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TAME TENSOR PRODUCTS OF ALGEBRAS

BY

ZBIGNIEW LESZCZYŃSKI and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract. With the help of Galois coverings, we describe the tame tensor products
A ⊗K B of basic, connected, nonsimple, finite-dimensional algebras A and B over an
algebraically closed field K. In particular, the description of all tame group algebras AG
of finite groups G over finite-dimensional algebras A is completed.

Introduction. Throughout the paper K will denote a fixed algebraically
closed field. By an algebra we mean a finite-dimensional K-algebra (associa-
tive, with an identity) which we moreover assume to be basic and connected.
An algebra A can be written as a bound quiver algebra A ∼= KQ/I, where
Q = QA is the Gabriel quiver of A and I is an admissible ideal in the path
algebra KQ of Q.

By Drozd’s Tame and Wild Theorem [9] the class of algebras may be
divided into two disjoint classes. One class consists of the tame algebras
for which the indecomposable modules occur, in each dimension d, in a fi-
nite number of discrete and a finite number of one-parameter families. The
second class is formed by the wild algebras whose representation theory com-
prises the representation theories of all finite-dimensional algebras over K.
Accordingly, we may realistically hope to classify the indecomposable finite-
dimensional modules only for the tame algebras. The representation theory
of arbitrary tame algebras is still only emerging.

We are concerned with the problem of describing when the tensor prod-
uct A⊗K B of two nonsimple algebras A and B is tame. The class of tensor
product algebras contains several important classes of algebras, including:

(1) the group algebras AG ∼= A⊗KKG of finite groupsG with coefficients
in algebras A;

(2) the upper triangular n × n matrix algebras Tn(A) ∼= A ⊗K Tn(K)
with coefficients in algebras A;

(3) the enveloping algebras Ae ∼= A⊗K Aop of algebras A.
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There is a long record of papers devoted to the tameness of the above
classes of algebras (see [2], [6], [7], [17], [21]–[25], [29]–[31]). We also note
that the tensor product A⊗K B ⊗K C of three nonsimple algebras A, B, C
is tame if and only if A, B, C are isomorphic to T2(K) (see [22]). Hence the
tensor product A ⊗K B ⊗K C ⊗K D of any four nonsimple algebras A, B,
C, D is always wild.

The paper is organized as follows. In Section 1 we present the main
theorem and related background. Section 2 is devoted to basic results applied
in the proof of our main theorem. In Section 3 we prove the tameness of the
tensor products of some particular Nakayama algebras. Section 4 is devoted
to the proof of the main theorem. In the final Sections 5, 6 and 7 we give
respectively descriptions of tame group algebras, tame triangular matrix
algebras and tame enveloping algebras.

1. The main theorem and related background. Given a locally
finite quiver Q (each vertex is the source and end of only finitely many
vertices) the path category KQ of Q has as objects the vertices of Q, and
as morphisms between two objects x and y the space KQ(x, y) of K-linear
combinations of paths from x to y. For n ≥ 1 and objects x and y of KQ,
we denote by KQ(x, y)n the subspace of KQ(x, y) generated by all paths in
Q of length ≥ n. An ideal I of the path category KQ is called admissible if
the following conditions are satisfied:

(a) I(x, y) ⊆ KQ(x, y)2 for all objects x, y of KQ,
(b) for every object x of KQ there exists a positive integer nx such that

KQ(x, y)nx ⊆ I(x, y) and KQ(y, x)nx ⊆ I(y, x) for all objects y of KQ.

In that case, (Q, I) is called a bounded quiver and the residue category
R = KQ/I a locally bounded K-category [5]. If R is bounded (Q has only
finitely many vertices) then R may be identified with the algebra ⊕R of
all matrices (ayx)x,y∈R with ayx ∈ R(x, y). A locally bounded K-category
R = KQ/I with Q having no oriented cycles is called triangular. Following
[1] a locally bounded K-category R is said to be simply connected if, for any
presentation R = KQ/I of R as a bound quiver category, the fundamental
group Π1(Q, I) of (Q, I) is trivial. Finally, a full subcategory Λ of a locally
bounded K-category R = KQ/I is said to be convex if any path in Q with
source and end in Λ lies entirely in the quiver of Λ.

Assume that R is a locally bounded K-category and G a group of K-
linear automorphisms of R acting freely on the objects of R. According to
[13] the quotient category R/G exists. Its objects are the G-orbits of the
objects of R. Moreover, we have

(R/G)(a, b) =
{

(fyx) ∈
∏

(x,y)∈a×b
R(x, y)

∣∣∣ gfyx = fg(y)g(x) ∀
g∈G,x∈a, y∈b

}
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and the composition of e ∈ (R/G)(b, c) with f ∈ (R/G)(a, b) is given by

(ef)zx =
∑

y∈b
ezyfyx.

The canonical functor F : R → R/G, which assigns to each object x of R
its G-orbit Gx and to each morphism ξ ∈ R(x, y) the family F (ξ) given by
F (ξ)h(y)g(x) = δghgξ is called a Galois covering of R/G with Galois group G.
For G having only finitely many orbits of objects in R, R/G is a bounded K-
category and hence may be identified with the associated algebra ⊕(R/G).

Let R = KQ/I and R′ = KQ′/I ′ be two locally bounded K-categories,
and let Q0 and Q′0 (respectively, Q1 and Q′1) be the sets of vertices (re-
spectively, arrows) of Q and Q′. Then we may define the tensor product
R⊗K R′ of R and R′ as the locally bounded K-category K(Q⊗Q′)/I � I ′,
where (Q ⊗ Q′)0 = Q0 × Q′0 is the set of vertices of the quiver Q ⊗ Q′,
(Q⊗Q′)1 = (Q0×Q′1)∪ (Q1×Q′0) is the set of arrows of Q⊗Q′, and I � I ′
is the ideal in the path algebra K(Q ⊗ Q′) generated by Q0 × I ′, I × Q′0,

and the elements of the form (α, t)(p, β)− (r, β)(α, s) for all arrows p
α→ r

in Q1 and s
β→ t in Q′1. If R and R′ are algebras (bounded K-categories)

then K(Q⊗Q′)/I � I ′ is a bound quiver presentation of the tensor product
algebra R⊗KR′ (see [22, Lemma 1.3]). We note that I�I ′ 6= 0 even if I = 0
and I ′ = 0. Moreover, it is easy to see that R ⊗K R′ is simply connected if
both R and R′ are simply connected.

Following Drozd [9], an algebra Λ is said to be tame if, for any dimen-
sion d, there exist a finite number of Λ-K[X]-bimodules Mi, 1 ≤ i ≤ nd,
which are finitely generated and free as right K[X]-modules, and all but
finitely many isoclasses of indecomposable left Λ-modules of dimension d
are of the form Mi ⊗K[X] K[X]/(X − λ) for some λ ∈ K and some i. More
generally, a locally bounded K-category R is said to be tame if every full
bounded subcategory of R is tame [11].

Let Λ = KQ/I be a triangular algebra. Denote by Q0 the set of vertices
of Q, by Q1 the set of arrows of Q, and by s, e : Q1 → Q0 the maps
which assign to each arrow α ∈ Q1 its source s(α) and its end e(α). The
Tits form qΛ of Λ is the integral quadratic form on the Grothendieck group
K0(Λ) = ZQ0 of Λ, defined for x = (xi)i∈Q0 ∈ K0(A) as follows:

qΛ(x) =
∑

l∈Q0

x2
l −

∑

α∈Q1

xs(α)xe(α) +
∑

i,j∈Q0

rijxixj

where rij is the cardinality ofR∩I(i, j) for a minimal setR ⊂ ⋃i,j∈Q0
I(i, j)

of K-linear relations generating the ideal I (see [4]). It is well known (see
[27]) that if Λ is tame then qΛ is weakly nonnegative, that is, qΛ(x) ≥ 0 for
any x in K0(A) with nonnegative coordinates.
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Consider the extended Euclidean graphs

˜̃Am :

• · · · •

•

~~~~~~~

@@@@@@@ •

@@@@@@@

~~~~~~~
•

• · · · •

(m+2 vertices, m ≥ 1)

T5 :
•

@@@@@@@ •

•

~~~~~~~

@@@@@@@ •

•

~~~~~~~ •

˜̃Dn :

•

@@@@@@@ •

• • · · · • •

~~~~~~~

@@@@@@@

•

~~~~~~~ • •

(
n+1 vertices,

n ≥ 4

)

˜̃E6 :

•

•

• • • • • •

˜̃E7 :

•

• • • • • • • •

˜̃E8 :

•

• • • • • • • • •
Let H = K∆ be the path algebra of a quiver ∆ (without oriented cycles)
whose underlying graph ∆ is one of the above extended Euclidean graphs,
and T be a preprojective tilting H-module, that is, Ext1

H(T, T ) = 0 and T
is a direct sum of |∆0| pairwise nonisomorphic H-modules lying in different
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TrD-orbits of indecomposable projective H-modules. Then C = EndH(T )
is said to be a concealed algebra of type ∆. It is known that such a C is a
wild triangular algebra of global dimension at most 2, and its Tits form qC
is not weakly nonnegative (see [18], [28]). The concealed algebras of types
˜̃Am, T5, ˜̃Dn, ˜̃E6, ˜̃E7, ˜̃E8 have been classified by quivers and relations in [20],

[36], [38].
Assume that A = KQ/I and B = KQ′/I ′ are two nonsimple (basic,

connected) algebras such that the tensor product algebra A ⊗K B is tame.
Then, by [22] (see also [30]) A and B are representation-finite and standard

algebras, and hence there exist Galois coverings FA : Ã → Ã/G = A and

FB : B̃ → B̃/G = B, where Ã = KQ̃/Ĩ and B̃ = KQ̃′/Ĩ ′ are simply
connected locally bounded K-categories, and G = Π1(Q, I), H = Π1(Q′, I ′),
which are moreover finitely generated free groups. Then we have a Galois

covering FA⊗FB : Ã⊗K B̃ → Ã⊗K B̃/G×H = A⊗K B, where Ã⊗K B̃ =

K(Q̃A ⊗ Q̃B)/ĨA � ĨB is a simply connected locally bounded K-category,
and the Galois group G × H is obviously torsion-free. Therefore, in order
to establish criteria for the tameness of the tensor products of nonsimple
algebras, we may restrict to the representation-finite standard algebras.

The following theorem is the main result of the paper.

Theorem 1.1. Let A and B be two nonsimple representation-finite stan-
dard algebras. Then the following statements are equivalent :

(i) A⊗K B is tame.

(ii) The Tits form qC of any bounded convex subcategory C of Ã⊗K B̃
is weakly nonnegative.

(iii) Ã ⊗K B̃ does not contain a bounded convex subcategory which is

concealed of type ˜̃Am,m ≥ 1, T5, ˜̃Dn, n ≥ 4, ˜̃E6, ˜̃E7 or ˜̃E8.

In the case of 2× 2 upper triangular matrix algebras T2
∼= A⊗K T2(K),

the above theorem has been proved in [23]. Hence, our aim is to prove the
theorem for algebras A and B which are not isomorphic to K or T2(K).

2. Preliminary results. In this section we collect some results applied
in the proof of the main theorem. We start with the following proposition
proved in [10, Proposition 2] (see also [14, Section 3]).

Proposition 2.1. Let F : R → R/G be a Galois covering of locally
bounded K-categories, and assume that R/G is tame. Then R is also tame.

Following [32] a locally bounded K-category R is called strongly sim-
ply connected if every convex bounded subcategory of R is simply con-
nected. Every strongly simply connected locally bounded K-category is sim-
ply connected but the converse is not true. However, all simply connected
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representation-finite algebras are strongly simply connected. The concealed

algebras of types T5, ˜̃Dn, n ≥ 4, ˜̃E6, ˜̃E7 and ˜̃E8 are strongly simply connected
(see [36]), and are called hypercritical algebras. In [26] the class of tame mini-
mal nonpolynomial growth simply connected algebras, called pg-critical, has
been introduced and classified by quivers and relations. There are only 16
frames of strongly simply connected pg-critical algebras. We will need the
following criterion for tameness proved in [34, Theorem 2.4] (see also [33,
Theorem 4.1] in the simply connected case).

Proposition 2.2. Let R be a strongly simply connected locally bounded
K-category and G a group of K-linear automorphisms of R such that A =
R/G is bounded. Assume that R does not contain a convex subcategory which
is hypercritical or pg-critical. Then A is tame.

Following [35] an algebra A is said to be special biserial if A is isomorphic
to a bound quiver algebra KQ/I, where the bound quiver (Q, I) satisfies
the conditions:

(a) each vertex of Q is the source and end of at most two arrows,
(b) for any arrow α of Q there are at most one arrow β and at most one

arrow γ with αβ /∈ I and γα /∈ I.

The following fact has been proved in [37] (see also [12]).

Proposition 2.3. Every special biserial algebra is tame.

In fact this proposition can be considered as a special case of Propo-
sition 2.2. Indeed, the special biserial algebras admit strongly simply con-
nected Galois coverings whose convex bounded subcategories are all repre-
sentation-finite (see [12, (5.2)]).

In the proof of our main result we also need a geometric criterion for
tameness. For a positive integer d, we denote by algd(K) the affine variety
of associative algebra structures with identity on the affine space Kd. Then
the general linear group GLd(K) acts on algd(K) by transport of structure,
and the GLd(K)-orbits in algd(K) correspond to the isomorphism classes of
d-dimensional algebras (we refer to [19] for more details). We shall identify
a d-dimensional algebra with the point of algd(K) corresponding to it. For
two d-dimensional algebras A and B, we say that B is a degeneration of A
if B belongs to the closure of the GLd(K)-orbit of A in the Zariski topology
of algd(K). Then we have the following result proved by C. Geiss [15] (see
also [8]).

Proposition 2.4. Let A and B be two d-dimensional algebras, and as-
sume that B is tame and a degeneration of A. Then A is tame.
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We end this section with an example showing that the tensor product
of two strongly simply connected algebras is not necessarily strongly simply
connected.

Example 2.5. Let A and B be the path algebras KQ of the quiver Q:

• •oo // • . Then A⊗K B is the bound quiver algebra K(Q⊗Q′)/J ,

where Q⊗Q′ is the quiver

• •
α′′

oo
β′′

// •

•
γ

OO

σ

��

•
α′

oo
β′

//

γ′
OO

σ′
��

•
γ′′

OO

σ′′
��• •

α
oo

β
// •

and J = I � I ′ (with I = 0 and I ′ = 0) is generated by the elements
ασ′ − σα′, γα′ − α′′γ′, γ′′β′ − β′′γ′, σ′′β′ − βσ′. Then A ⊗K B is simply
connected but not strongly simply connected, because it contains a convex

path algebra H = K∆, where ∆ is the quiver of Euclidean type Ã8 formed
by the vertices of Q ⊗Q′ except the central vertex. In fact, A ⊗K B is the
one-point extension H[M ] of H by a simple homogeneous module, and hence
A ⊗K B is a tubular algebra of type (2, 4, 4) in the sense of Ringel [28]. In
particular, A⊗K B is tame.

3. Tame tensor products of Nakayama algebras. An important
role in the proof of our main theorem will be played by the tensor products
of some Nakayama algebras. Recall that an algebra A is called a Nakayama
algebra if all indecomposable projective left and rightA-modules have unique
composition series. It is well known that a nonsimple algebra A is a Naka-
yama algebra if and only if the Gabriel quiver QA of A is one of the quivers

Ln : • α0 // • α1 // • // · · · // • αn−1 // •
or • α0 // •

α1

��@@@@@@@

•

αn−1

??~~~~~~~ •
α2

��•
αn−2

OO

•
p p p

aaBBBBB p p p }}
|||||

for some n ≥ 1. We need special families of Nakayama algebras (see [31]).
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For n ≥ 2 and any sequence of positive integers n1, . . . , ns satisfying the
conditions: s ≥ 1, ns < n − 1 and ni + 1 < ni+1 for 1 ≤ i ≤ s − 1, we
will denote by An(n1,...,ns)

the bound quiver algebra KLn/I
n
(n1,...,ns)

, where

In(n1,...,ns)
is the ideal in the path algebra KLn generated by the paths αiαi−1

for i 6= n1, . . . , ns, 1 ≤ i ≤ n − 2. Moreover, for n ≥ 1, we will denote by
An the bound quiver algebra KLn/I

n, where the ideal In is generated by
all paths αiαi−1, 1 ≤ i ≤ n− 1.

For n ≥ 2 and any sequence of positive integers n1, . . . , ns satisfying
the conditions: s ≥ 1, ns < n − 1 and ni + 1 < ni+1 for 1 ≤ i ≤ s − 1,
we denote by Bn

(n1,...,ns)
the bound quiver algebra KCn/J

n
(n1,...,ns)

, where

Jn(n1,...,ns)
is the ideal in the path algebra KCn generated by the paths αiαi−1

for i 6= n1, . . . , ns, 1 ≤ i ≤ n, and α0 = αn. Moreover, for n ≥ 1, we will
denote by Bn the bound quiver algebra KCn/J

n, where the ideal Jn is
generated by all paths αiαi−1, 1 ≤ i ≤ n.

Hence, An and Bn, n ≥ 1, are representatives of isoclasses of radical
square zero nonsimple Nakayama algebras.

The aim of this section is to prove that the tensor product algebras of the
forms An(n1,...,ns)

⊗K Am, An(n1,...,ns)
⊗K Bm, Bn

(n1,...,ns)
⊗K Am, Bn

(n1,...,ns)
⊗K

Bm, An ⊗K Bm, An ⊗K Am and Bn ⊗K Bm are all tame.

Proposition 3.1. The algebras Bn
(n1,...,ns)

⊗K Bm, n ≥ 2, m ≥ 1, are
tame.

Proof. We first prove that the algebrasBn
(n1,...,ns)

⊗KB1, n ≥ 2, are tame.

The algebra Bn
(n1,...,ns)

⊗K B1 is isomorphic to the bound quiver algebra

KQn/Rn(n1,...,ns)
, where Qn is the quiver

• α0 //
@GAFEDβ0

		 •
α1

��@@@@@@@

@GFECDβ1

zz

•

αn−1

??~~~~~~~@ABGFEβn−1
�� •

α2

��

GFEBCDβ2

hh

•
αn−2

OO

ABC@GF
βn−2

(( • FEDABC β3ZZp p p
aaBBBBB p p p }}

|||||

and Rn(n1,...,ns)
is the ideal in KQn generated by αiαi−1 for i 6= n1, . . . , ns,

1 ≤ i ≤ n, β2
i , 1 ≤ i ≤ n − 1, and αiβi − βi+1αi, 1 ≤ i ≤ n, where

αn = α0 and βn = β0. Put Λ = Bn
(n1,...,ns)

⊗K B1, and let d = dimK Λ.

For a ∈ K, consider the bound quiver algebra Λ(a) = KQn/Rn(n1,...,ns)
(a),
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where Rn(n1,...,ns)
(a) is the ideal in KQn obtained from Rn(n1,...,ns)

by replac-

ing the generators αi−1βi−1 − βiαi−1 and αiβi − βi+1αi, i = n1, . . . , ns, by
aαi−1βi−1 − βiαi−1 and αiβi − aβi+1αi, and keeping the other generators
of Rn(n1,...,ns)

unchanged. Then we have an algebraic family Λ(a), a ∈ K,

of algebras in algd(K). Observe that Λ(0) is a special biserial algebra, and
hence Λ(0) is tame by Proposition 2.3. Moreover, Λ(1) = Λ. In fact, we have
Λ(a) ∼= Λ for all a ∈ K \ {0}. Indeed, for a ∈ K \ {0}, the automorphism
of the path algebra KQn mapping aβi−1 to βi−1 and aβi+1 to βi+1, for
i = n1, . . . , ns, and keeping the other arrows of Qn unchanged, induces the
required isomorphism Λ(a)

∼→Λ of bound quiver algebras. Thus, we proved
that Λ(0) is a degeneration of Λ. Applying now Proposition 2.4 and invoking
the tameness of Λ(0), we conclude that Λ is also tame.

For m ≥ 2, we may prove in a similar way that any algebra Bn
(n1,...,ns)

⊗K
Bm degenerates to a special biserial algebra, and consequently is tame. Alter-
natively, observe also that there is a canonical Galois covering Bn

(n1,...,ns)
⊗K

Bm → Bn
(n1,...,ns)

⊗KB1 with cyclic Galois group of order m, induced by the

canonical Galois covering Bm → B1 of Nakayama algebras. Applying now
Proposition 2.1 and invoking the tameness of Bn

(n1,...,ns)
⊗K B1, we conclude

that the algebra Bn
(n1,...,ns)

⊗K Bm is also tame.

Corollary 3.2. The algebras An(n1,...,ns)
⊗K Am, An(n1,...,ns)

⊗K Bm,

Bn
(n1,...,ns)

⊗K Am, An ⊗K Bm, An ⊗K Am and Bn ⊗K Bm are tame.

Proof. Observe that there are canonical Galois coverings

B̃n
(n1,...,ns)

⊗K B̃m → Bn
(n1,...,ns)

⊗K Bm with group Z× Z,

B̃n
(n1,...,ns)

⊗K Bm → Bn
(n1,...,ns)

⊗K Bm with group Z,

Bn
(n1,...,ns)

⊗K B̃m → Bn
(n1,...,ns)

⊗K Bm with group Z,

and hence by Proposition 2.1, the locally bounded categories B̃n
(n1,...,ns)

⊗K
B̃m, B̃n

(n1,...,ns)
⊗K Bm and Bn

(n1,...,ns)
⊗K B̃m are tame. Then An(n1,...,ns)

⊗K
Am, An(n1,...,ns)

⊗K Bm and Bn
(n1,...,ns)

⊗K Am are tame, being full finite

subcategories of B̃n
(n1,...,ns)

⊗K B̃m, B̃n
(n1,...,ns)

⊗K Bm and Bn
(n1,...,ns)

⊗K B̃m,

respectively. Finally, observe that the algebras An ⊗K Bm, An ⊗K Am and
Bn ⊗K Bm are factor algebras of An(n1,...,ns)

⊗K Bm, An(n1,...,ns)
⊗K Am and

Bn
(n1,...,ns)

⊗K Bm, and hence are also tame.

For n ≥ 3, we denote by Dn the bound quiver algebra KLn/R
n, where

Rn is the ideal in the path algebra KLn generated by all paths αi+1αiαi−1,
1 ≤ i ≤ n − 2. Moreover, for n ≥ 1, let En be the bound quiver algebra
KCn/T

n, where Tn is the ideal in KCn generated by all paths αi+1αiαi−1,
1 ≤ i ≤ n+ 1 (with αn = α0, αn+1 = α1).
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Proposition 3.3. The algebras En ⊗K A2, n ≥ 1, are tame.

Proof. For n = 1, this is shown in [31, Section 4]. For n ≥ 2, we have a
canonical Galois covering En⊗KA2 → E1⊗KA2 with cyclic Galois group of
order n, induced by the canonical Galois covering En → E1. Then, invoking
Proposition 2.1 and the tameness of E1⊗KA2, we conclude that all algebras
En ⊗K A2 are tame.

Corollary 3.4. The algebras Dn ⊗K A2, n ≥ 3, are tame.

Proof. Apply Proposition 2.1 and the fact that Dn ⊗K A2 are bounded

convex subcategories of the locally bounded K-category Ẽ1 ⊗K A2 =

Ẽn ⊗K A2.

We end this section with the following facts.

Proposition 3.5. The algebras KL3 ⊗K Bn, n ≥ 1, are tame.

Proof. For n = 1, this has been proved in [31, Section 3]. For n ≥ 2, it
follows from Proposition 2.1, because we have a canonical Galois covering
KL3 ⊗K Bn → KL3 ⊗K B1 with cyclic Galois group of order n.

Corollary 3.6. The algebras KL3 ⊗K Bn, n ≥ 2, are tame.

Proof. As above, this follows from Proposition 2.1 and the fact that
KL3 ⊗K Bn are bounded convex subcategories of the locally bounded K-

category KL3 ⊗K B̃1 = KL3 ⊗K B̃n.

4. Proof of Theorem 1.1. Let A = KQ/I and B = KQ′/I ′ be two

nonsimple representation-finite standard algebras, and Ã → Ã/G = A and

B̃ → B̃/H = B, with Ã = KQ̃/Ĩ, B̃ = KQ̃′/Ĩ ′, G = Π1(Q, I), H =
Π1(Q′, I ′), their (strongly) simply connected Galois coverings. Then we have

the canonical Galois covering B̃ ⊗K B̃ → Ã ⊗K B̃/G ×H = A ⊗K B with

Ã⊗K B̃ = K(Q⊗Q′)/IA � IB simply connected and G×H torsion-free.
Assume that A ⊗K B is a tame algebra. Then it follows from Proposi-

tion 2.1 that the locally bounded K-category Ã⊗K B̃ is tame. Hence every

bounded convex subcategory C of Ã ⊗K B̃ is tame, and consequently the
Tits form qC of C is weakly nonnegative (see [27]). Therefore, (i) implies (ii).

The implication (ii)⇒(iii) follows from the fact [18, (6.2)] that the Tits

form of every concealed algebra of wild type (in particular of type ˜̃Am, T5,
˜̃Dn, ˜̃E6, ˜̃E7, ˜̃E8) is not weakly nonnegative.

The remaining part of this section will be devoted to the proof of the
implication (iii)⇒(i). Hence from now on we assume that the locally bounded

K-category Ã⊗K B̃ does not contain a bounded convex subcategory which

is concealed of type ˜̃Am, T5, ˜̃Dn, ˜̃E6, ˜̃E7, or ˜̃E8. Moreover, since for A =
T2(K) or B = T2(K), the implication (iii)⇒(i) has been proved in [23,
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Theorem 1], we will assume that A and B are not isomorphic to T2(K).
Clearly, since A and B are basic and nonsimple, they are also not isomorphic
to K. Moreover, we may assume that A⊗K B is weakly sincere. Recall from
[22, (3.1)] that a tensor product algebra C ⊗K D is called weakly sincere if
there exists an indecomposable finite-dimensional C⊗KD-module M whose
support is not contained in Λ⊗K Γ , for a full subcategory Λ of C and a full
subcategory Γ of D with Λ 6= C or Γ 6= D. Hence, every indecomposable
finite dimensional A⊗K B-module is an indecomposable finite-dimensional
module over a weakly sincere full subcategory C⊗KD of A⊗KB. Therefore,
in order to prove the tameness of A⊗KB, we may indeed assume that A⊗KB
is weakly sincere.

The first step in our proof is to reduce it to the case when both A and
B are Nakayama algebras. We start with the following fact proved in [22,
Theorem 3.2].

Lemma 4.1. Assume that neither A nor B is a Nakayama algebra. Then
A and B are isomorphic to the path algebras of one of the quivers

• •oo // • or • // • •oo ,

and A⊗K B is a tame algebra.

Lemma 4.2. Assume that A and B are simply connected algebras, A is
not Nakayama but B is Nakayama. Then A⊗K B is tame.

Proof. This follows from the proof of [22, Theorem 3.2]. In fact, in this
case A⊗K B is a strongly simply connected algebra which does not contain
a convex subcategory which is pg-critical or hypercritical, and consequently
A⊗K B is tame by Proposition 2.2 (or [33, Theorem 4.1]).

Lemma 4.3. Assume that A is neither simply connected nor a Nakayama
algebra, and B is a simply connected Nakayama algebra. Then A ⊗K B is
tame.

Proof. Since B is a simply connected Nakayama algebra not isomorphic
to K and T2(K), the quiver Q′ of B is a linear quiver

• // • // . . . // •
consisting of at least 2 arrows. We first show that the quiver Q̃ of Ã has no
subquivers of the forms

• // • •oo // •
or

•

��• // • •oo
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or their duals. Indeed, otherwise the Galois covering Ã ⊗K B = Ã ⊗K B̃
of A ⊗K B contains a convex hypercritical subcategory which is the path
category of

•

��

•

��• // • •oo //

��

•

•

or

•

��• // • •oo

��•

OO

•
or their duals, a contradiction. We now claim that the bound quiver (Q′, I ′)
of B is of the form

• //O T Z _ d j o• // •

where the dashed line means that the composition of these two arrows be-
longs to I ′. Suppose that Q′ contains 3 arrows. Since A is not simply con-

nected and not a Nakayama algebra, invoking the above restriction on Q̃,

we conclude that the quiver Q̃ contains a convex subquiver of the form

• •oo •oo // • // •
or its dual. But then Ã ⊗K B̃ contains a convex hypercritical subcategory

of type ˜̃E7 which is the path category of the quiver

•

��• •oo

��

• //

��

•

• •oo //

��

•

•
or its dual, a contradiction. Therefore, Q′ consists of two arrows. Finally, if

the composition of two arrows of Q′ is not in I ′, then Ã ⊗K B̃ contains a

convex hypercritical subcategory of type ˜̃E7 given by the bound quiver

•

��

• //

��

•

•

��

•oo //

��~
~

~
~

@
@

@
@ •

��• •oo // •
where
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• //

�� @
@

@
@ •

��• // •
means that the difference of two parallel paths of length 2 belongs to I ′,
again a contradiction. We now claim that the quiver Q of A is a cycle, and

consequently the quiver Q̃ is an infinite line of type ∞A∞. Suppose Q is not

a cycle. Invoking the restrictions on Q̃ from the first part of our proof, we

infer that then Q̃ contains a convex subquiver of the form

•

��• •oo •oo •oo

or its dual. Then Ã ⊗K B̃ contains a convex hypercritical subcategory of

type ˜̃E6 which is the path category of the quiver

• •oo

��

•

��wwoooooooooooooo

• •oo

��

•

• •oo

or its dual, a contradiction. Thus, we proved that Ã ⊗K B̃ = Ã ⊗K B is a

strongly simply connected category whose quiver Q̃⊗Q̃′ = Q̃⊗Q′ is a tensor
product of an infinite line of type ∞A∞ and two consecutive arrows. Apply-

ing now our assumption that Ã⊗K B̃ does not contain a hypercritical convex

subcategory, we easily conclude, invoking [26], that Ã ⊗K B̃ also does not
contain a convex pq-critical subcategory. Hence, applying Proposition 2.2,
we conclude that A⊗K B is tame.

Lemma 4.4. Assume that A is not a Nakayama algebra, and B is a
nonsimply connected Nakayama algebra. Then A⊗K B is tame.

Proof. Assume first that A is simply connected. Then Ã = A, and hence

we have a canonical simply connected Galois covering A ⊗K B̃ → A ⊗K B
with infinite cyclic Galois group H = Π1(Q′, I ′). Moreover, every bounded

convex subcategory Γ of B̃ is a simply connected Nakayama algebra, and

A⊗K Γ is a bounded convex subcategory of A⊗K B̃. We consider two cases.

Case 1. Assume that neither A nor Aop is the path algebra of the quiver

• •oo // •
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Since B̃ contains convex simply connected Nakayama bounded subcategories
with an arbitrarily large numbers of objects, applying [22, Theorem 3.2]
again, we conclude that either A or Aop is the bound quiver algebra given
by the bound quiver

• •oo //O T Z _ d j o• // •

and B is a radical square zero Nakayama algebra Bn, for some n ≥ 1. But

then A ⊗K B̃ is a strongly simply connected locally bounded K-category
which does not contain a convex pg-critical or hypercritical bounded sub-
category, and invoking Proposition 2.2 we conclude that A⊗K B is tame.

Case 2. Assume that A or Aop is the path algebra of

• •oo // •
For B = Bn with n ≥ 1, the algebra A ⊗K B is a factor algebra of the
algebra considered above, and hence is tame. In fact, the algebra A⊗K Bn

is even representation-finite (see [25, Lemma 1]). Hence we may assume

that B is not a radical square zero algebra. Since A ⊗K B̃ contains convex

subcategories A⊗K Γ for convex bounded subcategories Γ of B̃ with large
numbers of objects, invoking [22, Theorem 3.2] again, we conclude that B
is an algebra Bn

(n1,...,ns)
for some n ≥ 2 and a sequence of positive integers

n1, . . . , ns satisfying the conditions: s ≥ 1, ns ≤ n− 1, and ni + 2 < ni+1 for
1 ≤ i ≤ s− 1. We note that if ni + 2 = ni+1 for some i with 1 ≤ i ≤ s− 1,

then A⊗K B̃ contains the path algebra of the quiver

•

��•

��

•

��• •oo

��

// •

•

��•

of type ˜̃E6 as a convex subcategory, which contradicts our assumption on

Ã⊗K B̃. Finally, a simple inspection of the families of the pg-critical algebras
presented in [26, Theorem 3.2] shows that the strongly simply connected

locally bounded category A⊗K B̃n
(n1,...,ns)

, for n1, . . . , ns satisfying ni + 2 <

ni+1 for all 1 ≤ i ≤ s− 1, does not contain a convex pg-critical subcategory.
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Then applying Proposition 2.2 we infer that A ⊗K B = A ⊗K Bn
(n1,...,ns)

is
tame.

Now assume that A is arbitrary but not a Nakayama algebra. By the

above discussion, every bounded convex subcategory of Ã has at most 4
objects, and hence A is in fact simply connected. Therefore A ⊗K B is
tame.

Since A⊗KB ∼= B⊗KA, the above lemmas prove the tameness of A⊗KB
if one of the algebras is not a Nakayama algebra. The next three lemmas
reduce our considerations to the Nakayama algebras with radical cube zero.

Lemma 4.5. Let A and B be Nakayama algebras. Then all paths of length
4 in Q belong to the ideal I.

Proof. Suppose that Q contains a path of length 4 which does not belong

to I. Then Ã ⊗K B̃ contains a bounded convex subcategory of the form

T4(K)⊗K Γ for a Nakayama subcategory Γ of B̃ with at least three objects.

But then Ã⊗K B̃ contains a convex subcategory which is concealed of type
˜̃E7 (see the proof of [22, Theorem 2.5]), a contradiction.

Lemma 4.6. Let A and B be Nakayama algebras. Assume that A is not
isomorphic to the path algebra KL3 but its quiver Q contains a path of
length 3 which does not belong to the ideal I. Then A is a factor algebra of
the bound quiver algebra of one of the bound quivers

• //o j d _ Z T O
• // • // • //O T Z _ d j o• // •

or
• // • // • //o j d _ Z T O

• //O T Z _ d j o• // • // • // •

and B is the bound quiver algebra of the bound quiver

• //o j d _ Z T O
• // •

and A⊗K B is a tame algebra.

Proof. If A and B are simply connected, this is proved in [22, Theo-
rem 3.2]. Consequently, A and B must be simply connected. Indeed, if A

is not simply connected then Ã contains a bounded convex subcategory Λ
having at least 9 objects and the path algebra of the quiver

• // • // • // •
as a convex subcategory. Then, for any convex subcategory Γ of B̃ with

at least 3 objects, Λ ⊗K Γ is a bounded convex subcategory of Ã ⊗K B̃, a

contradiction. Hence A = Ã is simply connected. Similarly, we show that

B = B̃ is simply connected.
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Lemma 4.7. Assume A = KL3 and B is a Nakayama algebra. Then B
is isomorphic to one of the algebras An, n ≥ 2, or Bn, n ≥ 1. In particular ,
A⊗K B is tame.

Proof. It follows from [22, Theorem 2.5] that every bounded convex sub-

category of B̃ with at least 3 objects is isomorphic to An for some n ≥ 2.
Obviously B is then isomorphic to one of the desired algebras An or Bn. The
tameness of A⊗K B follows from Propositions 2.1, 3.5 and Corollary 3.6.

In the next two lemmas we consider the case of Nakayama algebras whose
bound quivers contain two consecutive nonzero paths of length 2.

Lemma 4.8. Let A and B be radical cube zero Nakayama algebras. As-
sume that A is not isomorphic to the bound quiver algebra D3 but its quiver
contains a path α3α2α1 with α3α2 /∈ I and α2α1 /∈ I. Then A is a factor
algebra of one of the bound quiver algebras Dn, n ≥ 3, or En, n ≥ 1, and B
is the bound quiver algebra A2. In particular , A⊗K B is tame.

Proof. Assume first that A is simply connected. Since A 6∼= D3, we con-
clude from [22, Theorem 3.2] that A is a factor algebra of an algebra Dn for
some n ≥ 4, and B ∼= A2. If A is not simply connected, then we conclude

that every bounded convex subcategory of Ã is a factor algebra of an algebra
of the form Dn and B ∼= A2. But then A is a factor algebra of an algebra En

for some n ≥ 1. Hence A⊗K B is a factor algebra of an algebra Dn ⊗K A2,
n ≥ 3, or En ⊗K A2, n ≥ 1, and consequently is tame, by Proposition 3.3
and Corollary 3.4.

Lemma 4.9. Assume that A is isomorphic to D3 and B is a Nakayama
algebra. Then B is isomorphic to one of the algebras An, n ≥ 2, or Bn,
n ≥ 1. In particular , A⊗K B is tame.

Proof. Assume B is simply connected. Then it follows from [22, The-
orem 3.2] that B is isomorphic to An for some n ≥ 2. Hence, if B is not

simply connected, then every bounded convex category of B̃ with at least
3 objects is isomorphic to an algebra An, and consequently B is isomor-
phic to an algebra Bn, n ≥ 1. Observe also that D3 ⊗K An is a factor
algebra of KL3 ⊗K An and D3 ⊗K Bn is a factor algebra of KL3 ⊗K Bn.
Applying Proposition 3.3 and Corollary 3.4, we conclude that A ⊗K B is
tame.

Thus we have reduced our considerations to the Nakayama algebras of
the forms An(n1,...,ns)

, An, Bn
(n1,...,ns)

, Bn.

Lemma 4.10. Let A and B be Nakayama algebras of one of the forms
An(n1,...,ns)

or Bn
(n1,...,ns)

. Then one of the following cases holds:
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(i) A ∼= B ∼= An(1) for some n ≥ 2,

(ii) A ∼= Bop ∼= A3
(1) or A ∼= Bop ∼= A3

(2).

Moreover , A⊗K B is tame.

Proof. This follows from [22, Theorem 3.2]. In fact, for A and B from
(i) and (ii), A ⊗K B is a strongly simply connected algebra having no pg-
critical and hypercritical convex subcategories, and hence is tame, by Propo-
sition 2.2.

Observe that this finishes our proof. Indeed, since A ⊗K B ∼= B ⊗K A,
we may assume that A is one of the algebras An(n1,...,ns)

, An, Bn
(n1,...,ns)

, Bn,

and B is isomorphic to one of the radical square zero Nakayama algebras
An, Bn. In this case, the tameness of A⊗K B follows from Proposition 3.1
and Corollary 3.2.

5. Tame group algebras. The aim of this section is to complete the
results from [31] concerning description of tame group algebras AG of finite
groups G over algebras A. For m ≥ 2, we denote by Zm the cyclic group of
order m. Moreover, we denote by Dm, m ≥ 1, Sm, m ≥ 3, and Qm, m ≥ 2,
the following 2-groups:

• dihedral groups Dm =
〈
g, h | g2 = h2m = 1, hg = gh−1

〉
,

• semidihedral groups Sm = 〈g, h | g2 = h2m = 1, hg = gh2m−1−1〉,
• quaternion groups Qm = 〈g, h | g2 = h2m−1

= 1, g4 = 1, hg = gh−1〉.
The following characterization of representation-finite group algebras has

been established in [25, Theorem].

Theorem 5.1. Let G be a finite group, A an algebra over K, and p be
the characteristic of K. Then the group algebra AG is representation-finite
if and only if one of the following cases holds:

(i) p does not divide the order of G and A is representation-finite,
(ii) p divides the order of G and one of the following holds:

(1) A ∼= K and a p-Sylow subgroup of G is cyclic,
(2) p = 3, a 3-Sylow subgroup of G is isomorphic to Z3, and A is

isomorphic to T2(K),
(3) p = 2, a 2-Sylow subgroup of G is isomorphic to Z2, and A is

isomorphic to one of the algebras An(n1), A
n, the path algebras of

the quivers

• // • • // • •oo • •oo // •
or the bound quiver algebras given by the bound quivers

• // • O T Z _ d j o•oo •oo • •oo //O T Z _ d j o• // •
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We note that the characterization of the representation-finite group al-
gebras KG is due to Higman [16].

Now we give a characterization of all representation-infinite tame group
algebras.

Theorem 5.2. Let G be a finite group, A an algebra over K, and p be
the characteristic of K. Then the group algebra AG is representation-infinite
and tame if and only if one of the following cases holds:

(i) p does not divide the order of G and A is representation-infinite
tame,

(ii) p divides the order of G and one of the following holds:

(1) p = 3, a 3-Sylow subgroup of G is isomorphic to Z3, and A is
isomorphic to the bound quiver algebra A2,

(2) p = 2, and one of the following holds:
(a) A ∼= K and a 2-Sylow subgroup of G is isomorphic to one of

the groups Dm, Sm, or Qm,
(b) A∼=T2(K) and a 2-Sylow subgroup of G is isomorphic to Z4,
(c) a 2-Sylow subgroup of G is isomorphic to Z2 and A is isomor-

phic to one of the algebras An(n1,...,ns)
, An, Bn

(n1,...,ns)
, or Bn.

Proof. This is a direct consequence of [31, Theorem 1], Proposition 3.1
and Corollary 3.2.

We note that the characterization of the representation-infinite tame
group algebras KG is due to Bondarenko and Drozd [3].

6. Tame triangular matrix algebras. In [23] we have described com-
pletely all basic connected algebras A for which the algebras T2(A) of 2× 2
upper triangular matrices over A are tame (respectively, representation-
finite). Here, we will extend the results of [23] to the algebras Tn(A) of n×n
upper triangular matrices over A with n ≥ 3.

Theorem 6.1. Let n ≥ 3 and A be an algebra. Then Tn(A) is represen-
tation-finite if and only if one of the following cases holds:

(i) A ∼= K,
(ii) n = 3 and A is a radical square zero Nakayama algebra.

Proof. Apply [22, Theorem 2.5], [24, Theorem], and their proofs.

Theorem 6.2. Let n ≥ 3 and A be an algebra. Then Tn(A) is representa-
tion-infinite and tame if and only if one of the following cases holds:

(i) n = 5 and A ∼= T2(K),
(ii) n = 4 and A is a radical square zero Nakayama algebra,

(iii) n = 3 and one of the following holds:
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(a) A or Aop is isomorphic to the path algebra of the quiver
• •oo // • ,

(b) A is isomorphic to an algebra of one of the forms An(n1,...,ns)
or

Bn
(n1,...,ns)

.

Proof. Apply [22, Theorem 3.2], Theorem 1.1, Theorem 5.1, and the fact

that the simply connected Galois covering T3(K)⊗K B̃n
(n1,...,ns)

(respectively,

T3(K)⊗K An(n1,...,ns)
) of T3(K)⊗K Bn

(n1,...,ns)
∼= T3(Bn

(n1,...,ns)
) (respectively,

T3(K) ⊗K An(n1,...,ns)
∼= T3(An(n1,...,ns)

)) does not contain a convex bounded

subcategory which is concealed of type ˜̃Am, T5, ˜̃Dn, ˜̃E6, ˜̃E7, or ˜̃E8.

7. Tame enveloping algebras. In this final section we describe the
representation-finite and tame enveloping algebras Ae = A⊗K Aop.

Theorem 7.1. Let A be an algebra. Then Ae is representation-finite if
and only if A is a simply connected radical square zero Nakayama algebra.

Proof. The necessity is a consequence of our considerations in Section 4.
For the sufficiency, we observe that for a simply connected radical square
zero Nakayama algebra A, Ae is a simply connected special biserial algebra
without convex subcategories which are the path algebras of Euclidean quiv-

ers of types Ãm, m ≥ 1, and hence Ae is representation-finite (see [35]).

Theorem 7.2. Let A be an algebra. Then Ae is representation-infinite
and tame if and only if one of the following cases holds:

(i) A or Aop is isomorphic to the bound quiver algebra of one of the
bound quivers

• •oo // • • // • // • • // • //o j d _ Z T O
• // •

(ii) A is isomorphic to a nonsimply connected radical square zero Naka-
yama algebra Bn, n ≥ 1.

Proof. The necessity is a consequence of our considerations in Section 4.
The sufficiency follows from Corollary 3.2, Lemma 4.1, Theorem 6.2, and
Theorem 7.1.
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