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Abstract. We prove that peak shaped eigenfunctions of the one-dimensional uncen-
tered Hardy–Littlewood maximal operator are symmetric and homogeneous. This implies
that the norms of the maximal operator on L(p) spaces are not attained.

In [K] it is proved that the centered Hardy–Littlewood maximal operator
over balls has nonzero fixed points in L(p) if and only if the dimension of
the space is d ≥ 3 and d/(d− 2) < p ≤ +∞. Such fixed points are positive
superharmonic functions, for example inf{1, |x|2−d}. It is also proved that
the strong centered maximal operator over parallelograms with sides par-
allel to the axes has no fixed points in L(p) for every 1 ≤ p < +∞. These
results have been extended to rearrangement invariant spaces in [M-S]. Fol-
lowing this line of research, here we consider the one-dimensional uncentered
Hardy–Littlewood maximal operator on locally integrable functions on a fi-
nite or infinite interval a < x < b,

Mf(x) = sup
a<w<x<y<b

1
y − w

y�

w

|f(z)| dz = sup
a<y 6=x<b

1
y − x

y�

x

|f(z)| dz.

Since the maximal function of a nonconstant function is larger than the
function, this maximal operator has no nonconstant fixed points; however,
it has eigenfunctions with eigenvalues larger than one, Mf(x) = λf(x).
Indeed, since the operator commutes with dilations and reflections, a ho-
mogeneity argument shows that the function |x|−α with 0 < α < 1 is
an eigenfunction, with eigenvalue being the value of the maximal function
at the point 1. Moreover, since the operator commutes with translations,
also translates of homogeneous functions are eigenfunctions. However, there
are other eigenfunctions. For example, supn∈Z |x− n|−α is an eigenfunction
with the same eigenvalue as |x|−α. Our motivation to study these eigen-
functions comes from some extremal problems. The quest for exact norms
of operators on function spaces often leads to exploit the symmetries of
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the operator and the supposed extremals. In particular, it has been proved
in [G-MS] that the norm of the uncentered one-dimensional maximal op-
erator on L(p), 1 < p < +∞, is the positive solution to the equation
(p−1)λp−pλp−1−1 = 0, a number between p/(p−1) and 2p/(p−1). More-
over, it follows from their proof that supposed extremals are eigenfunctions
of the maximal operator. It has also been proved in [B-D] and [C-L-M] that
even symmetrization increases the uncentered maximal function. Hence ex-
tremals are symmetrically decreasing. As we said, homogeneous functions
are eigenfunctions of the maximal operator. More precisely, if 1 < p, λ < +∞
and (p− 1)λp − pλp−1 − 1 = 0, then

M |x|−1/p =
1

x+ λ−px

x�

−λ−px

|z|−1/p dz = λ|x|−1/p.

Here we want to prove that, vice versa, peak shaped eigenfunctions are,
up to translations, symmetric and homogeneous. In particular, since homo-
geneous functions are not in L(p), the norms of the maximal operator on
these Lebesgue spaces are not attained. On the other hand, it has been
proved in [C-L-M] that the norms of the maximal operator on other Lorentz
and Marcinkiewicz spaces are attained. In particular, the norm on Weak-
L(p) is the same as on L(p) and the homogeneous function |x|−1/p is an ex-
tremal. Clearly, nonzero eigenfunctions of the maximal operator with eigen-
values larger than one are positive and cannot be bounded. For this reason,
in the following theorem the functions considered are assumed positive and
bounded, except for a single peak at a point c, that is, sup|x−c|<ε f(x) = +∞
and sup|x−c|>ε f(x) < +∞ for every ε > 0. The peak can be inside or at one
of the extremes of the interval of definition of the function.

Theorem 1. Let f(x) be a locally integrable function on a finite or
infinite interval a < x < b, with a single peak at a point c. Assume that f(x)
is an eigenfunction of the uncentered maximal operator with eigenvalue λ,
and let 1 < λ, p < +∞ be related by the equation (p− 1)λp− pλp−1− 1 = 0.

(1) If c = a, b, then f(x) = d|x− c|(1−λ)/λ for some d > 0.
(2) If a < c < b and |x− c| < min{c−a, b− c}, then f(x) = d|x− c|−1/p.

We split the proof of the theorem into a series of lemmas.

Lemma 1.

(1) Under the above assumptions, if c = a, b then f(x) is continuous and
strictly monotone in a < x < b and

Mf(x) =
1

x− c

x�

c

f(z) dz.
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(2) If a < c < b then f(x) is continuous and strictly increasing in a <
x < c and continuous and strictly decreasing in c < x < b. Moreover,
for each x 6= c there exists a unique y such that

Mf(x) =
1

y − x

y�

x

f(z) dz.

More precisely, if a < x < c and Mf(x) ≤ limz→b− f(z) then y = b,
while if Mf(x) > limz→b− f(z) then c < y < b and Mf(x) = f(y).
Similarly, if c < x < b and Mf(x) ≤ limz→a+ f(z), then y = a,
while if Mf(x) > limz→a+ f(z), then a < y < c and Mf(x) = f(y).

Proof. Since (1) and (2) are similar, we only prove (2). The lemma has
an easy and intuitive pseudo-proof. A nonzero eigenfunction of the maximal
operator cannot have local maxima. Hence, if there is only one peak with
f(c) = +∞, the function has to be increasing to the left and decreasing to
the right of the peak. Moreover,

d

dy

{
1

y − x

y�

x

f(z) dz
}

=
1

y − x

{
f(y)− 1

y − x

y�

x

f(z) dz
}
.

Hence the maximum of the averages is attained at the extremes a or b, or at
a point y with f(y) = Mf(x). Finally, if y = y(x) is the point which realizes
the maximal function at x, then

d

dx
Mf(x) =

d

dx

{
1

y − x

y�

x

f(z) dz
}

=
f(y)− f(x)

y − x
.

Since this derivative in nonzero, Mf(x) is strictly monotone. The details
of this proof can be fixed as follows. The maximal function is lower semi-
continuous, that is, for every t > 0 the level sets {Mf(x) > t} are open.
Moreover, in order to evaluate the maximal function in a connected compo-
nent of one of these level sets, it suffices to consider averages of the function
on intervals contained in this connected component. It then follows that in
every connected component of {f(x) > t} = {Mf(x) > λt} there are points
with f(x) > λt. In particular, every connected component of {f(x) > t}
contains a connected component of {f(x) > λt} and, iterating, one obtains
a nested sequence of intervals in {f(x) > λnt}, which converges to a peak of
the function. Hence, if the function has a single peak, for every t > 0 the sets
{f(x) > t} are nested open intervals, and this implies that the function is
unimodal, increasing in a < x < c and decreasing in c < x < b. Let F (x, y)
be the average of f(z) over the interval with extremes x and y,

F (x, y) =
1

y − x

y�

x

f(z) dz.
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In particular, supa<y<b F (x, y) = Mf(x). For a fixed a < x < c, F (x, z)
increases with z > x if F (x, z) < f(z). Indeed, since F (x, z) is continuous
and f(z) is lower semicontinuous, the set of z with F (x, z) < f(z) is open
and there F (x, z) is strictly increasing. Then F (x, z) stops increasing at the
first point c ≤ y ≤ b with f(y) ≤ F (x, y). Indeed, under the assumption
Mf(x) = λf(x), this point exists and is finite even in the case b = +∞.
Otherwise, f(z) > F (x, z) for all c < z and

z − x
z − c

F (x, z) =
1

z − c

z�

x

f(w) dw > Mf(z) = λf(z) > λF (x, z).

If (z−x)/(z−c) ≤ λ one obtains a contradiction. Hence, for every a < x < c
there exists c ≤ y ≤ b which defines the maximal function, F (x, y) = Mf(x),
with F (x, z) < Mf(x) if x < z < y. In particular, if x < z < y, then

F (x, y) =
z − x
y − x

F (x, z) +
y − z
y − x

F (z, y).

If F (x, z) < Mf(x), then F (z, y) > Mf(x) and, a fortiori, Mf(x) <
Mf(z). This implies that Mf(x) is strictly increasing in a < x < c. Simi-
larly, one can prove that Mf(x) is strictly decreasing in c < x < b and this
also implies that the point y with Mf(x) = F (x, y) is uniquely determined.
Finally, since a maximal function is lower semicontinuous, lim infw→xMf(w)
≥ Mf(x). On the other hand, for unimodal functions also the reverse in-
equality holds. Indeed, if xn → x < c and Mf(xn) = F (xn, yn), then for a
subsequence ynj → z ≥ c and lim supnj→+∞Mf(xnj ) = F (x, z) ≤ Mf(x).
Hence, Mf(x) is continuous.

Lemma 2. Under the above assumptions and if c = a, b, then f(x) sat-
isfies the equations 

1
x− c

x�

c

f(z) dz = λf(x),

(x− c) d

dx
f(x) =

1− λ
λ

f(x).

The solutions to these equations are, for some constants d,

f(x) = d|x− c|(1−λ)/λ.

Proof. By the previous lemma, if c = b the function increases from x to
c and

Mf(x) =
1

x− c

x�

c

f(z) dz.

From the equality Mf(x) = λf(x), the integral equation follows and, by
differentiation, one obtains the differential equation.
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The above lemmas prove part (1) of the theorem. Part (2) is slightly
more complicated.

Lemma 3. Under the above assumptions, with a < c < b, let f−(x) =
f(c − x) if 0 < x < c − a and f+(x) = f(c + x) if 0 < x < b − c,
also let µ±(t) be the inverse functions of f±(x). In h < t < +∞ with
h = max{limx→a+ f(x), limx→b− f(x)} these functions satisfy the integral
equations 

(λ− 1)tµ−(t) =
+∞�

t

µ−(s) ds+
+∞�

λt

µ+(s) ds,

(λ− 1)tµ+(t) =
+∞�

t

µ+(s) ds+
+∞�

λt

µ−(s) ds.

Proof. To every 0 < x < µ−(h) ≤ c−a there is associated a 0 < y < b−c
such that

Mf(c− x) = f+(y) =
1

x+ y

( x�
0

f−(z) dz +
y�

0

f+(z) dz
)

=
1

x+ y

(
xf−(x) +

+∞�

f−(x)

µ−(s) ds+ yf+(y) +
+∞�

f+(y)

µ+(s) ds
)
.

If Mf(c− x) = λf(c− x), then f+(y) = λf−(x) and this gives

(λ− 1)xf−(x) =
+∞�

f−(x)

µ−(s) ds+
+∞�

λf−(x)

µ+(s) ds.

Similarly, to every 0 < z < µ+(h) ≤ b− c there is associated a 0 < w <
c− a with Mf(c+ z) = f−(w) and this gives

(λ− 1)zf+(z) =
+∞�

f+(z)

µ+(s) ds+
+∞�

λf+(z)

µ−(s) ds.

Finally, if f−(x) = f+(z) = t, then x = µ−(t) and z = µ+(t) and this
gives the lemma. Indeed, since each step of this proof can be reversed, these
integral equations completely characterize the unimodal eigenfunctions. It
also follows that these eigenfunctions are smooth away from their peaks.

Lemma 4. Under the above assumptions, the functions µ±(t), defined in
h < t < +∞, can be extended to the positive real axis 0 < t < +∞ in such a
way that the extensions are positive, decreasing, and satisfy the differential
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equations 
(1− 1/λ)t

d

dt
µ−(t) + µ−(t) + µ+(λt) = 0,

(1− 1/λ)t
d

dt
µ+(t) + µ+(t) + µ−(λt) = 0.

Proof. The integral equations in the previous lemma, when differenti-
ated, give the differential equations in h < t < +∞. These equations are
linear and their solutions are defined for all 0 < t < +∞. Indeed, if µ±(λt)
are defined when λt > k, solving the equations one obtains an extension of
µ∓(t) to t > k and, iterating, one can go backward to zero. By construction,
these functions are positive and decreasing at least in h < t < +∞ and, by
the equations, if µ±(s) > 0 for s > t, then dµ±(t)/dt < 0. Hence, µ±(t) are
positive and decreasing everywhere.

Lemma 5. Let 1 < p, λ < +∞, (p− 1)λp − pλp−1 − 1 = 0, and{
z(s) = λps(µ+(λs) + µ−(λs)),
w(s) = λps(µ+(λs)− µ−(λs)).

Then, under the above assumptions, these functions are bounded in −∞ <
s < +∞ and satisfy the constant coefficients differential difference equations

d

ds
z(s) = λ1−p(λ− 1)−1 log(λ)(z(s)− z(s+ 1)),

d

ds
w(s) = λ1−p(λ− 1)−1 log(λ)(w(s) + w(s+ 1)).

Proof. Let 
(1− 1/λ)t

d

dt
µ−(t) + µ−(t) + µ+(λt) = 0,

(1− 1/λ)t
d

dt
µ+(t) + µ+(t) + µ−(λt) = 0.

If µ(t) = µ+(t) + µ−(t), the sum of the two equations gives

(1− 1/λ)t
d

dt
µ(t) + µ(t) + µ(λt) = 0.

Moreover, if z(s) = λpsµ(λs) and (p− 1)λp − pλp−1 − 1 = 0, then

d

ds
z(s) =

d

ds
(λpsµ(λs))

= p log(λ)λpsµ(λs)− log(λ)(1− 1/λ)−1λps(µ(λs) + µ(λs+1))

= λ1−p(λ− 1)−1 log(λ)(z(s)− z(s+ 1)).

Similarly, if ν(t) = µ+(t)− µ−(t), the difference of the two equations gives

(1− 1/λ)t
d

dt
ν(t) + ν(t)− ν(λt) = 0.
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Moreover, if w(s) = λpsν(λs), then

d

ds
w(s) = λ1−p(λ− 1)−1 log(λ)(w(s) + w(s+ 1)).

Since µ(t) is positive, z(logλ(t)) = tpµ(t) is bounded by the function

tpµ(t) + λ1−p(λ− 1)−1
λt�

t

sp−1µ(s) ds.

On the other hand, this function is constant, as its derivative vanishes:

d

dt

(
tpµ(t) + λ1−p(λ− 1)−1

λt�

t

sp−1µ(s) ds
)

= tp
d

dt
µ(t) + (p− λ1−p(λ− 1)−1)tp−1µ(t) + λ(λ− 1)−1tp−1µ(λt)

= (1− 1/λ)−1tp−1

(
(1− 1/λ)t

d

dt
µ(t) + µ(t) + µ(λt)

)
= 0.

Finally, since |w(s)| ≤ z(s), also w(s) is bounded.

Lemma 6. Let α be a real number and let
α
d

ds
z(s) = z(s)− z(s+ 1),

α
d

ds
w(s) = w(s) + w(s+ 1).

Then the solutions to the first equation which are uniformly bounded on the
real line are constant, and the only bounded solution to the second equation
is identically zero.

Proof. It is well known that these equations have lots of solutions, de-
pending on arbitrary functions in intervals of length one. However, it is easy
to check that bounded exponential solutions are constant, and this implies
that bounded solutions are constant. Indeed, if z(s) is a tempered distribu-
tion, then the Fourier transform of the first equation gives

(2πiαξ − 1 + exp(2πiξ))ẑ(ξ) = 0.

The only real zero of 2πiαξ − 1 + exp(2πiξ) is at the origin; it is simple
if α 6= −1 and double if α = −1, hence the distribution ẑ(ξ) has support
in ξ = 0 and z(s) is a polynomial. More precisely, if α 6= −1 then ẑ(ξ) is
a point mass and z(s) is a constant, while if α = −1 then ẑ(ξ) is a linear
combination of a point mass and a derivative of a point mass and z(s) is
an affine function. In both cases, if z(s) is bounded then it is constant.
Similarly, if w(s) is a tempered distribution, then

(2πiαξ − 1− exp(2πiξ))ŵ(ξ) = 0.
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Since 2πiαξ − 1 − exp(2πiξ) has no real zeroes, ŵ(ξ) has to be zero. In
conclusion, if z(s) is constant and w(s) is zero, then µ+(t) = µ−(t) = kt−p,
so f−(x) = f+(x) = dx−1/p for all x with f−(x) = f+(x) > h, that is, 0 <
x < min{c−a, b−c}. Hence f(x) = d|x−c|−1/p if |x−c| < min{c−a, b−c}.

From these lemmas, part (2) of Theorem 1 follows.

Theorem 2.

(1) The norm of the maximal operator on L(p), 1 < p < +∞, is the
positive solution to the equation (p− 1)λp − pλp−1 − 1 = 0.

(2) This norm is not attained, that is, for every nonzero function f ,{+∞�

−∞
|Mf(x)|p dx

}1/p
< λ

{+∞�

−∞
|f(x)|p dx

}1/p
.

Proof. Part (1) is due to [G-MS]; however, in order to prove (2), here we
present an alternative proof due to J. Duoandikoetxea. Let M±f(x) be the
left- and right-sided Hardy–Littlewood maximal operators,

M−f(x) = sup
y<x

1
x− y

x�

y

|f(z)| dz, M+f(x) = sup
y>x

1
y − x

y�

x

|f(z)| dz.

Let also Mf(x) = max{M±f(x)} and Nf(x) = min{M±f(x)}. Then, by
Riesz’s sunrise lemma,

+∞�

−∞
(|Mf(x)|p + |Nf(x)|p) dx

=
+∞�

−∞
(|M−f(x)|p + |M+f(x)|p) dx

=
+∞�

0

ptp−1(|{M−f(x) > t}|+ |{M+f(x) > t}|) dt

=
+∞�

0

ptp−1
(
t−1

�

{M−f(x)>t}

|f(x)| dx+ t−1
�

{M+f(x)>t}

|f(x)| dx
)
dt

=
p

p− 1

+∞�

−∞
|f(x)|(|M−f(x)|p−1 + |M+f(x)|p−1) dx

=
p

p− 1

+∞�

−∞
|f(x)|(|Mf(x)|p−1 + |Nf(x)|p−1) dx.

Hence, by Hölder’s inequality,
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(p− 1)
+∞�

−∞
|Mf(x)|p dx+ (p− 1)

+∞�

−∞
|Nf(x)|p dx

≤ p
{+∞�

−∞
|f(x)|p dx

}1/p{+∞�

−∞
|Mf(x)|p dx

}(p−1)/p

+ p
{+∞�

−∞
|f(x)|p dx

}1/p{+∞�

−∞
|Nf(x)|p dx

}(p−1)/p
.

If ‖Mf‖L(p)/‖f‖L(p) = λ and ‖Nf‖L(p)/‖f‖L(p) = µ, then

(p− 1)λp − pλp−1 ≤ −(p− 1)µp + pµp−1.

As Nf(x) ≥ |f(x)| almost everywhere, it follows that µ ≥ 1 and −(p− 1)µp

+pµp−1 ≤ 1. This proves that the norm of the uncentered maximal operator
on L(p) is smaller than or equal to the positive solution to the equation
(p − 1)λp − pλp−1 − 1 = 0. On the other hand, by testing the operator
on suitable truncations of homogeneous functions, |x|−1/pχ{ε<|x|<δ}(x) with
ε→ 0 and δ → +∞, one checks that the norm of the operator is larger than
or equal to the solution of (p− 1)λp − pλp−1 − 1 = 0. This proves (1).

In order to prove (2), one has to analyze when the above inequali-
ties reduce to equalities. Assuming f(x) nonnegative, there is equality in
Hölder’s inequality only if f(x) is proportional to Mf(x) and to Nf(x),
hence Mf(x) = λf(x) and Nf(x) = µf(x) almost everywhere. The equal-
ity −(p − 1)µp + pµp−1 = 1 holds only if µ = 1. Then, by modifying
f(x) if necessary on a set of measure zero, one can assume Nf(x) = f(x)
everywhere and this implies that f(x) is unimodal. Indeed, the equality
min{M±f(x)} = f(x) and lower semicontinuity of maximal functions imply
that in any interval, infa≤x≤b f(x) = min{f(a), f(b)}. The fact that the sup-
posed extremals are eigenfunctions of the maximal operator also follows from
[G-MS], and the unimodality and symmetry also follow from [C-L-M]. If f(x)
is unimodal, then Mf(x) is continuous and it follows that Mf(x) = λf(x)
everywhere. Finally, by the previous theorem, a unimodal eigenfunction of
the maximal operator is homogeneous, hence it is not in L(p).

Remark 1. If Mf(x) = λf(x) on the line, then Theorem 1 applies to
every connected component of the level set {Mf(x) > t} which contains only
one peak. Moreover, the peak is the midpoint of the connected component.
Anyhow, as we said, there are eigenfunctions of the uncentered maximal
operator which are not unimodal. A simple example is supn∈Z |x − n|−α,
but it is also possible to construct bimodal eigenfunctions, with level sets
of finite measure. Let 1 < p, λ < +∞ with (p − 1)λp − pλp−1 − 1 = 0
and let f(x) be an even function, with two peaks at ±1, continuous and
decreasing in 1 < x < +∞ and equal to sup{|x + 1|−1/p, |x − 1|−1/p} in
|x| ≤ 1 + (λ(p− 1)/p)p. A suitable definition in |x| > 1 + (λ(p− 1)/p)p will
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give the desired eigenfunction. The average of this function over an interval
ε − 1 < x < ε + 1 with |ε| < 1 is p/(p − 1). This implies that, in order to
compute the maximal function, if |x| < 1 + (λ(p− 1)/p)p one has to average
over one peak and there Mf(x) = λf(x), while if |x| > 1+(λ(p−1)/p)p one
has to average over two peaks. If 0 < t < 1 let µ(t) = |{f(x) > t}|/2−1, and
if t ≥ 1 let µ(t) = |{f(x) > t}|/4 = t−p. As in the proof of Theorem 1, the
condition that Mf(x) = λf(x) if |x| > 1 + (λ(p− 1)/p)p can be translated
into an integral equation in 0 < t < p/(λ(p− 1)),

2p/(p− 1) + tµ(t) +
	+∞
t µ(s) ds+ λtµ(λt) +

	+∞
λt µ(s) ds

2 + µ(t) + µ(λt)
= λt.

From this, simplifying and differentiating, one obtains

(1− 1/λ)t
d

dt
µ(t) + µ(t) + µ(λt) + 2 = 0.

In order to construct an eigenfunction it suffices to find a function µ(t)
continuous and decreasing in 0 < t < +∞, with µ(t) = t−p if t ≥ p/λ(p− 1)
and which satisfies the differential equation in 0 < t < p/(λ(p−1)). Observe
that a solution, if positive at infinity, has to be positive and decreasing in 0 <
t < +∞. Hence, the solution of this equation gives the desired eigenfunction.

Remark 2. An eigenfunction of the maximal operator with a single
peak is homogeneous, hence it is not in L(p) for any 1 ≤ p ≤ +∞. There
are nonunimodal eigenfunctions with more than one peak, but in any case
no nonzero eigenfunction is in L(p). To see this, first check that if 1 < p,
λ < +∞ and (p − 1)λp − pλp−1 − 1 = 0, then dλ/dp < 0. Also observe
that if Mf(x) = λf(x), then ‖Mf‖L(q) = λ‖f‖L(q) for every 1 ≤ q ≤ +∞.
But an eigenvalue cannot be larger than the norm of the operator, hence
a nonzero eigenfunction cannot be in L(q) if q > p. If one can prove that
f(x) ≥ C|x|−1/p for some C > 0 and every |x| ≥ 1, then it also follows that
an eigenfunction is not in L(q) if q ≤ p. Let C be such that

C

1�

−1

|z|−1/p dz < min
{ 0�

−1

f(z) dz,
1�

0

f(z) dz
}
.

Since f(x) is lower semicontinuous, if the inequality f(x) ≥ C|x|−1/p

fails in |x| ≥ 1, then there exist ε > 0 and |x| ≥ 1 with the property that
f(x) = C(1− ε)|x|−1/p, while f(z) > C(1− ε)|z|−1/p for every 1 < |z| < |x|.
On the other hand,

f(x) = λ−1Mf(x) ≥ λ−1

x+ λ−px

x�

−λ−px

f(z) dz

> C
(1− ε)λ−1

x+ λ−px

x�

−λ−px

|z|−1/p dz = C(1− ε)|x|−1/p.
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Remark 3. There are analogs of Theorems 1 and 2 for the left and right
maximal operators. If f(x) is an eigenfunction of the left-sided maximal
operator, M−f(x) = λf(x), with a single peak at a point c, then f(x) =
d(x − c)(1−λ)/λ

+ . A similar statement holds for the right maximal operator,
with ± interchanged. As before, there is a relation between eigenvalues and
norms. The norm of these maximal operators on L(p), 1 < p < +∞, is
p/(p − 1), which is the eigenvalue λ associated to the power −1/p. The
norm is not attained and indeed it can be proved that there are no nonzero
eigenfunctions in L(p). Finally, after the one-sided and uncentered maximal
operators, one maximal operator is still missing, the centered one.
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