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Abstract. For a class of infinite lattices of interacting anharmonic oscillators, we
study the existence of the dynamics, together with Lieb–Robinson bounds, in a suitable
algebra of observables.

1. Introduction. Statement of results. Infinite lattices of nearest-
neighbors interacting harmonic oscillators are a usual model in quantum
statistical mechanics. Among the objects associated to this model, an im-
portant one is the dynamics describing the time evolution of some algebra
of observables, related to the lattice. Such dynamics on a lattice was defined
by Malyshev–Minlos [M-M] and by Thirring [TH], when the potential is a
quadratic form.

We also note that, for bounded Hamiltonian models, Lieb and Robinson
have established in [L-R] an estimate, concerning the propagation speed for
the correlation between two local observables. These inequalities have been
improved more recently, with bounds that are uniform with respect to the
dimension of the Hilbert space defined at each site, allowing this dimension
to go to infinity. See [N-O-S], where the existence of the dynamics is also
proven in some algebra (not the same as in [M-M] or [TH]). See also [H-K],
[N-S] for applications of these inequalities, and [R-S] for an analogue in
classical mechanics.

More recently, Nachtergaele, Raz, Schlein and Sims [N-R-S-S] have de-
rived Lieb–Robinson type inequalities for lattices of unbounded operators.
More precisely, they consider a lattice of harmonic oscillators with quadratic
interactions with, moreover, on each site of the lattice, a self-interaction po-
tential in a more general class. More precisely, Lieb–Robinson type inequal-
ities are proved ([N-R-S-S]) for Hamiltonians associated to a finite subset
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Λ of the lattice, and hold uniformly in |Λ|. However, to the best of our
knowledge, the existence of dynamics as |Λ| → ∞ is established when the
potential is a quadratic form, but not with smaller perturbations.

The aim of this article is twofold. First, we shall take the limit when
|Λ| goes to infinity. For that, we define a C?-algebra W2 which seems to be
more convenient, when the perturbation is turned on, than the Weyl algebra
defined in [M-M] or in [TH], or than the quasilocal algebra used in [N-O-S].
We prove the existence of a dynamics (defined as a limit when the number
of sites goes to infinity) for local and non-local observables in this algebra.
Secondly, we are able to perturb the quadratic potential of interaction in a
more general way than in [N-R-S-S], with not only self-interacting terms. We
allow interactions between sites at arbitrary distance, with an exponential
decay of this interaction. In this framework, we also obtain Lieb–Robinson
type inequalities, with a bound for the propagation speed of the correlations
which is perhaps different from the estimation given in [N-R-S-S] (see the
remark after (1.20)).

We consider a one-dimensional lattice Z in order to simplify the no-
tations. For each subset Λn = {−n, . . . ,+n} (n ≥ 1) in Z, we define a
Hamiltonian HΛn in RΛn by

(1.1) HΛn = −1
2

∑
λ∈Λn

∂2

∂x2
λ

+ VΛn , VΛn = V quad
Λn

+ V pert
Λn

.

where the potential V quad
Λn

is a positive definite quadratic form on RΛn , and
V pert
Λn

is viewed as a perturbation of V quad
Λn

.
The quadratic potential is defined for all n by

(1.2) V quad
Λn

(x) =
a

2
|x|2 − b

n−1∑
λ=−n

xλxλ+1

where a and b are real numbers satisfying a > 2b > 0.
Precise hypotheses on the perturbation potential are stated in (H1) and

(H2) below. These assumptions imply that V pert
Λn

is the multiplication op-
erator by a real-valued function vpert

Λn
belonging to C3(RΛn), and satisfying

vpert
Λn

(x) = o(|x|2) near infinity.
By Kato–Rellich’s theorem, the operator HΛn defined in (1.1), with the

hypotheses (H1) and (H2), is self-adjoint with the same domain as the har-
monic oscillator on RΛn . Hence, we can define the unitary operator eitHΛn
(t ∈ R).

Thus, the following operator is well-defined:

(1.3) α
(t)
Λn

(A) = eitHΛnAe−itHΛn

for all A ∈ L(HΛn) (where HΛn = L2(RΛn)) and all t ∈ R. It is then natural
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to ask whether this sequence of operators has a limit when n tends to +∞,
and for which class of operators A. More precisely, we are looking for a
Banach algebra A satisfying the following conditions:

• The space L(L2(RΛ)) (where Λ is a finite subset of Z) is isometri-
cally immersed in the algebra (the elements of L(HΛ) are, under this
identification, called local observables supported in Λ).
• For all local observables A, the limit as n tends to infinity of α(t)

Λn
(A),

denoted by α(t)(A), exists in A.
• The operator α(t), defined in this procedure for local observables A,

may be extended by density to the whole algebra A, and acts in a
continuous way.

Several works, related to this issue, have considered the C?-algebra A of
quasi-local observables. Let us recall its definition (cf. [S]). For each finite
subset Λ in Z set HΛ = L2(RΛ). One notes that if Λ ⊂ Λ′ then L(HΛ)
is isometrically immersed in L(HΛ′). Therefore, one may define A as the
completion of the inductive limit of the spaces L(HΛ):

(1.4) A =
⋃
Λ⊂Z
L(HΛ).

This algebra is well-adapted in the case of bounded potentials, or when
the first order derivatives are bounded (cf. e.g. [N-O-S] for the existence of
a dynamics, or [A-C-L-N] for estimates on the decay of the correlations),
whereas it might not be suitable for the perturbed quadratic case studied
here.

Another algebra, the Weyl algebra, is considered by Malyshev–Minlos
[M-M] and Thirring [TH]. This algebra fits the unperturbed quadratic case
(V pert
Λn

= 0), and is defined using the Fock space formalism.
The space H denotes the symmetrized Fock space H = Fs(`2(Z)), asso-

ciated to the Hilbert space `2(Z). For all λ ∈ Z, one defines two self-adjoint
operators Pλ and Qλ in the Fock space, satisfying the same commutation
relations as the position and momentum operators in L2(Rn). (Note that
there are an infinite number of these operators.) For each finite subset Λ
of Z, the space L(HΛ) (where HΛ = L2(RΛ)) is isometrically immersed in
L(H). This identification extends also to unbounded operators. Thus, the
multiplication operator by xλ and the operator 1

i
∂
∂xλ

(λ ∈ Λ) become the

two operators Qλ and Pλ, sometimes denoted by Q(0)
λ and Q

(1)
λ :

(1.5) Q
(0)
λ = Qλ = xλ, Q

(1)
λ = Pλ =

1
i

∂

∂xλ
.

The Fock space formalism allows us to properly define, for all real se-
quences u and v in `2(Z), an unbounded self-adjoint operator (the Segal
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operator), formally defined by

(1.6) Π(u, v) =
∑
λ∈Z

(uλPλ + vλQλ).

The operators Pλ and Qλ are not generally defined by (1.5) anymore, but
instead, Π(u, v) is defined starting from the creation and annihilation opera-
tors associated to `2(Z) (see Section 2). The corresponding unitary operator
W (u, v) = eiΠ(u,v) is called a Weyl operator.

The Weyl algebra introduced by Malyshev–Minlos [M-M] and Thirring
[TH] is the closure in L(H) of the subspace generated by the operators
W (u, v) (u and v being real sequences in `2(Z)).

In the purely quadradic case (V pert
Λn

= 0), for all A in this Weyl algebra,

an explicit analysis allows us to define α(t)
Λn

(A) properly (even if A is not
supported in Λn) and to define the limit operator α(t)(A) such that, for all
f ∈ H,

lim
n→∞

‖[α(t)
Λn

(A)− α(t)(A)]f‖H = 0.

In order to derive the latter limit, uniform estimates, such as those estab-
lished in [N-R-S-S], are needed.

Using the Weyl algebra defined above, it is probably difficult to obtain
these results when the perturbation potential is turned on. The purpose of
this work is then to extend the above results to the quadratic case with
perturbations by involving another algebra W2 included in L(H). Further-
more, the Lieb–Robinson estimates in [N-R-S-S] are also extended to that
framework.

Before giving the definition of W2, let us mention that the works of
Calderón–Vaillancourt [C-V] and Beals [BE] (see also Hörmander [HO])
give an important role to a particular subalgebra of L(L2(Rn)) or here, of
L(L2(RΛ)), for all finite subsets Λ in Z. This subalgebra is the set OPS0(RΛ)
of pseudo-differential operators on RΛ, associated to symbols that are
bounded together with all their derivatives. From Beals [BE], these op-
erators are characterized by the following property, involving the oper-
ators Q

(0)
λ and Q

(1)
λ defined in (1.5) for all λ ∈ Λ. An operator A in

L(L2(RΛ)) is in OPS0(RΛ) if, and only if, all the iterated commutators
(adQk1λ1

) . . . (adQkmλm)A, (with λ1, . . . , λm in Λ, m ≥ 0, and kj ∈ {0, 1}), are
bounded in L2(RΛ). (The commutators are known, a priori, to map S(RΛ)
into S ′(RΛ).)

Replacing Λ by Z, one may analogously define a decreasing sequence of
subalgebras Wk in L(H) (k ≥ 0). Set W0 = L(H). We denote by W1 the set
of all A in W0 such that, for all λ ∈ Z, the commutators [A,Qλ] and [A,Pλ]
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are bounded in H, and the sum in the following norm is finite:

(1.7) ‖A‖W1 = ‖A‖W0 +
∑
λ∈Z
k=0,1

‖[A,Q(k)
λ ]‖W0 .

Note that the above commutators are properly defined in Section 2. From
now on, the operators Q(0)

λ = Qλ and Q
(1)
λ = Pλ are defined through the

Fock space formalism, and not by (1.5) anymore.
Let us denote by W2 the set of all operators A ∈ W1 such that the

commutators [Q(k)
λ , A] belong to W1 for all λ in Z, and the sum in the norm

below is finite:

(1.8) ‖A‖W2 = ‖A‖W1 +
1
2

∑
(λ,µ)∈Z2

0≤j,k≤1

‖[[A,Q(j)
λ ], Q(k)

µ ]‖L(H).

An example. For all u and v in `1(Z), the Weyl operator W (u, v) =
eiΠ(u,v) is in Wk (0 ≤ k ≤ 2).

One might similarly define a sequence of algebrasWk using iterated com-
mutators. In particular, the intersection of these algebras could correspond
to an analogue of OPS0 in infinite dimensions. Other particular classes of
pseudo-differential operators in infinite dimensions are studied by B. Lascar
(see [L1], [L2]), or more recently by Ammari–Nier [A-N].

Among all these algebras, from our point of view, it is W2 that appears
to be the most suitable for our study. If A is not supposed to be in W2,
but only in L(H) and supported on a finite subset E of Z, it appears to be
possible to show that, for all f in H, the sequence α(t)

Λn
(A)f weakly converges

in H. If this limit is denoted by α(t)(A)f , it is not clear whether the map
t 7→ α(t) is continuous, neither whether α(t) may be extended to a suitable
Banach algebra.

More precise estimates are obtained when the local observable A belongs
to W2. First, let us describe the perturbation potential.

Hypotheses on the perturbation potentials. The operator V pert
Λn

is
written as the following sum:

(1.9) V pert
Λn

=
∑
λ∈Λn

Vλ +
∑

(λ,µ)∈Λ2
n

λ 6=µ

Vλµ,

where the operators Vλ and Vλµ are defined for all λ and µ in Z, and satisfy
the assumptions below:

(H1) For each pair (λ, µ) ∈ Z2 with λ 6= µ, Vλµ is multiplication by
a C3 real-valued function vλµ depending only on the variables xλ and xµ.
Moreover, denote by ξ 7→ v̂λµ(ξ) the Fourier transform of vλµ (on R2 and
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in the sense of distributions). Then ξ 7→ ξjλξ
k
µv̂λµ(ξ) belongs to L1(R2) for

2 ≤ j + k ≤ 3. Furthermore, there exist C0, γ0 > 0 (not depending on λ
and µ) such that ∑

2≤j+k≤3

‖ξjλξ
k
µv̂λµ‖L1(R2) ≤ C0e

−γ0|λ−µ|,(1.10)

|∇vλµ(0)| ≤ C0e
−γ0|λ−µ|.(1.11)

(H2) For each λ in Z, Vλ is multiplication by a C3 real-valued function vλ
depending only on the variable xλ. If we denote by v̂λ the Fourier transform
of vλ, then ξ 7→ ξjλv̂λ(ξ) is in L1(R) for 2 ≤ j ≤ 3, and

(1.12)
∑

2≤j≤3

‖ξjλv̂λ‖L1(R) ≤ C0, |∇vλ(0)| ≤ C0.

In particular, in the case of interactions between nearest neighbors, one
has Vλµ = 0 whenever |λ− µ| ≥ 2. It is then sufficient that the integrals on
the l.h.s. of (1.10) and (1.12) are uniformly bounded in λ. In that case, the
hypotheses (H1) and (H2) are satisfied for any γ0 > 0, and in all the results
below, the phrase “for all γ ∈ (0, γ0)” has to be replaced by “for all γ > 0”.

For each integer n, the perturbation potential V pert
Λn

and the Hamiltonian
HΛn are defined by (1.9) and (1.1) respectively. In [N-R-S-S], the authors
have only considered the Vλ’s. We shall say that an element A of W2 has
finite support if there exists a finite subset E in Z such that A identifies
with an element of L(HE). The smallest such set is called the support of A
and is denoted by σ(A).

Theorem 1.1. Under the above hypotheses, for all A ∈ W2 with finite
support, all t ∈ R, and all n such that Λn contains the support of A, the op-
erator α(t)

Λn
(A) belongs to W2. Moreover, there exist C,M > 0 not depending

on n and t such that

(1.13) ‖α(t)
Λn

(A)‖W2 ≤ CeM |t|‖A‖W2 .

Furthermore, for each f ∈ H, the sequence α(t)
Λn

(A)f strongly converges in H.
Denoting the limit by α(t)(A)f , the map t 7→ α(t)(A)f is strongly continuous,
the operator α(t)(A) is in W2, and

(1.14) ‖α(t)(A)‖W2 ≤ CeM |t|‖A‖W2 .

In the first part of this theorem (where n is fixed), one may think that
α

(t)
Λn

acts in the algebra Wk, defined similarly to W1 and W2, but with
iterated commutators of length k, and for operators supported in Λn. (The
hypotheses (H1) and (H2) naturally need to be strengthened.) From Beals’
characterization, one would deduce a group action of α(t)

Λn
on the operators
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in OPS0(RΛ). An alternative approach may be found in the works of Bony
(see [BO1] and [BO2]).

Moreover, under the hypotheses of Theorem 1.1, the automorphism α(t)

(initially defined for local observables) extends uniquely to the whole algebra
W2 (see below). To this end, we introduce Sobolev-type spaces.

Let H2 be the subspace of f ∈ H such that the following norm is finite:

(1.15) ‖f‖H2 = ‖f‖H + sup
λ∈Z

0≤j≤1

‖Q(j)
λ f‖H + sup

(λ,µ)∈Z2

0≤j,k≤1

‖Q(j)
λ Q(k)

µ f‖H.

Since convergence in norm is needed, Theorem 1.1 is now completed with
the result below:

Theorem 1.2. There exist C, γ,M > 0 with the following properties.
For all A in W2 with finite support σ(A), all n such that Λn contains σ(A),
and all t ∈ R,

(1.16) ‖α(t)
Λn

(A)− α(t)(A)‖L(H2,H) ≤ CeM |t|e−γd(σ(A),Λcn)‖A‖W2 .

Moreover,

(1.17) ‖α(t)(A)‖L(H2,H) ≤ CeM |t|‖A‖L(H2,H).

The set of all observables with finite support is not dense in W2. To
extend α(t), we shall use, instead of density, the following two results.

Theorem 1.3. Let A be in W2. Then there is a sequence (An) in W2

such that each An has finite support, and

(1.18) ‖An‖W2 ≤ ‖A‖W2 , lim
n→∞

‖An −A‖L(H2,H) = 0.

Theorem 1.4. Let (An) be a sequence in W2. Suppose that ‖An‖W2 ≤ 1
and there exists A ∈ L(H2,H) such that ‖An−A‖L(H2,H) → 0. Then A may
be extended to an element of L(H) which belongs to W2 and ‖A‖W2 ≤ 1.
Moreover, Anf → Af in H for all f ∈ H.

Consequently, we easily deduce from Theorems 1.1–1.4 that α(t) can be
extended, in a unique way, to the whole algebraW2, without any conditions
on the finiteness of the supports (see Section 7). The map α(t) is not a W2

norm preserving map, but it is L(H) norm preserving. Using this fact, α(t)

can be extended to the closure W2 of W2 in L(H). Thus, α(t) acts in W2 in
a continuous way (for the simple topology) and is norm preserving.

Lieb–Robinson’s inequalities. These inequalities, established in [L-R]
for bounded Hamiltonians and, more recently, in [N-R-S-S] for quadratic
Hamiltonians, express the propagation of the correlation between two ob-
servables with separated supports, as a function of time and of distance
between the supports.
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For all h in Z, let Th be the map in `2(Z) defined by (Thu)λ = uλ+h

for all u ∈ `2(Z) and λ ∈ Z. With Th we define a map in the Fock space
H = Fs(`2(Z)), still denoted Th. For A in L(H) we set τh(A) = T−1

h ATh.
In our framework, Lieb–Robinson type inequalities have the following

form:

Theorem 1.5. There exists a real number v0 with the following property.
For any A and B in W2 with finite supports, any sequence (hn, tn) tending
to infinity in Z× R with |hn| ≥ v0|tn|, and any f ∈ H,

(1.19) lim
n→∞

[α(tn)(A), τhn(B)]f = 0.

The infimum V0 of all the v0 with the above property defines a kind of
propagation speed, which is different from the usual definitions of phase and
group velocities (cf. Cohen-Tannoudji [C-T]). In the case of cyclic quadratic
potentials (that is, without any perturbation, but obtained by adding to
V quad
Λn

of (1.2) an end point interaction potential −bxnx−n), one finds in
[N-R-S-S] an estimate of this propagation speed. (In [N-R-S-S] this is written
for a multidimensional lattice model.) We shall provide here an alternative
estimate of the same type, with an elementary proof, given in Section 4. The
analysis of chains of harmonic oscillators with cyclic interactions usually
involves the dispersion relation ω(θ) =

√
a− 2b cos θ (cf. [C-T]). It is then

natural to define a complex version of this relation,

Ω(z) =
√
a− b(z + z−1), z ∈ C \ {0}.

For any γ > 0, set
M(γ) = sup

|z|=eγ
|ImΩ(z)|.

The propagation speed satisfies, in the cyclic quadratic case,

V0 ≤ inf
γ>0

M(γ)
γ

.

In a more general case, this estimate is less precise. For all γ in (0, γ0) (with
γ0 as in the hypotheses (H1) and (H2)), we shall define in Proposition 3.4
a positive number Sγ and we shall prove in Section 8 that the propagation
speed satisfies

(1.20) V0 ≤ inf
0<γ<γ0

2
√
Sγ

γ
.

The constant V0 depends only on a and b, together with the norms in
FL1(R) or FL1(R2) of the second derivatives of the potentials of perturba-
tion. We then note that if we multiply a, b and the potentials of perturbation
by a constant g > 0, our estimate on the propagation speed is multiplied
by
√
g. It seems that the estimate in [N-R-S-S] did not have this property. It
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is also possible to give a norm estimate, instead of (1.19). Then we need the
Sobolev spaces of Section 2. We shall prove in Section 8 that for M > 2

√
Sγ

‖[α(t)(A), B]‖L(H2,H) ≤ C(M,γ)‖A‖W2‖B‖W2e
M |t|e−γd(σ(A),σ(B))

where σ(A) and σ(B) are the supports of the local observables A and B.
Section 2 concerns the subalgebra Wk. In Section 3, properties of VΛn

under the hypotheses (H1) and (H2) are established. Evolution operators,
for finite systems on the lattice, are studied in Sections 4–6. Sections 7 and
8 are respectively devoted to perform the limit as n (the number of sites)
goes to infinity, and to derive Lieb–Robinson’s inequalities.

2. Algebras of operators in the Fock space

Notations on Fock spaces (cf. [R-S]). For any subset E of Z, the sym-
metrized Fock space associated to the Hilbert space `2(E) will be denoted
HE . When E = Z, this space is still denoted H. The ground state of HE is
denoted by ΩE or Ω when E = Z.

If E1 and E2 are two disjoint subsets of Z one may identify HE1∪E2 and
HE1 ⊗HE2 (the completed tensor product). One may also identify ΩE1∪E2

with ΩE1 ⊗ΩE2 .
For all real sequences u in `2(Z) we define two unbounded operators

a(u) (annihilation operator) and a?(u) (creation operator), formal adjoints
of each other, and satisfying the following commutation relations:

[a(u), a(v)] = [a?(u), a?(v)] = 0, [a(u), a?(v)] = (u, v),

for all u and v in `2(Z).
We denote by (eλ)λ∈Z the canonical basis of `2(Z). Starting from the

ground state Ω, and applying successively the creation operators, one defines
a?(eλ1) . . . a?(eλm)Ω, which are orthogonal elements of H. Let D be the
subspace of H generated by these vectors. It is known that D is dense in H.
The space D is included in the domain of all a(u) and a?(u) (u ∈ `2(Z)).
For all f in D there exists a finite subset S ⊂ Z such that f can be written
as f = g ⊗ΩSc with g ∈ HS . We then say that f is supported in S.

Next we define the Segal operator Π(u, v) by

(2.1) Π(u, v) =
a(u) + a?(u)√

2
+
a(v)− a?(v)

i
√

2
for all real elements u and v in `2(Z). An element f ∈ H is in the domain of
Π(u, v) if there exists a sequence (fn) in D such that fn converges to f in H,
and Π(u, v)fn has a limit in H. Thus, Π(u, v) is a self-adjoint operator. The
associated Weyl operator is W (u, v) = eiΠ(u,v).

In particular, for each element eλ in the canonical basis of `2(Z) the Segal
operators are denoted
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(2.2) Qλ = Q
(0)
λ =

a(eλ) + a?(eλ)√
2

, Pλ = Q
(1)
λ =

a(eλ)− a?(eλ)
i
√

2
.

Let us write down an orthonormal basis. We shall limit ourselves to the
Hilbert space H{λ} associated to a subset of Z reduced to one element λ. In
this space we again use the construction of D and obtain the basis (hn)n≥0,
now normalized by setting

(2.3) h0 = Ω{λ}, hj+1 = (j + 1)−1/2a?(eλ)hj (j ≥ 0).

The space H{λ} may be identified with L2(R) in an isometric way. Then the
basis (hj) becomes the Hermite functions basis, and the operators Qλ and
Pλ respectively become multiplication by xλ and the operator 1

i
∂
∂xλ

. Effec-
tuating the completed tensor product, the space HΛ is similarly identified
with L2(RΛ) for each finite subset Λ of Z.

For any E ⊂ F ⊆ Z, and any operator T ∈ L(E), we define iEF (T ) by

(2.4) iEF (T ) = T ⊗ IF\E ,
where IF\E is the identity in HF\E . In particular, if F = Z the operator
iEZ(T ) is said to be supported in E.

Sobolev spaces. Let us denote by H1 the set of all f ∈ H that belong
to the domains of the Segal operators Qλ = Q

(0)
λ and Pλ = Q

(1)
λ for all

λ ∈ Z, and the following norm is finite:

(2.5) ‖f‖H1 = ‖f‖H + sup
λ∈Z

0≤j≤1

‖Q(j)
λ f‖H.

The space H2 is the set of all f ∈ H1 such that Q(0)
λ f and Q

(1)
λ f belong to

H1 for all λ in Z, and with the following norm finite:

(2.6) ‖f‖H2 = ‖f‖H1 + sup
(λ,µ)∈Z2

0≤j,k≤1

‖Q(j)
λ Q(k)

µ f‖H.

These spaces are dense in H since they contain D. If E is a subset of Z
then the subspace HkE is defined analogously in the corresponding Hilbert
space HE .

Commutators, and spaces with negative orders. For all A in
L(H), f ∈ H1 and λ ∈ Z the map

(2.7) H1 3 g 7→ 〈AQ(j)
λ f, g〉 − 〈Af, Q(j)

λ g〉, 0 ≤ j ≤ 1,

is a continuous antilinear map on H1. We denote by H−k the anti-dual of Hk
(0 ≤ k ≤ 2). For any A in L(H) the map (2.7) is linear and continuous from
H1 to H−1. It is denoted [A,Q(j)

λ ]. One may identify H with a subspace
of H−1, and the latter with a subspace of H−2. Thus, the operators Q(j)

λ
are bounded from Hm to Hm−1 (−1 ≤ m ≤ 2), and this allows us to
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define the iterated commutators [Q(j)
λ , [Q(k)

µ , A]] ((λ, µ) ∈ Z2, 0 ≤ j, k ≤ 1)
as continuous linear maps from H2 to H−2. This map is also denoted by
(adQ(j)

λ )(adQ(k)
µ )A.

If there is a C > 0 satisfying

|〈AQ(j)
λ f, g〉 − 〈Af,Q(j)

λ g〉| ≤ C‖f‖H‖g‖H

for all f and g in H1 we shall say that the commutators [A,Q(j)
λ ] are in

L(H). Then for all f in H1 there exists an element of H, denoted [A,Q(j)
λ ]f ,

such that
〈APf, g〉 − 〈Af,Q(j)

λ g〉 = 〈[A,Q(j)
λ ]f, g〉

for all g in H1, and the previously defined operator [A,Q(j)
λ ] : H1 → H

extends to an element of L(H). Proceeding similarly, one gives a precise
meaning to the statement “the commutator [[A,Q(j)

λ ], Q(k)
µ ] is in L(H)”.

Weyl algebra. We denote by W1 the set of all A in L(H) having the
commutators [A,Q(j)

λ ] (0 ≤ j ≤ 1) in L(H) for all λ in Z, and having the
following norm finite:

(2.8) ‖A‖W1 = ‖A‖L(H) +
∑
λ∈Z

0≤j≤1

‖[A,Q(j)
λ ]‖L(H).

We denote byW2 the set of elements A belonging toW1, having the commu-
tators [[A,Q(j)

λ ], Q(k)
µ ] in L(H) for all λ and µ in Z, and having the following

norm finite:

(2.9) ‖A‖W2 = ‖A‖W1 +
1
2

∑
(λ,µ)∈Z2

0≤j,k≤1

‖[[A,Q(j)
λ ], Q(k)

µ ]‖L(H).

We easily verify the next proposition.

Proposition 2.1. For all k ≤ 2 the algebra Wk is a Banach algebra.
For all A and B in Wk,

(2.10) ‖AB‖Wk
≤ ‖A‖Wk

‖B‖Wk
.

Each A ∈ W2 is bounded in the Sobolev space H2 and

(2.11) ‖A‖L(H2,H2) ≤ 3‖A‖W2 .

Proof of Theorem 1.4. Let (An) be a sequence in W2 and let A in
L(H2,H) satisfy

‖An‖W2 ≤ 1, lim
n→∞

‖An −A‖L(H2,H) = 0.

For each f in H2, one deduces that ‖Af‖ ≤ ‖f‖ and A thus extends by
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density to an element of L(H) with

‖A‖L(H) ≤ lim inf
n→∞

‖An‖L(H).

For all λ in Z, all f and g in D and any n ≥ 1 we see that

|〈AQ(j)
λ f, g〉 − 〈Af,Q(j)

λ g〉| ≤ ‖[An, Q(j)
λ ]‖ ‖f‖H‖g‖H + εn

where the sequence εn tends to 0. As a consequence,

|〈AQ(j)
λ f, g〉 − 〈Af,Q(j)

λ g〉| ≤ ‖f‖H‖g‖H lim inf
n→∞

‖[An, Q(j)
λ ]‖.

Since D is dense in H1 this inequality is still valid for all f and g in H1.
With the above definition the commutator [A,Q(j)

λ ] is thus in L(H) and

‖[A,Q(j)
λ ]‖L(H) ≤ lim inf

n→∞
‖[An, Q(j)

λ ]‖L(H).

From Fatou’s lemma one deduces∑
λ∈Z

0≤j≤1

‖[A,Q(j)
λ ]‖L(H) ≤ lim inf

n→∞

∑
λ∈Z

0≤j≤1

‖[An, Q(j)
λ ]‖L(H).

It is similarly derived that the commutator [[A,Q(j)
λ ], Q(k)

µ ] is in L(H) for all
λ and µ in Z, and∑

(λ,µ)∈Z2

0≤j,k≤1

‖[[A,Q(j)
λ ], Q(k)

µ ]‖L(H) ≤ lim inf
n→∞

∑
(λ,µ)∈Z2

0≤j,k≤1

‖[[An, Q(j)
λ ], Q(k)

µ ]‖L(H).

Theorem 1.4 is then an easy consequence of these facts.

To derive Theorem 1.3, we shall construct, for any subsets E and F such
that E ⊂ F ⊆ Z, an almost right inverse of the operator iEF defined in
(2.4). Let ΩF\E be the ground state of F \ E. Let πEF : HE → HF be the
map

(2.12) f 7→ πEF (f) = f ⊗ΩF\E ,
and let π?EF : HF → HE be the adjoint operator. Note that π?EFπEF = I.
For all A in L(HF ) one defines ρFE(A) in L(HE) by

(2.13) ρFE(A) = π?EF ◦A ◦ πEF .
One can easily see that, for each A ∈ W2,

(2.14) ‖ρFE(A)‖W2 ≤ ‖A‖W2 .

Also, if E ⊂ F ⊂ G then

(2.15) ρGE = ρFE ◦ ρGF .

We shall study how an operator A ∈ L(HF ) may be approximated by
iEF ◦ ρFE(A) when E is a subset of F , both finite.
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Proposition 2.2. There exists C > 0 such that, for all finite subsets E
and F of Z with E ⊂ F , and all A in W2 supported in F ,

(2.6) ‖A− iEF ◦ ρFE(A)‖L(H2,H) ≤ C
∑

λ∈F\E
1≤j+k≤2

‖(adPλ)j(adQλ)kA‖L(H).

This proposition is proven in Appendix A. Let us show how it implies
Theorem 1.3.

Proof of Theorem 1.3. Let A ∈ W2. Set An = iΛnZ◦ρZΛn(A). The An are
inW2 with finite supports and ‖An‖W2 ≤ ‖A‖W2 . If m < n then Proposition
2.5 yields

‖Am −An‖L(H2,H) ≤ ‖ρΛnΛm(An)−An‖L(H2,H)

≤ C
∑

λ∈Z\Λm
1≤j+k≤2

‖(adPλ)j(adQλ)kA‖L(H).

The latter sequence goes to 0 as m → ∞ if A ∈ W2. Consequently, the
sequence An converges, in L(H2,H), to an element B ∈ L(H2,H). From
Theorem 1.4, B is in W2 and Anf strongly converges to Bf for all f ∈ H.
Let us check that B = A. To this end, let f, g ∈ D. If Λn contains the
support of f then Anf = πΛnZπ

?
ΛnZAf . Therefore, if Λn also contains the

support of g then

〈Anf, g〉 = 〈πΛnZπ
?
ΛnZAf, πΛnZπE2Λnψ〉 = 〈π?ΛnZAf, πE2Λnψ〉 = 〈Af, g〉.

Since Anf strongly converges to Bf we have 〈Af, g〉 = 〈Bf, g〉 for all f
and g in D. Since D is dense in H the equality B = A is indeed true. As a
consequence, An converges to A in L(H2,H) and the proof is finished.

Proposition 2.5 also implies the following result.

Corollary 2.3. For all A and B in W2 with finite supports,

(2.17) ‖[A,B]‖L(H2,H) ≤ C‖B‖W2

∑
λ∈σ(B)

1≤j+k≤2

‖(adPλ)j(adQλ)kA‖L(H)

where C does not depend on any of the parameters.

Proof. We make use of the operator ρFE for F = σ(A) ∪ σ(B) and
E = F \ σ(B). It is known that ρFE(A) commutes with B since its support
does not intersect σ(B). Hence

‖[A,B]‖L(H2,H) = ‖[A− ρFE(A), B]‖L(H2,H)

≤ [‖B‖L(H2) + ‖B‖L(H)]‖A− ρFE(A)‖L(H2,H).

From Proposition 2.1,

‖B‖L(H2) + ‖B‖L(H) ≤ C‖B‖W2 .
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Using Proposition 2.5, we find a constant C > 0, which does not depend on
any of the parameters, such that (2.17) is satisfied.

3. Perturbation potentials and commutators. We have to express
the perturbation potentials Vλ and Vλµ, satisfying hypotheses (H1) and (H2)
of Section 1, as integrals of Weyl operators, and to verify precisely that,
under (H1) and (H2), these integrals are convergent and define operators
in Sobolev spaces. We shall do the same for the commutators of Vλµ with
elements of W1, or with Segal operators, and for iterated commutators.
These norm estimates will be used in the following sections.

Partial Sobolev spaces. The Sobolev spaces defined in Section 2 are
not Hilbert spaces. Nevertheless, for any finite subset like Λn, the space
HkΛn can be endowed with a Hilbert space norm which is equivalent, for
each fixed n, to the norm of Section 2. As an example, for k = 1, one may
set

‖f‖2H1
Λn

=
∑
λ∈Λn
j=0,1

‖Q(j)
λ f‖2HΛn .

For all n, these norms and those of Section 2 are equivalent but the constant
involved in the inequality depends on n.

Let us choose an orthonormal basis (ϕα)α≥0 in the Hilbert space HΛcn .
We define a map Ψα from HΛn into H by Ψα(f) = f ⊗ϕα. The adjoint map
from H to HΛn is denoted by Ψ?α. For all f in H we have

‖f‖2 =
∑
α≥0

‖Ψ?αf‖2HΛn .

Then we define the space Hk(Λn) as the set of all f such that the following
norm is finite:

(3.1) ‖f‖2Hk(Λn) =
∑
α≥0

‖Ψ?αf‖2HkΛn
.

Thus, Hk ⊂ Hk(Λn) ⊂ H if k ≥ 0. When k = 1, an element f of H is in
H1 if it belongs to H1(Λn) and if, for all λ ∈ Λcn, one has Q(j)

λ f ∈ H, and
the sequence ‖Q(j)

λ ‖H (λ ∈ Z, j = 0, 1) are bounded. This property may be
used only for fixed n.

Partial Sobolev spaces with negative order. Let H−k(Λn) be the
anti-dual of Hk(Λn) (k = 1, 2). Thus

H2(Λn) ⊂ H1(Λn) ⊂ H ⊂ H−1(Λn) ⊂ H−2(Λn).

If an operator Φ ∈ L(H1
Λn
,H) satisfies 〈Φf, g〉 = 〈f, Φg〉 for all f and g

in H1
Λn

, where 〈·, ·〉 is the scalar product in H, then, for all f ∈ H, the
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map g 7→ 〈f, Φg〉 is an element of H−1(Λn) denoted here by Φf . Thus,
the operator Qλ is bounded from Hk(Λn) into Hk−1(Λn) (−1 ≤ k ≤ 2,
λ ∈ Λn). We shall check that similar considerations are also valid for the
operators i[Pλ, VΛn ]. The commutator of these two types of operators is in
L(H1(Λn),H−1(Λn)).

Perturbation potentials and Weyl operators. If ξ is a real sequence
in `2(Z) with finite support then the Segal operator Π(ξ, 0) defined in (2.1) is
also written as

∑
ξλQλ. Since the hypotheses on the perturbation potentials

involve only the derivatives of order 2 and 3, the following function will
appear below:

(3.2) x 7→ F (x) = eix − 1− ix = i2x2
1�

0

(1− θ)eiθx dθ.

Let Vλ1λ2 (λ1 6= λ2) be multiplication by a real function vλ1λ2 on R2. It is
an unbounded operator in L2(R2) or, under the identification of these two
spaces, in H{λ1λ2}. If vλ1λ2 satisfes the hypothesis (H1), then

Vλ1λ2 = vλ1λ2(0)I +
∑

1≤j≤2

(∂λjvλ1λ2)(0)Qλj(3.3)

+ (2π)−2
�

R2

v̂λ1λ2(ξ)F (ξλ1Qλ1 + ξλ2Qλ2) dξ.

Under the hypothesis (H1) the integral is convergent and defines a bounded
operator from H2 to H.

Commutators. In order to study the commutators of Vλ1λ2 with other
operators, we shall use the following relations, valid for any operators X and
A in a Banach space, and for the function F of (3.2):

(3.4) [eiX , A] = i

1�

0

eiθX [X,A]ei(1−θ)X dθ,

(3.5) [F (X), A] = i[X,A](eiX − I) + i2
1�

0

(1− θ)eiθX [X, [X,A]]ei(1−θ)Xdθ.

Equality (3.5) is first applied with X = ξλ1Qλ1 + ξλ2Qλ2 and A = Pλj
(j = 1, 2). Using equality (3.3) for Vλ1λ2 we obtain

[Pλj , Vλ1λ2 ] = −i(∂λjvλ1λ2)(0)I +
∑

1≤k≤2

Ajkλ1λ2
Qλk ,

Ajkλ1λ2
= (2π)−2

�

R2×[0,1]

v̂λ1λ2(ξ)ξλjξλke
iθ(ξλ1

Qλ1
+ξλ2

Qλ2
) dξ dθ.
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Under the assumption (H1), this integral converges and defines an operator
Ajkλ1λ2

in L(H), with O(e−γ0|λ1−λ2|) norm. Each single site operator is sim-
ilarly treated. Note that the integrals are then integrals on R. We deduce
the following proposition concerning the potential VΛn defined in (1.1) and
(1.9):

Proposition 3.1. Under the hypotheses (H1) and (H2), one may write

(3.6) [Pλ, VΛn ] = −ia(n)
λ +

∑
µ∈Λn

W
(n)
λµ Qµ

where a(n)
λ is a real constant and W (n)

λµ is a bounded operator in H. Moreover,
there exists C1 > 0, independent of λ, µ and n, such that

(3.7) |a(n)
λ | ≤ C1, ‖W (n)

λµ ‖L(H) ≤ C1e
−γ0|λ−µ|.

We can also apply the commutation formula (3.5), still setting X =
ξλ1Qλ1 + ξλ2Qλ2 , but with A ∈ W2. Inserting the expression (3.3) for Vλ1λ2

and using hypothesis (H1), we obtain the following proposition.

Proposition 3.2. For all A in W2, and all λ and µ in Z, the com-
mutator [A, Vλµ] is in L(H1,H). There is C > 0, independent of all the
parameters, such that

(3.8) ‖[A, Vλµ]‖L(H1,H) ≤ Ce−γ0|λ−µ|
∑

1≤j+k≤2

‖(adQλ)j(adQµ)kA]‖L(H).

Double commutators. If A, B and X are three operators such that
[X,B] is the identity operator up to a multiplicative factor, and if F is the
function given by (3.2), then (3.4) and (3.5) imply that

(3.9) [[F (X), B], A] = i2[X,B]
1�

0

eiθX [X,A]ei(1−θ)X dθ.

This formula is applied with X = ξλ1Qλ1 + ξλ2Qλ2 , B = Pλj (j = 1, 2) and
A ∈ L(H) (in particular A ∈ W1). Inserting the expression (3.3) for Vλ1λ2

and using (H1), one gets

(3.10) [[Vλ1λ2 , Pλj ], A] =
∑

1≤k≤2

Sjkλ1λ2
([A,Qλk ])

where we have set, for all Φ in L(H2(Λn),H−2(Λn)),

(3.11) Sjkλ1λ2
(Φ) = (2π)−2

�

R2×[0,1]

v̂λ1λ2(ξ) ξλjξλke
iθX(ξ)◦Φ◦ei(1−θ)X(ξ) dξ dθ

with the notation X(ξ) = ξλ1Qλ1 + ξλ2Qλ2 .
Next we shall deduce the following proposition.
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Proposition 3.3. For all λ and µ in Λn (n ≥ 1), there exists a con-
tinuous linear map Kλµ from L(H2(Λn), H−2(Λn)) into itself, leaving the
subspaces L(H1(Λn),H−1)(Λn) and L(H) invariant, such that, for all A in
L(H),

(3.12) [A, [Pλ, VΛn ]] =
∑
µ∈Λn

Kλµ([A,Qµ]).

Moreover, when restricted to L(H), Kλµ is in L(L(H)), and there exists
C0 > 0, independent of n, λ and µ, such that

(3.13) ‖Kλµ‖L(L(H)) ≤ C0e
−γ0|λ−µ|.

Proof. The operator Φ 7→Sjkλ1λ2
(Φ) maps L(H2(Λn),H−2(Λn)) into itself.

It also maps L(H) into itself, with norm≤C0e
−γ0|λ−µ|. For one site poten-

tials Vλ, we define similar operators Sλ such that [[Vλ, Pλ], A]=Sλ([A,Qλ])
for all A ∈ W1. We then set, for all λ and µ in Λn such that λ 6= µ,

K
(n)
λµ (Φ) =

{
S12
λµ(Φ) + S21

µλ(Φ) if |λ− µ| ≥ 2,
−bΦ+ S12

λµ(Φ) + S21
µλ(Φ) if |λ− µ| = 1,

and if λ = µ,

K
(n)
λλ (Φ) = aΦ+ Sλ(Φ) +

∑
µ∈Λn
µ6=λ

(S11
λµ(Φ) + T 22

µλ(Φ)).

The equality (3.12) and the estimate (3.13) follow.

In the next proposition, we shall define a constant Sγ which gives, in
(1.20), an upper bound for the Lieb–Robinson group velocity. This will be
proved in Section 8.

Proposition 3.4. Under the hypotheses (H1) and (H2), for all γ in
(0, γ0) (or in (0,∞) in the case of interaction with nearest neighbors), there
exists Sγ > 0 such that, for all n, and all λ and ν in Λn,∑

µ∈Λn

‖Kλµ‖L(L(H))e
−γ|µ−ν| ≤ Sγe−γ|λ−ν|,∑

µ∈Λn

‖Wλµ‖L(H)e
−γ|µ−ν| ≤ Sγe−γ|λ−ν|,

where the Kλµ are the operators constructed in Proposition 3.3 and where
the Wλµ are those of Proposition 3.1.

Triple commutators. If X, A, B, C are operators such that [X,B]
and [X,C] are equal to the identity operator up to a multiplicative factor,
and if F is the function defined by (3.2), then we deduce from (3.9) and
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(3.4) that[
[[F (X), B], A], C

]
= i2[X,B]

1�

0

eiθX [[X,A], C]ei(1−θ)Xdθ

+ i3[X,B][X,C]
1�

0

eiθX [X,A]ei(1−θ)X dθ.

We shall apply this formula with X = ξλ1Qλ1 + ξλ2Qλ2 , B = Pλj (j = 1, 2),
A ∈ W2 and C being a Segal operator. Inserting the expression of Vλ1λ2

given in (3.3) and using (H1), we obtain[
[[Vλ1λ2 , Pλj ], A], C

]
=
∑

1≤k≤2

(
Sjkλ1λ2

([[A,Qλk ], C]) + T jkλ1λ2
([[A,Qλk ], C])

)
where Sjkλ1λ2

(Φ) is defined in (3.11) and T jkλ1λ2
(Φ,C) is defined by

T jkλ1λ2
(Φ,C) =

�

R2×[0,1]

v̂λ1λ2(ξ)ξλjξλk [X(ξ), C]eiθX(ξ)Φei(1−θ)X(ξ) dξ dθ

(2π)2
.

If C is a Segal operator (a linear combination of Pλ and Qλ) then [X(ξ), C]
is a constant and the above integral converges by (H1). It is at this point
that the hypothesis “|ξ|3v̂λµ(ξ) belongs to L1(R2)” is involved. We proceed
similarly for all single site operators Vλ. Summing up as in Proposition 3.3,
one obtains the next result:

Proposition 3.5. For all λ and µ in Λn (n ≥ 1), and every Segal
operator Ψ , there exists a map Φ 7→ Rλµ(Φ, Ψ) from L(H1(Λn),H−1(Λn))
into itself such that, for all A ∈ L(H) supported in Λn,[

[A, [Pλ, VΛn ]], Ψ
]

=
∑
µ∈Λn

(
Kλ,µ([[A,Qµ], Ψ ]) +Rλ,µ([A,Qµ], Ψ)

)
where Φ 7→ Kλ,µ(Φ) is the map of Proposition 3.3. If Φ is in L(H) then
Rλµ(Φ, Ψ) is in L(H). One has Rλµ(Φ,Qρ) = 0 for all ρ. Also, Rλµ(Φ,Pρ)
= 0 except when the set {λ, µ, ρ} has only two distinct elements (λ = µ, or
λ = ρ, or µ = ρ). In the latter case,

‖Rλµ(Φ,Pρ)‖L(H) ≤ C0e
−γ0|λ−µ|‖Φ‖L(H) if λ 6= µ,

‖Rλµ(Φ,Pρ)‖L(H) ≤ C0e
−γ0|λ−ρ|‖Φ‖L(H) if λ = µ.

4. Evolution of the position and momentum operators. Using
the Fock space notations, the Hamiltonian HΛn in (1.1) is written as

(4.1) HΛn =
∑
λ∈Λn

[
P 2
λ +

a

2
Q2
λ

]
− b

n−1∑
λ=−n

QλQλ+1 + V pert
Λn
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where the operator V pert
Λn

is expressed as the sum (1.9). The terms in the
sum satisfy (H1) and (H2); recall that these two hypotheses are analyzed in
Section 3. Let us start by giving the domain of self-adjointness of HΛn .

Proposition 4.1. In the Hilbert space HΛn, the operator HΛn is self-
adjoint with domain H2

Λn
. The operator eitHΛn is bounded in HkΛn (k =

0, 1, 2). The operator eitHΛn ⊗IΛcn is bounded in Hk(Λn) defined in Section 3
(−2 ≤ k ≤ 2).

Proof. We know that HΛn is naturally identified with L2(RΛn) =
L2(R2n+1) in such a way that the operators Pλ and Qλ become

Pλ =
1
i

∂

∂xλ
, Qλ = xλ.

The spaces HkΛn are then identified with the usual spaces Bk of the the-
ory of globally elliptic operators (cf. Helffer [HE]). When V pert

Λn
= 0, the

operator HΛn is a Schrödinger operator, where the potential is a positive
definite quadratic form (if a > 2b > 0). In this case, it is well-known that
HΛn is self-adjoint with domain B2 = H2

Λn
. Let us show that the addition

of V pert
Λn

does not affect this result. With the preceding identification and
under our hypotheses, Vλ and Vλµ are multiplications by functions vλ and
vλµ with second-order derivatives going to 0 at infinity. (These functions are
the Fourier transforms of functions in L1(R) or in L1(R2).) Consequently,
the functions vλ(xλ)/|xλ|2 and vλµ(xλ, xµ)/[|xλ|2 + |xµ|2] go to 0 at infinity.
The above proposition thus follows from Kato–Rellich’s theorem. As a con-
sequence, eitHΛn is a well-defined bounded operator in H and in the domain
of HΛn , that is, in H2

Λn
. By interpolation it is also bounded in H1

Λn
. The last

statement of the proposition comes from (3.1) if 0 ≤ k ≤ 2 and is deduced
by duality if k ≤ 0.

Consequently, if A ∈ L(Hk(Λn),Hk′(Λn)), then the operator

(4.2) α
(t)
Λn

(A) = (eitHΛn ⊗ I) ◦A ◦ (e−itHΛn ⊗ I)

is also in L(Hk(Λn),Hk′(Λn)). In particular, α(t)
Λn

(Q(j)
λ ) ∈ L(H1(Λn),H)

(λ ∈ Λn).

Proposition 4.2. For all λ and µ in Λn, there exist C1 maps t 7→
A

(n)
λµ (t), t 7→ B

(n)
λµ (t), and t 7→ R

(n)
λ (t) from R into L(H) such that (omitting

the superscript n in the expressions)

α
(t)
Λn

(Qλ) =
∑
µ∈Λn

(Aλµ(t)Qµ +Bλµ(t)Pµ) +Rλ(t),(4.3)

α
(t)
Λn

(Pλ) =
∑
µ∈Λn

(A′λµ(t)Qµ +B′λµ(t)Pµ) +R′λ(t).(4.4)



628 L. AMOUR ET AL.

Moreover, for all γ in (0, γ0), and all M >
√
Sγ (where Sγ is the constant

of Proposition 3.4), there exists C > 0 such that

‖Aλµ(t)‖+ ‖Bλµ(t)‖+ ‖A′λµ(t)‖+ ‖B′λµ(t)‖ ≤ CeM |t|e−γ|λ−µ|,(4.5)

‖Rλ(t)‖+ ‖R′λ(t)‖ ≤ CeM |t|.(4.6)

Proof. First step. We shall study the differential system satisfied by

Qλ(t) = α
(t)
Λn

(Qλ), Pλ(t) = α
(t)
Λn

(Pλ).

One observes that t 7→ Qλ(t) and t 7→ Pλ(t) are C1 functions from R into
L(H1(Λn),H) satisfying

Q′λ(t) = Pλ(t), P ′λ(t) = −iα(t)
Λn

([Pλ, VΛn ]).

With the operators W (n)
λµ and the constant a(n)

λ of Proposition 3.1, it follows
that

P ′λ(t) = −a(n)
λ − i

∑
µ∈Λn

α
(t)
Λn

(WλµQµ).

We define an operator in L(H) by setting

(4.7) W̃λµ(t) = α
(t)
Λn

(W (n)
λµ ).

With these notations, the preceding system is written as

(4.8) Q′λ(t) = Pλ(t), P ′λ(t) = −a(n)
λ − i

∑
µ∈Λn

W̃λµ(t) ◦Qµ(t).

Thus, t 7→ (Qλ(t), Pλ(t)) is the unique C1 map from R into L(H1(Λn),H)
which solves (4.8) and satisfies Qλ(0) = Qλ and Pλ(0) = Pλ.

Second step. We shall now construct matrices Aλµ(t), . . . such that the
right-hand side of (4.3) is also a solution to the same system (4.8) and
satisfies the same initial data. First, we can find an operator-valued matrix
(A0

λµ(t), A1
λµ(t)) in L(H) which solves

d

dt
A0
λµ(t) = A1

λµ(t),
d

dt
A1
λµ(t) = −i

∑
ν∈Λn

W̃λν(t)A0
νµ(t),(4.9)

A0
λµ(0) = δλµI, A1

λµ(0) = 0.

Indeed, from Propositions 3.1 and 3.4 one sees that the hypotheses in Propo-
sition B.1 (Appendix B) are satisfied for all γ ∈ (0, γ0). Thus, there exists a
solution of (4.9) satisfying the above initial condition, and also, if M >

√
Sγ ,

(4.10) ‖Ajλµ(t)‖L(H) ≤ C(M,γ)eM |t|e−γ|λ−µ|.

Analogously, we construct an operator-valued matrix (B0
λµ(t), B1

λµ(t)) which
solves the same system (4.9), satisfies the same estimates (4.10) and the
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following initial conditions:

B0
λµ(0) = 0, A1

λµ(0) = δλµI.

From Remark 2 in Appendix B, one may find operators (R0
λ(t), R1

λ(t)) in
L(H) which solve

d

dt
R0
λ(t) = R1

λ(t),
d

dt
R1
λ(t) = −i

∑
ν∈Λn

W̃λν(t)R0
ν(t) + ia

(n)
λ ,

R0
λ(0) = R1

λ(0) = 0,

‖Rjλ(t)‖L(H) ≤ C(M,γ)eM |t|
∑
µ∈Λn

e−γ|λ−µ||aµ|, j = 0, 1.

We define operators in L(H1(Λn),H) by

Q̃jλ(t) =
∑
µ∈Λn

[Ajλµ(t)Qµ +Bj
λµ(t)Pµ] +Rjλ(t), j = 0, 1.

These functions satisfy the same system (4.8) as Qjλ(t), with the same initial
conditions Q̃0

λ(0) = Qλ, Q̃1
λ(0) = Pλ. Uniqueness shows Q̃0

λ(t) = Qλ(t) and
Q̃1
λ(t) = Pλ(t), thus the equalities (4.3) and (4.4) hold and the estimates

(4.5) and (4.6) are valid.

Example (The cyclic quadratic case). In the case of a positive definite
quadratic form potential (without perturbation potentials), it is well-known
that the equalities (4.3) and (4.4) are valid with Rλ(t) = 0 and with the
operators Aλµ(t) and Bλµ(t) being real numbers. The following classical
proposition summarizes this situation:

Proposition 4.3. In the case where the potentials Vλ and Vλµ (perturba-
tion potentials) vanish, the operators α(t)

Λn
(Qλ) and α(t)

Λn
(Pλ) satisfy equalities

(4.2) and (4.3) where R(n)
λ (t) = 0 and the A(n)

λµ (t) and B(n)
λµ (t) are real num-

bers. The matrices A(n)(t) and B(n)(t) are related to the matrix Wn of the
quadratic form V quad

Λn
in the canonical basis by the equalities

A(n)(t) = cos(t
√
Wn), B(n)(t) = −sin(t

√
Wn)√

Wn
.

One may estimate the matrix elements Aλµ(t) and Aλµ(t) using Proposi-
tion 4.2. However, in some cases, the inequalities of Proposition 4.2 together
with the Lieb–Robinson inequalities can be strongly improved and explic-
itly written down. This is precisely the case if the perturbation potential
vanishes, and if the quadratic potential takes the following form (with an
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interaction between the two ends of the linear chain):

V cycl
Λn

(x) =
a

2
|x|2 − b

n−1∑
λ=−n

xλxλ+1 − bxnx−n.

In that case, we can make the estimates of Proposition 4.2 more precise
if the distance d(λ, µ) = |λ − µ| is replaced by the cyclic distance on Λn,
dn(λ, µ) = d(λ− µ, (2n+ 1)Z).

These improved estimates follow on from [N-R-S-S] in the cyclic quadratic
case. Let us give here a simplified proof of a perhaps less precise type of
estimates.

In the cyclic quadratic case, the analysis of chains of oscillators involves
the dispersion relations ω(θ) =

√
a− 2b cos θ (cf. Cohen-Tannoudji [C-T]).

It is natural to give a corresponding complex expression by setting

(4.11) Ω(z) =
√
a− b(z + z−1).

This function is analytic in C \ {(−∞, z1] ∪ [z2, 0]} where z1 and z2 are the
roots of bz2 − az + b = 0. Note, however, that the function |ImΩ(z)| is well
defined on C \ {0}. Set, for all γ > 0,

(4.12) M(γ) = sup
|z|=eγ

|ImΩ(z)|.

This function is well defined on C \ {0}.
Proposition 4.4. Under the above hypotheses, for all γ > 0 there exists

C(γ) > 0, independent of n, such that the matrices A(n)(t) and B(n)(t) of
Proposition 4.3 satisfy

|A(n)
λµ (t)|+ |B(n)

λµ (t)|+
∣∣∣∣ ddtA(n)

λµ (t)
∣∣∣∣+
∣∣∣∣ ddtB(n)

λµ (t)
∣∣∣∣ ≤ C(γ)e|t|M(γ)e−γdn(λ,µ)

where M(γ) is defined in (4.12) and dn(λ, µ) = d(λ− µ, (2n+ 1)Z).

Proof. The matrix Wn of the quadratic form V cycl
Λn

, and therefore all the
matrices A(n)(t) and B(n)(t), are functions of the cyclic shift operator Sn
defined in RΛn by

Snej =
{
ej+1 if −n ≤ j < n,
e−n if j = n.

More precisely, Wn = aI + bSn + bS−1
n and

A(n)(t) = f(Sn, t), B(n)(t) = g(Sn, t), C(n)(t) = h(Sn, t),

where we have set, using the function Ω(z) defined in (4.11),

(4.13)
f(z, t) = cos(tΩ(z)), g(z, t) =

sin(tΩ(z))
Ω(z)

,

h(z, t) = − sin(tΩ(z))Ω(z).
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These functions are analytic on C \ {0}. The proof uses the following ele-
mentary lemma:

Lemma 4.5. Let S be a unitary operator in a Hilbert space H. Let f(z, t)
be the function defined in (4.11) and (4.13) where a > 2|b| > 0. Then one
can write, for all t ∈ R,

f(S, t) =
∑
k∈Z

ck(t)Sk.

Moreover, for all γ > 0, t ∈ R and k ∈ Z,

|ck(t)| ≤ e−γ|k|
1

2π

2π�

0

|f(eγeiθ, t)| dθ.

The same result holds for the functions g and h defined in (4.13).

End of proof of Proposition 4.4. Since S2n+1
n = I, the sum in Lemma

4.5 can be written as a finite sum, and

A(n)(t) = f(Sn, t) =
2n∑
k=0

ak(t)Skn, ak(t) =
∑
p∈Z

ck+p(2n+1)(t),

where the cj(t) are the coefficients of Lemma 4.5. Consequently, if −n ≤
λ ≤ µ ≤ n and γ > 0 then

|A(n)
λµ (t)| = |〈f(Sn, t)eλ, eµ〉| = |aµ−λ(t)| ≤

∑
p∈Z
|cµ−λ+p(2n+1)(t)|

≤
[∑
p∈Z

e−γ|µ−λ+p(2n+1)|
] 1

2π

2π�

0

|f(eγeiθ, t)| dθ.

There exist C1(γ) and C2(γ), independent of n, such that∑
p∈Z

e−γ|µ−λ+p(2n+1)| ≤ C1(γ)e−γdn(λ,µ),

1
2π

2π�

0

|f(eγeiθ, t)| dθ ≤ C2(γ)e|t|M(γ).

where M(γ) is defined in (4.12). As a consequence,

|A(n)
λµ (t)| ≤ C1(γ)C2(γ)e|t|M(γ)e−γdn(λ,µ).

Similar estimates for the matrix elements B(n)
λµ (t) together with their deriva-

tives can be obtained. The conclusion of Proposition 4.4 follows.

5. Evolution of the commutators. From Proposition 4.1, the com-
mutators [A,α(t)

Λn
(Qλ)] and [A,α(t)

Λn
(Pλ)] are defined as operators mapping

H1(Λn) into H−1(Λn) for all A in L(H) supported in Λn, and all t ∈ R.
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Proposition 5.1. For all A ∈ W1 supported in Λn and all t ∈ R the
commutators [A,α(t)

Λn
(Q(j)

λ )] are bounded in H (λ ∈ Λn, 0 ≤ j ≤ 1). For all
γ in (0, γ0) and all M >

√
Sγ there exists C(M,γ) > 0 (independent of n)

such that

(5.1) ‖[A,α(t)
Λn

(Q(j)
λ )]‖L(H) ≤ C(M,γ)eM |t|

∑
µ∈Λn
0≤k≤1

e−γd(λ,µ)‖[A,Q(k)
µ ]‖L(H).

Proof. First step. Assuming first that A is only in L(H) we shall study
the differential system satisfied by the functions

(5.2) Φ
(j)
λ (t) = [A,α(t)

Λn
(Q(j)

λ )], 0 ≤ j ≤ 1.

The Φjλ’s are C1 maps from R into L(H1(Λn),H−1(Λn)) and satisfy

d

dt
Φ0
λ(t) = Φ1

λ(t),

d

dt
Φ1
λ(t) = −i[A,α(t)

Λn
([Pλ, VΛn ])] = −iα(t)

Λn
([α(−t)

Λn
(A), [Pλ, VΛn ]]).

Using the operators Kλµ of Proposition 3.3, we have

[α(−t)
Λn

(A), [Pλ, VΛn ]] =
∑
µ∈Λn

Kλµ([α(−t)
Λn

(A), Qµ]).

Next define K̃λµ(t), an operator mapping L(H1(Λn),H−1(Λn)) into itself,
by

(5.3) K̃λµ(t)(Φ) = α
(t)
Λn

(Kλµ(α(−t)
Λn

Φ)), ∀Φ ∈ L(H1(Λn),H−1(Λn)).

With these notations the system becomes

(5.4)
d

dt
Φ0
λ(t) = Φ1

λ(t),
d

dt
Φ1
λ(t) = −i

∑
µ∈Λn

K̃λµ(t)(Φ0
µ(t)).

Summing up, for all A in L(H) supported in Λn, the functions Φjλ(t) defined
in (5.2) (λ ∈ Λn) are C1 from R to L(H1Λn),H−1(Λn)). These maps are
bounded independently of t and satisfy (5.4). This is the unique solution to
(5.4) having these properties together with

(5.5) Φ0
λ(0) = [A,Qλ], Φ1

λ(0) = [A,Pλ].

Second step. One can find operator-valued matrices (A0
λµ(t), A1

λµ(t)) in
L(L(H)) satisfying

d

dt
A0
λµ(t) = A1

λµ(t),
d

dt
A1
λµ(t) = −i

∑
ν∈Λn

K̃λν(t) ◦A0
νµ(t),(5.6)

A0
λµ(0) = δλµI, A1

λµ(0) = 0.(5.7)
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In (5.6) the composition is now the composition in L(L(H)), and in (5.7)
the identity operator is the identity in L(L(H)). Indeed, for all γ in (0, γ0),
the hypotheses in Proposition B.1 are satisfied, by Proposition 3.4. If γ is
in (0, γ0) and M >

√
Sγ , there exists C(M,γ) such that

(5.8) ‖Ajλµ(t)‖L(L(H)) ≤ C(M,γ)e−γ|λ−µ|.

We can find, by a similar construction, operator-valued matrices B0
λµ(t) and

B1
λµ(t) of L(L(H)) satisfying the same differential system (5.6) together with

the same estimates (5.8) and the new initial conditions

(5.9) B0
λµ(0) = 0, B1

λµ(0) = δλµI.

Suppose now that A belongs to W1 and is supported in Λn. The operators
[A,Qλ] and [A,Pλ] are in L(H). We then define the operators in L(H) by

Ψ jλ(t) =
∑
µ∈Λn

(
Ajλµ(t)([A,Qµ]) +Bj

λµ(t)([A,Pµ])
)
, j = 0, 1.

These functions, taking values in L(H), satisfy the same differential system
(5.4) with the same initial conditions (5.5) as the functions Φjλ(t) (being a
priori in L(H1(Λn),H−1(Λn))). Uniqueness shows that Φjλ(t) = Ψ jλ(t). The
functions Φjλ(t) defined in (5.2) therefore have the stated properties.

For all λ and µ in Λn the commutator [Q(j)
λ , α

(t)
Λn

(Q(k)
µ )] (0 ≤ j, k ≤ 1) is

bounded from H1(Λn) into H−1(Λn). We shall show that it is an element of
L(H) and we shall estimate its norm.

Proposition 5.2. Under the hypotheses (H1) and (H2) of Section 1,
for all λ and µ in Λn, the commutator [Q(j)

λ , α
(t)
Λn

(Q(k)
µ )] (0 ≤ j, k ≤ 1) is a

bounded operator in H. Moreover, for all γ in (0, γ0) and M >
√
Sγ, there

exists C(M,γ) > 0 (independent of n, t, λ and µ) such that

‖[Q(j)
λ , α

(t)
Λn

(Q(k)
µ )]‖ ≤ C(M,γ)eM |t|e−γd(λ,µ), 0 ≤ j, k ≤ 1.

Proof. Using the matrices Ajλµ(t) and Bj
λµ(t) (j = 0, 1) defined in the

second step of the proof of Proposition 5.1 one shows that

[Pλ, α
(t)
Λn

(Q(j)
µ )] = Ajλµ(t)(I), [Qλ, α

(t)
Λn

(Q(j)
µ )] = Bj

λµ(t)(I), 0 ≤ j ≤ 1.

The proof uses the same points as those in Proposition 5.1. Then Proposition
5.2 follows from the estimates on these matrices in Proposition B.1.

Let us now consider commutators of length two.

Proposition 5.3. If A is in W2, then the commutators [[α(t)
Λn

(A), Q(j1)
λ1

],

Q
(j2)
λ2

] are in L(H) (t ∈ R, λ1 and λ2 in Λn, 0 ≤ j1, j2 ≤ 1). Moreover, if γ
is in (0, γ0) and M > 2

√
Sγ, then there exists C = C(M,γ) such that
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‖[[α(t)
Λn

(A), Q(j1)
λ1

], Q(j2)
λ2

]‖L(H)

≤ CeM |t|
[ ∑

(µ1,µ2)∈Λ2
n

0≤k1,k2≤1

e−γ[|λ1−µ1|+|λ2−µ2|]‖[[A,Q(k1)
µ1

], Q(k2)
µ2

]‖

+
∑
ν∈Λn
0≤k≤1

e−γd(ν,{λ1,λ2})‖[A,Q(k)
ν ]‖

]
.

Proof. First step. Take A in L(H). We show that the functions defined
for all real t by

(5.10) Φj1,j2λ1λ2
(t) = [[A,α(t)

Λn
(Q(j1)

λ1
)], α(t)

Λn
(Q(j2)

λ2
)], 0 ≤ j1, j2 ≤ 1,

are C1 from R into L(H2(Λn),H−2(Λn)) and satisfy the following differen-
tial system where the operators K̃λµ(t) are defined in (5.3) and where the
operators Rλµ are given by Proposition 3.5:

d

dt
Φ00
λ1λ2

(t) = Φ01
λ1λ2

(t) + Φ10
λ1λ2

(t),(5.11)

d

dt
Φ10
λ1λ2

(t) = Φ11
λ1λ2

(t)− i
∑
µ1∈Λn

K̃λ1µ1(t)(Φ00
µ1λ2

(t)),(5.12)

d

dt
Φ01
λ1λ2

(t) = Φ11
λ1λ2

(t)− i
∑
µ2∈Λn

K̃λ2µ2(t)(Φ00
λ1µ2

(t)),(5.13)

d

dt
Φ11
λ1λ2

(t) = − i
∑
µ1∈Λn

K̃λ1µ1(t)(Φ01
µ1λ2

(t))(5.14)

− i
∑
µ2∈Λn

K̃λ2µ2(t)(Φ10
λ1µ2

(t)) + Fλ1,λ2(t),

Fλ1,λ2(t) = −
∑
µ1∈Λn

α
(t)
Λn

(Rλ1µ1([α(−t)
Λn

(A), Qµ1 ], Pλ2)).(5.15)

The system of functions Φ10
λ1µ2

(t) is the unique solution to the differential
system (5.11)–(5.15) satisfying the initial conditions

(5.16) Φj1j2λ1λ2
(0) = [[A,Q(j1)

λ1
], Q(j2)

λ2
], 0 ≤ j1, j2 ≤ 1.

Let us give more details for the proof of (5.14). By the differential system
satisfied by α(t)

Λn
(Qλ) and α

(t)
Λn

(Qµ) (see the first step of the proof of Propo-
sition 4.2), one observes that

d

dt
Φ11
λ1λ2

(t) = − iα(t)
Λn

(
[[α(−t)

Λn
(A), [Pλ1 , VΛn ]], Pλ2 ]

+ [[α(−t)
Λn

(A), Pλ1 ], [Pλ2 , VΛn ]]
)
.

Using the operators Kλµ of Proposition 3.3, one gets
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[
[α(−t)
Λn

(A), Pλ1 ], [Pλ2 , VΛn ]
]

=
∑
µ2∈Λn

Kλ2µ2([[α(−t)
Λn

(A), Pλ1 ], Qµ2 ])

Also using the operators Rλµ of Proposition 3.5, one sees that[
[α(−t)
Λn

(A), [Pλ1 , VΛn ]], Pλ2

]
=

∑
µ1∈Λn

(
Kλ1µ1([[α(−t)

Λn
(A), Qµ1 ], Pλ2 ])

+Rλ1µ1([α(−t)
Λn

(A), Qµ1 ], Pλ2)
)
.

Equalities (5.14) and (5.15) then follow.

Second step. Suppose now that A is in W2. We shall show that the
operators Fλ1,λ2(t) defined in (5.15) are in L(H) and we shall estimate their
norms. More precisely, we shall show that if γ ∈ (0, γ0) and M >

√
Sγ , then

(5.17) ‖Fλ1,λ2(t)‖L(H) ≤ CeM |t|
∑
ν∈Λn
0≤k≤1

e−γ0|λ1−λ2|−γd(ν,{λ1,λ2})‖[A,Q(k)
ν ]‖.

Indeed, from Proposition 3.5, if λ1 6= λ2, then the sum in (5.15) is reduced
to two terms: with µ1 = λ1 and with µ1 = λ2. In this case,

‖Fλ1,λ2(t)‖L(H)

≤ Ce−γ0|λ1−λ2|(‖[α(−t)
Λn

(A), Qλ1 ]‖L(H) + ‖[α(−t)
Λn

(A), Qλ2 ]‖L(H)).
If λ1 = λ2, then from Proposition 3.5,

‖Fλ1,λ1(t)‖L(H) ≤ C
∑
µ1∈Λn

e−γ0|λ1−µ1|‖[α(−t)
Λn

(A), Qµ1 ]‖L(H).

In view of Proposition 5.1, if M >
√
Sγ then

‖[α(−t)
Λn

(A), Qµ1 ]‖L(H) = ‖[A,α(t)
Λn

(Qµ1)]‖L(H)

≤ C(M,γ)eM |t|
∑
ν∈Λn
0≤k≤1

e−γ|µ1−ν|‖[A,Q(k)
ν ‖L(H),

and the estimates (5.17) are easily deduced.

Third step. If A is in W2, then the initial data (5.16) are in L(H). From
the remarks below Proposition B.1, if γ is in (0, γ0), the system (5.11)–(5.14)
has a solution Ψ j1j2λ1λ2

(t) in L(H) satisfying (5.16). Moreover, if M > 2
√
Sγ ,

there exists C(M,γ) such that

‖Ψ j1j2λ1λ2
(t)‖ ≤ C(M,γ)eM |t|

∑
(µ1,µ2)∈Λ2

n
0≤k1,k2≤1

e−γ(|λ1−µ1|+|λ2−µ2|)‖[[A,Q(k1)
µ1

], Q(k2)
µ2

]‖

+ C(M,γ)
∑

(µ1,µ2)∈Λ2
n

e−γ(|λ1−µ1|+|λ2−µ2|)
t�

0

eM |t−s|‖Fµ1,µ2(s)‖ ds.

The conclusion then follows from the estimates of Fµ1,µ2(s) in (5.17).
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6. Evolution for a finite number of sites. From Proposition 4.1,
the operator eitHΛn ⊗ I is bounded in each Hk(Λn). However, the proof of
that proposition might suggest that the norm of this operator could depend
on n. On the contrary, the next proposition provides a bound independent
of n.

Proposition 6.1. The operator eitHΛn⊗I is bounded in Hk (0 ≤ k ≤ 2)
with norm ≤ CkeMk|t| where Ck,Mk > 0 are independent of all the parame-
ters. For all A ∈ L(Hk,H) (k = 1, 2) with finite support, if Λn contains the
support of A, then

(6.1) ‖α(t)
Λn

(A)‖L(Hk,H) ≤ CkeMk|t|‖A‖L(Hk,H).

Proof. Let f ∈ H1. From Proposition 4.2, for all λ ∈ Λn,

‖Qλ(eitHΛn ⊗ I)f‖ = ‖α(−t)
Λn

(Qλ)f‖

≤ ‖Rλ(−t)f‖+
∑
µ∈Λn

(‖A(n)
λµ (−t)Qµf‖+ ‖B(n)

λµ (−t)Pµf‖).

We deduce from (4.5) and (4.6) that if γ ∈ (0, γ0) and M1 >
√
Sγ then

‖Qλ(eitHΛn ⊗ I)f‖ ≤ C1e
M1|t|‖f‖H1

with C1 > 1 independent of n and t. If λ is not in Λn then the same inequality
is valid since Qλ commutes with eitHΛn ⊗ I. We proceed similarly with the
operators Pλ, proving that ‖eitHΛn ⊗ I‖L(H1) ≤ C1e

M1|t|.

Action in H2. For all λ1 and λ2 in Λn we have, from the above,

‖Q(j1)
λ1

Q
(j2)
λ2

(eitHΛn ⊗ I)f‖ = ‖Q(j1)
λ1

(eitHΛn ⊗ I)α(−t)
Λn

(Q(j2)
λ2

)f‖

≤ C1e
M1|t|‖α(−t)

Λn
(Q(j2)

λ2
)f‖H1 .

One sees that

‖Q(k)
µ α

(−t)
Λn

(Q(j2)
λ2

)f‖ ≤ ‖[Q(k)
µ , α

(−t)
Λn

(Q(j2)
λ2

)]f‖+ ‖α(−t)
Λn

(Q(j2)
λ2

)Q(k)
µ f‖

≤ C ′1eM1|t|(‖f‖+ ‖Q(k)
µ f‖H1)

for all µ ∈ Λn.
The above two terms have been estimated using Propositions 5.2 and

5.1 respectively. One deduces (with another constant C2) that

‖Q(j1)
λ1

Q
(j2)
λ2

(e−itHΛn ⊗ I)f‖ ≤ C2e
2M1|t|‖f‖H2 .

The proof is complete.

Theorem 6.2. If A is in Wk with finite support, and Λn contains the
support of A, then α

(t)
Λn

(A) is in Wk (0 ≤ k ≤ 2). Moreover, there exist
constants Ck,Mk > 0, independent of A, n and t, such that

(6.2) ‖α(t)
Λn

(A)‖Wk
≤ CkeMk|t|‖A‖Wk

.
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Proof. The norm in L(H) is conserved by α
(t)
Λn

. By Proposition 5.1, if
A ∈ W1 is supported in Λn and λ ∈ Λn then the commutators of A with
α

(−t)
Λn

(Q(j)
λ ) are bounded operators. Thus, if λ ∈ Λn, the commutators of

α
(t)
Λn

(A) with Q
(j)
λ are bounded operators. Since these commutators vanish

when λ /∈ Λn it follows that α(t)
Λn

(A) is inW1. If γ is in (0, γ0) and M1 >
√
Sγ ,

we see that∑
λ∈Λn
0≤j≤1

‖[α(t)
Λn

(A), Q(j)
λ ]‖ ≤ C(M1, γ)eM |t|

∑
(λ,µ)∈Λ2

n
0≤j,k≤1

e−γd(λ,µ)‖[A,Q(k)
µ ]‖

≤ C1(M1, γ)eM |t|‖A‖W1 sup
µ∈Z

∑
λ∈Z

e−γd(λ,µ).

Consequently, there are C1,M1 > 0 such that (6.2) is valid for k = 1.

Action in W2. Proposition 5.3 shows that the commutators written as
[α(t)
Λn

(A), Q(j1)
λ1

], Q(j2)
λ2

] are bounded operators and vanish if λ1 or λ2 is not

in Λn. Consequently, α(t)
Λn

(A) is in W2. If γ is in (0, γ0) and M2 > 2
√
Sγ

then Proposition 5.3 implies (6.2) for k = 2.

7. Existence of dynamics in the Weyl algebra. The number of
sites will now go to infinity. The proofs of Theorems 1.1 and 1.2 on the
existence of a limit rely on the description of the difference α(t)

Λm
(A)−α(t)

Λn
(A).

Proposition 7.1. There exist C,M, γ > 0 with the following properties.
For all A ∈ W2 with finite support, all integers m and n with 0 < m < n
and such that Λm contains the support σ(A) of A, and all t ∈ R,

(7.1) ‖α(t)
Λm

(A)− α(t)
Λn

(A)‖L(H1,H0) ≤ C‖A‖W2e
M |t|e−γd(σ(A),Λcm).

Proof. For m < n we denote by V inter
mn the potential of interaction be-

tween Λm and Λn \ Λm:

V inter
mn (x) = −bQmQm+1 − bQ−mQ−m−1 +

∑
(λ,µ)∈Emn

Vλµ

where Emn denotes the set of pairs of sites (λ, µ) such that one of the sites
(λ or µ) is in Λm, and the other in Λn \ Λm. For all θ ∈ [0, 1], set

Hmnθ = HΛn − (1− θ)V inter
mn .

One can define a unitary operator by eitHmnθ and set

α
(t)
mnθ(A) = (eitHmnθ ⊗ I)A(e−itHmnθ ⊗ I).

Thus, if A is supported in Λm and m < n then

α
(t)
mn1(A) = α

(t)
Λn

(A), α
(t)
mn0(A) = α

(t)
Λm

(A).
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The function ϕ(t, θ) = ∂
∂θα

(t)
mnθ(A) satisfies

∂ϕ

∂t
= i[Hmnθ, ϕ] + i[V inter

mn , α
(t)
mnθ(A)], ϕ(0, θ) = 0.

Consequently,

∂

∂θ
α

(t)
mnθ(A) = i

t�

0

α
(t−s)
mnθ ([V inter

mn , α
(s)
mnθ(A)]) ds.

One obtains the integral representation

α
(t)
Λn

(A)− α(t)
Λm

(A) = i

t�

0

1�

0

α
(t−s)
mnθ ([V inter

mn , α
(s)
mnθ(A)]) ds dθ.

Applying Proposition 6.1 to the operator Hmnθ which satisfies the same
hypotheses as HΛn , we deduce that there exist C,M > 0 such that

‖α(t)
Λn

(A)− α(t)
Λm

(A)‖L(H1,H0) ≤ C
t�

0

1�

0

eM |t−s|‖[V inter
mn , α

(s)
mnθ(A)]‖L(H1,H) ds dθ

for all (λ, µ) in Emn. Applying Proposition 3.2 to the operator α(s)
mnθ(A)

belonging in W2 we obtain

‖[Vλµ, α
(s)
mnθ(A)]‖L(H1,H0)≤Ce−γ0|λ−µ|

∑
1≤j+k≤2

‖(adQλ)j(adQµ)kα(s)
mnθ(A)‖.

Similarly,

‖[QmQm+1, α
(s)
mnθ(A)]‖L(H1,H0)≤C

∑
1≤j+k≤2

‖(adQm)j(adQm+1)kα(s)
mnθ(A)‖.

Summing on the pairs (λ, µ) in Emn we get

‖[V inter
mn , α

(s)
mnθ(A)]‖L(H1,H0)

≤ C
∑

(λ,µ)∈Emn

e−γ0|λ−µ|
∑

1≤j+k≤2

‖(adQλ)j(adQµ)kα(s)
mnθ(A)‖.

Consequently,

(7.2) ‖α(t)
Λn

(A)− α(t)
Λm

(A)‖L(H1,H0)

≤ C
∑

(λ,µ)∈Emn
1≤j+k≤2

e−γ0|λ−µ|
t�

0

1�

0

eM |t−s|‖(adQλ)j(adQµ)kα(s)
mnθ(A)‖ ds dθ.

Proposition 7.1 then follows from the next lemma, which will also be used
in Section 8.

Lemma 7.2. If γ is in (0, γ0) and M > 2
√
Sγ then there exists C(M,γ)

such that for all n, all disjoint sets E1 and E2 included in Λn, and all A ∈ W2
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supported in E1,∑
(λ1,λ2)∈Λn×E2

1≤α+β≤2

e−γ0|λ1−λ2|‖(adQλ1)α(adQλ2)βα(s)
mnθ(A)‖

≤ C(M,γ)‖A‖W2e
M |s|e−γd(E1,E2).

This lemma can be deduced from Propositions 5.1 and 5.3 applied to
the Hamiltonian Hmnθ. Proposition 7.1 is a consequence of (7.2) and the
lemma, with E1 = σ(A) and E2 = Λn \ Λm.

Proof of Theorems 1.1 and 1.2. From Proposition 7.1 the sequence
α

(t)
Λn

(A) is a Cauchy sequence in L(H2,H) and thus converges in L(H2,H)

to an element, say α(t)(A). By Proposition 6.2, we have ‖α(t)
Λn

(A)‖W2 ≤
CeM |t|‖A‖W2 . By Theorem 1.4 the operator α(t)(A) is in W2 with norm
≤ CeM |t|‖A‖W2 , and for all f ∈ H, the sequence α

(t)
Λn

(A)f strongly con-

verges to α(t)(A)f . The classical continuity of the map t 7→ α
(t)
Λn

(A)f for all
n and all f , together with the above inequalities, shows the continuity of
t 7→ α

(t)
Λn

(A)f .

Extension of α(t) to the algebra W2. Let A in W2 have an arbitrary
support. From Theorem 1.3 there exists a sequence (An) in W2 with finite
support such that

‖An‖W2 ≤ ‖A‖W2 , lim
n→∞

‖An −A‖L(H2,H) = 0.

The operator α(t)(An) is well-defined, in view of Theorems 1.1 and 1.2, since
the An have finite support. One has

(7.3) ‖α(t)(An)‖W2 ≤ CeM |t|‖An‖W2 ≤ CeM |t|‖A‖W2 .

If m < n then we also see from Theorem 1.2 that

‖α(t)(An −Am)‖L(H2,H) ≤ CeM |t|‖An −Am‖L(H2,H).

The sequence α(t)(An) thus converges in L(H2,H) to an element denoted
α(t)(A). From (7.3) and Theorem 1.4 this element is in W2 and

‖α(t)(A)‖W2 ≤ CeM |t|‖A‖W2 .

The group α(t) is thus extended to the whole algebra W2.

8. Lieb–Robinson’s inequalities

Proposition 8.1. For all γ in (0, γ0) and M > 2
√
Sγ, there exists

C(M,γ) > 0 such that, for all A and B in W2 with finite supports σ(A) and
σ(B), all n such that Λn contains σ(A) and σ(B), and all t ∈ R,
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(8.1) ‖[α(t)
Λn

(A), B]‖L(H2,H) ≤ C(M,γ)‖A‖W2‖B‖W2e
M |t|e−γd(σ(A),σ(B)).

The same inequality is valid with α(t)
Λn

replaced by α(t).

Proof. From Corollary 2.6 applied to the operators B and α(t)
Λn

(A) (both
having support in Λn), one has

‖[α(t)
Λn

(A), B]‖L(H2,H) ≤ C‖B‖W2

∑
λ∈σ(B)

1≤j+k≤2

‖(adPλ)j(adQλ)k(α(t)
Λn

(A))‖.

Inequality (8.1) then follows by applying Lemma 7.2 to the sets E1 = σ(A)
and E2 = σ(B). The analogous inequality for α(t)(A) is then deduced since
‖α(t)

Λn
(A)− α(t)(A)‖L(H2,H) tends to 0.

Propagation speed. Set

(8.2) V0 = inf
0<γ<γ0

2
√
Sγ

γ

where Sγ is the constant of Proposition 3.4. For the case of interaction with
nearest neighbors the infimum is taken on (0,∞).

Proof of Theorem 1.5. Let A and B inW2 have finite supports σ(A) and
σ(B). Let (hn, tn) be a sequence in Z × R with |tn| → ∞ and |hn| ≥ v1|tn|
where v1 > V0, V0 as above. Choose γ ∈ (0, γ0) such that 2

√
Sγ < v1γ. Pick

M such that 2
√
Sγ < M < v1γ. The sequence M |tn| − γd(σ(A), σ(τhn(B)))

tends to −∞. For all f ∈ H2 the inequality (8.1) (with α
(t)
Λn

replaced with
α(t)) shows that

lim
n→∞

‖[α(tn)(A), τhn(B)]f‖H = 0.

This extends by density to all f ∈ H.

Appendix A. Proof of Proposition 2.5. We shall first prove the
conclusion of Proposition 2.5 for E and F with F \E consisting of only one
element λ. Operators in L(HF ) will be identified, using the map iFZ, with
elements of L(H) supported in F . We denote by Wk(F ) the set of all A in
L(HF ) such that iFZ(A) is in Wk.

Proposition A.1. There exists a constant C > 0 such that, for all finite
subsets E in Z and F = E ∪ {λ} where λ ∈ Z \E, and for all T in W2(F ),

(A.1) ‖(T−iEF ◦ρFE(T ))f‖L(H2,H) ≤ C
∑

1≤j+k≤2

‖(adPλ)j(adQλ)kT‖L(H).

End of proof of Proposition 2.5. If E ⊂ F ⊂ G then ρGE = ρFE◦ρGF and
iEG = iFG◦iEF . Consequently, if F = E∪{λ1, . . . , λm} then we successively
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apply Proposition A.1 with the set Ek = E ∪ {λ1, . . . , λk} (1 ≤ k ≤ m) and
E0 = E. We obtain, for all T in W2(F ),

‖T − iEF ◦ ρFE(T )‖L(H2,H) ≤
m∑
k=1

‖Tk − iEk−1Ek ◦ ρEkEk−1
(Tk)‖L(H2,H)

where Tk = ρFEk(T ). Proposition 2.5 thus follows from Proposition A.1
applied to the operators Tk.

Notations. Ω{λ} denotes the ground state of the space H{λ} associated
to the corresponding creation and annihilation operators aλ and a?λ. One
knows that H{λ} is associated with the orthonormal basis (hj)j≥0 defined
by

h0 = Ω{λ}, hj+1 = (j + 1)−1/2a?λhj .

If we identify H{λ} with L2(R), this basis is the basis of Hermite’s functions
and aλhj =

√
j hj−1 (j ≥ 1). We shall use the following notations for the

operators belonging to the tensor product HF = HE ⊗ H{λ}. We set A =
I⊗aλ, A? = I⊗a?λ and for all T ∈ L(HF ) we set R(T ) = ρFE(T )⊗ I where
ρ(T ) is defined in Section 2 by ρ(T ) = π?EFTπEF . Thus R(T ) = iEFρFE(T ).
In order to generalize the operator πEF we define, for all j ≥ 0, a map Ψj
from HE into HF by

Ψjf = f ⊗ hj .

We denote by Ψ?j the adjoint operator of HF in HE . With these notations,
we can gather some of the usual properties of Hermite’s functions in the
next lemma:

Lemma A.2. With these notations one has

(A.2)
∞∑
j=0

ΨjΨ
?
j = I,

∞∑
j=0

‖Ψ?j f‖2HE = ‖f‖2HF ∀f ∈ HF .

If we denote by Hm(E,F ) (m ≥ 0) the partial Sobolev space consisting of
f ∈ HF such that

‖f‖2Hm(E,F ) =
∞∑
j=0

(1 + j)m‖Ψ?j f‖2HE <∞,

then the operator AA? with domain H2(E,F ) is self-adjoint and satisfies
AA? ≥ I. For all α ∈ R and j ≥ 0,

(A.3) (AA?)αΨj = (j + 1)αΨj , Ψ?j (AA?)α = (j + 1)αΨ?j .

For all j ≥ 1,

(A.4) AΨj =
√
j Ψj−1, Ψ?j A

? =
√
j Ψ?j−1
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(if j = 0 then the right-hand sides are replaced by 0). For all j ≥ 0,

(A.5) A?Ψj =
√
j + 1Ψj+1, Ψ?j A =

√
j + 1Ψ?j+1.

For each T in L(HF ) we define an operator-valued matrix ajk(T ) in
L(HE) by

(A.6) ajk(T ) = Ψ?j TΨk.

Thus πEF = Ψ0 and ρFE(T ) = A00(T ). The norm of T in L(HF ) can be
estimated starting from those of the ajk(T ) using the following proposition
which is a variant of Schur’s Lemma.

Proposition A.3. Let T be in L(HF ). Suppose that there exists M > 0
such that, for all k ≥ 0 and ϕ in HE,

(A.7)
∑
j≥0

‖ajk(T )ϕ‖HE ≤M‖ϕ‖HE ,
∑
j≥0

‖ajk(T ?)ϕ‖HE ≤M‖ϕ‖HE .

Then ‖T‖L(HF ) ≤M .

Proof. From Lemma A.2, for all f and g in HF one gets

〈Tf, g〉 =
∑
jk

〈ajk(T )Ψ?kf, Ψ
?
j g〉.

One has
|〈ajk(T )Ψ?kf, Ψ

?
j g〉| ≤ ‖ajk(T )Ψ?kf‖ ‖Ψ?j g‖.

This scalar product can be bounded by

|〈ajk(T )Ψ?kf, Ψ
?
j g〉| ≤ ‖Ψ?kf‖ ‖ajk(T )?Ψ?j g‖.

Consequently,

|〈ajk(T )Ψ?kf, Ψ
?
j g〉| ≤ (‖ajk(T )Ψ?kf‖ ‖Ψ?kf‖)1/2(‖ajk(T )?Ψ?j g‖ ‖Ψ?j g‖)1/2.

From Cauchy–Schwarz,

|〈Tf, g〉|2 ≤
[∑
jk

‖ajk(T )Ψ?kf‖ ‖Ψ?kf‖
][∑

jk

‖ajk(T )?Ψ?j g‖ ‖Ψ?j g‖
]
.

Noticing that (ajk(T ))? = akj(T ?) we obtain

|〈Tf, g〉|2 ≤M2
[∑
k≥0

‖Ψ?kf‖2
][∑

j≥0

‖Ψ?j g‖2
]
≤M2‖f‖2HF ‖g‖

2
HF .

The proof of Proposition A.3 is complete.

Proposition A.4. Let T be in W1(F ). Assume that there is M > 0
such that for all ϕ in HE,
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sup
k≥0

∑
j≥0

‖ajk(T )ϕ‖HE√
(j + 1)(k + 1)

≤M‖ϕ‖HE ,(A.8)

sup
k≥0

∑
j≥0

‖ajk(T ?)ϕ‖HE√
(j + 1)(k + 1)

≤M‖ϕ‖HE .(A.9)

Then

(A.10) ‖Tf‖ ≤M
√

2 ‖(A?λ)2f‖+
√

2 ‖[A?λ, T ]‖ ‖f‖
for all f in H2(E,F ).

Proof. Set S = (AA?)−1/2T (AA?)−1/2. By Lemma A.2,

ajk(S) =
ajk(T )√

(j + 1)(k + 1)
.

Under the hypotheses of the proposition the operator S is then bounded in
HF with norm ≤M . From Lemma A.2, for all g in HF ,

‖(AA?)−1/2A?g‖2 =
∑
j≥1

j

j + 1
‖Ψ?j−1g‖2 ≥

1
2

∑
j≥0

‖Ψ?j g‖2 =
1
2
‖g‖2.

Consequently, for all f in H2(E,F ),

‖Tf‖ ≤
√

2 ‖(AA?)−1/2A?Tf‖ ≤
√

2 ‖[A?, T ]‖ ‖f‖+
√

2 ‖(AA?)−1/2TA?f‖.
Since ‖(AA?)−1/2‖ ≤ 1, we have

‖(AA?)−1/2TA?f‖ ≤ ‖S(AA?)+1/2A?f‖
≤M‖(AA?)+1/2A?f‖ = M‖(A?)2f‖.

Consequently, (A.10) follows.

We shall apply Proposition A.4 to the operator T −R(T ) noticing that
R(T ) commutes with A and A?. The operator R(T ) is chosen such that
a00(T − R(T )) = 0. Using commutators, we shall estimate all the other
elements ajk(T −R(T )). This is the purpose of the next proposition.

Proposition A.5. Under the hypotheses of Proposition A.1, for all k≥0
and ϕ in HE,

Sk(T, ϕ) :=
∑
j≥0

‖ajk(T −R(T ))ϕ‖√
(j + 1)(k + 1)

(A.11)

≤ C‖ϕ‖
∑

1≤α+β≤2

‖(adPλ)α(adQλ)βT‖L(H),

and a similar estimate holds with T replaced by T ?.

Proof. Estimations of S0(T, ϕ). We shall prove that

(A.12) S0(T, ϕ) ≤ ‖[A, T ]‖ ‖ϕ‖.
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From (A.5), one sees that for all j ≥ 1,√
j aj0(T −R(T )) = Ψ?j−1[A, T ]Ψ0.

Since a00(T −R(T )) = 0, we deduce using (A.2) that

S0(T, ϕ) ≤
∞∑
j=1

1√
j(j + 1)

‖Ψ?j−1[A, T ]Ψ0‖

≤
[ ∞∑
j=1

1
j(j + 1)

]1/2[ ∞∑
j=1

‖Ψ?j−1[A, T ]Ψ0ϕ‖2
]1/2

≤ ‖[A, T ]Ψ0ϕ‖ ≤ ‖[A, T ]‖ ‖ϕ‖.

Inequality (A.12) is therefore true.

Recursion between the Sk(T, ϕ). We shall prove that if k ≥ 1 then

Sk(T, ϕ) ≤ k

k + 1
Sk−1(T, ϕ)(A.13)

+
C‖ϕ‖
k + 1

(‖[A, T ]‖+ ‖[A?, T ]‖+ ‖[A?, [A?, T ]‖]).

To this end, we use the fact that if 1 ≤ j ≤ k then from (A.4) and (A.5) we
have

√
k ajk(T −R(T )) =

√
j aj−1,k−1(T −R(T )) + Ψ?j [T,A?]Ψk−1.

If j = 0 then the first term above has to be replaced by 0. If j > k then we
use √

j ajk(T −R(T )) =
√
k aj−1,k−1(T −R(T )) + Ψ?j−1[A, T ]Ψk.

Then we can write Sk(T, ϕ) ≤ S′k(T, ϕ) + S′′k (T, ϕ) + S′′′k (T, ϕ) where

S′k(T, ϕ) =
∞∑
j=1

inf(
√
j/k,

√
k/j)

‖aj−1,k−1(T −R(T ))ϕ‖√
(j + 1)(k + 1)

≤ k

k + 1
Sk−1(T, ϕ),

S′′k (T, ϕ) =
∞∑

j=k+1

‖Ψ?j−1[T,A]Ψkϕ‖√
j(j + 1)(k + 1)

,

S′′′k (T, ϕ) =
k∑
j=0

‖Ψ?j [T,A?]Ψk−1ϕ‖√
(j + 1)k(k + 1)

.

From (A.2) and since ‖Ψkϕ‖ = ‖ϕ‖,
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S′′k (T, ϕ) ≤ 1√
k + 1

[ ∞∑
j=k+1

1
j(j + 1)

]1/2[∑
j≥1

‖Ψ?j−1[T,A]Ψkϕ‖2
]1/2

≤ 1
k + 1

‖[T,A]‖ ‖ϕ‖.

If k = 1 then we see that S′′′1 (T, ϕ) ≤ ‖[A?, T ]‖ ‖ϕ‖. If k ≥ 2 then the
estimation of S′′′k (T, ϕ) involves commutators with length 2. We still have,
if j ≤ k,
√
k − 1Ψ?j [T,A?]Ψk−1 =

√
j Ψ?j−1[T,A?]Ψk−2 + Ψ?j [[T,A?], A?]Ψk−2.

Consequently, for k ≥ 2,

S′′′k (T, ϕ) ≤
k∑
j=1

√
j

k − 1
‖Ψ?j−1[T,A?]Ψk−2ϕ‖√

(j + 1)k(k + 1)

+
k∑
j=0

‖Ψ?j [[T,A?], A?]Ψk−2ϕ‖√
(j + 1)(k + 1)k(k − 1)

.

Using again Cauchy–Schwarz and Lemma A.2, we obtain for k ≥ 2,

S′′′k (T, ϕ) ≤ 1√
k(k − 1)

(‖[A?, T ]‖+ ‖[A?, [A?, T ]]‖)‖ϕ‖.

Hence we deduce (A.13). Inequality (A.11) follows by iteration of (A.12)
and (A.13). Proposition A.1 is a consequence of Propositions A.4 and A.5,
and so the proof of Proposition 2.5 is finished.

Appendix B. Differential systems

Proposition B.1. Suppose that for all λ and µ in Λn we are given a
continuous map t 7→ Ωλµ(t) from R into L(L(H)). Assume that there are
γ > 0 and Sγ > 0 such that, for all λ and ν in Λn, and all t ∈ R,

(B.1)
∑
µ∈Λn

‖Ωλµ(t)‖L(L(H))e
−γ|µ−ν| ≤ Sγe−γ|λ−ν|.

Then, for all s ∈ R, there exist C1 functions t 7→ A
(0)
λµ (t, s) and t→ A

(1)
λµ (t, s)

((λ, µ) ∈ Λ2
n) from R into L(L(H)) such that

d

dt
A

(0)
λµ (t, s) = A

(1)
λµ (t, s),

d

dt
A

(1)
λµ (t, s) =

∑
ν∈Λn

Ωλµ(t) ◦A(0)
νµ (t, s),(B.2)

A
(0)
λµ (s, s) = δλµI, A

(1)
λµ (s, s) = 0(B.3)

(in (B.2), the composition is the one of L(L(H)), and in (B.3) the identity
operator I is the one of L(L(H))). Moreover, if M >

√
Sγ, then there exists
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C(M,γ) > 0 independent of n such that

(B.4) ‖A(j)
λµ(t, s)‖L(L(H)) ≤ C(M,γ)eM |t−s|e−γ|λ−µ| ∀(λ, µ) ∈ Λ2

n.

There are also operator-valued matrices t 7→ B
(0)
λµ (t, s) and t 7→ B

(1)
λµ (t, s)

satisfying the same system with the same estimates and the initial conditions

(B.5) B
(0)
λµ (s, s) = 0, B

(1)
λµ (s, s) = δλµI.

Proof. Let Enγ be the set of all matrices A = (Aλµ)((λ,µ)∈Λ2
n) where each

Aλµ is in L(L(H)), endowed with the norm

‖A‖nγ = sup
(λ,µ)∈Λ2

n

eγ|λ−µ|‖Aλµ‖L(L(H)).

The left composition by the operator-valued matrix Ωλµ(t) defines a map
Ω(t) in L(Enγ) with norm ≤ Sγ . For all ε > 0 we can endow E2

nγ with a
norm such that the norm of the operator

U(t) =
(

0 I

Ω(t) 0

)
is ≤

√
Sγ(1 + ε). The stated result is then valid.

Remark 1. In the tensor product E2
nγ⊗E2

nγ let V (t) be the map defined
by V (t) = U(t)⊗I+I⊗U(t). For all ε > 0 one can endow E2

nγ⊗E2
nγ with a

norm such that the norm of the map V (t) is ≤ 2
√
Sγ (1 + ε). Consequently,

if M > 2
√
Sγ and A0 is in E2

nγ ⊗ E2
nγ then the differential system

A′(t) = U(t)A(t), A(0) = A0,

has a solution taking values in E2
nγ⊗E2

nγ and with exponential time growth
eM |t|.

Remark 2. If we are also given a continuous function t 7→ Fλ(t) from
R to L(H) then the family of functions t 7→ X

(j)
λ (t) defined by

X
(j)
λ (t) =

∑
µ∈Λn

t�

0

B
(j)
λµ (t, s)(Fµ(s)) ds

satisfies the differential system
d

dt
X

(0)
λ (t) = X

(1)
λ (t),

d

dt
X

(1)
λ (t) =

∑
µ∈Λn

Ωλµ(t)(X(0)
µ (t)) + Fλ(t)

with the initial conditions X
(j)
λ (0) = 0 and the following estimates (for

example for t > 0):

‖X(j)
λ (t)‖L(H) ≤ C(M,γ)

∑
µ∈Λn

e−γ|λ−µ|
t�

0

eM |t−s|‖Fµ(s)‖L(H) ds.
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