s + . . .+ w

(n)
s−n+1).

Fix an interval J = [s − n + 1, s] of length n, and estimate σJ . Without
loss of generality we can assume that s ≥ 1. Suppose that s ∈ ∆p, i.e.,
2p + 1 ≤ s ≤ 2p+1, and let k = 2p+1− s be the distance from s to the end of
the block ∆p. First, we consider the case when J ⊂ ∆p. In this case, since
wj ’s in ∆p are just the numbers v1, v2, . . . in reverse order, we have
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σJ =
1
n

(vk+1 + vk+1vk+2 + . . .+ vk+1vk+2 . . . vk+n)

=
1
n

(
αk+1

αk
+
αk+2

αk
+ . . .+

αk+n

αk

)

=
1
αk

αk+1 + αk+2 + . . .+ αk+n

n
≤ K αk+1

αk
,

where K is an SCG-constant for {αn}.
By the SCG-property, (αk + αk+1)/2 ≤ Kαk for k ≥ 1, hence

αk+1/αk ≤ max{α1, 2K − 1} =: C.

Therefore, σJ ≤ CK.
If the interval J = [s − n + 1, s] with the right endpoint s ∈ ∆p is not

entirely in ∆p, we will show how to find another interval J ′ = [s′−n+ 1, s′]
of length n with σJ ′ ≥ σJ , and this will be enough to complete the proof.
To do this, we simply consider the block ∆m with m > p large enough, so
that if we take the right endpoint s′ = 2m+1 − k (the point at the same
distance from the end of ∆m as s is from the end of ∆p), the entire interval
J ′ will lie in ∆m. Note again that the sequence {wj} consists of blocks of
the sequence {vj}, which are put in reverse order and separated by zeros.
This implies that the expression for σJ ′ (formula (17) for σJ ′) consists of
the same terms wJr as the expression for σJ (as long as Jr is in ∆p) and has
additional nonnegative terms whose corresponding terms in the expression
for σj are zeros. This shows that σJ ′ ≥ σJ and completes the proof.
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