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Abstract. Let N be a simply connected nilpotent Lie group and let S = N o (R+)d

be a semidirect product, (R+)d acting on N by diagonal automorphisms. Let (Qn,Mn) be
a sequence of i.i.d. random variables with values in S. Under natural conditions, including
contractivity in the mean, there is a unique stationary measure ν on N for the Markov
process Xn = MnXn−1 +Qn. We prove that for an appropriate homogeneous norm on N
there is χ0 such that

lim
t→∞

tχ0ν{x : |x| > t} = C > 0.

In particular, this applies to classical Poisson kernels on symmetric spaces, bounded ho-
mogeneous domains in Cn or homogeneous manifolds of negative curvature.

1. Introduction. Let S = N o A be a semidirect product of a simply
connected nilpotent Lie group N and an Abelian group A = (R+)d acting
on N by diagonal isomorphisms δa, i.e.

δa(x) = (eλ1(log a)x1, . . . , e
λn0 (log a)xn0),

x = (x1, . . . , xn0) ∈ N , a ∈ A, and λ1, . . . , λn0 , not necessarily distinct, be-
long to the dual of the Lie algebra A of A. Various classical objects like sym-
metric spaces, bounded homogeneous domains in Cn and homogeneous man-
ifolds of negative curvature admit simply transitive actions of such groups
[1, 12, 22, 21, 26]. Given a probability measure µ on S, we study properties
of the finite measure ν on N such that µ ∗ ν = ν provided ν exists and it is
unique up to a constant (see Section 2.2). Being the stationary measure for
the Markov chain on N with the transition kernel Pf(x) =

	
S f(gx) dµ(g),

the measure ν appears in various situations interesting both from probabilis-
tic and analytical points of view. In particular, classical Poisson kernels on
the spaces mentioned above are of this form.

Existence of ν was proved by A. Raugi [27] under the assumption of finite
logarithmic moments of µ and contraction in mean (see Section 2.2). The
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latter means that for every root λj ,

(1.1)
�

S

λj(log a) dµ(x, a) < 0.

Clearly, (1.1) implies existence of the positive Weyl chamber, i.e the cone
A++ of H ∈ A such that λj(H) > 0 for every j. If a = exp(−H) for some
H ∈ A++, then

δna (x)→ e for every x ∈ N,

and so the action of A on N is contractive. Our aim is to study the behavior
of ν at infinity, i.e. the size of

ν{|x| > t}

when t → ∞ and | | is an appropriate norm. We introduce a family of
homogeneous norms | | with the property that given a norm, there is χ0 > 0
such that

(1.2) lim
t→∞

tχ0ν{x : |x| > t} = C

and C > 0 under natural assumptions, which means that χ0 is optimal (see
Theorem 2.5).

In the most general situation there is no canonical norm and χ0. The
exponent χ0 depends on | |, but all the results are equivalent. However,
for N o A groups with particular root systems (like those acting simply
transitively on symmetric spaces) there is a norm that is more intuitive than
the others (see Section 2.5).

Let us now discuss some particular cases and existing results. When A =
R+ all the homogeneous norms are equivalent and the behavior of the tail is
well understood. If additionally N = R, i.e. S is the “ax + b” group, it was
observed by Kesten [23] that under natural assumptions there is χ > 0 such
that

(1.3) lim
t→∞

tχν{x : |x| > t} = C > 0,

| | being the absolute value of x. His proof was later on simplified by Grince-
vičius [15, 16] and Goldie [14]. If N is a homogeneous group with A = R+

acting on it by dilations, (1.2) was obtained in [5] (see Theorem 2.1 below).
Then all the norms are equivalent and χ0 is unique.

More can be said if a left-invariant second order subelliptic differential
operator L and the related heat semigroup µt are considered. Then

µt ∗ ν = ν

for every t, and not only (1.2) holds but also pointwise estimates of ν at
infinity have been obtained [6, 9, 10].
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Finally, the case when A is multidimensional was treated in [3] but the
tail of ν was only estimated from above and below,

(1.4) C1t
−χ0 ≤ ν{x : |x| > t} ≤ C2t

−χ0 ,

except of a very special case when (1.2) was obtained. Estimates (1.4) es-
sentially improve an earlier result of the second author and A. Hulanicki
obtained for kernels coming from differential operators [7, 8].

Suppose now that N = Rn0 and let us describe briefly the idea of the
estimates we obtain in the paper. We assume that for every root λj there is
a unique sj > 0 such that

(1.5)
�

S

esjλj(log a) dµ(x, a) = 1.

Existence of the positive Weyl chamber allows us to write every root as a
positive combination of so called simple ones η1, . . . , ηk, i.e.

(1.6) λ =
k∑
j=1

αiηi, αi ≥ 0,
k∑
i=1

αi > 0,

where by a simple root we mean a root η that cannot be written as in (1.6)
for at least two roots and if λj = αη then α ≥ 1 (1). Let ∆ be the set of
roots and ∆1 be the set of simple roots. Suppose the homogeneous norm is
of the form

(1.7) |x| = max
λj∈∆
{|xj |1/dj}.

We choose dj ’s as follows:

• dj = 1 if λj ∈ ∆1,
• dj = α if λj = αη and η ∈ ∆1,
• dj =

∑k
i=1 αi if λj is of the form (1.6).

Then | · | is subadditive provided
∑k

i=1 αi ≥ 1 for all λj (written as in
(1.6)) (2). If χ0 is as in (1.2) then

χ0 = min
ηj∈∆1

{sj},

and for every nonsimple root λj or a simple root with sj > χ0,

(1.8) lim
t→∞

tχ0ν{x : |xj |1/dj > t} = 0.

(1) Simple here does not mean simple in the classical sense of [2], but when NA is
a symmetric space then the two notions coincide: k = dimA and all the roots are linear
combinations of η1, . . . , ηk with positive integer coefficients.

(2) Otherwise we take ddj for sufficiently large d.
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Moreover, for every simple root λj with sj = χ0,

(1.9) lim
t→∞

tχ0ν{x : |xj |1/dj > t} = Cj .

Therefore only simple roots with minimal sj count in (1.2). This phenomenon
has a simple explanation.Hypothesis (1.5) implies that suppµ∩{(x,a) : a<1}
and suppµ∩{(x, a) : a > 1} are nonempty. Therefore, both contracting and
expanding elements are in the support of µ. The stronger the expansion, the
smaller sj is necessary to have (1.5). Of course, (1.8) and (1.9) are not enough
for (1.2) and one has to deal with intersections of sets {x : |xj |1/dj > t},
which is explained in Section 3.3.

It is natural to consider more general actions on N than the diagonal
one. The asymptotic (1.2) remains valid when S = N o AK, where K is
a compact group commuting with A. Then the chosen norm is additionally
preserved by K (see the Appendix).

The case when N = Rn0 and there is a group G ⊂ GL(n0) acting on it
was studied by many authors [11, 18, 19, 24, 25]. Then S = Rn0 o G and
the action of G is assumed to be proximal and irreducible. Let µ̄ be the
canonical projection of µ onto G. Then irreducibility means that there is
not a finite union of proper subspaces of Rn0 invariant under the action of
the support of µ̄. The action is proximal if in the support of µ̄ there is an
element with a dominant real eigenvalue (i.e. the corresponding eigenspace
is one-dimensional). Here, of course, the action is generally nonproximal and
highly reducible.

The paper is organized as follows. In Section 2 we introduce a class of
NA groups, a class of norms, we describe previous results and at the end
we formulate the Main Theorem 2.5. Section 3.3 contains the scheme of the
proof, and Sections 3.4 and 3.5 the details of it.

2. Preliminaries and the Main Theorem

2.1. A class of solvable Lie groups. The semidirect product S =
N oA acts on N in the following way:

(x, a) ◦ y = x · δa(y) for (x, a) ∈ S and y ∈ N.
Therefore, the group multiplication in S is given by

(2.1) (x, a) · (y, b) = ((x, a) ◦ y, ab).
Let e (0, I respectively) be the neutral element of S (N , A respectively).

The Lie algebras of A,N, S are denoted by A, N and S. Then S =
N ⊕A and for every H ∈ A, adH preserves N . The exponential maps are
global diffeomorphisms both between N and N , and between A and A. Their
inverses will be denoted by log. Then for any X ∈ N ,

(2.2) δa(exp(X)) = exp(ead(log a)X).
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We shall denote the foregoing action of the group A on the Lie algebra N
by the same symbol δa(X).

We shall assume that the action of A on N is diagonalizable. For any λ
in the dual A∗ of A let

(2.3) Nλ = {X ∈ N : [H,X] = λ(H)X for any H ∈ A}.
Then, for λ1, λ2 ∈ A∗,
(2.4) [Nλ1 ,Nλ2 ] ⊂ Nλ1+λ2 .

Moreover, any space Nλ is preserved by the action of the group A, i.e.

(2.5) δa(X) ∈ Nλ for X ∈ Nλ.
We shall say that λ is a root if Nλ is nonempty. The set of all roots will be
denoted by ∆. Then

N =
⊕
λ∈∆
Nλ.

All the roots are real and there exists a basis of N , {X1, . . . , Xn0} (n0 =
dimN), such that for any H ∈ A,

ad(H)Xj = λj(H)Xj , j = 1, . . . , n0,

for some root λj . In this notation it may happen that λi = λj for i 6= j. An
element x ∈ N will be written as

(2.6) x = exp
( n0∑
j=1

xjXj

)
=: (x1, . . . , xn0).

2.2. Random walks and positive Weyl chamber. Given a proba-
bility measure µ on S we define a random walk

Sn = (Qn,Mn) · . . . · (Q1,M1),

where (Qn,Mn) is a sequence of i.i.d. S-valued random variables with dis-
tribution µ. The law of Sn is the nth convolution µ∗n of µ.

Our aim is to study the N -component of Sn, i.e. the Markov chain on N
generated by Sn:

(2.7) Rn = πN (Sn) = (Qn,Mn) ◦Rn−1, R0 = δ0,

where πN denotes the projection πN : S → N . By πA we shall denote the
analogous projection of S onto A = S/N . Let µA = πA(µ).

We assume that

(2.8) E[log+ ‖Q‖] <∞
(where ‖ · ‖ is the Euclidean norm on N identified with N via (2.6)) and for
every root λ,

(2.9) E[|λ(logM)|] <∞
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and there is a unique sλ > 0 such that

(2.10) E[esλλ(logM)] = 1.

As is shown below, (2.10) implies that µ is mean-contracting, i.e. for every
root λ,

(2.11) E[λ(logM)] =
�

A

λ(logM)µA(dM) < 0.

It was proved by A. Raugi [27] that if (2.8), (2.9) and (2.11) are satisfied, then
Rn converges in law to a random variableR independently of the choice ofR0.
Moreover, the law ν of R is a unique stationary solution of the stochastic
equation

ν = µ ∗ ν,
where

µ ∗ ν(f) =
�

S

�

N

f(g ◦ x)µ(dg) ν(dx),

or equivalently
R =d (Q,M) ◦R,

where R and (Q,M) are independent with laws ν and µ, respectively.
Notice that the functional

λ 7→ −E[λ(logM)]

on A∗ is given by a vector H1, i.e.

λ(H1) = −E[λ(logM)] > 0.

Thus (2.11) implies the existence of a nontrivial positive Weyl chamber

A++ = {H ∈ A : λ(H) > 0 for every λ ∈ ∆}.
Define A−− = −A++. Then for every x ∈ N and H ∈ A−−,

lim
k→∞

δkexpH(x) = 0,

i.e. the action of A on N is contractive. This means that the only semidirect
products S = N o A that possess random walks with the above properties
are those with a contractive action of A on N .

Now we are going to show that (2.10) implies (2.11). The function ψ(s) =
E[esλ(logM)] is well defined for s ≤ sλ, because for p = sλ/s, by the Hölder
inequality, we have

ψ(s) ≤ (E[esλλ(logM)])1/p.

Moreover,
ψ′′(s) = E[esλ(logM)(λ(logM))2] > 0,

and so ψ is convex. Since ψ(0) = ψ(sλ) = 1 and ψ is not constant (otherwise
sλ would not be unique), ψ′(0) = E[λ(logM)] must be negative.
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2.3. Asymptotic behavior of R when dimA = 1. As was mentioned
in the introduction, when the Abelian group A is one-dimensional, the tail
of R is well-known. The ideas of Kesten [23], Grincevičius [15] and Goldie
[14] were used in [5] to handle the general situation of homogeneous groups,
when the group S is a semidirect product of a nilpotent group N and a
one-dimensional group of dilations A = R+:

δa(x) = (ad1x1, . . . , a
dn0xn0), dj > 0.

In this case there are constants cj such that the norm

|x| =
∑
j

cj |xj |1/dj

is homogeneous and subadditive, i.e. |δa(x)| = a|x| and |xy| ≤ |x| + |y| for
all a ∈ R+ and x, y ∈ N (see [13, 20]) for more details). Then we have the
following theorem:

Theorem 2.1 ([5]). Let S = N o R+ and assume that

• E[logM ] < 0,
• there exists α > 0 such that E[Mα] = 1,
• the law of logM is nonarithmetic, i.e. logM ∈ aZ for no a > 0,
• E[Mα|logM |] <∞,
• E[|Q|α] <∞,

Then

(2.12) lim
t→∞

tαP[|R| > t] = C.

The constant C is nonzero if and only if for every x ∈ N ,

P[(Q,M) ◦ x = x] < 1.

Moreover, for every j there is Cj such that

(2.13) C−1
j t−α ≤ P{|Rj |1/dj > t} ≤ Cjt−α.

If N = Rn0 then

(2.14) lim
t→∞

tαP{|Rj |1/dj > t} = Cj ,

and Cj is nonzero if and only if for every xj ∈ R,

P{Qj +Mjxj = xj} < 1.

If N is non-Abelian and some further assumptions are satisfied then Cj = 0
implies that Rj is bounded a.s.

The above statement requires some comments. The detailed proof of
Theorem 2.1 is given in [5] only for the Euclidean case, i.e. when N is Abelian
and the norm is the Euclidean norm. However, as is explained in the appendix
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of [5], it goes along the same lines in the general case. First one proves that
for f ∈ Cc(N \ {e}),

(2.15) lim
a→0

a−α
�

N

f(δax) dν(x) = 〈f, Λ〉

exists and defines a homogeneous measure Λ, i.e.

〈f, Λ〉 =
�

R×S1

f(δrω)
dr

r1+α
dσ(ω),

where S1 = {x : |x| = 1} is the unit sphere in the homogeneous norm and
x = δrω is the related radial decomposition [13]. Moreover, (2.15) extends
to bounded functions f such that 0 /∈ supp f and the Λ-measure of the set
of discontinuities of f is 0. Therefore (2.15) may be applied to f = 1Bc1 , the
characteristic function of the exterior of the unit ball, which yields (2.12). To
prove that C in (2.12) is strictly positive one has to use an argument due to
Grincevičius [15, 16] in the “ax+ b” case. It requires only homogeneity and
subadditivity of the norm and generalizes directly to our setting (see e.g. [4,
Proposition 2.6]).

For (2.13) one has to pick up two bounded continuous functions φ1, φ2

such that
1{xi>2} ≤ φ1 ≤ 1{xi>1} ≤ φ2

and apply (2.15) to them. Finally, (2.14) and nonvanishing of Cj in the Eu-
clidean case follow directly from the one-dimensional case. The last sentence
of the theorem requires some further arguments, which will be omitted.

Notice that the contribution of all “unbounded” coordinates of R to
P{|R| > t} is of the same size, provided it is measured by a homogeneous
norm.

2.4. Simple roots. Let ∆̃ ⊂ A∗ be a family of functionals such that
any two λ1, λ2 ∈ ∆̃ are linearly independent. A root λ0 will be called simple
if it cannot be written as a “positive” sum of other roots, i.e. for all possible
choices of nonnegative numbers cλ,

λ0 6=
∑

λ∈ e∆\{λ0}

cλλ.

Proposition 2.2. Let ∆̃ be as above and assume that there is H ∈ A
such that λ(H) > 0 for every λ ∈ ∆̃. Then every λ ∈ ∆̃ is a positive
combination of simple roots ∆1 = {η1, . . . , ηk}, i.e.

(2.16) λ =
k∑
j=1

αjηj , αj ≥ 0.
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Proof. We proceed by induction with respect to n, the number of
elements of ∆̃. If n = 1, 2 then any root is simple. Assume that ∆̃ =
{λ1, , . . . , λn+1} and λn+1 is not simple. We are going to prove that ∆̃ and
∆̃ \ {λn+1} have the same sets of simple roots and so the conclusion will
follow by induction. Clearly, removing a root cannot reduce the number of
simple roots. Let us show that it also cannot increase the number of simple
roots. Assume a contrario that λ1 is simple in ∆̃ \ {λn+1} and it is not in ∆̃.
Let λ1 =

∑n+1
j=2 βjλj with βj ≥ 0, βn+1 > 0 and λn+1 =

∑n
j=1 αjλj , αj ≥ 0

and at least two coefficients are strictly positive. We have

λ1 =
n∑
j=2

βjλj + βn+1

( n∑
j=1

αjλj

)
and so

(1− βn+1α1)λ1 =
n∑
j=2

(βj + βn+1αj)λj .

Since both λ1 and the right hand side applied to H are strictly positive, we
have 1 − βn+1α1 > 0. Therefore λ1 is not simple, which gives the desired
contradiction.

Remark 2.3. Notice that for any family ∆ of functionals having a pos-
itive Weyl chamber we can define a set of simple roots so that (2.16) holds.
To do so we take the set ∆̃ of equivalence classes of the relation of “being
linearly dependent” and so a simple root is defined up to a multiplicative
constant. However, here we will be more precise. We fix an element H0 of the
Weyl chamber and from any equivalence class we will take the element whose
value on H0 is the smallest. The set of simple roots will be denoted ∆1.

2.5. Homogeneous norms on N . Suppose we are given an n0-tuple
of strictly positive exponents d1, . . . , dn0 so that the dilations

σr(x) = (rd1x1, . . . , r
dn0xn0)

are automorphisms of N . Then there is a norm on N such that

• | · | is symmetric: |x−1| = |x|;
• |x| = 0 if and only if z = 0;
• |σr(x)| = r|x| for any r ∈ R+.
• | · | is subadditive, i.e. |x · y| ≤ |x|+ |y|.

Homogeneous norms (i.e. satisfying the first three properties) were intro-
duced in [13]. Later on W. Hebisch and A. Sikora [20] suggested a construc-
tion that gives a norm that is additionally subadditive (see also Guivarc’h
[17] for a similar result). Their construction was extended in [3] to define an
appropriate norm on N homogeneous with respect to some one-parameter
subgroup of A. Since in this paper we will strongly rely on formulas defining
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norms, we recall some details for the reader’s convenience. The key step is
the following lemma:

Lemma 2.4 ([20]). Let Xj be as in (2.6). If ε is sufficiently small then
the rectangle

(2.17) Ω =
{
X =

∑
i

xiXi ∈ N : |xi| < ε
}

has the property

if log x, log y ∈ Ω with x, y ∈ N and 0 < r < 1 then(2.18)
log(σr(x)σ1−r(y)) ∈ Ω.

The norm defined on N by

|x| = inf{r : log(σr−1(x)) ∈ Ω}
is homogeneous and subadditive.

The above norm can be explicitly computed:

(2.19) |x| = max
j
{cj |xj |1/dj}

for cj = ε−1/dj . Notice that here and elsewhere |xi| is the absolute value of
xi while |x| is the homogeneous norm.

Now using the above scheme we introduce homogeneous norms adapted
to various dilations.

1st norm. Fix H0 ∈ A++ such that λ(H0) ≥ 1 for all roots λ and take
dilations

(2.20) σr(x) = δexp(log r)H0
(x) = (rλ1(H0)x1, . . . , r

λn0 (H0)xn0)

for r ∈ R+ and x ∈ N .
Then the exponents of the norm are dλ = λ(H0) and

(2.21) dλ =
∑

cηdη if λ =
∑

cηη.

The norm (2.20) is a straightforward generalization of the norm considered
in Section 2.3. It depends strongly on the choice of H0 and in general no
norm is better than the others. However, for various specific N we may
define homogeneous subadditive norms that are scaled in the same way for
all simple roots, i.e. there is d ≥ 1 such that

|x| = max
j
{cj |xj |1/d}

for x ∈
⊕

η∈∆1
Nη.

2nd norm. Assume |∆1| = dimA. Given H1, . . . ,Hk dual to η1, . . . , ηk
let H0 = d(H1 + · · ·+Hk). Then ηj(H0) = d, λ(H0) = d

∑k
j=1 λ(Hj). If NA
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is a symmetric space then all the roots are integer combinations of η1, . . . , ηk
and so we can take d = 1 and

|x| = max
j
{cj |xj |}

for x ∈
⊕

η∈∆1
Nη.

3rd norm. If N = Rn0 we choose d ≥ 1 such that for every root λj =∑
αiηi, dj = d

∑
αi ≥ 1. Now given x ∈ Nλ, we put

|x| =

{
|xj |1/d if λj ∈ ∆1,

|xj |1/dj if λj =
∑
αiηi.

| | corresponds to dilations δr(x) = (rd1x1, . . . , r
dn0xn0) and it is subadditive.

4th norm. Assume that N is stratified, i.e. N =
⊕
Vj with [V1, Vj ] =

Vj+1. Since δa are automorphisms, each Vj is a direct sum of eigenspaces Nλ
and if η is simple then Nη ⊂ V1. We assume that

V1 =
⊕
η∈∆1

Nη.

Notice that all the other roots are linear combinations of the simple ones
with integer coefficients and Nλ ⊂ Vj if and only if

∑
αi = j provided

λj =
∑
αiηi. Writing

δrX = rj if X ∈ Vj
we obtain automorphic dilations. The corresponding homogeneous norm sat-
isfies

dη = 1, dλ =
∑

αj if λ =
∑

αjηj .

2.6. Main Theorem. Assume now that we fix dilations and the cor-
responding homogeneous norm. Given a root λ let dλ be the exponent cor-
responding to the eigenspace Nλ and let χλ = sλdλ be the unique positive
number such that

E[eχλλ(logM)/dλ ] = 1.

Sometimes the notation χj will be used instead of χλj . Observe that all the
roots proportional to λ have the same χλ. Let χ0 = min{χλ : λ ∈ ∆}.
We say that λ is dominant if it is simple and χλ = χ0. The set of dominant
roots will be denoted ∆dom. In Section 3.1 we will prove that χ0 = min{χλ :
λ ∈ ∆dom}.

For a dominant root λ0 let

Iλ0 = {j : λj is a multiple of λ0},
N λ0 = Lie span{Xj}j∈Iλ0

= span{Xj}j∈Iλ0
.

Then Nλ0 is a Lie subalgebra of N . For any norm defined in the previous
section we have the following:
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Main Theorem 2.5. Assume

(H1) for every root λ there is a unique strictly positive number χλ such
that E[eχλλ(logM)/dλ ] = 1;

(H2) for every root λ, E[eχλλ(logM)/dλ |λ(logM)|] <∞;
(H3) E|Q|χ0 <∞;
(H4) for every root λ ∈ ∆dom the law of λ(logM) is nonarithmetic;
(H5) there is λ ∈ ∆dom such that for every X ∈ N λ0,

P[log((Q,M) ◦ expX)|Nλ0
= X] < 1.

Then there exists a strictly positive number C1 such that

(2.22) lim
t→∞

tχ0P[|R| > t] = C1.

The above theorem improves the Main Theorem B in [3] which says that
there is a positive C1 such that

(2.23)
1
C1

t−χ0 ≤ P[|R| > t] ≤ C1t
−χ0

for the norm determined by the dilations δexp(log r)H0
. We are going to use

(2.23) in the proof. In fact, we will need the second inequality of (2.23) for
any of the norms defined above. For that one proves

(2.24) E|R|β <∞ for every β < χ0,

which follows from the expression (5.7) in [3] for the coordinates of the back-
ward process (Q1,M1) · . . . · (Qm,Mm) and (3.5) below. Moreover, we prove
that the only nonzero contribution to (2.22) comes from the coordinates
corresponding to dominant roots (see Lemmas 3.2–3.4 and Corollary 3.5).

Corollary 2.6. Assume that the homogeneous norm is chosen so that
dη = 1 for every simple root η, i.e.

E[eχηη(logH)] = 1.

Then (2.22) holds with χ0 = minη∈∆1 χη, i.e. the nonzero contribution to
(2.22) is determined by dominant roots with the strongest expansion (see
Introduction).

3. Proof of the Main Theorem

3.1. Dominant roots. First we are going to prove that without any
loss of generality we may assume additionally that

(H6) The support of µA is not contained in an affine subspace of A.
Indeed, suppose there exists a linear subspace W of A and a vector v such
that suppµA ⊂W +v. We takeW of minimal dimension. Let µ̃ be the image
of µ via the map

(x, expH) 7→ (x, exp(H − v)).
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For H ∈W we have

δexp(H+v)x = (eλ1(H+v)x1, . . . , e
λn0 (H+v)xn0)

= (eλ1(H)eλ1(v)x1, . . . , e
λn0 (H)eλn0 (v)xn0)

and changing coordinates

(x1, . . . , xn) 7→ (eλ1(v)x1, . . . , e
λn0 (v)xn0) = (x′1, . . . , x

′
n)

we have
δexp(H+v)x = δexp(H)x

′.

Eigenspaces are preserved and classes of homogeneous norms satisfying (2.21)
are the same. Therefore, we may assume that S = N o expW and that µW
is not supported by an affine subspace of W .

Proposition 3.1. If λ is not proportional to a simple root then χλ > χ0

and so ∆dom ⊂ ∆1.

Proof. It is enough to prove that

E[eχ0λ(logM)/dλ ] < 1.

Suppose that λ =
∑m

j=1 αjλj , λ1, . . . , λm being simple and pj = dλ/(αjdj).
Then by (2.21),

∑
1/pj = 1, and by the Hölder inequality with parame-

ters pj ,

E [eχ0λ(logM)/dλ ] = E
[ m∏
j=1

eχ0αjλj(logM)/dλ
]
≤

m∏
j=1

(E [eχ0λj(logM)/dj ])1/pj ≤ 1,

and the above product is equal to 1 if and only if each of its factors is 1, i.e.
χj = χ0 and the Hölder inequality applied above is in fact an equality, i.e.
for every j, k,

eχ0λj(logM)/dj = Cj,ke
χ0λk(logM)/dk µA-a.s.

This means
χ0

dj
λj(logM) = logCj,k +

χ0

dk
λk(logM) µA-a.s.

on the support of µ, which in view of (H6) is impossible.

3.2. Campbell–Hausdorff formula. The group multiplication in N is
given by the Campbell–Hausdorff formula:

(3.1) exp(X) · exp(Y ) = exp(X + Y + [X,Y ]/2 + · · · ) for X,Y ∈ N .
Since the Lie algebra N is nilpotent, the sum above is finite.

We shall use the lower central sequence to obtain a better description
of the Campbell–Hausdorff formula [13]. Since A acts by isomorphisms, it
preserves the lower central sequence, i.e. we can choose a basis Xj of N con-
sisting of eigenvectors and such that for every element of the central sequence
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there is a basis of it consisting of some of the vectors Xj . More precisely,
if (x · y)i denotes the ith coordinate of x · y, for x = exp(

∑
xiXi), y =

exp(
∑
yiXi) elements of N , then

(3.2)
(x · y)i = xi + yi for i ≤ i1,
(x · y)i = xi + yi+Pi(x, y) for ip−1 < i ≤ ip, for p > 1.

where Pi are polynomials depending on x1, . . . , xip−1 , y1, . . . , yip−1 and they
can be written as

(3.3) Pi(x, y) =
∑
a,b

ca,bP
a,b
i (x, y) =

∑
a,b

ca,bx
ayb,

where ca,b are some real numbers, a and b are multi-indices of natural num-
bers of length ip−1, and

• 00 = 1;
• if c is a multi-index of length i and z is a vector of length at least i

(usually it will be longer than i) then

zc =
∏
j≤i

z
cj
j .

The above notation will be used also in the rest of the paper. Moreover, we
shall strongly rely on the following properties of the Campbell–Hausdorff
formula: if ca,b is nonzero then

(3.4) both a and b are nonzero and
∑
j<i

(aj + bj)λj = λi.

In order to prove the last equation we shall use (2.3). Fix H ∈ A. Then for
any x, y ∈ N we have

(δexpH(xy))i = eλi(H)(x · y)i,

but on the other hand, by (3.2) and (3.3) we can write

(δexpH(xy))i = (δexpH(x) · δexpH(x))i

=
∑
a,b

ca,b(δexpH(x))a(δexpH(y))b =
∑
a,b

ca,be
P
j<i(aj+bj)λj(H)xayb

Comparing the last two equations we obtain (3.4). For any norm with expo-
nents satisfying (2.21), we then have

(3.5)
∑
j<i

(aj + bj)dj = di,

where dj = dλj .
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3.3. Scheme of the proof and behavior of Rj’s. For a dominant
root η let Nη = expNη and let Sη = Nη o R+ be the semidirect product of
Nη and R+ with the group multiplication

(x, b) · (x′, b′) = (x · σb(x′), bb′), x, x′ ∈ Nη, b, b
′ ∈ R+.

Let | · |η be the restriction of | · | to Nη, i.e. |x|η = |x| for x ∈ Nη; by
(2.19)

|x|η = max
j∈Iη
{cj |xj |1/dj}.

For any x = exp(
∑n0

j=1 xjXj) ∈ N let x|Nη
denote its restriction to Nη,

i.e.
x|Nη

= exp
(∑
j∈Iη

xjXj

)
.

In view of (3.4) for any x, y ∈ N and η ∈ ∆dom we have
(3.6) x|Nη

· y|Nη
= (x · y)|Nη

.

Applying Theorem 2.1 to Sη we obtain

Lemma 3.2. For every dominant root η we have

lim
t→∞

tχηP[|R|η > tdη ] = Cη,

where R = R|Nη
, and Cη > 0 if (H5) is satisfied.

As in Lemma 2.4, we shall write R = exp(
∑n0

j=1RjXj) and |Rj | will be
the absolute value of the coordinate |Rj |. To deduce the Main Theorem we
shall need two more lemmas.

Lemma 3.3. If χj > χ0 then

lim
t→∞

tχ0P[|Rj |1/dj > t] = 0.

Lemma 3.4. If χj = χi = χ0 but λi, λj do not belong to Iη for some
η ∈ ∆dom then

lim
t→∞

tχ0P[|Rj |1/dj > t, |Ri|1/di > t] = 0.

Corollary 3.5. Given η ∈ ∆dom let

Ωη,t = {|R|η > t, max
j /∈Iη

cj |Rj |1/dj ≤ t}.

Then
lim
t→∞

P(Ωη,t)tχ0 = Cη,

and Cη > 0 if and only if (H5) holds. Moreover,

lim
t→∞

P
[
{|R| > t} \

⋃
η∈∆dom

Ωη,t

]
tχ0 = 0,

i.e. the only nonzero contribution to (2.22) comes from the “cones” Ωη,t.
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Proof of the Main Theorem. We write

P
[
|R| > t

]
= P[max

j
{cj |Rj |1/dj} > t]

= P[ max
η∈∆dom

|Rη| > t, max
λj /∈

S
η∈∆dom

Iη
cj |Rj |1/dj > t]

=
∑

η∈∆dom

P[|R|η > t] +
∑

λj /∈
S
λ∈∆dom

Iλ

P[cj |Rj |1/dj > t]

+
∑
I,J

CI,JP[|Rη| > t, η ∈ I, cj |Rj |1/dj > t, j ∈ J ],

where the last sum is taken over all sets I and J such that I ⊂ ∆dom,
J ⊂ {j : λj /∈

⋃
η∈∆dom

Iη}, |I|+ |J | ≥ 2. The constants CI,J are −1, 1 or 0,
and CI,J = 0 only if J = ∅ and I ⊂ Iη for some η ∈ ∆dom.

In view of Lemmas 3.2–3.4,

lim
t→∞

tχ0P[|R| > t] = lim
t→∞

tχ0
∑

η∈∆dom

P[|R|η > t].

The limit exists and is strictly positive.

3.4. Proofs of Lemmas 3.3 and 3.4. The idea is the same for both
lemmas. We start by giving the main steps needed for Lemma 3.4. Let f0 be
a Hölder function on R2 bounded by 1 and such that supp f0 ⊂ [1/2,∞) ×
[1/2,∞) and f0(x) = 1 for x ∈ [1,∞)× [1,∞). Define a function f on N by
f(x) = f0(xi, xj). Given a function h on R2 we define

h̃(s, t) = e
−χ0·

dis+djt

di+dj h(s, t).

Let
g(s, t) =

�

N

f0(edisxi, edjtxj) ν(dx).

Then it is enough to prove that

(3.7) lim
t→−∞

g̃(t, t) = 0,

because then

lim
t→∞

eχ0tν{x : xi > edit and xj > edjt}

≤ lim
t→∞

eχ0t
�

N

f0(e−ditxi, e−djtxj) ν(dx)

= lim
t→−∞

e−χ0tg(t, t) = lim
t→−∞

g̃(t, t) = 0.

Define a measure µ0 on R2 by

µ0(U) = µA{M : λi(logM)/di, λj(logM)/dj ∈ U}, U ⊂ R2.
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Then �

R2

eχ0t dµ0(t, s) =
�

R2

eχ0s dµ0(t, s) = 1.

Let
ψ(s, t) = µ0 ∗ g(s, t)− g(s, t),

and

µ̃ = e
χ0·

dis+djt

di+dj µ0.

We shall prove that
(3.8) µ̃(R2) < 1,

and for every s′, s′′ ∈ R,
(3.9) lim

t→−∞
ψ̃(t+ s′, t+ s′′) = 0,

(3.10) g̃(s, t) = −G̃ ∗ ψ̃(s, t),

where G̃ =
∑∞

n=0 µ̃
∗n is a finite measure. Then (3.7) will follow by the

Lebesgue dominated convergence theorem.
For Lemma 3.3 we proceed in an analogous way. Let f0 be a bounded

Hölder function on R such that supp f0 ⊂ [1/2,∞) and f0(x) = 1 for x > 1.
Define a function f on N by f(x) = f(xj). Let

g(t) =
�

N

f0(edjtxj) ν(dx), g̃(t) = e−χ0tg(t).

It is enough to prove that
(3.11) lim

t→−∞
g̃(t) = 0,

because then
lim
t→∞

eχ0tν{x : xj > edjt} ≤ lim
t→∞

eχ0t
�

N

f0(e−djtxj) ν(dx)

= lim
t→−∞

e−χ0tg(t) = lim
t→−∞

g̃(t) = 0.

Define a measure µ0 on R by
µ0(U) = µA{M : λj(logM)/dj ∈ U}, U ⊂ R.

Then �

R
eχ0t dµ0(t) < 1,

i.e. µ̃ = eχ0tµ is a subprobability measure. Let
ψ(t) = µ0 ∗ g(t)− g(t), ψ̃(t) = e−χ0tψ(t).

We shall prove that for every s,
(3.12) lim

t→−∞
ψ̃(t+ s) = 0,
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(3.13) g̃(t) = −G̃ ∗ ψ̃(t),

where G̃ =
∑∞

n=0 µ̃
∗n is finite. And again (3.11) will follow by dominated

convergence.

3.5. Remaining lemmas. Now we are going to prove (3.8)–(3.10). The
argument for (3.12) and (3.13) is the same.

Lemma 3.6. The function ψ̃ is continuous, bounded and for every s′, s′′,

lim
t→−∞

ψ̃(t+ s′, t+ s′′) = 0.

Proof. First we will prove that the function g̃ is bounded. For that we
use (2.23) and the Hölder inequality with p = (di + dj)/di, q = (di + dj)/dj :

g̃(s, t) = e
−χ0·

dis+djt

di+dj

�

N

f0(edisxi, edjtxj) ν(dx)

≤ e−χ0·
dis+djt

di+dj

�

N

1{xi> 1
2
e−dis}1{xj> 1

2
e−djt} ν(dx)

≤ e−χ0·
dis+djt

di+dj

(
ν

{
x : xi>

1
2
e−dis

}) di
di+dj

·
(
ν

{
x : xj>

1
2
e−djs

}) dj
di+dj

≤ C.

Next we will prove that µ̃0 ∗ g is bounded, using again the Hölder inequality
with the same parameters p, q:

|µ̃0 ∗ g(s, t)| =
∣∣∣e−χ0·

dis+djt

di+dj

�

R2

g(s+ s′, t+ t′) dµ0(s′, t′)
∣∣∣

=
∣∣∣ �

R2

g̃(s+ s′, t+ t′)e
χ0·

dis
′

di+dj e
χ0·

djt
′

di+dj dµ0(s′, t′)
∣∣∣

≤ C
( �

R2

eχ0s′ dµ0(s′, t′)
)1/p( �

R2

eχ0t′ dµ0(s′, t′)
)1/q

= C.

Hence ψ̃ is bounded. Continuity is obvious. To prove the last part of the
lemma assume εdi, εdj < χ0. We are going to prove a stronger condition
that for every s′, s′′ ∈ R,

(3.14) I =
∑
n∈Z

sup
n≤t<n+1

|ψ̃(t+ s′, t+ s′′)| <∞,

which of course implies that ψ̃ vanishes at −∞.
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First we write

ψ̃(t+ si, t+ sj)

= e
−χ0·

di(t+si)+dj(t+sj)

di+dj

�

N

[ �

R2

f0(edi(t+si+ti)xi, edj(t+sj+tj)xj) dµ0(ti, tj)

− f0(edi(t+si)xi, edj(t+sj)xj)
]
ν(dx)

= e−χ0te
−χ0·

disi+djsj
di+dj

�

S

�

N

[f0(edi(t+si)+λi(log a)xi, e
dj(t+sj)+λj(log a)xj)

− f0(edi(t+si)πi(b · δa(x)), edj(t+sj)πj(b · δa(x)))]µ(da, db) ν(dx)

= e−χ0te
−χ0·

disi+djsj
di+dj

�

S

�

N

[f0(edi(t+si)+λi(log a)xi, e
dj(t+sj)+λj(log a)xj)

− f0(edi(t+si)(eλi(log a)xi + bi + Pi(b, δa(x))),

edj(t+sj)(eλj(log a)xj + bj + Pj(b, δa(x))))]µ(da, db) ν(dx).

We may assume that f0(x, y) = h(x)h(y) for some ε-Hölder function h
on R such that h(x) = 1 for x ≥ 1 and supph ⊂ (1/2,∞), where ε <
min{χ0/di, χ0/dj}. Then the Hölder condition implies

|f0(xi, xj)− f0(yi, yj)| = |h(xj)(h(xi)− h(yi)) + h(yi)(h(xj)− h(yj))|
≤ C

(
|xi − yi|ε · (1{xi>1/2} + 1{yi>1/2}) + |xj − yj |ε · (1{xj>1/2} + 1{yj>1/2})

)
.

Therefore, since si and sj are fixed,

|ψ̃(t+ si, t+ sj)|

≤ C(si, sj)e−χ0t
∑

k∈{i,j}

C(sk)
�

S

�

N

eεdkt(|bk|ε + |Pk(b, δa(x))|ε)

× (1{1/2≤edk(t+sk)+λk(log a)xk} + 1{1/2≤edk(t+sk)πk(b·δa(x))})µ(da, db) ν(dx)

and to prove (3.14) we have to estimate three integrals:

I1,k(t) = e−χ0t
�

S

�

N

eεdkt|bk|ε · 1{1/2≤edk(t+sk)+λk(log a)xk} µ(da, db) ν(dx),

I2,k(t) = e−χ0t
�

S

�

N

eεdkt|Pk(b,δa(x))|ε ·1{1/2≤edk(t+sk)+λk(log a)xk}µ(da,db)ν(dx),

I3,k(t) = e−χ0t
�

S

�

N

eεdkt(|bk|ε + |Pk(b, δa(x))|ε)

× 1{1/2≤edk(t+sk)πk(b·δa(x))} µ(da, db) ν(dx)

for k ∈ {i, j}.
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We begin with I1,k(t). For n ≤ t < n+ 1 we have

I1,k(t) ≤ C1e
−(χ0−εdk)n

�

S

�

N

|bk|ε · 1{C2e
−ndk≤eλk(log a)+log |xk|} µ(da, db) ν(dx)

Let n0(a, x) = b−(1/dk)(logC2 + λk(log a) + log |xk|)c. Then

I1,k =
∑
n∈Z

sup
n<t≤n+1

I1,k(t) ≤ C
�

S

�

N

∑
n≥n0(a,x)

e−(χ0−εdk)n|bk|ε µ(da, db) ν(dx)

≤ C
�

S

�

N

e(1/dk)(χ0−εdk)λk(log a)|xk|(1/dk)(χ0−εdk)|bk|ε µ(da, db) ν(dx)

= C
( �

N

|xk|χ0/dk−ε ν(dx)
)
·
( �

S

e(χ0/dk−ε)λk(log a)|bk|ε µ(da, db)
)
.

Both integrals are finite: the first one because of (2.23), and for the second
one we apply the Hölder inequality with (χ0/dk − ε)p = χ0/dk, εq = χ0/dk
to obtain

�

S

e(χ0/dk−ε)λk(log a)|bk|εµ(da, db)

≤
( �

S

e(χ0/dk)λk(log a) µ(da, db)
)1/p( �

S

|bk|χ0/dk µ(da, db)
)1/q

<∞,

which proves that I1,k is finite. For I2,k =
∑

n∈Z supn<t≤n+1 I2,k(t), arguing
as above we reduce the problem to estimating

�

S

�

N

e(1/dk)(χ0−εdk)λk(log a)|xk|χ0/dk−ε|baδa(x)b|ε µ(da, db) ν(dx)

≤
�

S

�

N

e(χ0/dk−ε)λk(log a)|xk|χ0/dk−ε
∏
r∈A
|br|arε

·
∏
s∈B

(eλs(log a)bsε|xs|bsε) ν(dx)µ(da, db),

where

A = {r : ar 6= 0} ⊂ Iλk , B = {s : bs 6= 0} ⊂ Iλk ,

because k ∈ Iλk . By (3.4),

(3.15)
1
dk

∑
r∈A

ardr +
1
dk

∑
s∈B

bsds = 1.

First we integrate over N , we apply (2.23) and the Hölder inequality with
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p(χ0/dk − ε) < χ0/dk, psbsε < χ0/ds and 1/p+
∑

s 1/ps = 1 to obtain
�

N

|xk|χ0/dk−ε
∏
s∈B
|xs|bsε ν(dx)

≤
( �

N

|xk|p(χ0/dk−ε) ν(dx)
)1/p∏

s∈B

( �

N

|xs|psbsε ν(dx)
)1/ps

<∞.

Such p, ps exist because by (3.15),

dk
χ0

dk

(
χ0

dk
− ε
)

+
∑
s

bsεds
χ0

< 1.

For the integral on S we apply the Hölder inequality with p(χ0/dk − ε) =
χ0/dk, psbsε = χ0/ds, qrεar = χ0/dr (clearly, by (3.15), 1/p +

∑
s 1/ps +∑

r 1/qr = 1− εdk/χ0 +
∑

s εbsds/χ0 +
∑

r εardr/χ0 = 1) and we obtain
�

S

e(χ0/dk−ε)λk(log a)
∏
r∈A
|br|arε ·

∏
s∈B

eλs(log a)bsε µ(da, db)

≤
( �

S

e(χ0/dk)λk(log a)µ(da, db)
)1/p∏

r∈A

( �

S

|br|χ0/dr µ(da, db)
)1/qr

·
∏
s∈B

( �

S

e(χ0/ds)λs(log a) µ(da, db)
)1/ps

,

hence I2,k is bounded.
To estimate I3,k we take

n0(a, k, x) =
⌊
− 1
dk

(logC2 + log |πk(b · δa(x))|)
⌋

and in view of the Campbell–Hausdorff formula we estimate
�

S

�

N

(|bk|ε + |Pk(b, δa(x))|ε)πk(b · δa(x))χ0/dk−ε µ(da, db) ν(dx)

by the following sum of integrals:
�

S

�

N

e(χ0/dk−ε)λk(log)|xk|χ0/dk−ε(|bk|ε + |Pk(b, δa(x))|ε)µ(da, db) ν(dx)

+
�

S

�

N

|bk|χ0/dk−ε(|bk|ε + |Pk(b, δa(x))|ε)µ(da, db) ν(dx)

+
�

S

�

N

|Pk(b, δa(x))|χ0/dk−ε|bk|ε µ(da, db) ν(dx)

+
�

S

�

N

|Pk(b, δa(x))|χ0/dk µ(da, db) ν(dx).
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To all of them we apply the Hölder inequality in the same way as above. Let
us check the last one, i.e.�

S

�

N

∏
r∈A
|br|arχ0/dk ·

∏
s∈B

ebs(χ0/dk)λs(log a)|xs|bsχ0/dk ν(dx)µ(da, db)

We first integrate over N to obtain
�

N

∏
s∈B
|xs|bsχ0/dk ν(dx)µ(da, db) ≤

∏
s∈B

( �

N

|xs|psbsχ0/dk
)1/ps

ν(dx)µ(da, db)

where ps are chosen so that bspsχ0/dk < χ0/ds and
∑

1/ps = 1, which is
possible because by (3.15),

∑
bsds/dk < 1. For the integral over S we have�

S

∏
r∈A
|br|arχ0/dk ·

∏
s∈B

ebs(χ0/dk)λs(log a) µ(da, db)

≤
∏
r∈A

( �

S

|br|prarχ0/dk µ(da, db)
)1/pr ∏

s∈B

( �

S

eqsbs(χ0/dk)λs(log a) µ(da, db)
)1/qs

with pr = dk/(ardr), qs = dk/(bsds).

Lemma 3.7. The measure µ̃ is subprobabilistic, i.e. µ̃(R2) < 1.

Proof.

µ̃(R2)=E
[
e
λi(logM)

di+dj e
λj(logM)

di+dj
]
≤(Ee

λi(logM)

di )
di

di+dj (Ee
λj(logM)

dj )
di

di+dj = 1

and we have equality only if

eλi(logM)/di = Ceλj(logM)/dj

on the support of µA, which contradicts hypothesis (H6).

Lemma 3.8. The function g̃ can be written as

g̃(s, t) = −G̃ ∗ ψ̃(s, t),

where G̃ =
∑∞

n=0 µ̃
∗n is a finite measure.

Proof. By definition of ψ the function g satisfies the Poisson equation

µ0 ∗ g(s, t) = g(s, t) + ψ(s, t).

Hence

µ
∗(n+1)
0 ∗ g(s, t) = µ∗n0 ∗ (g + ψ)(s, t)

= µ
∗(n−1)
0 ∗ (g + ψ)(s, t) + µ∗n0 ∗ ψ(s, t) = · · ·

= g(s, t) +
n∑
k=0

µ∗k0 ∗ ψ(s, t).

Multiplying both sides by e
−χ0·

dis+djt

di+dj we obtain

(3.16) µ̃∗(n+1) ∗ g̃(s, t) = g̃(s, t) + µ̃∗n ∗ ψ̃(s, t).
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Indeed,

e
−χ0·

dis+djt

di+dj µ∗k0 ∗ ψ(s, t)

= e
−χ0·

dis+djt

di+dj

�

R2

. . .
�

R2

ψ(s+ s1 + · · ·+ sk, t+ t1 + · · ·+ tk)

× µ0(ds1, dt1) . . . µ0(dsk, dtk)

=
�

R2

. . .
�

R2

e
−χ0·

di(s+s1+···sk)+dj(t+t1+···tk)

di+dj ψ(s+ s1 + · · ·+ sk, t+ t1 + · · ·+ tk)

· eχ0·
dis1+djt1
di+dj µ0(ds1, dt1) . . . e

χ0·
disk+djtk
di+dj µ0(dsk, dtk) = µ̃∗k ∗ ψ̃(s, t).

We have
|µ̃∗k ∗ g̃(s, t)| ≤ |g̃|supµ̃(R2)k.

Hence
lim
n→∞

µ̃∗(n+1) ∗ g̃(s, t) = 0

and

g̃ = − lim
n→∞

n∑
k=0

µ̃∗k ∗ ψ̃ = −G̃ ∗ ψ̃

with G̃ being finite.

Proof of Lemma 3.4. By the Lebesgue Theorem,

lim
t→−∞

g̃(t, t) = − lim
t→−∞

G̃ ∗ ψ̃(t, t)

= − lim
t→∞

�

R2

ψ̃(t+ s′, t+ t′) G̃(ds′, dt′) = 0.

Appendix A. Action of a compact group of automorphisms.
Assume now that there is a compact group K acting on N and commuting
with A. Then every eigenspace Nλ is preserved by K. On S = N o AK we
define a random walk as in Section 2.2 with Mj being in AK. As before, Rn
converges in law to a random variable R independent of the choice of R0.
The law of R is the unique stationary solution of ν = µ ∗ ν.

We define homogeneous norms analogously as before but making them
invariant under the action of K. To do this we choose on every Nλ a norm
| |λ preserved by K and we define the rectangle Ω as

Ω =
{
x =

∑
xλ : |xλ|λ < ε

}
.

Proceeding as in [20] we prove that if ε is sufficiently small then (2.18) holds.
Then the norm is

(A.1) |x| = max
λ
{ε−1/dλ |xλ|1/dλ}
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and it is invariant under the action of K. Theorem 2.5 is valid with the same
proof provided we write everything in terms of the decomposition x =

∑
λ xλ

and not in terms of coordinates.
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