
INTRODUCTIONIn reent years, the theory of measurability of multifuntions (loosely speaking, set-valuedfuntions) has been developed extensively, with important appliations in di�erential in-lusions, mathematial eonomis, optimal ontrol and optimization (see [1℄, [3℄, [16℄,[21℄, [29℄, [33℄, [36℄, [37℄, [38℄, [45℄, [46℄, [57℄, [89℄, [90℄, [91℄, [94℄, [98℄, [100℄, and else-where).In various problems, one enounters measurability of multifuntions of two variables.Obviously, eah multifuntion of two variables x ∈ X and y ∈ Y may be treated as amultifuntion of the single variable (x, y) ∈ X × Y . The essential di�erene is the pos-sibility of formulating hypotheses onerning the multifuntion in terms of its setion-wise properties. In this ase, we an speak about produt (sometimes alled joint) mea-surability and superpositional measurability (sup-measurability for short), i.e., roughlyspeaking, measurability with respet to the produt σ-�eld and measurability of theCarathéodory type superposition F (x,G(x)), respetively, where F and G are multifun-tions.In the single valued version, the problem of produt measurability and sup-measu-rability has been studied very extensively in the last 40 years. An overview of somepapers in this �eld an be found in [41℄. Far less is known, however, in the multivaluedase, although in various �elds of mathematis and its appliations, the superposition
F (x,G(x)) ours frequently (see for instane [1℄, [3℄, [21℄, [46℄ and [89℄).The di�erene between sup-measurability and joint measurability is essential. In gen-eral, neither of the inlusions between the lass of joint measurable multifuntions andthe lass of sup-measurable multifuntions is true. It is easy to de�ne a joint Lebesguemeasurable real funtion that is not sup-measurable [106℄. On the other hand, Grande andLipi«ski have given an example of a sup-measurable real funtion whih is not measurableas a funtion of two variables [44℄.Several joint measurability results have been proved for single valued funtions of twovariables ([40℄, [41℄, [17℄, [18℄, [23℄, [24℄, [78℄, [80℄, [84℄ and others). It is well known thatif (X,M(X)) is a measurable spae, Y is a separable metri spae and Z is a metrispae, then a Carathéodory funtion f : X × Y → Z (i.e., loosely speaking a funtionmeasurable in the �rst and ontinuous in the seond variable) is measurable with respetto the produt of the σ-�eld M(X) and the Borel σ-�eld of Y . This result was also provedin the ase of a multifuntion ([111℄, [116℄). Unfortunately, without additional hypotheses,this result annot be extended to multifuntions with a weaker semiontinuity assumptionin plae of ontinuity. Many new features appear in this ase whih are �hidden� in thesingle valued theory.

[5℄



6 G. Kwiei«skaThe problem of sup-measurability was for the �rst time onsidered by Carathéodoryin his book [11℄. He formulated a su�ient ondition for sup-measurability of a funtion
f : R

2 → R, namely, measurability as a funtion of the �rst variable for any y ∈ R andontinuity as a funtion of the seond variable, for almost every x ∈ R. Certain onditionsfor sup-measurability of funtions in abstrat spaes have been presented by Shragin in[106℄. Several results on sup-measurability of real funtions are given by Grande in [41℄and [39℄.The purpose of this paper is to prove some new produt measurability and sup-measurability results onerning multifuntions.The present monograph onsists of three hapters. Chapter 1 and Chapter 2 aredivided into setions: the �rst one into Setions 1�6, and the seond one into Setions7�11.In Chapter 1, we ollet material that will be used in the next hapters: notation andterminology (Setion 1), fats known in the literature (Setions 2 and 3), and fats whihare new for multifuntions of one variable (Setions 4, 5 and 6).In Setion 4, we start from the idea of the density of sets in a metri spae withrespet to some di�erentiation basis, generating a density topology in this spae, thenintrodue the onept of approximate ontinuity of multifuntions and prove some basiproperties of suh multifuntions.Strong quasi-ontinuity has been onsidered in the literature, �rst by Noiri [88℄ forfuntions and then by Neubrunn [85℄ for multifuntions; there, it meant ontinuity relativeto the α topology of a topologial spae. In the ase of real funtions, suh strong quasi-ontinuity oinides with the usual ontinuity (see [85℄).Strong quasi-ontinuity of real funtions was also onsidered by Grande in [43℄ butin a di�erent sense. His de�nition of strong quasi-ontinuity is based on the densitytopology in the spae of real numbers. In Setion 5, we generalize this notion to the aseof multifuntions (in abstrat spaes) and show that a multifuntion whih is stronglyquasi-ontinuous is almost everywhere ontinuous.Many steps have been taken toward di�erential alulus for multifuntions, amongthem one by Hukuhara [53℄ and another by Banks and Jaobs [5℄. In Setion 6, thenotion of di�erentiability is developed, taking advantage of an idea used by Hukuharato give a de�nition of di�erentiability for a reasonably wide lass of multifuntions. Butthe study of di�erentiability of multifuntions is not the purpose of this paper. We giveonly some properties needed later on. We onsider multifuntions from an interval to areal re�exive normed linear spae. In this ase, the derivative of a multifuntion at apoint is a losed onvex and bounded set. This is essential for further onsiderations.The onept of π-di�erentiability of multifuntions disussed by Banks and Jaobs ispresented, taking advantage of Rådström's embedding theorem. In this ase the derivativeof a multifuntion at a point is a ontinuous linear mapping. (A omparison of the twonotions of di�erentiability is given.) Furthermore, a notion of a derivative multifuntionis introdued, making use of the notion of integral given by Banks and Jaobs in [5℄.As we are mainly interested in multifuntions of two variables, we study suh multi-funtions in Chapters 2 and 3.



Measurability of multifuntions of two variables 7Chapter 2 is devoted to produt measurability of multifuntions. In Setion 7, a par-tiular emphasis is put on the possibility of replaing ontinuity in the seond variable ofa Carathéodory multifuntion by a weaker assumption, keeping produt measurability.Among these possibilities, we show that in metri spaes, ontinuity relative to a er-tain topology, �ner than the metri one, yields produt measurability. It also preservesadditional features.Setion 8 is onerned with joint measurability of a multifuntion in a metri spaewhose setions are approximately semiontinuous with respet to some di�erentiationbasis. These results were inspired by the results of Grande [41℄ for real funtions. Somenew properties arise in the ase of multifuntions.The lassial result of Kempisty onerning quasi-ontinuity of real funtions whihare quasi-ontinuous with respet to both variables has been extended to a lass of mul-tifuntions [85℄. Roughly speaking, the upper (resp. lower) quasi-ontinuity of a multi-funtion in the �rst and both upper quasi-ontinuity and lower quasi-ontinuity in theseond variable imply its upper (resp. lower) quasi-ontinuity. By the example of Marus[79℄, suh a multifuntion need not be produt measurable.If, in the notion of a Carathéodory multifuntion, we replae the ontinuity in the se-ond variable by semiontinuity, we obtain a semi-Carathéodory multifuntion. In general,a multifuntion whih is semi-Carathéodory need not be produt measurable (even if itis ompat valued). In Setion 9, we show that a lower semi-Carathéodory multifuntionwhih is upper quasiontinuous in the seond variable is produt measurable.The situatoin is di�erent for the strong quasi-ontinuity onsidered by Grande in [43℄.There exists a real funtion, strongly quasi-ontinuous in both variables, whih is notstrongly quasi-ontinuous (as a funtion of two variables). But it turns out that suh afuntion is produt measurable.Setion 9 is also devoted to the produt measurability of a multifuntion (in a met-ri spae) whih is measurable in the �rst and both upper strongly quasi-ontinuousand lower strongly quasi-ontinuous with respet to a di�erentiation basis in the seondvariable.In Setion 10 we introdue a onept of multifuntions (with values in a Banah spae)with the (J) property, whih may be onsidered as a multivalued ounterpart of the (J)property for real funtions given by Lipi«ski [78℄. We show that a multifuntion with the(J) property whih is a derivative in the seond variable is produt measurable.We onlude that hapter by introduing multifuntions having the Sorza-Dragoniproperties whih have lose onnetions with produt measurable multifuntions.The last hapter, Chapter 3, is onerned with sup-measurability of multifuntions.Shragin [106℄ introdued a property of normalization of funtions between Borel mea-surability and Lebesgue measurability of funtions of two variables and proved that anynormalized funtion is sup-measurable. This theorem was generalized by Zygmunt to thease of multifuntions [118℄, i.e., measurability with respet to the produt of a σ-�eldand the σ-�eld of Borel sets ensures sup-measurability.In Chapter 3, we begin with su�ient onditions for sup-measurability of multifun-tions whih are onsequenes of theorems of Chapter 2 and Zygmunt's theorem.



8 G. Kwiei«skaProdut measurability with respet to a σ-�eld more general than that required inZygmunt's theorem need not ensure sup-measurability of a multifuntion. We presentsome ways to reinfore the produt measurability with additional assumptions on thesetions of the multifuntion whih do seure its sup-measurability.It is easy to see that, in some spaes, a ompat valued Carathéodory multifuntion issup-measurable. This result an be extended to a general lass of multifuntions. It turnsout that if the ontinuity of a Carathéodory multifuntion in the seond variable is re-plaed by a more general ondition (for instane, R-integrability), then the multifuntionwill still be sup-measurable.In general, a multifuntion whih is semi-Carathéodory need not be sup-measurable(even if it is ompat valued). But if a lower semi-Carathéodory multifuntion is moreoverassumed to be upper quasi-ontinuous in the seond variable, then it is sup-measurable.Furthermore, we show that a multifuntion with the (J) property whih is a derivativein the seond variable is sup-measurable. Finally, some additional density properties of aprodut measurable multifuntion whih ensure its sup-measurability are onsidered.De�nitions, lemmas, theorems, orollaries, examples and remarks are numbered on-seutively, but separately within eah hapter; thus Theorem 1.2 means the seond the-orem in Chapter 1. Independently, some important mathematial fats (easy onlusionsor known fats) useful later are numbered (also separately within eah hapter); thus(2.7) means some statement in Chapter 2.Proofs are inluded, as usual, when the assertions are more general than those whihhave appeared in the literature or when, in my opinion, the result is not known or theproof is simpler than the known one. Otherwise, the reader is referred to the orrespondingpapers. Numbers in square brakets refer to the bibliography at the end of the monograph.



1. PRELIMINARIES
1. Notations, basi de�nitions and properties

By means of this hapter, we want to make sure that the reader has beome aquaintedwith the language and useful fats on multifuntions of one variable, needed when westart the main subjet in the next hapters. Things will be presented in resonable gen-erality.We will use standard notations. In partiular, the sets of positive integers and realnumbers will be denoted by N and R, respetively. R
n will denote the n-dimensionalEulidean spae, L(Rn) the σ-�eld of Lebesgue measurable subsets of R

n and mn theLebesgue measure on L(Rn) (we will simply write m instead of m1). Capital alligraphiletters will usually denote olletions, families or lasses of sets.Let S and Z be nonempty sets and let Φ be a mapping whih assoiates to eah point
s ∈ S a nonempty set Φ(s) ⊂ Z. Suh a mapping is alled a multifuntion from S to Z,and we write Φ : S  Z. As a rule, we will denote funtions by f , g, h, φ, ψ, et., andmultifuntions by apital letters F , G, H, Φ, Ψ, et.The graph of a multifuntion Φ is de�ned by
(1.1) Gr(Φ) = {(s, z) ∈ S × Z : z ∈ Φ(s)}.Let P(Z) denote the family of all subsets of Z and P0(Z) the subfamily of all nonemptysubsets of Z. We will sometimes onsider a multifuntion Φ as a funtion from S to
P0(Z). This will always be expliitly indiated in order to avoid vagueness. For instane,the graph of a multifuntion Φ from S to Z is a subset of S × Z (see (1.1)), whereasthe graph of a funtion Φ from S to P0(Z) is a subset of S × P0(Z), namely {(s, P ) ∈

S × P0(Z) : P = Φ(s)}.If Φ : S  Z is a multifuntion, then for a set A ⊂ Z two inverse images of A under
Φ are de�ned as follows:
(1.2) Φ+(A) = {s ∈ S : Φ(s) ⊂ A} and Φ−(A) = {s ∈ S : Φ(s) ∩A 6= ∅}.One sees immediately that

Φ−(A) = S \ Φ+(Z \A) and Φ+(A) = S \ Φ−(Z \A).Furthermore, if I is a set of indies and Bi ⊂ Z for i ∈ I, then[9℄
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(1.3) Φ−

( ⋃

i∈I

Bi

)
=

⋃

i∈I

Φ−(Bi).Sine always Φ+(A) ⊂ Φ−(A) for A ⊂ Z, sometimes Φ+(A) and Φ−(A) are denotedby Φs(A) and Φw(A) and alled strong and weak ounterimages of A, respetively. If Φis treated as a funtion, then, as usual,
(1.4) Φ−1(G) = {s ∈ S : Φ(s) ∈ G} for G ⊂ P0(Z).The image of a set B ⊂ S under Φ is de�ned by
(1.5) Φ(B) =

⋃

b∈B

Φ(b).Any funtion φ : S → Z suh that φ(s) ∈ Φ(s) for eah s ∈ S is alled a seletion of themultifuntion Φ : S  Z.A funtion f : S → Z may be onsidered as a multifuntion assigning to s ∈ S thesingleton {f(s)}. It is lear that in this ase we have f+(A) = f−(A) = f−1(A) for
A ⊂ Z.If (Z, T (Z)) is a topologial spae and A ⊂ Z, then we will use the notations Int(A),
Cl(A) and Fr(A) for the interior, losure and boundary of A, respetively. Furthermore,we will denote by B(Z) the σ-�eld of Borel subsets of Z and by Fσ(Z) and Gδ(Z) the�rst additive and multipliative lass, respetively, in the Borel hierarhy of subsets of thespae (Z, T (Z)). By a Polish spae we mean a separable spae metrizable by a ompletemetri. If (Z, T (Z)) is metrizable and Z is a ontinuous image of a Polish spae, then wewill say that (Z, T (Z)) is a Suslin spae. We will write (for short) that Z itself is a Polish(resp. Suslin) spae.We also introdue the following notations:

C(Z) = {A ∈ P0(Z) : A is losed};
K(Z) = {A ∈ C(Z) : A is ompat};
Cb(Z) = {A ∈ C(Z) : A is bounded}, whenever (Z, ̺) is a metri spae;
Cbc(Z) = {A ∈ Cb(Z) : A is onvex} and Kc(Z) = {A ∈ K(Z) : A is onvex},whenever (Z, ‖ · ‖) is a real normed linear spae.If z0 ∈ Z, then we will use B(z0) to denote the neighbourhood �lterbase of z0. Thegrill of B(z0) (see [6, p. 12℄) will be denoted by G(z0); it onsists of all sets A(z0) ⊂ Zsuh that A(z0) ∩ U(z0) 6= ∅ for eah U(z0) ∈ B(z0), i.e., z0 ∈ Cl(A(z0)).If (Z, ̺) is a metri or pseudometri spae, z0 ∈ Z and A ⊂ Z, then, as usual, we willdenote by B(z0, r) the open ball entred at z0 with radius r > 0 and B(A, r) = {z ∈ Z :

̺(z,A) < r}, where ̺(z,A) = inf{̺(z, y) : y ∈ A}. The topology on Z generated by themetri ̺ will be denoted by T̺(Z).If (Z, δ) is a hemimetri spae (i.e., δ is a pseudometri whih fails to be symmetri),then the open ball will be denoted as in the ase of a metri or pseudometri. If interiorpoints and open sets are de�ned in the usual way for hemimetri spae (Z, δ), then thefamily of all open sets is a topology on the spae Z.



Measurability of multifuntions of two variables 112. Continuity of multifuntionsVarious de�nitions of ontinuity of multifuntions are given in many papers. They allredue to the usual ontinuity if a single valued funtion is onsidered. We now state twodi�erent de�nitions of ontinuity for multifuntions whih we shall use in this monograph.Let (Z, T (Z)) be a topologial spae. The topology on Z allows us to de�ne varioustopologies on P0(Z) and eah one yields a orresponding notion of ontinuity of a multi-funtion. Following Mihael (see [83, Appendix, p. 179℄), the upper (resp. lower) semi�nitetopology on P0(Z) is the topology obtained by taking as a basis (resp. sub-basis) for theopen sets all olletions of the form U = {A ∈ P0(Z) : A ⊂ G} (resp. L = {A ∈ P0(Z) :

A ∩ G 6= ∅}) with G ∈ T (Z); we denote it by TU (resp. TL). The �nite (or Vietoris)topology on P0(Z) is the join of both these topologies and is denoted by TV .If we try to adapt to multifuntions the following two equivalent de�nitions of onti-nuity of a funtion f : R → R at a point x0 ∈ R:(i) ∀U(f(x0)) ∃U(x0) ∈ B(x0) U(x0) ⊂ f−1(U(f(x0)),(ii) ∀ε > 0 ∃δ > 0 ∀x|x− x0| < δ ⇒ |f(x) − f(x0)| < ε,then we obtain two notions of ontinuity whih are no longer equivalent. This unfortunatesituation led to two onepts of semiontinuity.Let (S, T (S)) and (Z, T (Z)) be topologial spaes. We will all a multifuntion Φ :

S  Z upper (resp. lower) semiontinuous at a point s0 ∈ S if, for any open set G ⊂ Zsuh that Φ(s0) ⊂ G (resp. Φ(s0) ∩ G 6= ∅), there exists a U(s0) ∈ B(s0) suh that
U(s0) ⊂ Φ+(G) (resp. U(s0) ⊂ Φ−(G)); Φ is alled ontinuous at s0 ∈ S if it is bothupper and lower semiontinuous at s0.

Φ is alled ontinuous or upper (resp. lower) semiontinuous if it is ontinuous orupper (resp. lower) semiontinuous at eah point s ∈ S.Note that for a set G ⊂ Z, Φ−1({A ∈ P0(Z) : A ⊂ G}) = Φ+(G) and Φ−1({A ∈

P0(Z) : A ∩G 6= ∅}) = Φ−(G) (see (1.2) and (1.4)). Thus we an say that(1.6) If (S, T (S)) and (Z, T (Z)) are topologial spaes and s0 ∈ S, then a multifuntion
Φ : S  Z is upper (resp. lower) semiontinuous at s0 if and only if the funtion
Φ : S → (P0(Z), TU ) (resp. Φ : S → (P0(Z), TL)) is ontinuous at s0; Φ isontinuous at s0 if and only if the funtion Φ : S → (P0(Z), TV ) is ontinuousat s0.Note that the de�nition of ontinuity or semiontinuity of a multifuntion is morehandy than the ondition (1.6), sine we do not need to indiate the topology on P0(Z)(the topology on Z is su�ient).Evidently, in the ase of a single valued funtion the upper semiontinuity and lowersemiontinuity as well ontinuity oinide with the usual notion of ontinuity.The next de�nition of semiontinuity of a multifuntion is based on the Hausdor�metri extended to P0(Z). If (Z, ̺) is a metri spae, we an introdue the topology on

P0(Z) generated by the hemimetri hu de�ned by
(1.7) hu(A,B) = sup{̺(x,A) : x ∈ B},



12 G. Kwiei«skaalled the upper hemimetri topology on P0(Z), and denoted by Thu
. Dually, we anintrodue the lower hemimetri topology Thl

generated by the hemimetri hl de�ned by
(1.8) hl(A,B) = sup{̺(x,B) : x ∈ A}.The funtion h on the produt P0(Z) × P0(Z) given by

h(A,B) = max{hu(A,B), hl(A,B)}is a pseudometri on P0(Z) and it generates the Hausdor� topology on P0(Z) denotedby Th. Of ourse the spae (C(Z), h) is a metri spae. Note that(1.9) (i) Thu
⊂ TU and TL ⊂ Thl

, and the onverse inlusions are not true, in general[58, Proposition 4.2.1℄.(ii) The topologial spaes (K(Z), TV ) and (K(Z), Th) are equivalent (see [63,p. 21℄).If (S, T (S)) is a topologial spae and (Z, ̺) a metri spae, then a multifuntion
Φ : S  Z is alled hemi-upper (h-upper for short) semiontinuous at a point s0 ∈ Sif, for eah ε > 0, there exists a U(s0) ∈ B(s0) suh that Φ(s) ⊂ B(Φ(s0), ε) for all
s ∈ U(s0).Dually, Φ is alled hemi-lower (h-lower for short) semiontinuous at a point s0 ∈ Sif, for eah ε > 0, there exists a U(s0) ∈ B(s0) suh that Φ(s0) ⊂ B(Φ(s), ε) for all
s ∈ U(s0).

Φ is alled hemi-ontinuous (h-ontinuous for short) at s0 ∈ S if it is both h-upper and
h-lower semiontinuous at s0; Φ is alled h-ontinuous if it is h-ontinuous at eah s ∈ S.Note that in the ontext of (1.7) and (1.8) we an say that(1.10) If (S, T (S)) is a topologial spae and (Z, ̺) is a metri spae, then a multi-funtion Φ : S  Z is h-upper semiontinuous at a point s0 ∈ S if and only ifthe funtion Φ : S → (P0(Z), hu) is ontinuous at s0; that is, for eah ε > 0,there exists a U(s0) ∈ B(s0) suh that hu(Φ(s),Φ(s0)) < ε for all s ∈ U(s0).

Φ is h-lower semiontinuous at s0 ∈ S if and only if the funtion Φ : S →

(P0(Z), hl) is ontinuous at s0; that is, for eah ε > 0, there exists a U(s0) ∈

B(s0) suh that hl(Φ(s),Φ(s0)) < ε for all s ∈ U(s0).As a onsequene of (1.9), we have the following properties.(1.11) Let (S, T (S)) be a topologial spae, (Z, ̺) a metri spae and Φ : S  Z amultifuntion.(i) If Φ is upper semiontinuous, then it is h-upper semiontinuous.(ii) If Φ is h-lower semiontinuous, then it is lower semiontinuous.(iii) If Φ is ompat valued, then its upper (resp. lower) semiontinuity and
h-upper (resp. h-lower) semiontinuity are equivalent.In ases (i) and (ii), the onverses are not true.The de�nition of equiontinuity of a family of real funtions an be extended to mul-tifuntions in the following way. Let {Φi}i∈I be a family of losed valued multifuntions



Measurability of multifuntions of two variables 13
Φi : S  Z, i ∈ I, where I denotes a set of indies. The family {Φi}i∈I is alled h-lower (resp. h-upper) equiontinuous at a point s0 ∈ S if, for eah ε > 0, there existsan open neighbourhood U(s0) of s0 suh that s ∈ U(s0) implies Φi(s0) ⊂ B(Φi(s), ε)(resp. (Φi(s) ⊂ B(Φi(s0), ε)) for eah i ∈ I.The family {Φi}i∈I is alled h-equiontinuous if it is both h-upper and h-lowerequiontinuous at eah s ∈ S.There are several ways of de�ning onvergene in P0(Z) and in onsequene its on-netions with ontinuity.If (Z, ̺) is a metri spae, then a sequene (Φn)n∈N of losed valued multifuntions
Φn : S  Z is alled onverging to a multifuntion Φ : S  Z if for eah s ∈ S thesequene (Φn(s))n∈N onverges to Φ(s) with respet to the Hausdor� metri h generatedby ̺. We will write Φ = h-limn→∞ Φn.It is lear that(1.12) If s ∈ S and Φ(s) = h-limn→∞ Φn(s) then ̺(z,Φ(s)) = limn→∞ ̺(z,Φn(s)) foreah z ∈ Z.Throughout the paper, onvergene in the spae C(Z) will be onvergene with respetto the Hausdor� metri h.The set valued notions of limits are rooted in the onepts of lower and upper limitsof �ltered families of sets (see [6, p. 125℄).Let (S, T (S)) and (Z, T (Z)) be topologial spaes. Let Φ : S  Z and s0 ∈ S. Then
R = (Φ(s) : s ∈ S,B(s0)) forms a �ltered family of sets [6, Example 3, p. 126℄. Theset of all limit points of R is alled the lower pseudo-limit of Φ at s0 and is denoted byp-lim infs→s0

Φ(s). The set of all luster points of R is alled the upper pseudo-limit of Φat s0 and denoted by p-lim sups→s0
Φ(s) (for the justi�ation of �pseudo� see [6, p. 130℄).It is known [6, Theorems 1 and 1′, p. 127℄ that(1.13) (i) p-lim sup

s→s0

Φ(s) =
⋂

U∈B(s0)

Cl
( ⋃

s∈U

Φ(s)
),(ii) p-lim inf

s→s0

Φ(s) =
⋂

A∈G(s0)

Cl
( ⋃

s∈A

Φ(s)
).Let B be a basis of T (S) and s0 ∈ S. Let us replae the grill G(s0) in (1.13)(ii) by thefamily

(1.14) A(s0) = {V ∈ B : s0 ∈ Cl(V )}and denote the resulting operation by q-lim infs→s0
Φ(s), i.e.,

(1.15) q- lim inf
s→s0

Φ(s) =
⋂

V ∈A(s0)

Cl
( ⋃

s∈V

Φ(s)
)
.We have(1.16) (i) p-lim infs→s0

Φ(s) ⊂ q-lim infs→s0
Φ(s) ⊂ p-lim sups→s0

Φ(s).(ii) If (Z, T (Z)) is regular and Φ is losed valued, then
p- lim inf

s→s0

Φ(s) = Φ(s0) = p- lim sup
s→s0

Φ(s)at eah ontinuity point s0 ∈ S of Φ (see [76, Theorem 1.5℄).



14 G. Kwiei«skaFor a multifuntion Φ we denote by D(Φ), Dl(Φ) and Du(Φ) the sets of all its dis-ontinuity, lower disontinuity and upper disontinuity points, respetively. It is evidentthat
(1.17) {s0 ∈ S : q- lim inf

s→s0

Φ(s) 6= p- lim sup
s→s0

Φ(s)} ⊂ D(Φ).The following lemma will be useful (f. [64, p. 182℄).Lemma 1.1. Let (S, T (S)) be a topologial spae and let (Z, T (Z)) be a seond ountabletopologial spae with a base B = {Bn}n∈N. Then for a multifuntion Φ : S  Z wehave:(i) Dl(Φ) =
⋃

n∈N
(Φ−(Bn) \ Int(Φ−(Bn))).(ii) Let A = {(nk,1, nk,2, . . . , nk,j(k)) : nk,i ∈ N for i = 1, . . . , j(k) and k ∈ N}. If Φ isompat valued , then

Du(Φ) =
⋃

k∈N

(Φ+(Vk) \ Int(Φ+(Vk))),where Vk =
⋃
{Bnk,i

: i = 1, . . . , j(k) ∧Bnk,i
∈ B} for k ∈ N.

3. Measurability of multifuntionsApart from semiontinuous multifuntions, measurable multifuntions will be very im-portant in the following. Throughout this setion we will denote by (S,M(S)) (resp.
(S,M(S), µ)) a measurable (resp. a measure) spae (with a nonnegative measure µ on
M(S)). A set N ⊂ S will be alled µ-negligible if there is an M(S)-measurable set A(i.e. A ∈ M(S)) suh that N ⊂ A and µ(A) = 0. The measure µ is omplete if any
µ-negligible set N ⊂ S is M(S)-measurable. The σ-�eld M(S) is omplete if there is aomplete measure µ on M(S).If A is a family of sets, then we denote by S(A) the family of sets obtained from Aby the Suslin operation.(1.18) If M(S) is omplete with respet to a σ-�nite measure, then it is losed underthe Suslin operation, i.e., S(M(S)) = M(S) (see [31, 6B(d), 1G and 1H()℄).By the ompletion of M(S) with respet to a measure µ on M(S) (µ-ompletion forshort) we mean the σ-�eld Mµ(S) generated by M(S) and the µ-negligible sets in S. Themeasure µ admits a unique extension to Mµ(S). Thus the σ-�eld Mµ(S) is omplete.If (S, T (S)) is a topologial spae andM(S) is a σ-�eld of subsets of S, then a measure
µ on M(S) is alled regular (resp. Gδ-regular) if, for every ε > 0 and for eah A ∈ M(S),there is a losed set A1 ⊂ S and an open set A2 ⊂ S (resp. A1 ∈ Fσ(S) and A2 ∈ Gδ(S))suh that A1 ⊂ A ⊂ A2 and for any B ∈ M(S) suh that B ⊂ A2 \A1 we have µ(B) < ε(resp. µ(B) = 0). In the ase B(S) ⊂ M(S), the measure µ is regular (resp. Gδ-regular)if µ(A2 \A1) < ε (resp. µ(A2 \A1) = 0).If (T,M(T )) is also a measurable spae, then M(S)⊗M(T ) will denote the produt
σ-�eld in S×T , i.e., the σ-�eld of subsets of S×T generated by the family of sets A×B,



Measurability of multifuntions of two variables 15where A ∈ M(S) and B ∈ M(T ). We shall denote by projS the projetion map from
S × T to S.We will say that the pair ((S,M(S)); (T, T (T ))), where (T, T (T )) is a topologialspae, has the projetion property if projS(A) ∈ M(S) for eah A ∈ M(S) ⊗ B(T ).If T is a Suslin spae and A ⊂ S × T , then projS(A) ∈ S(M(S)) provided A ∈

S(M(S) ⊗ B(T )) (see [15℄). Therefore, by (1.18) (f. [20, Theorem 3.4℄ or [14, TheoremIII.23℄), we have the following assertion.(1.19) If T is a Suslin spae, then ((S,Mµ(S), µ);T ), where µ is σ-�nite, has theprojetion property.The theory of measurability of multifuntions, developed by numerous authors ([4℄,[12℄, [14℄, [20℄, [49℄, [52℄, [54℄, [65℄, [94℄, [99℄, and others), fouses almost exlusively onmultifuntions de�ned on an abstrat measurable spae and with values in a metrizablespae. We desribe measurability of multifuntions without any metrizability assumption.Let (S,M(S)) be a measurable spae, (Z, T (Z)) a topologial spae, and Φ : S  Za multifuntion. Consider the following properties:(a) Φ+(G) ∈ M(S) for eah G ∈ T (Z);(b) Φ−(G) ∈ M(S) for eah G ∈ T (Z).It is known (see [71, Proposition 1℄) that(1.20) (i) If (Z, T (Z)) is perfet, then (a) implies (b).(ii) If (Z, T (Z)) is perfetly normal and Φ is ompat valued, then also (b)implies (a).The example of Kaniewski (see [113, Example 2.4, p. 865℄) shows that the ompatnessof values of the multifuntion Φ onsidered in (1.20)(ii) is essential.It is natural to say that Φ : S  Z is M(S)-measurable if ondition (a) is satis�ed,and weakly M(S)-measurable if (b) holds (f. [49, p. 54℄).It is evident that in the ase of a single valued funtion f : S → Z, the notionsof measurability of f and weak measurability of f oinide with the usual notion ofmeasurability of f , i.e., f−1(G) ∈ M(S) for any G ∈ T (Z).We an now rephrase property (1.20) as follows.Proposition 1.2. If (S,M(S)) is a measurable spae, (Z, T (Z)) a perfet topologialspae, and Φ : S  Z a multifuntion, then(i) M(S)-measurability of Φ implies weak M(S)-measurability of Φ.(ii) If (Z, T (Z)) is perfetly normal and Φ has ompat values , then M(S)-measurabi-lity of Φ and weak M(S)-measurability of Φ are equivalent.Exellent soures of information on measurability properties of multifuntions withvalues in a metri spae are the papers of Himmelberg [49℄ and Castaing and Valadier[14℄. We now mention those properties whih will be useful later on.Let (Z, ̺) be a metri spae. For z ∈ Z and Φ : S  Z we de�ne the funtion
gz : S → R by

gz(s) = ̺(z,Φ(s)).



16 G. Kwiei«skaConsider the following properties:() For eah z ∈ Z the funtion gz is M(S)-measurable;(d) Φ admits a sequene (φn)n∈N of M(S)-measurable seletions suh that Φ(s) =

Cl({φn(s) : n ∈ N}) for eah s ∈ S (the sequene (φn)n∈N is alled a Castaingrepresentation of Φ).(e) Gr(Φ) ∈ M(S) ⊗ B(Z).Proposition 1.3. If (Z, ̺) is separable and Φ : S  Z, then(i) Weak M(S)-measurability of Φ is equivalent to () [49, Theorem 3.3℄.(ii) If Φ is omplete valued , then weak M(S)-measurability of Φ is equivalent to (d)[14, Theorem III.9℄.(iii) If Φ is losed valued , then weak M(S)-measurability of Φ implies (e) [49, The-orem 3.3℄.(iv) If (Z, ̺) is σ-ompat (i.e., Z =
⋃

n∈N
Zn and Zn is ompat for every n ∈ N)and Φ is losed valued , then (a) and (b) are equivalent [49, Theorem 3.5(ii)℄.(v) If M(S) is omplete with respet to a σ-�nite measure, (Z, ̺) is omplete and

Φ is losed valued , then (a)�(e) are equivalent [14, Theorem III.30℄.(vi) If Φ is ompat valued , then (a) and (b) are eah equivalent to M(S)-measurabi-lity of the funtion Φ : S → (K(Z), Th), where h is the Hausdor� metri gener-ated by ̺ [14, Theorem III.1℄.(vii) If Z is a Polish spae and Φ is losed valued , then Φ admits an M(S)-measurableseletion [66℄.The following proposition will be applied in the next hapter.Proposition 1.4 ([71, Proposition 2℄). Let (S,M(S)) be a measurable spae and let
(Z, T (Z)) be a regular seond ountable topologial spae. If Φ1,Φ2 : S  Z are losedvalued weakly M(S)-measurable multifuntions , then

{s ∈ S : Φ1(s) 6= Φ2(s)} ∈ M(S).The next proposition on the intersetion of losed valued weakly measurable multi-funtions will also be useful in the next hapter. The su�ient onditions known earlierinvolve some ompatness assumptions either on Z or on the values of multifuntions.Proposition 1.5 ([71, Proposition 3℄). Let (S,M(S), µ) be a measure spae, where µ is
σ-�nite, and let Z be a Suslin spae. Let Φn : S  Z, for n ∈ N, be a family of losedvalued weakly M(S)-measurable multifuntions suh that ⋂

n∈N Φn(s) 6= ∅ for eah s ∈ S.Then the multifuntion Φ : S  Z given by
Φ(s) =

( ⋂

n∈N

Φn

)
(s) =

⋂

n∈N

Φn(s)is Mµ(S)-measurable.The projetion property of ((S,Mµ(S), µ);Z) in the above proposition is essential.We note that the intersetion of two weakly M(S)-measurable multifuntions with losedvalues may not be weakly M(S)-measurable (see [50, Example 2℄).Observe that, by (1.12) and Proposition 1.3(i), the following property is true.



Measurability of multifuntions of two variables 17(1.21) If (Z, ̺) is a separable metri spae and (Φn)∈N is a sequene of losed valuedweakly M(S)-measurable multifuntions Φn : S  Z, n ∈ N, onverging to amultifuntion Φ : S  Z, then Φ is weakly M(S)-measurable.Similarly to the ase of vetor valued funtions the strong measurability of multifun-tions an be de�ned. Let (S,M(S), µ) be a measurable spae, where µ is omplete, let
(Z, ‖ · ‖) be a re�exive real normed linear spae, and let Φ : S  Z be a multifun-tion with Φ(s) ∈ Cbc(Z). Then Φ is said to be �nitely-valued if it is onstant on eahof a �nite number of disjoint M(S)-measurable sets Ei and equal to {θ} on S \

⋃
Ei(θ is the origin of Z); Φ is said to be a simple multifuntion if it is �nitely-valued and

µ({s ∈ S : ‖Φ(s)‖ > 0}) < ∞, where ‖Φ(S)‖ = h(Φ(s), {θ}) (h is the Hausdor� metrigenerated by the norm).A multifuntion Φ is alled ountable-valued if it assumes at most a ountable set ofvalues in Cbc(Z), assuming eah value di�erent from {θ} on an M(S)-measurable subsetof S.A multifuntion Φ : S  Z is alled strongly M(S)-measurable if there is a sequeneof ountable-valued multifuntions (Φn)n∈N suh that
h- lim

n→∞
Φn(s) = Φ(s)for µ-almost every s ∈ S. If µ(S) < ∞, then we may replae �ountable-valued� by�simple�.If Φ : S  Z is strongly M(S)-measurable, then it is weakly M(S)-measurable, butthe onverse is not true (see [21, Example 3.1, p. 23℄). Furthermore (see [21, Proposi-tion 3.3℄),(1.22) If S = [a, b] ⊂ R, Z is a separable Banah spae and Φ : S  Z has valuesin K(Z), then L(R)-measurability of Φ and strong L(R)-measurability of Φ areequivalent.

4. Approximate ontinuity of multifuntionsThe notion of approximately ontinuous funtion, essential for the onept of densitytopology, has been studied for real funtions of real variable ([22℄, [35℄, [34℄, [72℄) andthen in various abstrat spaes (see [41℄, [73℄, [74℄, [75℄, [92℄, [103℄). In this setion weintrodue some onepts of approximate ontinuity of a multifuntion and give someproperties of approximately ontinuous multifuntions whih will be essential for theonsiderations of the next hapters.Throughout this setion we assume that (S, d,M(S), µ) is a measure metri spaewith metri d, with a σ-�nite omplete and Gδ-regular measure µ de�ned on a σ-�eld
M(S) ontaining the Borel sets; µ∗ will denote the outer measure generated by µ, i.e.,
µ∗(A) = inf{µ(B) : A ⊂ B ∧B ∈ M(S)} for a set A ⊂ S.(1.23) Let F ⊂ M(S) be a family of sets with nonempty interiors of positive and�nite measure µ, the boundaries of whih are µ-negligible. Let {In}n∈N ⊂ F



18 G. Kwiei«skaand s ∈ S. We write In → s if s ∈ Int(In) for eah n ∈ N and the diameter of
In tends to zero as n→ ∞.We assume that for every s ∈ S, there exists a sequene (In)n∈N of sets from Fsuh that In → s.The pair (F ,→) then forms a di�erentiation basis for the spae (S, d,M(S), µ) in Bruk-ner's terminology [9, p. 30℄.Let A ⊂ S and s ∈ S. The upper outer density of the set A at the point s with respetto F is equal to

lim sup
In→s

µ∗(A ∩ In)

µ(In)
.Replaing lim sup by lim inf we obtain the lower outer density of A at s ∈ S with respetto F . These densities will be denoted by D∗

u(A, s) and D∗
l (A, s), respetively. If they areequal, their ommon value will be alled the outer density of A at s with respet to Fand denoted by D∗(A, s). If A ∈ M(S), then the outer density of A at s ∈ S with respetto F will be alled the density of A at s with respet to F and denoted with no asterisk.A point s ∈ S will be alled a density point of a set A ⊂ S with respet to F if thereexists a B ∈ M(S) suh that B ⊂ A and the density of B at s with respet to F is equalto 1. We will write D(A, s) = 1.We will assume that(1.24) F has the density property, i.e., µ({s ∈ A : D∗

l (A, s) < 1}) = 0 for every A ⊂ S.By the density property of F , it is lear that(1.25) If µ-almost every point of A ⊂ S is a density point of A with respet to F , then
A is M(S)-measurable.An M(S)-measurable set will be alled homogeneous with respet to F if its densitywith respet to F is 1 at eah of its points. The spae S an be topologized by taking thehomogeneous sets with respet to F as open sets (see [68, p. 251℄). This topology will bedenoted by TD(S) (f. [109℄ and [82℄). If A ⊂ S, then TD-Int(A) will denote the interiorof A relative to TD(S). Note that TD(S) is �ner than Td(S).Now we an generalize the notion of approximate ontinuity to the ase of multifun-tions. Let (Z, T (Z)) be a topologial spae.Definition 1.6. A multifuntion Φ : S  Z is alled approximately lower (resp. upper)semiontinuous at a point s0 ∈ S with respet to F if there is a set E ∈ M(S) inluding s0suh thatD(E, s0) = 1 and the restrition Φ|E is lower (resp. upper) semiontinuous at s0.If Φ is approximately lower (resp. upper) semiontinuous at eah point s ∈ S with respetto F , then it is alled approximately lower (resp. upper) semiontinuous with respet to F ;

Φ is alled approximately ontinuous with respet to F if it is both approximately lowersemiontinuous and approximately upper semiontinuous with respet to F .Remark 1.7. If S = R and M(S) = L(R), then the multifuntion Φ will be simplyalled approximately lower (resp. upper) semiontinuous or approximately ontinuous.



Measurability of multifuntions of two variables 19If (Z, ̺) is a metri spae and Φ|E , in the above de�nition, is h-lower (resp. h-upper)semiontinuous at s0 ∈ S with respet to F , then Φ will be alled approximately h-lower(resp. h-upper) semiontinuous at s0 with respet to F .
Φ is alled approximately h-ontinuous with respet to F at s0 if it is both approxi-mately h-lower semiontinuous and approximately h-upper semiontinuous with respetto F at s0; Φ is alled approximately h-ontinuous with respet to F if it is approximately

h-ontinuous at every s ∈ S with respet to F .It was observed in [35℄ that a real funtion of a real variable ontinuous relative tothe density topology in the domain and the usual topology in the range, turns out to beexatly an approximately ontinuous funtion, whih is also true for multifuntions.Proposition 1.8. Let Φ : S  Z be a multifuntion and s0 ∈ S. Then Φ is approxi-mately lower (resp. upper) semiontinuous at s0 ∈ S with respet to F if and only if Φ islower (resp. upper) semiontinuous at s0 ∈ S relative to the topology TD(S).Proof. We only give the proof of the �lower� ase; the �upper� ase is similar.To prove su�ieny, let G ∈ T (Z) and Φ(s0) ∩ G 6= ∅. By the approximate lowersemiontinuity of Φ at s0 with respet to F , there exists an E ∈ M(S) suh that s0 ∈ E,
D(E, s0) = 1 and Φ|E is lower semiontinuous at s0. Therefore there exists a U ∈ B(s0)suh that E ∩ U ⊂ Φ−(G). Taking V = TD-Int(E ∩ U) we have V ∈ TD(S), s0 ∈ V and
V ⊂ E ∩ U ⊂ Φ−(G).The neessity is a straightforward onsequene of the lower semiontinuity of Φ at s0relative to TD(S).Note that if Φ : S  Z is approximately lower (resp. upper) semiontinuous at
s0 ∈ S with respet to F and G ∈ T (Z) with s0 ∈ Φ−(G) (resp. s0 ∈ Φ+(G)), then
D(Φ−(G), s0) = 1 (resp. D(Φ+(G), s0) = 1), and hene, by (1.25), we have the followingproposition (f. [69, Theorem 2℄).Proposition 1.9. If a multifuntion Φ : S  Z is µ-almost everywhere approximatelylower (resp. upper) semiontinuous with respet to F , then it is weakly M(S)-measurable(resp. M(S)-measurable).Remark 1.10. Let (Z, ̺) be a metri spae.(i) If a multifuntion Φ : S  Z is approximately h-lower semiontinuous with re-spet to F , then it is weakly M(S)-measurable, by (1.11)(ii) and Proposition 1.9.(ii) If a ompat valued multifuntion Φ : S  Z is approximately h-upper semion-tinuous, then it is M(S)-measurable, by (1.11)(iii) and Proposition 1.9.Definition 1.11. Let (Z, ̺) be a metri spae, let {Φi}i∈I be a family of losed valuedmultifuntions Φi : S  Z for i ∈ I (where I denotes a set of indies), and let s ∈ S.The family {Φi}i∈I is said to be approximately h-lower (resp. h-upper) equiontinuousat s ∈ S with respet to F if there exists a set E(s) ∈ M(S), inluding s, suh that
D(E(s), s) = 1 and the family {Φi|E(s)}i∈I is h-lower (resp. h-upper) equiontinuous at
s ∈ S; {Φi}i∈I is alled approximately h-lower (resp. h-upper) equiontinuous with respetto F if it is approximately h-lower (resp. h-upper) equiontinuous with respet to F atevery s ∈ S.



20 G. Kwiei«skaThe family {Φi}i∈I is alled approximately h-equiontinuous with respet to F if it issimultaneously approximately h-lower and approximately h-upper equiontinuous withrespet to F .
5. Strong quasi-ontinuity of multifuntionsThe quasi-ontinuity introdued by Kempisty [55℄ for real funtions has been intensivelystudied. For multifuntions this notion was introdued by Popa [95℄ and widely onsideredby many authors, partiularly by Neubrunn [86℄, Ewert [26℄, [28℄, and Lipski [27℄.From now on let (S, T (S)) and (Z, T (Z)) be topologial spaes. Following Neubrunn[86℄ we say that a multifuntion Φ : S  Z is lower (resp. upper) quasi-ontinuous at apoint s0 ∈ S if, for eah set G ∈ T (Z) suh that s0 ∈ Φ−(G) (resp. s0 ∈ Φ+(G)) and forany U ∈ B(s0), there exists a nonempty open set V ⊂ U suh that V ⊂ Φ−(G) (resp.

V ⊂ Φ+(G)); Φ is said to be lower (resp. upper) quasi-ontinuous if it is lower (resp.upper) quasi-ontinuous at eah s ∈ S.Note that for a single valued funtion the notions of lower quasi-ontinuity and upperquasi-ontinuity oinide with quasi-ontinuity.A multifuntion Φ : S  Z is said to be quasi-ontinuous at a point s0 ∈ S if, forarbitrary sets G ∈ T (Z) and H ∈ T (Z) suh that s0 ∈ Φ−(G) ∩ Φ+(H) and for every
U ∈ B(s0), there exists a nonempty open set V ⊂ U suh that V ⊂ Φ−(G) ∩ Φ+(H).It is evident that a quasi-ontinuous multifuntion is both lower quasi-ontinuous andupper quasi-ontinuous. The onverse is not true (see [85, Example 1.2.7℄).As we know, a multifuntion Φ : S  Z is ontinuous (resp. lower or upper semion-tinuous) if and only if it is ontinuous as a single valued funtion from S to P0(Z) withthe �nite topology (resp. lower or upper semi�nite topology). For quasi-ontinuity thesituation is di�erent (see [85, 1.3.4℄).A set A ⊂ S is said to be quasi-open if there is an open set O suh that O ⊂ A ⊂ Cl(O)[77℄.It is known (see [85, 1.2.5℄) that(1.26) A multifuntion Φ : S  Z is lower (resp. upper) quasi-ontinuous if and onlyif for any G ∈ T (Z) the set Φ−(G) (resp. Φ+(G)) is quasi-open.Upper quasi-ontinuity of a multifuntion an be haraterized in terms of ontinuousrestritions. More preisely (see [87, Theorem 1℄):(1.27) If (S, T (S)) is a �rst ountable Hausdor� spae, (Z, T (Z)) a seond ountablespae, and Φ : S  Z a ompat valued multifuntion, then Φ is upper quasi-ontinuous at a point s0 ∈ S if and only if there is a quasi-open set A ontaining

s0 suh that Φ|A is upper semiontinuous at s0.It may be shown that an analogous haraterization of lower quasi-ontinuity is notpossible [87, Example 4℄.The following proposition will be useful in the next hapter.



Measurability of multifuntions of two variables 21Proposition 1.12. Let (S, T (S)) and (Z, T (Z)) be topologial spaes.(i) If a multifuntion Φ : S  Z is lower quasi-ontinuous at a point s0 ∈ S, then
Φ(s0) ⊂ p-lim sups→s0

Φ(s).(ii) If (S, T (S)) is �rst ountable and (Z, T (Z)) is regular seond ountable, and ifa multifuntion Φ : S  Z is ompat valued upper quasi-ontinuous at a point
s0 ∈ S, then q-lim infs→s0

Φ(s) ⊂ Φ(s0).Proof. (i) Suppose that z ∈ Φ(s0) and U ∈ B(s0). Fix G ∈ B(z). By the lower quasi-ontinuity of Φ at s0, for the sets G and U there is a nonempty open set V ⊂ U suh that
V ⊂ Φ−(G). Therefore, there is an s ∈ V with Φ(s)∩G 6= ∅, i.e., z ∈ Cl(

⋃
s∈U Φ(s)), and�nally z ∈

⋂
U∈B(s0) Cl(

⋃
s∈U Φ(s)), whih �nishes the proof of (i) (see (1.13)(i)).(ii) Now suppose that z 6∈ Φ(s0). Sine the set Φ(s0) is losed and the spae Z isregular, there are V ∈ B(z) and G ∈ T (Z) suh that Φ(s0) ⊂ G and G ∩ V = ∅. By theupper quasi-ontinuity of Φ at s0, in view of (1.27), there is a quasi-open set A ontaining

s0 suh that Φ|A is upper semiontinuous at s0. Thus, there exists a U ∈ B(s0) suh that
Φ(s) ⊂ G for all s ∈ U ∩ A. Sine B = U ∩A is quasi-open ([77℄) and s0 ∈ B, there is aset O ∈ A(s0) suh that Φ(s)∩V = ∅ for eah s ∈ O. Thus z 6∈

⋂
O∈A(s0)

Cl(
⋃

s∈O Φ(s)),and the proof of (ii) is �nished (see (1.15)).From now on let (S, d,M(S), µ) be a measure metri spae with a di�erentiation basis
(F ,→) with the density property (see (1.24)), and let (Z, T (Z)) be a topologial spae.Definition 1.13. A multifuntion Φ : S  Z is alled strongly lower (resp. upper) quasi-ontinuous at a point s0 ∈ S with respet to F if, for eah G ∈ T (Z) suh that s0 ∈ Φ−(G)(resp. s0 ∈ Φ+(G)) and for eah U ∈ TD(S) inluding s0, there exists a nonempty openset V ⊂ S suh that V ∩U 6= ∅ and V ∩U ⊂ Φ−(G) (resp. V ∩U ⊂ Φ+(G)); Φ is said tobe strongly lower (resp. upper) quasi-ontinuous with respet to F if it is strongly lower(resp. upper) quasi-ontinuous with respet to F at eah s ∈ S.Observe that replaing, in the above de�nition, the density topology by the topologygenerated by the metri d, we obtain the notion of lower (resp. upper) quasi-ontinuityof Φ. Sine Td(S)-open sets are TD(S)-open, we an say that(1.28) If a multifuntion Φ : S  Z is strongly lower (resp. upper) quasi-ontinuouswith respet to F , then it is lower (resp. upper) quasi-ontinuous. The onverseis not true.By analogy with the de�nition of quasi-ontinuity we de�ne the strong quasi-onti-nuity of a multifuntion.Definition 1.14. A multifuntion Φ : S  Z is said to be strongly quasi-ontinuouswith respet to F at a point s0 ∈ S if, for any G ∈ T (Z) and H ∈ T (Z) suh that
s0 ∈ Φ−(G) ∩ Φ+(H) and for eah U ∈ TD(S) ontaining s0, there exists a nonemptyopen set V ⊂ S suh that V ∩ U 6= ∅ and V ∩ U ⊂ Φ−(G) ∩ Φ+(H).It is evident that a multifuntion Φ : S  Z whih is strongly quasi-ontinuous withrespet to F is quasi-ontinuous. Furthermore, if Φ is strongly quasi-ontinuous with



22 G. Kwiei«skarespet to F , then it is both strongly lower and strongly upper quasi-ontinuous withrespet to F .Some onnetions between the quasi-ontinuity and the Denjoy property of real fun-tions were onsidered by �alát [104℄. We now introdue more general properties for mul-tifuntions.Definition 1.15. A multifuntion Φ : S  Z has the D− (resp. D+) property if for eah
G ∈ T (Z) and eah nonempty open set U ⊂ S, the set U ∩ Φ−(G) (resp. U ∩ Φ+(G)) iseither empty or µ∗(U ∩ Φ−(G)) > 0 (resp. µ∗(U ∩ Φ+(G)) > 0).Proposition 1.16. If a multifuntion Φ : S  Z is lower (resp. upper) quasi-ontinuous ,then Φ has the D− (resp. D+) property.Proof. Let G ∈ T (Z) and let U ⊂ S be open. By the lower (resp. upper) quasi-ontinuityof Φ, the set Φ−(G) (resp. Φ+(G)) is quasi-open (see (1.26)). Then U ∩ Φ−(G) (resp.
U ∩ Φ+(G)) is either empty or its interior is nonempty, i.e., µ∗(U ∩ Φ−(G)) > 0 (resp.
µ∗(U ∩ Φ+(G)) > 0).Proposition 1.17. If the spae (Z, T (Z)) is regular and seond ountable, and a multi-funtion Φ : S  Z is strongly lower quasi-ontinuous with respet to F and has the D+property , then µ(Dl(Φ)) = 0.Proof. We �rst prove that
(1) If G ∈ T (Z) and s ∈ Φ−(G), then Du(Int(Φ−(G)), s)) > 0.Suppose, on the ontrary, that there is a G ∈ T (Z) with s∈Φ−(G) andDu(Int(Φ−(G), s))

= 0. Let A = S \ Φ−(G) = Φ+(Z \ G). Then Dl(Cl(A), s) = 1 = D(Cl(A), s). We anassume that A 6= ∅. Sine s ∈ Φ−(G), there is a z ∈ Φ(s) ∩ G. By the regularity of
Z, there is an open set V inluding z suh that Cl(V ) ⊂ G. Then s ∈ Φ−(V ). Let
W = S \Φ−(Cl(V )) = Φ+(Z \Cl(V )). Then W 6= ∅, sine A 6= ∅ and A ⊂W . Therefore,by the D+ property of Φ, µ∗(W ) > 0. Sine Cl(A) ⊂ Cl(W ) and D(Cl(A), s) = 1, itfollows that D(Cl(W ), s) = 1. Let B = TD-Int(Cl(W ))∪{s}. Then s ∈ B ∈ TD(S). Sine
Φ is strongly lower quasi-ontinuous at s with respet to F , for the sets V and B thereis a nonempty open set U ⊂ S suh that
(2) U ∩B 6= ∅ and U ∩B ⊂ Φ−(V ).On the other hand, however, U ∩B ∩W 6= ∅, i.e., (U ∩B) ∩ (S \ Φ−(Cl(V )) 6= ∅, whihontradits (2), i.e., (1) is proved.Now we prove that µ(Dl(Φ)) = 0. Suppose, on the ontrary, that µ∗(Dl(Φ)) > 0.Let B = {Bn}n∈N be a base of T (Z). Then, by Lemma 1.1(i), there is an n ∈ N suhthat µ∗(Φ−(Bn) \ Int(Φ−(Bn))) > 0. Let C = Φ−(Bn) \ Int(Φ−(Bn)) and V = TD-
Int(C). Then V is M(S)-measurable and V ∈ TD(S). If s ∈ C, then s ∈ Φ−(Bn), and so
Du(Int(Φ−(Bn)), s) > 0, by (1). Sine D(C, s) = 1, it follows that C ∩ Int(Φ−(Bn)) 6= ∅,whih is impossible.A similar proof works for a dual proposition.



Measurability of multifuntions of two variables 23Proposition 1.18. Let the spae (Z, T (Z)) be seond ountable and normal. If a multi-funtion Φ : S  Z is ompat valued strongly upper quasi-ontinuous with respet to Fand it has the D− property , then µ(Du(Φ)) = 0.By (1.28), Propositions 1.16, 1.17 and 1.18, we have the following proposition (f. [43,Corollary 3℄).Proposition 1.19. If the spae (Z, T (Z)) is seond ountable and normal , and if amultifuntion Φ : S  Z is ompat valued strongly lower quasi-ontinuous and stronglyupper quasi-ontinuous with respet to F , then Φ is µ-almost everywhere ontinuous.By Propositions 1.19 and 1.9, we have the following orollary.Corollary 1.20. If the spae (Z, T (Z)) is seond ountable and normal , and if Φ : S  

Z is a ompat valued multifuntion strongly lower quasi-ontinuous and strongly upperquasi-ontinuous with respet to F , then Φ is M(S)-measurable.Remark 1.21. It is known that there is a quasi-ontinuous funtion f : [0, 1] → R whihis not Lebesgue measurable [79, (x), p. 49℄. So, if we suppose that the multifuntion
Φ onsidered in the above orollary is both lower quasi-ontinuous and upper quasi-ontinuous, then Φ need not be M(S)-measurable.

6. Derivative multifuntionsThe onept of di�erentiability for multifuntions has been onsidered by many authorsfrom di�erent points of view (see [5℄, [19℄, [45℄, [53℄, [81℄, and others).Banks and Jaobs redue di�erentiability of multifuntions to di�erentiability of fun-tions in linear normed spaes by the Rådström embedding theorem. Another idea is givenby Hukuhara [53℄. In this ase di�erentiability of a multifuntion at a point, roughlyspeaking, means the existene of a set whih is a limit of a di�erene quotient.In this setion the notion of di�erentiability is developed by taking advantage of anidea used by Hukuhara to give a de�nition of di�erentiability for a resonably wide lassof multifuntions. For this purpose we give a more general de�nition of di�erenes of setsthan that given by Hukuhara. Furthermore, the notion of a derivative multifuntion isintrodued. In order to get this we use the notion of the integral of a multifuntion givenby Banks and Jaobs in [5℄.Throughout the setion, unless otherwise stated, (Z, ‖ · ‖) will denote a real normedlinear spae with metri ̺ generated by the norm and θ will denote the origin of Z. Thesymbol co(A) will denote the onvex hull of a set A ⊂ Z.If A ⊂ Z, B ⊂ Z and λ ∈ R then, as usual,
A+B = {a+ b : a ∈ A ∧ b ∈ B} and λA = {λ a : a ∈ A}.(1.29) The following properties hold:(i) If A and B are onvex, and α, β ≥ 0, then (α+ β)A = αA+ βA.(ii) If A and B are losed and onvex subsets of Z and C ⊂ Z is bounded, then
A+ C = B + C implies A = B [97, Lemma 2℄.



24 G. Kwiei«ska(iii) If Ai ∈ Cb(Z) and Bi ∈ Cb(Z) for i = 1, 2, then h(A1 + A2, B1 + B2) ≤

h(A1, B1)+h(A2, B2) [19, Lemma 2.2(ii)℄, where h is the Hausdor� metrigenerated by the metri ̺.(iv) If (Z, ‖ · ‖) is re�exive, A ∈ Cbc(Z) and B ∈ Cbc(Z), then A + B ∈ Cbc(Z)[97, Theorem 2℄.(v) If (Z, ‖·‖) is re�exive and A,B,C ∈ Cbc(Z), then h(A,B) = h(A+C,B+C)[97, Lemma 3℄.In the results that follow, the requirement that (Z, ‖ · ‖) be re�exive an be replaedby the assumption that (Z, ‖ · ‖) is a Banah spae if we agree to deal only with thesubolletion Kc(Z).If (Z, ̺) is omplete, then (Cb(Z), h) is also omplete (see [62, p. 314℄). ThereforePrie's inequality [96, (2.9), p. 4℄
h(co(A), co(B)) ≤ h(A,B)implies that(1.30) If (Z, ̺) is omplete, then a Cauhy sequene in Cbc(Z) must onverge to anelement of Cbc(Z).Now suppose that (Z, ‖ · ‖) is re�exive.Definition 1.22. Let A,B ∈ Cbc(Z). We will say the di�erene A⊖B is de�ned if thereexists a set C ∈ Cbc(Z) suh that either A = B + C or B = A−C, and we de�ne A⊖Bto be the set C.The di�erene A⊖B is uniquely determined.Example 1.23. (a) Let P ∈ Cbc(Z), A = αP and B = βP , where α ≥ 0 and β ≥ 0. Put

C = (α−β)P . Then, by (1.29)(i), A = B+C or B = A−C depending on whether α ≥ βor α < β. Therefore A⊖B exists and is equal to C.(b) If Z = R, A = [a, x] ⊂ Z and B = [b, y] ⊂ Z, then A⊖B exists and
A⊖B = [min{a− b, x− y},max{a− b, x− y}].() Let A = {(x, y) ∈ R

2 : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 − x} and B = {(x, y) ∈ R
2 : 0 ≤

x ≤ 1 and 0 ≤ y ≤ 1
2 (1 − x)}. Then A⊖B does not exist.Indeed, suppose that there exists C ∈ Cbc(R

2) suh that A = B+C. Sine (0, 1) ∈ A,there exist (a, b) ∈ B and (c, d) ∈ C suh that (0, 1) = (a+ c, b+ d), where a ≥ 0. Then
c = −a and d = 1−b. On the other hand, (0, 0) ∈ B. Therefore (0, 0)+(c, d) = (−a, 1 − b)

∈ A and −a ≥ 0. Hene a = 0. Sine (c, d) = (0, 1 − b) ∈ C and (1, 0) ∈ B, we have
(1, 0) + (0, 1 − b) ∈ A and b = 1. Therefore, (a, b) = (0, 1) 6∈ B, whih is a ontradition.Now suppose that there exists C ∈ Cbc(R

2) suh that B = A − C. Let z ∈ C. Weobserve that for every x ∈ A, x−z ∈ A−C = B. Hene, A−z ⊂ B, i.e., some translationof A is ontained in B, whih is of ourse impossible.Remark 1.24. In eah ase of Example 1, with Z = R
n in (a), Hukuhara's di�erenes ofthe relevant sets do not exist, sine Hukuhara's di�erene A H

−B of A,B ∈ Kc(Z) existsonly if diam(A) ≥ diam(B).



Measurability of multifuntions of two variables 25Let A,B ∈ Cbc(Z). We write B ⊂t A if, for eah a ∈ Fr(A), there is z ∈ Z suh that
a ∈ B + {z} ⊂ A.The following is known:Proposition 1.25 ([70, Theorem 2℄). If A,B ∈ Cbc(Z), then A ⊖ B exists and is equalto a set C ∈ Cbc(Z) if and only if either B ⊂t A or A ⊂t B, and C is a set suh thateither A = B + C or B = A− C, respetively.Remark 1.26. When A,B ∈ Kc(Z) we an replae the sets Fr(A) and Fr(B) (used inthe above proposition) by the respetive sets of extreme points, appealing to the Krein�Milman theorem.It is easy to see that(1.31) (i) If A ∈ Cbc(Z) and z ∈ Z, then (A+ {z}) ⊖ A = {z}. In partiular, we have

A⊖A = {θ}.(ii) If A,B ∈ Cbc(Y ) and A⊖B exists, then
A⊖B = −(B ⊖A) and A⊖B = (−B) ⊖ (−A).(iii) If A ⊖ B exists, then h(A,B) = ‖A ⊖ B‖, where ‖C‖ = h(C, {θ}) for a set

C ⊂ Z.Now we an give a de�nition of di�erentiability for multifuntions (f. [53℄). From nowon we assume that I ⊂ R is an interval.Definition 1.27. A multifuntion Φ : I  Z is said to be di�erentiable at a point x0 ∈ Iif there exists a set DΦ(x0) ∈ Cbc(Z) suh that the limit
h- lim

x→x0

Φ(x) ⊖ Φ(x0)

x− x0exists and is equal to DΦ(x0).Of ourse, impliit in the de�nition of DΦ(x0) is the existene of the di�erenes
Φ(x) ⊖ Φ(x0).The set DΦ(x0) is alled the derivative of Φ at s0; Φ is alled di�erentiable if it isdi�erentiable at eah x ∈ I.Example 1.28. (a) Let B be the losed unit ball in Z and onsider the multifuntion
Φ : (0, 2π) Z de�ned by the formula Φ(α) = (2+ sinα)B. Then Φ is di�erentiable and
DΦ(α) = (cosα)B.(b) The multifuntion Φ : [0, 1] R

2 de�ned by
Φ(α) = {(x, y) ∈ R

2 : 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ α− αx}is not di�erentiable, sine the required di�erenes do not exist.() Let Φ : I  R be a multifuntion with values in Kc(R). Then Φ(x) = [i(x), s(x)],where i(x) = infx∈IΦ(x) and s(x) = supx∈I Φ(x). If the funtions i : I → R and s : I → Rare di�erentiable at x0 ∈ I, then Φ is di�erentiable at x0 and
DΦ(x0) =

{
[i′(x0), s

′(x0)] if i′(x0) ≤ s′(x0),
[s′(x0), i

′(x0)] if i′(x0) > s′(x0).



26 G. Kwiei«skaHowever, in general, di�erentiability of Φ does not imply di�erentiability of i and s, asthe following example shows:
Φ(x) =

{
[0, x] if x ≥ 0,
[x, 0] if x < 0.It is lear that the multifuntions onsidered in (a) and () of Example 1.28 are notdi�erentiable in Hukuhara's sense, beause Hukuhara's di�erenes Φ(x)

H

−Φ(x0) do notexist.Proposition 1.29 ([70, Theorem 3℄). If a multifuntion Φ : I  Z with Φ(x) ∈ Cbc(Z)is di�erentiable at a point x0 ∈ I, then Φ is h-ontinuous at x0.Now we desribe the π-di�erentiability of multifuntions disussed by Banks andJaobs in [5℄. As mentioned at the beginning of this setion, this de�nition makes use ofRådström's embedding theorem (see [97, Theorem 2℄): there is a real normed spae V(Z)and an isometri mapping π : Cbc(Z) → V(Z), where Cbc(Z) is metrized by the Hausdor�metri h, suh that π(Cbc(Z)) is a onvex one in V(Z) with vertex π({θ}). Furthermore,addition in V(Z) indues addition in Cbc(Z) and multipliation by nonnegative salars in
V(Z) indues the orresponding operation in Cbc(Z).The spae V(Z) an be hosen minimal in the sense that if V1(Z) is any other realnormed linear spae into whih Cbc(Z) has been embedded in the above fashion, then
V1(Z) ontains a subspae ontaining Cbc(Z) whih is isomorphi to V(Z).We desribe the spae V(Z) in some detail, sine we make use of some of its propertieslater on.An equivalene relation ∼ is de�ned on Cbc(Z) × Cbc(Z) by delaring that (A,B) ∼

(C,D) if A + D = B + C. The equivalene lass ontaining (A,B) will be denoted by
〈A,B〉. The spae V(Z) is the quotient spae Cbc(Z) × Cbc(Z)/∼, with addition de�nedby

〈A,B〉 + 〈C,D〉 = 〈A+ C,B +D〉and
α〈A,B〉 =

{
〈αA,αB〉 if α ≥ 0,
〈|α|B, |α|A〉 if α < 0.With addition and salar multipliation de�ned above the spae V(Z) beomes a linearspae. The neutral element 〈θ, θ〉 of V(Z) is the equivalene lass {(A,A) : A ∈ Cbc(Z)}.The embedding π : Cbc(Z) → V(Z) is given by π(A) = 〈A, θ〉 for A ∈ Cbc(Z). We shalldenote π(A) by Â when A ∈ Cbc(Z), and hene the onvex one π(Cbc(Z)) by Ĉbc(Z).A metri δ on V(Z) × V(Z) is de�ned by

(1.32) δ(〈A,B〉, 〈C,D〉) = h(A+D,B + C).Sine δ is translation invariant and positively homogeneous, the relation
‖〈A,B〉‖ = δ(〈A,B〉, 〈θ, θ〉)de�nes a norm in V(Z) suh that

(1.33) δ(〈A,B〉, 〈C,D〉) = ‖〈A,B〉 − 〈C,D〉‖.Note that



Measurability of multifuntions of two variables 27(1.34) If A,B ∈ Cbc(Z) and A⊖B exists, then
Â− B̂ = 〈A, θ〉 − 〈B, θ〉 =

{
〈A⊖B, θ〉 if B ⊂t A,
〈θ,B ⊖A〉 if A ⊂t B.Indeed, we have 〈A, θ〉 − 〈B, θ〉 = 〈A,B〉. Let A ⊖ B = C, C ∈ Cbc(Z). If B ⊂t A, then

A = B+C, and so 〈A,B〉 = 〈B+C,B〉 = 〈C, θ〉 = 〈A⊖B, θ〉. If A ⊂t B, then B = A−C,and so 〈A,B〉 = 〈A,A− C〉 = 〈θ,−C〉 = 〈θ,B ⊖A〉, by (1.31)(ii).We should mention that the spae (V(Z), δ) need not be omplete when (Z, ̺) isomplete (see [20, p. 363℄). But sine in this ase the spae (Cbc(Z), h) is omplete, so is
(Ĉbc(Z), δ).A funtion f : V → W , where V and W are arbitrary normed linear spaes, is saidto be o(‖∆v‖) if ‖f(∆v)‖/‖∆v‖ → 0 as ‖∆v‖ → 0.Let (S, ‖ · ‖) be a real linear normed spae and let (Z, ‖ · ‖) be a re�exive Banahspae. Following Banks and Jaobs [5℄, a multifuntion Φ : S  Z with values in Cbc(Z)is alled π-di�erentiable at a point x0 ∈ S if the funtion Φ̂ : S → V(Z) is di�erentiableat x0, i.e., there is a ontinuous linear mapping Φ̂′(x0) : S → V(Z) suh that
(1.35) Φ̂(x) − Φ̂(x0) − Φ̂′(x0)(x− x0) = o(‖x− x0‖).

Φ is π-di�erentiable if it is π-di�erentiable at every x ∈ S.If Φ̂′(x0)(x− x0) = 〈Ax−x0
, Bx−x0

〉, where x− x0 ∈ S and the sets Ax−x0
and Bx−x0belong to Cbc(Z), then, aording to (1.35), we have

〈Φ(x),Φ(x0)〉 − 〈Ax−x0
, Bx−x0

〉 = o(‖x− x0‖).If the spae (S, ‖ · ‖) is �nite-dimensional with basis v1, . . . , vn, then x − x0 = ∆x =∑n
i=1 ∆xivi for ∆x ∈ S. If Φ̂′(x0)(vi) = 〈Avi

, θ〉, i = 1, . . . , n, then Φ is alled oniallydi�erentiable at x0 and we have
Φ̂′(x0)(∆x) =

n∑

i=1

∆xi〈Avi
, θ〉.The following proposition will be essential for the de�nition of a derivative multifuntion.Proposition 1.30. Let (Z, ‖·‖) be a re�exive Banah spae. If a multifuntion Φ : I  Zwith values in Cbc(Z) is onially di�erentiable at a point x0 ∈ I and the di�erenes

Φ(x) ⊖ Φ(x0) exist in a neighbourhood U(x0) of x0, then Φ is di�erentiable at x0 and
DΦ(x0) = Φ′(x0) provided Φ̂′(x0)(x− x0) = (x− x0)〈Φ′(x0), θ〉, where Φ′(x0) ∈ Cbc(Z).Proof. Using (1.32) and (1.33) we have

a = h

(
Φ(x) ⊖ Φ(x0)

x− x0
,Φ′(x0)

)
=

∥∥∥∥

〈
Φ(x) ⊖ Φ(x0)

x− x0
, θ

〉
− 〈Φ′(x0), θ〉

∥∥∥∥.Suppose that Φ(x0) ⊂t Φ(x). If x > x0, then
a =

1

x− x0
‖〈Φ(x) ⊖ Φ(x0), θ〉 − (x− x0)〈Φ

′(x0), θ〉‖

=
1

x− x0
‖Φ̂(x) − Φ̂(x0) − Φ̂′(x0)(x− x0)‖, by (1.34).



28 G. Kwiei«skaThe last term tends to 0 as x→ x0, by (1.35). If x < x0, then
a =

∥∥∥∥
1

x− x0
〈θ,Φ(x0) ⊖ Φ(x)〉 − 〈Φ′(x0), θ〉

∥∥∥∥

=
1

|x− x0|
‖〈θ, (−Φ(x))⊖ (−Φ(x0))〉 − (x− x0)〈Φ

′(x0), θ〉‖, by (1.31)(ii).Sine −Φ(x0) ⊂t −Φ(x),
a =

1

|x− x0|
‖ − Φ̂(x0) − (−Φ̂(x)) − Φ̂′(x0)(x− x0)‖(see (1.34)). Thus, again, a→ 0 as x→ x0.Similar arguments apply to the ase Φ(x) ⊂t Φ(x0).Remark 1.31. Let Φ : [−1, 1] R be given by

Φ(x) = x · [−1, 1] =

{
[−x, x] if x ∈ [0, 1],
[x,−x] if x ∈ [−1, 0].Then DΦ(0) = [−1, 1]. But Φ is not π-di�erentiable at 0 (see [5, p. 251℄). Therefore theonverse of Proposition 1.30 is not true.As mentioned earlier, the ompleteness of the re�exive real normed linear spae

(Z, ‖ · ‖) does not imply that the orresponding normed linear spae (V(Z), δ) is omplete,whih presents a minor di�ulty when onsidering the integrability of multifuntions withvalues in Cbc(Z).Let V(Z) be the ompletion of V(Z), whih is a Banah spae. Following Banks andJaobs (see [5, p. 266℄), we give the de�nition of integrability for multifuntions withvalues in Cbc(Z) (based on the de�nition of Debreu [20℄). We also quote some of theirresults whih we shall need later on.Definition 1.32. We say that a multifuntion Φ : I  Z with values in Cbc(Z) isintegrable (Lebesgue measure m on Lebesgue measurable subsets of I is understood) ifthe funtion Φ̂ : I → V(Z) is Bohner integrable (in the sense of [25, De�nition 17,p. 112℄), and the integral of Φ̂ is denoted by T
I
Φ̂(x) dx or Tb

a
Φ̂(x) dx, where [a, b] = I.Lemma 1.33 ([5, Lemmas 5.4 and 5.5℄). Let (Z, ‖ · ‖) be a re�exive Banah spae, andlet a multifuntion Φ : I  Z with values in Cbc(Z) be integrable. Then(i) T

I
Φ̂(x) dx belongs to the onvex one Ĉbc(Z).(ii) There is a sequene of measurable simple funtions Ŝn : I → Ĉbc(Z) suh that

limn→∞ Ŝn(x) = Φ̂(x) almost everywhere on I and ‖Ŝn(x)‖ ≤ ‖Φ̂(x)‖ for every
n ∈ N and x ∈ I. Moreover , limn→∞

T
I
‖Ŝn(x) − Φ̂(x)‖ dx = 0.In view of the above lemma it makes sense to introdue the following de�nition.Definition 1.34. If a multifuntion Φ : I  Z with values in Cbc(Z) is integrable, thenwe de�ne T

I
Φ(x) dx to be the set A ∈ Cbc(Z) suh that T

I
Φ̂(x) dx = 〈A, θ〉.



Measurability of multifuntions of two variables 29Let Φ,Φi : I  Z, i = 1, 2, be multifuntions with values in Cbc(Z). If these multi-funtions are integrable, then
∥∥∥
〈\

I

Φ1(x) dx, θ
〉
−

〈\
I

Φ2(x) dx, θ
〉∥∥∥ = h

(\
I

Φ1(x) dx,
\
I

Φ2(x) dx
)

and
‖〈Φ1(x), θ〉 − 〈Φ2(x), θ〉‖ = h(Φ1(x),Φ2(x)).Therefore, by [25, Theorem 20(a), p. 114℄), we have

(1.36) h
(\

I

Φ1(x) dx,
\
I

Φ2(x) dx
)
≤
\
I

h(Φ1(x),Φ2(x)) dx.In partiular, ‖T
I
Φ(x) dx‖ ≤

T
I
‖Φ(x)‖ dx.Let Φ : I  Z be a multifuntion; if there exists a Lebesgue integrable funtion

g : I → R suh that ‖Φ(x)‖ ≤ g(x) almost everywhere in I, then Φ is alled integrablybounded.We see from the Bohner theorem [47, Theorem 3.7.4℄ that(1.37) If Φ : I  Z with values in Cbc(Z) is strongly L(R)-measurable and integrablybounded, then it is integrable.A di�erent approah to de�ning inegrability for multifuntions is given by Hukuhara(see [53℄ in the ase Z = R
n and ompat onvex valued multifuntions). This de�nition isbased on the de�nition of Riemann integral. Starting from Hukuhara's idea of integrabilitywe de�ne R-integrability of multifuntions in a more general ase.Suppose that (Z, ‖ · ‖) is re�exive, I = [a, b] ⊂ R and Φ : I  Z is a multifuntionwith values in Cbc(Z).Let ∆ = {a0, a1, . . . , an} be a partition of I and λ(∆) = maxi=0,...,n−1{ai+1 − ai}.Let P denote the family of all pairs (∆, τ ), where τ = (x0, x1, . . . , xn−1) is a sequene ofpoints suh that xi ∈ [ai, ai+1] for i = 0, . . . , n− 1. Set
C(∆, τ ) =

n−1∑

i=0

(ai+1 − ai)Φ(xi)for (∆, τ ) ∈ P. Then C(∆, τ ) ∈ Cbc(Z), by (1.29)(iv).Definition 1.35. We say that a multifuntion Φ : I  Z is R-integrable (on I) if thereexists a set B ∈ Cbc(Z) suh that C(∆, τ ) → B as λ(∆) → 0, i.e.,
∀ε > 0 ∃η > 0 ∀(∆, τ ) ∈ P [λ(∆) < η ⇒ h(C(∆, τ ), B) < ε],and we de�ne (R)

T
I
Φ(x) dx to be the set B.In muh the same way as in the ase of real funtions it an be proved that(1.38) (i) If Φ : I  Z with values in Cbc(Z) is h-ontinuous, then it is R-integrable(f. [53, Setion 5℄).(ii) If Φ : I  Z with values in Cbc(Z) is R-integrable, then it is integrable and\

I

Φ(t) dt = (R)
\
I

Φ(x) dx.



30 G. Kwiei«skaFor an integrable multifuntion Φ : I  Z with values in Cbc(Z) we de�ne the multifun-tion Ψ : I  Z by
x 7→ Ψ(x) =

x\
a

Φ(t) dt.A simple omputation shows that(1.39) If Φ is integrable and x0 ∈ [a, b], then the di�erene Ψ(x) ⊖ Ψ(x0) exists forevery x ∈ [a, b], and Tx
x0

Φ(t) dt = Ψ(x) ⊖ Ψ(x0).Indeed, if x > x0, then Txa Φ(t) dt =
Tx0

a
Φ(t) dt+

Tx
x0

Φ(t) dt, and so Tx
x0

Φ(t) dt = Ψ(x) ⊖

Ψ(x0). If x < x0, then Tx0

a
Φ(t) dt =

Tx
a

Φ(t) dt+
Tx0

x
Φ(t) dt, and so Tx0

x
Φ(t) dt = Ψ(x0) ⊖

Ψ(x), that is, Tx
x0

Φ(t) dt = Ψ(x) ⊖ Ψ(x0).Lemma 1.36. If a multifuntion Φ : I  Z with values in Cbc(Z) is integrable and ε > 0,then the multifuntion Φε : I  Z given by
Φε(x) =

x+ε\
x

Φ(t) dtis h-ontinuous.Proof. Fix x0 ∈ I. Then
h(Φε(x0),Φε(x)) = h

( x0+ε\
x0

Φ(t) dt,

x+ε\
x

Φ(t) dt
)

= h
( x0+ε\

x0

Φ(t) dt+

x\
x0+ε

Φ(t) dt,

x\
x0+ε

Φ(t) dt+

x+ε\
x

Φ(t) dt
)
,by (1.29)(v). Thus

h(Φε(x0),Φε(x)) = h
( x\

x0

Φ(t) dt,

x+ε\
x0+ε

Φ(t) dt
)

≤
∥∥∥

x\
x0

Φ(t) dt
∥∥∥ +

∥∥∥
x+ε\
x0+ε

Φ(t) dt
∥∥∥ → 0 as x→ x0, by (1.36).From now on we suppose that (Z, ‖ · ‖) is a re�exive Banah spae. The followingresult is essential for the de�nition of a derivative multifuntion.Proposition 1.37 ([5, Theorem 5.3℄). If a multifuntion Φ : [a, b]  Z with values in

Cbc(Z) is integrable, then the multifuntion Ψ : [a, b]  Z given by Ψ(x) =
Tx
a

Φ(t) dt isonially di�erentiable almost everywhere on [a, b]. Moreover , if Ψ̂(x) =
Tx
a

Φ̂(t) dt, then
Ψ̂′(x0)(∆x) = ∆xΦ̂(x0) for almost every x0 ∈ [a, b].Therefore, by (1.39) and Proposition 1.30, the following orollary holds.Corollary 1.38. If Φ : [a, b]  Z is an integrable multifuntion with values in Cbc(Z),then the multifuntion Ψ : [a, b]  Z given by Ψ(x) =

Tx
a

Φ(t) dt, is di�erentiable almosteverywhere on [a, b], and DΨ(x0) = Φ(x0) for almost every x0 ∈ [a, b].



Measurability of multifuntions of two variables 31Similarly to the ase of funtions we will showProposition 1.39. If a multifuntion Φ : I  Z with values in Cbc(Y ) is h-ontinuous ,then DΨ(x0) = Φ(x0) for eah x0 ∈ I.Proof. Let x0 ∈ I and ε > 0. By h-ontinuity of Φ at x0, there is an η > 0 suh that
h(Φ(x),Φ(x0)) < ε whenever |x− x0| < η and x ∈ [a, b]. Note that

h
( x\

x0

Φ(t) dt,

x\
x0

Φ(x0) dt
)

= h
( x\

x0

Φ(t) dt, (x− x0)Φ(x0)
)
.Furthermore, by (1.36),

h
( x\

x0

Φ(t) dt,

x\
x0

Φ(x0) dt
)
≤

x\
x0

h(Φ(t),Φ(x0)) dt < ε(x− x0)provided 0 < x− x0 < η. Sine
1

x− x0

x\
x0

Φ(t) dt =
Ψ(x) ⊖ Ψ(x0)

x− x0
(see (1.39)),it follows that

1

x− x0
h
( x\

x0

Φ(t) dt, (x− x0)Φ(x0)
)

= h

(
1

x− x0

x\
x0

Φ(t) dt,Φ(x0)

)
< ε.Hene

DΨ(x0) = h- lim
x→x+

0

Ψ(x) ⊖ Ψ(x0)

x− x0
= Φ(x0).Just as above we show that

DΨ(x0) = h- lim
x→x−

0

Ψ(x) ⊖ Ψ(x0)

x− x0
= Φ(x0).Now we an de�ne the notion of a derivative multifuntion.Definition 1.40. Let Φ : I  Z be an integrable multifuntion and x0 ∈ I. Thestatement that Φ is a derivative at x0 ∈ I means that

Φ(x0) = h- lim
x→x0

1

x− x0

x\
x0

Φ(t) dt.The multifuntion Φ is a derivative if it is a derivative at eah point x ∈ I.By Proposition 1.38, we haveCorollary 1.41. If a multifuntion Φ : I  Z with values in Cbc(Z) is h-ontinuous ,then it is a derivative.Finally, we show that an approximately h-ontinuous multifuntion is a derivative.Proposition 1.42. Let Φ : I  Z be a multifuntion with values in Cbc(Z). Supposethat Φ is bounded , i.e., there is a totally bounded set K ⊂ Z suh that Φ(x) ⊂ K for eah
x ∈ I. If Φ is approximately h-ontinuous , then it is a derivative.



32 G. Kwiei«skaProof. By Proposition 1.9, Φ is L(R)-measurable (see Remark 1.10) and, by (1.22), it isstrongly L(R)-measurable. Sine Φ is integrably bounded, it is integrable on any measur-able subset of I, by the Bohner theorem [47, Theorem 3.7.4℄. Let I = [a, b]. De�ne themultifuntion Ψ : [a, b] Z by
Ψ(x) =

x\
a

Φ(t) dt.Let x0 ∈ I. Sine Φ is approximately h-ontinuous at x0, there exists a measurable set
E ⊂ I with x0 ∈ E suh that D(E, x0) = 1 and Φ|E is h-ontinuous at x0. Suppose
∆x > 0 and x0 + ∆x ∈ [a, b]. Then

Ψ(x0 + ∆x) = Ψ(x0) +

x0+∆x\
x0

Φ(x) dxand thus
Ψ(x0 + ∆x) ⊖ Ψ(x0) =

x0+∆x\
x0

Φ(x) dx.Note that
h

(
Ψ(x0 + ∆x) ⊖ Ψ(x0)

∆x
,Φ(x0)

)
= h

(
1

∆x

x0+∆x\
x0

Φ(x) dx,Φ(x0)

)

= h

(
1

∆x

x0+∆x\
x0

Φ(x) dx,
1

∆x

x0+∆x\
x0

Φ(x0) dx

)

≤
1

∆x

x0+∆x\
x0

h(Φ(x),Φ(x0)) dx

=
1

∆x

\
[x0,x0+∆x]∩E

h(Φ(x),Φ(x0)) dx+
1

∆x

\
[x0,x0+∆x]\E

h(Φ(x),Φ(x0)) dx.As ∆x tends to 0, the �rst term above onverges to 0, sine Φ is h-ontinuous on E,and the seond is majorized by 1
∆xm([x0, x0 +∆x] \E)2‖K‖, whih onverges to 0, sine

D(I \ E, x0) = 0.This, together with a similar alulation for ∆x < 0 and x0 + ∆x ∈ I, yields
h

(
Ψ(x0) ⊖ Ψ(x0 + ∆x)

∆x
,Φ(x0)

)
≤ ε,and so DΨ(x0) = Φ(x0). Hene Φ is a derivative at x0.



2. PRODUCT MEASURABILITY OF MULTIFUNCTIONSOF TWO VARIABLES
7. Carathéodory multifuntionsLet X and Y be nonempty sets, let F : X×Y  Z be a multifuntion, and let (x0, y0) ∈

X × Y . Then the multifuntion Fx0
: Y  Z de�ned by Fx0

(y) = F (x0, y) is alled the
x0-setion of F , and the multifuntion F y0 : X  Z de�ned by F y0(x) = F (x, y0) isalled the y0-setion of F .Similarly, if E ⊂ X×Y and (x0, y0) ∈ X×Y , then the set Ex0

= {y ∈ Y : (x0, y) ∈ E}is alled the x0-setion of E, and Ey0 = {x ∈ X : (x, y0) ∈ E} is the y0-setionof E.It is well known that if f : R
2 → R is a Lebesgue measurable funtion, then thesetions fx and fy are Lebesgue measurable for almost every x ∈ R and almost every

y ∈ R. But the onverse is not true even if all setions of f are Lebesgue measurable.There are various su�ient onditions on setions of f ensuring that f is measurable.The most important one (given by Ursell [112℄) is the ontinuity of the setions of f withrespet to the �rst variable and their measurability with respet to the seond variable.This result was extended in various ways for funtions in spaes more general than R (see[12, Corollaire 3.1℄ or [64, Theorem 2, p. 387℄). In this setion we will onsider this topiin the ase of multifuntions.Let (X,M(X)) and (Y,M(Y )) be measurable spaes, and let (Z, T (Z)) be a topo-logial spae. A multifuntion F : X × Y  Z will be alled produt measurable (resp.weakly produt measurable) if it is measurable (resp. weakly measurable) with respet tothe produt σ-�eld M(X) ⊗M(Y ) or a more general σ-�eld in X × Y .If (Y, T (Y )) is a topologial spae, then F : X × Y  Z will be alled Carathéodory(or more preisely M(X)-Carathéodory) if the setion F y is M(X)-measurable for every
y ∈ Y , and Fx is ontinuous for every x ∈ X.A Carathéodory multifuntion need not be produt measurable, in general.There are some results on the existene of a Carathéodory seletion of a Carathéodorymultifuntion (some details and a survey of some papers in this �eld an be found in [59℄).It is also known that (under some onditions) the produt measurability of a multifuntionwhose setions with respet to the �rst variable are lower semiontinuous, is equivalentto the existene of its Castaing representation onsisting of Carathéodory funtions (see[32, Theorem 1℄).The following result is well known (see [58, Lemma 13.2.3℄).[33℄



34 G. Kwiei«skaLemma 2.1. If (X,M(X)) is a measurable spae, (Y, d) a separable metri spae and
(Z, ̺) a metri spae, and if f : X × Y → Z is a Carathéodory funtion, then f is
M(X) ⊗ B(Y )-measurable.As a straightforward onsequene of the above lemma and Proposition 1.3(vi) we havethe following result (f. [116, Theorem 2℄)Proposition 2.2. If (X,M(X)) is a measurable spae, (Y, d) a separable metri spaeand (Z, ̺) a metri spae, and if F : X × Y  Z is a ompat valued Carathéodorymultifuntion, then F is M(X) ⊗ B(Y )-measurable.The purpose of this setion is to give a generalization of this result.Theorem 2.3. Let (X,M(X)) be a measurable spae. Let (Y, d) be a metri spae and let
T (Y ) be a separable topology on Y �ner than the metri topology. Fix a ountable T (Y )-dense subset S of Y . Suppose that eah point v ∈ Y has a neighbourhood U(v) ∈ T (Y )suh that(i) for eah y ∈ S, V (y) = {v ∈ Y : y ∈ U(v)} ∈ B(Y, d) and the family

N (v) = {U(v) ∩B(v, 2−n) : n ∈ N}forms a �lterbase of T (Y )-neighbourhoods of v.If (Z, T (Z)) is perfetly normal and F : X × Y  Z is a multifuntion suh that F y is
M(X)-measurable for every y ∈ Y and Fx is T (Y )-ontinuous for every x ∈ X, then Fis weakly M(X) ⊗ B(Y, d)-measurable.Proof. It is su�ient to show that
(1) F+(D) ∈ M(X) ⊗ B(Y, d) whenever D is a losed subset of Z.Let D be an arbitrary losed subset of Z. Then, by perfet normality of Z, there existsa sequene (Gm)m∈N of open subsets of Z suh that
(2) D =

⋂

n∈N

Gn =
⋂

n∈N

Cl(Gn) and Cl(Gn+1) ⊂ Gn for n ∈ N.Let S = {yk}k∈N. We shall prove that
(3) F+(D) =

⋂

n∈N

⋃

k∈N

({x ∈ X : F (x, yk) ⊂ Gn} × Vn(yk)),where Vn(yk) = {v ∈ Y : yk ∈ U(v) ∩B(v, 2−n)}.Let (u, v) ∈ F+(D) = {(x, y) ∈ X×Y : F (x, y) ⊂ D}. Then, by (2), F (u, v) ⊂ Gn forevery n ∈ N. Fix n ∈ N. Sine Fu is upper T (Y )-semiontinuous at v, it follows that(4) there exists a T (Y )-open neighbourhoodW (v) ∈ N (v) of v suh that F (u, y) ⊂ Gnfor all y ∈W (v).Let K = {m ∈ N : ym ∈ W (v)}. We put m0 = min{m ∈ K : v ∈ Vn(ym)}. Then, by (4),
F (u, yk) ⊂ Gn for k = m0, whih implies u ∈ (F yk)+(Gn).Therefore, the inlusion

F+(D) ⊂
⋂

n∈N

⋃

k∈N

(F yk)+(Gn) × Vn(yk)



Measurability of multifuntions of two variables 35has been proved. Conversely, suppose, ontrary to our laim, that
(5) (u, v) ∈

⋂

n∈N

⋃

k∈N

(F yk)+(Gn) × Vn(yk),but (u, v) 6∈ F+(D). Then F (u, v) 6⊂ D, and so F (u, v) 6⊂
⋂

m∈N
Cl(Gm) by (2). Therefore,

F (u, v) ∩ (Z \ Cl(Gm)) 6= ∅ for some m ∈ N.Thus, by T (Y )-lower semiontinuity of Fu at v,(6) there is a T (Y )-open neighbourhood W (v) ∈ N (v) of v suh that
F (u, y) ∩ (Z \ Cl(Gm)) 6= ∅ for all y ∈W (v).We see from (5) that to eah n ∈ N there orresponds an index k(n) ∈ N suh that

u ∈ (F yk(n))+(Gn) and v ∈ Vn(yk(n)), i.e.,
(7) F (u, yk(n)) ⊂ Gn and yk(n) ∈ U(v) ∩B(v, 2−n).Hene, limn→∞ yk(n) = v, and so by (6), there is an n0 ∈ N suh that yk(n) ∈W (v) and
(8) F (u, yk(n)) ∩ (Z \ Cl(Gm)) 6= ∅ for every n > n0.By (7) and (2), we arrive at the inlusions

F (u, yk(n+j)) ⊂ Gn+j ⊂ Cl(Gn+j) ⊂ Gn for n ∈ N and j ∈ N.Fixing n = m, we obtain
(9) F (u, yk(m+j)) ⊂ Cl(Gm+j) ⊂ Gm for all j ∈ N.Let j ∈ N be suh that m+ j > n0. Then, by (8), we have

F (u, yk(m+j)) ∩ (Z \ Cl(Gm+j)) 6= ∅,ontrary to (9). Thus (3) has been proved.Observe that {x ∈ X : F (x, yk) ⊂ Gn} ∈ M(X), beause F yk is M(X)-measurable.Moreover, by assumption (i), Vn(yk) ∈ B(Y, d). Thus, by (3), it is lear that F+(D) ∈

M(X) ⊗ B(Y, d), whih proves (1).Remark 2.4.(i) If we suppose that the multifuntion F onsidered in Theorem 2.3 is ompatvalued, then F will be M(X) ⊗ B(Y, d)-measurable, by Proposition 1.2(ii).(ii) If, in Theorem 2.3, we suppose that the spae (Z, T (Z)) is metrizable σ-ompatand the multifuntion F is losed valued, then F will be M(X)⊗B(Y, d)-measu-rable, by Proposition 1.3(iv).Below we give two examples of topologies on a metri spae (Y, d) ful�lling the re-quirements of Theorem 2.3. By the �rst example, it will be lear that if all x-setions ofa multifuntion F are either right-ontinuous or left-ontinuous (in some sense) and allits y-setions are measurable, then F is weakly produt measurable.Example 2.5. Let (Y, d,≤) be a linearly ordered metri spae. We follow Draveký andNeubrunn [24℄ in assuming that (Y, d,≤) has the property U , i.e., (Y,≤) is a linearlyordered spae and there is a ountable dense set S = {yn}n∈N in (Y, d, ) suh that forany y ∈ Y , we have y = limn→∞ yn, where y ≤ yn for n ∈ N. Then the topology T (Y )



36 G. Kwiei«skagenerated by all open sets in (Y, d) and also by all intervals Ia = {y ∈ Y : y ≤ a}, a ∈ Y ,ful�ls the assumptions of Theorem 2.3.Indeed, �x y ∈ Y and r > 0. Then
Ur(y) = B(y, r) ∩ Iy = {x ∈ Y : d(x, y) < r ∧ x ≤ y}is a T (Y )-neighbourhood of y.Let x ∈ Ur(y). Then x ∈ B(y, r) and x ≤ y, and so there is an r1 > 0 suh that

d(x, y) = r− r1. Let δ < min(r− r1, r1). Then B(x, δ) ⊂ B(y, r). Let n ∈ N be suh that
2−n < δ. Then U2−n(x) ⊂ Ur(y) and {U2−n(y)}n∈N is a �lterbase of T (Y )-neighbourhoodsof y.The set S is also T (Y )-dense. It remains to show that

Vr(y) = {z ∈ Y : y ∈ Ur(z)}is a Borel set in (Y, d). First we will show that(1) If y0 6= y and y0 ∈ Vr(y), then there exists an r1 ∈ (0, r) suh that Ur1
(y0) ⊂ Vr(y).Suppose, ontrary to our laim, that Ur1

(y0) 6⊂ Vr(y) for any 0 < r1 < r. Let n ∈ N besuh that 1/n < r. Then there is a yn suh that y ≤ yn and yn ∈ U1/n(y0) \ Vr(y), andso, for n > 1/r, we have
y ≤ yn ∧ d(yn, y0) < 1/n ∧ yn ≤ y0 ∧ (yn ≤ y ∨ d(yn, y) ≥ r).If it were true that d(yn, y0) < 1/n and y ≤ yn ≤ y0 and yn ≤ y, we would have

limn→∞ yn = y0 = y, ontraditing y 6= y0. Let d(y0, y) = ε. If it were true that
d(yn, y0) < 1/n and d(yn, y) ≥ r, we would have r ≤ d(yn, y) ≤ d(yn, y0) + d(y0, y) <

1/n + ε. Then 1/n > r − ε > 0 for almost every n ∈ N, whih is impossible. Thisestablishes (1).Our next laim is that(2) If y0 6= y and y0 ∈ Vr(y), then there is a δ > 0 suh that B(y0, δ) ⊂ Vr(y).Indeed, aording to (1), there is an r1 ∈ (0, r) suh that Ur1
(y0) ⊂ Vr(y). Let ε =

d(y0, y) < r and let δ < min(ε, r − ε, r1). If z ∈ B(y0, δ), then either d(y0, z) < δ and
z ≤ y0, or d(y0, z) < δ and y0 ≤ z. In the �rst ase, z ∈ Uδ(y0) ⊂ Vr(y). In the seond,
d(z, y) ≤ d(z, y0) + d(y0, y) < δ + ε < r − ε + ε = r and y ≤ z, showing that z ∈ Vr(y).Combining the two results we onlude that B(y0, δ) ⊂ Vr(y), and (2) is proved.Thus the set {z ∈ Y : d(z, y) < r ∧ y ≤ z ∧ y 6= z} is open in (Y, d). Therefore,

Vr(y) = {y} ∪ {z ∈ Y : d(z, y) < r ∧ y ≤ z ∧ y 6= z} ∈ Fσ(Y, d) ∩ Gδ(Y, d),and �nally Vr(y) ∈ B(Y, d).Note that the topology T (Y ) in the above example may be viewed as a naturalgeneralization of the Sorgenfrey topology on the real line [114℄.By Theorem 2.3, we have the following orollary.Corollary 2.6. Let (X,M(X)) be a measurable spae and (Z, T (Z)) a perfetly normaltopologial spae. Then a multifuntion F : X × R Z suh that Fx is right-ontinuous
(resp. left-ontinuous) for every x ∈ X and F y is M(X)-measurable for every y ∈ Y , isweakly M(X) ⊗ B(R)-measurable.



Measurability of multifuntions of two variables 37Now we give another example of a topology T (Y ) ful�lling the assumptions of Theo-rem 2.3.Example 2.7. Let (Y, ⋄, d) be a topologial group whose topology is indued by aninvariant distane funtion d (i.e., d(θ, y) = d(v, y ⋄ v)), where θ denotes the neutralelement of Y . Furthermore we assume that (Y, d) is separable.Let U ⊂ Y be an open set suh that θ is an aumulation point of U . Let
Un = (B(θ, 2−n) ∩ U) ∪ {θ} and Vn(y) = y ⋄ Un = {y ⋄ v : v ∈ Un}for any n ∈ N and y ∈ Y . Then {Vn(y)}n∈N is a �lterbase of neighbourhoods of y ∈ Y ,and the topology T (Y ) generated by this base ful�ls all requirements of Theorem 2.3.Indeed, it su�es to prove that {Un}n∈N is a base of neighbourhoods of θ. We have

Un ∩Um = Umin(n,m). Let n ∈ N and v ∈ Un. Then, by the de�nition of Vn(y), there is a
k ∈ N suh that B(v, 2−k) = v ⋄B(θ, 2−k) ⊂ Un. Therefore, we onlude that

∀n ∈ N ∀v ∈ Un ∃k ∈ N Vk(v) ⊂ Un.A ountable dense subset of (Y, d) is also T (Y )-dense. It remains to show that Vn(y) isa Borel set in (Y, d) for n ∈ N.Fix n ∈ N and let Φ : Y  Y be de�ned by Φ(y) = Vn(y). Then Φ is ontinuous and
Gr(Φ) = {(y, z) : z ∈ y ⋄Un} is homeomorphi to Y ×Un. Thus Vn(y) ∈ B(Y, d) for eah
n ∈ N.
8. Multifuntions with approximately semiontinuous setionsIn this setion we assume that (X, d,M(X), µ) and (Y, ρ,M(Y ), ν) are measure metrispaes with omplete, σ-�nite and Gδ-regular measures µ and ν on the σ-�elds M(X)and M(Y ) ontaining B(X) and B(Y ), respetively; µ× ν is the produt measure on the

σ-�eld M(X) ⊗M(Y ), and Mµ×ν(X × Y ) is the µ × ν-ompletion of M(X) ⊗M(Y );and F ⊂ M(X) and G ⊂ M(Y ) are families of sets (de�ned as in (1.23)) with the densityproperty (1.24).Let B ∈ M(X) ⊗M(Y ). We will write B ⊏ B if, for every (x, y) ∈ B, x is a densitypoint of By with respet to F and y is a density point of Bx with respet to G.The following lemma is known.Lemma 2.8 ([67, Lemma 2℄). If A ∈ Mµ×ν(X ×Y ), then there is a B ∈ M(X)⊗M(Y )suh that B ⊂ A, B ⊏ B and µ× ν(A \B) = 0.The Gδ-regularity of the measures µ and ν in the above lemma is essential.Theorem 2.9. Let (Z, ̺) be a separable metri spae and F : X×Y  Z a losed valuedmultifuntion. If {Fx}x∈X is approximately h-equiontinuous with respet to G and F y isweakly M(X)-measurable for eah y ∈ Y , then F is weakly Mµ×ν(X × Y )-measurable.Proof. By Proposition 1.3(i), it su�es to prove that(1) the real funtion gz(x, y) = ̺(z, F (x, y)) is Mµ×ν(X × Y )-measurable for eah
z ∈ Z.



38 G. Kwiei«skaFix z ∈ Z. To prove (1) we apply the Davies lemma [17℄, i.e., it is su�ient to show thatfor every ε > 0 the family Hε = {H ∈ M(X) ⊗ M(Y ) : oscH(gz) ≤ ε} of sets satis�esthe following ondition:(D) for every A ∈ M(X) ⊗M(Y ) of positive µ × ν measure, there exists an H ∈ Hεsuh that H ⊂ A and µ× ν(H) > 0.Fix A ∈ M(X) ⊗ M(Y ) with µ × ν(A) > 0 and ε > 0. By Lemma 2.8, there is a
B ∈ M(X) ⊗M(Y ) suh that B ⊂ A, B ⊏ B and µ× ν(A \B) = 0.Let y0 ∈ Y be suh that µ(By0) > 0. Sine F y0 is weakly M(X)-measurable, (gz)

y0is M(X)-measurable. Let δ > 0. By Lusin's theorem, there is a losed set C ⊂ X suhthat (gz)
y0 |C is ontinuous and µ(X \ C) < δ. Sine F has the density property, µ-almost every point of C is its density point with respet to F . Thus (gz)

y0 is µ-almosteverywhere approximately ontinuous with respet to F . Therefore, there is an x0 ∈ By0suh that (gz)
y0 is approximately ontinuous at x0 with respet to F . Thus, there existsa K ∈ M(X) suh that D(K,x0) = 1 and |gz(x, y0) − gz(x0, y0)| < ε/4 for all x ∈ K.Let M = K ∩ By0 . Then M ∈ M(X) and D(M,x0) = 1, sine D(K,x0) = 1 and

D(By0 , x0) = 1. Furthermore,
(2) |gz(x, y0) − gz(x0, y0)| < ε/4 for all x ∈M.On the other hand, by the approximate h-equiontinuity of {Fx}x∈X at y0 with respetto G, there is an L(y0) ∈ M(Y ) suh that D(L(y0), y0) = 1 and {Fx|L(y0)}x∈X is h-equiontinuous at y0. Thus, there is an open set V (y0) inluding y0 suh that
(3) h(Fx|L(y0)(y), Fx|L(y0)(y0)) < ε/8 for x ∈ X and y ∈ V (y0).Let N = L(y0) ∩ V (y0). Then N ∈ M(Y ) and D(N, y0) = 1. Let y ∈ N . Then, by (3),there is a z1 ∈ Fx(y) with ̺(z, Fx(y)) + ε/8 > ̺(z, z1) and there is a z2 ∈ Fx(y0) with
̺(z, Fx(y0)) + ε/8 > ̺(z, z2). Moreover, there is a z′ ∈ Fx(y) with ̺(z′, z2) < ε/8 and a
z′′ ∈ Fx(y0) with ̺(z′′, z1) < ε/8. Then

̺(z, Fx(y)) ≤ ̺(z, z′) ≤ ̺(z, z2) + ̺(z2, z
′) < ε/4 + ̺(z, Fx(y0)),and

̺(z, Fx(y0)) ≤ ̺(z, z′′) ≤ ̺(z, z1) + ̺(z1, z
′′) < ε/4 + ̺(z, Fx(y))for x ∈ X and y ∈ N . Thus

(4) |gz(x, y) − gz(x, y0)| < ε/4 for x ∈ X and y ∈ N .Set P = M ×N . We see from (4) and (2) that
|gz(x, y) − gz(x0, y0)| ≤ |gz(x, y) − gz(x, y0)| + |gz(x, y0) − gz(x0, y0)| < ε/2for every (x, y) ∈ P , and hene oscP (gz) ≤ ε.Now let H = P ∩ B. Sine B ∈ M(X) ⊗M(Y ) and P ∈ M(X) ⊗M(Y ), it followsthat H ∈ M(X) ⊗ M(Y ). Furthermore, µ × ν(H) > 0, sine ν(Hx) > 0 for µ-almostevery x ∈ X. Finally, H ⊂ B ⊂ A and oscH(gz) ≤ ε, whih proves (D).It is known (see [17, Theorem 2℄) that if all setions fx and fy of a funtion f : R

2 → Rare approximately ontinuous, then f is of the seond Baire lass.In this onnetion, onsider the following example.



Measurability of multifuntions of two variables 39Example 2.10. Deompose the interval [0, 1] ⊂ R into two disjoint non-Borel sets A and
B and de�ne the multifuntion F : [0, 1] × [0, 1] → R by putting

F (x, y) =






[−3, 3] if x 6= y,

[−1, 0] if x = y ∈ A

[1, 2] if x = y ∈ B.Then F is not B(R2)-measurable although all its x-setions and y-setions are approxi-mately lower semiontinuous (even lower semiontinuous).The above example shows that a multifuntion F : X × Y  Z (even ompatvalued) having all x-setions approximately lower semiontinuous with respet to G andall y-setions approximately lower semiontinuous with respet to F may by �strange�.Let F × G = {E : E = A × B, A ∈ F , B ∈ G}. For eah P ⊂ X × Y we de�ne (asin Setion 4) the upper and lower outer density of P at (x, y) ∈ X × Y with respet to
F × G, and the density point of P with respet to F × G. The family F × G has thedensity property (see (1.24)), beause so do F and G (see [9, pp. 5 and 34℄).Proposition 2.11. Let (Z, ̺) be a metri spae and F : X × Y  Z a multifuntion.If F y is approximately h-lower semiontinuous with respet to F for eah y ∈ Y and
{Fx}x∈X is approximately h-lower equiontinuous with respet to G, then F is approxi-mately h-lower semiontinuous with respet to F × G.Proof. Fix (x0, y0) ∈ X × Y and ε > 0. Sine F y0 is approximately h-lower semiontin-uous at x0 with respet to F , there exists a set A(x0) ∈ M(X) inluding x0 suh that
D(A(x0), x0) = 1 and F y0 |A(x0) is h-lower semiontinuous at x0. Thus, there is an openneighbourhood U(x0) of x0 suh that
(1) F (x0, y0) ⊂ B(F (x, y0), ε/2) for all x ∈ U(x0) ∩A(x0).By the approximate h-lower equiontinuity of {Fx}x∈X at y0 with respet to G, there isa B(y0) ∈ M(Y ) inluding y0 suh that D(B(y0), y0) = 1 and {Fx|B(y0)}x∈X is h-lowerequiontinuous at y0. Therefore, there is an open neighbourhood V (y0) of y0 suh that
(2) F (x, y0) ⊂ B(F (x, y), ε/2) for x ∈ X and y ∈ V (y0) ∩B(y0).Let E(x0, y0) = A(x0) × B(y0). Then D(E(x0, y0), (x0, y0)) = 1. It is su�ient to showthat F |E(x0,y0) is h-lower semiontinuous with respet to F×G at (x0, y0). LetW (x0, y0) =

U(x0) × V (y0). Then, by (1) and (2),
F (x0, y0) ⊂ B(F (x, y0), ε/2) and F (x, y0) ⊂ B(F (x, y), ε/2)for eah (x, y) ∈W (x0, y0) ∩E(x0, y0). Thus, for (x, y) ∈W (x0, y0) ∩ E(x0, y0),

F (x0, y0) ⊂ B(F (x, y), ε),i.e., F |E(x0,y0) is h-lower semiontinuous at (x0, y0).A similar proof works when we replae �h-lower� by �h-upper� in Proposition 2.11,and we have a dual result.



40 G. Kwiei«skaProposition 2.12. Let (Z, ̺) be a metri spae and F : X × Y  Z a multifuntion.If F y is approximately h-upper semiontinuous with respet to F for every y ∈ Y and
{Fx}x∈X is approximately h-upper equiontinuous with respet to G, then F is approxi-mately h-upper semiontinuous with respet to F × G.Remark 2.13. We see from (1.11)(ii) and Proposition 1.9 that a multifuntion F whihsatis�es the assumptions of Proposition 2.11 is weakly M(X)⊗M(Y )-measurable. If weadditionally assume that F is ompat valued, then it is M(X)⊗M(Y )-measurable, by(1.11)(iii) and Proposition 1.9.Now let (Z, T (Z)) be a topologial spae. We will show that the approximate lowersemiontinuity of all y-setions and upper semiontinuity of all x-setions of a multifun-tion F : X × Y  Z are su�ient for its produt measurability.We �rst prove the following proposition.Proposition 2.14. Let F : X×Y  Z be a multifuntion suh that F y is approximatelylower semiontinuous with respet to F for eah y ∈ Y . Then for eah n ∈ N, themultifuntion Fn : X × Y  Z de�ned by
(2.1) Fn(x, y) = F (x,B(y, 2−n)) =

⋃

v∈B(y,2−n)

F (x, v)is approximately lower semiontinuous with respet to F × G.Proof. Fix n ∈ N, (x, y) ∈ X × Y and an open set G ⊂ Z suh that Fn(x, y)∩G 6= ∅. By(2.1), there exists a v ∈ B(y, 2−n) suh that F (x, v) ∩G 6= ∅. Sine F v is approximatelylower semiontinuous with respet to F at x, there is an E ∈ M(X) inluding x suhthat D(E, x) = 1 and F v|E is lower semiontinuous at x. Therefore, there is an openneighbourhood U(x) of x suh that F (u, v) ∩G 6= ∅ whenever u ∈ E ∩ U(x).Observe that there exists an r > 0 suh that
(1) F (u, v) ⊂ F (u,B(y0, 2

−n)) = Fn(u, y0) for all u ∈ U(x) and y0 ∈ B(y, r).Indeed, let r = 2−n − ρ(v, y). Then r > 0 and for every t ∈ B(y, r) we have
ρ(t, v) ≤ ρ(t, y) + ρ(y, v) < r + 2−n − r = 2−n.Therefore

t ∈ B(y, r) ⇒ v ∈ B(t, 2−n),and the inlusion (1) holds on the set (E ∩ U(x)) × B(y, r). Thus Fn(u, v) ∩ G 6= ∅whenever (u, v) ∈ (E ∩ U(x)) ×B(y, r).Let V (x, y) = (E ∩ U(x)) × B(y, r). Then V (x, y) ∈ M(X) ⊗ M(Y ). Furthermore,
D(V (x, y), (x, y)) = 1 and Fn|V (x,y) is lower semiontinuous at (x, y).Lemma 2.15. Let (Z, T (Z)) be a regular spae and F : X × Y → Z a losed valuedmultifuntion suh that Fx is upper semiontinuous for eah x ∈ X. If (Fn)n∈N is asequene of multifuntions from X×Y to Z de�ned by (2.1), then for eah (x, y) ∈ X×Ywe have

F (x, y) =
⋂

n∈N

Cl(Fn(x, y)).



Measurability of multifuntions of two variables 41Proof. Fix (x, y) ∈ X × Y . Observe that F (x, y) ⊂ Fn(x, y) for any n ∈ N. Therefore
F (x, y) ⊂

⋂

n∈N

Cl(Fn(x, y)).Now suppose that z ∈ Z \F (x, y). Sine F (x, y) is losed, there exist an open set G ⊂ Zand an open neighbourhood W (z) of z suh that F (x, y) ⊂ G and W (z)∩G = ∅. By theupper semiontinuity of Fx at y, there exists an m ∈ N suh that F (x, v) ⊂ G for eah
v ∈ B(y, 2−m). Hene,

⋃

v∈B(y,2−m)

F (x, v) = Fm(x, y) ⊂ G,and so W (z) ∩ Cl(Fm(x, y)) = ∅. Thus z ∈ Z \
⋂

n∈N
Cl(Fn(x, y)), proving the inlusion

F (x, y) ⊃
⋂

n∈N

Cl(Fn(x, y)).Theorem 2.16. Let Z be a Suslin spae. If F : X ×Y  Z is a losed valued multifun-tion suh that F y is approximately lower semiontinuous with respet to F for every y ∈ Yand Fx is upper semiontinuous for every x ∈ X, then F is Mµ×ν(X × Y )-measurable.Proof. Let (Fn)n∈N be the sequene of multifuntions given by
Fn(x, y) = F (x,B(y, 2−n)).Then, by Proposition 2.14, Fn is approximately lower semiontinuous with respet to

F × G for eah n ∈ N, and hene, aording to Proposition 1.9,
(1) eah Fn is weakly M(X) ⊗M(Y )-measurable.Let (Fn)n∈N be the sequene of multifuntions de�ned by

Fn(x, y) = Cl(Fn(x, y)) for (x, y) ∈ X × Y.Then eah Fn has losed values, and hene is weakly M(X)⊗M(Y )-measurable, by (1).Sine the x-setions of F are upper semiontinuous, it follows that
F (x, y) =

⋂

n∈N

Cl(Fn)(x, y) for eah (x, y) ∈ X × Y,by Lemma 2.15. Thus Proposition 1.5 �nishes the proof.The following example shows that the upper semiontinuity of x-setions of F in theabove theorem annot be replaed by lower semiontinuity.Example 2.17. Let E ⊂ R
2 be the Sierpi«ski set [107℄, i.e., E 6∈ L(R2) and for any y ∈ Rand any x ∈ R, the setions Ey and Ex have at most two elements. Let F : R

2
 R bethe multifuntion given by

F (x, y) =

{
[0, 1] if (x, y) 6∈ E,

{0} if (x, y) ∈ E.Then F is not L(R2)-measurable although x-setions and y-setions are lower semion-tinuous.



42 G. Kwiei«ska9. Multifuntions with quasi-ontinuous setionsLet (X,M(X)) be a measurable spae and let (Y, T (Y )) and (Z, T (Z)) be topologialspaes. A multifuntion F : X × Y  Z is alled lower (resp. upper) semi-Carathéodoryif F y is M(X)-measurable for eah y ∈ Y and Fx is lower (resp. upper) semiontinuousfor eah x ∈ X.If (Z, ̺) is a metri spae, then replaing lower (resp. upper) semiontinuity of Fx inthe above de�nition by h-lower (resp. h-upper) semiontinuity of Fx we obtain the notionof an h-lower (resp. h-upper) semi-Carathéodory multifuntion.Note that F : X × Y  Z is Carathéodory if and only if it is simultaneously lowerand upper semi-Carathéodory.If F : X×Y  Z is given by F (x, y) = {f(x, y)}, where f : X×Y → Z is a funtion,then F is lower (resp. upper) semi-Carathéodory or Carathéodory if and only if f is aCarathéodory funtion.We see from Proposition 2.2 that if (Y, d) is a separable metri spae, (Z, ̺) a metrispae, and F : X × Y  Z a ompat valued Carathéodory multifuntion, then F is
M(X) ⊗ B(Y )-measurable.Example 2.17 shows that a multifuntion whih is only lower semi-Carathéodoryneed not be produt measurable. It is easy to see that the same is true for upper semi-Carathéodory multifuntions. For instane, the multifuntion F in Example 2.17 is lowersemi-Carathéodory. But if we transpose the values of F , then F will be upper semi-Carathéodory and still not L(R2)-measurable.One an strengthen the lower semi-Carathéodory assumption to ensure produt me-asurability. For instane, Papageorgiou [94℄ gives the following result:Theorem 2.18. If (X,M(X), µ) is a measure spae, where µ is σ-�nite, Y is a separablere�exive Banah spae, and F : X × Y  Y is a lower semi-Carathéodory multifuntionwith losed onvex values suh that the setion Fx : Y  Yω is upper semiontinuous forevery x ∈ X (where Yω denotes Y with the weak topology), then F is Mµ(X) ⊗ B(Y )-measurable.Another possibility is given below.Theorem 2.19. Let (X,M(X)) be a measurable spae, Y a Polish spae and (Z, T (Z))a metrizable σ-ompat spae. Suppose that a lower semi-Carathéodory multifuntion F :

X × Y  Z with losed values has Fx upper quasi-ontinuous for eah x ∈ X. Then Fis M(X) ⊗ B(Y )-measurable.Proof. Fix z ∈ Z. By Propositions 1.3(i) and (iv), it is enough to prove that
(1) the real funtion gz(x, y) = ̺(z, F (x, y)) is M(X) ⊗ B(Y )-measurable.Let B(z, r) ⊂ Z be an open ball entred at z with radius r > 0 and �x (x, y) ∈ X × Y .Sine F y is M(X)-measurable, it follows that F y is weaklyM(X)-measurable, by Propo-sition 1.2(i). Thus, (F y)−(B(z, r)) ∈ M(X). Note that

(F y)−(B(z, r)) = {x ∈ X : F y(x) ∩B(z, r) 6= ∅} = {x ∈ X : ρ(z, F y(x)) < r}

= (gy
z )−1(−∞, r).



Measurability of multifuntions of two variables 43Therefore (gy
z )−1(−∞, r) ∈ M(X), i.e.,

(2) the y-setion of gz is M(X)-measurable.By the lower semiontinuity of Fx, we know that (Fx)−(B(z, r)) is an open subsetof Y . Sine
((gz)x)−1(−∞, r) = {y ∈ Y : ρ(z, Fx(y)) < r} = {y ∈ Y : Fx(y) ∩B(z, r) 6= ∅}

= (Fx)−(B(z, r)),it follows that ((gz)x)−1(−∞, r) is an open subset of Y . Thus
(3) the x-setion of gz is upper semiontinuous.By the upper quasi-ontinuity of Fx at y, there exists a quasi-open set A(y) ontaining
y suh that Fx|A(y) is upper semiontinuous at y (see (1.27)). Therefore,(4) there exists a nonempty open set O(y) suh that O(y) ⊂ A(y) ⊂ Cl(O(y)), y ∈

Cl(O(y)) and Fx|O(y)∪{y} is ontinuous at y.Let S = {s1, s2, . . .} be a dense subset of Y . Then, by (4), to eah point (x, y) ∈ X×Ythere orresponds a sequene (sn(x, y))n∈N suh that
(5) sn(x, y) ∈ S, lim

n→∞
sn(x, y) = y and lim

n→∞
gz(x, sn(x, y)) = gz(x, y),sine limn→∞ ρ(z, F (x, sn(x, y)) = ρ(z, F (x, y)).Now de�ne G : X  Y × R by

G(x) = {(y, r) ∈ Y × R : gz(x, y) ≥ r}.By (3), it is evident that
(6) G(x) ∈ C(Y × R) for every x ∈ X.We will show that
(7) G is weakly M(X)-measurable.Let {q1, q2, . . .} be an enumeration of the rational numbers. De�ne the sequene of fun-tions fnm : X → Y × R by

fnm(x) = (sn(x, y),min(qm, gz(x, sn(x, y)))).It is lear that(8) fnm : X → Y ×R is M(X)-measurable and fnm(x) ∈ G(x) for eah x ∈ X and all
n,m ∈ N.Thus, {fnm(x) : n,m ∈ N} ⊂ G(x) for eah x ∈ X, and so, by (6),

(9) Cl({fnm(x) : n,m ∈ N}) ⊂ G(x).Now let (y, r) ∈ G(x), i.e., gz(x, y) ≥ r. We an hoose the sequene (qm)m∈N so that
qm≤gz(x, sn(x, y)) for eah m,n∈N, and limm→∞ qm =r. Then limn→∞ limm→∞ fnm(x)

= (y, r), and so (y, r) ∈ Cl({fnm(x) : n,m ∈ N}), whih, together with (9), gives theequality
(10) G(x) = Cl({fnm(x) : n,m ∈ N}).



44 G. Kwiei«skaNow (7) is a simple onsequene of (8), (10) and Proposition 1.3(ii). Therefore
Gr(G) = {(x, y, r) ∈ X × Y × R : (y, r) ∈ G(x)} ∈ M(X) ⊗ B(Y × R),by Proposition 1.3(iii), and thus

(11) (Gr(G))r = {(x, y) ∈ X × Y : (x, y, r) ∈ Gr(G)} ∈ M(X) ⊗ B(Y ).Note that
(Gr(G))r = {(x, y) ∈ X × Y : (y, r) ∈ G(x)} = {(x, y) ∈ X × Y : gz(x, y) ≥ r}

= X × Y \ {(x, y) ∈ X × Y : gz(x, y) < r} = X × Y \ g−1
z (−∞, r).Therefore, by (11), we have g−1

z (−∞, r) ∈ M(X) ⊗ B(Y ), and (1) is proved.The lassial result of Kempisty [55℄ asserts that a real funtion of two real variableswhih is separately quasi-ontinuous is quasi-ontinuous as a funtion of two variables.But suh a funtion may not be produt measurable, as shown by Marus (see [79, (x),p. 49℄). Some generalization of the result of Kempisty to the multivalued ase was givenby Neubrunn (see [85, 4.1.6 and 4.1.5℄).The situation is di�erent for strong quasi-ontinuity. It is known that there is a fun-tion f : R
2 → R having fx and fy ontinuous (and therefore also strongly quasi-ontinu-ous), suh that the set D(f) of its disontinuity points is of positive m2 measure (see [43,Theorem 7℄). Thus, by Proposition 1.19, f is not strongly quasi-ontinuous as a funtionof two variables. But it turns out that it is produt measurable.Now our aim is to show that if a multifuntion is measurable in the �rst variable andboth lower and upper strongly quasi-ontinuous in the seond variable, then it is produtmeasurable. For this purpose we introdue some auxiliary multifuntions.Let X 6= ∅, let (Y, T (Y )) be a separable topologial spae with a ountable dense set

P , and let (Z, T (Z)) be a topologial spae. We de�ne two multifuntionsG∗ : X×Y  Zand G∗ : X × Y  Z as follows:
G∗(x, y) = q- lim inf

t→y∧t∈P
(Fx)(t),(2.2)

G∗(x, y) = p- lim sup
t→y∧t∈P

(Fx)(t).(2.3)Proposition 1.12(i) impliesProposition 2.20. If F : X × Y  Z is a multifuntion suh that Fx is lower quasi-ontinuous for every x ∈ X, then F (x, y) ⊂ G∗(x, y) for all (x, y) ∈ X × Y , where G∗ isgiven by (2.3).Similarly, Proposition 1.12(ii) yieldsProposition 2.21. If the spae (Z, T (Z)) is regular and seond ountable, and if F :

X×Y  Z is a ompat valued multifuntion suh that Fx is upper quasi-ontinuous forevery x ∈ X, then G∗(x, y) ⊂ F (x, y) for all (x, y) ∈ X × Y , where G∗ is given by (2.2).Now we assume that (X,M(X), µ) is a measure spae and (Y, ρ,M(Y ), ν) is a sep-arable metri measure spae, where ν is σ-�nite and B(Y ) ⊂ M(Y ). We suppose that
(G,→) is a di�erentiation basis of (Y, ρ,M(Y ), ν) (see (1.23)) with the density property(see (1.24)).



Measurability of multifuntions of two variables 45We are now in a position to prove the main theorem of this setion.Theorem 2.22. If Z is a Polish spae and F : X × Y  Z is a ompat valued multi-funtion suh that(i) F y is weakly M(X)-measurable for eah y ∈ Y ,(ii) Fx is both lower and upper strongly quasi-ontinuous with respet to G for eah
x ∈ X,then F is measurable with respet to the µ× ν-ompletion of M(X) ⊗ B(Y ).Proof. We �rst note that

(1) ν(D(Fx)) = 0 for eah x ∈ X,by assumption (ii) and Proposition 1.19.Let P be a ountable dense subset of Y and let G∗ and G∗ be de�ned by (2.2) and(2.3), respetively. Then, by Propositions 2.20 and 2.21,
(2) G∗(x, y) ⊂ F (x, y) ⊂ G∗(x, y) for all (x, y) ∈ X × Y.Our next step is to show that both G∗ and G∗ are measurable with respet to the µ× ν-ompletion of M(X) ⊗ B(Y ).Let B denote a ountable base of Y . We have (see (1.14) and (1.15))

G∗(x, y) =
⋂

U∈B∧y∈Cl(U)

Cl
( ⋃

t∈U∩P

F (x, t)
)
.For eah U ∈ B we de�ne the multifuntion GU : X × Y  Z by

GU (x, y) =
⋃

t∈U∩P

F (x, t),and observe that for eah V ∈ T (Z) we have
GU

−(V ) =
{

(x, y) :
⋃

t∈U∩P

F (x, t) ∩ V 6= ∅
}

=
⋃

t∈U∩P

({x ∈ X : F (x, t) ∩ V 6= ∅} × Y )

=
⋃

t∈U∩P

((F t)
−

(V ) × Y ) ∈ M(X) ⊗ B(Y ),sine U ∩ P is ountable and all setions F t are weakly M(X)-measurable. Then themultifuntion GU : X × Y  Z de�ned by
GU (x, y) = Cl(GU (x, y))is M(X) ⊗ B(Y )-measurable. Note that

G∗(x, y) =
⋂

{GU (x, y) : U ∈ B ∧ y ∈ Cl(U)}.Now we de�ne the multifuntion HU : X × Y  Z by
HU (x, y) =

{
GU (x, y) if y ∈ Cl(U),
Z if y 6∈ Cl(U).Observe that for eah V ∈ T (Z) we have

HU
−(V ) = (GU )−(V ) ∩ (X × Cl(U)) ∪ (X × (Y \ Cl(U)) ∈ M(X) ⊗ B(Y ),



46 G. Kwiei«skasine (GU )−(V ) ∈ M(X) ⊗ B(Y ). Therefore HU is weakly M(X) ⊗ B(Y )-measurable.Furthermore,
G∗(x, y) =

⋂

U∈B

HU (x, y).Thus, by Proposition 1.5, G∗ is measurable with respet to the µ × ν-ompletion of
M(X) ⊗ B(Y ); the proof for G∗ is analogous.Now onsider the set

A = {(x, y) : G∗(x, y) 6= G∗(x, y)}.Sine G∗ and G∗ are measurable with respet to the µ× ν-ompletion of M(X)⊗B(Y ),it is lear that A belongs to that ompletion, by Proposition 1.4. By (1), the x-setion of
A is ν-negligible for eah x ∈ X, sine Ax = {y ∈ Y : G∗(x, y) 6= G∗(x, y)} ⊂ D(Fx) (see(1.17)).Thus A is µ×ν-negligible. Furthermore, the double inlusion (2) gives the impliation

G∗(x, y) = G∗(x, y) ⇒ G∗(x, y) = F (x, y),whih guarantees the µ× ν-negligibility of the set
(3) A1 = {(x, y) : G∗(x, y) 6= F (x, y)} ⊂ A.Next, let U be an arbitrary open subset of Z. Sine G∗ is in partiular weakly measurablewith respet to the µ× ν-ompletion of M(X) ⊗ B(Y ), we an suppose that
(4) G−

∗ (U) = (B \A2) ∪A3,where B ∈ M(X) ⊗ B(Y ) and the sets A2 and A3 are µ× ν-negligible.Note that F−(U) = (F−(U) ∩ (X × Y \ A1)) ∪ (F−(U) ∩A1). Thus, by (3) and (4),we have
F−(U) = (G∗

−(U) ∩ (X × Y \A1)) ∪ (F−(U) ∩A1)

= [((B \A2) ∪A3) ∩ (X × Y \A1)] ∪ (F−(U) ∩A1)

= (B \ (A1 ∪A2)) ∪ [A3 ∩ (X × Y \A1)] ∪ (F−(U) ∩A1).Sine B ∈ M(X) ⊗ B(Y ) and the sets Ai are µ× ν-negligible for i = 1, 2, 3, Proposition1.2(ii) �nishes the proof.
10. Multifuntions whose setions are derivativesThe purpose of this setion is to give some su�ient onditions for joint measurability ofa multifuntion with the (J) property.The (J) property for real funtions of two real variables was introdued by Lipi«ski[78℄ and intensively studied by Grande in the ase of real funtions de�ned on moregeneral spaes (see [41℄). Now we will onsider this topi in the ase of mltifuntions.From now on we suppose that (X,M(X)) is a measurable spae, (Z, ‖·‖) is a re�exiveBanah spae, and I ⊂ R is an interval.Definition 2.23. We will say that a multifuntion F : X× I  Z with values in Cbc(Z)has the (J) property if, for eah y ∈ I, the setion F y is weakly M(X)-measurable, for



Measurability of multifuntions of two variables 47eah x ∈ X, the setion Fx is weakly L(R)-measurable, and for eah interval P ⊂ I, themultifuntion ΦP : X  Z given by
(2.4) ΦP (x) =

\
P

F (x, y) dyis weakly M(X)-measurable.Example 2.17 shows that a multifuntion with the (J) property need not be produtmeasurable.Proposition 2.24. Suppose that the σ-�eld M(X) is omplete with respet to a σ-�nitemeasure. If the spae (Z, ‖ · ‖) is separable and F : X × I  Z is a multifuntion withvalues in Cbc(Z) suh that Fx is R-integrable for eah x ∈ X and F y is weakly M(X)-measurable for eah y ∈ I, then F has the (J) property.Proof. Fix P = [c, d] ⊂ I. We only need to show that the multifuntion ΦP given by(2.4) is weakly M(X)-measurable. Let yi = c+ i(d− c)/n for i = 0, 1, . . . , n and n ∈ N.If x ∈ X, then, by the R-integrability of Fx, we have
(R)
\
P

F (x, y) dy = h- lim
n→∞

n∑

i=1

1

n
Fx(yi) = h- lim

n→∞

1

n

n∑

i=1

F yi(x),and then, appyling (1.38)(ii), we have
ΦP (x) = h- lim

n→∞

1

n

n∑

i=1

F yi(x).Fix n ∈ N and de�ne the multifuntion Φn : X  Z by
Φn(x) =

n∑

1=1

F yi(x).Then Φn(x) ∈ Cbc(Z) for x ∈ X (see (1.29)(iv)). Sine F yi is weakly M(X)-measurablefor i = 0, 1, . . . , n, so is Φn, by Theorem III.40 of [14℄. Thus ΦP is weakly M(X)-measu-rable, by (1.21).Now we an prove the main theorem of this setion.Theorem 2.25. If a multifuntion F : X × I  Z with values in Cbc(Z) has the (J)property and Fx is a derivative for eah x ∈ X, i.e.,
Fx(y) = h- lim

∆y→0

1

∆y

y+∆y\
y

Fx(t) dt for y ∈ I,then F is weakly measurable with respet to the µ×m-ompletion of M(X) ⊗ B(R).Proof. Fix n ∈ N and let ∆ = {y0,n, y1,n, . . . , yn,n} be a partition of I into n equalintervals, i.e., yi,n − yi−1,n = 1/n for i = 1, . . . , n. Set
Fn(x, y) =

{
n
Tyi,n

yi−1,n
F (x, y) dy if x ∈ X and y ∈ (yi−1,n, yi,n),

{θ} if x ∈ X and y = yi,n, i = 0, 1, . . . , n.



48 G. Kwiei«skaLet Φi,n : X  Z, for i = 1, . . . , n, be given by
Φi,n(x) =

yi,n\
yi−1,n

F (x, y) dy.By the (J) property of F , we see that
(1) Φi,n is weakly M(X)-measurable for eah i = 1, . . . , n.De�ne Hn : X ×

⋃n
i=1(yi−1,n, yi,n) Z by

Hn(x, y) = Φi,n(x).If V ⊂ Z is open, then, by (1), we have
H−

n (V ) =
n⋃

i=1

Φ−
i,n(V ) × (yi−1,n, yi,n) ∈ M(X) ⊗ B(R).Therefore Fn is weakly M(X) ⊗ B(R)-measurable and by (1.21) we only need to showthat

(2) h- lim
n→∞

Fn(x, y) = F (x, y) for every x ∈ X and almost every y ∈ I.Fix (x0, y0) ∈ X × I suh that y0 6= yi,n for n ∈ N and i = 1, . . . , n. Choose a sequene
(yn(i)) suh that yn(i)−1 < y0 < yn(i). Sine Fx0

is a derivative at y0, it follows that
F (x0, y0) = h- lim

∆y→0

1

∆y

y0+∆y\
y0

F (x0, y) dy.Assume that
An =

1

y0 − yn(i)−1

y0\
yn(i)−1

F (x0, y) dy, Bn =
1

yn(i) − y0

yn(i)\
y0

F (x0, y) dyand
Cn =

1

yn(i) − yn(i)−1

yn(i)\
yn(i)−1

F (x0, y) dy.Then h- limn→∞An = F (x0, y0) and h-limn→∞Bn = F (x0, y0). Moreover
Fn(x0, y0) = Cn =

1

yn(i) − yn(i)−1

[ y0\
yn(i)−1

F (x0, y) dy +

yn(i)\
y0

F (x0, y) dy
]

=
y0 − yn(i)−1

yn(i)−yn(i)−1

An +
yn(i) − y0

yn(i) − yn(i)−1
Bn.Let αn =

y0−yn(i)−1

yn(i)−yn(i)−1
. Sine the sequene (αn) is bounded, we an take a subsequene

(αnk
)k∈N suh that αnk

→ α0 ∈ [0, 1]. Then
h- lim

k→∞
Cnk

= h- lim
k→∞

(αnk
Ank

+ (1 − αnk
)Bnk

) = α0F (x0, y0) + (1 − α0)F (x0, y0),and we onlude that
h- lim

k→∞
Cnk

= F (x0, y0),



Measurability of multifuntions of two variables 49sine the set F (x0, y0) is onvex. Therefore any subsequene of (Fn(x0, y0))n∈N onvergesto F (x0, y0), whih �nishes the proof of (2).Remark 2.26. If, in Theorem 2.25, we suppose that the measure µ is σ-�nite, then themultifuntion F will be measurable with respet to the µ×m-ompletion ofM(X)⊗B(Y ),by 1.3(v).As a straightforward onsequene of (1.38)(i), Corollary 1.41, Proposition 2.24 andTheorem 2.25, we have the following orollary (f. Proposition 2.2).Corollary 2.27. Let (X,M(X), µ) be a measure spae, where µ is σ-�nite, and let
(Z, ‖ · ‖) be separable. If a multifuntion F : X × I  Z with values in Cbc(Z) has Fxh-ontinuous for eah x ∈ X and F y weakly M(X)-measurable for eah y ∈ I, then F ismeasurable with respet to the µ×m-ompletion of M(X) ⊗ B(R).

11. The Sorza-Dragoni property of multifuntionsWe onlude this hapter by introduing multifuntions having the Sorza-Dragoni prop-erty and giving their onnetions with M(X) ⊗ B(Y )-measurable multifuntions.G. Sorza-Dragoni [105℄ showed that every Carathéodory funtion f : X × Y → Zhas the property (now alled the Sorza-Dragoni property) that, given any ε > 0, there isa losed subset Xε of X with the measure of X \Xε less than ε, suh that the restritionof f to Xε × Y is ontinuous. This result was extended in several diretions (also tomultifuntions), and used e.g. in ontrol theory problems (see [2℄, [7℄, [10℄, [13℄, [36℄, [51℄,[56℄, [60℄, [110℄, [115℄, and others).Let (X, T (X),M(X), µ) be a topologial measure spae and let (Y, T (Y )) and
(Z, T (Z)) be topologial spaes.We say that a multifuntion F : X×Y  Z has the upper (resp. lower) Sorza-Dragoniproperty if, given ε > 0, one may �nd a losed subset Xε of X suh that µ(X \Xε) < ε,and the restrition of F to Xε × Y is upper (resp. lower) semiontinuous. If F has boththe upper and lower Sorza-Dragoni property, then we say that F has the Sorza-Dragoniproperty.If (Z, ̺) is a metri spae, then replaing in the above de�nition the upper (resp. lower)semiontinuity of the restrition of F by its h-upper (resp. h-lower) semiontinuity, weobtain the h-upper (resp. h-lower) Sorza-Dragoni propoerty and the h-Sorza-Dragoniproperty of F .Most of the results on the Sorza-Dragoni property of a multifuntion F have requiredthat its values are ompat and the setions Fx are ontinuous. In [48℄ it is shown that, if
(X, T (X)) is a loally ompat Hausdor� spae and µ is a Radon measure on X, Y is aPolish spae and (Z, ̺) is a separable metri spae, then a ompat valued Carathéodorymultifuntion has the Sorza-Dragoni property, while a losed valued Carathéodory mul-tifuntion only has the lower Sorza-Dragoni property, in general.The most omplete presentation of multifuntions having the Sorza-Dragoni proper-ties is ontained in the thesis [117℄. In that paper some relations between semi-Carathéo-



50 G. Kwiei«skadory multifuntions being weakly M(X) ⊗ B(Y )-measurable and having the Sorza-Dragoni property are established.Theorem 2.28 ([117, Theorem 4.2.5(i)℄). Let (X,M(X), µ) be a measure spae, where µis regular and σ-�nite, (Y, d) a omplete separable metri spae and (Z, ̺) a separable met-ri spae. Let F : X × Y  Z be a losed valued lower semi-Carathéodory multifuntion.Then F has the lower Sorza-Dragoni property if and only if F is Mµ(X) ⊗ B(Y )-mea-surable.The following results are onsequenes of the above theorem and Theorems 22.18 and22.19.Theorem 2.29. If (X,M(X), µ) is a measure spae with µ regular and σ-�nite, Y isa separable re�exive Banah spae, and F : X × Y  Y a lower semi-Carathéodorymultifuntion with losed onvex values suh that Fx : Y  Yω is upper semiontinuousfor eah x ∈ X (where Yω denotes Y with the weak topology), then F has the lowerSorza-Dragoni property.Theorem 2.30. Let (X,M(X), µ) be a measure spae with µ regular and σ-�nite, Y aPolish spae, and (Z, ̺) a separable metri spae. If F : X × Y  Z is a ompat valuedlower semi-Carathéodory multifuntion suh that Fx is upper quasi-ontinuous for every
x ∈ X, then F has the lower Sorza-Dragoni property.In the ase of an h-lower semi-Carathéodory multifuntion an analogue to Theorem2.28 is not true, in general. Consider the following example.Example 2.31. Let I = [0, 1] and let F : I × R R

2 be given by
F (x, y) = {(α, xα) : α ∈ R}.Then F is h-lower semi-Carathéodory. It is also L(R) ⊗ B(R)-measurable. But, for eah

y ∈ R, F y is h-lower semiontinuous on no subset of I. Therefore, F does not have the
h-lower Sorza-Dragoni property.Theorem 2.32 ([117, Theorem 4.2.5(ii) and (iii)℄). Let (X,M(X), µ) be a measure spaewith µ regular and σ-�nite, (Y, d) a omplete separable metri spae, and (Z, ̺) a sep-arable metri spae. Let F : X × Y  Z be a losed valued h-lower semi-Carathéodorymultifuntion. Then(i) If F has the h-lower Sorza-Dragoni property , then it is Mµ(X)⊗B(Y )-measur-able.(ii) If F is ompat valued , then it has the h-lower Sorza-Dragoni property if andonly if it is Mµ(X) ⊗ B(Y )-measurable.An analogue of Theorem 2.32(i) is also true for upper semi-Carathéodory multifun-tions.Theorem 2.33 ([117, Theorem 4.2.7(ii)℄). Let (X,M(X), µ) be a measure spae with µregular and σ-�nite, (Y, d) a omplete separable metri spae, (Z, ̺) a separable metrispae, and F : X ×Y  Z a losed valued upper semi-Carathéodory (resp. h-upper semi-



Measurability of multifuntions of two variables 51Carathéodory) multifuntion. If F has the upper (resp. h-upper) Sorza-Dragoni property ,then it is Mµ(X) ⊗ B(Y )-measurable.Note that the multifuntion F in Example 2.31 is both upper semi-Carathéodory and
h-upper semi-Carathéodory. But it has neither the h-upper nor the upper Sorza-Dragoniproperty. In view of this example the problem arises to haraterize those upper semi-Carathéodory multifuntions whih have the upper Sorza-Dragoni property. A ruialrole in solving this problem is played by the Filippov ondition [30℄.If (X,M(X)) is a omplete measurable spae, Y is a Polish spae and (Z, T (Z)) isa topologial spae, then any M(X) ⊗ B(Y )-measurable multifuntion F : X × Y  Zsatis�es the Filippov ondition, i.e., for eah open set U ⊂ Y and eah V ∈ T (Z), the set
{x ∈ X : F (x, U) ⊂ V } isM(X)-measurable (see [117, Theorem 4.2.8℄). Furthermore, theFilippov ondition is a su�ient ondition for the Sorza-Dragoni property of a ompatvalued upper semi-Carathéodory multifuntion (see [117, Theorem 4.2.9℄ or [1, Lemma5.1℄). Finally, in the �upper� ase, the following result is true.Theorem 2.34 ([117, Conlusion 4.2.10℄). Let (X,M(X), µ) be a measure spae with µregular and σ-�nite, (Y, d) a omplete separable metri spae, (Z, ̺) a separable metrispae, and F : X×Y  Z a ompat valued upper semi-Carathéodory (resp. h-upper semi-Carathéodory) multifuntion. Then F has the upper (or equivalently h-upper) Sorza-Dragoni property if and only if it is Mµ(X) ⊗ B(Y )-measurable.An interesting result on upper semi-Carathéodory multifuntions is given in [102℄. If
(X, d,M(X), µ) is a metri measure spae, where µ is σ-�nite omplete regular and Xis loally ompat, and if (Y, ρ) and (Z, ̺) are separable metri spaes, then for everylosed valued upper semi-Carathéodory multifuntion F : X × Y  Z there is a losedvalued multifuntion G : X×Y  Z whih has the Sorza-Dragoni property and satis�es
G(x, y) ⊂ F (x, y) for µ-almost every x ∈ X and for all y ∈ Y .



3. SUP-MEASURABILITY OF MULTIFUNCTIONSSup-measurability of multifuntions has been onsidered in the literature (see for example[1℄, [61℄, [108℄, [111℄, [116℄ or [118℄). The purpose of this hapter is to give some newsu�ient onditions for this property.Let (X,M(X)) be a measurable spae and let (Y, T (Y )) and (Z, T (Z)) be topologialspaes. If F : X × Y  Z is a multifuntion and the superposition of the Carathéodorytype H(x) = F (x,G(x)) isM(X)-measurable (resp. weaklyM(X)-measurable) for everylosed valued M(X)-measurable multifuntion G : X  Y , then F is alled M(X)-sup-measurable (resp. weakly M(X)-sup-measurable).The following theorem is known (see [118, Theorem 1℄).Theorem 3.1. Let (X,M(X), µ) be a measure spae with µ σ-�nite. Let Y be a Polishspae and (Z, T (Z)) a topologial spae. If F : X × Y  Z is an Mµ(X) ⊗ B(Y )-measurable multifuntion, then it is Mµ(X)-sup-measurable.Note that this is a generalization of Shragin's theorem to the multivalued ase (see[106, Theorem 2 and Theorem 6℄).The projetion property of the pair ((X,Mµ(X));Y ) in the above theorem is essential,sine F may not be M(X)-sup-measurable.Example 3.2. Let X = [0, 1], Y = N (the irrational numbers in (0, 1)) and Z = R. If
K ⊂ X × Y is losed with projX(K) 6∈ B(X) and F : X × Y  Z is given by

F (x, y) =

{
[0, 2] if (x, y) ∈ K,
[0, 1] if (x, y) 6∈ K,then F is B(X)⊗B(Y )-measurable and F−((1, 3)) = K ∈ B(X)⊗B(Y ). De�neG : X  Yby G(x) = Y . Then Gr(G) = X × Y . Set H(x) = F (x,G(x)). Then

H−((1, 3)) = {x ∈ X : F (x,G(x)) ∩ (1, 3) 6= ∅}

= {x ∈ X : F (x, y) ∩ (1, 3) 6= ∅ ∧ y ∈ G(x)}

= projX{(x, y) ∈ X × Y : F (x, y) ∩ (1, 3) 6= ∅ ∧ y ∈ G(x)}

= projX(F−((1, 3)) ∩ Gr(G)) = projX(K ∩X × Y ) = projX(K) 6∈ B(X),i.e., F is not weakly B(X)-sup-measurable.The above example also shows that a weakly M(X)⊗B(Y )-measurable multifuntionmay not be weakly M(X)-sup-measurable.One an strengthen the weak M(X)⊗B(Y )-measurability assumption to ensure weak
M(X)-sup-measurability. To see this we need the following proposition.[52℄



Measurability of multifuntions of two variables 53Proposition 3.3. Let (X,M(X)) be a measurable spae, Y a Polish spae and (Z, T (Z))a topologial spae. Suppose that F : X×Y  Z is a multifuntion suh that eah setion
Fx is lower semiontinuous , and for eah M(X)-measurable funtion h : X → Y , themultifuntion H(x) = F (x, h(x)) is weakly M(X)-measurable. Then F is weakly M(X)-sup-measurable.Proof. LetG : X  Y be anM(X)-measurable multifuntion with losed values. ThenGis weaklyM(X)-measurable and, by Proposition 1.3(ii), G has a Castaing representation.Thus there is a sequene (gn)n∈N of M(X)-measurable funtions gn : X → Y suh that
G(x) = Cl({gn(x) : n ∈ N}) for eah x ∈ X. Let H(x) = F (x,G(x)) and U ∈ T (Z).Then

H−(U) = {x ∈ X : F (x,G(x)) ∩ U 6= ∅}

=
{
x ∈ X :

( ⋃

y∈G(x)

F (x, y)
)
∩ U 6= ∅

}

= {x ∈ X : ∃y ∈ G(x) F (x, y) ∩ U 6= ∅} = {x ∈ X : G(x) ∩ F−
x (U) 6= ∅}

= {x ∈ X : Cl({gn(x) : n ∈ N}) ∩ F−
x (U) 6= ∅}.By the lower semiontinuity of Fx, the set F−

x (U) is open for eah x ∈ X. Thus wean omit the losure in the last term of the above expression to obtain
H−(U) = {x ∈ X : {gn(x) : n ∈ N} ∩ F−

x (U) 6= ∅} =
⋃

n∈N

{x ∈ X : F (x, gn(x)) ∩ U 6= ∅},and, by assumption, H−(U) ∈ M(X), sine gn is M(X)-measurable for every n ∈ N.Theorem 3.4. Let (X,M(X)) be a measurable spae, Y a Polish spae and (Z, T (Z)) atopologial spae. If a multifuntion F : X × Y  Z is weakly M(X)⊗B(Y )-measurablewith Fx lower semiontinuous for eah x ∈ X, then F is weakly M(X)-sup-measurable.Proof. Let h : X → Y be an M(X)-measurable funtion and let H(x) = F (x, h(x)).Observe that for eah M ⊂ Z we have
(1) H−(M) = {x ∈ X : F (x, h(x)) ∩M 6= ∅} = {x ∈ X : (x, h(x)) ∈ F−(M)}.Let A ∈ M(X) and B ∈ B(Y ). Then

{x ∈ X : (x, h(x)) ∈ A×B} = A ∩ h−1(B) ∈ M(X),and so
(2) {x ∈ X : (x, h(x)) ∈ C} ∈ M(X) for eah C ∈ M(X) ⊗ B(X).Let V ∈ T (Z). By the weak M(X)⊗B(Y )-measurability of F , F−(V ) ∈ M(X)⊗B(Y ).Then H−(V ) ∈ M(X), by (1) and (2). Thus H is weakly M(X)-measurable and, byProposition 3.3, F is weakly M(X)-sup-measurable.As a straightforward onsequene of Theorem 3.1 and Proposition 2.2 we have thefollowing orollary (f. [111℄ and [116℄).Corollary 3.5. If (X,M(X), µ) is a measure spae with µ σ-�nite, Y a Polish spae,
(Z, ̺) a separable metri spae, and F : X × Y  Z a ompat valued Carathéodorymultifuntion, then F is Mµ(X)-sup-measurable.



54 G. Kwiei«skaNote that the assumption of ompatness of values of F is essential.Example 3.6. LetX = [0, 1], Y = N and Z = R
2. Let E ⊂ X be a non-L(R)-measurableset. Then F : X × Y  Z given by

F (x, y) =






proj−1
X (x) if x 6= y,

proj−1
X (x) if x = y and x ∈ E,

{x} × [0, 1] if x = y and x ∈ X \ E,is a Carathéodory multifuntion. But the multifuntion H(x) = F (x, {x}) is not L(R)-measurable, sine H+((0, 1) × (0, 1)) = E 6∈ L(R).It is easy to see that a lower or upper semi-Carathéodory multifuntion need not besup-measurable (even if it is ompat valued and the σ-�eld M(X) is omplete withrespet to a σ-�nite measure).Example 3.7. Consider F : R × R R de�ned by
F (x, y) =






[−1, 2] if x 6= y,
[−1, 0] if x = y and x ∈ A,

[1, 2] if x = y and x ∈ R \A,where A 6∈ L(R). It is lear that F is a lower semi-Carathéodory multifuntion. But if
G(x) = {x} for x ∈ R, then H(x) = F (x,G(x)) is not L(R)-measurable.One an strengthen the lower semi-Carathéodory assumption to ensure sup-measura-bility. For instane, by Theorems 2.18 and 3.1 we have the following result.Theorem 3.8. If (X,M(X), µ) is a measure spae with µσ-�nite, Y a re�exive separableBanah spae, and F : X × Y  Y a lower semi-Carathéodory multifuntion with losedonvex values suh that eah Fx : Y  Yω is upper semiontinuous (where Yω denotes Ywith the weak topology), then F is Mµ(X)-sup-measurable.By Theorems 2.19 and 3.1, we obtain the following result.Theorem 3.9. Let (X,M(X), µ) be a measure spae with µ σ-�nite. Let Y be a Pol-ish spae and (Z, T (Z)) a metrizable σ-ompat spae. If F : X × Y  Z is a losedvalued lower semi-Carathéodory multifuntion suh that eah setion Fx is upper quasi-ontinuous , then F is Mµ(X)-sup-measurable.The next result follows at one from Theorems 2.28 and 3.1.Theorem 3.10. Let (X,M(X), µ) be a measure metri spae with µ σ-�nite and regular.Let Y be a Polish spae and (Z, ̺) a separable metri spae. If F : X × Y  Z is alosed valued lower semi-Carathéodory multifuntion whih has the lower Sorza-Dragoniproperty , then F is Mµ(X)-sup-measurable.Remark 3.11. Let (X,M(X), µ) be a measure spae with µσ-�nite, Y a Polish spaeand (Z, T (Z)) a perfetly normal topologial spae. If F : X × Y  Z is a ompatvalued multifuntion ful�lling the assumptions of Theorem 2.3, then F is M(X)⊗B(Y )-measurable (see Remark 2.4(i)), and hene alsoMµ(X)-sup-measurable, by Theorem 3.1.In partiular, by Corollary 2.6, we obtain the following result.



Measurability of multifuntions of two variables 55Proposition 3.12. Let (X,M(X), µ) be a measure spae with µ σ-�nite, and (Z, T (Z))a perfetly normal topologial spae. If F : X ×R Z is a ompat valued multifuntionsuh that eah Fx is right-ontinuous (resp. left-ontinuous) and eah F y is M(X)-measurable, then F is Mµ(X)-sup-measurable.It is essential that the x-setions of F in the above proposition are all right-ontinuous(or all left-ontinuous).Example 3.13. Let F : [0, 1]2  R be given by
F (x, y) =






[1, 2] if x ∈ A and y ≤ x,
[1, 2] if x ∈ R \A and y < x,
{0} in other ases.where A ⊂ [0, 1] is non-Lebesgue measurable. Then some x-setions of F are right-ontinuous, others are left-ontinuous. Furthermore, eah y-setion is L(R)-measurable.But F is not L(R)-sup-measurable, sine H(x) = F (x, {x}) is not L(R)-measurable.Note that Proposition 3.12 remains true if we suppose that (Z, T (Z)) is metrizable

σ-ompat and F is losed valued (see Remark 2.4(ii)).Now we shall onsider the sup-measurability of multifuntions with the (J) property.Example 3.13 shows that suh a multifuntion may not be sup-measurable. One anstrengthen the (J) property assumption to ensure sup-measurability.Let (X,M(X)) be a measurable spae and (Z, ̺) a separable metri spae. Let
(Fn)n∈N be a sequene of losed valued multifuntions Fn : X × Y  Z. Observe that(3.1) If F = h-limn→∞ Fn and eah Fn is M(X)-sup-measurable, then F is weakly

M(X)-sup-measurable.Indeed, let z ∈ Z. By (1.12), we have limn→∞ ̺(z, Fn(x, y)) = ̺(z, F (x, y)) for eah
(x, y) ∈ X × Y . Let G : X  Y be M(X)-measurable with losed values. Let x ∈ X,
Hn(x) = Fn(x,G(x)) for eah n ∈ N, and H(x) = F (x,G(x)). It is lear that
limn→∞ ̺(z,Hn(x)) = ̺(z,H(x)). Fix n ∈ N. Note that Fn being M(X)-sup-measura-ble implies Fn is weakly M(X)-sup-measurable. Hene Hn is weakly M(X)-measurable.Therefore, by Proposition 1.3 (i), the real funtion x 7→ ̺(z,Hn(x)) isM(X)-measurable.Thus the real funtion x 7→ ̺(z,H(x)) is M(S)-measurable and, again by Proposition1.3(i), H is weakly M(X)-measurable.From now on we assume that (X,M(X), µ) is a measure spae with µ σ-�nite, and
I ⊂ R is an interval.Theorem 3.14. Let (Z, ‖·‖) be a separable Banah spae. If a multifuntion F : X×I  

Z with values in Kc(Z) has the (J) property and eah setion Fx is a derivative, then Fis Mµ(X)-sup-measurable.Proof. Let (x, y) ∈ X × I. Sine Fx is a derivative at y,
(1) F (x, y) = h- lim

∆y→0

1

∆y

y+∆y\
y

F (x, t) dt.



56 G. Kwiei«skaFor every n ∈ N we de�ne Fn : X × I  Z by
Fn(x, y) = n

y+1/n\
y

F (x, t) dt.Then h-limn→∞ Fn(x, y) = F (x, y) for (x, y) ∈ X × Y , by (1). For �xed n ∈ N, eahsetion (Fn)x is ontinuous, by Lemma 1.36 and (1.11)(iii). Sine F has the (J) property,
(Fn)y isM(X)-measurable for every y ∈ I. Thus Fn is a Carathéodory multifuntion, andthus, by Corollary 3.5, it is Mµ(X)-sup-measurable. Then, by (3.1), F is weakly Mµ(X)-sup-measurable, and hene also Mµ(X)-measurable, sine its values are ompat.In partiular, by Proposition 2.24 and the above theorem, we have the following result.Corollary 3.15. If (Z, ‖ · ‖) is a separable Banah spae and F : X × I  Z is amultifuntion with values in Kc(Z) suh that eah Fx is an R-integrable derivative andeah F y is M(X)-measurable, then F is Mµ(X)-sup-measurable.Theorem 3.1 implies that eah M(X) ⊗ B(Y )-measurable multifuntion is Mµ(X)-sup-measurable whenever µ is σ-�nite and Y is a Polish spae. The following exampleshows that for σ-�elds in X × Y more general than the produt M(X) ⊗ B(Y ), thisproperty may not be true.Example 3.16. Let X = Y = R and let E 6∈ L(R). If F : R

2
 R is given by

F (x, y) =






[0, 2] if x 6= y,
[0, 1] if x = y ∧ x ∈ E,

{0} if x = y ∧ x 6∈ E,then F is L(R2)-measurable. But H(x) = F (x, {x}) is not L(R)-measurable, i.e., F isnot L(R)-sup-measurable.We end this hapter with some results on the sup-measurability of a multifuntionwhih is measurable with respet to a omplete σ-�eld treated as a multifuntion of twovariables.Theorem 3.17. Let (Z, ̺) be a separable metri spae and F : X×R Z a losed valuedweakly Mµ×m(X×R)-measurable multifuntion suh that eah setion Fx is weakly L(R)-measurable. If for eah open set V ⊂ Z,
(i) Dl(F

−
x (V ), y) > 2/3 and Dl(F

+
x (V ), y) > 2/3 for eah (x, y) ∈ X × R,then F is weakly Mµ(X)-sup-measurable.Proof. Let H : X  R be losed valued and Mµ(X)-measurable. By Proposition 1.3(i),it is su�ient to prove that the real funtion

(1) gz(x) = ̺(z, F (x,H(x)) is Mµ(X)-measurable for every z ∈ Z.Fix z ∈ Z. To prove (1), we apply the Davies lemma [17℄, i.e., it is su�ient to showthat, for every ε > 0, the family Dε = {D ∈ M(X) : oscD(gz) ≤ ε} satis�es the followingondition:



Measurability of multifuntions of two variables 57(D) for every A ∈ M(X) of positive measure µ there exists a D ∈ Dε suh that D ⊂ Aand µ(D) > 0.Fix ε > 0. Let ([an, bn])n∈N be a sequene of intervals with nonnegative rational end-points suh that bn − an < ε/4 for n ∈ N. Let A ∈ M(X) with µ(A) > 0, and put
An = {x ∈ A : an ≤ gz(x) ≤ bn} for n ∈ N.Then A =

⋃
n∈N

An. Sine µ(A) > 0, there is an n0 ∈ N suh that µ∗(An0
) > 0.Furthermore, [an0

, bn0
] ⊂ [gz(x) − ε/2, gz(x) + ε/2] for x ∈ An0

and
(2) gz(x) = ̺(z, F (x,H(x)) = ̺

(
z,

⋃

y∈H(x)

F (x, y)
)
∈ [an0

, bn0
].Let fz : X × R → R be de�ned by fz(x, y) = ̺(z, F (x, y)) and let x0 ∈ An0

. We put
M = {(x, y) ∈ X × R : |fz(x, y) − gz(x0)| ≤ ε/2}.Observe that fz is Mµ×m(X×R)-measurable, sine F is weakly Mµ×m(X×R)-measur-able. Therefore

M = f−1
z ([gz(x0) − ε/2, gz(x0) + ε/2]) ∈ Mµ×m(X × R).Let x ∈ X. By the weak L(R)-measurability of Fx, the x-setion of fz is L(R)-measurable.Thus Mx ∈ L(R) for every x ∈ X. We will show that(3) for eah M(X)-measurable seletion h of H, there is a set C ∈ M(X) suh that

An0
⊂ C and Du(Mx, h(x) ≥ 1/3 for all x ∈ C.Note that

Mx = {y ∈ R : fz(x, y) ≥ gz(x0) − ε/2} ∩ {y ∈ R : fz(x, y) ≤ gz(x0) + ε/2}

= R \ [(R \ (fz)
−1
x ((−∞, gz(x0) − ε/2))) ∪ (R \ (fz)

−1
x ((gz(x0) + ε/2,∞)))]

= R \ [(R \ F−
x (B(z, gz(x0) − ε/2))) ∪ (R \ F+

x (R \ Cl(B(z, gz(x0) + ε/2))))].By assumption (i), we have Dl(Mx, y) > 1/3 for eah y ∈ R. Furthermore,
fz(x, y) ∈ [an0

, bn0
] ⊂ [gz(x0) − ε/2, gz(x0) + ε/2] for x ∈ An0

and y ∈ H(x).In partiular, for every M(X)-measurable seletion h : X → R of H we have
{(x, h(x)) ∈ X × R : x ∈ An0

} ⊂M and Dl(Bx, h(x)) > 1/3 for x ∈ An0
.Let h be an M(X)-measurable seletion of H (guaranteed by Proposition 1.3(vii)). Then

M ∩ {(x, y) ∈ X × R : y ∈ B(h(x), 1/n)} ∈ Mµ×m(X × R).Let n ∈ N and put
Bn =

{
x ∈ An0

: U ⊂ B(h(x), 1/n) ∧ h(x) ∈ U ⇒
m(Mx ∩ U)

m(U)
>

1

3

}
,where U ⊂ R is an arbitrary open interval. Then Bi ⊂ Bi+1 for i ∈ N and An0

=
⋃

n∈N
Bn.Let i0 = min{i ∈ N : µ∗(Bi) > 0}. If n ≥ i0 and x ∈ Bn, then

Mx∩B(h(x), 1/n) ∈ L(R) and m(Mx∩B(h(x), 1/n)) > 1
3 ·m(B(h(x), 1/n)) = 2/(3n).



58 G. Kwiei«skaIf we put
Cn =

{
x ∈ X : m

(
Mx ∩B

(
h(x),

1

n

))
>

2

3n

}
,then Bn ⊂ Cn and Cn ∈ M(X). Set

C =
⋃

k≥i0

⋂

n≥k

Cn.Then An0
⊂ C, sine Bk ⊂

⋂
n≥k Cn for k ≥ i0. Furthermore, C ∈ M(X) and

Du(Mx, h(x)) ≥ 1/3 for eah x ∈ C. Thus (3) is proved.Now suppose, on the ontrary, that for every D ∈ M(X) suh that D ⊂ A and
µ(D) > 0 we have oscD gz > ε.Let D = A∩C. Then D ∈ M(X) and µ(D) > 0, sine An0

⊂ A∩C and µ∗(An0
) > 0.Thus, there is an x1 ∈ D suh that |gz(x1) − gz(x0)| > ε/2. We have two possibilities:either gz(x1) > gz(x0) + ε/2 or gz(x1) < gz(x0) − ε/2.Suppose that gz(x1) > gz(x0) + ε/2. Then

(4) gz(x1) = ̺(z, F (x1, H(x1))) = ̺
(
z,

⋃

y∈H(x1)

F (x1, y)
)
> gz(x0) + ε/2.Furthermore,

{y ∈ R : ̺(z, F (x1, y)) > gz(x0) + ε/2} = {y ∈ R : fz(x1, y) > gz(x0) + ε/2}

= (fz)
−1
x1

((gz(x0) + ε/2,∞)) = F+
x1

(R \ Cl(B(z, gz(x0) + ε/2))).Then, by assumption (i) and (4), we have
Dl({y ∈ R : fz(x1, y) > gz(x0) + ε/2}, y) > 2/3 for eah y ∈ H(x1),and so

(5) Dl({y ∈ R : fz(x1, y) > gz(x0) + ε/2}, h(x1)) > 2/3,beause h(x1) ∈ H(x1). Sine x1 ∈ C, by (3) and (5), it follows that
(6) Mx1

∩ {y ∈ R : fz(x1, y) > gz(x0) + ε/2} 6= ∅.Then there is a t ∈ R suh that
|fz(x1, t) − gz(x0)| ≤ ε/2 and fz(x1, t) > gz(x0) + ε/2,and we have a ontradition.Now suppose that gz(x1) < gz(x0) − ε/2. Then

gz(x1) = ̺(z, F (x1, H(x1)) = ̺
(
z,

⋃

y∈H(x1)

F (x1, y)
)
< gz(x0) − ε/2.Therefore, there is a y1 ∈ H(x1) suh that ̺(z, F (x1, y1)) < gz(x0) − ε/2. Furthermore,

{y ∈ R : ̺(z, F (x1, y)) < gz(x0) − ε/2} = {y ∈ R : fz(x1, y) < gz(x0) − ε/2}

= F−
x1

(B(z, gz(x0) − ε/2)).Thus, by (i) we have
Dl({y ∈ R : fz(x1, y) < gz(x0) − ε/2}, y1) > 2/3.



Measurability of multifuntions of two variables 59The seletion h in (3) may be modi�ed if neessary by taking h(x1) = y1, withouthanging the set C. Then Du(Mx1
, y1) ≥ 1/3, by (3).As in the proof of (6), we show that

∃t ∈Mx1
∩ {y ∈ R : fz(x1, y) < gz(x0) − ε/2}.Thus |fz(x1, t)− gz(x0)| ≤ ε/2 and fz(x1, t) < gz(x0)− ε/2, and again we have a ontra-dition, whih �nishes the proof.Observe that by Theorem 3.17 and Propositions 1.8 and 1.9, we have the followingresult.Proposition 3.18. If (Z, ̺) is a separable metri spae and F : X × R Z is a losedvalued weakly Mµ×m(X × R)-measurable multifuntion suh that Fx is approximatelyontinuous for every x ∈ X, then F is weakly Mµ(X)-sup-measurable.Consider the following example.Example 3.19. Let C ⊂ [0, 1] be a Cantor set with m(C) > 0 and let A be a subset of Csuh that A 6∈ L(R). By Theorem 13.1 of [93℄, there is a homeomorphism h : [0, 1] → [0, 1]suh that h(A) ∈ L(R) and m(h(A)) = 0. Let B = h(A) and de�ne F : [0, 1]× [0, 1] Rby

F (x, y) =

{
[0, 1] if x ∈ [0, 1] ∧ y 6∈ B,

{0} if x ∈ [0, 1] ∧ y ∈ B.Then F is L(R2)-measurable and Fx is approximately lower semiontinuous for eah
x ∈ [0, 1]. But F is not weakly L(R)-sup-measurable, sine the multifuntion G(x) =

F (x, {g(x)}), where g = h−1, is not L(R)-measurable. Therefore in Proposition 3.18 it isnot su�ient to suppose that all the setions Fx are just approximately lower semion-tinuous.If we transpose the values of F , its x-setions will be approximately upper semi-ontinuous and it will still be L(R2)-measurable, but not L(R)-sup-measurable. Again,Proposition 3.18 does not hold if we suppose that all the setions Fx are just approxi-mately upper semiontinuous.Observe that, by Theorem 3.14 and Proposition 1.42, we have the following orollary.Corollary 3.20. Let (X,M(X), µ) be a measure spae, where µ is σ-�nite, and let
(Z, ‖ · ‖) be a separable Banah spae. Let F : X × I  Z be a bounded multifuntionwith F (x, y) ∈ Cbc(Z). If F has the (J) property and eah x-setion of F is approximatelyontinuous , then F is Mµ(X)-sup-measurable.The next orollary follows at one by Theorem 2.9, Proposition 3.18 and (1.11)(iii).Corollary 3.21. If (X,M(X), µ) is a measure spae, where µ is σ-�nite, (Z, ̺) is aseparable metri spae and F : X × R  Z is a ompat valued multifuntion suh that
{Fx}x∈X is approximately h-equiontinuous and F y is M(X)-measurable for every y ∈ R,then F is Mµ(X)-sup-measurable.
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