
Introduction

It is well known that the spaces of homogeneous type introduced by Coifman and Weiss

in [4] include Rn, the surface of the unit ball and the n-torus in Rn, the C∞ compact

Riemannian manifolds, and in particular, the d-sets in Rn as special models. It has been

proved by Triebel in [33] that these d-sets in R
n include various kinds of fractals.

Homogeneous Besov and Triebel–Lizorkin spaces on spaces of homogeneous type have

been studied in [23]. In [20], inhomogeneous Besov and Triebel–Lizorkin spaces on spaces

of homogeneous type were introduced via generalized Littlewood–Paley g-functions when

p, q ≥ 1. In [21], inhomogeneous Triebel–Lizorkin spaces were generalized to the cases

where p0 < p ≤ 1 ≤ q < ∞ via generalized Littlewood–Paley S-functions, where p0 is a

positive number. In the case of d-sets, p0 = 1/2.

The motivation for this paper is to answer a question posed by Triebel in [34]. Let

Γ be a compact d-set in R
n with 0 < d < n; see [33] for the definition. Triebel has

introduced the spaces Bspq(Γ ) for s > 0 by use of two different but equivalent methods,

namely, traces in [33] and quarkonial decompositions in [34]. He asked in [34] if these

spaces Bspq(Γ ) are the same as those defined by regarding Γ as a space of homogeneous

type. In [36], we answered this question. Moreover, our methods can be used to intro-

duce new spaces B0pq(Γ ) with 1 < q ≤ ∞ and 1 ≤ p ≤ ∞ or q = 1 and p = 1,∞,

and new spaces F spq(Γ ) with s ∈ (−1, 1), 1 < p < ∞ and 1 < q ≤ ∞, which cannot

be defined by the trace method or quarkonial method. We point out that the spaces

B0p1(Γ ) for 1 < p < ∞ are introduced by quarkonial decompositions; see Definition

9.29(ii) in [34]. One of the main purposes of this paper is to obtain some estimates of

the entropy numbers of compact embeddings between these spaces. To do this, we first

need some frame characterizations for these function spaces. It is well known that the

atomic decomposition characterizations of these spaces are not enough to obtain esti-

mates of the entropy numbers, since atoms depend on functions; see [34]. We will do

this in the setting of general homogeneous type spaces. We have given some applications

of these estimates for entropy numbers to estimates of the eigenvalues of some fractal

differential operators on d-sets in [36] and Riesz potentials on quasi-metric spaces in

[35]. Another main purpose of this paper is to show that the fractional integrals and

derivatives can be used as a lifting tool in these function spaces on homogeneous type

spaces.

We begin with briefly reviewing the definition of spaces of homogeneous type. A

quasi-metric ̺ on a set X is a function ̺ : X ×X → [0,∞) satisfying

(i) ̺(x, y) = 0 if and only if x = y.

(ii) ̺(x, y) = ̺(y, x) for all x, y ∈ X.
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(iii) There exists a constant A ∈ [1,∞) such that for all x, y, z ∈ X,
̺(x, y) ≤ A[̺(x, z) + ̺(z, y)].

Any quasi-metric defines a topology, for which the balls B(x, r) = {y ∈ X : ̺(y, x)

< r} for all x ∈ X and all r > 0 form a basis.

The following spaces of homogeneous type are variants of those introduced by Coif-

man and Weiss in [4]. In what follows, we set diamX = sup{̺(x, y) : x, y ∈ X}, and

A ∼ B means that there are two constants C1 > 0 and C2 > 0 independent of the main

parameters such that C1 < A/B < C2.

Definition 0.1. Let d > 0 and 0 < θ ≤ 1. A space of homogeneous type (X, ̺, µ)d,θ is

a set X together with a quasi-metric ̺ and a nonnegative Borel measure µ on X with

suppµ = X such that there exists a constant 0 < C <∞ such that for all 0 < r < diamX

and all x, x′, y ∈ X,

µ(B(x, r)) ∼ rd,(0.1)

|̺(x, y)− ̺(x′, y)| ≤ C̺(x, x′)θ[̺(x, y) + ̺(x′, y)]1−θ.(0.2)

Remark 0.1. It is easy to see that if diamX <∞, then (0.1) holds for all 0 < r < diamX

if and only if it holds for all 0 < r < 1.

Remark 0.2. From (0.1), it is easy to deduce µ({x}) = 0 for all x ∈ X. This means that

spaces of homogeneous type defined by Definition 0.1 are atomless measure spaces.

Macias and Segovia [26] have proved that our spaces (X, ̺, µ)d,θ for d = 1 are just

the spaces of homogeneous type in the sense of Coifman and Weiss, whose definitions

only require that ̺ is a quasi-metric without (0.2) and µ satisfies the following doubling

condition weaker than (0.1): there is a constant 0 < A′ <∞ such that for all x ∈ X and

all r > 0,

(0.3) µ(B(x, 2r)) ≤ A′µ(B(x, r)).

However, in [26], Macias and Segovia have shown that for spaces of homogeneous type in

the sense of Coifman and Weiss, one can replace the original quasi-metric ̺ by another

quasi-metric ̺, which yields the same topology on X as ̺, such that there exist C > 0

and some θ ∈ (0, 1] satisfying

̺(x, y) ∼ inf{µ(B) : B is a ball containing x and y}
and (0.2) with ̺ and θ replaced, respectively, by ̺ and θ, and that µ satisfies (0.1) with

d = 1 for balls corresponding to this new quasi-metric. Moreover, there is a positive

constant C0 such that ̺(x, y)1/C0 is equivalent to a metric on X × X. It is easy to

see that the set X with this new quasi-metric ̺, the original measure µ and the balls

corresponding to the new quasi-metric satisfies (0.1) with d = 1 and (0.2).

The above definition of spaces of homogeneous type turns out to be convenient for our

purposes. In fact, (Rn, ̺,m)n,1 is just the usual Rn, where ̺ is the standard Euclidean

metric and m is the n-dimensional Hausdorff measure, or, equivalently, the n-dimensional

Lebesgue measure. Moreover, it is also easy to see that any bounded d-set Γ in Rn with

0 ≤ d ≤ n is just (Γ, ̺, µ)d,1, where ̺ is again the standard Euclidean metric and µ is a

Radon measure on Γ with suppµ = Γ ; see [33] and [36]. We remark that in some cases,
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the Borel measure µ appearing in Definition 0.1 can be proved to be actually a Radon

measure. In fact, in Definition 3.1 of d-sets in [33, p. 5], Γ is not necessarily bounded and

the Borel measure µ in R
n satisfies (0.1) only for 0 < r < 1. However, Triebel [33] has

shown that this Borel measure is actually a Radon measure by using some results of [27].

In addition, we also point out that the θ in (0.2) is crucial to us. In fact, the spaces

Bspq(X) and F spq(X) introduced in [20] have the restriction |s| < θ. In particular, when

X = R
n for n ∈ N, if we take d = n, µ the n-dimensional Hausdorff measure and

̺(x, y) = |x − y| for any x, y ∈ Rn, then we have θ = 1 and all the spaces Bspq(X) and

F spq(X) with |s| < 1; and if we take d = 1, µ the n-dimensional Hausdorff measure and

̺(x, y) = |x−y|n for any x, y ∈ Rn, then we have θ = 1/n and all the spaces B spq(X) and

F spq(X) with |s| < 1/n. In the next section, we will show that B spq(X) = Bnspq (X) and

F spq(X) = Fnspq (X). Note that |s| < 1/n if and only if n|s| < 1. We see that we still obtain

all the spaces Bspq(X) and F spq(X) for all |s| < 1. However, if we choose d̃ = n2, µ the

n-dimensional Hausdorff measure and ˜̺(x, y) = |x−y|1/n for any x, y ∈ R
n, then we have

θ̃ = 1/n and all the spaces B̃s̃pq(X) and F̃ s̃pq(X) with |s̃| < 1/n. We will also show that in

this case, B̃nspq (X) = Bspq(X) and F̃nspq (X) = F spq(X) for |s| < 1/n2. From this, we can see

that if we take d̃ = n2, µ the n-dimensional Hausdorff measure and ˜̺(x, y) = |x − y|1/n
for any x, y ∈ R

n, then, by our method, we cannot obtain all the spaces Bspq(X) and

F spq(X) for all |s| < 1. Thus, in any case, by suitably choosing ̺ such that we can take a

maximum corresponding θ in (0.2), we can obtain more spaces by the procedure in [20];

see also [23]. This reflects the flexibility of the above definition of spaces of homogeneous

type.

Let ε > 0. By (0.1), it is easy to deduce that\
B(x,r)

̺(z, x)ε−d dµ(z) ≃ rε and
\

X\B(x,r)

̺(z, x)−d−ε dµ(z) ≃ r−ε.

In this paper, we assume that the total measure of X can be finite or infinite. But, in

some places, we make the restriction µ(X) <∞, which will be explicitly indicated. Also,

we let

Lp(X) = {f : X → C is a µ-measurable function and ‖f‖Lp(X) <∞}
for p ∈ (0,∞], where

‖f‖Lp(X) =
{ \
X

|f(x)|p dµ(x)
}1/p

for p ∈ (0,∞), ‖f‖L∞(X) = ess sup
x∈X

|f(x)|.

The organization of this paper is as follows. In the next section, we will recall all the

related theory of spaces of homogeneous type. Most of it is known and will be used in

the later sections. In particular, we will show the independence of the spaces Bspq(X) and

F spq(X) from the equivalent quasi-metrics satisfying (0.2), and the above two claims. We

will also give a new characterization for Bspq(X) and F spq(X) in terms of smooth blocks

when s > 0.

In Section 2, we will introduce fractional integrals and derivatives on spaces of homo-

geneous type, which are just the discrete and inhomogeneous versions of the fractional

integrals and derivatives introduced by Gatto, Segovia and Vági in [11]; see [11, Theo-
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rem 1.6]. Such discrete and inhomogeneous fractional integrals and derivatives were also

considered by Nahmod in [28] and [29]. We will show that they can be used as lifting

tools. Using them, we will show that Bspq(X) and F spq(X) have the lifting properties when

|s| < θ; see also [31] for the lifting property of these spaces on Rn. Thus, our results give

a new characterization of these spaces.

In Section 3, we will give explicit representations for the left and right inverses of

fractional integrals and derivatives introduced in Section 2 for µ(X) ≤ ∞. The left in-

verses and right inverses of fractional integrals and derivatives on spaces of homogeneous

type are not the same, in contrast to the case of Euclidean spaces. By using these explicit

representations, we show that the fractional integrals and derivatives are independent of

the choices of approximations to the identity. These results are new even when X = Rn.

If µ(X) <∞, we then establish some basic properties of these left and right inverses. In

particular, we are able to introduce fractional Sobolev spaces for all |s| < α0 < ε and

µ(X) ≤ ∞, which complete and generalize those fractional Sobolev spaces for µ(X) =∞
introduced by Gatto and Vági in [12] when s is positive and small; see Theorem 2.1 in

[22] and Theorem 6 in [10]. For Sobolev functions in F sp2(X) with s > 0 small enough,

1 < p < ∞ and µ(X) < ∞, by using the above fractional derivatives and their left in-

verses, we also obtain some Poincaré-type inequalities. We remark that our results in this

section and Section 2 have homogeneous versions. We will discuss that in another paper.

In Section 4, we will establish frame decomposition characterizations for Bspq(X) and

F spq(X) by using the discrete Calderón reproducing formulae established in [22]. Such

frames are called Banach frames in [13] and [8]. These frame characterizations will play a

key role in estimates of entropy numbers for compact embeddings between these spaces

and they are new even when X = Rn or X is a d-set in Rn.

In Section 5, by applying the frame characterizations, we will obtain estimates for

entropy numbers of compact embeddings between Bspq(X) or F spq(X) when µ(X) < ∞.

Part of these results is new even when X is a d-set in Rn. We also consider some limiting

embeddings between these spaces; see also [17] for homogeneous versions. By considering

the spaces Lp(logL)a(X) for p ∈ (0,∞) and a ∈ R, which were first introduced by

Haroske in [24] in terms of an equivalent norm (see [6, Theorem 2.6.2/1] and its proof),

we then establish some limiting compact embeddings when µ(X) ≤ ∞ and obtain some

estimates of entropy numbers for these embeddings when µ(X) <∞.

In metric spaces with doubling Borel measures, the Sobolev spaces of order 1 were

introduced by Haj lasz in [14]; see also [16], [15] and [25]. We recall that if X is a metric

space admitting a Borel regular measure µ such that (0.1) holds, then X is called an

Ahlfors d-regular metric measure space; see [25, p. 62]. If X is just a subset of Rn, then

X is also called strictly d-regular ; see [14]. In all these cases, the θ in (0.2) equals 1. In

Section 6, for any Ahlfors d-regular metric measure space, we will establish the connection

between the Sobolev spaces of order 1 defined by Haj lasz in [14] and the spaces defined

by our methods.

Finally, in Section 7, by using Carl’s well known inequality (see [2], [6] and [33]),

which connects spectral properties of compact operators with their geometry described

in terms of entropy numbers, and the estimates of entropy numbers in Section 5, we
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obtain estimates of eigenvalues of some positive-definite self-adjoint operators related

to quadratic forms in L2(X), which is a version of Theorem 25.2 in [33] in spaces of

homogeneous type.

More applications can be found in [35] and [36]; see also [6] and [33].

We now make some conventions. Throughout the paper, if X1 and X2 are two Banach

spaces, X1 ⊂ X2 means that there is a constant C > 0 such that for all x ∈ X1,
‖x‖X2 ≤ C‖x‖X1 ,

where ‖x‖X is the norm of x in the Banach space X. In what follows, we will use C to

denote a positive constant which is independent of the main parameters, but may vary

from line to line.

1. Preliminaries

In this section, we consider spaces of homogeneous type (X, ̺, µ)d,θ, as defined in Defi-

nition 0.1. Most of these results are well known when d = 1 or when X = Rn (d = n).

Generalizations to general (X, ̺, µ)d,θ are obvious. We will omit all the details. Moreover,

we will show the independence of our spaces from the equivalent quasi-metrics satisfying

(0.2), and we prove two claims stated in the introduction. Finally we will also give a

new characterization for the spaces Bspq(X) and F spq(X) in terms of smooth blocks when

s > 0.

Let us first recall the definition of spaces of test functions on X in [23]; see also [18].

Definition 1.1. Fix γ > 0 and θ ≥ β > 0. A function f defined on X is said to be a

test function of type (x0, r, β, γ) with x0 ∈ X and r > 0 if:

(i) |f(x)| ≤ C rγ

(r + ̺(x, x0))d+γ
;

(ii) |f(x)−f(y)| ≤ C
(

̺(x, y)

r + ̺(x, x0)

)β
rγ

(r + ̺(x, x0))d+γ
for ̺(x, y) ≤ 1

2A
[r+̺(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and the norm of f

in G(x0, r, β, γ) is defined by

‖f‖G(x0,r,β,γ) = inf{C : (i) and (ii) hold}.
Here and in what follows, θ is the same as in (0.2).

Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is easy to check that

G(β, γ) is a Banach space with respect to the norm in G(β, γ). Also, let

G0(x0, r, β, γ) =
{
f ∈ G(x0, r, β, γ) :

\
X

f(x) dµ(x) = 0
}



10 Y. S. Han and D. C. Yang

and let the dual space (G(β, γ))′ be all linear functionals L from G(β, γ) to C with the

property that there exists a finite constant C ≥ 0 such that for all f ∈ G(β, γ),

|L(f)| ≤ C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing of h ∈ (G(β, γ))′ and f ∈ G(β, γ). It is easy to

see that f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0 if and only if f ∈ G(β, γ). Thus, for all

h ∈ (G(β, γ))′, 〈h, f〉 is well defined for all f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0.

To state the definition of the inhomogeneous Besov and Triebel–Lizorkin spaces

Bspq(X) and F spq(X) studied in [20], we need the following approximations to the identity

which were first introduced in [18].

Definition 1.2. A sequence {Sk}k≥0 of linear operators is said to be an approximation

to the identity if there exist ε ∈ (0, θ] and 0 < C < ∞ such that for all k ≥ 0 and all

x, x′, y, y′ ∈ X, the kernel Sk(x, y) of Sk is a function from X ×X into C satisfying

(i) Sk(x, y) = 0 if ̺(x, y) ≥ C2−k and ‖Sk‖L∞(X) ≤ C2dk;

(ii) |Sk(x, y)− Sk(x′, y)| ≤ C2k(d+ε)̺(x, x′)ε;

(iii) |Sk(x, y)− Sk(x, y′)| ≤ C2k(d+ε)̺(y, y′)ε;

(iv) |[Sk(x, y)− Sk(x, y′)]− [Sk(x
′, y)− Sk(x′, y′)]| ≤ C2k(d+2ε)̺(x, x′)ε̺(y, y′)ε;

(v)
\
X

Sk(x, y) dµ(y) = 1;

(vi)
\
X

Sk(x, y) dµ(x) = 1.

Here, that Sk(x, y) is the kernel of Sk means that for suitable functions f ,

Skf(x) =
\
X

Sk(x, y)f(y) dµ(y).

Remark 1.1. The approximation to the identity can be defined in a more general form

as follows. A sequence {Sk}k≥0 of linear operators is said to be an approximation to the

identity if there exist β, γ ∈ (0, θ], ε, σ > 0 and 0 < C < ∞ such that for all k ≥ 0 and

all x, x′, y, y′ ∈ X, the kernel Sk(x, y) of Sk is a function from X × X into C satisfy-

ing

(i) |Sk(x, y)| ≤ C 2−kε

(2−k + ̺(x, y))d+ε
;

(ii) |Sk(x, y)− Sk(x′, y)| ≤ C
(

̺(x, x′)

2−k + ̺(x, y)

)β
2−kε

(2−k + ̺(x, y))d+ε

for ̺(x, x′) ≤ 1

2A
(2−k + ̺(x, y));

(iii) |Sk(x, y)− Sk(x, y′)| ≤ C
(

̺(y, y′)

2−k + ̺(x, y)

)β
2−kε

(2−k + ̺(x, y))d+ε

for ̺(y, y′) ≤ 1

2A
(2−k + ̺(x, y));
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(iv) |[Sk(x, y)− Sk(x, y′)]− [Sk(x
′, y)− Sk(x′, y′)]|

≤ C
(

̺(x, x′)

2−k + ̺(x, y)

)γ(
̺(y, y′)

2−k + ̺(x, y)

)γ
2−kσ

(2−k + ̺(x, y))d+σ

for ̺(x, x′) ≤ 1

2A
(2−k + ̺(x, y)) and ̺(y, y′) ≤ 1

2A
(2−k + ̺(x, y));

(v)
\
X

Sk(x, y) dµ(y) = 1;

(vi)
\
X

Sk(x, y) dµ(x) = 1.

Moreover, as pointed out in [19], in the above, we can take β = ε ∈ (0, θ], γ = ε′ and

σ = ε − ε′, where ε′ can be any positive number less than ε. Also, 1/2 can be replaced

by any δ ∈ (0, 1). See also [5].

Remark 1.2. By Coifman’s similar construction in [5], one can construct an approxima-

tion to the identity with compact supports as in Definition 1.2 for spaces of homogeneous

type from Definition 0.1. Furthermore, one can show that for such an approximation to

the identity, {Sk}∞k=0, limk→∞ Sk = I, the identity operator on L2(X), in the strong

operator topology on L2(X); see [5] or [23, p. 11]. By this fact, it is easy to show that

any space of test functions, G(β, γ), with 0 < β, γ ≤ θ, is a dense subset of L2(X).

The following inhomogeneous Calderón reproducing formulae established in [18] play

an important role in the whole paper.

Lemma 1.1. Suppose that {Sk}k≥0 is an approximation to the identity as in Definition
1.2. Let Dk = Sk − Sk−1 for k ≥ 1 and D0 = S0. Then there exist families of linear

operators D̃k and Ẽk for k ∈ N ∪ {0} and a fixed large integer N ∈ N such that for

f ∈ G(β1, γ1) with 0 < β1, γ1 < ε,

(1.1) f =
∞∑

k=0

D̃kDk(f) =
∞∑

k=0

DkẼk(f),

where the series converge in the norm of G(β′1, γ
′
1) for 0 < β′1 < β1 and 0 < γ′1 < γ1.

Moreover , the kernels of the operators D̃k satisfy conditions (i) and (ii) of Remark 1.1

with ε replaced by ε′ for 0 < ε′ < ε, and\
X

D̃k(x, y) dµ(y) =
\
X

D̃k(x, y) dµ(x) =

{
1, k = 0, 1, . . . , N,

0, k ≥ N + 1,

and the kernels of the operators Ẽk have the same properties.

Remark 1.3. By a similar argument to the proof of Theorem 3.9 in [23], one can also

show that (1.1) holds for all f ∈ Lp(X) with 1 < p < ∞ with the series converging in

Lp(X). Moreover, G(β, γ), with 0 < β, γ ≤ θ, is a dense subset of Lp(X) for 1 < p <∞.

The next lemma was obtained in [18] by a duality argument from Lemma 1.1.

Lemma 1.2. With the notation of Lemma 1.1, for all f ∈ (G(β1, γ1))
′ with 0 < β1, γ1 < ε,

(1.1) holds with the series converging in (G(β′1, γ
′
1))
′ for ε > β′1 > β1 and ε > γ′1 > γ1.
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Now, we can introduce the spaces Bspq(X) and F spq(X) via approximations to the

identity; these spaces were first studied in [20].

Definition 1.3. Let ε ∈ (0, θ], s ∈ (−ε, ε) and {Sk}∞k=0 be an approximation to the

identity and let Ek = Sk −Sk−1 for k ≥ 1 and E0 = S0. The inhomogeneous Besov space

Bspq(X) for 1 ≤ p, q ≤ ∞ is the collection of f ∈ (G(β, γ))′ for max(0,−s) < β < ε and

0 < γ < ε such that

‖f‖Bspq(X) =
{ ∞∑

k=0

[2ks‖Ek(f)‖Lp(X)]q
}1/q

<∞.

The inhomogeneous Triebel–Lizorkin space F spq(X) for 1 < p <∞ and 1 < q ≤ ∞ is the

collection of f ∈ (G(β, γ))′ for max(0,−s) < β < ε and 0 < γ < ε such that

‖f‖F spq(X) =
∥∥∥
{ ∞∑

k=0

[2ks|Ek(f)|]q
}1/q∥∥∥

Lp(X)
<∞.

It was proved in [20] that the above definitions are independent of the choices of

approximations to the identity and the pair (β, γ) with max(0,−s) < β < ε and 0 <

γ < ε. Moreover, by a similar argument, we can show that the above definitions are also

independent of taking equivalent quasi-metrics satisfying (0.2). We say that a quasi-metric

̺ is equivalent to another quasi-metric ̺′ if there is a constant C > 0 such that for all

x, y ∈ X,

C−1̺′(x, y) ≤ ̺(x, y) ≤ C̺′(x, y).

Proposition 1.1. Let ̺ and ̺′ be two equivalent quasi-metrics satisfying (0.2) with θ

and θ′, respectively. Suppose ε ∈ (0, θ], ε′ ∈ (0, θ′] and |s| ≤ min(ε, ε′). Let {Sk}∞k=0 and
{S′k}∞k=0 be two approximations to the identity with respect to ̺, ε and ̺′, ε′, respectively ,

as in Definition 1.2 (or Remark 1.1). Let {Ek}k∈N∪{0} be as in Definition 1.3, E′k =

S′k − S′k−1 for k ∈ N and E′0 = S′0. Then there is a constant C > 0 such that for all

f ∈ (G(β, γ))′ with 0 < β, γ < ε, if

{ ∞∑

k=0

[2ks‖Ek(f)‖Lp(X)]q
}1/q

<∞

for 1 ≤ p, q ≤ ∞, or
∥∥∥
{ ∞∑

k=0

[2ks|Ek(f)|]q
}1/q∥∥∥

Lp(X)
<∞

for 1 < p <∞ and 1 < q ≤ ∞, then

{ ∞∑

k=0

[2ks‖E′k(f)‖Lp(X)]q
}1/q
≤ C
{ ∞∑

k=0

[2ks‖Ek(f)‖Lp(X)]q
}1/q

for 1 ≤ p, q ≤ ∞, or

∥∥∥
{ ∞∑

k=0

[2ks|E′k(f)|]q
}1/q∥∥∥

Lp(X)
≤ C
∥∥∥
{ ∞∑

k=0

[2ks|Ek(f)|]q
}1/q∥∥∥

Lp(X)

for 1 < p <∞ and 1 < q ≤ ∞.
The converses are also true.
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Proof. The proofs of these inequalities are similar, and are also similar to the proof of

Lemma 1.3 in [20] and the proof of Proposition 4.1 in [23] by using Lemma 1.2. Let us just

give an outline for the proof of the first inequalities. Let f ∈ (G(β, γ))′ with 0 < β, γ < ε

and
{ ∞∑

k=0

[2ks‖Ek(f)‖Lp(X)]q
}1/q

<∞.

By Lemma 1.2, there is a family of linear operators D̃k and a large N ∈ N satisfying the

conditions in Lemma 1.2 such that

(1.2) f =

∞∑

k=0

D̃kEk(f),

where the series converges in (G(β′, γ′))′ with ε > β′ > β and ε > γ′ > γ. Moreover, the

kernels of D̃k’s satisfy the conditions (i) and (ii) of Remark 1.1 with any σ1 ∈ (0, ε):

(1.3) |Sk(x, y)| ≤ C 2−kσ1

(2−k + ̺(x, y))d+σ1
;

(1.4) |Sk(x, y)− Sk(x′, y)| ≤ C
(

̺(x, x′)

2−k + ̺(x, y)

)σ1 2−kσ1

(2−k + ̺(x, y))d+σ1

for ̺(x, x′) ≤ 1

2A
(2−k + ̺(x, y)).

We now claim that for any σ2 ∈ (s,min(ε, ε′)), there is a constant C > 0 such that

for all k, l ∈ N ∪ {0} and all x, y ∈ X,

(1.5) |(E′kD̃l)(x, y)| ≤ C2−|k−l|σ2
2−(k∧l)σ2

(2−(k∧l)σ + ̺(x, y))d+σ2
,

where k ∧ l = min(k, l). The proof of (1.5) is completely similar to the proof of (1.6) in

[20] and (3.9) in [18]; see also (2.15) below. For the convenience of the reader, we give the

details by assuming {S′k}∞k=0 is an approximation to the identity as in Remark 1.1 with ̺

and ε replaced by ̺′ and ε′, respectively. We recall that E′0 = S′0 and E′k = S′k−S′k−1 for

k ∈ N. For a given σ2 ∈ (s,min(ε, ε′)), we choose σ1 ∈ (0, ε) satisfying σ1 > σ2. Suppose

l > k ≥ 0. By (1.3), and (i) and (ii) of Remark 1.1, we have

|(E′kD̃l)(x, y)| =
∣∣∣
\
X

E′k(x, z)D̃l(z, y) dµ(z)
∣∣∣ =
∣∣∣
\
X

[E′k(x, z)− E′k(x, y)]D̃l(z, y) dµ(z)
∣∣∣

≤
\

{z: ̺′(z,y)≤ 1
2A (2

−k+̺′(x,y))}

|E′k(x, z)− E′k(x, y)||D̃l(z, y)| dµ(z)

+
\

{z: ̺′(z,y)> 1
2A (2

−k+̺′(x,y))}

|E′k(x, z)||D̃l(z, y)| dµ(z)

+
\

{z: ̺′(z,y)> 1
2A (2

−k+̺′(x,y))}

|E′k(x, y)||D̃l(z, y)| dµ(z)

≤ C

(2−k + ̺(x, y))d+σ2

\
X

̺(z, y)σ2
2−lσ1

(2−l + ̺(z, y))d+σ1
dµ(z)
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+
C2−lσ2

(2−k + ̺(x, y))d+σ2

\
X

|E′k(x, z)| dµ(z)

+ C2−(l−k)σ2
2−kσ2

(2−k + ̺(x, y))d+σ2

\
X

2−l(σ1−σ2)

(2−l + ̺(z, y))d+σ1−σ2
dµ(z)

≤ C2−(l−k)σ2
2−kσ2

(2−k + ̺(x, y))d+σ2
.

Thus, (1.5) is true in this case. If k > l ≥ 0, by (1.4) and (i), we can also show (1.5) in a

similar way. The proof of (1.5) for l = k = 0 is trivial.

From (1.2), (1.5), and the Hölder inequality, it follows that for 1 ≤ p ≤ ∞ and

1 ≤ q <∞,

{ ∞∑

k=0

[2ks‖E′k(f)‖Lp(X)]q
}1/q
≤ C
{ ∞∑

k=0

[
2ks

∞∑

l=0

2−|k−l|σ2‖El(f)‖Lp(X)
]q}1/q

≤ C
{ ∞∑

k=0

[ ∞∑

l=0

2(k−l)s−|k−l|σ2
]q/q′[ ∞∑

l=0

2(k−l)s−|k−l|σ2(2ls‖El(f)‖Lp(X))q
]}1/q

≤ C
{ ∞∑

l=0

[2ls‖El(f)‖Lp(X)]q
}1/q

.

When q =∞, the proof is trivial.

This finishes the proof of Proposition 1.1.

In [20], the atomic decompositions for these spaces were also given. To state these,

we need the following construction of Christ [3], which provides an analogue of the grid

of Euclidean dyadic cubes on a space of homogeneous type.

Lemma 1.3. Let (X, ̺, µ)d,θ be a space of homogeneous type. Then there exists a collec-

tion {Qkα ⊂ X : k ∈ N ∪ {0}, α ∈Mk} of open subsets , where Mk is some (possibly finite)

index set , and constants δ ∈ (0, 1), a0 > 0 and 0 < C <∞ such that
(i) µ(X \⋃αQkα) = 0 for each fixed k and Qkβ ∩Qkα = ∅ if α 6= β;

(ii) for any α, β, k, l with l ≥ k, either Qlβ ⊂ Qkα or Qlβ ∩Qkα = ∅;
(iii) for each (k, α) and each l < k there is a unique β such that Qkα ⊂ Qlβ ;
(iv) diam(Qkα) ≤ Cδk;
(v) each Qkα contains some ball B(zkα, a0δ

k), where zkα ∈ X.

In fact, we can think of Qkα as being essentially a dyadic cube with diameter roughly

δk and center zkα.

The following (dyadic) smooth atoms on a space of homogeneous type were introduced

in [23].

Definition 1.4. Fix δ ∈ (0, 1) and a collection {Qkτ ⊂ X : k ∈ N ∪ {0}, τ ∈Mk} of open

subsets satisfying the conditions of Lemma 1.3. A function aQkτ defined on X is said to

be a γ-smooth atom for Qkτ if
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(i) supp aQkτ ⊂ B(zkτ , 3ACδ
k);

(ii)
\
X

aQkτ (x) dµ(x) = 0;

(iii) |aQkτ (x)| ≤ µ(Qkτ )
−1/2 and |aQkτ (x)− aQkτ (y)| ≤ µ(Qkτ )

−1/2−γ/d̺(x, y)γ .

A function aQkτ defined on X is said to be a γ-smooth block for Qkτ if aQkτ satisfies

only (i) and (iii) above.

As in the case X = Rn (see [9]), we also define certain inhomogeneous spaces of

sequences indexed by “dyadic cubes” {Qkτ}τ∈Mk, k∈N∪{0} ≡ J in X, which will charac-

terize the coefficients in atomic and molecular decompositions of Bspq(X) and F spq(X). For

−ε < s < ε, 1 ≤ p, q ≤ ∞, we let bspq(X) be the collection of all sequences λ = {λQ}Q∈J
such that

‖λ‖bspq(X) =
{ ∞∑

k=0

[ ∑

τ∈Mk

(µ(Qkτ )
−s/d−1/2+1/p|λQkτ |)

p
]q/p}1/q

is finite; and, for −ε < s < ε, 1 < p <∞, 1 < q ≤ ∞, let fspq(X) be the collection of all

sequences λ = {λQ}Q∈J such that

‖λ‖fspq(X) =
∥∥∥
{ ∞∑

k=0

∑

τ∈Mk

(µ(Qkτ )
−s/d−1/2|λQkτ |χQkτ )q

}1/q∥∥∥
Lp(X)

is finite, where χQkτ is the characteristic function of Qkτ .

We have the following atomic decompositions for Bspq(X) and F spq(X), which were

proved in [20].

Lemma 1.4. Suppose −ε < s < ε.

(i) If 1 ≤ p, q ≤ ∞ and f ∈ Bspq(X)∩ (G(β, γ))′ with 0 < β, γ < ε, then there exist a

sequence λ = {λQkτ }Qkτ∈J ∈ bspq(X), ε-smooth atoms {aQkτ }k∈N, τ∈Mk and ε-smooth blocks

{aQ0τ }τ∈M0 such that

f =

∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

with convergence both in the norm of Bspq(X) and in (G(β, γ))′ when 1 ≤ p, q < ∞ and
only in (G(β, γ))′ when 1 ≤ p, q ≤ max(p, q) =∞, and

‖λ‖bspq(X) ≤ C‖f‖Bspq(X).
Similarly , if 1 < p <∞, 1 < q ≤ ∞ and f ∈ F spq(X) ∩ (G(β, γ))′ with 0 < β, γ < ε, then

there exist a sequence λ = {λQkτ }Qkτ∈J ∈ fspq(X), ε-smooth atoms {aQkτ }k∈N, τ∈Mk and

ε-smooth blocks {aQ0τ }τ∈M0 such that

f =

∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

with convergence both in the norm of F spq(X) and in (G(β, γ))′ when 1 < p, q < ∞ and
only in (G(β, γ))′ when 1 < p <∞ and q =∞, and

‖λ‖fspq(X) ≤ C‖f‖F spq(X).



16 Y. S. Han and D. C. Yang

(ii) Conversely , suppose

f =

∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

in (G(β, γ))′ with max(0,−s) < β < ε and 0 < γ < ε, where aQ0τ ’s for τ ∈ M0 are

ε-smooth blocks and aQkτ ’s for k ∈ N and τ ∈Mk are ε-smooth atoms. Then

‖f‖Bspq(X) ≤ C‖λ‖bspq(X) for 1 ≤ p, q ≤ ∞,
‖f‖F spq(X) ≤ C‖λ‖fspq(X) for 1 < p <∞, 1 < q ≤ ∞.

Characterizations of “smooth molecules” for Bspq(X) and F spq(X) are also important

in applications. In fact, we will use them and Lemma 1.4 to obtain the boundedness of

fractional integrals and derivatives in the next section. See [20] for the proof of Lemma

1.5 below.

Definition 1.5. Fix δ ∈ (0, 1) and a collection {Qkτ ⊂ X : k ∈ N ∪ {0}, τ ∈ Mk} of

open subsets as in Lemma 1.3. A function mQkτ defined on X is said to be a (β, γ)-smooth

molecule for Qkτ if

(i)
\
X

mQkτ (x) dµ(x) = 0;

(ii) |mQkτ (x)| ≤ µ(Qkτ )
−1/2(1 + δ−k̺(x, zkτ ))

−(d+γ);

(iii) |mQkτ (x)−mQkτ (x′)| ≤ µ(Qkτ )
−1/2−β/d̺(x, x′)β

{
1

(1 + δ−k̺(x, zkτ ))
d+γ

+
1

(1 + δ−k̺(x′, zkτ ))
d+γ

}
.

A function mQkτ defined on X is said to be a (β, γ)-smooth unit for Qkτ if mQkτ satisfies

only (ii) and (iii) above.

Lemma 1.5. Suppose {Qkτ}k∈N∪{0}, τ∈Mk are dyadic cubes in X as in Lemma 1.3 and that

mQ0τ is a (β, γ)-smooth unit for Q0τ and τ ∈ M0 and mQkτ is a (β, γ)-smooth molecule

for Qkτ , k ∈ N and τ ∈ Mk with max(0,−s) < β < ε and 0 < γ < ε. Then for

λ = {λQkτ }Qkτ∈J ,

∥∥∥
∞∑

k=0

∑

τ

λQkτmQkτ

∥∥∥
Bspq(X)

≤ C‖λ‖bspq(X) for − ε < s < ε and 1 ≤ p, q ≤ ∞,

∥∥∥
∞∑

k=0

∑

τ

λQkτmQkτ

∥∥∥
F spq(X)

≤ C‖λ‖fspq(X) for −ε < s < ε and 1 < p <∞, 1 < q ≤ ∞.

In [22], inhomogeneous discrete Calderón reproducing formulae onX were established.

We will use these formulae to establish frame characterizations of Bspq(X) and F spq(X) in

Section 5. To state these results, we need more notation. In the following, we will denote

by Qk,ντ , ν = 1, 2, . . . , N(k, τ), the set of all cubes Qk+jτ ′ ⊂ Qkτ , where j is a fixed large

positive integer. Denote by yk,ντ a point in Qk,ντ .

The following discrete Calderón reproducing formulae are the main results in [22].
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Lemma 1.6. Suppose that {Sk}k≥0 is an approximation to the identity as in Definition
1.2. Let {Dk}k∈N∪{0} be as in Lemma 1.1. Then there exist families of linear operators D̃k

and Ẽk for k ∈ N, and Ẽ0,ντ for τ ∈M0 and ν = 1, . . . , N(0, τ ), and a fixed large integer

N ∈ N such that for any fixed yk,ντ ∈ Qk,ντ with k ∈ N, τ ∈Mk and ν ∈ {1, . . . , N(k, τ)}
and all f ∈ G(β1, γ1) with 0 < β1, γ1 < ε,

(1.6) f=
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )D̃0,ντ (x)D0,ντ,1 (f)+

N∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk,ντ,1 (f)

+
∞∑

k=N+1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ )

=
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )D0,ντ,2 (x)Ẽ0,ντ (f) +

N∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )Dk,ντ,2 (x)Ẽk(f)(yk,ντ )

+
∞∑

k=N+1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )Dk(x, y
k,ν
τ )Ẽk(f)(yk,ντ ),

where the series converge in the norms of both Lp(X), 1 < p < ∞, and G(β′1, γ
′
1) for

0 < β′1 < β1 and 0 < γ′1 < γ1; D̃
0,ν
τ (x) for τ ∈ M0 and ν = 1, . . . , N(0, τ ) is a function

satisfying

(i)
\
X

D̃0,ντ (x) dµ(x) = 1,

(ii) for any given ε′ ∈ (0, ε), there is a constant C > 0 such that

|D̃0,ντ (x)| ≤ C 1

(1 + ̺(x, y))d+ε′

for all x ∈ X and y ∈ Q0,ντ ,

(iii) |D̃0,ντ (x)− D̃0,ντ (z)| ≤ C
(

̺(x, z)

1 + ̺(x, y)

)ε′
1

(1 + ̺(x, y))d+ε′

for all x, z ∈ X and all y ∈ Q0,ντ satisfying ̺(x, z) ≤ 1
2A (1 + ̺(x, y)); and

Ẽ0,ντ (f) =
\
X

Ẽ0,ντ (y)f(y) dµ(y)

for τ ∈M0 and ν = 1, . . . , N(0, τ ), and Ẽ0,ντ (x) satisfies the same conditions as D̃0,ντ (x);

for k = 0, 1, . . . , N , τ ∈Mk and ν = 1, . . . , N(k, τ),

Dk,ντ,1 (f) =
\
X

Dk,ντ,1 (y)f(y) dµ(y),

and Dk,ντ,1 (y) is defined by

Dk,ντ,1 (y) =
1

µ(Qk,ντ )

\
Qk,ντ

Dk(z, y) dµ(z);
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and the function Dk,ντ,2 (x) is defined by

Dk,ντ,2 (x) =
1

µ(Qk,ντ )

\
Qk,ντ

Dk(x, z) dµ(z).

Moreover , the kernels of the linear operators D̃k and Ẽk satisfy the same conditions as

in Lemma 1.1.

The following lemma was obtained in [22] by a dual argument.

Lemma 1.7. With the notation of Lemma 1.6, for all f ∈ (G(β1, γ1))
′ with 0 < β1, γ1 < ε,

(1.6) holds with the series converging in (G(β′1, γ
′
1))
′ for ε > β′1 > β1 and ε > γ′1 > γ1.

In [20], the following dual spaces of the spaces Bspq(X) and F spq(X) were established.

Lemma 1.8. Suppose −ε < s < ε.

(A) (Bspq(X))∗ = B−sp′q′(X) for 1 ≤ p, q < ∞ with 1/p + 1/p′ = 1/q + 1/q′ = 1.

More precisely , given g ∈ B−sp′q′(X), then Lg(f) = 〈f, g〉 defines a linear functional on
G(ε′, ε′) ∩Bspq(X) with 0 < ε′ < ε such that

|Lg(f)| ≤ C‖f‖Bspq(X)‖g‖B−sp′q′ (X),

and this linear functional can be extended to Bspq(X) with norm at most C‖g‖B−s
p′q′
(X).

Conversely , if L is a linear functional on Bspq(X), then there exists a unique g ∈
B−sp′q′(X) such that Lg(f) = 〈f, g〉 defines a linear functional on G(ε′, ε′) ∩ Bspq(X), and

L is the extension of Lg with
‖g‖B−s

p′q′
(X) ≤ C‖L‖.

(B) (F spq(X))∗ = F−sp′q′(X) for 1 < p, q < ∞ with 1/p + 1/p′ = 1/q + 1/q′ = 1.

More precisely , given g ∈ F−sp′q′(X), then Lg(f) = 〈f, g〉 defines a linear functional on
G(ε′, ε′) ∩ F spq(X) with 0 < ε′ < ε such that

|Lg(f)| ≤ C‖f‖F spq(X)‖g‖F−sp′q′ (X),

and this linear functional can be extended to F spq(X) with norm at most C‖g‖F−s
p′q′
(X).

Conversely , if L is a linear functional on F spq(X), then there exists a unique g ∈
F−sp′q′(X) such that Lg(f) = 〈f, g〉 defines a linear functional on G(ε′, ε′) ∩ F spq(X), and

L is the extension of Lg with
‖g‖F−s

p′q′
(X) ≤ C‖L‖.

Remark 1.4. We first remark that by Proposition 3.3 in [20], we know that for 0 <

ε′ < ε, G(ε′, ε′) ∩ Bspq(X) and G(ε′, ε′) ∩ F spq(X) are dense, respectively, in Bspq(X) with

1 ≤ p, q <∞ and F spq(X) with 1 < p, q <∞; see also Proposition 4.11 in [23].

Remark 1.5. We point out that Lemma 1.8(A) in [20] has the restriction min(p, q) > 1.

But, by a similar proof to that of Theorem 7.1 in [23], one can show that Lemma 1.8(A)

holds even when min(p, q) = 1. This is still true for Theorem 7.1 in [23]. Moreover,

let us now define
◦

Bspq(X) with −ε < s < ε and 1 ≤ p, q ≤ ∞ as the completion of
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⋃
0<ε′<ε G(ε′, ε′) in Bspq(X) endowed with the quasi-norm of Bspq(X). Then, in the sense

of Lemma 1.8, we have

(1.7) (
◦

Bspq(X))∗ = B−sp′q′(X)

with p′ and q′ as in Lemma 1.8. (1.7) is new only for the case max(p, q) =∞ in comparison

with Lemma 1.8(A). This fact can be easily proved by combining the argument in [23,

pp. 116–120] with that in [31, p. 180]; see also [30, pp. 121–122]. We omit the details.

We also need the following lemma which can be found in [23, p. 93]; see also [9].

Lemma 1.9. Let 1 ≤ p ≤ ∞, µ, η ∈ N ∪ {0} with η ≤ µ and for “dyadic cubes” Qµτ ,
|fQµτ (x)| ≤ (1 + 2η̺(x, zµτ ))−d−σ,

where zµτ is the “center” of Q
µ
τ as in Lemma 1.3 and σ > 0 (recall that µ(Qµτ ) ≈ 2−µd).

Then ∥∥∥
∑

τ

λQµτ fQµτ

∥∥∥
Lp(X)

≤ C2(µ−η)d2−µd/p
(∑

τ

|λQµτ |p
)1/p

and ∑

τ

|λQµτ ||fQµτ (x)| ≤ C2(µ−η)dM
(∑

τ

|λQµτ |χQµτ
)

(x),

where C is independent of x, µ and η, and M is the Hardy–Littlewood maximal operator

on X.

The following lemma was established in [22].

Lemma 1.10. For 1 < p <∞, F 0p2(X) = Lp(X) with equivalent norms.

The following trivial properties of the spaces Bspq(X) and F spq(X) can be obtained by

combining their definitions with Hölder’s inequality; see Proposition 2 in [31, p. 47]. We

omit the details.

Proposition 1.2. Let −ε < s < ε and −ε < s1 < s2 < ε. Then

(i) Bs2p,q2(X) ⊂ Bs1p,q1(X) for 1 ≤ p, q1, q2 ≤ ∞;

(ii) Bsp,q2(X) ⊂ Bsp,q1(X) for 1 ≤ p ≤ ∞ and 1 ≤ q2 ≤ q1 ≤ ∞;

(iii) F s2p,q2(X) ⊂ F s1p,q1(X) for 1 < p <∞ and 1 < q1, q2 ≤ ∞;

(iv) F sp,q2(X) ⊂ F sp,q1(X) for 1 < p <∞ and 1 < q2 ≤ q1 ≤ ∞.
Now let us use Lemma 1.4 to show our two claims in the introduction. Let |s| < 1/n.

We first show that B spq(X) = Bnspq (X) for 1 ≤ p, q ≤ ∞ and F spq(X) = Fnspq (X) for

1 < p < ∞ and 1 < q ≤ ∞. We only show the first equality; the proof of the second is

similar. Obviously, we can take {Qkτ : k ∈ N∪{0}, τ ∈Mk} in Lemma 1.3 corresponding

to d = n and ̺(x, y) = |x − y| for all x, y ∈ Rn to be the usual dyadic cubes, that is,

Qkτ = {x ∈ Rn : 2−kτi ≤ xi < 2−k(τi + 1), i = 1, . . . , n}, where we let τ ∈ Mk ≡ Zn.

We then take {Q nkτ : k ∈ N ∪ {0}, τ ∈Mnk} in Lemma 1.3 corresponding to d = 1 and

̺(x, y) = |x − y|n for all x, y ∈ Rn to be Q nkτ ≡ Qkτ and Mnk ≡ Mk. By Lemma 1.4, we

then have

f =
∞∑

k=0

∑

τ∈Mnk

λQ nkτ aQ nkτ =
∞∑

k=0

∑

τ∈Mk

λQkτaQkτ



20 Y. S. Han and D. C. Yang

and

‖f‖B spq(X) ∼
{ ∞∑

k=0

[ ∑

τ∈Mnk

(µ(Q nkτ )−s−1/2+1/p|λQ nkτ |)
p
]q/p}1/p

∼
{ ∞∑

k=0

[ ∑

τ∈Mk

(µ(Qkτ )
−s−1/2+1/p|λQkτ |)

p
]q/p}1/p

∼ ‖f‖Bnspq (X),

since d = n and d = 1.

Let |s| < 1/n2. Now let us show B̃nspq (X) = Bspq(X) for 1 ≤ p, q ≤ ∞ and F̃nspq (X) =

F spq(X) for 1 < p < ∞ and 1 < q ≤ ∞. As above, we only show the first equality. We

now take {Q̃kτ : k ∈ N ∪ {0}, τ ∈ M̃k} in Lemma 1.3 corresponding to d = n2 and

˜̺(x, y) = |x − y|1/n for all x, y ∈ Rn to be Q̃kτ ≡ Qnkτ and M̃k ≡ Mnk, and we take

{Qnkτ : k ∈ N ∪ {0}, τ ∈Mnk} as those cubes in Lemma 1.3 corresponding to d = 1 and

̺(x, y) = |x− y| for all x, y ∈ Rn. By Lemma 1.4, we then have

f =

∞∑

k=0

∑

τ∈M̃k

λQ̃kτ
aQ̃kτ

=

∞∑

k=0

∑

τ∈Mnk

λQnkτ aQnkτ

and

‖f‖B̃nspq (X) ∼
{ ∞∑

k=0

[ ∑

τ∈M̃k

(µ(Q̃kτ )
−s/n−1/2+1/p|λQ̃kτ |)

p
]q/p}1/p

∼
{ ∞∑

k=0

[ ∑

τ∈Mnk

(µ(Qnkτ )−s/n−1/2+1/p|λQnkτ |)
p
]q/p}1/p

∼ ‖f‖Bspq(X),

since d̃ = n2 and d = n.

In fact, by a technical modification of the above proofs, we can prove a more general

result, where the quasi-metric is |x− y|κ for any given κ > 0 and all x, y ∈ Rn, and µ is

the n-dimensional Lebesgue measure. In this case, d = n/κ and θ = κ if κ ≤ 1 or θ = 1/κ

if κ > 1. We omit the details.

Finally, we establish a generalization of Lemma 1.4 which will be used in Section 6.

In the following, we say a function aQkτ is a γ-smooth block for Qkτ if aQkτ only satisfies (i)

and (iii) in Definition 1.4.

Theorem 1.1. Suppose 0 < s < ε.

(i) If 1 ≤ p, q ≤ ∞ and f ∈ Bspq(X)∩ (G(β, γ))′ with 0 < β, γ < ε, then there exist a

sequence λ = {λQkτ }Qkτ∈J ∈ bspq(X) and ε-smooth blocks {aQkτ }k∈N∪{0}, τ∈Mk such that

f =
∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

with convergence both in the norm of Bspq(X) and in (G(β, γ))′ when 1 ≤ p, q < ∞ and
only in (G(β, γ))′ when 1 ≤ p, q ≤ max(p, q) =∞, and

‖λ‖bspq(X) ≤ C‖f‖Bspq(X).
Similarly , if 1 < p <∞, 1 < q ≤ ∞ and f ∈ F spq(X)∩ (G(β, γ))′ with 0 < β, γ < ε, then

there exist a sequence λ = {λQkτ }Qkτ∈J ∈ fspq(X) and ε-smooth blocks {aQkτ }k∈N∪{0}, τ∈Mk
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such that

f =
∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

with convergence both in the norm of F spq(X) and in (G(β, γ))′ when 1 < p, q < ∞ and
only in (G(β, γ))′ when 1 < p <∞ and q =∞, and

‖λ‖fspq(X) ≤ C‖f‖F spq(X).
(ii) Conversely , suppose

f =

∞∑

k=0

∑

τ∈Mk

λQkτaQkτ

in (G(β, γ))′ with 0 < β, γ < ε, where aQkτ for k ∈ N ∪ {0} are ε-smooth blocks. Then
‖f‖Bspq(X) ≤ C‖λ‖bspq(X) for 1 ≤ p, q ≤ ∞,
‖f‖F spq(X) ≤ C‖λ‖fspq(X) for 1 < p <∞ and 1 < q ≤ ∞.

Proof. (i) is just a corollary of Lemma 1.4. To show (ii), let {Sk}∞k=0 be an approximation

to the identity, Ek = Sk − Sk−1 for k ∈ N and E0 = S0. We need to establish that for

k, l ∈ N ∪ {0}, k ≤ l, τ ∈Ml and all x ∈ X,

(1.8) |Ek(aQlτ )(x)| ≤ Cµ(Qlτ )
−1/22−(l−k)d(1 + 2k̺(x, zlτ ))

−(d+ε)

and that for k, l ∈ N ∪ {0}, k ≥ l, τ ∈Ml and all x ∈ X,

(1.9) |Ek(aQlτ )(x)| ≤ Cµ(Qlτ )
−1/22−(k−l)ε(1 + 2l̺(x, zlτ ))

−(d+ε),

where C is independent of k, l, τ and x.

(1.9) is just (2.10) in [20]; see also (6.16) in [23]. To show (1.8), by Definitions 1.2 and

1.4, we have suppEk(aQlτ ) ⊂ {x ∈ X : ̺(x, zlτ ) ≤ 4A2C2−k}. Thus,

|Ek(aQlτ )(x)| =
∣∣∣
\
X

Ek(x, y)aQlτ (y) dµ(y)
∣∣∣χ{x∈X: ̺(x,zlτ )≤4A2C2−k}(x)

≤ Cµ(Qlτ )
−1/22−(l−k)dχ{x∈X: ̺(x,zlτ )≤4A2C2−k}(x)

≤ Cµ(Qlτ )
−1/22−(l−k)d(1 + 2k̺(x, zlτ ))

−(d+ε).

Thus, (1.8) holds.

Using (1.8), (1.9) and the fact that s > 0, together with an argument similar to [23,

pp. 94–96] or [20], we can prove (ii).

This finishes the proof of Theorem 1.1.

2. Fractional integrals and derivatives

In this section, we work on spaces of homogeneous type, (X, ̺, µ)d,θ, as defined in Defi-

nition 0.1. We introduce fractional integrals and derivatives by means of approximations

to the identity and then by using atomic and molecular decomposition characterizations,

we establish their invertibility on Bspq(X) and F spq(X).
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Definition 2.1. Let (X, ̺, µ)d,θ be a space of homogeneous type as in Definition 0.1. Let

{Sl}∞l=0 be an approximation to the identity as in Definition 1.2 and let El = Sl − Sl−1
for l ≥ 1 and E0 = S0. Let α ∈ R. Then the operator Iα for f ∈ G(β, γ) with 0 < β ≤ θ
and 0 < γ is defined by

Iα(f)(x) =

∞∑

l=0

2−lαEl(f)(x),

where x ∈ X.

Obviously, when α > 0, Iα is the discrete and inhomogeneous version of the fractional

integrals introduced in [11] and [12]; while when α < 0, Iα is the discrete and inhomoge-

neous version of the fractional derivatives introduced there. When α = 0, Iα is just the

identity. We also mention that in [28] and [29], Nahmod has considered some discrete and

inhomogeneous fractional integrals and derivatives similar to the above.

Theorem 2.1. Let ε ∈ (0, θ], α ∈ R, θ ≥ β > 0, ε > α+β > 0 and γ > max(α, 0). Then

Iα maps G(β, γ) continuously into G(β + α, γ −max(α, 0)), namely , there is a constant

C > 0 independent of f such that for all f ∈ G(β, γ),

‖Iα(f)‖G(β+α,γ−max(α,0)) ≤ C‖f‖G(β,γ).

Proof. Let f ∈ G(β, γ). We have

|E0(f)(x)| =
∣∣∣
\
X

E0(x, y)f(y) dµ(y)
∣∣∣(2.1)

≤ ‖f‖G(β,γ)
\

{x:̺(x,y)≤C}

|E0(x, y)| 1

(1 + ̺(y, x0))d+γ
dµ(y)

≤ C‖f‖G(β,γ)
1

(1 + ̺(x, x0))d+γ
,

since 1 + ̺(x, x0) ≤ A(1 + C)(1 + ̺(y, x0)).

For l ∈ N, we then have

|El(f)(x)| =
∣∣∣
\
X

El(x, y)f(y) dµ(y)
∣∣∣ =
∣∣∣
\
X

El(x, y)(f(y)− f(x)) dµ(y)
∣∣∣(2.2)

≤ ‖f‖G(β,γ)
(1 + ̺(x, x0))d+γ+β

\
{x: ̺(x,y)≤C2−l}

|El(x, y)|̺(x, y)β dµ(y)

≤ C2−lβ‖f‖G(β,γ)
1

(1 + ̺(x, x0))d+γ+β
.

By (2.1) and (2.2), we obtain

|Iα(f)(x)| =
∣∣∣
∞∑

l=0

2−lαEl(f)(x)
∣∣∣ ≤ C‖f‖G(β,γ)

1

(1 + ̺(x, x0))d+γ

∞∑

l=0

2−l(α+β)(2.3)

≤ C‖f‖G(β,γ)
1

(1 + ̺(x, x0))d+γ
,

since α+ β > 0.



Homogeneous type spaces and fractals 23

Now, if 1
4A2 < ̺(x, x′) ≤ 1

2A (1 + ̺(x, x0)), by (2.2) for l ∈ N, we obtain

(2.4) |Iα(f)(x)−Iα(f)(x′)| ≤ |E0(f)(x)−E0(f)(x′)|+
∞∑

l=1

2−lα[|El(f)(x)|+|El(f)(x′)|]

≤
∣∣∣
\
X

(E0(x, y)− E0(x′, y))(f(y)− f(x)) dµ(y)
∣∣∣

+ C‖f‖G(β,γ)
∞∑

l=1

2−l(α+β)
{

1

(1 + ̺(x, x0))d+γ+β
+

1

(1 + ̺(x′, x0))d+γ+β

}

≤ C ‖f‖G(β,γ)
(1 + ̺(x, x0))d+γ+β

{
1 +

\
X

[|E0(x, y)|+ |E0(x′, y)|]̺(y, x)β dµ(y)
}

≤ C ‖f‖G(β,γ)
(1 + ̺(x, x0))d+γ+β

{1 + ̺(x, x′)β}

≤ C‖f‖G(β,γ)
(

̺(x, x′)

1 + ̺(x, x0)

)α+β
1

(1 + ̺(x, x0))d+γ−max(α,0)
,

since 1 + ̺(x, x0) ≤ 2A(1 + ̺(x′, x0)) and α + β > 0, where for the term l = 0, we used

the fact that ̺(y, x) ≤ AC +A̺(x, x′) if ̺(x′, y) ≤ C.

Now, we suppose that there is an l1 ∈ N such that

2−l1

4A2
< ̺(x, x′) ≤ 21−l1

4A2
.

For the terms with l ≥ l1, by (2.2), we obtain

(2.5) |Iα(f)(x)− Iα(f)(x′)| =
∣∣∣
∞∑

l=0

2−lα[El(f)(x)− El(f)(x′)]
∣∣∣

≤
l1∑

l=0

2−lα|El(f)(x)− El(f)(x′)|+
∞∑

l=l1+1

2−lα[|El(f)(x)|+ |El(f)(x′)|]

=

l1∑

l=0

2−lα
∣∣∣
\
X

[El(x, y)− El(x′, y)][f(y)− f(x)] dµ(y)
∣∣∣

+

∞∑

l=l1+1

2−lα[|El(f)(x)|+ |El(f)(x′)|]

≤ C‖f‖G(β,γ)
1

(1 + ̺(x, x0))d+γ+β

{
̺(x, x′)ε

l1∑

l=0

2l(ε−α−β) +

∞∑

l=l1+1

2−l(α+β)
}

≤ C‖f‖G(β,γ)
̺(x, x′)α+β

(1 + ̺(x, x0))d+γ+β
,

since α+ β ∈ (0, ε).
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Thus, if ̺(x, x′) ≤ 1
2A (1 + ̺(x, x0)), by (2.4) and (2.5), we obtain

(2.6) |Iα(f)(x)−Iα(f)(x′)| ≤ C‖f‖G(β,γ)
(

̺(x, x′)

1 + ̺(x, x0)

)α+β
1

(1 + ̺(x, x0))d+γ−max(α,0)
.

By (2.3) and (2.6), the proof of Theorem 2.1 is complete.

Remark 2.1. We remark that in the proof of Theorem 2.1, only regurality in the first

variable of the kernels of El is necessary; this fact will be used in Section 3.

Remark 2.2. By a similar argument, we can show Theorem 2.1 is still true if Iα is

defined by use of approximations to the identity without compact supports as in Re-

mark 1.1.

Let {Ek}k∈N∪{0} be as in Definition 2.1. We define a new family of linear operators

{Etk}k∈N∪{0} by letting their kernels Etk(x, y) be Ek(y, x) for all k ∈ N ∪ {0} and all

x, y ∈ X. For α ∈ R, we define

Itα(f)(x) =

∞∑

k=0

2−kαEtk(f)(x)

for all test functions f . We now generalize the fractional integrals to the dual spaces by

use of this operator.

Definition 2.2. Let α ∈ (−ε, ε), 0 < β ≤ θ, 0 < β + α < ε and γ > max(α, 0). We

define Iα on (G(β + α, γ −max(α, 0)))′ by

〈Iα(f), ϕ〉 = 〈f, Itα(ϕ)〉 for f ∈ (G(β + α, γ −max(α, 0)))′ and ϕ ∈ G(β, γ).

We will use the atomic and molecular characterizations of Bspq(X) and F spq(X) to

establish the boundedness of Iα on these spaces.

Theorem 2.2. Let s, α ∈ (−ε, ε) be such that α + s ∈ (−ε, ε). Then Iα maps Bspq(X)

continuously into Bs+αpq (X) for 1 ≤ p, q ≤ ∞ and F spq(X) continuously into F s+αpq (X) for

1 < p < ∞ and 1 < q ≤ ∞, namely , there is a constant C > 0 independent of f such

that

‖Iα(f)‖Bs+αpq (X)
≤ C‖f‖Bspq(X) for all f ∈ Bspq(X),

‖Iα(f)‖F s+αpq (X)
≤ C‖f‖F spq(X) for all f ∈ F spq(X).

Proof. Let 0 < γ < ε and max(0,−s − α) < β < ε. Let {aQkτ }k∈N,τ∈Mk be ε-smooth

atoms and {aQ0τ }τ∈M0 be ε-smooth blocks as in Definition 1.4 with δ = 1/2. In the rest

of the paper, we suppose δ = 1/2; see [23, pp. 96–98] for how to remove this restriction.

For k ∈ N ∪ {0} and τ ∈Mk, we define

mQkτ (x) = 2kαIα(aQkτ )(x).

By Lemmas 1.4 and 1.5, we only need to verify that mQkτ is a (β, γ)-smooth molecule for

Qkτ , k ∈ N and τ ∈Mk and that mQ0τ is a (β, γ)-smooth unit for Q0τ and τ ∈M0. Let us
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begin with the latter. Obviously, we can suppose α 6= 0. We have

|mQ0τ (x)| ≤ |E0(aQ0τ )(x)|+
∞∑

l=1

2−lα|El(aQ0τ )(x)|

≤ C +

∞∑

l=1

2−lα
∣∣∣
\
X

El(x, y)(aQ0τ (x)− aQ0τ (y)) dµ(y)
∣∣∣

≤ C+

∞∑

l=1

2−lα
\
X

|El(x, y)|µ(Q0τ )
−1/2−ε/d̺(x, y)ε dµ(y) ≤ C+

∞∑

l=1

2−l(α+ε)≤C,

since α > −ε. Noting that suppmQ0τ ⊂ {x ∈ X : ̺(x, z0τ ) ≤ 4A2C}, we have

(2.7) |mQ0τ (x)| ≤ Cµ(Q0τ )
−1/2(1 + ̺(x, z0τ ))

−(d+γ).

Now we claim that there are β and γ satisfying 0 < γ < ε and max(0,−s−α) < β < ε

such that

(2.8) |mQ0τ (x)−mQ0τ (x′)|

≤ Cµ(Q0τ )
−1/2−β/d̺(x, x′)β

{
1

(1 + ̺(x, z0τ ))
d+γ

+
1

(1 + ̺(x′, z0τ ))
d+γ

}
.

We consider three cases.

Case 1 : ̺(x, x′) ≥ 6A2C. In this case, since mQ0τ satisfies (2.7), we have

|mQ0τ (x)−mQ0τ (x′)| ≤ Cµ(Q0τ )
−1/2

{
1

(1 + ̺(x, z0τ ))
d+γ

+
1

(1 + ̺(x′, z0τ ))
d+γ

}

≤ Cµ(Q0τ )
−1/2−β/d̺(x, x′)β

{
1

(1 + ̺(x, z0τ ))
d+γ

+
1

(1 + ̺(x′, z0τ ))
d+γ

}
.

Thus, (2.8) holds in this case.

Case 2 : ̺(x, x′) < 6A2C and ̺(x, z0τ ) > 12A3C. In this case, it is easy to see that

̺(x′, z0τ ) > 6A2C.

Thus, mQ0τ (x) = mQ0τ (x′) = 0 and (2.8) holds.

Case 3 : ̺(x, x′) < 6A2C and ̺(x, z0τ ) < 12A3C. In this case, we also have

̺(x′, z0τ ) < 18A4C.

We further suppose that there is an l1 ∈ N such that

6A2C2−l1 ≤ ̺(x, x′) < 6A2C2−l1+1.

We then write

|mQ0τ (x)−mQ0τ (x′)| =
∣∣∣
∞∑

l=0

2−lα(El(aQ0τ )(x)− El(aQ0τ )(x′))
∣∣∣

≤ |E0(aQ0τ )(x)− E0(aQ0τ )(x′)|+
∣∣∣
l1∑

l=1

2−lα(El(aQ0τ )(x)− El(aQ0τ )(x′))
∣∣∣

+
∞∑

l=l1+1

2−lα(|El(aQ0τ )(x)|+ |El(aQ0τ )(x′)|)
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≤
∣∣∣
\
X

(E0(x, y)− E0(x′, y))aQ0τ (y) dµ(y)
∣∣∣

+

l1∑

l=1

2−lα
∣∣∣
\
X

(El(x, y)− El(x′, y))(aQ0τ (y)− aQ0τ (x)) dµ(y)
∣∣∣

+

∞∑

l=l1+1

2−lα
[∣∣∣
\
X

El(x, y)(aQ0τ (y)− aQ0τ (x)) dµ(y)
∣∣∣

+
∣∣∣
\
X

El(x
′, y)(aQ0τ (y)− aQ0τ (x′)) dµ(y)

∣∣∣
]

≤ C̺(x, x′)ε + C̺(x, x′)ε
l1∑

l=1

2−lα + C

∞∑

l=l1+1

2−l(α+ε)

≤
{
C̺(x, x′)ε, α > 0,

C̺(x, x′)ε+α, −ε < α < 0.

Thus, if we take β = ε for α > 0 and β = ε+ α for −ε < α < 0, then (2.8) also holds in

this case.

From (2.7) and (2.8), we deduce that mQ0τ is a (β, γ)-smooth unit for Q0τ and τ ∈M0,
multiplied with a normalizing constant.

Let k ∈ N and τ ∈Mk. We intend to show that there are β and γ satisfying 0 < γ < ε

and max(0,−s− α) < β < ε such that mQkτ is a (β, γ)-smooth molecule for Qkτ . We first

write

mQkτ (x) =

∞∑

l=0

2(k−l)αEl(aQkτ )(x) =

k∑

l=0

2(k−l)αEl(aQkτ )(x) +

∞∑

l=k+1

. . . = G1 +G2.

For 0 ≤ l ≤ k, we have

|El(aQkτ )(x)| =
∣∣∣
\
X

El(x, y)aQkτ (y) dµ(y)
∣∣∣χ{x: ̺(x,zkτ )≤4A2C2−l}(x)

=
∣∣∣
\
X

(El(x, y)− El(x, zkτ ))aQkτ (y) dµ(y)
∣∣∣χ{x: ̺(x,zkτ )≤4A2C2−l}(x)

≤ Cµ(Qkτ )
−1/2(1 + 2k̺(x, zkτ ))

−(d+γ)2(k−l)(γ−ε).

From this, it follows that

|G1| ≤ Cµ(Qkτ )
−1/2(1 + 2k̺(x, zkτ ))

−(d+γ)
k∑

l=0

2(k−l)(γ−ε+α)

≤ Cµ(Qkτ )
−1/2(1 + 2k̺(x, zkτ ))

−(d+γ),

if we choose γ < ε− α.
For k + 1 ≤ l <∞, we have

|El(aQkτ )(x)| =
∣∣∣
\
X

El(x, y)aQkτ (y) dµ(y)
∣∣∣χ{x: ̺(x,zkτ )≤4A2C2−k}(x)

=
∣∣∣
\
X

El(x, y)(aQkτ (y)− aQkτ (x)) dµ(y)
∣∣∣χ{x: ̺(x,zkτ )≤4A2C2−k}(x)

≤ Cµ(Qkτ )
−1/2(1 + 2k̺(x, zkτ ))

−(d+γ)2(k−l)ε.
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From this, it follows that

|G2| ≤ Cµ(Qkτ )
−1/2(1 + 2k̺(x, zkτ ))

−(d+γ)
∞∑

l=k+1

2(k−l)(ε+α)

≤ Cµ(Qkτ )
−1/2(1 + 2k̺(x, zkτ ))

−(d+γ),

since ε+ α > 0. Thus, we have

(2.9) |mQkτ (x)| ≤ Cµ(Qkτ )
−1/2(1 + 2k̺(x, zkτ ))

−(d+γ).

Now we claim that there are β and γ satisfying 0 < γ < ε and max(0,−s−α) < β < ε

such that

|mQkτ (x)−mQkτ (x′)| ≤ Cµ(Qkτ )
−1/2−β/d̺(x, x′)β(2.10)

×
{

1

(1 + 2k̺(x, zkτ ))
d+γ

+
1

(1 + 2k̺(x′, zkτ ))
d+γ

}
.

To do this, we consider two cases.

Case 1 : ̺(x, x′) ≥ 6A2C2−k. In this case, by (2.9), it is easy to obtain (2.10).

Case 2 : ̺(x, x′) < 6A2C2−k. In this case, we write

|mQkτ (x)−mQkτ (x′)| ≤
∞∑

l=0

2(k−l)α|El(aQkτ )(x)− El(aQkτ )(x′)|

=

k∑

l=0

2(k−l)α|El(aQkτ )(x)− El(aQkτ )(x′)|+
∞∑

l=k+1

. . . = H1 +H2.

Then, for H1, we have

H1 =
k∑

l=0

2(k−l)α|El(aQkτ )(x)− El(aQkτ )(x′)|

× [χ{x: ̺(x,zkτ )≤4A2C2−l}(x) + χ{x′: ̺(x′,zkτ )≤4A2C2−l}(x
′)]

=
k∑

l=0

2(k−l)α
∣∣∣
\
X

([El(x, y)− El(x′, y)]− [El(x, z
k
τ )− El(x′, zkτ )])aQkτ (y) dµ(y)

∣∣∣

× [χ{x: ̺(x,zkτ )≤4A2C2−l}(x) + χ{x′: ̺(x′,zkτ )≤4A2C2−l}(x
′)]

≤ C
[ k∑

l=0

2(k−l)(α+γ−2ε)
]
µ(Qkτ )

−1/2−β/d̺(x, x′)β

×
{

1

(1 + 2k̺(x, zkτ ))
d+γ

+
1

(1 + 2k̺(x′, zkτ ))
d+γ

}

≤ Cµ(Qkτ )
−1/2−β/d̺(x, x′)β

{
1

(1 + 2k̺(x, zkτ ))
d+γ

+
1

(1 + 2k̺(x′, zkτ ))
d+γ

}
,

since α+ γ − 2ε < 0.

For H2, if ̺(x, zkτ ) ≥ 12A3C2−k, we have ̺(x′, zkτ ) ≥ 6A2C2−k since ̺(x, x′) <

6A2C2−k. Thus, in this case, H2 = 0. Now we suppose that ̺(x, zkτ ) < 12A3C2−k and

there is an l1 ∈ N such that

6A2C2−(k+l1) ≤ ̺(x, x′) < 6A2C2−(k+l1−1).
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We then write

H2 =

k+l1∑

l=k+1

2(k−l)α|El(aQkτ )(x)− El(aQkτ )(x′)|+
∞∑

l=k+l1+1

. . .

=

k+l1∑

l=k+1

2(k−l)α
∣∣∣
\
X

[El(x, y)− El(x′, y)][aQkτ (y)− aQkτ (x)] dµ(y)
∣∣∣

+

∞∑

l=k+l1+1

2(k−l)α
[∣∣∣
\
X

El(x, y)[aQkτ (y)− aQkτ (x)] dµ(y)
∣∣∣

+
∣∣∣
\
X

El(x
′, y)[aQkτ (y)− aQkτ (x′)] dµ(y)

∣∣∣
]

≤ Cµ(Qkτ )
−1/2−ε/d

{
̺(x, x′)ε

k+l1∑

l=k+1

2(k−l)α +
∞∑

l=k+l1+1

2(k−l)α−lε
}

≤
{
Cµ(Qkτ )

−1/2−ε/d̺(x, x′)ε, α > 0,

Cµ(Qkτ )
−1/2−(ε+α)/d̺(x, x′)ε+α, α < 0.

Thus, if we choose β = ε for α > 0 and β = ε + α for α < 0, then (2.10) also holds in

this case.

By (2.9) and (2.10), we know that mQkτ is a (β, γ)-smooth molecule for Qkτ , k ∈ N

and τ ∈Mk, multiplied with a normalizing constant.

The proof of Theorem 2.2 is finished.

The converse of Theorem 2.2 is also true, that is, Bspq(X) and F spq(X) have the lifting

properties by using Iα as a lifting tool; see [31].

Theorem 2.3. Let s, α ∈ (−ε, ε) be such that α + s ∈ (−ε, ε). Let α < s + ε when

s < 0 and α > s − ε when s > 0. Then there exists α0(s) ∈ (0, ε) and a constant C > 0

independent of f such that if −α0(s) < α < α0(s), then

‖f‖Bspq(X) ≤ C‖Iα(f)‖Bs+αpq (X)
for 1 ≤ p, q ≤ ∞,

‖f‖F spq(X) ≤ C‖Iα(f)‖F s+αpq (X)
for 1 < p <∞ and 1 < q ≤ ∞.

The key point to show Theorem 2.3 is to prove the invertibility of IαI−α on Bspq(X)

and F spq(X). To do this, we will use a similar idea to that used in [18] to establish

inhomogeneous Calderón reproducing formulae on spaces of homogeneous type. Let I be

the identity operator on Bspq(X) or F spq(X) and let El = 0 for l < 0. For any given N ∈ N,

we write

(2.11) I − IαI−α =

∞∑

k=0

∑

|l|≤N

(1− 2lα)EkEk+l +

∞∑

k=0

∑

|l|>N

(1− 2lα)EkEk+l = TN +RN .

We will show that if N is sufficiently large and if |α| is small enough, then the operators

TN and RN are bounded on Bspq(X) and F spq(X) with small operator norms. To do that,

we need some properties of the operators EkEk+l. In what follows, we denote the kernels

of the operators EkEk+l just by (EkEk+l)(x, y) for x, y ∈ X. All the estimates in the

following lemma are special cases of (3.9)–(3.12) in [18]. Moreover, estimates similar to
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those in Lemma 2.1 still hold if {Sk}∞k=0 and {S̃k}∞k=0 are two approximations to the

identity as in Remark 1.1 with kernels not having compact supports; see [18]. But, for

completeness, we will give a proof of the following lemma. Recall that for a, b ∈ R, we

denote the minimum of a and b by a ∧ b.
Lemma 2.1. Let {Sk}∞k=0 and {S̃k}∞k=0 be two approximations to the identity as in Def-
inition 1.2. Let Ek = Sk − Sk−1 and Ẽk = S̃k − S̃k−1 for k ∈ N, E0 = S0, Ẽ0 = S̃0,

and El = 0 = Ẽl for l ∈ Z \ (N ∪ {0}). Then (EkẼk+l)(x, y), the kernels of the operators

EkẼk+l, have the following basic properties:

(2.12) supp(EkẼk+l) ⊂ {(x, y) ∈ X ×X : ̺(x, y) ≤ AC2−k} for k, l ≥ 0;

(2.13) supp(EkẼk+l) ⊂ {(x, y) ∈ X × X : ̺(x, y) ≤ AC2−k−l} for k ≥ 0, l ≤ 0 and

k + l ≥ 0;

(2.14)
T
X

(EkẼk+l)(x, y) dµ(x) = 0 =
T
X

(EkẼk+l)(x, y) dµ(y) for l 6= 0, k ≥ 0 and

k + l ≥ 0, and for l = 0 and k > 0.

Moreover , for any given σ ∈ (0, 1), there exists a constant C > 0 such that for k ≥ 0,

l ∈ N and k + l ≥ 0,

(2.15) |(EkẼk+l)(x, y)| ≤ C2−|l|ε2(k∧(k+l))d;

(2.16) |(EkẼk+l)(x, y)− (EkẼk+l)(x, y
′)| ≤ C2−|l|σε̺(y, y′)(1−σ)ε2(k∧(k+l))(d+(1−σ)ε);

(2.17) |(EkẼk+l)(x, y)− (EkẼk+l)(x
′, y)| ≤ C2−|l|σε̺(x, x′)(1−σ)ε2(k∧(k+l))(d+(1−σ)ε);

(2.18) |[(EkẼk+l)(x, y)− (EkẼk+l)(x, y
′)]− [(EkẼk+l)(x

′, y)− (EkẼk+l)(x
′, y′)]|

≤ C2−|l|σε̺(x, x′)(1−σ)ε̺(y, y′)(1−σ)ε2(k∧(k+l))(d+2(1−σ)ε).

Proof. (2.12)–(2.14) are obvious. Without loss of generality, we suppose l > 0 in the

following. Let us first show (2.15). We write

|(EkẼk+l)(x, y)|=
∣∣∣
\
X

Ek(x, z)Ẽk+l(z, y) dµ(z)
∣∣∣=
∣∣∣
\
X

[Ek(x, z)−Ek(x, y)]Ẽk+l(z, y) dµ(z)
∣∣∣

≤C2k(d+ε)
\
X

̺(z, y)ε|Ẽk+l(z, y)| dµ(z) ≤ C2−lε2kd.

This is (2.15).

To show (2.16), we first note that if ̺(y, y′) ≤ 3AC2−(k+l) and ̺(z, y′) ≤ C2−(k+l),

then ̺(z, y) ≤ 4A2C2−(k+l), and

(2.19) |(EkẼk+l)(x, y)−(EkẼk+l)(x, y
′)| =

∣∣∣
\
X

Ek(x, z)[Ẽk+l(z, y)−Ẽk+l(z, y′)] dµ(z)
∣∣∣

=
∣∣∣
\
X

[Ek(x, z)− Ek(x, y)][Ẽk+l(z, y)− Ẽk+l(z, y′)] dµ(z)
∣∣∣

≤ C̺(y, y′)ε2k(d+ε)2(k+l)(d+ε)
\

{z: ̺(z,y)≤4A2C2−(k+l)}

̺(y, z)ε dµ(z)

≤ C̺(y, y′)ε2k(d+ε).

Note that if ̺(y, y′) > 3AC2−(k+l) and either ̺(z, y) ≤ C2−(k+l) or ̺(z, y′) ≤ C2−(k+l),

then ̺(z, y′) ≤ C2−(k+l) or ̺(z, y) ≤ C2−(k+l), respectively. From this, it is easy to
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deduce that if ̺(y, y′) > 3AC2−(k+l), then

(2.20) |(EkẼk+l)(x, y)− (EkẼk+l)(x, y
′)|

=
∣∣∣
\
X

[Ek(x, z)− Ek(x, y)]Ẽk+l(z, y) dµ(z)−
\
X

[Ek(x, z)− Ek(x, y′)]Ẽk+l(z, y′) dµ(z)
∣∣∣

=
∣∣∣

\
{z: ̺(z,y)≤C2−(k+l)}

[Ek(x, z)− Ek(x, y)][Ẽk+l(z, y)− Ẽk+l(z, y′)] dµ(z)

−
\

{z: ̺(z,y′)≤C2−(k+l)}

[Ek(x, z)− Ek(x, y′)][Ẽk+l(z, y)− Ẽk+l(z, y′)] dµ(z)
∣∣∣

≤ C̺(y, y′)ε2k(d+ε).

For any σ ∈ (0, 1), by the geometric mean of (2.15), (2.19) and (2.20), we obviously have

|(EkẼk+l)(x, y)− (EkẼk+l)(x, y
′)|

= |(EkẼk+l)(x, y)− (EkẼk+l)(x, y
′)|σ|(EkẼk+l)(x, y)− (EkẼk+l)(x, y

′)|1−σ

≤ C2−|l|σε̺(y, y′)(1−σ)ε2(k∧(k+l))(d+(1−σ)ε).

Thus (2.16) holds. The proof of (2.17) is similar.

We now show (2.18). Similarly to (2.19), we find that if ̺(y, y′) ≤ 3AC2−(k+l), then

(2.21) |[(EkẼk+l)(x, y)− (EkẼk+l)(x, y
′)]− [(EkẼk+l)(x

′, y)− (EkẼk+l)(x
′, y′)]|

=
∣∣∣
\
X

[Ek(x, z)− Ek(x′, z)][Ẽk+l(z, y)− Ẽk+l(z, y′)] dµ(z)
∣∣∣

=
∣∣∣
\
X

{[Ek(x, z)− Ek(x′, z)]− [Ek(x, y)− Ek(x′, y)]}[Ẽk+l(z, y)− Ẽk+l(z, y′)] dµ(z)
∣∣∣

≤ C̺(x, x′)ε̺(y, y′)ε2k(d+2ε)2(k+l)(d+ε)
\

{z: ̺(z,y)≤4A2C2−(k+l)}

̺(y, z)ε dµ(z)

≤ C̺(x, x′)ε̺(y, y′)ε2k(d+2ε).

If ̺(y, y′) > 3AC2−(k+l), then similarly to (2.20), we have

(2.22) |[(EkẼk+l)(x, y)− (EkẼk+l)(x, y
′)]− [(EkẼk+l)(x

′, y)− (EkẼk+l)(x
′, y′)]|

≤
∣∣∣
\
X

{[Ek(x, z)− Ek(x′, z)]− [Ek(x, y)− Ek(x′, y)]}Ẽk+l(z, y) dµ(z)
∣∣∣

+
∣∣∣
\
X

{[Ek(x, z)− Ek(x′, z)]− [Ek(x, y
′)− Ek(x′, y′)]}Ẽk+l(z, y′)] dµ(z)

∣∣∣

≤
∣∣∣

\
{z: ̺(z,y)≤C2−(k+l)}

{[Ek(x, z)− Ek(x′, z)]− [Ek(x, y)− Ek(x′, y)]}

× [Ẽk+l(z, y)− Ẽk+l(z, y′)] dµ(z)
∣∣∣
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+
∣∣∣

\
{z: ̺(z,y′)≤C2−(k+l)}

{[Ek(x, z)− Ek(x′, z)]

− [Ek(x, y
′)− Ek(x′, y′)]}[Ẽk+l(z, y)− Ẽk+l(z, y′)] dµ(z)

∣∣∣

≤ C̺(x, x′)ε̺(y, y′)ε2k(d+2ε).

Now, by the geometric mean of (2.15), (2.21) and (2.22), we obtain (2.18).

This finishes the proof of Lemma 2.1.

Proof of Theorem 2.3. As pointed out above, we need to show that the operators TN
and RN are bounded in Bspq(X) and F spq(X) with small operator norms when N is large

enough and s is small enough. We do this by using Lemmas 1.4 and 1.5. Let us first

consider RN . Let 0 < γ < ε and max(0,−s) < β < ε and {aQkτ }k∈N,τ∈Mk be ε-smooth

atoms and {aQ0τ }τ∈M0 be ε-smooth blocks as in Definition 1.4 with δ = 1/2. For τ ∈M0,
we verify that

RN (aQ0τ )(x) =

∞∑

k=0

∑

|l|>N, k+l≥0

(1− 2lα)EkEk+l(aQ0τ )(x)

is a (β, γ)-smooth unit for Q0τ , multiplied with a small normalizing constant, when N is

large enough. We write

RN (aQ0τ )(x) =

∞∑

k=0

∑

|l|>N, k+l≥0

(1− 2lα)EkEk+l(aQ0τ )(x)

=
( ∞∑

k=0

∑

l>N

+
∞∑

k=0

∑

l<−N, k+l≥0

)
(1− 2lα)EkEk+l(aQ0τ )(x)

= J1 + J2.

For J1, by (2.14), (2.15) and (2.12), we have

|J1| =
∣∣∣
∞∑

k=0

∑

l>N

(1− 2lα)
\
X

(EkEk+l)(x, y)(aQ0τ (y)− aQ0τ (x)) dµ(y)
∣∣∣

≤ C
∞∑

k=0

∑

l>N

(1 + 2lα)2−lε2−kε ≤ C2−δN ,

where C is independent of N and δ = min(ε, ε− α). Moreover, since suppJ1 ⊂ {x ∈ X :

̺(x, z0τ ) ≤ 4A2C}, we have |J1| ≤ C2−δNµ(Q0τ )
−1/2(1 + ̺(x, z0τ ))

−(d+γ).

For J2, by (2.14), (2.15) and (2.13), we have

|J2| =
∣∣∣
∞∑

k=0

∑

l<−N, k+l≥0

(1− 2lα)
\
X

(EkEk+l)(x, y)(aQ0τ (y)− aQ0τ (x)) dµ(y)
∣∣∣

≤ C
∞∑

k=0

∑

l<−N, k+l≥0

(1 + 2lα)2lε2−(k+l)ε ≤ C2−δN ,

where C is independent of N and δ = min(ε, ε+ α). Since supp J2 ⊂ {x ∈ X : ̺(x, z0τ ) ≤
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4A2C}, we have

|J2| ≤ C2−δNµ(Q0τ )
−1/2(1 + ̺(x, z0τ ))

−(d+γ).

Thus, if we choose δ = min(ε+ α, ε− α), then

(2.23) |RN (aQ0τ )(x)| ≤ C2−δNµ(Q0τ )
−1/2(1 + ̺(x, z0τ ))

−(d+γ).

Now we claim that there are δ > 0 independent of N , and β and γ satisfying 0 < γ < ε

and max(0,−s) < β < ε such that

(2.24) |RN (aQ0τ )(x)−RN (aQ0τ )(x′)|

≤ C2−δNµ(Q0τ )
−1/2−β/d̺(x, x′)β

{
1

(1 + ̺(x, z0τ ))
d+γ

+
1

(1 + ̺(x′, z0τ ))
d+γ

}
.

Similarly to the proof of (2.8), we also have three cases.

Case 1 : ̺(x, x′) ≥ 6A2C. In this case, (2.24) can be deduced easily by (2.23).

Case 2 : ̺(x, x′) < 6A2C and ̺(x, z0τ ) > 12A3C. In this case, it is easy to see that

̺(x′, z0τ ) > 6A2C. Thus, RN (aQ0τ )(x) = RN (aQ0τ )(x′) = 0 and (2.24) holds.

Case 3 : ̺(x, x′) < 6A2C and ̺(x, z0τ ) < 12A3C. In this case, we also have ̺(x′, z0τ ) <

18A4C. We further suppose that there is an l1 ∈ N such that

6A2C2−l1 ≤ ̺(x, x′) < 6A2C2−l1+1.

We then write

|RN (aQ0τ )(x)− RN (aQ0τ )(x′)|

=
∣∣∣
∞∑

k=0

∑

|l|>N, k+l≥0

(1− 2lα)[EkEk+l(aQ0τ )(x)− EkEk+l(aQ0τ )(x′)]
∣∣∣

≤ C
∞∑

k=0

∑

l>N

(1 + 2lα)|EkEk+l(aQ0τ )(x)− EkEk+l(aQ0τ )(x′)|+
∞∑

k=0

∑

l<−N, k+l≥0

. . .

= K1 +K2.

By (2.14), (2.17) and (2.12), we have

K1 ≤ C
l1∑

k=0

∑

l>N

(1 + 2lα)
∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)](aQ0τ (y)− aQ0τ (x)) dµ(y)

∣∣∣

+ C
∞∑

k=l1+1

∑

l>N

(1 + 2lα)
[∣∣∣
\
X

(EkEk+l)(x, y)(aQ0τ (y)− aQ0τ (x)) dµ(y)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, y)(aQ0τ (y)− aQ0τ (x′)) dµ(y)

∣∣∣
]

≤ C̺(x, x′)(1−σ)ε
l1∑

k=0

∑

l>N

(1 + 2lα)2−lσε2−kσε + C

∞∑

k=l1+1

∑

l>N

(1 + 2lα)2−lε2−kε

≤ C2−δN̺(x, x′)(1−σ)ε,

where we choose σ ∈ (0, 1) such that (1− σ)ε > max(0, s), σε > α and δ = σε− α.
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For K2, by (2.14), (2.17) and (2.13), we have

K2 ≤ C
∑

l<−N

∑

0≤k≤l1−l, k+l≥0

(1 + 2lα)

×
∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)](aQ0τ (y)− aQ0τ (x)) dµ(y)

∣∣∣

+
∑

l<−N

∑

l1−l<k

(1 + 2lα)
[∣∣∣
\
X

(EkEk+l)(x, y)(aQ0τ (y)− aQ0τ (x)) dµ(y)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, y)(aQ0τ (y)− aQ0τ (x′)) dµ(y)

∣∣∣
]

≤ C̺(x, x′)(1−σ)ε
∑

l<−N

(2l(σε+(1−σ)ε−ν) + 2l(σε+α+(1−σ)ε−ν))

l1−l∑

k=0

2k((1−σ)ε−ν)

+ C
∑

l<−N

(1 + 2lα)2lε
∞∑

k=l1−l+1

2−(k+l)ε

≤ C2−δN̺(x, x′)(1−σ)ε,

where we choose σ ∈ (0, 1) and ν ∈ (0, ε) such that (1− σ)ε > max(0, s), (1− σ)ε < ν <

min(ε, ε+ α) and δ = min(ε− ν, ε+ α− ν). Here we used the fact that

|aQ0τ (y)− aQ0τ (x′)| ≤ C̺(y, x′)ν .

This can be easily proved by the definition of the blocks.

Thus, (2.24) holds. From (2.23) and (2.24), we see that RN (aQ0τ ) is a (β, γ)-smooth

unit for Q0τ , multiplied with a normalizing constant which can be estimated from above

by C2−δN for some δ > 0, where max(0,−s) < β < ε, 0 < γ < ε, and C is independent

of N .

Now, we intend to show that for the above β and γ, RN (aQjτ ) with j ∈ N and τ ∈Mj
is a (β, γ)-smooth molecule for Qjτ , multiplied with a normalizing constant which can be

estimated from above by C2−δN for some δ > 0. Obviously, we have

(2.25)
\
X

RN (aQjτ )(x) dµ(x) = 0.

To establish an estimate for RN (aQjτ ), similar to (2.23), we first estimate

L1 =
∣∣∣
∞∑

k=0

∑

l>N

(1− 2lα)EkEk+l(aQjτ )(x)
∣∣∣

≤
j∑

k=0

∑

l>N

(1 + 2lα)|EkEk+l(aQjτ )(x)|χ{x: ̺(x,zjτ )≤4A2C2−k}(x)

+
∞∑

k=j+1

∑

l>N

(1 + 2lα)|EkEk+l(aQjτ )(x)|χ{x: ̺(x,zjτ )≤4A2C2−j}(x)

≤
j∑

k=0

∑

l>N

(1 + 2lα)
∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x, z
j
τ )]aQjτ (y) dµ(y)

∣∣∣
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× χ{x: ̺(x,zjτ )≤4A2C2−k}(x)

+
∞∑

k=j+1

∑

l>N

(1 + 2lα)
∣∣∣
\
X

(EkEk+l)(x, y)[aQjτ (y)− aQjτ (x)] dµ(y)
∣∣∣

× χ{x: ̺(x,zjτ )≤4A2C2−j}(x)

≤ Cµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ)
{ j∑

k=0

∑

l>N

(1 + 2lα)2−lσε+(k−j)((1−σ)ε−γ)

+

∞∑

k=j+1

∑

l>N

(1 + 2lα)2−lε+(j−k)ε
}

≤ C2−δNµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ),

where we choose σ ∈ (0, 1) such that (1− σ)ε > γ > 0, σε > α and δ = min(σε, σε− α).

Here we used the condition that α < s+ ε if s < 0.

We also write

L2 =
∣∣∣
∞∑

k=0

∑

l<−N, k+l≥0

(1− 2lα)EkEk+l(aQjτ )(x)
∣∣∣

≤
∑

l<−N

∑

0≤k≤j−l, k+l≥0

(1 + 2lα)|EkEk+l(aQjτ )(x)|χ{x: ̺(x,zjτ )≤4A2C2−k−l}(x)

+
∑

l<−N

∞∑

k=j−l+1

(1 + 2lα)|EkEk+l(aQjτ )(x)|χ{x: ̺(x,zjτ )≤4A2C2−j}(x)

=
∑

l<−N

∑

0≤k≤j−l, k+l≥0

(1 + 2lα)
∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x, z
j
τ )]aQjτ (y) dµ(y)

∣∣∣

× χ{x: ̺(x,zjτ )≤4A2C2−k−l}(x)

+
∑

l<−N

∞∑

k=j−l+1

(1 + 2lα)
∣∣∣
\
X

(EkEk+l)(x, y)[aQjτ (y)− aQjτ (x)] dµ(y)
∣∣∣

× χ{x: ̺(x,zjτ )≤4A2C2−j}(x)

≤ Cµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ)
{ ∑

l<−N

∑

0≤k≤j−l, k+l≥0

(1 + 2lα)2lσε+(k−j+l)((1−σ)ε−γ)

+
∑

l<−N

∞∑

k=j−l+1

(1 + 2lα)2lε−(k+l−j)ε
}

≤ C2−δNµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ),

where we choose σ ∈ (0, 1) such that σε > −α, (1−σ)ε > γ > 0 and δ = min(σε, σε+α).

Thus, we can choose ε > γ > 0 and δ > 0 such that

(2.26) |RN (aQjτ )(x)| ≤ C2−δNµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ).

Now let us show that there are δ > 0 independent of N , and β and γ satisfying

0 < γ < ε and max(0,−s) < β < ε such that
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(2.27) |RN (aQjτ )(x)−RN (aQjτ )(x′)|

≤ C2−δNµ(Qjτ )
−1/2−β/d̺(x, x′)β

{
1

(1 + 2j̺(x, zjτ ))d+γ
+

1

(1 + 2j̺(x′, zjτ ))d+γ

}
.

We have two cases.

Case 1 : ̺(x, x′) ≥ 6A2C2−j . In this case, we can easily obtain (2.27) by (2.26).

Case 2 : ̺(x, x′) < 6A2C2−j . In this case, we write

|RN (aQjτ )(x)− RN (aQjτ )(x′)|

=
∣∣∣
∞∑

k=0

∑

|l|>N, k+l≥0

(1− 2lα)[EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)]
∣∣∣

≤
∞∑

k=0

∑

l>N

(1 + 2lα)|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|+
∑

l<−N

∑

0≤k, 0≤k+l

. . .

= O1 +O2.

For O1, we further decompose it into

O1 =

∞∑

k=0

∑

l>N

(1 + 2lα)|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|

=

j∑

k=0

∑

l>N

(1 + 2lα)|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|+
∞∑

k=j+1

∑

l>N

. . .

= O11 +O21.

For O11, we have

O11 =

j∑

k=0

∑

l>N

(1 + 2lα)|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|

× [χ{x: ̺(x,zjτ )≤4A2C2−k}(x) + χ{x′: ̺(x′,zjτ )≤4A2C2−k}(x
′)]

=

j∑

k=0

∑

l>N

(1 + 2lα)
∣∣∣
\
X

{[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)]

− [(EkEk+l)(x, z
j
τ )− (EkEk+l)(x

′, zjτ )]}aQjτ (y) dµ(y)
∣∣∣

× [χ{x: ̺(x,zjτ )≤4A2C2−k}(x) + χ{x′: ̺(x′,zjτ )≤4A2C2−k}(x
′)]

≤ Cµ(Qjτ )
−1/2̺(x, x′)(1−σ)ε

{
1

(1 + 2j̺(x, zjτ ))d+γ
+

1

(1 + 2j̺(x′, zjτ ))d+γ

}

×
j∑

k=0

∑

l>N

(1 + 2lα)2−lσε+j(γ−(1−σ)ε)+k(2(1−σ)ε−γ)

≤ C2−Nδµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε

{
1

(1 + 2j̺(x, zjτ ))d+γ
+

1

(1 + 2j̺(x′, zjτ ))d+γ

}
,

where we choose σ ∈ (0, 1) such that σε > α, 0 < γ < 2(1−σ)ε and δ = min(σε, σε−α).
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Now, if ̺(x, zjτ ) ≥ 12A3C2−j , then we also have ̺(x′, zjτ ) ≥ 6A2C2−j . Thus, in this

case, we have O21 = 0 and (2.27) holds. Now we suppose that ̺(x, zjτ ) < 12A3C2−j and

there is a j1 ∈ N such that

6A2C2−(j+j1) ≤ ̺(x, x′) < 6A2C2−(j+j1−1).

We now write

O21 ≤
j+j1∑

k=j+1

∑

l>N

(1 + 2lα)|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|

+

∞∑

k=j+j1+1

∑

l>N

(1 + 2lα)(|EkEk+l(aQjτ )(x)|+ |EkEk+l(aQjτ )(x′)|)

=

j+j1∑

k=j+1

∑

l>N

(1 + 2lα)
∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)][aQjτ (y)− aQjτ (x)] dµ(y)

∣∣∣

+

∞∑

k=j+j1+1

∑

l>N

(1 + 2lα)
[∣∣∣
\
X

(EkEk+l)(x, y)[aQjτ (y)− aQjτ (x)] dµ(y)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, y)[aQjτ (y)− aQjτ (x′)] dµ(y)

∣∣∣
]

≤ Cµ(Qjτ )
−1/2−ε/d

{
̺(x, x′)(1−σ)ε

j+j1∑

k=j+1

∑

l>N

(1 + 2lα)2−lσε+k((1−σ)ε−ε)

+
∞∑

k=j+j1+1

∑

l>N

(1 + 2lα)2−lε−kε
}

≤ C2−δNµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε,

where we choose σ∈(0, 1) such that σε>α, (1−σ)ε>max(0,−s) and δ=min(σε, σε−α).

We now estimate O2. We first have

O2 =
∑

l<−N

∑

0≤k, 0≤k+l

(1 + 2lα)|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|

=
∑

l<−N

∑

0≤k≤j−l, 0≤k+l

(1 + 2lα)|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|+
∑

l<−N

∑

j−l<k

. . .

= O12 +O22.

The estimate for O12 is similar to that for O11. In fact, we have

O12 =
∑

l<−N

∑

0≤k≤j−l, 0≤k+l

(1 + 2lα)
∣∣∣
\
X

{[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)]

− [(EkEk+l)(x, z
j
τ )− (EkEk+l)(x

′, zjτ )]}aQjτ (y) dµ(y)
∣∣∣

× [χ{x: ̺(x,zjτ )≤4A2C2−k−l}(x) + χ{x′: ̺(x′,zjτ )≤4A2C2−k−l}(x
′)]

≤ Cµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε

{
1

(1 + 2j̺(x, zjτ ))d+γ
+

1

(1 + 2j̺(x′, zjτ ))d+γ

}
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×
∑

l<−N

∑

0≤k≤j−l, 0≤k+l

(1 + 2lα)2lσε+(k+l−j)(2(1−σ)ε−γ)

≤ C2−Nδµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε

{
1

(1 + 2j̺(x, zjτ ))d+γ
+

1

(1 + 2j̺(x′, zjτ ))d+γ

}
,

where we take σ ∈ (0, 1) such that σε > −α, 2(1− σ)ε > γ > 0 and δ = min(σε, α+ σε).

The estimate for O22 is similar to that for O21. If ̺(x, zjτ ) ≥ 12A3C2−j , then we also

have ̺(x′, zjτ ) ≥ 6A2C2−j . Thus, in this case, we have O22 = 0 and (2.27) holds. Now we

suppose that ̺(x, zjτ ) < 12A3C2−j and there is a j1 ∈ N such that

6A2C2−(j+j1) ≤ ̺(x, x′) < 6A2C2−(j+j1−1).

We estimate O22 by

O22 ≤
∑

l<−N

∑

j−l<k≤j+j1−l

(1 + 2lα)|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|

+
∑

l<−N

∑

k>j+j1−l

(1 + 2lα)(|EkEk+l(aQjτ )(x)|+ |EkEk+l(aQjτ )(x′)|)

=
∑

l<−N

∑

j−l<k≤j+j1−l

(1 + 2lα)

×
∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)][aQjτ (y)− aQjτ (x)] dµ(y)

∣∣∣

+
∑

l<−N

∑

k>j+j1−l

(1 + 2lα)
[∣∣∣
\
X

(EkEk+l)(x, y)[aQjτ (y)− aQjτ (x)] dµ(y)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, y)[aQjτ (y)− aQjτ (x′)] dµ(y)

∣∣∣
]

≤ Cµ(Qjτ )
−1/2−ε/d

{
̺(x, x′)(1−σ)ε

∑

l<−N

∑

j−l<k≤j+j1−l

(1 + 2lα)2lσε−(k+l)σε

+
∑

l<−N

∑

k>j+j1−l

(1 + 2lα)2lε−(k+l)ε
}

≤ C2−δNµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε,

where we choose σ ∈ (0, 1) such that σε > −α, (1 − σ)ε > max(0,−s) and δ =

min(σε, εσ + α). Here we used the condition that α > s− ε if s > 0.

Thus, (2.27) is true. From (2.25)–(2.27), we deduce that RN (aQjτ ) is a (β, γ)-smooth

molecule for Qjτ , multiplied with a normalizing constant which can be estimated from

above by C2−δN for some δ > 0. By Lemmas 1.4 and 1.5, RN is bounded in Bspq(X)

and F spq(X) with operator norms no more than C12
−δN for some δ > 0, where C1 is

independent of N . Moreover, if we take δ0 > 0 small enough and if |α| ≤ δ0, then C1 is

independent of N and α, but it depends on δ0. This is a desired estimate for RN .

Now we show that TN is bounded in Bspq(X) and F spq(X) with small operator norms

when |α| is small. We write

TN =
∑

|l|≤N

(1− 2lα)
∞∑

k=0

EkEk+l =
∑

|l|≤N

(1− 2lα)T lN .
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For any given N ∈ N, we will use Lemmas 1.4 and 1.5 to show that T lN is bounded in

Bspq(X) and F spq(X) uniformly in l with |l| ≤ N .

Let {aQ0τ }τ∈M0 be ε-smooth blocks. For 0 ≤ l ≤ N , we have

|T lN (aQ0τ )(x)| =
∣∣∣
∞∑

k=0

EkEk+l(aQ0τ )(x)
∣∣∣ ≤

∞∑

k=0

∣∣∣
\
X

(EkEk+l)(x, y)(aQ0τ (x)− aQ0τ (y)) dµ(y)
∣∣∣

≤ C2−lε
∞∑

k=0

2−kε ≤ C2−lε.

Noting that suppT lN (aQ0τ ) ⊂ {x ∈ X : ̺(x, z0τ ) ≤ 4A2C}, we have

|T lN (aQ0τ )(x)| ≤ C2−lεµ(aQ0τ )−1/2(1 + ̺(x, z0τ ))
−(d+γ).

For −N ≤ l < 0, we have

|T lN (aQ0τ )(x)| =
∣∣∣
∑

k≥0, k+l≥0

EkEk+l(aQ0τ )(x)
∣∣∣

≤
∑

k≥0, k+l≥0

∣∣∣
\
X

(EkEk+l)(x, y)(aQ0τ (x)− aQ0τ (y)) dµ(y)
∣∣∣

≤ C2lε
∞∑

k+l=0

2−(k+l)ε ≤ C2lε.

By noting that suppT lN (aQ0τ ) ⊂ {x ∈ X : ̺(x, z0τ ) ≤ 4A2C}, we also have

|T lN (aQ0τ )(x)| ≤ C2lεµ(aQ0τ )−1/2(1 + ̺(x, z0τ ))
−(d+γ).

Thus, for |l| ≤ N , we have

(2.28) |T lN (aQ0τ )(x)| ≤ C2−|l|εµ(aQ0τ )−1/2(1 + ̺(x, z0τ ))
−(d+γ),

where C is independent of l.

Let σ ∈ (0, 1) be such that (1 − σ)ε > max(0,−s). We now show that for |l| ≤ N ,

there is a γ satisfying 0 < γ < ε such that

|T lN (aQ0τ )(x)− T lN (aQ0τ )(x′)| ≤ C2−|l|σεµ(Q0τ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε(2.29)

×
{

1

(1 + ̺(x, z0τ ))
d+γ

+
1

(1 + ̺(x′, z0τ ))
d+γ

}
.

Similarly to the estimate for (2.24), we consider three cases.

Case 1 : ̺(x, x′) ≥ 6A2C. In this case, it is easy to obtain (2.29) by (2.28).

Case 2 : ̺(x, x′) < 6A2C and ̺(x, z0τ ) ≥ 12A3C. In this case, it is easy to see that

̺(x′, z0τ ) > 6A2C. Thus, T lN (aQ0τ )(x) = T lN (aQ0τ )(x′) = 0. Therefore, in this case, we also

have (2.29).

Case 3 : ̺(x, x′) < 6A2C and ̺(x, z0τ ) < 12A3C. In this case, we also have ̺(x′, z0τ ) <

18A4C. We further suppose that there is an l1 ∈ N such that

6A2C2−l1 ≤ ̺(x, x′) < 6A2C2−l1+1.
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For 0 ≤ l ≤ N , we have

|T lN (aQ0τ )(x)− T lN (aQ0τ )(x′)| =
∣∣∣
∞∑

k=0

[EkEk+l(aQ0τ )(x)− EkEk+l(aQ0τ )(x′)]
∣∣∣

≤
l1∑

k=0

∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)][aQ0τ (y)− aQ0τ (x)] dµ(y)

∣∣∣

+

∞∑

k=l1+1

[∣∣∣
\
X

(EkEk+l)(x, y)[aQ0τ (y)− aQ0τ (x)] dµ(y)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, y)[aQ0τ (y)− aQ0τ (x′)] dµ(y)

∣∣∣
]

≤ C2−lσε̺(x, x′)(1−σ)ε
l1∑

k=0

2k((1−σ)ε−ε) + C
∞∑

k=l1+1

2−lε−kε ≤ C2−lσε̺(x, x′)(1−σ)ε.

For −N ≤ l < 0, we have

|T lN (aQ0τ )(x)− T lN (aQ0τ )(x′)| =
∣∣∣
∑

k≥0, k+l≥0

[EkEk+l(aQ0τ )(x)− EkEk+l(aQ0τ )(x′)]
∣∣∣

≤
∑

0≤k≤l1−l, k+l≥0

∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)][aQ0τ (y)− aQ0τ (x)] dµ(y)

∣∣∣

+
∑

k>l1−l

[∣∣∣
\
X

(EkEk+l)(x, y)[aQ0τ (y)− aQ0τ (x)] dµ(y)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, y)[aQ0τ (y)− aQ0τ (x′)] dµ(y)

∣∣∣
]

≤ C2lσε̺(x, x′)(1−σ)ε
∑

0≤k+l≤l1

2−(k+l)σε + C
∑

k+l>l1

2lε−(k+l)ε ≤ C2lσε̺(x, x′)(1−σ)ε.

Thus (2.29) holds.

By (2.28) and (2.29), we see that for |l| ≤ N and τ ∈M0, T lN (aQ0τ ) is an (ε′, γ)-smooth

unit for Q0τ , multiplied with a normalizing constant which can be estimated from above

by C2−|l|σε, where C is independent of l and τ .

Now for j ∈ N and τ ∈Mj , let aQjτ be an ε-smooth atom for Qjτ and let |l| ≤ N . We

intend to show that T lN (aQjτ ) is a (β, γ)-smooth molecule for Qjτ , multiplied with some

normalizing constant, where max(0,−s) < β < ε and 0 < γ < ε.

For 0 ≤ l ≤ N , we have

|T lN (aQjτ )(x)| =
∣∣∣
∞∑

k=0

EkEk+l(aQjτ )(x)
∣∣∣

≤
j∑

k=0

|EkEk+l(aQjτ )(x)|χ{x: ̺(x,zjτ )≤4A2C2−k}(x)
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+

∞∑

k=j+1

|EkEk+l(aQjτ )(x)|χ{x: ̺(x,zjτ )≤4A2C2−j}(x)

≤
j∑

k=0

∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x, z
j
τ )]aQjτ (y) dµ(y)

∣∣∣χ{x: ̺(x,zjτ )≤4A2C2−k}(x)

+

∞∑

k=j+1

∣∣∣
\
X

(EkEk+l)(x, y)[aQjτ (y)− aQjτ (x)] dµ(y)
∣∣∣χ{x: ̺(x,zjτ )≤4A2C2−j}(x)

≤ Cµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ)
{

2−lσε
j∑

k=0

2(k−j)((1−σ)ε−γ) + 2−lε
∞∑

k=j+1

2−(k−j)ε
}

≤ C2−lσεµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ).

For −N ≤ l < 0, we have

|T lN (aQjτ )(x)| =
∣∣∣
∑

k≥0, k+l≥0

EkEk+l(aQjτ )(x)
∣∣∣

≤
∑

0≤k≤j−l, k+l≥0

|EkEk+l(aQjτ )(x)|χ{x: ̺(x,zjτ )≤4A2C2−k−l}(x)

+

∞∑

k=j−l+1

|EkEk+l(aQjτ )(x)|χ{x: ̺(x,zjτ )≤4A2C2−j}(x)

≤
∑

0≤k≤j−l, k+l≥0

∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x, z
j
τ )]aQjτ (y) dµ(y)

∣∣∣

× χ{x: ̺(x,zjτ )≤4A2C2−k−l}(x)

+

∞∑

k=j−l+1

∣∣∣
\
X

(EkEk+l)(x, y)[aQjτ (y)− aQjτ (x)] dµ(y)
∣∣∣χ{x: ̺(x,zjτ )≤4A2C2−j}(x)

≤ Cµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ)

×
{

2lσε
∑

0≤k+l≤j

2(k+l−j)((1−σ)ε−γ) + 2lε
∞∑

k=j−l+1

2−(k+l−j)ε
}

≤ C2lσεµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ).

Thus, for |l| ≤ N , we have

(2.30) |T lN (aQjτ )(x)| ≤ C2−|l|σεµ(Qjτ )
−1/2(1 + 2j̺(x, zjτ ))

−(d+γ),

where σ ∈ (0, 1) is such that (1− σ)ε > γ > 0 and C is independent of l, N , j and τ .

Now we show that for |l| ≤ N , there is a γ satisfying 0 < γ < ε such that

|T lN (aQjτ )(x)− T lN (aQjτ )(x′)| ≤ C2−|l|σεµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε(2.31)

×
{

1

(1 + ̺(x, zjτ ))d+γ
+

1

(1 + ̺(x′, zjτ ))d+γ

}
,
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where we take σ ∈ (0, 1) such that (1 − σ)ε > max(0,−s), 2(1 − σ)ε > γ > 0 and C is

independent of l, N , j and τ .

Similarly to the estimate for (2.27), we consider two cases.

Case 1 : ̺(x, x′) ≥ 6A2C2−j . In this case, it is easy to obtain (2.31) by (2.30).

Case 2 : ̺(x, x′) < 6A2C2−j . In this case, we further suppose that there is a j1 ∈ N

such that 6A2C2−j1−j ≤ ̺(x, x′) < 6A2C2−j1−j+1.

Now if 0 ≤ l ≤ N , we have

|T lN (aQjτ )(x)− T lN (aQjτ )(x′)| =
∣∣∣
∞∑

k=0

[EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)]
∣∣∣

≤
j∑

k=0

|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|+
∞∑

k=j+1

. . .

= P 11 + P 21 .

For P 11 , we have

P 11 =

j∑

k=0

|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|

× (χ{x: ̺(x,zjτ )≤4A2C2−k}(x) + χ{x′: ̺(x′,zjτ )≤4A2C2−k}(x
′))

=

j∑

k=0

∣∣∣
\
X

{[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)]

− [(EkEk+l)(x, z
j
τ )− (EkEk+l)(x

′, zjτ )]}aQjτ (y) dµ(y)
∣∣∣

× (χ{x: ̺(x,zjτ )≤4A2C2−k}(x) + χ{x′: ̺(x′,zjτ )≤4A2C2−k}(x
′))

≤ C2−lσεµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε

j∑

k=0

2(k−j)(2(1−σ)ε−γ)

×
{

1

(1 + ̺(x, zjτ ))d+γ
+

1

(1 + ̺(x′, zjτ ))d+γ

}

≤ C2−lσεµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε

{
1

(1 + ̺(x, zjτ ))d+γ
+

1

(1 + ̺(x′, zjτ ))d+γ

}
.

Now if ̺(x, zjτ ) ≥ 12A3C2−j , then ̺(x′, zjτ ) ≥ 6A2C2−j . Thus P 21 = 0 in this case

and we have (2.31). If ̺(x, zjτ ) < 12A3C2−j , we also have ̺(x′, zjτ ) < 18A4C2−j . Thus,

we obtain

P 21 =

j+j1∑

k=j+1

|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|+
∞∑

k=j+j1+1

. . .

=

j+j1∑

k=j+1

∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)][aQjτ (y)− aQjτ (x)] dµ(y)

∣∣∣

+
∞∑

k=j+j1+1

[∣∣∣
\
X

(EkEk+l)(x, y)[aQjτ (y)− aQjτ (x)] dµ(y)
∣∣∣
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+
∣∣∣
\
X

(EkEk+l)(x
′, y)[aQjτ (y)− aQjτ (x′)] dµ(y)

∣∣∣
]

≤ Cµ(Qjτ )
−1/2−(1−σ)ε/d

[
2−lσε̺(x, x′)(1−σ)ε

j+j1∑

k=j+1

2−(k−j)σε + 2−lε+jσε
∞∑

k=j+j1+1

2−kε
]

≤ C2−lσεµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε.

Now letting −N ≤ l < 0, we write

|T lN (aQjτ )(x)− T lN (aQjτ )(x′)|

=
∣∣∣
∑

k≥0, k+l≥0

[EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)]
∣∣∣

≤
∑

0≤k≤j−l, k+l≥0

|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|+
∞∑

k=j−l+1

. . . = P 12 + P 22 .

For P 12 , we have

P 12 =
∑

k≥0, k+l≥0

|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|

× (χ{x: ̺(x,zjτ )≤4A2C2−k−l}(x) + χ{x′: ̺(x′,zjτ )≤4A2C2−k−l}(x
′))

=
∑

k≥0, k+l≥0

∣∣∣
\
X

{[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)]

− [(EkEk+l)(x, z
j
τ )− (EkEk+l)(x

′, zjτ )]}aQjτ (y) dµ(y)
∣∣∣

× (χ{x: ̺(x,zjτ )≤4A2C2−k−l}(x) + χ{x′: ̺(x′,zjτ )≤4A2C2−k−l}(x
′))

≤ C2lσεµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε

∑

0≤k+l≤j

2(k+l−j)(2(1−σ)ε−γ)

×
{

1

(1 + ̺(x, zjτ ))d+γ
+

1

(1 + ̺(x′, zjτ ))d+γ

}

≤ C2lσεµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε

{
1

(1 + ̺(x, zjτ ))d+γ
+

1

(1 + ̺(x′, zjτ ))d+γ

}
.

Now if ̺(x, zjτ ) ≥ 12A3C2−j , then it is easy to see that ̺(x′, zjτ ) ≥ 6A2C2−j . Thus

P 22 = 0 in this case and we have (2.31). If ̺(x, zjτ ) < 12A3C2−j , then ̺(x′, zjτ ) <

18A4C2−j . Therefore, we have

P 22 =

j+j1−l∑

k=j−l+1

|EkEk+l(aQjτ )(x)− EkEk+l(aQjτ )(x′)|+
∞∑

k=j−l+j1+1

. . .

=

j−l+j1∑

k=j−l+1

∣∣∣
\
X

[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)][aQjτ (y)− aQjτ (x)] dµ(y)

∣∣∣

+
∞∑

k=j−l+j1+1

[∣∣∣
\
X

(EkEk+l)(x, y)[aQjτ (y)− aQjτ (x)] dµ(y)
∣∣∣
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+
∣∣∣
\
X

(EkEk+l)(x
′, y)[aQjτ (y)− aQjτ (x′)] dµ(y)

∣∣∣
]

≤ Cµ(Qjτ )
−1/2−(1−σ)ε/d

×
[
2lσε̺(x, x′)(1−σ)ε

j−l+j1∑

k=j−l+1

2−(k+l−j)σε + 2lε+jσε
∞∑

k=j−l+j1+1

2−(k+l)ε
]

≤ C2lσεµ(Qjτ )
−1/2−(1−σ)ε/d̺(x, x′)(1−σ)ε.

Thus (2.31) holds. This means that T lN (aQjτ ) is a ((1 − σ)ε, γ)-smooth molecule for

Qjτ , multiplied with a normalizing constant bounded above by C2−|l|σε, where 0 < γ < ε

and C is independent of l, N , k and τ . Thus, by Lemmas 1.4 and 1.5, T lN is bounded in

Bspq(X) and F spq(X) with operator norms no more than C22
−|l|σε, and thus TN is bounded

in Bspq(X) and F spq(X) with operator norms no more than C2
∑
|l|≤N |1− 2lα|2−|l|σε,

where C2 is independent of α and N . By combining the estimates for RN and TN , we

find that I − IαI−α is bounded in Bspq(X) and F spq(X) with operator norms no more

than C12
−δN +C2

∑
|l|≤N |1− 2lα|2−|l|σε, where C1 is independent of N and α, provided

|α| ≤ δ0 with δ0 > 0 small enough. Now, obviously, we can choose α0(s) ∈ (0, δ0] such

that if |α| < α0(s), then C12
−δN+C2

∑
|l|≤N |1−2lα|2−|l|δ1 < 1. Thus, when |α| < α0(s),

IαI−α and I−αIα are invertible in Bspq(X) and F spq(X). Therefore, for f ∈ Bspq(X), by

Theorem 2.2 and the above facts, we have

‖f‖Bspq(X) = ‖(I−αIα)−1I−αIα(f)‖Bspq(X) ≤ C‖I−αIα(f)‖Bspq(X) ≤ C‖Iα(f)‖Bs+αpq (X)
,

where C is independent of f .

We can prove a similar conclusion for F spq(X).

This finishes the proof of Theorem 2.3.

From Theorems 2.2 and 2.3, we deduce the following corollary on the lifting property

of the spaces Bspq(X) and F spq(X), and the independence from the approximation to the

identity in the definition of the fractional integrals and derivatives.

Corollary 2.1. Let s ∈ (−ε, ε) and α0(s) be as in Theorem 2.3. Let α ∈ (−ε, ε) with
|α| < α0(s) and s + α ∈ (−ε, ε). Let α < s + ε when s < 0 and α > s − ε when s > 0.

Then there is a constant independent of f such that

1

C
‖f‖Bspq(X) ≤ ‖Iα(f)‖Bs+αpq (X)

≤ C‖f‖Bspq(X) for 1 ≤ p, q ≤ ∞,

1

C
‖f‖F spq(X) ≤ ‖Iα(f)‖F s+αpq (X)

≤ C‖f‖F spq(X) for 1 < p <∞ and 1 < q ≤ ∞.

Moreover , let {Sl}∞l=0 and {Sl}∞l=0 be two approximations to the identity as in Defi-
nition 1.2 and let El = Sl − Sl−1 and El = Sl − Sl−1 for l ≥ 1, E0 = S0 and E0 = S0.

If we let

Iα(f) =

∞∑

l=0

2−lαEl(f) and Iα(f) =

∞∑

l=0

2−lαEl(f),
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then there is a constant C independent of f such that

1

C
‖Iα(f)‖Bs+αpq (X)

≤ ‖Iα(f)‖Bs+αpq (X)
≤ C‖Iα(f)‖Bs+αpq (X)

for 1 ≤ p, q ≤ ∞,

1

C
‖Iα(f)‖F s+αpq (X)

≤ ‖Iα(f)‖F s+αpq (X)
≤ C‖Iα(f)‖F s+αpq (X)

for 1<p<∞ and 1<q≤∞.

We remark that the independence from the approximations to the identity can also

be seen from Theorem 1.6 of [11]. In [11], Gatto, Segovia and Vági first introduced their

fractional integrals and derivatives by using some quasi-metrics related to the approxima-

tions to the identity which were proved to be equivalent to the original quasi-metric of the

relevant space of homogeneous type. They then established some representation formulae

for the fractional integrals and derivatives. Our definitions are just the discrete and inho-

mogeneous versions of their representation formulae. Thus, in some sense, the fractional

integrals and derivatives are only related to the given quasi-metric of the relevant space

of homogeneous type.

3. Explicit representations of inverses

In this section, we first establish explicit representation formulae in spaces of test func-

tions for left and right inverses of fractional integrals and derivatives. The left and right

inverses do not coincide, which contrasts with the case of spaces of homogeneous type and

Euclidean spaces. We then give some basic properties of these inverses when µ(X) <∞.
At the end of this section, we use the left inverses of fractional derivatives and Theorem

2.2 to establish some Poincaré-type inequalities for functions in F sp2(X) when µ(X) <∞,

1 < p <∞ and s > 0 is small enough.

We have shown, in Section 2, that the fractional integrals and derivatives are invertible

in Bspq(X) and F spq(X) when |s| < ε and |α| is small enough, where ε ∈ (0, θ]. To do that,

we used the well known atomic and molecular theories on these spaces for |s| < ε. Now,

we are going to establish explicit representation formulae in spaces of test functions for

the left and right inverses of fractional integrals and derivatives by using the theory of

singular integrals in spaces of test functions; see Theorem 1 in [18]. This means that to

show IαI−α is invertible in spaces of test functions, we will show I − IαI−α is a singular

integral with a standard kernel, say K(x, y), where I is the identity operator on these

spaces. We will also show K(x, y) has a “strong” weak boundedness property. Let ‖K‖
be the smallest constant in all these estimates satisfied by K(x, y). The key point here

is that we will show that ‖K‖ can be small if |α| is small. In fact, we will show that

‖K‖ can go to 0 as |α| → 0. We point out that some ideas used here are similar to those

used in [18] to establish the Calderón reproducing formulae on spaces of homogeneous

type; see also the proof of Theorem 2.3. Also, in [11], Gatto, Segovia and Vági have

shown that the homogeneous and continuous version of IαI−α is a Calderón–Zygmund

operator; see Theorems 1.4 and 1.5 in [11]. This means that IαI−α is also bounded in

L2(X) and therefore in Lp(X) for p ∈ (1,∞), which can also be deduced from Theorem

2.3 and Lemma 1.10; see also Theorem 2.1 in [22].
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Now let us recall some definitions. For θ ≥ η > 0, let Cη0 (X) be the space of all

continuous functions on X with compact support such that

‖f‖Cη0 (X) = ‖f‖L∞(X) + sup
x6=y

|f(x)− f(y)|
̺(x, y)η

<∞.

We denote the dual space of Cη0 (X) by (Cη0 (X))′.

By Remark 1.2, for spaces of homogeneous type as in Definition 0.1, one can construct

an approximation to the identity, {Sk}k∈N∪{0}, with compact supports as in Definition

1.2 such that limk→∞ Sk = I, the identity operator on L2(X), in the strong operator

topology of L2(X). By using this fact, it is easy to show that for any 0 < η ≤ θ, Cη0 (X)

is a dense subset of L2(X).

Definition 3.1. A continuous complex-valued function K(x, y) defined on

Ω = {(x, y) ∈ X ×X : x 6= y}
is called a standard kernel if there exist ε ∈ (0, θ] and 0 < C < ∞ such that for all

x, y ∈ X with x 6= y,

(3.1) |K(x, y)| ≤ C̺(x, y)−d,

(3.2) |K(x, y)−K(x′, y)| ≤ C̺(x, x′)ε̺(x, y)−(d+ε) for ̺(x, x′) ≤ ̺(x, y)/(2A),

(3.3) |K(x, y)−K(x, y′)| ≤ C̺(y, y′)ε̺(x, y)−(d+ε) for ̺(y, y′) ≤ ̺(x, y)/(2A).

Definition 3.2. A continuous linear operator T : Cη0 (X) → (Cη0 (X))′ is a singular

integral operator if there is a standard kernel K such that

〈Tf, g〉 =
\
X

\
X

K(x, y)f(y)g(x) dµ(y) dµ(x)

for all f, g ∈ Cη0 (X) whose supports are separated by a positive distance. We then write

T ∈ CZK(ε).

We also need the following notion; see [23, p. 10].

Definition 3.3. A singular integral operator T is said to have the “strong” weak bound-

edness property if there exist η > 0 and a constant 0 < C <∞ such that for all r > 0,

(3.4) |〈K, f〉| ≤ Crd

for all r > 0 and all continuous f on X × X with supp f ⊆ B(x1, r) × B(y1, r), where

x1, y1 ∈ X, ‖f‖L∞(X×X) ≤ 1,

sup
x6=z

|f(x, y)− f(z, y)|
̺(x, z)η

≤ r−η

for all y ∈ X and

sup
y 6=z

|f(x, y)− f(x, z)|
̺(y, z)η

≤ r−η

for all x ∈ X. We will denote this by T ∈ SWBP.

To apply Theorem 1 in [18], we also need to verify that the kernel K(x, y) satisfies

(3.5) |[K(x, y)−K(x′, y)]− [K(x, y′)−K(x′, y′)]| ≤ C̺(x, x′)ε̺(y, y′)ε̺(x, y)−(d+2ε)

for ̺(x, x′), ̺(y, y′) ≤ 1
3A2 ̺(x, y).
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We will denote by ‖K‖ the smallest constants appearing in (3.1)–(3.5).

We have the following estimate for the kernel K(x, y) of I − IαI−α which plays a

crucial role in establishing explicit formulae for the inverses of fractional integrals and

derivatives.

Theorem 3.1. Let K(x, y) be the kernel of I − IαI−α for |α| < ε. There are α1, δ, δ1 ∈
(0, ε) and constants C1, C2 > 0 such that if |α| < α1, then for any given N ∈ N,

‖K‖ ≤ C12−δN + C2
∑

|l|≤N

|1− 2lα|2−|l|δ1 ,

where C1 and C2 are independent of N and α, but C1 may depend on α1 and δ. Moreover ,

α1 and δ can be any positive number less than ε.

Proof. For any given N ∈ N, we write

T = I − IαI−α =
∑

|l|≤N

∑

k≥0, k+l≥0

(1− 2lα)EkEk+l +
∑

|l|>N

∑

k≥0, k+l≥0

(1− 2lα)EkEk+l

=
∑

|l|≤N

(1− 2lα)T lN +RN = TN +RN .

We denote the kernels of TN , T lN , RN , and RlN by TN (x, y), T lN (x, y), RN (x, y) and

RlN (x, y), respectively.

Let us first establish (3.1). By (2.12), (2.13) and (2.15), we have

|TN (x, y)| ≤ C
∑

0≤l≤N

|1− 2lα|
[log2

AC
̺(x,y) ]∑

k=0

2−lε2kd + C
∑

−N≤l<0

|1− 2lα|
[log2

AC
̺(x,y) ]∑

k+l=0

2lε2(k+l)d

≤ C

̺(x, y)d

∑

|l|≤N

|1− 2lα|2−|l|ε,

where [a] is the maximum integer no more than a, and C is independent of α and N .

By (2.12), (2.13) and (2.15), we have

|RN (x, y)| ≤ C
∑

l>N

(1 + 2lα)

[log2
AC
̺(x,y) ]∑

k=0

2−lε2kd + C
∑

l<−N

(1 + 2lα)

[log2
AC
̺(x,y) ]∑

k+l=0

2lε2(k+l)d

≤ C

̺(x, y)d

{∑

l>N

(2−lε + 2−l(ε−α)) +
∑

l<−N

(2lε + 2l(ε+α))
}
≤ C2−δN

1

̺(x, y)d
,

where we choose |α| < ε, δ = min{ε − α, ε + α}, and C is independent of N . Moreover,

if |α| < α1 ≤ ε, then C is also independent of α, but it may depend on α1. Thus, (3.1)

holds.

Now let us prove (3.2). Let ̺(x, x′) ≤ ̺(x, y)/(2A). Then by (2.12), (2.13) and (2.17),

we have

|K(x, y)−K(x′, y)| ≤
∑

|l|≤N

∑

k≥0, k+l≥0

|1− 2lα||(EkEk+l)(x, y)− (EkEk+l)(x
′, y)|

+
∑

|l|>N

∑

k≥0, k+l≥0

(1 + 2lα)|(EkEk+l)(x, y)− (EkEk+l)(x
′, y)|
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≤ ̺(x, x′)(1−σ)ε
{
C
∑

0≤l≤N

|1− 2lα|
[log2

2A2C
̺(x,y) ]∑

k=0

2−lσε2k(d+(1−σ)ε)

+ C
∑

−N≤l<0

|1− 2lα|
[log2

2A2C
̺(x,y) ]∑

k+l=0

2lσε2(k+l)(d+(1−σ)ε)

+ C
∑

l>N

(1 + 2lα)

[log2
2A2C
̺(x,y) ]∑

k=0

2−lσε2k(d+(1−σ)ε)

+ C
∑

l<−N

(1 + 2lα)

[log2
2A2C
̺(x,y) ]∑

k+l=0

2lσε2(k+l)(d+(1−σ)ε)
}

≤ ̺(x, x′)(1−σ)ε

̺(x, y)d+(1−σ)ε

{
C2
∑

|l|≤N

|1− 2lα|2−|l|σε + C1[2
−Nσε + 2−N(σε−α) + 2−N(σε+α)]

}

≤
{
C12

−δN + C2
∑

|l|≤N

|1− 2lα|2−|l|σε
} ̺(x, x′)(1−σ)ε

̺(x, y)d+(1−σ)ε
,

where we choose σ ∈ (0, 1) such that |α| < σε, δ = min{σε− α, σε+ α}, and C1 and C2
are as in the theorem. Thus, (3.2) holds. The proof of (3.3) is similar.

Now let us prove (3.5). By (2.18), (2.12) and (2.13), for ̺(x, x′) ≤ ̺(x, y)/(3A2) and

̺(y, y′) ≤ ̺(x, y)/(2A2), or ̺(x, x′) ≤ ̺(x, y)/(2A2) and ̺(y, y′) ≤ ̺(x, y)/(3A2), we have

|[K(x, y)−K(x′, y)]− [K(x, y′)−K(x′, y′)]|
≤
∑

|l|≤N

∑

k≥0, k+l≥0

|1− 2lα||[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)]

− [(EkEk+l)(x, y
′)− (EkEk+l)(x

′, y′)]|

+
∑

|l|>N

∑

k≥0, k+l≥0

(1 + 2lα)|[(EkEk+l)(x, y)− (EkEk+l)(x
′, y)]

− [(EkEk+l)(x, y
′)− (EkEk+l)(x

′, y′)]|

≤ ̺(x, x′)(1−σ)ε̺(y, y′)(1−σ)ε
{
C
∑

0≤l≤N

|1− 2lα|
[log2

6A3C
̺(x,y) ]∑

k=0

2−lσε2k(d+2(1−σ)ε)

+ C
∑

−N≤l<0

|1− 2lα|
[log2

6A3C
̺(x,y) ]∑

k+l=0

2lσε2(k+l)(d+2(1−σ)ε)

+ C
∑

l>N

(1 + 2lα)

[log2
6A3C
̺(x,y) ]∑

k=0

2−lσ2k(d+2(1−σ)ε)
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+ C
∑

l<−N

(1 + 2lα)

[log2
6A3C
̺(x,y) ]∑

k+l=0

2lσ2(k+l)(d+2(1−σ)ε)
}

≤ ̺(x, x′)(1−σ)ε̺(y, y′)(1−σ)ε

̺(x, y)d+2(1−σ)ε

{
C1[2

−Nσε + 2−N(σε−α) + 2−N(σε+α)]

+ C2
∑

|l|≤N

|1− 2lα|2−|l|σε
}

≤
{
C12

−δN + C2
∑

|l|≤N

|1− 2lα|2−|l|σε
}̺(x, x′)(1−σ)ε̺(y, y′)(1−σ)ε

̺(x, y)d+2(1−σ)ε
,

where we choose σ ∈ (0, 1) such that |α| < σε, δ = min{σε − α, σε + α}, and C1 and

C2 are as in the theorem. Thus, (3.5) holds for ̺(x, x′) ≤ ̺(x, y)/(3A2) and ̺(y, y′) ≤
̺(x, y)/(2A2), or ̺(x, x′) ≤ ̺(x, y)/(2A2) and ̺(y, y′) ≤ ̺(x, y)/(3A2). If ̺(x, y)/(3A2) ≤
̺(x, x′) and ̺(y, y′) ≤ ̺(x, y)/(2A2), then (3.5) can be deduced from (3.2) and (3.3).

Thus, in any case, (3.5) holds.

Finally, let us show (3.4). Let f be a continuous function on X ×X with

supp f ⊆ B(x1, r)×B(y1, r),

where x1 and y1 ∈ X, ‖f‖L∞(X×X) ≤ 1,

sup
x6=z

|f(x, y)− f(z, y)|
̺(x, z)η

≤ r−η for all y ∈ X,

sup
y 6=z

|f(x, y)− f(x, z)|
̺(y, z)η

≤ r−η for all x ∈ X.

We first establish some estimates on |(EkEk+l)(f)| whose proofs are similar to those of

(3.18), (3.23), (3.24) and (3.25) in [18]. For k ≥ 0, l ∈ N and k+ l ≥ 0, by (2.15), we have

|〈EkEk+l, f〉| =
∣∣∣
\
X

\
X

(EkEk+l)(x, y)f(x, y) dµ(x) dµ(y)
∣∣∣(3.6)

≤ C2−|l|ε‖f‖L∞(X×X)rd ≤ C2−|l|εrd,

where C is independent of l and r.

If k ≥ 0, l ∈ N and k + l > 0, by (2.14) and (2.15), we have

|〈EkEk+l, f〉| =
∣∣∣
\
X

\
X

\
X

Ek(x, z)Ek+l(z, y)f(x, y) dµ(z) dµ(x) dµ(y)
∣∣∣(3.7)

=
∣∣∣
\
X

\
X

\
X

Ek(x, z)Ek+l(z, y)[f(x, y)− f(x, z)] dµ(z) dµ(x) dµ(y)
∣∣∣

≤ rd
\
X

\
X

\
X

|Ek(x, z)Ek+l(z, y)|̺(z, y)−η dµ(z) dµ(x) dµ(y)

≤ C2−(k+l)ηr−ηrd,

where C is independent of l and r.
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If k ≥ 0, l ∈ N and k + l ≥ 0, we also have the following trivial estimate:

(3.8) |〈EkEk+l, f〉| ≤ C2(k+l)dr2d,

where C is independent of l and r.

Now by (3.6) and (3.7), for k ≥ 0, l ∈ N and k + l > 0, we have

(3.9) |〈EkEk+l, f〉| ≤ C2−|l|εσ2−(k+l)η(1−σ)r−η(1−σ)rd,

where σ can be any number in (0,1), and C is independent of l, σ and r.

By (3.6) and (3.8), for k ≥ 0, l ∈ N and k + l > 0, we have

(3.10) |〈EkEk+l, f〉| ≤ C2−|l|εσ2(k+l)d(1−σ)rd(1−σ)rd,

where σ can be any number in (0,1), and C is independent of l, σ and r.

Now, by (3.6), (3.9) and (3.10), we have

|〈RN , f〉| =
∣∣∣
∑

|l|>N

∑

k≥0, k+l≥0

(1− 2lα)〈EkEk+l, f〉
∣∣∣

≤
∑

l<−N

(1 + 2lα)|〈E−lE0, f〉|+
∑

|l|>N

∑

k+l>0, 2−(k+l)<r

(1 + 2lα)|〈EkEk+l, f〉|

+
∑

|l|>N

∑

k+l>0, 2−(k+l)≥r

(1 + 2lα)|〈EkEk+l, f〉|

≤ C
∑

l<−N

(1 + 2lα)2lεrd

+ C
∑

|l|>N

∑

k+l>0, 2−(k+l)<r

(1 + 2lα)2−|l|εσ2−(k+l)η(1−σ)r−η(1−σ)rd

+ C
∑

|l|>N

∑

k+l>0, 2−(k+l)≥r

(1 + 2lα)2−|l|εσ2(k+l)d(1−σ)rd(1−σ)rd

≤ C(2−Nε + 2−N(α+ε) + 2−Nεσ + 2−N(εσ+α) + 2−N(εσ−α))rd ≤ C12−δNrd,

where we take σ ∈ (0, 1) such that |α| < εσ, δ = min(εσ + α, εσ − α) and C1 is as in the

theorem.

For 0 < l ≤ N , by (3.6), (3.9) and (3.10), we have

|〈T lN , f〉| ≤
∑

k+l>0

|〈EkEk+l, f〉|

≤ C
∑

k+l>0, 2−(k+l)<r

2−lεσ2−(k+l)η(1−σ)r−η(1−σ)rd

+ C
∑

k+l>0, 2−(k+l)≥r

2−lεσ2(k+l)d(1−σ)rd(1−σ)rd

≤ C2−lεσrd,

where σ ∈ (0, 1) and C is independent of r and l.
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For l = 0, by (3.6), (3.9) and (3.10), we have

|〈T lN , f〉| ≤
∑

k≥0

|〈EkEk, f〉| = |〈E0E0, f〉|+
∑

k>0

|〈EkEk, f〉|

≤ Crd
{

1 +
∑

k∈N, 2−k<r

2−kη(1−σ)r−η(1−σ) +
∑

k∈N, 2−k≥r

2kd(1−σ)rd(1−σ)
}
≤ Crd,

where σ ∈ (0, 1) and C is independent of r.

For −N ≤ l < 0, by (3.6), (3.9) and (3.10), we have

|〈T lN , f〉| ≤
∑

k≥0, k+l≥0

|〈EkEk+l, f〉|

= |〈E−lE0, f〉|+
∑

k+l>0, 2−(k+l)<r

|〈EkEk+l, f〉|+
∑

k+l>0, 2−(k+l)≥r

|〈EkEk+l, f〉|

≤ C2lεrd + C
∑

k+l>0, 2−(k+l)<r

2lεσ2−(k+l)η(1−σ)r−η(1−σ)rd

+
∑

k+l>0, 2−(k+l)≥r

2lεσ2(k+l)d(1−σ)rd(1−σ)rd

≤ C2lεσrd,

where σ ∈ (0, 1) and C is independent of r and l.

By summing up all the estimates on 〈T lN , f〉 and 〈RN , f〉, we conclude that (3.4)

holds.

This finishes the proof of Theorem 3.1.

In the following, for |α| < ε, we define the left inverse, (Iα)−1l , and the right inverse,

(Iα)−1r , respectively, by

(Iα)−1l Iα = I = Iα(Iα)−1r

in G(β, γ) for 0 < β, γ < ε. The following theorem guarantees the existence of (Iα)−1l and

(Iα)−1r . Moreover, we have their obvious expressions.

Theorem 3.2. Let 0 < β, γ < ε. There exists an α0(β, γ) ∈ (0, ε) such that if |α| <
α0(β, γ), then (Iα)−1l and (Iα)−1r exist in G(β, γ). Moreover ,

(Iα)−1l =

∞∑

k=0

2kαẼk and (Iα)−1r =

∞∑

k=0

2kαD̃k,

where Ẽk and D̃k are linear operators whose kernels , Ẽk(x, y) and D̃k(x, y), have the

following properties:

(i)
\
X

Ẽk(x, y) dµ(x) =
\
X

Ẽk(x, y) dµ(y) =

{
1 for k = 0,

0 for k ∈ N;

(ii) |Ẽk(x, y)| ≤ C 2−kγ
′

(2−k + ̺(x, y))d+γ′
for k ∈ N ∪ {0};

(iii) |Ẽk(x, y)− Ẽk(x′, y)| ≤ C
(

̺(x, x′)

2−k + ̺(x, y)

)ε′
2−kγ

′

(2−k + ̺(x, y))d+γ′

for ̺(x, x′) ≤ 1

2A
(2−k + ̺(x, y)) and k ∈ N ∪ {0};
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(iv)
\
X

D̃k(x, y) dµ(x) =
\
X

D̃k(x, y) dµ(y) =

{
1 for k = 0,

0 for k ∈ N;

(v) |D̃k(x, y)| ≤ C 2−kγ
′

(2−k + ̺(x, y))d+γ′
for k ∈ N ∪ {0};

(vi) |D̃k(x, y)− D̃k(x, y′)| ≤ C
(

̺(y, y′)

2−k + ̺(x, y)

)ε′
2−kγ

′

(2−k + ̺(x, y))d+γ′

for ̺(y, y′) ≤ 1

2A
(2−k + ̺(x, y)) and k ∈ N ∪ {0}.

Here β ≤ ε′ < ε and γ ≤ γ′ < ε. Moreover , if 0 < β1 ≤ β ≤ β2 < ε and 0 < γ1 ≤ γ ≤
γ2 < ε, then α0(β, γ) can be independent of β and γ, but it may depend on β1, β2, γ1
and γ2.

Proof. Let us first establish the representation formula for (Iα)−1l . Let T = I − I−αIα
and K be its kernel, where I is the identity in the space G(β, γ). Then, obviously, T (1) =

T ∗(1) = 0. Let us first show

(3.11) |(TE0)(x, y)| ≤
(
C12

−δN + C2
∑

|l|≤N

|1− 2−lα|2−|l|ε
) 1

(1 + ̺(x, y))d+γ′

and

|(TE0)(x, y)− (TE0)(x
′, y)| ≤

(
C12

−δN + C2
∑

|l|≤N

|1− 2−lα|2−|l|σε
)

(3.12)

×
(

̺(x, x′)

1 + ̺(x, y)

)(1−σ)ε
1

(1 + ̺(x, y))d+γ′

for ̺(x, x′) ≤ 1
2A (1 + ̺(x, y)), where C1, C2 and δ are as in Theorem 3.1 and σ ∈ (0, 1).

For any given N ∈ N, we write

T = I − I−αIα
=
∑

|l|≤N

∑

k≥0, k+l≥0

(1− 2−lα)EkEk+l +
∑

|l|>N

∑

k≥0, k+l≥0

(1− 2−lα)EkEk+l = TN +RN .

Similarly to (2.23), by (2.12)–(2.15), we have

|(RNE0)(x, y)|

=
∣∣∣
∑

l>N

(1− 2−lα)

∞∑

k=0

(EkEk+lE0)(x, y) +
∑

l<−N

(1− 2−lα)
∑

k≥0, k+l≥0

(EkEk+lE0)(x, y)
∣∣∣

≤
∑

l>N

(1 + 2−lα)χ{(x,y): ̺(x,y)≤2A2C}(x, y)

×
∞∑

k=0

∣∣∣
\
X

(EkEk+l)(x, z)(E0(z, y)− E0(x, y)) dµ(z)
∣∣∣

+
∑

l<−N

(1 + 2−lα)
∑

k≥0, k+l≥0

∣∣∣
\
X

(EkEk+l)(x, z)(E0(z, y)− E0(x, y)) dµ(z)
∣∣∣

× χ{(x,y): ̺(x,y)≤2A2C}(x, y)
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≤
∑

l>N

(1 + 2−lα)

∞∑

k=0

2−lε2−kεχ{(x,y): ̺(x,y)≤2A2C}(x, y)

+
∑

l<−N

(1 + 2−lα)
∑

k+l≥0

2lε2−(k+l)εχ{(x,y): ̺(x,y)≤2A2C}(x, y)

≤ C2−δN
1

(1 + ̺(x, y))d+γ′
,

where δ = min(ε+ α, ε− α).

Similarly to (2.28), by (2.12)–(2.15) we have

|(TNE0)(x, y)| =
∣∣∣
∑

0≤l≤N

(1− 2−lα)
∞∑

k=0

(EkEk+lE0)(x, y)

+
∑

−N≤l<0

(1− 2−lα)
∑

k≥0, k+l≥0

(EkEk+lE0)(x, y)
∣∣∣

≤
∑

0≤l≤N

|1− 2−lα|
∞∑

k=0

∣∣∣
\
X

(EkEk+l)(x, z)(E0(z, y)− E0(x, y)) dµ(z)
∣∣∣

× χ{(x,y): ̺(x,y)≤2A2C}(x, y)

+
∑

−N≤l<0

|1− 2−lα|
∑

k≥0, k+l≥0

∣∣∣
\
X

(EkEk+l)(x, z)(E0(z, y)− E0(x, y)) dµ(z)
∣∣∣

× χ{(x,y): ̺(x,y)≤2A2C}(x, y)

≤
∑

0≤l≤N

|1− 2−lα|
∞∑

k=0

2−lε2−kεχ{(x,y): ̺(x,y)≤2A2C}(x, y)

+
∑

−N≤l<0

|1− 2−lα|
∑

k+l≥0

2lε2−(k+l)εχ{(x,y): ̺(x,y)≤2A2C}(x, y)

≤ C
∑

|l|≤N

|1− 2−lα|2−|l|ε 1

(1 + ̺(x, y))d+γ′
.

Thus, (3.11) holds.

Now, let us show (3.12). Similarly to (2.24) and (2.29), we also consider three cases.

Case 1 : 6A2C ≤ ̺(x, x′) ≤ 1
2A (1 +̺(x, y)). In this case, (3.12) can be deduced easily

from (3.11).

Case 2 : ̺(x, x′) < 6A2C and ̺(x, y) > 12A3C. In this case, it is easy to deduce

̺(x′, y) > 6A2C. Thus, TE0(x, y) = TE0(x
′, y) = 0 and (3.12) holds.

Case 3 : ̺(x, x′) < 6A2C and ̺(x, y) < 12A3C. We further suppose that there is an

l1 ∈ N such that 6A2C2−l1 ≤ ̺(x, x′) < 6A2C2−l1+1. We then write

|(TE0)(x, y)− (TE0)(x
′, y)|

≤
∑

0≤l≤N

|1− 2−lα|
{ l1∑

k=0

|(EkEk+lE0)(x, y)− (EkEk+lE0)(x
′, y)|
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+

∞∑

k=l1+1

[|(EkEk+lE0)(x, y)|+ |(EkEk+lE0)(x′, y)|]
}

+
∑

−N≤l<0

|1− 2−lα|
{ ∑

0≤k≤l1−l, k+l≥0

|(EkEk+lE0)(x, y)− (EkEk+lE0)(x
′, y)|

+
∑

k>l1−l

[|(EkEk+lE0)(x, y)|+ |(EkEk+lE0)(x′, y)|]
}

+
∑

l>N

(1 + 2−lα)
{ l1∑

k=0

|(EkEk+lE0)(x, y)− (EkEk+lE0)(x
′, y)|

+

∞∑

k=l1+1

[|(EkEk+lE0)(x, y)|+ |(EkEk+lE0)(x′, y)|]
}

+
∑

l<−N

(1 + 2−lα)
{ ∑

0≤k≤l1−l, k+l≥0

|(EkEk+lE0)(x, y)− (EkEk+lE0)(x
′, y)|

+
∑

k>l1−l

[|(EkEk+lE0)(x, y)|+ |(EkEk+lE0)(x′, y)|]
}

≤
∑

0≤l≤N

|1− 2−lα|
{ l1∑

k=0

∣∣∣
\
X

[(EkEk+l)(x, z)− (EkEk+l)(x
′, z)][E0(z, y)− E0(x, y)] dµ(z)

∣∣∣

+

∞∑

k=l1+1

[∣∣∣
\
X

(EkEk+l)(x, z)[E0(z, y)− E0(x, y)] dµ(z)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, z)[E0(z, y)− E0(x′, y)] dµ(z)

∣∣∣
]}

+
∑

−N≤l<0

|1− 2−lα|
{ ∑

0≤k≤l1−l, k+l≥0

∣∣∣
\
X

[(EkEk+l)(x, z)− (EkEk+l)(x
′, z)]

× [E0(z, y)− E0(x, y)] dµ(z)
∣∣∣

+
∑

k>l1−l

[∣∣∣
\
X

(EkEk+l)(x, z)[E0(z, y)− E0(x, y)] dµ(z)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, z)[E0(z, y)− E0(x′, y)] dµ(z)

∣∣∣
]}

+
∑

l>N

(1 + 2−lα)
{ l1∑

k=0

∣∣∣
\
X

[(EkEk+l)(x, z)− (EkEk+l)(x
′, z)]

× [E0(z, y)− E0(x, y)] dµ(z)
∣∣∣

+

∞∑

k=l1+1

[∣∣∣
\
X

(EkEk+l)(x, z)[E0(z, y)− E0(x, y)] dµ(z)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, z)[E0(z, y)− E0(x′, y)] dµ(z)

∣∣∣
]}

+
∑

l<−N

(1 + 2−lα)
{ ∑

0≤k≤l1−l, k+l≥0

∣∣∣
\
X

[(EkEk+l)(x, z)− (EkEk+l)(x
′, z)]

× [E0(z, y)− E0(x, y)] dµ(z)
∣∣∣
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+
∑

k>l1−l

[∣∣∣
\
X

(EkEk+l)(x, z)[E0(z, y)− E0(x, y)] dµ(z)
∣∣∣

+
∣∣∣
\
X

(EkEk+l)(x
′, z)[E0(z, y)− E0(x′, y)] dµ(z)

∣∣∣
]}

≤ C
∑

0≤l≤N

|1− 2−lα|
{

2−lσε̺(x, x′)(1−σ)ε
l1∑

k=0

2−kσε +
∞∑

k=l1+1

2−lε−kε
}

+ C
∑

−N≤l<0

|1− 2−lα|
{

2lσε̺(x, x′)(1−σ)ε
∑

0≤k+l≤l1

2−(k+l)σε +
∑

k+l>l1

2lε−(k+l)ε
}

+
∑

l>N

(1 + 2−lα)
{

2−lσε̺(x, x′)(1−σ)ε
l1∑

k=0

2−kσε +

∞∑

k=l1+1

2−lε−kε
}

+
∑

l<−N

(1 + 2−lα)
{

2lσε̺(x, x′)(1−σ)ε
∑

0≤k+l≤l1

2−(k+l)σε +
∑

k+l>l1

2lε−(k+l)ε
}

≤
(
C12

−δN + C2
∑

|l|≤N

|1− 2−lα|2−|l|σε
)
̺(x, x′)(1−σ)ε,

where we choose σ ∈ (0, 1) such that |α| < σε, and δ, C1 and C2 are the same constants

as in Theorem 3.1. Thus, (3.12) holds.

Obviously we have

(3.13)
\
X

(TE0)(x, y) dµ(y) = 0 =
\
X

(TE0)(x, y) dµ(x).

By Theorem 3.1, T satisfies all the conditions of Theorem 1 in [18]. Thus, by that

theorem, T maps G0(x1, r, β, γ) with x1 ∈ X, r > 0 and 0 < β, γ < ε continuously into

G0(x1, r, β, γ). That is, there is a constant C3 independent of x1 and r such that for all

f ∈ G0(x1, r, β, γ),

‖Tf‖G0(x1,r,β,γ) ≤ C3
(
C12

−δN + C2
∑

|l|≤N

|1− 2−lα|2−|l|δ1
)
‖f‖G0(x1,r,β,γ).

Now we choose α0(β, γ) ∈ (0, ε) such that if |α| < α0(β, γ), then

(3.14) C4 ≡ C3
(
C12

−δN + C2
∑

|l|≤N

|1− 2−lα|2−|l|δ1
)
< 1.

Since C1, C2 and C3 are independent of x1 and r, obviously, α0(β, γ) is also independent

of x1 and r. Moreover, by all the above proofs and the proof of Theorem 1 in [18], we can

see that C1 and C2 are independent of β, γ, ε− β and ε− γ and at most C3 is the linear

combination of 1/β, 1/γ, 1/(ε − β) and 1/(ε − γ). Thus, if 0 < β1 ≤ β ≤ β2 < ε and

0 < γ1 ≤ γ ≤ γ2 < ε, we can then easily control C3 by the linear combination of 1/β1,

1/γ1, 1/(ε−β2) and 1/(ε−γ2). Therefore, in this case, we can choose α0(β, γ) independent

of β and γ (but depending on β1, β2, γ1 and γ2) such that when |α| < α0(β, γ), (3.14)

holds.

Now, let |α| < α0(β, γ). Since β ≤ ε′ and γ ≤ γ′, we have G(ε′, γ′) ⊂ G(β, γ) and

therefore,

I = (I−αIα)−1I−αIα
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in G(ε′, γ′). Thus, we see that

(Iα)−1l = (I−αIα)−1I−α =

∞∑

k=0

2kα
{ ∞∑

m=0

TmEk

}
,

where T 0 = I, the identity operator, and for m ∈ N, Tm = TT . . . T (m times). Thus,

Ẽk =
∞∑

m=0

TmEk.

Obviously, the kernel Ẽk(x, y) of Ẽk satisfies (i) of the theorem.

We now verify (ii) and (iii). If k ∈ N, since Ek(x, y) ∈ G0(y, 2−k, ε′, γ′), by Theorem

1 in [18] and (3.14), we know that (RmEk)(x, y) ∈ G0(y, 2−k, ε′, γ′) and

|Ẽk(x, y)| ≤
∞∑

m=0

(C4)
m 2−kγ

′

(2−k + ̺(x, y))d+γ′
≤ C 2−kγ

′

(2−k + ̺(x, y))d+γ′
.

Thus, (ii) holds for k ∈ N. Moreover, for ̺(x, x′) ≤ 1
2A (2−k + ̺(x, y)), we have

|Ẽk(x, y)− Ẽk(x′, y)| ≤
∞∑

m=0

(C4)
m

(
̺(x, x′)

2−k + ̺(x, y)

)ε′
2−kγ

′

(2−k + ̺(x, y))d+γ′

≤ C
(

̺(x, x′)

2−k + ̺(x, y)

)ε′
2−kγ

′

(2−k + ̺(x, y))d+γ′
.

That is, (iii) holds for k ∈ N.

By (3.11)–(3.13), (TE0)(x, y) ∈ G0(y, 1, ε′, γ′). Thus, by Theorem 1 in [18] and (3.14)

again, (ii) and (iii) also hold for k = 0. This establishes the representation formula for

(Iα)−1l .

To establish the representation formula for (Iα)−1r , we need to replace the above

operator T by T = I − IαI−α and we can then show that

(Iα)−1r = I−α(IαI−α)−1 =
∞∑

k=0

2kα
{ ∞∑

m=0

EkT
m
}
.

Then by Theorem 3.1 and Theorem 1 in [18] and a proof similar to the above, we can

obtain the representation formula for (Iα)−1r . We omit the details.

This finishes the proof of Theorem 3.2.

Now let us introduce the definition of the transpose, T t, of an operator T which is

defined on spaces of test functions or dual spaces.

Definition 3.4. Let θ ≥ β > 0 and γ > 0. Let T be an operator defined on G(β, γ). We

then define the transpose, T t, of T on (G(β, γ))′ by 〈T tg, f〉 = 〈g, Tf〉 for all f ∈ G(β, γ)

and all g ∈ (G(β, γ))′. Let T be an operator defined on (G(β, γ))′. We then define the

transpose, T t, of T on G(β, γ) by 〈g, T tf〉 = 〈Tg, f〉 for all f ∈ G(β, γ) and all g ∈
(G(β, γ))′.

The left inverses and right inverses of fractional integrals and derivatives in dual

spaces are defined as follows.
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Definition 3.5. Let |α| < θ, 0 < β ≤ θ and γ > 0. We say that (Iα)−1l and (Iα)−1r exist

in (G(β, γ))′ if (Itα)−1l and (Itα)−1r exist in G(β, γ). The transposes of the left inverse and

right inverse of Itα in G(β, γ) are said to be, respectively, the right inverse and left inverse

of Iα in (G(β, γ))′, and we then write (Iα)−1l Iα = Iα(Iα)−1r = I in (G(β, γ))′.

In the rest of this section, we assume µ(X) <∞. But some of our results still hold for

µ(X) =∞. We will indicate this in each case. Under this restriction, the γ in the space

of test functions, G(β, γ), becomes unimportant. In fact, for all γ > 0, the G(β, γ) define

the same space, Lip(β); see [11] for the definition of the latter. Based on this, we obtain

the following improved version of Theorem 2.1 which has uniform forms for α > 0 and

α < 0. Let us state it in a general form.

Theorem 3.3. Let µ(X) < ∞, ε ∈ (0, θ], α ∈ R, θ ≥ β > 0, ε > α + β > 0 and γ > 0.

Let

Iα =
∞∑

l=0

2−lαEl,

where El’s are linear operators for l ∈ N ∪ {0} with kernels , El(x, y), satisfying

(i)
\
X

El(x, y) dµ(y) =

{
1 for l = 0,

0 for l ∈ N;

(ii) |El(x, y)| ≤ C 2−lε

(2−l + ̺(x, y))d+ε
for l ∈ N ∪ {0};

(iii) |El(x, y)− El(x′, y)| ≤ C
(

̺(x, x′)

2−l + ̺(x, y)

)ε
2−lε

(2−l + ̺(x, y))d+ε

for ̺(x, x′) ≤ 1

2A
(2−l + ̺(x, y)) and k ∈ N ∪ {0}.

Then Iα maps G(β, γ) continuously into G(β + α, γ), namely , there is a constant C

independent of f such that

‖Iα(f)‖G(β+α,γ) ≤ C‖f‖G(β,γ).
Proof. The proof is just a repeat of Theorem 2.1 by noting that 1 + ̺(x, x0) ∼ 1 due to

µ(X) <∞; see also Remark 2.1. We omit the details.

From this theorem, we can obtain more information on the left inverses and right

inverses in Theorem 3.2.

Corollary 3.1. Let µ(X) < ∞, 0 < β < ε and 0 < γ. Let α0(β, γ) be as in Theorem

3.2. Suppose |α| < min(β, α0(β, γ)). Let (Iα)−1l and (Iα)−1r be as in Theorem 3.2. Then:

(i) (Iα)−1l maps G(β + α, γ) continuously into G(β, γ), namely , there is a constant

C > 0 independent of f such that

‖(Iα)−1l (f)‖G(β,γ) ≤ ‖f‖G(β+α,γ);
(ii) (Iα)−1r maps G(β, γ) continuously into G(β − α, γ), namely , there is a constant

C > 0 independent of f such that

‖(Iα)−1r (f)‖G(β−α,γ) ≤ ‖f‖G(β,γ);
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(iii) If α > 0, then (Iα)−1l = (Iα)−1r |G(β + α, γ). This means that when we restrict

(Iα)−1l and (Iα)−1r to G(β + α, γ), they are the same;

(iv) If α < 0, then (Iα)−1r = (Iα)−1l |G(β, γ). This means that when we restrict (Iα)−1l
and (Iα)−1r to G(β, γ), they are the same;

(v) (Itα)−1,tl = (Iα)−1r holds in both G(β, γ) and (G(β − α, γ))′;

(vi) (Itα)−1,tr = (Iα)−1l holds in both G(β + α, γ) and (G(β, γ))′.

Proof. (i) is a simple corollary of Theorems 3.2 and 3.3; so is (ii). In fact, to see (ii), by

the proof of Theorem 3.2, we have

(Iα)−1r = I−α(IαI−α)−1

and (IαI−α)−1 is the inverse of the Calderón–Zygmund operator IαI−α in G(β, γ). This

means that there is a constant C > 0 such that for all f ∈ G(β, γ) = G(x0, 1, β, γ), we

have

‖(IαI−α)−1(f)‖G(β,γ) ≤ C‖f‖G(β,γ).
To see this, let T = I − IαI−α be as in the proof of Theorem 3.2 and K be its kernel.

By Theorem 3.1, K satisfies (3.1)–(3.5). Moreover, let C3 be the constant appearing in

Theorem 1 in [18]. By the proof of Theorem 3.2, we know that C3‖K‖ < 1; see (3.14).

Also, we can show that for any f ∈ G(β, γ) and this special T , Tf ∈ G0(β, γ) and

‖Tf‖G(β,γ) ≤ C5‖K‖‖f‖G(β,γ),
where C5 is independent of f ; see the proofs of (3.11) and (3.12). Thus, by Theorem 1 in

[18], we have

‖(IαI−α)−1(f)‖G(β,γ) ≤
∞∑

m=0

‖T mf‖G(β,γ)

≤
{

1 + C5‖K‖
[
1 +

∞∑

m=2

(C3‖K‖)m−1
]}
‖f‖G(β,γ) ≤ C‖f‖G(β,γ).

Thus, our claim is true. Therefore, by Theorem 3.3, we obtain (ii).

Now let us show (iii). Since α > 0, we have G(β + α, γ) ⊂ G(β, γ). By the proof of

Theorem 3.2, we have

(Iα)−1l = (I−αIα)−1I−α and (Iα)−1r = I−α(IαI−α)−1,

where (I−αIα)−1 and (IαI−α)−1 are respectively the inverse operators of the Calderón–

Zygmund operators I−αIα and IαI−α in G(β, γ). Thus, I = IαI−α(IαI−α)−1 also holds

in G(β + α, γ). By multiplying this with (Iα)−1l = (I−αIα)−1I−α, we obtain

(Iα)−1l = (I−αIα)−1I−αIαI−α(IαI−α)−1.

By recombining them, we obtain (Iα)−1l = (Iα)−1r .

The proof of (iv) is similar. In fact, since α < 0, we have G(β − α, γ) ⊂ G(β, γ).

Thus, I = (I−αIα)−1I−αIα also holds in G(β − α, γ). By multiplying this with (Iα)−1r =

I−α(IαI−α)−1, we obtain

(Iα)−1r = (I−αIα)−1I−αIαI−α(IαI−α)−1.

By recombining them, we obtain (iv).
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The proofs of (v) and (vi) can be given by using definitions. We omit the details.

This finishes the proof of Corollary 3.1.

The theorem below yields the independence from the choices of approximations to

the identity for fractional integrals and derivatives.

Theorem 3.4. Let {Sk}∞k=0 and {Sk}∞k=0 be two approximations to the identity as in
Definition 1.2 with ε ∈ (0, θ]. Let Ek = Sk − Sk−1 and Ek = Sk − Sk−1 for k ∈ N,

E0 = S0 and E0 = S0. For |α| < ε, let

Iα =
∞∑

k=0

2−kαEk and Iα =
∞∑

k=0

2−kαEk.

(i) Let 0 < s, s < ε and |α|, |α| < ε with s+ α = s+ α < ε. If (I−α)−1l and (I−α)−1l
exist in (G(β, γ))′ with 0 < β, γ < ε, then for all f ∈ (G(β, γ))′,

‖I−αf‖Bspq(X) ∼ ‖I−αf‖Bspq for 1 ≤ p, q ≤ ∞,(3.15)

‖I−αf‖F spq(X) ∼ ‖I−αf‖F spq for 1 < p <∞, 1 < q ≤ ∞.(3.16)

(ii) Let −ε < s, s < 0 and |α|, |α| < ε with s + α = s + α > −ε. If (I−α)−1r and

(I−α)−1r exist in (G(β, γ))′ with max(−s,−s) < β < ε and 0 < γ < ε, then for all

f ∈ (G(β, γ))′,

‖(I−α)−1r f‖Bspq(X) ∼ ‖(I−α)−1r f‖Bspq for 1 ≤ p, q ≤ ∞,(3.17)

‖(I−α)−1r f‖F spq(X) ∼ ‖(I−α)−1r f‖F spq for 1 < p <∞, 1 < q ≤ ∞.(3.18)

Proof. We only show (i). The proof of (ii) is similar. To do that, we only need to show

that there is a constant C > 0 independent of f such that

‖I−α(I−α)−1l f‖Bspq(X) ≤ C‖f‖Bspq for 1 ≤ p, q ≤ ∞,(3.19)

‖I−α(I−α)−1l f‖F spq(X) ≤ C‖f‖F spq for 1 < p <∞, 1 < q ≤ ∞.(3.20)

By Theorem 3.2, we have

(I−α)−1l =

∞∑

l=0

2−lαẼl,

where Ẽl’s satisfy (i)–(iii) of Theorem 3.2. Let {Pk}∞k=0 be an approximation to the

identity as in Definition 1.2. Let Dk = Pk−Pk−1 for k ∈ N and D0 = P0. To show (3.19)

and (3.20), it suffices to establish the following estimates:

(3.21) |[DlI−α(I−α)−1l Dk](x, y)| ≤ C2l(α−α)2[(k−l)∧0]ε0
2−(k∧l)σ

(2−(k∧l) + ̺(x, y))d+σ
,

where σ > 0, ε > ε0 > s+ α − α and C > 0 are independent of x, y, k and l; see [20] or

[23, pp. 70–74].

Let ε′ ∈ (0, ε) be as in Theorem 3.2 and ε′ can be any positive number close to ε.

Then, for any ε′′ ∈ (0, ε′) and δ ∈ (0, 1), there is a constant C > 0 independent of

n ∈ N ∪ {0} and m ∈ N ∪ {0} such that

(3.22) |(EnẼm)(x, y)| ≤ C2−|n−m|ε
′′ 2−(n∧m)ε

′

(2−(n∧m) + ̺(x, y))d+ε′
,
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and

|(EnẼm)(x, y)− (EnẼm)(x′, y)| ≤ C2−|n−m|δε
′′

( ̺(x, x′)

2−(n∧m) + ̺(x, y)

)(1−δ)ε′
(3.23)

× 2−(n∧m)ε
′

(2−(n∧m) + ̺(x, y))d+ε′

for ̺(x, x′) ≤ 1
4A2 (2−(n∧m)+ ̺(x, y)), where C depends on δ and is independent of n, m,

x and y. The proofs of (3.22) and (3.23) are, respectively, completely similar to those of

(3.9) and (3.11) in [18]; see also Lemma 2.1. We omit the details.

Now let us show (3.21). We consider four cases. In the following, we always write, for

l ∈ N ∪ {0},

[DlI−α(I−α)−1l Dk](x, y) =
∑

n,m∈N∪{0}

2nα−mα(DlEnẼmDk)(x, y)

=
∑

0≤m≤n

2nα−mα(DlEnẼmDk)(x, y) +
∑

0≤n<m

. . .

=
∑

0≤l≤m≤n

2nα−mα(DlEnẼmDk)(x, y) +
∑

0≤m≤l≤n

. . .+
∑

0≤m≤n≤l

. . .

+
∑

0≤l≤n<m

. . .+
∑

0≤n<l≤m

. . .+
∑

0≤n<m<l

. . .

= Q1 +Q2 +Q3 +Q4 +Q5 +Q6.

Case 1 : 0 ≤ l ≤ k and ̺(x, y) ≤ 4A2C2−l. In this case, for Q1, if α < α, by (3.22),

we have

|Q1| =
∣∣∣
∑

0≤l≤m≤n

2nα−mα
\
X

\
X

Dl(x, u)(EnẼm)(u, z)Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤l≤m≤n

2nα−mα−(n−m)ε
′′+ld

\
X

|Dk(z, y)|
{ \
X

2−mε
′

(2−m + ̺(u, z))d+ε′
dµ(u)

}
dµ(z)

≤ C2ld
∞∑

m=l

∞∑

n=m

2n(α−ε
′′)2m(ε

′′−α) ≤ C2ld
∞∑

m=l

2m(α−α) ≤ C2l(α−α)2ld,

which is a desired estimate.

Now, if α ≥ α and n = 0, then in this case we obviously have l = m = n = 0 and by

(3.22), it is easy to show

(3.24) |Q1| = |(D0E0Ẽ0Dk)(x, y)| ≤ C,

which is a desired estimate.

If α ≥ α and n > 0, then, in this case, we choose ν ∈ [ε′′, ε′). Noting that\
X

\
X

(EnẼm)(u, z)Dk(z, y) dµ(u) dµ(z) = 0,
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by (3.22), we now have

|Q1| =
∣∣∣
∑

0≤l≤m≤n

2nα−mα
\
X

\
X

[Dl(x, u)−Dl(x, z)](EnẼm)(u, z)Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤l≤m≤n

2nα−mα−(n−m)ε
′′−mε′+l(d+ν)

×
\
X

{ \
X

̺(u, z)ν

(2−m + ̺(u, z))d+ε′
dµ(u)

}
|Dk(z, y)| dµ(z)

≤ C2l(d+ν)
∞∑

m=l

2−m(α+ν−ε
′′)
∞∑

n=m

2−n(ε
′′−α) ≤ C2l(α−α)2ld,

where we choose ε′′ > α and therefore, ν ≥ ε′′ > α− α. This is also a desired estimate.

Now we estimate Q2. By (3.22), we have

|Q2| =
∣∣∣
∑

0≤m≤l≤n

2nα−mα(DlEnẼmDk)(x, y)
∣∣∣

≤ C
∑

0≤m≤l≤n

2nα−mα−(n−m)ε
′′+ld

\
X

|Dk(z, y)|
{ \
X

2−mε
′

(2−m + ̺(u, z))d+ε′
dµ(u)

}
dµ(z)

≤ C2ld
l∑

m=0

∞∑

n=l

2n(α−ε
′′)2m(ε

′′−α) ≤ C2l(α−α)2ld,

where we take ε′′ > max(α, α). This is a desired estimate for Q2.

For Q3, we have two cases. If l = 0, then l = m = n = 0 and by (3.24), we have a

desired estimate for Q3 in this case.

Now, if l > 0, since

(3.25)
\
X

Dl(x, u) dµ(u) = 0,

by (3.23), we have

|Q3| =
∣∣∣
∑

0≤m≤n≤l

2nα−mα(DlEnẼmDk)(x, y)
∣∣∣

≤
∑

0≤m≤n≤l

2nα−mα
∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)− (EnẼm)(x, z)]Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤m≤n≤l

2nα−mα−(n−m)δε
′′−mε′

×
\
X

\
X

|Dl(x, u)||Dk(z, y)| ̺(u, x)(1−δ)ε
′

(2−m + ̺(u, z))d+ε′+(1−δ)ε′
dµ(u) dµ(z)

≤ C2−l(1−δ)ε
′+ld

l∑

m=0

l∑

n=m

2n(α−δε
′′)2m(δε

′′+(1−δ)ε′−α) ≤ C2l(α−α)2ld,

where we choose δ ∈ (0, 1) such that δε′′ > α and (1 − δ)ε′ > α − α. This is a desired

estimate for Q3.
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The estimates for Q4, Q5 and Q6 are, respectively, similar to those for Q1, Q2 and

Q3. In fact, we only need to exchange the roles of n and m. This finishes the proof of the

Case 1.

Case 2 : 0 ≤ l ≤ k and ̺(x, y) > 4A2C2−l. In this case, by (3.22), we have

|Q1| =
∣∣∣
∑

0≤l≤m≤n

2nα−mα
\
X

\
X

Dl(x, u)(EnẼm)(u, z)Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤l≤m≤n

2nα−mα−(n−m)ε
′′−mε′

×
\
X

\
X

|Dl(x, u)| 1

(2−m + ̺(u, z))d+ε′
|Dk(z, y)| dµ(u) dµ(z)

≤ C̺(x, y)−(d+ε
′)
∞∑

m=l

∞∑

n=l

2n(α−ε
′′)2−m(α+ε

′−ε′′) ≤ C2l(α−α)
2−lε

′

̺(x, y)d+ε′
,

where in the second step to the last, we use the fact that ̺(u, z) ≥ ̺(x, y)/(2A2) and we

take ε′ > ε′′ > α. This is a desired estimate.

Now let us estimate Q2 with l = 0. We then also have m = 0. Thus, in this case,

similarly to the above estimate on Q1, by (3.22), we have

|Q2| =
∣∣∣
∞∑

n=0

2nα
\
X

\
X

D0(x, u)(EnẼ0)(u, z)Dk(z, y) dµ(u) dµ(z)
∣∣∣(3.26)

≤ C
∞∑

n=0

2nα−nε
′′

\
X

\
X

|D0(x, u)| 1

(1 + ̺(u, z))d+ε′
|Dk(z, y)| dµ(u) dµ(z)

≤ C̺(x, y)−(d+ε
′)
∞∑

n=0

2n(α−ε
′′) ≤ C 1

̺(x, y)d+ε′
,

which is a desired estimate.

For Q2 with l > 0, by (3.25) and (3.23), we have

|Q2| =
∣∣∣
∑

0≤m≤l≤n

2nα−mα(DlEnẼmDk)(x, y)
∣∣∣

≤
∑

0≤m≤l≤n

2nα−mα
∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)−(EnẼm)(x, z)]Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤m≤l≤n

2nα−mα−(n−m)δε
′′−mε′

×
\
X

\
X

|Dl(x, u)||Dk(z, y)| ̺(u, x)(1−δ)ε
′

(2−m + ̺(u, z))d+ε′+(1−δ)ε′
dµ(u) dµ(z)

≤ C 2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′

l∑

m=0

2m(δε
′′−α)

l∑

n=m

2n(α−δε
′′) ≤ C2l(α−α)

2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′
,

where we choose δ ∈ (0, 1) such that δε′′ > max(α, α). This is a desired estimate for Q2.

For Q3, we consider three cases. The first is l = 0. Then l = n = m = 0. Thus, by

(3.24), we have a desired estimate. The second case is l > 0 and α− α > 0. In this case,

similarly to the estimate for Q2, by (3.22) and (3.23), we have
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|Q3| ≤
∑

0≤m≤n≤l

2nα−mα
∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)−(EnẼm)(x, z)]Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤m≤n≤l

2nα−mα−(n−m)δε
′′−mε′

×
\
X

\
X

|Dl(x, u)||Dk(z, y)| ̺(u, x)(1−δ)ε
′

(2−m + ̺(u, z))d+ε′+(1−δ)ε′
dµ(u) dµ(z)

≤ C 2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′

l∑

m=0

2m(δε
′′−α)

l∑

n=m

2n(α−δε
′′) ≤ C2l(α−α)

2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′
,

where we take δ ∈ (0, 1) such that δε′′ > max(α, α). This is a desired estimate. The third

case is l > 0 and α − α ≤ 0. In this case, we take δ ∈ (0, 1) such that (1− δ)ε′ > α− α
and ν > 0 small enough such that (1− δ)ε′ > ν +α−α. By the above estimate, we have

|Q3| ≤
∑

0≤m≤n≤l

2nα−mα
∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)−(EnẼm)(x, z)]Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤m≤n≤l

2nα−mα−(n−m)δε
′′−mε′

×
\
X

\
X

|Dl(x, u)||Dk(z, y)| ̺(u, x)(1−δ)ε
′

(2−m + ̺(u, z))d+ε′+(1−δ)ε′
dµ(u) dµ(z)

≤ C 2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′−(α−α)−ν

l∑

m=0

2m(δε
′′−α+ν)

l∑

n=m

2n(α−δε
′′)

≤ C2l(α−α)
2−l((1−δ)ε

′−ν−α+α)

̺(x, y)d+(1−δ)ε′−ν−α+α
,

which is also as desired.

Similarly to Case 1, the estimates for Q4, Q5 and Q6 are, respectively, similar to those

for Q1, Q2 and Q3. We omit the details. This proves Case 2.

Case 3 : 0 ≤ k < l and ̺(x, y) > 4A2C2−k. In this case, the estimates for Q1, Q2
and Q3 are completely similar to those in Case 2. Let us show how to estimate Q4, Q5
and Q6. For Q4, by (3.22), we have

|Q4| =
∣∣∣
∑

0≤l≤n<m

2nα−mα
\
X

\
X

Dl(x, u)(EnẼm)(u, z)Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤l≤n<m

2nα−mα−(m−n)ε
′′−nε′

×
\
X

\
X

|Dl(x, u)| 1

(2−n + ̺(u, z))d+ε′
|Dk(z, y)| dµ(u) dµ(z)

≤ C̺(x, y)−(d+ε
′)
∞∑

m=l

∞∑

n=l

2−m(α+ε
′′)2n(α−ε

′+ε′′) ≤ C2l(α−α)
2−lε

′

̺(x, y)d+ε′
,

where in the second step to the last, we use the fact that ̺(u, z) ≥ ̺(x, y)/(2A2) and we

take ε′ > ε′′ > −α. This is a desired estimate.
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For Q5, we always have l > 0. By (3.25) and (3.23), we have

|Q5| =
∣∣∣
∑

0≤n<l≤m

2nα−mα(DlEnẼmDk)(x, y)
∣∣∣

≤
∑

0≤n<l≤m

2nα−mα
∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)−(EnẼm)(x, z)]Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤n<l≤m

2nα−mα−(m−n)δε
′′−nε′

×
\
X

\
X

|Dl(x, u)||Dk(z, y)| ̺(u, x)(1−δ)ε
′

(2−n + ̺(u, z))d+ε′+(1−δ)ε′
dµ(u) dµ(z)

≤ C 2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′

l∑

n=0

2n(δε
′′+α)

∞∑

m=l

2−m(α+δε
′′) ≤ C2l(α−α)

2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′
,

where we choose δ ∈ (0, 1) such that δε′′>max(−α,−α). This is a desired estimate for Q5.

For Q6, we consider two cases. The first is α − α > 0. In this case, similarly to the

estimate for Q5, by (3.22) and (3.23), we have

|Q6| ≤
∑

0≤n<m<l

2nα−mα
∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)−(EnẼm)(x, z)]Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤n<m<l

2nα−mα−(m−n)δε
′′−nε′

×
\
X

\
X

|Dl(x, u)||Dk(z, y)| ̺(u, x)(1−δ)ε
′

(2−n + ̺(u, z))d+ε′+(1−δ)ε′
dµ(u) dµ(z)

≤ C 2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′

l∑

m=0

2−m(δε
′′+α)

m∑

n=0

2n(α+δε
′′) ≤ C2l(α−α)

2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′
,

where we take δ ∈ (0, 1) such that δε′′ > −α. This is a desired estimate. The second case

is α− α ≤ 0. In this case, we take δ ∈ (0, 1) such that (1− δ)ε′ > α− α and ν > 0 small

enough such that (1− δ)ε′ > ν + α − α and (1 − δ)ε′ − ν − α + α > s + α − α. By the

above estimate, we have

|Q6| ≤
∑

0≤n<m<l

2nα−mα
∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)− (EnẼm)(x, z)]Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤ C
∑

0≤n<m<l

2nα−mα−(m−n)δε
′′−nε′

×
\
X

\
X

|Dl(x, u)||Dk(z, y)| ̺(u, x)(1−δ)ε
′

(2−n + ̺(u, z))d+ε′+(1−δ)ε′
dµ(u) dµ(z)

≤ C 2−l(1−δ)ε
′

̺(x, y)d+(1−δ)ε′−(α−α)−ν

l∑

n=0

2n(δε
′′+α+ν)

l∑

m=n+1

2−m(α+δε
′′)

≤ C2l(α−α)
2−l((1−δ)ε

′−ν−α+α)

̺(x, y)d+(1−δ)ε′−ν−α+α
,

which is also a desired estimate. This finishes the proof of Case 3.
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Case 4 : 0 ≤ k < l and ̺(x, y) ≤ 4A2C2−k. Similarly to Case 1, we only estimate Q1,

Q2 and Q3. To do so, we choose η1 ∈ C1(R), η1(x) = 1 for |x| ≤ 1 and η1(x) = 0 for

|x| ≥ 2 and we define η2(x) = 1− η1(x). By (3.25), we have

|Q1| =
∣∣∣
∑

0≤l≤m≤n

2nα−mα
\
X

\
X

Dl(x, u)(EnẼm)(u, z)Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤
∑

0≤l≤m≤n

2nα−mα
∣∣∣∣
\
X

\
X

Dl(x, u)(EnẼm)(u, z)[Dk(z, y)−Dk(x, y)]

× η1
(
̺(z, x)

2−l

)
dµ(u) dµ(z)

∣∣∣∣

+
∑

0≤l≤m≤n

2nα−mα
∣∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)− (EnẼm)(x, z)]

× [Dk(z, y)−Dk(x, y)]η2

(
̺(z, x)

2−l

)
dµ(u) dµ(z)

∣∣∣∣
= Q11 +Q21.

For Q11, we consider two cases. The first is α− α < 0. In this case, by (3.22),

|Q11| ≤ C
∑

0≤l≤m≤n

2nα−mα+k(d+ε)−lε−(n−m)ε
′′−mε′

×
\
X

\
X

|Dl(x, u)| 1

(2−m + ̺(u, z))d+ε′

∣∣∣∣η1
(
̺(z, x)

2−l

)∣∣∣∣ dµ(u) dµ(z)

≤ C2(k−l)ε+kd
∞∑

n=l

2n(α−ε
′′)
n∑

m=l

2−m(α−ε
′′)

≤ C2(k−l)ε+kd
∞∑

n=l

2n(α−α) ≤ C2l(α−α)2(k−l)ε+kd,

where we take ε′′ > α. The second case is α−α ≥ 0. In this case, we take ν ∈ (0, ε′) such

that α+ ν > ε′′. Since \
X

(EnẼm)(u, z) dµ(u) = 0,

we then have

|Q11| ≤
∑

0≤l≤m≤n

2nα−mα
∣∣∣∣
\
X

\
X

[Dl(x, u)−Dl(x, z)](EnẼm)(u, z)[Dk(z, y)−Dk(x, y)]

× η1
(
̺(z, x)

2−l

)
dµ(u) dµ(z)

∣∣∣∣

≤ C
∑

0≤l≤m≤n

2nα−mα+l(d+ν)−(n−m)ε
′′−mε′+k(d+ε)

×
\
X

\
X

̺(z, u)ν
1

(2−m + ̺(u, z))d+ε′
̺(z, x)ε

∣∣∣∣η1
(
̺(z, x)

2−l

)∣∣∣∣ dµ(u) dµ(z)

≤ C2kε−lε+lν2kd
∞∑

n=l

2n(α−ε
′′)
∞∑

m=l

2m(ε
′′−α−ν) ≤ C2l(α−α)2(k−l)ε+kd,

where we take ε′′ > α.
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Now let us turn to estimating Q21. We choose δ ∈ (0, 1) and ν ∈ (0, ε) such that

δε′′ > α and ε− ε′ < ν < min((1− δ)ε′, ε+ α− δε′′). Thus, by (3.23), we have

|Q21| ≤ C
∑

0≤l≤m≤n

2nα−mα−(n−m)δε
′′−mε′−k(d+ε)

×
\
X

\
X

|Dl(x, u)| ̺(x, u)ν

(2−m + ̺(x, z))d+ε′+ν
̺(x, z)ε

∣∣∣∣η2
(
̺(z, x)

2−l

)∣∣∣∣ dµ(u) dµ(z)

≤ C2−lν2k(d+ε)
∞∑

n=l

2n(α−δε
′′)
∞∑

m=l

2m(ν−ε+δε
′′−α) ≤ C2l(α−α)2(k−l)ε+kd.

This finishes the estimate for Q1.

For Q2, we choose ε0 > s+ α− α and δ ∈ (0, 1) such that δε′′ > α and

ε0 < min((1− δ)ε′ + δε′′ − α, ε′′ + (1− δ)ε′).
By (3.25), (3.22) and (3.23), we have

|Q2| =
∣∣∣
∑

0≤m≤l≤n

2nα−mα
\
X

\
X

Dl(x, u)(EnẼm)(u, z)Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤
∑

0≤m≤l≤n

2nα−mα
∣∣∣∣
\
X

\
X

Dl(x, u)(EnẼm)(u, z)[Dk(z, y)−Dk(x, y)]

× η1
(
̺(z, x)

2−l

)
dµ(u) dµ(z)

∣∣∣∣

+
∑

0≤m≤l≤n

2nα−mα
∣∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)− (EnẼm)(x, z)]

× [Dk(z, y)−Dk(x, y)]η2

(
̺(z, x)

2−l

)
dµ(u) dµ(z)

∣∣∣∣

≤ C
∑

0≤m≤l≤n

2nα−mα+k(d+ε)−lε−(n−m)ε
′′−mε′

×
\
X

\
X

|Dl(x, u)| 1

(2−m + ̺(u, z))d+ε′

∣∣∣∣η1
(
̺(z, x)

2−l

)∣∣∣∣ dµ(u) dµ(z)

+ C
∑

0≤m≤l≤n

2nα−mα−(n−m)δε
′′−mε′−k(d+ε0)

\
X

\
X

|Dl(x, u)|

× ̺(x, u)(1−δ)ε
′

(2−m + ̺(x, z))d+ε′+(1−δ)ε′
̺(x, z)ε0

∣∣∣∣η2
(
̺(z, x)

2−l

)∣∣∣∣ dµ(u) dµ(z)

≤ C2(k−l)ε+kd
∞∑

n=l

2n(α−ε
′′)

l∑

m=0

2−m(α−ε
′′)

+ C2−l(1−δ)ε
′

2k(d+ε0)
∞∑

n=l

2n(α−δε
′′)

l∑

m=0

2m((1−δ)ε
′−ε0+δε

′′−α)

≤ C2l(α−α)2(k−l)ε+kd + C2l(α−α)2(k−l)ε0+kd,

where we take ε′′ > max(α, α). This is a desired estimate for Q2 in this case.

Finally, we estimate Q3. In this case, we choose δ ∈ (0, 1) such that (1− δ)ε′ > α−α
and ε0 > s+ α− α such that ε0 < α− α+ (1− δ)ε′. By (3.25), (3.22) and (3.23),
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|Q3| =
∣∣∣
∑

0≤m≤n≤l

2nα−mα
\
X

\
X

Dl(x, u)(EnẼm)(u, z)Dk(z, y) dµ(u) dµ(z)
∣∣∣

≤
∑

0≤m≤n≤l

2nα−mα
∣∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)− (EnẼm)(x, z)]

× [Dk(z, y)−Dk(x, y)]η1

(
̺(z, x)

2−l

)
dµ(u) dµ(z)

∣∣∣∣

+
∑

0≤m≤n≤l

2nα−mα
∣∣∣∣
\
X

\
X

Dl(x, u)[(EnẼm)(u, z)− (EnẼm)(x, z)]

× [Dk(z, y)−Dk(x, y)]η2

(
̺(z, x)

2−l

)
dµ(u) dµ(z)

∣∣∣∣

≤ C
∑

0≤m≤n≤l

2nα−mα+k(d+ε)−lε−(n−m)δε
′′−mε′

\
X

\
X

|Dl(x, u)|

× ̺(x, u)(1−δ)ε
′

(2−m + ̺(x, z))d+ε′+(1−δ)ε′
̺(x, z)ε

∣∣∣∣η1
(
̺(z, x)

2−l

)∣∣∣∣ dµ(u) dµ(z)

+ C
∑

0≤m≤n≤l

2nα−mα−(n−m)δε
′′−mε′−k(d+ε0)

\
X

\
X

|Dl(x, u)|

× ̺(x, u)(1−δ)ε
′

(2−m + ̺(x, z))d+ε′+(1−δ)ε′
̺(x, z)ε0

∣∣∣∣η2
(
̺(z, x)

2−l

)∣∣∣∣ dµ(u) dµ(z)

≤ C2(k−l)ε+kd−l(1−δ)ε
′

l∑

m=0

2m((1−δ)ε
′+δε′′−α)

l∑

n=m

2n(α−δε
′′)

+ C2−l(1−δ)ε
′

2k(d+ε0)
l∑

m=0

2m((1−δ)ε
′+δε′′−ε0−α)

l∑

n=m

2n(α−δε
′′)

≤ C2l(α−α)2(k−l)ε+kd + C2l(α−α)2(k−l)ε0+kd,

which is a desired estimate for Q3.

Thus, (3.21) is true with ε0 ∈ (s+ α− α, θ) and σ ∈ (0, θ).

This finishes the proof of (3.15) and (3.16) and the proof of Theorem 3.4.

We point out that Theorem 3.4 is also true when µ(X) =∞. Moreover, if |s + α| =
|s+ α| < θ, it is also true for α = 0 or α = 0.

Now let us give an application of the left inverses of fractional derivatives and Theorem

2.2. We establish Poincaré-type inequalities for functions in F sp2(X) with µ(X) <∞,

1 < p <∞ and with s > 0 being small enough; see also [14] and [25, p. 39] for Poincaré

inequalities for functions in Hajłasz–Sobolev spaces on metric spaces.

Theorem 3.5. Let (X, ̺, µ)d,θ be a space of homogeneous type as in Definition 0.1 with

µ(X) < ∞. Let 1 < p < ∞. If s > 0 is small enough, then there is a constant C > 0

such that for all f ∈ F sp2(X),

(3.27)
\
X

∣∣∣∣f(x)− 1

µ(X)

\
X

f(y) dµ(y)

∣∣∣∣
p

dµ(x) ≤ C‖I−sf‖pLp(X) ≤ C‖f‖
p
F sp2(X)

,

where C is independent of f , but it may depend on p, s and diamX.
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Proof. Let {Sl}l∈N∪{0} be an approximation to the identity as in Definition 1.2 with

ε ∈ (0, θ] and s ∈ (−ε, ε). Let El = Sl − Sl−1 for l ∈ N and E0 = S0. Let f ∈ F sp2(X).

Since s > 0, by Proposition 1.2 and Lemma 1.10, we have F spq(X) ⊂ F 0p2(X) = Lp(X).

Moreover, by Remark 1.4, we can further suppose f ∈ G(β, γ) with θ/2 ≤ β, γ ≤ θ. In

fact, since µ(X) < ∞, γ is not important. We then have the fractional derivative I−sf

defined by

I−sf =

∞∑

l=0

2lsEl(f).

By Theorem 3.2, there is an α1 > 0 such that if 0 < s < α1, then (I−s)
−1
l exists in

G(β, γ). Thus, when 0 < s < α1, we have

f(x) = (I−s)
−1
l I−sf(x)

for all x ∈ X. Moreover, by Theorem 3.2,

(I−s)
−1
l =

∞∑

k=0

2−ksẼk,

where Ẽk’s satisfy the same conditions as in Theorem 3.2. Let g = I−sf . By Theorem

2.2 and Lemma 1.10, g ∈ F 0p2(X) = Lp(X), and

‖g‖Lp(X) ≤ C‖f‖F sp2(X),
where C is independent of f . We now write

|f(x)− f(y)| =
∣∣∣
∞∑

k=0

2−ks[Ẽk(g)(x)− Ẽk(g)(y)]
∣∣∣

=
∣∣∣
∞∑

k=0

2−ks
\
X

[Ẽk(x, z)− Ẽk(y, z)]g(z) dµ(z)
∣∣∣

≤
∞∑

k=0

2−ks
\

{z:̺(x,y)≤ 1
2A (2

−k+̺(x,z))}

|Ẽk(x, z)− Ẽk(y, z)||g(z)| dµ(z)

+

∞∑

k=0

2−ks
\
X

|Ẽk(x, z)||g(z)| dµ(z) +

∞∑

k=0

2−ks
\
X

|Ẽk(y, z)||g(z)| dµ(z)

= R1 +R2 +R3.

By Theorem 3.2(iii), we can choose some ε′ > s such that

R1 ≤ C
∞∑

k=0

2−ks
\

{z: ̺(x,y)≤ 1
2A (2

−k+̺(x,z))}

[
̺(x, y)

2−k + ̺(x, z)

]ε′
(3.28)

× 2−kε
′

(2−k + ̺(x, z))d+ε′
|g(z)| dµ(z)

≤ C
∞∑

k=0

2−ks
\
X

2−kε
′

(2−k + ̺(x, z))d+ε′
|g(z)| dµ(z)

≤ C
∞∑

k=0

2−ksM(g)(x) ≤ CM(g)(x),
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where M is the Hardy–Littlewood maximal function of g, C > 0 is independent of x, y

and f , and in the second inequality to the last, we used the fact that s > 0.

By Theorem 3.2(ii) and s > 0, we have

R2 ≤ C
∞∑

k=0

2−ks
\
X

2−kε
′

(2−k + ̺(x, z))d+ε′
|g(z)| dµ(z)(3.29)

≤ C
∞∑

k=0

2−ksM(g)(x) ≤ CM(g)(x),

where C > 0 is independent of x, y and f .

Similarly, by Theorem 3.2(ii) and s > 0, we have

R3 ≤ C
∞∑

k=0

2−ks
\
X

2−kε
′

(2−k + ̺(y, z))d+ε′
|g(z)| dµ(z)(3.30)

≤ C
∞∑

k=0

2−ksM(g)(y) ≤ CM(g)(y),

where C > 0 is independent of x, y and f .

By combining (3.28)–(3.30), we have

|f(x)− f(y)| ≤ C[M(g)(x) +M(g)(y)],

where C > 0 is independent of x, y and f . From this, the Lp(X)-boundedness of the

Hardy–Littlewood maximal function (see [4] and [25]) and Hölder’s inequality, we deduce
∣∣∣∣f(x)− 1

µ(X)

\
X

f(y) dµ(y)

∣∣∣∣ ≤
1

µ(X)

\
X

|f(x)− f(y)| dµ(y)

≤ C

µ(X)

\
X

[M(g)(x) +M(g)(y)] dµ(y)

≤ CM(g)(x) +
C

µ(X)1/p
‖g‖Lp(X),

where C > 0 is independent of x, y, diamX and f . From this and the Lp(X)-boundedness

of the Hardy–Littlewood maximal function, we finally conclude that when 0 < s < α1,\
X

∣∣∣∣f(x)− 1

µ(X)

\
X

f(y) dµ(y)

∣∣∣∣
p

dµ(x)

≤ C
\
X

M(g)(x)p dµ(x) + C‖g‖pLp(X) ≤ C‖g‖
p
Lp(X) ≤ C‖f‖

p
F sp2(X)

,

where C > 0 is independent of f and it may depend on s, p and diamX.

This finishes the proof of Theorem 3.5.

We mention here again that since s > 0, I−sf is the discrete and inhomogeneous

version of the fractional derivative of f introduced by Gatto, Segovia and Vági in [11];

see also [12].

We also remark that the difference between the Poincaré-type inequalities here and

the Poincaré inequalities in [14] and [25] for functions in Hajłasz–Sobolev spaces on metric
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spaces is that we do not have the factor (diamX)s on the right hand side of (3.27) and

the positive constant C here also depends on this. We also note that even on R
n, there

are many domains such that the Poincaré inequality does not hold; see [25, p. 39].

4. Frame characterizations

In this section, we establish frame decomposition characterizations of Bspq(X) and F spq(X)

by using the discrete Calderón reproducing formulae established in [22]. These frame char-

acterizations will play a key role in estimates of entropy numbers for compact embeddings

between Bspq(X) or F spq(X).

Theorem 4.1. Suppose that {Sk}∞k=0 is an approximation to the identity as in Definition
1.2. Let Dk = Sk − Sk−1 for k ∈ N and D0 = S0. Then there exist families of linear

operators D̃k for k ∈ N, functions D̃0,ντ (x) for τ ∈ M0 and ν = 1, . . . , N(0, τ ), and a

fixed large N ∈ N satisfying the same conditions as in Lemma 1.7 such that for any fixed

yk,ντ ∈ Qk,ντ with k ∈ N, τ ∈ Mk and ν ∈ {1, . . . , N(k, τ)} and all f ∈ (G(β1, γ1))
′ with

0 < β1, γ1 < ε,

f(x) =
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )D̃0,ντ (x)D0,ντ,1 (f)(4.1)

+

N∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk,ντ,1 (f)

+

∞∑

k=N+1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ ),

where the series converge in (G(β′1, γ
′
1))
′ with β1 < β′1 < ε and γ1 < γ′1 < ε. Moreover ,

(i) if f ∈ Bspq(X) with −ε < s < ε and 1 ≤ p, q ≤ ∞, then

‖f‖Bspq(X) ∼
{ N∑

k=0

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|Dk,ντ,1 (f)|]p
)q/p

(4.2)

+
∞∑

k=N+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|Dk(f)(yk,ντ )|]p
)q/p}1/q

and the series in (4.1) also converge in the norm of Bspq(X) if 1 ≤ p, q <∞;

(ii) if f ∈ F spq(X) with −ε < s < ε, 1 < p <∞ and 1 < q ≤ ∞, then

(4.3) ‖f‖F spq(X) ∼
∥∥∥
{ N∑

k=0

∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d|Dk,ντ,1 (f)|χQk,ντ (·)]q

+

∞∑

k=N+1

∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d|Dk(f)(yk,ντ )|χQk,ντ (·)]q
}1/q∥∥∥

Lp(X)

and the series in (4.1) also converge in the norm of F spq(X) if 1 < p, q <∞.
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Proof. (4.1) is guaranteed by Lemma 1.7. We only need to show (4.2) and (4.3), and the

convergence in the norms of Bspq(X) or F spq(X) of the series in (4.1). Let us first show

that the right hand sides of (4.2) and (4.3) are controlled, respectively, by the left hand

sides of (4.2) and (4.3). For (4.2), we use Lemma 1.2. Let f ∈ Bspq(X). Then there are

linear operators Ẽl’s with l ∈ N ∪ {0} such that

(4.4) f =

∞∑

l=0

DlẼl(f),

where Ẽl’s satisfy conditions (i) and (iii) of Remark 1.1 with ε replaced by any ε′ ∈ (0, ε),

and the kernels of Ẽl’s satisfy\
X

Ẽl(x, y) dµ(y) =
\
X

Ẽl(x, y) dµ(x) =

{
1, l = 0, 1, . . . , N,

0, l ≥ N + 1,

with N ∈ N as in the theorem. Let 1/p+ 1/p′ = 1. For k = 0, 1, . . . , N , by (4.4), (2.12),

(2.13), (2.15), Lemma 1.3 and Hölder’s inequality, we have

(4.5)
( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|Dk,ντ,1 (f)|]p
)q/p

=
( ∑

τ∈Mk

N(k,τ)∑

ν=1

[
(µ(Qk,ντ ))−s/d+1/p

×
( ∞∑

l=0

\
X

[
1

µ(Qk,ντ )

\
Qk,ντ

|(DkDl)(z, y)| dµ(z)

]
|Ẽl(f)(y)| dµ(y)

)]p)1/p

≤
( ∑

τ∈Mk

N(k,τ)∑

ν=1

(µ(Qk,ντ ))−sp/d+1

×
{ ∞∑

l=0

( \
X

[
1

µ(Qk,ντ )

\
Qk,ντ

|(DkDl)(z, y)| dµ(z)

]
|Ẽl(f)(y)|p dµ(y)

)1/p

×
(

1

µ(Qk,ντ )

\
Qk,ντ

\
X

|(DkDl)(z, y)| dµ(y) dµ(z)

)1/p′}p)1/p

≤ C
( ∑

τ∈Mk

N(k,τ)∑

ν=1

2kspµ(Qk,ντ )

[ ∞∑

l=0

2−|k−l|ε/p
′

{ \
X

|Ẽl(f)(y)|p

×
[

1

µ(Qk,ντ )

\
Qk,ντ

|(DkDl)(z, y)| dµ(z)

]
dµ(y)

}1/p]p)1/p

≤ C
∞∑

l=0

2−|k−l|ε/p
′

2ks

×
{ \
X

|Ẽl(f)(y)|p
[ ∑

τ∈Mk

N(k,τ)∑

ν=1

\
Qk,ντ

|(DkDl)(z, y)| dµ(z)
]
dµ(y)

}1/p

≤ C
∞∑

l=0

2−|k−l|ε2ks‖Ẽl(f)‖Lp(X).
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By (4.4), (2.12), (2.13), (2.15), Lemma 1.3 and Hölder’s inequality, for k ≥ N + 1,

(4.6)
( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|Dk(f)(yk,ντ )|]p
)1/p

≤ C
( ∑

τ∈Mk

N(k,τ)∑

ν=1

[µ(Qk,ντ )]−sp/d+1

×
[ ∞∑

l=0

2−|k−l|ε/p
′

{ \
X

|(DkDl)(yk,ντ , y)||Ẽl(f)(y)|p dµ(y)
}1/p]p)1/p

≤ C
∞∑

l=0

2−|k−l|ε/p
′

{ ∑

τ∈Mk

N(k,τ)∑

ν=1

[µ(Qk,ντ )]−sp/d+1

×
\
X

|(DkDl)(yk,ντ , y)||Ẽl(f)(y)|p dµ(y)
}1/p

≤ C
∞∑

l=0

2−|k−l|ε2ks‖Ẽl(f)‖Lp(X).

From (4.5) and (4.6), by Hölder’s inequality, we deduce that the right hand side of (4.3)

is controlled by

(4.7) C
{ ∞∑

k=0

( ∞∑

l=0

2−|k−l|ε2ks‖Ẽl(f)‖Lp(X)
)q}1/q

≤ C
{ ∞∑

k=0

( k∑

l=0

2−(k−l)(ε−s)2ls‖Ẽl(f)‖Lp(X)
)q}1/q

+ C
{ ∞∑

k=0

( ∞∑

l=k+1

2−(l−k)(ε+s)2ls‖Ẽl(f)‖Lp(X)
)q}1/q

≤ C
{ ∞∑

l=0

2lsp‖Ẽl(f)‖pLp(X)
}1/p
≤ C‖f‖Bspq(X),

where C is independent of f and we have used Remark 2.1 of [20].

We now consider (4.3). First, by (2.12), (2.13) and (2.15), for k = 0, 1, . . . , N, l ∈
N ∪ {0}, τ ∈Mk and ν = 1, . . . , N(k, τ), we have

(4.8) |Dk,ντ,1DlẼl(f)χQk,ντ (x)|

=

∣∣∣∣
\
X

[
1

µ(Qk,ντ )

\
Qk,ντ

(DkDl)(z, y) dµ(z)

]
Ẽl(f)(y) dµ(y)

∣∣∣∣χQk,ντ (x)

≤ C2−|k−l|ε2(k∧l)d
\

{y∈X: ̺(x,y)≤2AC2−k∧l}

|Ẽl(f)(y)| dµ(y)χQk,ντ (x)

≤ C2−|k−l|εM(Ẽl(f))(x)χQk,ντ (x),
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where C is independent of k, l, ν, τ and x, and M is the Hardy–Littlewood maximal

function. By (2.12), (2.13) and (2.15), for k ≥ N + 1, l ∈ N ∪ {0}, τ ∈ Mk and ν =

1, . . . , N(k, τ), we have

(4.9) |DkDlẼl(f)(yk,ντ )χQk,ντ (x)|

=
∣∣∣
\
X

(DkDl)(y
k,ν
τ , y)Ẽl(f)(y) dµ(y)

∣∣∣χQk,ντ (x)

≤ C2−|k−l|ε2(k∧l)d
\

{y∈X: ̺(yk,ντ ,y)≤AC2−k∧l}

|Ẽl(f)(y)| dµ(y)χQk,ντ (x)

≤ C2−|k−l|ε2(k∧l)d
\

{y∈X: ̺(x,y)≤2AC2−k∧l}

|Ẽl(f)(y)| dµ(y)χQk,ντ (x)

≤ C2−|k−l|εM(Ẽl(f))(x)χQk,ντ (x),

where C is independent of k, l, ν, τ and x. From (4.8) and (4.9), by Hölder’s inequality

and the Fefferman–Stein vector-valued inequality of [7], we deduce that the right hand

side of (4.3) is controlled by

(4.10) C
∥∥∥
{ ∞∑

k=0

∑

τ∈Mk

N(k,τ)∑

ν=1

2ksq
[ ∞∑

l=0

2−|k−l|εM(Ẽl(f))(·)
]q
χQk,ντ (·)

}1/q∥∥∥
Lp(X)

= C
∥∥∥
{ ∞∑

k=0

[ ∞∑

l=0

2−|k−l|ε2(k−l)s2lsM(Ẽl(f))(·)
]q}1/q∥∥∥

Lp(X)

≤ C
∥∥∥
{ ∞∑

l=0

2lsq[M(Ẽl(f))(·)]q
}1/q∥∥∥

Lp(X)

≤ C
∥∥∥
{ ∞∑

l=0

2lsq|Ẽl(f)|q
}1/q∥∥∥

Lp(X)
≤ C‖f‖F spq(X),

where C is independent of f and we used Remark 2.2 of [20] again.

The reverse inequalities of (4.7) and (4.10) will be deduced from the proposition

below.

Finally, let us show that the series in (4.1) also converge in the norm of Bspq(X) or in

the norm of F spq(X) to f when f ∈ Bspq(X) and 1 ≤ p, q < ∞ or when f ∈ F spq(X) and

1 < p, q < ∞. To do that, for L ∈ N and L > N , we define the partial sum, SLf , of the

series in (4.1) by

SLf(x) =
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )D̃0,ντ (x)D0,ντ,1 (f)+

N∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk,ντ,1 (f)

+
L∑

k=N+1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ ).

Since f ∈ Bspq(X) or f ∈ F spq(X), the right hand sides of (4.2) and (4.3) are controlled,

respectively, by ‖f‖Bspq(X) and ‖f‖F spq(X). Thus, by Proposition 4.1 below, we know that
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as L→∞, SLf converges in the norm of Bspq(X) to some g ∈ Bspq(X) when f ∈ Bspq(X),

or SLf converges in the norm of F spq(X) to some g ∈ F spq(X) when f ∈ F spq(X). From

this, we deduce that if max(−s, 0) < β < ε and 0 < γ < ε, then SLf → g in (G(β, γ))′

as L → ∞; see the proof of Proposition 4.1 below. By the assumption, we know that

SLf → g in (G(β′1, γ
′
1))
′. Note that if β1 ≥ β and γ1 ≥ γ, then (G(β, γ))′ ⊂ (G(β1, γ1))

′.

From this, Lemma 1.7 and the above discussion, we deduce that f = g in (G(β, γ))′ for

some β and γ satisfying max(−s, 0) < β < ε and 0 < γ < ε. From this and the definitions

of these spaces, we obtain f = g also in the norm of Bspq(X) when f ∈ Bspq(X) or in the

norm of F spq(X).

This finishes the proof of Theorem 4.1.

We remark that when p = ∞ or q = ∞, the series in (4.1) cannot converge in the

norm of Bspq(X) or F spq(X). This is well known when X = Rn.

Now, we establish the reverse inequalities of (4.5) and (4.6). We will prove the fol-

lowing stronger proposition.

Proposition 4.1. With the notation of Theorem 4.1, let

{λk,ντ : k ∈ N ∪ {0}, τ ∈Mk, ν = 1, . . . , N(k, τ)}
be a sequence of numbers.

(i) If −ε < s < ε, 1 ≤ p, q ≤ ∞ and

(4.11)
{ ∞∑

k=0

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|λk,ντ |]p
)q/p}1/q

<∞,

then the series

(4.12)
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )D̃0,ντ (x)λ0,ντ +
∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )λk,ντ

converge to some f ∈ Bspq(X) both in the norm of Bspq(X) and in (G(β, γ))′ with

max(−s, 0) < β < ε and 0 < γ < ε when 1 ≤ p, q < ∞ and only in (G(β, γ))′ when

1 ≤ p, q ≤ max(p, q) =∞. Moreover ,

(4.13) ‖f‖Bspq(X) ≤ C
{ ∞∑

k=0

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|λk,ντ |]p
)q/p}1/q

,

where C is independent of f .

(ii) If −ε < s < ε, 1 < p <∞, 1 < q ≤ ∞ and

(4.14)
∥∥∥
{ ∞∑

k=0

∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d|λk,ντ |χQk,ντ (·)]q
}1/q∥∥∥

Lp(X)
<∞,

then the series in (4.12) converge to some f ∈ F spq(X) both in the norm of F spq(X) and

in (G(β, γ))′ with max(−s, 0) < β < ε and 0 < γ < ε when 1 < p, q < ∞, and only in

(G(β, γ))′ when 1 < p <∞ and q =∞. Moreover ,

(4.15) ‖f‖F spq(X) ≤ C
∥∥∥
{ ∞∑

k=0

∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d|λk,ντ |χQk,ντ (·)]q
}1/q∥∥∥

Lp(X)
,

where C is independent of f .
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Proof. We first remark that if the series in (4.12) converge in the norm of Bspq(X) when

1 ≤ p, q <∞ or in the norm of F spq(X) when 1 < p, q <∞, then by a duality argument,

Lemma 1.8 and the facts that for max(−s, 0) < β < ε and 0 < γ < ε,

(4.16) G(β, γ) ⊂ B−sp′q′(X) ∩ F−sp′q′(X)

(see Remark 4.1 below), they also converge in (G(β, γ))′; here and in what follows,

1/p+ 1/p′ = 1 = 1/q + 1/q′.

Thus, in these cases, we only need to show the former.

Let us first consider the convergence of the series (4.12) in the norm of Bspq(X) when

1 ≤ p, q <∞. In these cases, when p = 1 or when q = 1, we need to use (1.7) of Remark

1.5. We first note that for all k ∈ N ∪ {0} and all τ ∈Mk, N(k, τ) is a finite set; see the

proof of Proposition 5.1. Now, if Mk is a finite set, by (4.16) or Remark 4.1, it is easy to

see that
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Qk,ντ )D̃0,ντ (x)λ0,ντ and
∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )λk,ντ

for k ∈ N are in Bspq(X). We claim that this is also true if Mk is an infinite set. To show

this, without loss of generality, we may assume that Mk = N and we only show this for

k ∈ N. The proof for k = 0 is just a literal repeat. Now, for any given k, L ∈ N, we define

SkL =
∑

τ∈Mk, τ≤L

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )λk,ντ .

We show that for any given k ∈ N, {SkL}L∈N is a Cauchy sequence in Bspq(X), using

Lemma 1.2 and a duality argument. Let g ∈ B−sp′q′(X) ∩ G(σ, σ) for 0 < σ < ε. We define

the operator D̃∗k by letting its kernel be D̃∗k(x, y) = D̃k(y, x). By Hölder’s inequality, for

L1, L2 ∈ N with L1 < L2,

|〈SkL2 − SkL1 , g〉| =
∣∣∣
L2∑

τ=L1+1

N(k,τ)∑

ν=1

µ(Qk,ντ )λk,ντ D̃∗k(g)(yk,ντ )
∣∣∣(4.17)

≤
( L2∑

τ=L1+1

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|λk,ντ |]p
)1/p

×
( L2∑

τ=L1+1

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))s/d+1/p
′ |D̃∗k(g)(yk,ντ )|]p′

)1/p′
.

We now claim

(4.18)
( L2∑

τ=L1+1

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))s/d+1/p
′ |D̃∗k(g)(yk,ντ )|]p′

)1/p′
≤ C‖g‖B−s

p′q′
(X),

where C is independent of g, L1 and L2.

Since yk,ντ ∈ Qk,ντ , it is easy to see that for any y ∈ Qk,ντ ,

(4.19) |D̃k(x, yk,ντ )| ≤ C 2−kε
′

(2−k + ̺(x, y))d+ε′
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and

(4.20) |D̃k(x, yk,ντ )− D̃k(x′, yk,ντ )| ≤ C
(

̺(x, x′)

2−k + ̺(x, y)

)ε′
2−kε

′

(2−k + ̺(x, y))d+ε′

for ̺(x, x′) ≤ (2−k+̺(x, y))/(2A), where C is independent of x, x′, y, k, τ and ν. We now

use (4.4) with g instead of f . By Lemma 1.7, D̃0,ντ (x) for τ ∈M0 and ν = 1, . . . , N(0, τ )

also satisfies (4.19) and (4.20). Now, (4.19), (4.20) and a similar argument to (2.15) (see

also (2.5) in [17] and (1.6) in [20]) show that for any y ∈ Q0,ντ ,

(4.21)
∣∣∣
\
X

D̃0,ντ (x)Dl(x, z) dµ(x)
∣∣∣ ≤ C2−lε

′ 1

(1 + ̺(y, z))d+ε′
,

where l ∈ N ∪ {0}, τ ∈ M0, ν = 1, . . . , N(0, τ ), and C is independent of z, y, l, τ and ν,

and that for any y ∈ Qk,ντ ,

(4.22) |D̃∗kDl(yk,ντ , z)| ≤ C2−|k−l|ε
′ 2−(k∧l)ε

′

(2−(k∧l) + ̺(y, z))d+ε′

where l ∈ N ∪ {0}, k ∈ N, τ ∈Mk, ν = 1, . . . , N(k, τ) and C is independent of z, y, k, l,

τ and ν. Now, by using (4.22), (4.4) with g instead of f , and Hölder’s inequality, we see

that the left hand side of (4.18) is controlled by

C
( L2∑

τ=L1+1

N(k,τ)∑

ν=1

[µ(Qk,ντ )]sp
′/d+1

×
[ ∞∑

l=0

2−|k−l|ε
′/p
{ \
X

|(D̃∗kDl)(yk,ντ , z)||Ẽl(g)(z)|p′ dµ(z)
}1/p′]p′)1/p′

≤ C
∞∑

l=0

2−|k−l|ε
′/p2−ks

( \
X

[ ∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )|(D̃∗kDl)(yk,ντ , z)|
]
|Ẽl(g)(z)|p′ dµ(z)

)1/p′
.

For any l ∈ N ∪ {0} and any z ∈ X, by (4.21), we have

(4.23)
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )
∣∣∣
\
X

D̃0,ντ (x)Dl(x, z) dµ(x)
∣∣∣

≤ C
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )2−lε
′ 1

(1 + ̺(y, z))d+ε′

≤ C2−lε
′
∑

τ∈M0

N(0,τ)∑

ν=1

\
Q0,ντ

1

(1 + ̺(x, z))d+ε′
dµ(x) ≤ C2−lε

′

,

where y can be any point in Q0,ντ and C is independent of l, v, τ , z and y. For any k ∈ N,

l ∈ N ∪ {0} and any z ∈ X, by (4.22), we have

(4.24)
∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )|(D̃∗kDl)(yk,ντ , z)|

≤ C
∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )2−|k−l|ε
′ 2−(k∧l)ε

′

(2−(k∧l) + ̺(y, z))d+ε′

≤ C2−|k−l|ε
′
∑

τ∈Mk

N(k,τ)∑

ν=1

\
Qk,ντ

2−(k∧l)ε
′

(2−(k∧l) + ̺(x, z))d+ε′
dµ(x) ≤ C2−|k−l|ε

′

,
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where y can be any point in Qk,ντ and C is independent of k, l, v, τ , z and y. Putting all

these estimates together, we see that the left hand side of (4.18) is controlled by

C
∞∑

l=0

2−|k−l|ε
′

2(l−k)s2−ls‖Ẽl(g)‖Lp′ (X) ≤ C
{ ∞∑

l=0

2−lsq
′‖Ẽl(g)‖q

′

Lp′ (X)

}1/q′

≤ C‖g‖B−s
p′q′
(X),

where we have used some techniques similar to (4.7), and C is independent of g and

k ∈ N ∪ {0}. Now by replacing (4.18) into (4.17) and by Lemma 1.8 and (1.7), we obtain

(4.25) ‖SkL2 − SkL1‖Bspq(X) ≤ C
( L2∑

τ=L1+1

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|λk,ντ |]p
)1/p

,

where C is independent of L1 and L2. Now, from this and (4.11), we deduce that {SkL}L∈N

is a Cauchy sequence. Thus, it converges in the norm of Bspq(X) to

∑

τ∈M0

N(0,τ)∑

ν=1

µ(Qk,ντ )D̃0,ντ (x)λ0,ντ

for k = 0, and to

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )λk,ντ

for k ∈ N. We still need to show that the first summation of the series in (4.12) also

converges in the norm of Bspq(X). To see this, for L ∈ N, we define

SL =
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Qk,ντ )D̃0,ντ (x)λ0,ντ +

L∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )λk,ντ .

By a similar argument to the above, we can show that {SL}L∈N is also a Cauchy sequence

in Bspq(X). In fact, let g ∈ B−sp′q′(X)∩G(σ, σ) for 0 < σ < ε and 1/p+1/p = 1 = 1/q+1/q′.

By Hölder’s inequality, for L1, L2 ∈ N and L1 < L2,

(4.26) |〈SL2 − SL1 , g〉| =
∣∣∣
L2∑

k=L1+1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )λk,ντ D̃∗k(g)(yk,ντ )
∣∣∣

≤
{ L2∑

k=L1+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|λk,ντ |]p
)q/p}1/q

×
{ L2∑

k=L1+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))s/d+1/p
′ |D̃∗k(g)(yk,ντ )|]p′

)q′/p′}1/q′
.

We now claim that

(4.27)
{ L2∑

k=L1+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))s/d+1/p
′ |D̃∗k(g)(yk,ντ )|]p′

)q′/p′}1/q′

≤ C‖g‖B−s
p′q′
(X),

where C is independent of g, L1 and L2.
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By using (4.22), (4.4) with g instead of f , (4.24) and Hölder’s inequality, we deduce

that the left hand side of (4.27) is controlled by

C
{ L2∑

k=L1+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[µ(Qk,ντ )]sp
′/d+1
[ ∞∑

l=0

2−|k−l|ε
′/p

×
{ \
X

|(D̃∗kDl)(yk,ντ , z)||Ẽl(g)(z)| dµ(z)
}1/p′]p′)q′/p′}1/q′

≤ C
{ L2∑

k=L1+1

[ ∞∑

l=0

2−|k−l|ε
′/p2−ks

( \
X

[ ∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )|(D̃∗kDl)(yk,ντ , z)|
]

× |Ẽl(g)(z)|p′ dµ(z)
)1/p′]q′}1/q′

≤ C
{ ∞∑

k=0

[ ∞∑

l=0

2−|k−l|ε
′

2(l−k)s2−ls‖Ẽl(g)‖Lp′ (X)
]q′}1/q′

≤ C
{ ∞∑

l=0

2−lsq
′‖Ẽl(g)‖q

′

Lp′ (X)

}1/q′
≤ C‖g‖B−s

p′q′
(X),

where we have used some techniques similar to (4.7), and C is independent of g, L1
and L2.

Thus our claim (4.27) is true. By putting (4.27) into (4.26) and by Lemma 1.8 and

(1.7), we obtain

(4.28) ‖SL2 −SL1‖Bspq(X) ≤ C
{ L2∑

k=L1+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|λk,ντ |]p
)q/p}1/q

,

where C is independent of L1 and L2. From this and (4.11), we deduce that {SL}L∈N

is a Cauchy sequence in Bspq(X). Thus, it converges in the norm of Bspq(X) to some

f ∈ Bspq(X) when 1 ≤ p, q <∞.

Now, consider the cases 1 ≤ p, q ≤ max(p, q) = ∞. Since the cases q = ∞ and

1 ≤ p <∞ can be dealt with similarly, we only consider the cases p =∞ and 1 ≤ q ≤ ∞.

In these cases, the right hand side of (4.25) may not converge to 0 as L1, L2 →∞. This

is also true for the right hand side of (4.28) when q =∞. Thus, in these cases, the series

in (4.12) may not converge in the norm of Bspq(X). But, since p′ = 1, by (4.18), we see

that the left hand side of (4.18) converges to 0 as L1, L2 →∞. For k ∈ N, let

Sk∞ =
∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )λk,ντ .

Thus, for any given g ∈ G(β, γ) with max(−s, 0) < β < ε and 0 < γ < ε, by Remark 4.1,

(4.17) and (4.18), we see that as L→∞,

〈Sk∞ − SkL, g〉 → 0.

This just means that for any given k ∈ N, SkL converges to Sk∞ in (G(β, γ))′. Similarly,

let S∞ be the series in (4.12). For q = 1, by (4.26), Remark 4.1, (4.27) and the fact that
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as L→∞,
∞∑

k=L+1

[ sup
τ∈Mk, ν=1,...,N(k,τ)

(µ(Qk,ντ ))−s/d|λk,ντ |]→ 0

by (4.11), we find that for any given g ∈ G(β, γ) with max(−s, 0) < β < ε and 0 < γ < ε,

〈S∞ − SL, g〉 → 0

as L → ∞. Thus, in this case, the series in (4.12) converge in (G(β, γ))′. If p = ∞ and

1 < q ≤ ∞, for any given g ∈ G(β, γ) with max(−s, 0) < β < ε and 0 < γ < ε, by (4.27)

and Remark 4.1, we have

{ ∞∑

k=L+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

(µ(Qk,ντ ))s/d+1|D̃∗k(g)(yk,ντ )|
)q′}1/q′

→ 0,

as L→∞. From this and (4.26), we deduce that 〈S∞ − SL, g〉 → 0 as L→∞. Thus, in

these cases, the series in (4.12) also converge in (G(β, γ))′.

To finish the proof of (i), we still need to estimate the norm of f . Let again g ∈
B−sp′q′(X) ∩ G(σ, σ) for 0 < σ < ε. By Hölder’s inequality,

|〈f, g〉| =
∣∣∣
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )λ0,ντ

\
X

D̃0,ντ (x)g(x) dµ(x)

+
∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )λk,ντ D̃∗k(g)(yk,ντ )
∣∣∣

≤
{ ∞∑

k=0

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s/d+1/p|λk,ντ |]p
)q/p}1/q

×
{( ∑

τ∈M0

N(0,τ)∑

ν=1

[
(µ(Q0,ντ ))s/d+1/p

′

∣∣∣
\
X

D̃0,ντ (x)g(x) dµ(x)
∣∣∣
]p′)q′/p′

+
∞∑

k=1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))s/d+1/p
′ |D̃∗k(g)(yk,ντ )|]p′

)q′/p′}1/q′
.

By Lemma 1.8 and (1.7), to obtain (4.13), we now only need to show

(4.29)
{( ∑

τ∈M0

N(0,τ)∑

ν=1

[
(µ(Q0,ντ ))s/d+1/p

′

∣∣∣
\
X

D̃0,ντ (x)g(x) dµ(x)
∣∣∣
]p′)q′/p′

+
∞∑

k=N+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))s/d+1/p
′ |D̃∗k(g)(yk,ντ )|]p′

)q′/p′}1/q′
≤ C‖g‖B−s

p′q′
(X),

where C is independent of g.

To show this, by using (4.21), (4.22), (4.4) with g instead of f , Hölder’s inequality,

(4.23) and (4.24), we find that the left hand side of (4.29) is controlled by
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C
{( ∑

τ∈M0

N(0,τ)∑

ν=1

[µ(Q0,ντ )]sp
′/d+1

×
[ ∞∑

l=0

2−lε
′/p
{ \
X

∣∣∣
\
X

D̃0,ντ (x)Dl(x, z) dµ(x)
∣∣∣|Ẽl(g)(z)| dµ(z)

}1/p′]p′)q′/p′

+
∞∑

k=1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[µ(Qk,ντ )]sp
′/d+1

×
[ ∞∑

l=0

2−|k−l|ε
′/p
{ \
X

|(D̃∗kDl)(yk,ντ , z)||Ẽl(g)(z)| dµ(z)
}1/p′]p′)q′/p′}1/q′

≤ C
{[ ∞∑

l=0

2−lε
′/p
{ \
X

[ ∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )
∣∣∣
\
X

D̃0,ντ (x)Dl(x, z) dµ(x)
∣∣∣
]

× |Ẽl(g)(z)|p′ dµ(z)
}1/p′]q′

+

∞∑

k=1

[ ∞∑

l=0

2−|k−l|ε
′/p2−ks

( \
X

[ ∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )|(D̃∗kDl)(yk,ντ , z)|
]

× |Ẽl(g)(z)|p′ dµ(z)
)1/p′]q′}1/q′

≤ C
{ ∞∑

k=0

[ ∞∑

l=0

2−|k−l|ε
′

2(l−k)s2−ls‖Ẽl(g)‖Lp′ (X)
]q′}1/q′

≤ C
{ ∞∑

l=0

2−lsq
′‖Ẽl(g)‖q

′

Lp′ (X)

}1/q′
≤ C‖g‖B−s

p′q′
(X),

where we have used some techniques similar to (4.7), and C is independent of g. Thus,

(4.29) is true and the proof of (i) is finished.

Now let us prove (ii). We first remark that, in a similar way, we can show that the series

in (4.12) converge in the norm of F spq(X) to some f ∈ F spq(X) when 1 < p, q < ∞. We

omit the details. Now we establish (4.15) for 1 < p, q <∞. For any g ∈ F−sp′q′(X)∩G(σ, σ),

by (4.4) with g instead of f , we have

(4.30) 〈f, g〉 =
∑

τ∈M0

N(0,τ)∑

ν=1

λ0,ντ µ(Q0,ντ )
\
X

D̃0,ντ (x)g(x) dµ(x)

+
∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

λk,ντ µ(Qk,ντ )D̃∗k(g)(yk,ντ )

=

∞∑

l=0

∑

τ∈M0

N(0,τ)∑

ν=1

λ0,ντ µ(Q0,ντ )
\
X

[ \
X

D̃0,ντ (x)Dl(x, z) dµ(x)
]
Ẽl(g)(z) dµ(z)

+
∞∑

l=0

∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

λk,ντ µ(Qk,ντ )D̃∗kDlẼl(g)(yk,ντ )
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=
∞∑

l=0

\
X

{ ∑

τ∈M0

N(0,τ)∑

ν=1

λ0,ντ µ(Q0,ντ )
[ \
X

D̃0,ντ (x)Dl(x, z) dµ(x)
]}
Ẽl(g)(z) dµ(z)

+

∞∑

l=0

∞∑

k=1

\
X

Ẽl(g)(z)
[ ∑

τ∈Mk

N(k,τ)∑

ν=1

λk,ντ µ(Qk,ντ )(D̃∗kDl)(y
k,ν
τ , z)

]
dµ(z).

By (4.21) and Lemma 1.9, we have

(4.31)
∑

τ∈M0

N(0,τ)∑

ν=1

∣∣∣λ0,ντ µ(Q0,ντ )
[ \
X

D̃0,ντ (x)Dl(x, z) dµ(x)
]∣∣∣

≤ C2−lε
′

M
( ∑

τ∈M0

N(0,τ)∑

ν=1

|λ0,ντ |χQ0,ντ
)

(z),

where M is the Hardy–Littlewood maximal function and C is independent of l, τ , ν

and z. By (4.22) and Lemma 1.9, for k ∈ N,

(4.32)
∑

τ∈Mk

N(k,τ)∑

ν=1

|λk,ντ µ(Qk,ντ )(D̃∗kDl)(y
k,ν
τ , z)|

≤ C2−|k−l|ε
′

2(k∧l)d2[k−(k∧l)]dM
( ∑

τ∈Mk

N(k,τ)∑

ν=1

|λk,ντ |χQk,ντ
)

(z),

where C is independent of k, l, τ , ν and z. Thus, by combining (4.31) and (4.32) with

(4.30), we have

|〈f, g〉| ≤ C
∞∑

l=0

∞∑

k=0

2−|k−l|ε
′

\
X

[
M
( ∑

τ∈Mk

N(k,τ)∑

ν=1

|λk,ντ |χQk,ντ
)

(z)
]
|Ẽl(g)(z)| dµ(z)

≤ C
\
X

{ ∞∑

l=0

2−lsq
′ |Ẽl(g)(z)|q′

}1/q′

×
{ ∞∑

l=0

[ ∞∑

k=0

2−|k−l|ε
′

2(l−k)s2ksM
( ∑

τ∈Mk

N(k,τ)∑

ν=1

|λk,ντ |χQk,ντ
)

(z)
]q}1/q

dµ(z)

≤ C
\
X

{ ∞∑

l=0

2−lsq
′ |Ẽl(g)(z)|q′

}1/q′

×
{ ∞∑

k=0

2ksq
[
M
( ∑

τ∈Mk

N(k,τ)∑

ν=1

|λk,ντ |χQk,ντ
)

(z)
]q}1/q

dµ(z)

≤ C
∥∥∥
{ ∞∑

k=0

[
M
( ∑

τ∈Mk

N(k,τ)∑

ν=1

(µ(Qk,ντ ))−s/d|λk,ντ |χQk,ντ
)

(·)
]q}1/q∥∥∥

Lp(X)

×
∥∥∥
{ ∞∑

l=0

2−lsq
′ |Ẽl(g)(·)|q′

}1/q′∥∥∥
Lp′ (X)

≤ C
∥∥∥
{ ∞∑

k=0

[
M
( ∑

τ∈Mk

N(k,τ)∑

ν=1

(µ(Qk,ντ ))−s/d|λk,ντ |χQk,ντ
)

(·)
]q}1/q∥∥∥

Lp(X)
‖g‖
F−s

′

p′q′
(X)

,
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where we have used the Fefferman–Stein vector-valued inequality in [7] and some tech-

niques similar to (4.10). From this, by Lemma 1.8, it is easy to deduce (4.15) when

1 < p, q <∞.

We still need to show (ii) for 1 < p <∞ and q =∞. Since in these cases, we do not

have dual spaces, we have to directly use the definitions by combining some estimates.

Let us first show the series in (4.12) converge in (G(β, γ))′ with max(−s, 0) < β < ε

and 0 < γ < ε in these cases. We only show this for the sum on k in (4.12); the proof for

the sum on τ is similar. Let g ∈ G(x0, 1, β, γ) ≡ G(β, γ) with x0 ∈ X. By a similar proof

to (4.22), for any z ∈ Qk,ντ ,
∣∣∣
\
X

D̃k(x, y
k,ν
τ )g(x) dµ(x)

∣∣∣ ≤ C2−kβ
1

(1 + ̺(x0, z))d+β
,

where C is independent of k, τ , ν and z. From this and the arbitrariness of z, we deduce

that for any L ∈ N,

∣∣∣
∑

k>L

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )λk,ντ

\
X

Dk(x, y
k,ν
τ )g(x) dµ(x)

∣∣∣

≤ C
∑

k>L

2−kβ
∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )|λk,ντ |
1

(1 + ̺(x0, z))d+β

≤ C
∑

k>L

2−kβ
∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )|λk,ντ |
\
Qk,ντ

1

(1 + ̺(x0, y))d+β
dµ(y)

≤ C
∑

k>L

2−k(β+s)
\
X

{
sup

k∈N∪{0}, τ∈Mk, ν=1,...,N(k,τ)

[µ(Qk,ντ )]−s/d|λk,ντ |χQk,ντ (y)
}

× 1

(1 + ̺(x0, y))d+β
dµ(y)

≤ C
∥∥∥ sup
k∈N∪{0}, τ∈Mk, ν=1,...,N(k,τ)

[µ(Qk,ντ )]−s/d|λk,ντ |χQk,ντ (·)
∥∥∥
Lp(X)

×
∑

k>L

2−k(β+s)
{ \
X

1

(1 + ̺(x0, y))(d+β)p′
dµ(y)

}1/p′

≤ C
∑

k>L

2−k(β+s) → 0,

as L→∞, since β > −s, where C is independent of k and L. This shows that the series

in (4.12) converge in (G(β, γ))′ in these cases.

Finally, let us establish (4.15) in these cases. Let {Dl}l∈N∪{0} be as in Theorem 4.1

and let f be the series in (4.12). For l ∈ N ∪ {0}, by what we have just proved,

Dl(f)(x) =
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )(DlD̃
0,ν
τ )(x)λ0,ντ

+

∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )(DlD̃k)(x, y
k,ν
τ )λk,ντ

in (G(β, γ))′ with max(−s, 0) < β < ε and 0 < γ < ε.
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By (4.21), for any l ∈ N ∪ {0}, any y ∈ Q0,ντ and any ε′ ∈ (0, ε), we have

(4.33)
∣∣∣
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )(DlD̃
0,ν
τ )(x)λ0,ντ

∣∣∣ ≤ C
∑

τ∈M0

N(0,τ)∑

ν=1

2−lε
′ |λ0,ντ |
(1 + ̺(x, y))d+ε′

≤ C
∑

τ∈M0

N(0,τ)∑

ν=1

|λ0,ντ |2−lε
′

\
Q0,ντ

1

(1 + ̺(x, z))d+ε′
dµ(z)

≤ C2−lε
′

\
X

{ sup
τ∈M0, ν=1,...,N(k,τ)

[µ(Q0,ντ )]−s/d|λ0,ντ |χQ0,ντ (z)} 1

(1 + ̺(x, z))d+ε′
dµ(z),

where C is independent of x.

Similarly, by (4.22), for any l ∈ N ∪ {0}, any y ∈ Q0,ντ and any ε′ ∈ (0, ε), we ob-

tain

(4.34)
∣∣∣
∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )(DlD̃k)(x, y
k,ν
τ )λk,ντ

∣∣∣

≤ C
∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )|λk,ντ |2−|k−l|ε
′ 2−(k∧l)ε

′

(2−(k∧l) + ̺(x, y))d+ε′

≤ C
∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

|λk,ντ |2−|k−l|ε
′

\
Qk,ντ

2−(k∧l)ε
′

(2−(k∧l) + ̺(x, z))d+ε′
dµ(z)

≤ C
\
X

{ sup
k∈N, τ∈Mk, ν=1,...,N(k,τ)

[µ(Qk,ντ )]−s/d|λk,ντ |χQk,ντ (z)}

×
∞∑

k=1

2−|k−l|ε
′

2−ks
2−(k∧l)ε

′

(2−(k∧l) + ̺(x, z))d+ε′
dµ(z),

where C is independent of l and x.

By combining (4.33) and (4.34) and by Hölder’s inequality, for all l ∈ N ∪ {0} and all

x ∈ X,

2ls|Dl(f)(x)| ≤ C
\
X

{ sup
k∈N, τ∈Mk, ν=1,...,N(k,τ)

[µ(Qk,ντ )]−s/d|λk,ντ |χQk,ντ (z)}

×
∞∑

k=0

2−|k−l|ε
′

2−ks
2−(k∧l)ε

′

(2−(k∧l) + ̺(x, z))d+ε′
dµ(z)

≤ C
[ \
X

{ sup
k∈N, τ∈Mk, ν=1,...,N(k,τ)

[µ(Qk,ντ )]−s/d|λk,ντ |χQk,ντ (z)}p

×
∞∑

k=0

2−|k−l|ε
′

2−ks
2−(k∧l)ε

′

(2−(k∧l) + ̺(x, z))d+ε′
dµ(z)

]1/p
,

where C is independent of l and x.
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From this, it is easy to deduce

‖f‖F sp∞(X) = ‖ sup
l∈N∪{0}

2ls|Dl(f)|‖Lp(X)

≤ C‖ sup
k∈N, τ∈Mk, ν=1,...,N(k,τ)

[µ(Qk,ντ )]−s/d|λk,ντ |χQk,ντ (·)‖Lp(X),

where C is independent of f .

This finishes the proof of Proposition 4.1.

We remark that Theorem 4.1 and Proposition 4.1 are true for both µ(X) < ∞ and

µ(X) =∞.

Remark 4.1. Let s ∈ (−ε, ε), max(s, 0) < β < ε and 0 < γ. Then

G(β, γ) ⊂ Bspq(X) for 1 ≤ p, q ≤ ∞,

G(β, γ) ⊂ F spq(X) for 1 < p <∞ and 1 < q ≤ ∞.

This is true for both µ(X) <∞ and µ(X) =∞ and it can be easily seen from the proof

of Theorem 2.2 in [20]. See also Remark 2.1 in [20] and the remark in [23, p. 100]. In both

remarks, it is also required that max(−s, 0) < γ < ε, which is in fact not necessary.

Remark 4.2. We point out that the methods applied for the cases F sp∞(X) also work

for all other cases.

5. Embeddings

In this section, we first estimate the entropy numbers of compact embeddings between

Bspq(X) or F spq(X) spaces when µ(X) <∞ by using the frame characterizations of these

spaces, namely, Theorem 4.1 and Proposition 4.1. Some limiting embeddings between

these spaces are also obtained. We remark that the atomic decompositions of these spaces

are not enough to obtain these estimates.

Let us now recall the definition of the entropy numbers; see [6] and [33]. In the

following, if B is a quasi-Banach space, then UB = {b ∈ B : ‖b‖B ≤ 1} stands for the

unit ball in B.

Definition 5.1. Let A and B be quasi-Banach spaces and T be a linear continuous

operator from A to B. Then for all k ∈ N, the kth entropy number , ek(T ), of T is defined

by

ek(T ) = inf
{
ε > 0 : T (UA) ⊂

2k−1⋃

j=1

(bj + εUB) for some b1, . . . , b2k−1 ∈ B
}
.

By using some ideas from the proof of Proposition 20.5 in [33], we can now establish

upper estimates for the entropy numbers of compact embeddings between Bspq(X) and

F spq(X) spaces when µ(X) < ∞. We point out that our results for Bspq(X) when X is a

d-set (see [33]) and 0 < s < 1 are included in Proposition 20.5 in [33]. The other cases,

even when X is a d-set, are new. Since there is no quarkonial decomposition on spaces of

homogeneous type, which plays a key role in [33], the new idea here is to use the frame

decompositions for Bspq(X) and F spq(X), discussed in Theorem 4.1 and Proposition 4.1.
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Proposition 5.1. Let (X, ̺, µ)d,θ be a space of homogeneous type with µ(X) < ∞. Let
Bspq(X) for 1 ≤ p, q ≤ ∞ and F spq(X) for 1 < p < ∞ and 1 < q ≤ ∞ be the spaces in
Definition 1.3 with |s| < θ. Let −θ < s2 < s1 < θ.

(i) If 1 ≤ p1, p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞ and

δ+ = s1 − s2 − d
(

1

p1
− 1

p2

)

+

> 0,

where x+ = max(x, 0), then the embedding of Bs1p1q1(X) into Bs2p2q2(X) is compact and

there is a constant C > 0 such that

ek(id : Bs1p1q1(X)→ Bs2p2q2(X)) ≤ Ck−(s1−s2)/d for all k ∈ N.

(ii) If 1 < p1, p2 < ∞, 1 < q1, q2 ≤ ∞ and δ+ > 0, then the embedding of F s1p1q1(X)

into F s2p2q2(X) is compact and there is a constant C > 0 such that

ek(id : F s1p1q1(X)→ F s2p2q2(X)) ≤ Ck−(s1−s2)/d for all k ∈ N.

Proof. By Proposition 13.6 in [33], it is easy to see that for s ∈ (−θ, θ), 1 < p <∞ and

1 < q ≤ ∞, we have the following continuous embedding:

(5.1) Bspu(X) ⊂ F spq(X) ⊂ Bspv(X),

where u = min(p, q) and v = max(p, q). By (5.1) it is easy to see that it is sufficient to

prove (i). We consider two cases.

Case 1 : p2 ≥ p1. In this case, we have

δ = δ+ = s1 − s2 − d
(

1

p1
− 1

p2

)
> 0.

We will use Theorem 4.1 and Proposition 4.1. In the following part of this section, for

Mk of Lemma 1.3, we will also write Mk for the set {1, . . . ,Mk}. We first claim that if

µ(X) <∞ and we take δ = 1/2 in Lemma 1.3, then in Lemma 1.3 we have Mk satisfying

Mk ∼ 2kd. In fact, by Lemma 1.3(i), (iv), we have

µ(X) = µ
( ⋃

τ∈Mk

Qkτ

)
=
∑

τ∈Mk

µ(Qkτ ) ≤ C2−kdMk.

Thus, Mk ≥ C2kd. By Lemma 1.3(i), (v), we then have

µ(X) = µ
( ⋃

τ∈Mk

Qkτ

)
=
∑

τ∈Mk

µ(Qkτ ) ≥
∑

τ∈Mk

µ(B(zkτ , a02
−k)) ≥ C2−kdMk.

From this, we see that Mk ≤ C2kd. Thus our claim holds. In a similar way, we can show

N(k, τ) ∼ 2jd for any k ∈ N ∪ {0} and τ ∈Mk. Thus, for any fixed j ∈ N,
∑

τ∈Mk

N(k, τ) ∼ 2kd.

In the rest of this proof, we denote
∑
τ∈Mk

N(k, τ) by M̃k for k ∈ N ∪ {0} and we use

the same notation of Theorem 4.1.
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Now suppose f ∈ Bs1p1q1(X). By Theorem 4.1, we have

f(x) =
∑

τ∈M0

N(0,τ)∑

ν=1

µ(Q0,ντ )D̃0,ντ (x)D0,ντ,1 (f)(5.2)

+

N∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk,ντ,1 (f)

+
∞∑

k=N+1

∑

τ∈Mk

N(k,τ)∑

ν=1

µ(Qk,ντ )D̃k(x, y
k,ν
τ )Dk(f)(yk,ντ ).

Moreover,

(5.3) ‖f‖Bs1p1q1 (X) ∼
{ N∑

k=0

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s1/d+1/p1 |Dk,ντ,1 (f)|]p1
)q1/p1

+
∞∑

k=N+1

( ∑

τ∈Mk

N(k,τ)∑

ν=1

[(µ(Qk,ντ ))−s1/d+1/p1 |Dk(f)(yk,ντ )|]p1
)q1/p1}1/q1

.

Let

ηk,ντ =

{
2−kδ2k(s1−d/p1)Dk,ντ,1 (f), k = 0, 1, . . . , N, τ ∈Mk, ν = 1, . . . , N(k, τ),

2−kδ2k(s1−d/p1)Dk(f)(yk,ντ ), k = N + 1, . . . , τ ∈Mk, ν = 1, . . . , N(k, τ).

We now define the (nonlinear) operator S from Bs1p1q1(X) to lq1(2
νδlM̃νp1 ) by letting

(5.4) Sf = η = {ηk,ντ : k ∈ N ∪ {0}, τ ∈Mk and ν = 1, . . . , N(k, τ)}

for f ∈ Bs1p1q1(X) having the above decomposition (5.2). Here by lq1(2
νδlM̃νp1 ) we mean

the linear space of all complex sequences

λ = {λk,ντ : k ∈ N ∪ {0}, τ = 1, . . . ,Mk and ν = 1, . . . , N(k, τ)}
endowed with the norm

‖λ‖
lq1 (2

νδlM̃νp1 )
=
{ ∞∑

k=0

[ ∑

τ∈Mk

N(k,τ)∑

ν=1

2kδp1 |λk,ντ |p1
]q1/p1}1/q1

;

see [33, p. 38]. By (5.2) and (5.3), S is bounded from Bs1p1q1(X) to lq1(2
νδlM̃νp1 ). That is,

there is a constant C > 0 such that for all f ∈ Bs1p1q1(X), we have

‖Sf‖
lq1 (2

νδlM̃νp1 )
≤ C‖f‖Bs1p1q1 (X).

Now we define another linear operator T from lq2(l
M̃ν
p2 ) to Bs2p2q2(X) by letting

Tκ =
∑

τ∈M0

N(0,τ)∑

ν=1

κ0,ντ 2−k(s2−d/p2)µ(Q0,ντ )D̃0,ντ (x)(5.5)

+
∞∑

k=1

∑

τ∈Mk

N(k,τ)∑

ν=1

κk,ντ 2−k(s2−d/p2)µ(Qk,ντ )D̃k(x, y
k,ν
τ )
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for

κ = {κk,ντ : k ∈ N ∪ {0}, τ = 1, . . . ,Mk and ν = 1, . . . , N(k, τ)} ∈ lq2(lM̃νp2 ).

By Proposition 4.1, T is also bounded from lq2(l
M̃ν
p2 ) to Bs2p2q2(X). That is, there is a

constant C > 0 such that for all κ ∈ lq2(lM̃νp2 ),

‖Tκ‖Bs2p2q2 (X) ≤ C‖κ‖lq2(lM̃νp2 ).

Let id : lq1(2
νδlM̃νp1 ) → lq2(l

M̃ν
p2 ). Then, by Theorem 9.2 in [33], id is compact. By our

above definitions of S and T , that is, (5.4) and (5.5), and (5.2), it is easy to see that

id(Bs1p1q1(X)→ Bs2p2q2(X)) = T ◦ id ◦ S.
Thus, id : Bs1p1q1(X) → Bs2p2q2(X) is compact. Moreover, by Theorem 9.2 with u1 = u2
=∞ and by Proposition 5.4(ii) in [33], we have

ek(id : Bs1p1q1(X)→ Bs2p2q2(X)) ≤ Cek(id : lq1(2
νδlM̃νp1 )→ lq2(l

M̃ν
p2 )) ≤ Ck−(s1−s2)/d.

This finishes the proof of Case 1.

Case 2 : p2 < p1. In this case, we first show that

(5.6) Bs2p1q2(X) ⊂ Bs2p2q2(X).

To show (5.6), let {Sk}∞k=0 be an approximation to the identity as in Definition 1.2. Let

Ek = Sk − Sk−1 for k ∈ N and E0 = S0. Since µ(X) < ∞, by Hölder’s inequality, we

have

‖Ek(f)‖Lp2 (X) ≤ ‖Ek(f)‖Lp1 (X)µ(X)1/p2−1/p1 .

From this and Definition 1.3, we have (5.6). Now our result in this case can be deduced

from (5.6) and Case 1 applied to p1 = p2.

This finishes the proof of Proposition 5.1.

Now we are going to use Proposition 5.1, Theorem 1.1 and Lemma 1.10 to establish

lower estimates for those entropy numbers in Proposition 5.1; see also Theorem 20.6 and

Theorem 23.2 in [33]. We also remark that if X is a d-set and 0 < s < 1, our results on

Bspq(X) are included in Theorem 20.6 in [33] and the other cases are new.

Theorem 5.1. Let (X, ̺, µ)d,θ be a space of homogeneous type with µ(X) < ∞. Let
Bspq(X) for 1 ≤ p, q ≤ ∞ and F spq(X) for 1 < p < ∞ and 1 < q ≤ ∞ be the spaces in
Definition 1.3 with |s| < θ. Let −θ < s2 < s1 < θ.

(i) If 1 ≤ p1, p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞ and

δ+ = s1 − s2 − d
(

1

p1
− 1

p2

)

+

> 0,

then the embedding of Bs1p1q1(X) into Bs2p2q2(X) is compact and

ek(id : Bs1p1q1(X)→ Bs2p2q2(X)) ∼ k−(s1−s2)/d for all k ∈ N.

(ii) If 1 < p1, p2 < ∞, 1 < q1, q2 ≤ ∞ and δ+ > 0, then the embedding of F s1p1q1(X)

into F s2p2q2(X) is compact and

ek(id : F s1p1q1(X)→ F s2p2q2(X)) ∼ k−(s1−s2)/d for all k ∈ N.
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Proof. Similarly to the proof of Proposition 5.1, we only need to show (i). The estimate

of ek from above by Ck−(s1−s2)/d is covered by Proposition 5.1. To establish the estimate

from below, we use some ideas of the proofs of Theorems 20.6 and 23.2 in [33]. We have

to show that there is a constant C > 0 such that

ek(id : Bs1p1q1(X)→ Bs2p2q2(X))k(s1−s2)/d ≥ C
for all k ∈ N. Assume that there is no such C > 0. Then we find a sequence kj →∞ such

that

(5.7) ekj (id : Bs1p1q1(X)→ Bs2p2q2(X))k
(s1−s2)/d
j → 0

as j → ∞. We can always find θ > s3 > s1 and −θ < s4 < s2 such that by Proposition

5.1, for k ∈ N,

ek(id : Bs322(X)→ Bs1p1q1(X)) ≤ Ck−(s3−s1)/d,(5.8)

ek(id : Bs2P2q2(X)→ Bs422(X)) ≤ Ck−(s4−s2)/d.(5.9)

By (5.7)–(5.9) and the multiplication property of entropy numbers (see (5.8) in [33] or

[6]),

(5.10) e3kj (id : Bs322(X)→ Bs422(X))k
(s3−s4)/d
j → 0

as j →∞. We may assume s4 < 0 < s3. By Lemma 1.10, we have

L2(X) = F 022(X) = B022(X).

Taking σ ∈ (0, 1) such that (1− σ)s3 + σs4 = 0, by Definition 1.3, we obtain

(5.11) ‖f‖L2(X) ≤ C‖f‖1−θBs322 (X)‖f‖
θ
B
s4
22 (X)

.

By the interpolation property for entropy numbers in [6, p. 13], we deduce from (5.10)

and (5.11) that

(5.12) clk
s3/d
j e3kj (id : Bs322(X)→ L2(X))

≤ C[e3kj (id : Bs322(X)→ Bs422(X))k
(s3−s4)/d
j ]θ → 0

as j →∞. We will show this is impossible. Choose two C∞ nonnegative functions, ϕ and

ψ, on R with supports in (−a0, a0), where a0 is as in Lemma 1.3. Then choose Cj,τ such

that

(5.13) Cj,τ2
jd
\
X

ϕ(2j̺(x, zjτ ))ψ(2j̺(x, zjτ )) dµ(x) = 1

for j ∈ N ∪ {0} and τ ∈Mj , where Mj ∼ 2jd; see the proof of Proposition 5.1. Here, as in

the proof of Proposition 5.1, we identify Mk of Lemma 1.3 with the set {1, . . . ,Mk} for

k ∈ N ∪ {0}. Moreover, we can suppose ϕ(x) ≥ C and ψ(x) ≥ C when x ∈ (−a0/2, a0/2).

Then, by (0.1), we may assume that there are constants 0 < C1 ≤ C2 < ∞ such that

C1 ≤ Cj,τ ≤ C2 for all j ∈ N ∪ {0} and τ ∈Mj . We now define a linear operator A from

2j(s3−d/2)l
Mj
2 to Bs322(X) by letting

A{aτ : τ = 1, . . . ,Mj} =

Mj∑

τ=1

aτϕ(2j̺(x, zjτ ))
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and a linear operator B from L2(X) into 2−jd/2l
Mj
2 by letting

Bf =
{
Cj,τ2

jd
\
X

f(x)ψ(2j̺(x, zjτ )) dµ(x) : τ = 1, . . . ,Mj

}
.

Noting that 2jd/2ϕ(2j̺(x, zjτ )) is an ε-block for Qjτ , multiplied with an unimportant

normalizing constant, by Theorem 1.1, we have

‖A{aτ : τ = 1, . . . ,Mj}‖Bs322 (X) ≤ C2j(s3−d/2)‖{aτ : τ = 1, . . . ,Mj}‖lMj2 ,

where C is independent of j. Now, let

bjτ = Cj,τ2
jd
\
X

f(x)ψ(2j̺(x, zjτ )) dµ(x).

By Lemma 1.3(v), if τ1 6= τ2, then

suppψ(2j̺(·, zjτ1)) ∩ suppψ(2j̺(·, zjτ2)) = ∅.
By this fact and Hölder’s inequality, we have

|bjτ |2 ≤ C22jd
\

{x: ̺(x,zjτ2 )≤a02
−j}

|f(x)|2 dµ(x)2−jd ≤ C2jd
\
Qjτ

|f(x)|2 dµ(x)

and

‖Bf‖
l
Mj
2

=
( Mj∑

τ=1

|bjτ |2
)1/2
≤ C2jd/2‖f‖L2(X),

where Qjτ is as in Lemma 1.3 and C is independent of j. Thus, A and B are bounded

linear operators with operator norms independent of j. Moreover, if we let idj be the

embedding from 2j(s3−d/2)l
Mj
2 to 2−jd/2l

Mj
2 and id be the embedding from Bs322(X) to

L2(X), then, by (5.13), we have idj = B ◦ id ◦A and consequently, by Proposition 6.4 in

[33], we have

(5.14) ek(id
j) ≤ Cek(id) for all k ∈ N,

where C is independent of j and k. By Proposition 5.2 with k = 2Mj ∼ 2jd in [33], we

obtain

(5.15) eC2jd(id
j) = 2−j(s3−d/2)2−jd/2ec2jd(id : l

Mj
2 → l

Mj
2 ) ≥ C ′2−js3 ,

where C > 0 and C ′ > 0 are independent of j. By (5.15) and (5.14), it is easy to deduce

that there is a constant C > 0 such that for all k ∈ N,

ek(id : Bs322(X)→ L2(X)) ≥ Ck−s3/d,
which implies that (5.12) is impossible.

This finishes the proof of Theorem 5.1.

Now, let us consider some limiting embeddings between these spaces which correspond

to the case δ+ = 0 of Theorem 5.1. We first have the following theorem; see [17] for its

homogeneous version. The main idea of the proof is also similar to that in [17]. For

completeness, we give the details. Moreover, we correct a mistake in the proof in [17].



Homogeneous type spaces and fractals 89

Theorem 5.2. Let (X, ̺, µ)d,θ be a space of homogeneous type. Let B
s
pq(X) for 1 ≤ p, q

≤ ∞ and F spq(X) for 1 < p <∞ and 1 < q ≤ ∞ be the spaces as in Definition 1.3 with

|s| < θ. Let −θ < s2 < s1 < θ. Then

(i) Bs1p1q(X) ⊂ Bs2p2q(X) for 1 ≤ q ≤ ∞, 1 ≤ p1, p2 ≤ ∞ and −θ < s1 − d/p1 =

s2 − d/p2 < θ;

(ii) F s1p1q1(X) ⊂ F s2p2q2(X) for 1 < p1, p2 <∞, 1 < q1, q2 ≤ ∞ and −θ < s1 − d/p1 =

s2 − d/p2 < θ.

Proof. We use the inhomogeneous Calderón reproducing formulae of [18]. Suppose

{Sk}∞k=0 is an approximation to the identity with ε ∈ (0, θ]. Let Ek = Sk − Sk−1 for

k ∈ N and E0 = S0. Then by Lemma 1.2, for all f ∈ (G(β, γ))′ with 0 < β, γ < ε, there

is a sequence of linear operators {Ẽk}∞k=0 and an N ∈ N such that

(5.16) f =

∞∑

k=0

ẼkEk(f)

in (G(β, γ))′ with β′ > β and γ′ > γ, where the kernel, Ẽk(x, y), of Ẽk satisfies\
X

Ẽk(x, y) dµ(y) =
\
X

Ẽk(x, y) dµ(x) =

{
1 if k = 0, 1, . . . , N,

0 if k = N + 1, . . . ,

and (i) and (ii) of Remark 1.1 with ε replaced by any ε′ ∈ (0, ε). We take ε′ ∈ (0, ε) such

that −ε′ < s2 < s1 < ε′ and −ε′ < s1 − d/p1 = s2 − d/p2 < ε′. By a similar proof to

(2.15) (see also (2.5) in [17] and (1.6) in [20]), we can show that for all k, j ∈ N ∪ {0},

(5.17) |(EkẼj)(x, y)| ≤ C2−|k−j|ε
′ 2−(k∧j)ε

′

(2−(k∧j) + ̺(x, y))d+ε′
,

where C is independent of k, j, x and y. Noting that p2/p1 > 1, by (5.16), Hölder’s

inequality, Young’s inequality and (5.17), for any k ∈ N ∪ {0},

‖Ek(f)‖Lp2 (X) =
∥∥∥
∞∑

j=0

EkẼjEj(f)
∥∥∥
Lp2 (X)

≤
∞∑

j=0

{ \
X

[ \
X

|(EkẼj)(x, y)||Ej(f)(y)|p1 dµ(y)
]p2/p1

×
[ \
X

|(EkẼj)(x, y)| dµ(y)
]p2/p′1

dµ(x)
}1/p2

≤ C
∞∑

j=0

2−|k−j|ε
′/p′1

{ \
X

[ \
X

|(EkẼj)(x, y)||Ej(f)(y)|p1 dµ(y)
]p2/p1

dµ(x)
}1/p2

≤ C
∞∑

j=0

2−|k−j|ε
′/p′1

{ \
X

|Ej(f)(y)|p1
[ \
X

|(EkẼj)(x, y)|p2/p1 dµ(x)
]p1/p2

dµ(y)
}1/p1

≤ C
∞∑

j=0

2−|k−j|ε
′

2−(k∧j)d(1/p2−1/p1)‖Ej(f)‖Lp1 (X),

where 1/p1 + 1/p′1 = 1.
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From this and s1 − d/p1 = s2 − d/p2, it follows that

‖f‖Bs2p2q(X) =
{ ∞∑

k=0

2ks2q‖Ek(f)‖qLp2 (X)
}1/q

≤ C
{ ∞∑

k=0

2ks2q
[ ∞∑

j=0

2−|k−j|ε
′

2−(k∧j)d(1/p2−1/p1)‖Ej(f)‖Lp1 (X)
]q}1/q

≤ C
{ ∞∑

k=0

[ k∑

j=0

2(k−j)(s2−ε
′)2js1‖Ej(f)‖Lp1(X)

]q}1/q

+ C
{ ∞∑

k=0

[ ∞∑

j=k+1

2−(j−k)(s1+ε
′)2js1‖Ej(f)‖Lp1 (X)

]q}1/q

≤ C
{ ∞∑

j=0

2js1q‖Ej(f)‖qLp1 (X)
}1/q
≤ C‖f‖Bs1p1q(X),

where we used the Young inequality for number sequences, and C is independent of f .

This proves (i).

To prove (ii), by homogeneity, without loss of generality, we may suppose ‖f‖F s1p1q1 (X)
= 1. From this, (5.16), Hölder’s inequality and (5.17), we deduce that for any k ∈ N ∪ {0}
and any x ∈ X,

|Ek(f)(x)| =
∣∣∣
∞∑

j=0

EkẼjEj(f)(x)
∣∣∣ ≤ C

∞∑

j=0

2−|k−j|ε
′

2(k∧j)d/p1‖Ej(f)‖Lp1 (X)

≤ C
∞∑

j=0

2−|k−j|ε
′

2(k∧j)d/p12−js1 .

Thus, for any fixed N ∈ N ∪ {0}, we have

(5.18)
{ N∑

k=0

2ks2q2 |Ek(f)(x)|q2
}1/q2

≤ C
{ N∑

k=0

2ks2q2
∣∣∣
∞∑

j=0

2−|k−j|ε
′

2(k∧j)d/p12−js1
∣∣∣
q2}1/q2

≤ C
{ N∑

k=0

2ks2q2
∣∣∣
k∑

j=0

2−(k−j)ε
′

2jd/p12−js1
∣∣∣
q2}1/q2

+ C
{ N∑

k=0

2ks2q2
∣∣∣
∞∑

j=k+1

2−(j−k)ε
′

2kd/p12−js1
∣∣∣
q2}1/q2

= C
{ N∑

k=0

2kdq2/p2
[ k∑

j=0

2−(k−j)(ε
′−s1+d/p1)

]q2}1/q2

+ C
{ N∑

k=0

2kdq2/p2
[ ∞∑

j=k+1

2−(j−k)(ε
′+s1)
]q2}1/q2

≤ C
{ N∑

k=0

2kdq2/p2
}1/q2

= C02
Nd/p2 ,
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since s1 > −ε′ and ε′ > s1 − d/p1, where C0 is independent of N and we have used the

fact that s1 − d/p1 = s2 − d/p2.
On the other hand, for any N ∈ N ∪ {0},

(5.19)
{ ∞∑

k=N+1

2ks2q2 |Ek(f)(x)|q2
}1/q2

≤
{ ∞∑

k=N+1

2k(s2−s1)q22ks1q2 |Ek(f)(x)|q2
}1/q2

≤
{ ∞∑

k=N+1

2k(s2−s1)q2
}1/q2{ ∞∑

k=0

2ks1q1 |Ek(f)(x)|q1
}1/q1

≤ C02N(s2−s1)
{ ∞∑

k=0

2ks1q1 |Ek(f)(x)|q1
}1/q1

,

since s2 < s1, where C0 is independent of N . In particular,

(5.20)
{ ∞∑

k=0

2ks2q2 |Ek(f)(x)|q2
}1/q2

≤
{ ∞∑

k=0

2k(s2−s1)q2
}1/q2{ ∞∑

k=0

2ks1q1 |Ek(f)(x)|q1
}1/q1

≤ C0
{ ∞∑

k=0

2ks1q1 |Ek(f)(x)|q1
}1/q1

.

Thus, noting that p2 > p1, by (5.18)–(5.20), we have

‖f‖p2
F
s2
p2q2 (X)

= p2

∞\
0

tp2−1µ
({
x ∈ X :

[ ∞∑

k=0

2ks2q2 |Ek(f)(x)|q2
]1/q2

> t
})

dt

= p2

2C0\
0

tp2−1µ
({
x ∈ X :

[ ∞∑

k=0

2ks2q2 |Ek(f)(x)|q2
]1/q2

> t
})

dt

+

∞∑

N=0

2C02
(N+1)d/p2\

2C02Nd/p2

tp2−1µ
({
x ∈ X :

[ N∑

k=0

2ks2q2 |Ek(f)(x)|q2
]1/q2

+
[ ∞∑

k=N+1

2ks2q2 |Ek(f)(x)|q2
]1/q2

> t
})

dt

≤ p2(2C0)p2−p1
2C0\
0

tp1−1µ
({
x ∈ X :

[ ∞∑

k=0

2ks1q1 |Ek(f)(x)|q1
]1/q1

> t/C0

})
dt

+
∞∑

N=0

2C02
(N+1)d/p2\

2C02Nd/p2

tp2−1µ
({
x ∈ X :

[ ∞∑

k=N+1

2ks2q2 |Ek(f)(x)|q2
]1/q2

> t/2
})

dt

≤ C + C

∞∑

N=0

2C02
(N+1)d/p2\

2C02Nd/p2

tp2−1
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× µ
({
x ∈ X :

[ ∞∑

k=N+1

2ks1q1 |Ek(f)(x)|q1
]1/q1

> t2N(s1−s2)/(2C0)
})

dt

≤ C + C

∞∑

N=0

2(N+1)d/p1\
2Nd/p1

tp1−1µ
({
x ∈ X :

[ ∞∑

k=N+1

2ks1q1 |Ek(f)(x)|q1
]1/q1

> t
})

dt ≤ C.

This proves (ii) and finishes the proof of Theorem 5.2.

We remark that Theorem 5.2 is true even when µ(X) =∞. However, the embeddings

in Theorem 5.2 cannot be compact even when X is a compact space of homogeneous type.

For example, when X is a d-set, one can find a proof of this fact in [33, pp. 169–170].

Now we consider some limiting compact embeddings for spaces of homogeneous type.

First, we need to estimate some embedding constants. Let max(1, d) < p ≤ q <∞. Then

by Theorem 5.2 and Proposition 1.2, B
d/p
pp (X) ⊂ Lq(X) and F

d/p
p2 (X) ⊂ Lq(X). Let idp,q

be one of these embedding operators. Our theorem below corresponds to Theorem 2.7.2

in [6], but our proof is essentially different. The key for the proof in [6] is Nikol’skĭı’s well

known inequality for Lq functions with Fourier transforms having compact supports; see

[6] and [31]. Since there is no theory of the Fourier transform on spaces of homogeneous

type, we use approximations to the identity and the inhomogeneous Calderón reproducing

formulae of [18]. The main ideas of our proof are similar to that of Theorem 5.2.

Theorem 5.3. Let max(1, d) < p <∞. Then there is a constant C > 0 depending on p

such that

(5.21) ‖idp,q‖ ≤ Cq1−1/p for every q with p ≤ q <∞.
Proof. We use the notation of the proof of Theorem 5.2. Let {Ek}∞k=0 and {Ẽk}∞k=0 be

as in that proof. By (5.17), Hölder’s inequality and Young’s inequality, we have

‖EkẼjEj(f)‖Lq(X) =
{ \
X

∣∣∣
\
X

(EkẼj)(x, y)Ej(f)(y) dµ(y)
∣∣∣
q

dµ(x)
}1/q

≤
{ \
X

[ \
X

|(EkẼj)(x, y)||Ej(f)(y)|p dµ(y)
]q/p[ \

X

|(EkẼj)(x, y)| dµ(y)
]q/p′

dµ(x)
}1/q

≤ C2−|k−j|ε
′/p′
{ \
X

[ \
X

|(EkẼj)(x, y)||Ej(f)(y)|p dµ(y)
]q/p

dµ(x)
}1/q

≤ C2−|k−j|ε
′/p′
{ \
X

|Ej(f)(y)|p
[ \
X

|(EkẼj)(x, y)|q/p dµ(x)
]p/q

dµ(y)
}1/p

≤ C2−|k−j|ε
′

2−(k∧j)d(1/q−1/p)‖Ej(f)‖Lp(X),
where 1/p1 + 1/p′1 = 1, ε′ > 0 is as in (5.17) and C is independent of q.

From this, (5.16) and Hölder’s inequality, we deduce that

(5.22) ‖f‖Lq(X) ≤
∞∑

j=0

∞∑

k=0

‖EkẼjEj(f)‖Lq(X)

=
∞∑

j=0

j∑

k=0

‖EkẼjEj(f)‖Lq(X) +
∞∑

j=0

∞∑

k=j+1

. . .
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≤ C
∞∑

j=0

j∑

k=0

2−(j−k)ε
′

2−kd(1/q−1/p)‖Ej(f)‖Lp(X)

+ C

∞∑

j=0

∞∑

k=j+1

2−(k−j)ε
′

2−jd(1/q−1/p)‖Ej(f)‖Lp(X)

≤ C
∞∑

j=0

2−jd(1/q−1/p)‖Ej(f)‖Lp(X)

≤ C
{ ∞∑

j=0

2−jdp
′/q
}1/p′{ ∞∑

j=0

2jd‖Ej(f)‖pLp(X)
}1/p
≤ Cq1−1/p‖f‖

B
d/p
pp (X)

,

where C is independent of q. This shows (5.21) in the case of B
d/p
pp (X).

Now let us prove (5.21) for F
d/p
p2 (X). If d ≥ 2, by (5.1) and (5.21) in the case of

B
d/p
pp (X), we deduce (5.21) for F

d/p
p2 (X) and d < p <∞. If 0 < d < 2, by (5.1) and (5.32)

in the case of B
d/p
pp (X), we deduce (5.32) for F

d/p
p2 (X) and 2 ≤ p < ∞. We still need to

show (5.32) in the case of F
d/p
p2 (X) for 0 < d < 2, max(1, d) < p < 2 and p ≤ q < ∞.

We only show this for 2 ≤ q < ∞. The extension to the case p ≤ q < 2 is obvious.

We need to establish an inequality similar to (5.22) with B
d/p
pp (X) replaced by F

d/p
p2 (X).

By homogeneity, we may suppose ‖f‖
F
d/p
p2 (X)

= 1. From (5.16), Hölder’s inequality and

(5.17), we deduce that for any k ∈ N ∪ {0} and any x ∈ X,

|Ek(f)(x)| =
∣∣∣
∞∑

j=0

EkẼjEj(f)(x)
∣∣∣ ≤ C

∞∑

j=0

2−|k−j|ε
′

2(k∧j)d/p‖Ej(f)‖Lp(X)(5.23)

≤ C
∞∑

j=0

2−|k−j|ε
′

2(k∧j)d/p2−jd/p,

where ε′ ∈ (0, ε), C is independent of q, and C depends on ε′.

Thus, for any fixed N ∈ N ∪ {0}, by (5.16), (5.23) and Hölder’s inequality, we have

(5.24)

N∑

k=0

|Ek(f)(x)| ≤ C
N∑

k=0

∞∑

j=0

|EkẼjEj(f)(x)|

≤ C
N∑

k=0

k∑

j=0

2−(k−j)ε
′

+ C

N∑

k=0

∞∑

j=k+1

2−(j−k)ε
′

2kd/p2−jd/p = C1N,

where C1 is independent of N and q. We also have
∞∑

k=N+1

|Ek(f)(x)| ≤ C
∞∑

k=N+1

2−kd/p
{ ∞∑

k=0

22kd/p|Ek(f)(x)|2
}1/2

(5.25)

≤ C12−Nd/p
{ ∞∑

k=0

22kd/p|Ek(f)(x)|2
}1/2

,

and in particular,

(5.26)
∞∑

k=0

|Ek(f)(x)| ≤ C1
{ ∞∑

k=0

22kd/p|Ek(f)(x)|2
}1/2

,

where C1 is independent of N and q.
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By (5.24)–(5.26), we have

‖f‖qLq(X) = q

∞\
0

tq−1µ({x ∈ X : |f(x)| > t}) dt

≤ q
2C1\
0

tq−1µ({x ∈ X : |f(x)| > t}) dt+
∞∑

N=1

q

2C1(N+1)\
2C1N

. . .

≤ q(2C1)q−p
2C1\
0

tp−1µ
({
x ∈ X : C1

[ ∞∑

k=0

22kd/p|Ek(f)(x)|2
]1/2

> t
})

dt

+

∞∑

N=1

q

2C1(N+1)\
2C1N

tq−1µ
({
x ∈ X :

N∑

k=0

|Ek(f)(x)|+
∞∑

k=N+1

|Ek(f)(x)| > t
})

dt

≤ C(2C1)
q−pq +

∞∑

N=1

q

2C1(N+1)\
2C1N

tq−1µ
({
x ∈ X :

∞∑

k=N+1

|Ek(f)(x)| > t/2
})

dt

≤ C(2C1)
q−pq +

∞∑

N=1

q

2C1(N+1)\
2C1N

tq−1

× µ
({
x ∈ X : C12

−Nd/p
[ ∞∑

k=0

22kd/p|Ek(f)(x)|2
]1/2

> t/2
})

dt

≤ C(2C1)
q−pq + C

∞∑

N=1

q
(2C1)

qNq−p

2Nd

(N+1)2Nd/p\
N2Nd/p

tp−1

× µ
({
x ∈ X :

[ ∞∑

k=0

22kd/p|Ek(f)(x)|2
]1/2

> t
})

dt,

where C and C1 are independent of q. Moreover, it is easy to see that there is a constant

Cp,d independent of q and N such that

N ≤ Cp,d(q − p)1−1/p2Nd/(q−p).
Hence,

‖f‖qLq(X) ≤ C(2C1)
q−pq + Cq(2C1)

qCq−pp,d (q − p)(1−1/p)(q−p).

Noting that q1/q ≤ C and (q−p)−p(1−1/p)/q ≤ Cp, where C and Cp are independent of q,

we have

‖f‖Lq(X) ≤ Cq1−1/p

and (5.32) holds for 2 ≤ q <∞.

This finishes the proof of Theorem 5.3.

Based on this theorem, we can now consider some limiting compact embeddings. Let

us first recall the definition of the spaces Lp(logL)a(X); see [6], [33], [24] and [1].

Definition 5.2. Let (X, ̺, µ)d,θ be a space of homogeneous type as in Definition 0.1

with µ(X) <∞.
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(i) Let 0 < p < ∞ and a ∈ R. Then Lp(logL)a(X) is the set of all µ-measurable

complex-valued functions f such that\
X

|f(x)|p logap(2 + |f(x)|) dµ(x) <∞.

(ii) Let a < 0. Then L∞(logL)a(X) is the set of all µ-measurable complex-valued

functions f for which there exists a constant λ > 0 such that\
X

exp{[λ|f(x)|]−1/a} dµ(x) <∞.

This is just a special case of Definition 6.11 in [1, p. 252]; see also [24] for another

equivalent definition. By introducing some equivalent norms in these spaces, one can

show that if 1 < p < ∞ and a ∈ R, or p = ∞ and a < 0, or p = 1 and a ≥ 0, then the

spaces Lp(logL)a(X) can be regarded as Banach spaces; see Theorem 8.3 in [1] and [6,

pp. 66–67]. One can also find some basic properties of these spaces in [6]. For example,

by the above definition, one can easily show the following proposition; see Proposition 1

in [6, p. 67].

Proposition 5.2. Let (X, ̺, µ)d,θ be a space of homogeneous type with µ(X) <∞.
(i) Let 0 < σ < p <∞ and −∞ < a2 < a1 <∞. Then

Lp+σ(X) ⊂ Lp(logL)a1(X) ⊂ Lp(logL)a2(X) ⊂ Lp−σ(X),

Lp(logL)σ(X) ⊂ Lp(X) ⊂ Lp(logL)−σ(X).

(ii) Let −∞ < b1 < b2 < 0. Then

L∞(X) ⊂ L∞(logL)b2(X) ⊂ L∞(logL)b1(X).

Moreover, one can show the following proposition by repeating the proof of Theorem

1 in Section 2.6.2 of [6]. We omit the details.

Proposition 5.3. Suppose that 0 < p ≤ ∞, a < 0 and µ(X) <∞. Then Lp(logL)a(X)

is the set of all measurable functions f : X → C such that

(5.27)

{ ε\
0

[σ−a‖f‖Lpσ (X)]p
dσ

σ

}1/p
<∞

(with the usual modification if p =∞) for ε > 0, and (5.27) defines an equivalent quasi-

norm on Lp(logL)a(X). Furthermore, (5.27) can be replaced by the equivalent quasi-norm

(5.28)
{ ∞∑

j=J

2jap‖f‖p
Lp
σj (X)

}1/p
<∞

(with the usual modification if p =∞) for J ∈ N. Here 1/pσ = 1/p+ σ/d and σj = 2−j.

Now we can establish the following limiting compact embeddings; see Theorem 2.7.3

in [6].

Theorem 5.4. Let (X, ̺, µ)d,θ be a space of homogeneous type with µ(X) < ∞. Let
max(1, d) < p <∞ and a < 0.
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(i) The embedding

id : Bd/ppp (X)→ L∞(logL)a(X)

exists if and only if a ≤ 1/p− 1, and it is compact if and only if a < 1/p− 1.

(ii) The embedding

id : F
d/p
p2 (X)→ L∞(logL)a(X)

exists if and only if a ≤ 1/p− 1, and it is compact if and only if a < 1/p− 1.

Proof. The main idea of the proof is similar to that of Theorem 2.7.3 in [6]. We only

show case (i). Obviously, (5.28) in Proposition 5.3 is equivalent to

(5.29) ‖f‖L∞(logL)a(X) ∼ sup
j∈N

ja‖f‖Lj(X)

for a < 0. By (5.29), Theorem 5.3 and its proof, it is easy to see that

(5.30) id : Bd/ppp (X)→ L∞(logL)a(X)

exists and is continuous if a ≤ 1/p − 1. On the other hand, if X is a bounded domain

in R
n with C∞ boundary, then Theorem 2.7.2 in [6] shows that the embedding in (5.30)

does not exist if a > 1/p − 1 and is not compact if a = 1/p − 1. We now show that if

a < 1/p− 1, then id in (5.30) is compact. In fact, by Theorem 5.1, if max(1, d) < q <∞,

then

id : F
d/q
q2 (X)→ Lq(X)

is compact. By Theorem 5.2, we have

Bd/ppp (X) = F d/ppp (X) ⊂ F d/qq2 (X)

if max(1, d) < p ≤ q <∞. Thus,

(5.31) id : Bd/ppp (X)→ Lq(X)

is compact. Then by (5.31) and (5.29), we can easily show that (5.30) is compact if

a < 1/p− 1.

This finishes the proof of Theorem 5.4.

We now turn to estimating the entropy numbers for the compact embeddings in

Theorem 5.4. We will consider more general cases. We first claim that if 1 < p < ∞,

s > 0 and 1 ≤ ps ≤ ∞, then the embedding

(5.32) id : Bsps1(X)→ Lp(X)

is continuous. In fact, by (5.1), Theorem 5.2 and Lemma 1.10, we have

Bsps1(X) ⊂ F sps2(X) ⊂ F 0p2(X) = Lp(X).

Noting that (5.1) is true even when µ(X) = ∞, we know that (5.32) is true for both

µ(X) =∞ and µ(X) <∞. But, even when µ(X) <∞, the embedding in (5.32) cannot

be compact; see (21.2) in [33]. However, if we replace Lp(X) by Lp(logL)a(X) with some

a < 0, we get a compact embedding. In fact, we will give a similar result to Theorem

21.7 in [33], which is more general than this claim. We need the fact that if µ(X) < ∞,

0 < σ < s, ps ≥ 1 and 1 ≤ q ≤ ∞, then
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ek(id : Bspsq(X)→ Lp
σ

(X)) ≤ Cδ−1−2(1/ps−1/pσ)k−δ/d+1/pσ−1/ps(5.33)

≤ Cσ−1−2(s−σ)/dk−s/d ≤ C ′σ−1−2s/dk−s/d

for all k ∈ N, where δ = s − d/ps + d/pσ = σ and positive constants C and C ′ are

independent of σ. (5.33) can be proved similarly to (i) of Proposition 5.1 by replacing

Theorem 9.2 in [33] by Corollary 9.4 in [33]; see also (21.14) in [33].

Theorem 5.5. Let (X, ̺, µ)d,θ be a space of homogeneous type with µ(X) < ∞. Let
1 < p ≤ ∞, s > 0, ps ≥ 1, 1 ≤ q ≤ ∞ and a < −1 − 2s/d. Then the embedding of

Bspsq(X) into Lp(logL)a(X) is compact and

ek(id : Bspsq(X)→ Lp(logL)a(X)) ∼ k−s/d for all k ∈ N.

The proof is a literal repeat of Theorem 21.7 in [33] by replacing (21.14) and (21.4)

in [33], respectively, by (5.33) and

(5.34) ek(id : Bspsq(X)→ Lp
σ

(X)) ∼ k−s/d

for all k ∈ N, where 0 < σ < s, ps ≥ 1 and 1 ≤ q ≤ ∞. (5.34) is a simple corollary of

Theorem 5.1.

Similarly to Corollary 21.10 in [33], by Theorem 5.5, Proposition 5.1 and Proposition

5.3, we can also deduce the following corollary; see [33, pp. 178–179] for the details.

Corollary 5.1. Let (X, ̺, µ)d,θ be a space of homogeneous type with µ(X) < ∞. Let
1 < p ≤ ∞, s > 0, ps ≥ 1 and −(d+ 2s)/d ≤ a < 0. Then the embedding of Bsps1(X) into

Lp(logL)a(X) is compact and for any ε > 0, there is a constant Cε > 0 such that

ek(id : Bsps1(X)→ Lp(logL)a(X)) ≤ Cεk
s

d+2sa+ε for all k ∈ N.

6. Relations with Sobolev spaces on metric spaces

Now let ̺ in Definition 0.1 be a metric. In this case, we can choose θ = 1 in (0.2). Then

(X, ̺, µ)d,1 is an Ahlfors d-regular metric measure space if we further assume the Borel

measure µ to be a Borel regular measure; see [25, p. 62]. But, for the rest of this section,

it is enough to assume that µ is just a finite positive Borel measure. In this section, for

such an Ahlfors d-regular metric measure space, we discuss the relationship between the

spaces W 1,p(X, ̺, µ) for 1 < p ≤ ∞ defined by Hajłasz in [14] and the spaces Bspq(X)

and F spq(X). Let us first recall the definition of W 1,p(X, ̺, µ); see [14], [16], [15] and [25].

Definition 6.1. Let (X, ̺, µ) be a metric space (X, ̺) with a finite positive Borel mea-

sure µ and µ(X) <∞. Let 1 < p ≤ ∞. The Sobolev space W 1,p(X, ̺, µ) is defined by

W 1,p(X, ̺, µ) = {u ∈ Lp(X) : there is a set E ⊂ X, µ(E) = 0,

and a function g ≥ 0, g ∈ Lp(X) such that

|u(x)− u(y)| ≤ ̺(x, y)(g(x) + g(y)) for all x, y ∈ X \ E},
where g is called a generalized gradient of u. Moreover, we define

‖u‖W 1,p(X,̺,µ) = ‖u‖Lp(X) + inf
g
‖g‖Lp(X),

where the infimum is taken over all generalized gradients of u.
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The theorem below clears up the relationship between W 1,p(X, ̺, µ) and the spaces

Bspq(X) and F spq(X).

Theorem 6.1. Let (X, ̺, µ)d,1 be an Ahlfors d-regular metric measure space with µ(X)

<∞. Then
(i) W 1,p(X, ̺, µ) ⊂ Bspq(X) for 1 ≤ q ≤ ∞, 1 < p ≤ ∞ and −1 < s < 1;

(ii) W 1,p(X, ̺, µ) ⊂ F spq(X) for 1 < q ≤ ∞, 1 < p <∞ and −1 < s < 1.

Proof. Let {Sk}∞k=0 be an approximation to the identity as in Definition 1.2 (or Remark

1.1) with ε = 1. Let Ek = Sk−Sk−1 for k ∈ N and E0 = S0. Let f ∈W 1,p(X, ̺, µ) and g

be any generalized gradient of f . We first establish the estimates

|E0(f)(x)| ≤ Cµ(x)1−1/p‖f‖Lp(X),(6.1)

|Ej(f)(x)| ≤ C2−jM(g)(x) for j ∈ N,(6.2)

where M is the Hardy–Littlewood maximal function on X and C in both (6.1) and (6.2)

is independent of x, j, f and g.

For (6.1), by Hölder’s inequality and (i) in Definition 1.2, we have

|E0(f)(x)| =
∣∣∣
\
X

E0(x, y)f(y) dµ(y)
∣∣∣ ≤ C

\
X

|f(y)| dµ(y) ≤ Cµ(X)1−1/p‖f‖Lp(X).

For (6.2), since j ∈ N and
T
X
Ej(x, y) dµ(y) = 0, we have

|Ej(f)(x)| =
∣∣∣
\
X

Ej(x, y)f(y) dµ(y)
∣∣∣ =
∣∣∣
\
X

Ej(x, y)[f(y)− f(x)] dµ(y)
∣∣∣

≤ C2−j
\
X

|Ej(x, y)|(g(x) + g(y)) dµ(y)

≤ C2−j{g(x) +M(g)(x)} ≤ C2−jM(g)(x).

Now let f ∈W 1,p(X, ̺, µ) and g be any generalized gradient of f . Then, by (6.1) and

(6.2), we have

‖f‖F spq(X) =
∥∥∥
{ ∞∑

j=0

2jsq|Ej(f)(x)|q
}1/q∥∥∥

Lp(X)

≤ ‖E0(f)‖Lp(X) +
∥∥∥
{ ∞∑

j=1

2jsq|Ej(f)(x)|q
}1/q∥∥∥

Lp(X)

≤ C‖f‖Lp(X) + C
∥∥∥
{ ∞∑

j=1

2j(s−1)q
}1/q

M(g)
∥∥∥
Lp(X)

≤ C[‖f‖Lp(X) + ‖g‖Lp(X)],

since s < 1 and M is bounded on Lp(X) for 1 < p ≤ ∞; see Theorem 2.2 in [25] and

Theorem 14.13 in [15]. By taking the infimum over g, we obtain

‖f‖F spq(X) ≤ C‖f‖W 1,p(X,̺,µ),
where C is independent of f . This proves (ii). The proof of (i) is similar.

This finishes the proof of Theorem 6.1.
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7. Quadratic forms

In this section, we give some applications of the estimates of entropy numbers obtained in

Section 5 to the spectral theory of positive-definite self-adjoint operators relative to some

quadratic forms. The main ideas come from [33]. See [36] and [35] for more applications.

Let us recall some basic facts of [6] and [33]. Let B be a (complex) quasi-Banach

space and T be a compact operator on B. Edmunds and Triebel [6] have shown that

the spectrum of T , apart from the point 0, consists only of eigenvalues of finite algebraic

multiplicity; see also [37] for the case of Banach spaces. Let λ be an eigenvalue of T

and I be the identity operator on B. The algebraic multiplicity of λ is defined to be the

dimension of the space
⋃∞
k=1 ker(T − λI)k; see [6]. Let {µk(T )}k∈N be the sequence of

all nonzero eigenvalues of T , repeated according to algebraic multiplicity and ordered so

that

(7.1) |µ1(T )| ≥ |µ2(T )| ≥ . . .→ 0.

If T has only m ∈ N different eigenvalues and M is the sum of their algebraic multiplici-

ties, then let µn(T ) = 0 for all n > M .

The following inequality, called Carl’s inequality, connects spectral properties of com-

pact operators with their geometry described in terms of entropy numbers.

Lemma 7.1. Let B be a (complex ) quasi-Banach space and T be a compact operator on

B. Let {µk(T )}k∈N be the sequence of all nonzero eigenvalues of T , repeated according

to algebraic multiplicity and ordered as in (7.1). Then for all k ∈ N,

(7.2) |µk(T )| ≤
√

2 ek(T ).

If B is a (complex) Banach space, (7.2) was obtained by Carl [2]. Lemma 7.1 was

proved by Edmunds and Triebel [6]. This inequality plays a key role in applications of

estimates of entropy numbers to estimates of the eigenvalues for differential operators;

see [33], [6], [36] and [35].

We also need to use approximation numbers; see [33, pp. 191–192] and [6] for some

basic properties of approximation numbers.

Definition 7.1. Let A and B be complex quasi-Banach spaces and let T be a bounded

operator from A into B. Then

ak(T ) = inf{‖T − S‖ : S ∈ L(A,B), rankS < k}, k ∈ N,

is the kth approximation number of T , where rankS is the dimension of the range of S.

Let (X, ̺, µ)d,θ be a homogeneous type space as in Definition 0.1. For |s| < θ, we let

Hs(X) = Bs22(X) = F s22(X).

Then Hs(X) is a Hilbert space with scalar product

(f, g)Hs(X) = 1
4{‖f + g‖2Hs(X) − ‖f − g‖2Hs(X) + i‖f + ig‖2Hs(X) − i‖f − ig‖2Hs(X)}

for all f, g ∈ Hs(X); see [32, p. 95] or [33, p. 193]. If 0 < s < θ, by Proposition 1.2 and

Lemma 1.10, we have F s22(X) ⊂ F 022(X) ⊂ L2(X) and there is a constant C > 0 such
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that

(7.3) ‖f‖L2(X) ≤ C‖f‖Hs(X)
for all f ∈ Hs(X). Thus, according to §24.2 in [33],

a(f, g) = (f, g)Hs(X), D = Hs(X),

is a closed quadratic form in the Hilbert space L2(X). Let As be the related self-adjoint

operator according to (24.9) in [33], namely,

a(f, g) = (A1/2s f,A1/2s g)L2(X)

for all f, g ∈ dom(A
1/2
s ) = Hs(X). By (7.3), this operator is positive-definite and we have

‖A1/2s f‖L2(X) = ‖f‖Hs(X), dom(A1/2s ) = Hs(X).

The following theorem is a version of Theorem 25.2 of [33] in spaces of homogeneous

type.

Theorem 7.1. Let (X, ̺, µ)d,θ be a homogeneous type space with µ(X) < ∞. Let θ >
s > 0 and let As be the operator as above, in particular ,

(f, g)Hs(X) = (Asf, g)L2(X), f ∈ dom(As), g ∈ Hs(X).

Then As is a positive-definite self-adjoint operator in L
2(X) with pure point spectrum,

and there are two numbers 0 < C1 ≤ C2 <∞ with
(7.4) C1k

2s/d ≤ µk ≤ C2k2s/d, k ∈ N,

where µk’s are the eigenvalues of As ordered by (7.1).

Proof. We follow the proof of Theorem 25.2 in [33]. The eigenvalues of the nonnegative

compact self-adjoint operator A
−1/2
s in L2(X) are νk = µ

−1/2
k . Furthermore, A

−1/2
s is an

isomorphism from L2(X) onto Hs(X). Thus, since

(7.5) A−1/2s (L2(X)→ L2(X)) = id(Hs(X)→ L2(X)) ◦A−1/2s (L2(X)→ Hs(X)),

(7.3), Theorem 5.1 and Lemma 7.1 imply that

νk ≤ Cek(id : Hs(X)→ L2(X)) ≤ Ck−s/d, k ∈ N.

This proves the left hand side of (7.4).

We now prove the converse assertion. We use the construction in the proof of Theorem

5.1; see also Step 2 of the proof of Theorem 20.6 in [33]. Let the notation be as in the

proof of Theorem 5.1. In particular, we define the linear operator A from 2j(s−d/2)l
Mj
2

to Hs(X) and the linear operator B from L2(X) into 2−jd/2l
Mj
2 as in that proof. Note

that 2jd/2ϕ(2j̺(x, zjτ )) is an ε-block for Qjτ , multiplied with an unimportant normalizing

constant. By Theorem 1.1, we now have

‖A{aτ : τ = 1, . . . ,Mj}‖Hs(X) ≤ C2j(s−d/2)‖{aτ : τ = 1, . . . ,Mj}‖lMj2 ,

where C is independent of j. Now, by the proof of Theorem 5.1, we also have

‖Bf‖
l
Mj
2

≤ C2jd/2‖f‖L2(X),
where C is independent of j. Thus, A and B are bounded linear operators with operator

norms independent of j. Moreover, if we let idj be the embedding from 2j(s−d/2)l
Mj
2 into
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2−jd/2l
Mj
2 and id be the embedding from Hs(X) to L2(X), then, by (5.13), we have

idj = B ◦ id ◦A and consequently, by the multiplication properties of the approximation

numbers which may be found e. g. in [33], (24.13), we have

(7.6) ak(id
j) ≤ Cak(id)

for all k ∈ N, where C is independent of j and k. It is easy to see that idj has the

same approximation numbers as the embedding from 2jsl
Mj
2 to l

Mj
2 . By (7.5), (7.6) and

Proposition 24.5(iii) of [33], we obtain

ak(id
j : 2jsl

Mj
2 → l

Mj
2 ) ≤ cνk, k ∈ N.

Hence by Proposition 24.5(ii) of [33] with k = Mj − 1 ∼ 2jd, we have

2−js ≤ C ′νC2jd , j ∈ N.

This proves the right hand inequality of (7.4) and finishes the proof of Theorem 7.1.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
[2] B. Carl, Entropy numbers, s-numbers and eigenvalue problems, J. Funct. Anal. 41 (1981),
290–306.

[3] M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral ,
Colloq. Math. 60/61 (1990), 601–628.

[4] R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces
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[12] A. E. Gatto and S. Vági, On Sobolev spaces of fractional order and ε-families of operators
on spaces of homogeneous type, Studia Math. 133 (1999), 19–27.
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