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MFEAN VALUE DENSITIES FOR TEMPERATURES

BY

N. SUZUKI (Nagoya) and N. A. WATSON (Christchurch)

Abstract. A positive measurable function K on a domain D in R™*1 is called a mean

value density for temperatures if u(0,0) = SSD K(z,t)u(z,t) dz dt for all temperatures u

on D. We construct such a density for some domains. The existence of a bounded density
and a density which is bounded away from zero on D is also discussed.

1. Let D be a bounded domain in (n + 1)-dimensional Euclidean space
R = {(z,t); z € R™,t € R}. Suppose that (0,0) € D. We say that a
measurable function K(x,t) on D is a mean value density (at the origin
with respect to the heat equation) if K > 0 a.e. on D and

(1) u(0,0) = \\ K (2, t)u(x, ) do dt

D
for every temperature u on D, that is, for every function u which satisfies
the heat equation on a neighborhood of D.

An interesting example of such a density is the following function K
on 2(c):

._ 1 ]
(2) K($’t) T 2n+2(ﬂ-c)n/2 +2

(see [5]). Here £2(c) is the heat ball defined by a level surface of the Gauss—
Weierstrass kernel W, that is,

Q(c) = {(z,t) e R" W(x, —t) > (4mc) "2}

with
Wz, t) = { (4rt) ="/ exp(—||z|2/4t) if t >0,
| 0 if £ <0,

and ||z|| = (x4 ... +22)V/2,
In this paper, we consider the following problems:

(i) Which domains have a mean value density?
(ii) Which domains have a bounded mean value density?
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(iii) Does there exist a mean value density that is bounded away from
zero?!

For the harmonic case, similar problems were discussed by Hansen and
Netuka in [2]. They showed that, for every bounded domain U in R™ that
contains 0, there exists a bounded function K > 0 on U such that

h(0) = | K (2)h(z) dx
U
for every bounded harmonic function h on U. Furthermore, for smooth do-
mains they constructed such functions K with inf,cy K(z) > 0. In our
parabolic case the situation is more complicated. It is easily seen that if

(3) sup{t; (z,t) € D} >0

then D does not have a mean value density. Furthermore, there is no mean
value density on a cone {||z|| < —ct; —1 <t < 0} (see Corollary 7(a) below).
On the other hand, every rectangle {(z,t); |z;| < ¢ for all 4, —c? < ¢t < 0}
has a bounded mean value density (see [1, p. 276]). A heat ball has a mean
value density as above, but we shall see later that there is no bounded
density there. Another example of a domain that has bounded mean value
density is a modified heat ball, defined in [6]. Bounded mean value densities
are useful for the monotone approximation of subtemperatures by smooth
subtemperatures.

In Section 2 we construct mean value densities for certain domains. The
argument is based on that in [2], but considerable modification of the details
is necessary. In Section 3, we discuss the above problems (i)-(iii) for special
domains.

Some of the work for this paper was done while the first author held a
Visiting Erskine Fellowship at the University of Canterbury.

2. For a domain D in R"! we denote by 9, D the parabolic boundary
of D, that is, the set of boundary points which can be connected to some
point of D by a curve in D having strictly increasing t-coordinate. Also
for (xzo,t0) € D, A(xo,to; D) is the set of all points (x,t) € D\ {(zo,t0)}
which can be connected to (z¢,to) by a polygonal line in D having strictly
increasing t-coordinate. We write {2(y, s;c) for the heat ball with centre
(y, s) and radius ¢ > 0, that is,

(4) 2y, s;0) = {(z,t) e R W(y — 2,5 —t) > (4me) "/?}.
Hence 2(c) = 2(0,0;¢). Further, for a > 0 we put

l=* ((261—7”L)||fv|2

(5) Ky(z,t) := [EnIEE=E Xp Tn(—1) > (t <0)
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and define the constant p(a, c) by
(6) plase) = o — e
Note that p(n/2, c)K,, /2 is the function K in (2). In view of [5], the functions
p(a, c)K, are also mean value densities on {2(c).

Regarding the existence of mean value densities, we have the following
result.

a

THEOREM 1. Let D be a bounded domain in R™*Y such that £2(co) C D
for some co > 0. Suppose that there exists a family {Eq}aca of subdomains
satisfying the following conditions:

(a) For each a € A, 2(co/2) C E, C D, E% = E,, and for every
(y,s) € E, there exists (z,r) € £2(co/2) such that (y,s) € A(z,r; Eq).

(b) Uaca %pEa D D\ £2(2c0/3).

Then there is a mean value density on D.

Proof. Fix a nonnegative, continuous function 1 on [0,00) such that

{t; n(t) >0} =[0,1) and
1
| (dmt)"Pn(t) dt = 1.
0

For each (y,s) € D, put

1
’Y(ya S) = 5 sup{c; Q(ya 55 C) - D}a
and define

1
T(y,s) (T, 1) := o Knioy2(y—x, s —t)

x y(y,s)” "2y (j(y_ i) exp (!i(; th2) >>

whenever t < s, and 7, 4)(z,t) := 0 whenever ¢ > s. Then 7, ,) is continuous
on R™ x (—o0, s), and
{(z,1); 7(y,5) (2, 1) > 0}
= {(2,4); 0 < (s —t)exp(lly — z]*/(2n(s — 1)) < ¥(y.5), = # y}
=20y, 5 7(y,9)) \ ({y} x R).
(2,7)

For every a € A, let ug "’ denote the parabolic measure at (z,r) for E,,
and put

2
z,r z
wolwt) =pn/2.e0/2) | (] (e D ,9) gz
9(60/2) 8Ea
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for every (z,t) € R"". By the minimum principle for temperatures, if

(y,s) € A(z,r; E,) then u&y’ %) is absolutely continuous with respect to u( T),

so that condition (a) implies that

Ufsupp(1l); (y,5) € Ea} = | {supp(u7); (2,7) € 2(co/2)}.
Hence, by [4, Theorem 1],

= J{supp(u&"): (2.7) € 2(eo/2)}

We claim that
(1) {(z,t); wa(z,t) > 0} = {2y, 5 v(y, )\ ({y} x R); (y,5) € OpEi }-

To prove (7), we first show that wq (x,t) >0if (z,t) € 2(yo, s0; Y(Yo, S0))\
({yo} x R) for some (yo, 50) € OpEq. Since 7(y, ,)(x,t) > 0, there is an open
neighbourhood B of (yo, s0) such that 7, ) (z,t) > 0 for all (y,s) € B. In
particular 7(, . (x,t) > 0 on BN OE,.

We consider two cases. First suppose that

pF(BNOE,) =0

for all (z,r) € £2(co/2). Then supp(ugz’r)) is contained in 0E, \ B, so that
since BN JF, is open in 0F,,

(Yo, S0) € 8 E, U{Supp ( " ) ); (z,7) € 2(co/2)} C OE, \ B.

This contradicts the fact that (yo, so) € B.
Second, suppose that

p{F T (BN AE,) > 0
for some (zg,79) € £2(¢p/2). Then, by the minimum principle,
pF(BNOE,) > 0

for all (z,7) € £2(co/2) with r > rg. Since 7, ¢ (z,t) > 0 for (y,s) € BNOE,,
we have

X 7_(ys)(aj t)d/'LaZ ( Y, ) >0
OE,

for all (z,7) € £2(¢co/2) with r > ro. This implies that wq (z,t) > 0.
Conversely, if wq (x,t) > 0, then
V T (@) dul> ™) (y,s) > 0
O

for some (zg, 1), and hence

T(yo,sO)(:E,t) >0
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for some (o, s0) Gsupp(ut(fo’ro)) Thus (z,t) € 2(yo, So; (Yo, 50))\ ({vo} XR).
Since

supp(u* ™)) € B, Ea

we have (yo, s0) € OpE4. Thus (7) is established.
Next, for every temperature u on D, we have

SSu(x, t)T(y,s)(w,t) dx dt

= SS u(z, 1) K nt2)2(y — 2,8 — 1)
2(y,s:7(y,s))

2
“(nt2)/2, [ St (Hy—xH >>
X v(y, s n exp dx dt
( ) (7(y) S) 2”(8 - t)

v(y,s)

= [ @ § Qu-gs—nuEn)

0 992(y,s;¢)

x ¥(y, 8)(””)/277(

(y,9)

= 5)~(n+2)/2 7£ 70)" ?u(y, s
R R T [ RO T

¢
v(y, s)

) do(&,7)

=u(y, s) \ 7y, )" "D 2n(t) 4ty (y, 5)" 2y (y, s) dt

= u(y, s) | (4mt)"2n(t) dt = u(y, s),

)
0
9)
0
because (s — 1) exp(|ly — &||?/2n(s — 7)) = £ on 002(y, s;£); here Q(z,t) =

H.CCH 4]|z)* + (J|z|* — 2nt)2)_1/2 and o is the surface area measure on
082((y, s); ) (see [6]). Hence

Su x, ) we(z,t) dx dt
D

=p(n/2,c0/2)
212
X S ( S (SS u(x, )70y (2, t) d dt) duﬁf”")(y, s)) H7"—|2| dzdr

Q(co/2) OEs D

_ (211) II=11”
=pn/2.c0/2) § (] uly.8)duO(y,s)) S dzdr

Q(co/2) OEq
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2
—pn/2.00/2) |tz EF
2(co/2)

If (z,t) € D\ 2(co), then there is (y,s) € D \ 2(2¢o/3) such that
(x,t) € (y, s;v(y,8)) \ ({y} x R). By condition (b), there is « such that
(y,8) € OpEq. So, by (7), wa(z,t) > 0 and {w, > 0} is open. Thus the
sets {wq > 0}aea form an open cover for D \ £2(cp), so that the Lindelof
property ensures that we can choose a countable subcover {wq, > 0}22 .
Put

dzdr = u(0,0).

p(n/2, co) |||
2 t2

X02(co) (CC, t) + Z 2_k_1w04k (:1;7 t)a
k=1

K(z,t):=

where X () is the characteristic function of £2(c). Then K > 0 a.e. on D.
Also, for every temperature u on D, we have

w(x, t)K(x,t dxdt:M u(x,t Wdazdt
{§ ute, K (1) 2] g 1

D £2(co)

—1—22 k- 1“ u(z, t)we, (z,t) de dt

<00 k1
5 +kzl2k u(0,0) = u(0,0).

This completes the proof of Theorem 1.

The class of domains which have bounded mean value densities is more
restricted. The closure of such a domain contains every truncated heat ball,
as we now show.

THEOREM 2. Assume that there is a bounded mean value density K on
a domain D. Then for every c > 0, there exists t. < 0 such that

(8) DD Q(c)n{t >t}
Proof. Consider the function
9) v(y, s) ::“K(x,t)W(a:—y,t—s) dx dt.
D

Suppose that the assertion does not hold for some ¢ > 0. Then we can choose
points {(yx,sk)} in £2(c) \ D such that sy > —1/k for all k¥ > 1. Note that
(yk, sk) — (0,0) as k — oo. Since (y, sk) € D, we have

(10) W(ykv _Sk) - U(:l/k’ Sk)

by (1). Then liminfy, ..o W(yg, —sr) > (47¢c)~"/? because (y, s) € £2(c).
On the other hand, the right hand side of (10) tends to zero as k — oo,
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because the boundedness of K ensures that v is continuous on R"*! and
v(0,0) = 0. This is a contradiction.

3. In this section we discuss mean value densities on domains of the
form
D(p) :={(z,t) e R"*; ||lz| < o(t), -1 <t <0},

where ¢ is a continuous function on [—1,0] with ¢ > 0 on (—1,0). For
simplicity, we also assume that

(%)  there is tg € [—1,0] such that ¢ is strictly decreasing on [to,0] and
strictly increasing on [—1, t¢].

The following remark will be useful below.

REMARK 3. If D(¢) has a mean value density K, then whenever (y, s) ¢
D(p),

(11) W(y,—s) = SS K(z,t)W(x —y,t — s)dxdt.

D(yp)
Hence letting (y, s) — (yo, So) € 0D(p), we deduce from Fatou’s lemma that
(12) W(yo, —s0) > SS K(z, )W (x — yo,t — so) dz dt.

D(¢p)

Regarding the nonexistence of mean value densities, we have the follow-
ing result.

THEOREM 4. If the origin is a regular boundary point of D(p) with re-
spect to the Dirichlet problem for the heat equation, then there is no mean
value density on D(yp).

Proof. Under this hypothesis 3 < 0. Let f be a continuous function on
0D(¢p) such that f(0,0) =0, f(z,t) > 0if t > to, and f(z,t) =0 if t < .
Let v be the solution of the Dirichlet problem on D(y) with boundary
function f, and v = f on dD(y). Then v > 0 and v # 0. For k € N such

that —1/k > to, put
v(x, t —1/k) ift >ty + 1/k,
ug(z,t) == )
Now suppose that there is a mean value density K on D(y). Since uy is a
temperature on D(p), we have
ur(0,0) = |\ K(z,t)up(z,t) do dt.
D(y)
Since (0, 0) is regular, we have
lim 0 (0,0) = lim v(0,~1/k) = £(0,0) =0.
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On the other hand, Fatou’s lemma implies that

likminf SS K(x,t)ug(z,t) dedt > SS K(z,t)v(x,t)dzdt > 0.
7 D) D(g)

This is a contradiction.
REMARK 5. It is known that if ¢ satisfies
(13) p(t) < (4(—t)log [log(—t)|)"/?
on a neighborhood of ¢ = 0, then the origin is a regular boundary point (see
[1, p. 339]). On the other hand, (0,0) is an irregular boundary point of £2(c)

(see [1, p. 340]). Let m > 3 be an integer. A modified heat ball §2,,,(c) is
defined by

Qp(c) == {(z,t) € R ||z|| < 2(mA4n)(=t)log(c/(—t))/2, —c <t < 0}.
The function
(14) K (x,1) := co(2(m +n)(—t)log(e/(—)) — [|=]|*)™/?

(M) g 4 L)

is a bounded mean value density on §2,,(c) (see [6]), where
Wm
2(m + 2)(4mc)(m+n)/2

and w,, is the volume of the unit ball in R™.

Cy \—

REMARK 6. In general, the regularity of the origin is not a sufficient
condition for nonexistence of a mean value density. In fact, given an integer
m > 3, let

D := () \{(z1,...,2p-1,0,t); 2, ER (i=1,...,n—1), —¢/2 <t < 0}.

Then (0,0) is a regular point of 9D (see [3, p. 218] for the case n = 1);
but (14) is a bounded mean value density for D, because D° = {2;,,(c). This
example also shows that we cannot replace D by D in (8).

For two functions ¢ and ¥ on [—1,0], we write p~1) if there exist pos-
itive constants ¢, ca such that c19(t) < p(t) < cot)(t) on a neighbourhood
of t = 0. We have the following results about the domains D(yp).

COROLLARY 7. (a) If o(t) =~ (—t)% with 3 > 1/2, then there is no mean
value density on D(yp).

(b) If () ~ (—t)° with B < 1/2, then we can construct a mean value
density on D(yp).

(¢) If there are ¢ > 0 and t1 < 0 such that (D(p)\2(c1))N{t > t:1} =0,
then D(yp) does not have a bounded mean value density. In particular, there
1s no bounded mean value density on a heat ball.
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(d) If p(t) =~ (—t)?, then D(y) has no mean value density that is bounded
away from zero.

Proof. Part (a) follows from Theorem 4. To prove (b), we use Theorem 1.
Choose ¢g > 0 such that D(y) D £2(co). For 0 < a < 1, put

E, = {(z,t); |z|| < ap(t), =1 <t <0} U 2(co/2).

Then {E, }o<a<1 satisfies the conditions of Theorem 1.

Part (c) follows from Theorem 2.

To show (d), we use the following assertion: There is a positive integer N,
which depends only on the dimension n, and points {z;}X, in the unit
sphere of R™ such that for every r > 0,

N
(15) B(0,7/2)\ {0} CjL~JZ3(rxi,r%

where B(z,r) is the usual ball in R” with centre  and radius » > 0. The
existence of N and {z;}Y, is not difficult, because B(0,1/2) N B(x1,1)
contains a truncated cone at the origin which has a positive aperture.

Now suppose that there is a mean value density K such that K > ¢y > 0
on D(¢). Then 3 < 1/2. For {z;}¥ ,as above and —1 < s < 0, we put

N
us(x,t) == Z W(x —zip(s),t —s).

Then u, is a nonnegative temperature on D(y), and by (12) we have

(16)  us(0,0) > || K(2,t)us(w,t)dwdt > co || us(x,t)drdt
D(y) D(y)
Note that

N 2
u,(0,0) = Z W(zip(s), —s) = W eXp (‘%)'

On the other hand, since

B(0,¢(s)/2) \ {0} € | B(aiw(s), o(s))
=1

by (15), we see that

D O B e O
/N /N

N
S Z W(x — xz;0(8),t — 8) da:) dt

lzll<e(s) i=1

SS us(x,t) drdt
D(¢p)

v

S W(z,t—s) dx) dt
llzll<e(s)/2
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- 5 (WSW e (i)

0
0 w(s)/4Vt—s

= nwnw_"/2§ ( S " Lexp(—7?) dT) dt > c3(—s)
s 0

for all sufficiently small s, because ¢(s) > ¢1(—s)? and 3 < 1/2. Thus (16)
implies that

N ©(s)?
S S — > —3).
(An(=s))"2 exp< . cocs(—s)

oy ePa =" 2

This is a contradiction.

REMARK 8. We conjecture that there is no domain which has a mean
value density bounded away from zero. Assertion (d) in Corollary 7 supports
our conjecture.
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