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MEAN VALUE DENSITIES FOR TEMPERATURES

BY

N. SUZUKI (Nagoya) and N. A. WATSON (Christchurch)

Abstract. A positive measurable function K on a domain D in Rn+1 is called a mean
value density for temperatures if u(0, 0) =

���
D
K(x, t)u(x, t) dx dt for all temperatures u

on D. We construct such a density for some domains. The existence of a bounded density
and a density which is bounded away from zero on D is also discussed.

1. Let D be a bounded domain in (n+ 1)-dimensional Euclidean space
Rn+1 = {(x, t); x ∈ Rn, t ∈ R}. Suppose that (0, 0) ∈ D. We say that a
measurable function K(x, t) on D is a mean value density (at the origin
with respect to the heat equation) if K > 0 a.e. on D and

(1) u(0, 0) = ���
D

K(x, t)u(x, t) dx dt

for every temperature u on D, that is, for every function u which satisfies
the heat equation on a neighborhood of D.

An interesting example of such a density is the following function K
on Ω(c):

(2) K(x, t) :=
1

2n+2(πc)n/2
‖x‖2
t2

(see [5]). Here Ω(c) is the heat ball defined by a level surface of the Gauss–
Weierstrass kernel W , that is,

Ω(c) := {(x, t) ∈ Rn+1; W (x,−t) > (4πc)−n/2}
with

W (x, t) :=
{

(4πt)−n/2 exp(−‖x‖2/4t) if t > 0,

0 if t ≤ 0,

and ‖x‖ = (x2
1 + . . .+ x2

n)1/2.
In this paper, we consider the following problems:

(i) Which domains have a mean value density?
(ii) Which domains have a bounded mean value density?
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(iii) Does there exist a mean value density that is bounded away from
zero?

For the harmonic case, similar problems were discussed by Hansen and
Netuka in [2]. They showed that, for every bounded domain U in Rn that
contains 0, there exists a bounded function K > 0 on U such that

h(0) = �
U

K(x)h(x) dx

for every bounded harmonic function h on U . Furthermore, for smooth do-
mains they constructed such functions K with infx∈U K(x) > 0. In our
parabolic case the situation is more complicated. It is easily seen that if

(3) sup{t; (x, t) ∈ D} > 0

then D does not have a mean value density. Furthermore, there is no mean
value density on a cone {‖x‖ < −ct; −1 < t < 0} (see Corollary 7(a) below).
On the other hand, every rectangle {(x, t); |xi| < c for all i, −c2 < t < 0}
has a bounded mean value density (see [1, p. 276]). A heat ball has a mean
value density as above, but we shall see later that there is no bounded
density there. Another example of a domain that has bounded mean value
density is a modified heat ball, defined in [6]. Bounded mean value densities
are useful for the monotone approximation of subtemperatures by smooth
subtemperatures.

In Section 2 we construct mean value densities for certain domains. The
argument is based on that in [2], but considerable modification of the details
is necessary. In Section 3, we discuss the above problems (i)–(iii) for special
domains.

Some of the work for this paper was done while the first author held a
Visiting Erskine Fellowship at the University of Canterbury.

2. For a domain D in Rn+1, we denote by ∂pD the parabolic boundary
of D, that is, the set of boundary points which can be connected to some
point of D by a curve in D having strictly increasing t-coordinate. Also
for (x0, t0) ∈ D, Λ(x0, t0;D) is the set of all points (x, t) ∈ D \ {(x0, t0)}
which can be connected to (x0, t0) by a polygonal line in D having strictly
increasing t-coordinate. We write Ω(y, s; c) for the heat ball with centre
(y, s) and radius c > 0, that is,

(4) Ω(y, s; c) := {(x, t) ∈ Rn+1; W (y − x, s− t) > (4πc)−n/2}.
Hence Ω(c) = Ω(0, 0; c). Further, for a > 0 we put

(5) Ka(x, t) :=
‖x‖2

(−t)(n+4−2a)/2
exp
(

(2a− n)‖x‖2
4n(−t)

)
(t < 0)
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and define the constant p(a, c) by

(6) p(a, c) :=
a

2n+1nπn/2ca
.

Note that p(n/2, c)Kn/2 is the function K in (2). In view of [5], the functions
p(a, c)Ka are also mean value densities on Ω(c).

Regarding the existence of mean value densities, we have the following
result.

Theorem 1. Let D be a bounded domain in Rn+1 such that Ω(c0) ⊂ D
for some c0 > 0. Suppose that there exists a family {Eα}α∈A of subdomains
satisfying the following conditions:

(a) For each α ∈ A, Ω(c0/2) ⊂ Eα ⊂ D, E◦α = Eα, and for every
(y, s) ∈ Eα there exists (z, r) ∈ Ω(c0/2) such that (y, s) ∈ Λ(z, r;Eα).

(b)
⋃
α∈A ∂pEα ⊃ D \Ω(2c0/3).

Then there is a mean value density on D.

Proof. Fix a nonnegative, continuous function η on [0,∞) such that
{t; η(t) > 0} = [0, 1) and

1

�
0

(4πt)n/2η(t) dt = 1.

For each (y, s) ∈ D, put

γ(y, s) :=
1
2

sup{c; Ω(y, s; c) ⊂ D},

and define

τ(y,s)(x, t) :=
1

2n
K(n+2)/2(y − x, s− t)

× γ(y, s)−(n+2)/2η

(
s− t
γ(y, s)

exp
( ‖y − x‖2

2n(s− t)

))

whenever t < s, and τ(y,s)(x, t) := 0 whenever t ≥ s. Then τ(y,s) is continuous
on Rn × (−∞, s), and

{(x, t); τ(y,s)(x, t) > 0}
= {(x, t); 0 < (s− t) exp(‖y − x‖2/(2n(s− t))) < γ(y, s), x 6= y}
= Ω(y, s; γ(y, s)) \ ({y} × R).

For every α ∈ A, let µ(z,r)
α denote the parabolic measure at (z, r) for Eα,

and put

wα(x, t) := p(n/2, c0/2) �
Ω(c0/2)

( �
∂Eα

τ(y,s)(x, t) dµ
(z,r)
α (y, s)

)‖z‖2
r2 dz dr
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for every (x, t) ∈ Rn+1. By the minimum principle for temperatures, if
(y, s) ∈ Λ(z, r;Eα) then µ(y,s)

α is absolutely continuous with respect to µ(z,r)
α ,

so that condition (a) implies that
⋃
{supp(µ(y,s)

α ); (y, s) ∈ Eα} =
⋃
{supp(µ(z,r)

α ); (z, r) ∈ Ω(c0/2)}.

Hence, by [4, Theorem 1],

∂pEα =
⋃
{supp(µ(z,r)

α ); (z, r) ∈ Ω(c0/2)}.
We claim that

(7) {(x, t); wα(x, t) > 0} =
⋃
{Ω(y, s; γ(y, s))\ ({y}×R); (y, s) ∈ ∂pEα}.

To prove (7), we first show that wα(x, t)>0 if (x, t) ∈ Ω(y0, s0; γ(y0, s0))\
({y0}×R) for some (y0, s0) ∈ ∂pEα. Since τ(y0,s0)(x, t) > 0, there is an open
neighbourhood B of (y0, s0) such that τ(y,s)(x, t) > 0 for all (y, s) ∈ B. In
particular τ(y,s)(x, t) > 0 on B ∩ ∂Eα.

We consider two cases. First suppose that

µ(z,r)
α (B ∩ ∂Eα) = 0

for all (z, r) ∈ Ω(c0/2). Then supp(µ(z,r)
α ) is contained in ∂Eα \ B, so that

since B ∩ ∂Eα is open in ∂Eα,

(y0, s0) ∈ ∂pEα =
⋃
{supp(µ(z,r)

α ); (z, r) ∈ Ω(c0/2)} ⊂ ∂Eα \B.

This contradicts the fact that (y0, s0) ∈ B.
Second, suppose that

µ(z0,r0)
α (B ∩ ∂Eα) > 0

for some (z0, r0) ∈ Ω(c0/2). Then, by the minimum principle,

µ(z,r)
α (B ∩ ∂Eα) > 0

for all (z, r) ∈ Ω(c0/2) with r > r0. Since τ(y,s)(x, t) > 0 for (y, s) ∈ B∩∂Eα,
we have

�
∂Eα

τ(y,s)(x, t) dµ
(z,r)
α (y, s) > 0

for all (z, r) ∈ Ω(c0/2) with r > r0. This implies that wα(x, t) > 0.
Conversely, if wα(x, t) > 0, then

�
∂Eα

τ(y,s)(x, t) dµ
(z0,r0)
α (y, s) > 0

for some (z0, r0), and hence

τ(y0,s0)(x, t) > 0
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for some (y0, s0)∈supp(µ(z0,r0)
α ). Thus (x, t)∈Ω(y0, s0; γ(y0, s0))\({y0}×R).

Since

supp(µ(z0,r0)
α ) ⊂ ∂pEα

we have (y0, s0) ∈ ∂pEα. Thus (7) is established.
Next, for every temperature u on D, we have

� � u(x, t)τ(y,s)(x, t) dx dt

= � �
Ω(y,s;γ(y,s))

u(x, t)K(n+2)/2(y − x, s− t)

× γ(y, s)−(n+2)/2η

(
s− t
γ(y, s)

exp
( ‖y − x‖2

2n(s− t)

))
dx dt

=
γ(y,s)

�
0

d` �
∂Ω(y,s;`)

Q(y − ξ, s− τ)u(ξ, τ)

× γ(y, s)−(n+2)/2η

(
`

γ(y, s)

)
dσ(ξ, τ)

=
γ(y,s)

�
0

γ(y, s)−(n+2)/2η

(
`

γ(y, s)

)
(4π`)n/2u(y, s) d`

= u(y, s)
1

�
0

γ(y, s)−(n+2)/2η(t)(4πtγ(y, s))n/2γ(y, s) dt

= u(y, s)
1

�
0

(4πt)n/2η(t) dt = u(y, s),

because (s − τ) exp(‖y − ξ‖2/2n(s − τ)) = ` on ∂Ω(y, s; `); here Q(x, t) =
‖x‖2(4‖x‖2t2 + (‖x‖2 − 2nt)2)−1/2 and σ is the surface area measure on
∂Ω((y, s); `) (see [6]). Hence

� �
D

u(x, t)wα(x, t) dx dt

= p(n/2, c0/2)

× �
Ω(c0/2)

( �
∂Eα

( � �
D

u(x, t)τ(y,s)(x, t) dx dt
)
dµ(z,r)

α (y, s)
)‖z‖2
r2 dz dr

= p(n/2, c0/2) �
Ω(c0/2)

( �
∂Eα

u(y, s) dµ(z,r)
α (y, s)

)‖z‖2
r2 dz dr
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= p(n/2, c0/2) �
Ω(c0/2)

u(z, r)
‖z‖2
r2 dz dr = u(0, 0).

If (x, t) ∈ D \ Ω(c0), then there is (y, s) ∈ D \ Ω(2c0/3) such that
(x, t) ∈ Ω(y, s; γ(y, s)) \ ({y} × R). By condition (b), there is α such that
(y, s) ∈ ∂pEα. So, by (7), wα(x, t) > 0 and {wα > 0} is open. Thus the
sets {wα > 0}α∈A form an open cover for D \ Ω(c0), so that the Lindelöf
property ensures that we can choose a countable subcover {wαk > 0}∞k=1.
Put

K(x, t) :=
p(n/2, c0)

2
‖x‖2
t2

χΩ(c0)(x, t) +
∞∑

k=1

2−k−1wαk(x, t),

where χΩ(c0) is the characteristic function of Ω(c0). Then K > 0 a.e. on D.
Also, for every temperature u on D, we have

� �
D

u(x, t)K(x, t) dx dt =
p(n/2, c0)

2
���

Ω(c0)

u(x, t)
‖x‖2
t2

dx dt

+
∞∑

k=1

2−k−1 ���
D

u(x, t)wαk(x, t) dx dt

=
u(0, 0)

2
+
∞∑

k=1

2−k−1u(0, 0) = u(0, 0).

This completes the proof of Theorem 1.

The class of domains which have bounded mean value densities is more
restricted. The closure of such a domain contains every truncated heat ball,
as we now show.

Theorem 2. Assume that there is a bounded mean value density K on
a domain D. Then for every c > 0, there exists tc < 0 such that

(8) D ⊃ Ω(c) ∩ {t > tc}.
Proof. Consider the function

(9) v(y, s) := � �
D

K(x, t)W (x− y, t− s) dx dt.

Suppose that the assertion does not hold for some c > 0. Then we can choose
points {(yk, sk)} in Ω(c) \D such that sk > −1/k for all k ≥ 1. Note that
(yk, sk)→ (0, 0) as k →∞. Since (yk, sk) 6∈ D, we have

(10) W (yk,−sk) = v(yk, sk)

by (1). Then lim infk→∞W (yk,−sk) ≥ (4πc)−n/2 because (yk, sk) ∈ Ω(c).
On the other hand, the right hand side of (10) tends to zero as k → ∞,
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because the boundedness of K ensures that v is continuous on Rn+1 and
v(0, 0) = 0. This is a contradiction.

3. In this section we discuss mean value densities on domains of the
form

D(ϕ) := {(x, t) ∈ Rn+1; ‖x‖ < ϕ(t), −1 < t < 0},
where ϕ is a continuous function on [−1, 0] with ϕ > 0 on (−1, 0). For
simplicity, we also assume that

(∗) there is t0 ∈ [−1, 0] such that ϕ is strictly decreasing on [t0, 0] and
strictly increasing on [−1, t0].

The following remark will be useful below.

Remark 3. If D(ϕ) has a mean value density K, then whenever (y, s) 6∈
D(ϕ),

(11) W (y,−s) = � �
D(ϕ)

K(x, t)W (x− y, t− s) dx dt.

Hence letting (y, s)→ (y0, s0) ∈ ∂D(ϕ), we deduce from Fatou’s lemma that

(12) W (y0,−s0) ≥ � �
D(ϕ)

K(x, t)W (x− y0, t− s0) dx dt.

Regarding the nonexistence of mean value densities, we have the follow-
ing result.

Theorem 4. If the origin is a regular boundary point of D(ϕ) with re-
spect to the Dirichlet problem for the heat equation, then there is no mean
value density on D(ϕ).

Proof. Under this hypothesis t0 < 0. Let f be a continuous function on
∂D(ϕ) such that f(0, 0) = 0, f(x, t) > 0 if t > t0, and f(x, t) = 0 if t ≤ t0.
Let v be the solution of the Dirichlet problem on D(ϕ) with boundary
function f , and v = f on ∂D(ϕ). Then v ≥ 0 and v 6≡ 0. For k ∈ N such
that −1/k > t0, put

uk(x, t) :=
{
v(x, t− 1/k) if t > t0 + 1/k,

0 if t ≤ t0 + 1/k.

Now suppose that there is a mean value density K on D(ϕ). Since uk is a
temperature on D(ϕ), we have

uk(0, 0) = ���
D(ϕ)

K(x, t)uk(x, t) dx dt.

Since (0, 0) is regular, we have

lim
k→∞

uk(0, 0) = lim
k→∞

v(0,−1/k) = f(0, 0) = 0.
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On the other hand, Fatou’s lemma implies that

lim inf
k→∞

���
D(ϕ)

K(x, t)uk(x, t) dx dt ≥ � �
D(ϕ)

K(x, t)v(x, t) dx dt > 0.

This is a contradiction.

Remark 5. It is known that if ϕ satisfies

(13) ϕ(t) < (4(−t) log |log(−t)|)1/2

on a neighborhood of t = 0, then the origin is a regular boundary point (see
[1, p. 339]). On the other hand, (0, 0) is an irregular boundary point of Ω(c)
(see [1, p. 340]). Let m ≥ 3 be an integer. A modified heat ball Ωm(c) is
defined by

Ωm(c) := {(x, t) ∈ Rn+1; ‖x‖ < (2(m+n)(−t) log(c/(−t)))1/2, −c < t < 0}.
The function

K(x, t) := c0(2(m+ n)(−t) log(c/(−t))− ‖x‖2)m/2(14)

×
(
m(m+ n)
−t log(c/(−t)) +

‖x‖2
t2

)

is a bounded mean value density on Ωm(c) (see [6]), where

c0 :=
ωm

2(m+ 2)(4πc)(m+n)/2

and ωm is the volume of the unit ball in Rm.

Remark 6. In general, the regularity of the origin is not a sufficient
condition for nonexistence of a mean value density. In fact, given an integer
m ≥ 3, let

D := Ωm(c) \ {(x1, . . . , xn−1, 0, t); xi ∈ R (i = 1, . . . , n− 1), −c/2 < t < 0}.
Then (0, 0) is a regular point of ∂D (see [3, p. 218] for the case n = 1);
but (14) is a bounded mean value density for D, because D◦ = Ωm(c). This
example also shows that we cannot replace D by D in (8).

For two functions ϕ and ψ on [−1, 0], we write ϕ≈ψ if there exist pos-
itive constants c1, c2 such that c1ψ(t) ≤ ϕ(t) ≤ c2ψ(t) on a neighbourhood
of t = 0. We have the following results about the domains D(ϕ).

Corollary 7. (a) If ϕ(t) ≈ (−t)β with β ≥ 1/2, then there is no mean
value density on D(ϕ).

(b) If ϕ(t) ≈ (−t)β with β < 1/2, then we can construct a mean value
density on D(ϕ).

(c) If there are c1 > 0 and t1 < 0 such that (D(ϕ)\Ω(c1))∩{t > t1} = ∅,
then D(ϕ) does not have a bounded mean value density. In particular , there
is no bounded mean value density on a heat ball.
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(d) If ϕ(t) ≈ (−t)β , then D(ϕ) has no mean value density that is bounded
away from zero.

Proof. Part (a) follows from Theorem 4. To prove (b), we use Theorem 1.
Choose c0 > 0 such that D(ϕ) ⊃ Ω(c0). For 0 < α < 1, put

Eα := {(x, t); ‖x‖ < αϕ(t), −1 < t < 0} ∪Ω(c0/2).

Then {Eα}0<α<1 satisfies the conditions of Theorem 1.
Part (c) follows from Theorem 2.
To show (d), we use the following assertion: There is a positive integer N ,

which depends only on the dimension n, and points {xi}Ni=1 in the unit
sphere of Rn such that for every r > 0,

(15) B(0, r/2) \ {0} ⊂
N⋃

i=1

B(rxi, r),

where B(x, r) is the usual ball in Rn with centre x and radius r > 0. The
existence of N and {xi}Ni=1 is not difficult, because B(0, 1/2) ∩ B(x1, 1)
contains a truncated cone at the origin which has a positive aperture.

Now suppose that there is a mean value density K such that K ≥ c0 > 0
on D(ϕ). Then β < 1/2. For {xi}Ni=1as above and −1 < s < 0, we put

us(x, t) :=
N∑

i=1

W (x− xiϕ(s), t− s).

Then us is a nonnegative temperature on D(ϕ), and by (12) we have

(16) us(0, 0) ≥ ���
D(ϕ)

K(x, t)us(x, t) dx dt ≥ c0 ���
D(ϕ)

us(x, t) dx dt.

Note that

us(0, 0) =
N∑

i=1

W (xiϕ(s),−s) =
N

(4π(−s))n/2 exp
(
−ϕ(s)2

−4s

)
.

On the other hand, since

B(0, ϕ(s)/2) \ {0} ⊂
N⋃

i=1

B(xiϕ(s), ϕ(s))

by (15), we see that

� �
D(ϕ)

us(x, t) dx dt =
0

�
s

( �
‖x‖<ϕ(s)

N∑

i=1

W (x− xiϕ(s), t− s) dx
)
dt

≥
0

�
s

( �
‖x‖<ϕ(s)/2

W (x, t− s) dx
)
dt
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= nωn

0

�
s

( ϕ(s)/2

�
0

1
(4π(t− s))n/2 exp

(
− r2

4(t− s)

)
rn−1 dr

)
dt

= nωnπ
−n/2

0

�
s

( ϕ(s)/4
√
t−s

�
0

τn−1 exp(−τ2) dτ
)
dt ≥ c3(−s)

for all sufficiently small s, because ϕ(s) ≥ c1(−s)β and β < 1/2. Thus (16)
implies that

N

(4π(−s))n/2 exp(−c1(−s)2β−1) ≥ N

(4π(−s))n/2 exp
(
−ϕ(s)2

−s

)
≥ c0c3(−s).

This is a contradiction.

Remark 8. We conjecture that there is no domain which has a mean
value density bounded away from zero. Assertion (d) in Corollary 7 supports
our conjecture.
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