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Abstract

In this paper, the authors propose a new framework under which a theory of generalized Besov-
type and Triebel-Lizorkin-type function spaces is developed. Many function spaces appearing in
harmonic analysis fall under the scope of this new framework. The boundedness of the Hardy—
Littlewood maximal operator or the related vector-valued maximal function on any of these
function spaces is not required to construct these generalized scales of smoothness spaces. In-
stead, a key idea used is an application of the Peetre maximal function. This idea originates
from recent findings in the abstract coorbit space theory obtained by Holger Rauhut and Tino
Ullrich. In this new setting, the authors establish the boundedness of pseudo-differential op-
erators based on atomic and molecular characterizations and also the boundedness of Fourier
multipliers. Characterizations of these function spaces by means of differences and oscillations
are also established. As further applications of this new framework, the authors reexamine and
polish some existing results for many different scales of function spaces.
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1. Introduction

Different types of smoothness spaces play an important role in harmonic analysis, partial
differential equations and approximation theory. For example, Sobolev spaces are widely
used in the theory of elliptic partial differential equations. However, there are several
partial differential equations for which the scale of Sobolev spaces is no longer sufficient. A
proper generalization is given by the classical Besov and Triebel-Lizorkin function spaces.
In recent years, it turned out to be necessary to generalize even further and replace the
fundamental space LP(R™) by something more general, like a Lebesgue space with variable
exponents ([I1} [12]) or, more generally, an Orlicz space. Another direction is pursued via
replacing LP(R™) by the Morrey space M2(R™) [48, 52 53] or generalizations thereof
[43), [80, [82], 189, [95. [96], [97, [98], (100} [T05]. Thus, the theory of function spaces has become
more and more complicated. Moreover, results on atomic or molecular decompositions
were often developed from scratch again and again for different scales.

A nice approach to unify the theory was proposed by Hedberg and Netrusov [24]. They
developed an axiomatic approach to function spaces of Besov type and Triebel-Lizorkin
type, in which the underlying function space is a quasi-normed space E of sequences of
Lebesgue measurable functions on R", satisfying some additional assumptions. The key
property assumed in that approach is that the space F satisfies a vector-valued maximal
inequality of Fefferman—Stein type, namely, for some r € (0,00) and A € [0,00), there
exists a positive constant C' such that, for all {f;}5°, C E,

I{Mr 2 fi}Z0ll e < Cl{fi3 0l
(see [24, Definition 1.1.1(b)]), where

1/r

M, 5 f(z) = sup{l/ |f(x+y)|’“(1+|y|)”‘dy} for all z € R™.
Rr>o0 | B ly|<R

Related to [24], Ho [25] also developed a theory of function spaces on R™ under the

additional assumption that the Hardy—Littlewood maximal operator M is bounded on

the corresponding fundamental function space.

Another direction towards a unified treatment has been developed by Rauhut and Ull-
rich [68] based on the generalized abstract coorbit space theory. The coorbit space theory
was originally developed by Feichtinger and Grochenig [16], 21} 22] with the aim of provid-
ing a unified description of function spaces and their atomic decompositions. The classical
theory uses locally compact groups together with integrable group representations as key
ingredients. Based on the idea to measure smoothness via decay properties of an abstract
wavelet transform one can in particular recover homogeneous Besov-Lizorkin—Triebel

6]



1. Introduction 7

spaces as coorbits of Peetre spaces P, ,(R"). The latter fact was observed recently by
Ullrich [93]. In the next step Fornasier and Rauhut [I7] observed that a locally compact
group structure is not needed at all to develop a coorbit space theory. While the the-
ory in [I7] essentially applies only to coorbit spaces with respect to weighted Lebesgue
spaces, Rauhut and Ullrich [68] extended this abstract theory to a wider variety of coorbit
spaces. The main motivation was to cover inhomogeneous Besov—Lizorkin—Triebel spaces
and generalizations thereof. Indeed, the Besov—Lizorkin—Triebel-type spaces appear as

coorbits of Peetre type spaces P’ ,(R") [68].

All the aforementioned theories are either not complete or in some situations too
restrictive. Indeed, the boundedness of maximal operators of Hardy-Littlewood type
or the related vector-valued maximal functions is always required and, moreover, the
Plancherel-Polya—Nikol’skil inequality (see Lemma below) and the Fefferman—Stein
vector-valued inequality were key tools in developing a theory of function spaces of Besov
and Triebel-Lizorkin type.

Despite the fact that the generalized coorbit space theory [68] so far only works for
Banach spaces we mainly borrow techniques from there and combine them with recent
ideas from the theory of Besov-type and Triebel-Lizorkin-type spaces (see [0} [82] 89,
97, 98], [99] 100, 105]) to build up our theory for quasi-normed spaces. With a view
to applications also in microlocal analysis, we even introduce these spaces directly in
weighted versions. The key idea, used in this new framework, is some delicate application
of the sequence of the Peetre maximal functions

ap 22 1@
( *f> (CL‘) — yER™ (1 + |y|)a
sl wp 121 £ F @+ )
yern  (L+27]y))* 7

for all f € §'(R™), where ® and ¢ are, respectively, as in and below, and
©j(-) = 29mp(27.) for all j € N. Instead of the pure convolution ¢; * f involved in the
definitions of the classical Besov and Triebel-Lizorkin spaces, we make use of the Peetre
maximal function (¢ f), already in the definitions of the spaces considered in the present
paper. The second main feature is the fundamental space L(R™) involved in the definition

(1.1)
JEN,

(instead of LP(R™)). This space is given in Section [2| via a list of fundamental assump-
tions (£1) through (£6). The key assumption is (£6), which originates in [68] (see
below). The most important advantage of the Peetre maximal function in this framework
is that (¢} f)a can be pointwise controlled by a linear combination of some other Peetre
maximal functions (¢} f),, whereas in the classical setting, ¢; * f can only be domi-
nated by a linear combination of the Hardy—Littlewood maximal function M (|9 * f|)
of Yy x f (see below). This simple fact illustrates quite well that the boundedness
of M on L(R™) is not required in the present setting. This represents the key advantage
of our theory since, according to Example [I.2] and Section [[I} we are now able to deal
with a greater variety of spaces. However, we do not define abstract coorbit spaces here.
Compared with the results in [68], the approach in the present paper has the following
additional features:
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Extension of the decomposition results to quasi-normed spaces (Section ;
Sharpening the conditions on admissible atoms, molecules, and wavelets (Section ;

[ )
[ )
e Intrinsic characterization for spaces on domains (Section ;
e Boundedness of pseudo-differential operators (Section @;

[ )

Direct characterizations via differences and oscillations (Section .

Our general approach admits at least the treatment of the following list of function spaces
as replacement for LP(R™) in the definition of generalized Besov—Lizorkin—Triebel-type
spaces. For details we refer to Section

Weighted Lebesgue spaces. Let p be a weight and 0 < p < co. We let LP(p) denote
the set of all Lebesgue measurable functions f for which the norm

110y = { / PR dx}up

is finite. Assume that (1+ |- |)=No € LP(p) for some Ny € (0,00) and the estimate

IX@llzr () = IX2-ikra-spnlliriey 22777+ K)70,  jE€Zy, keZ",  (12)
holds for some v, € [0,00), where the implicit positive constant is independent of j
and k. The space LP(p) is referred to as a weighted Lebesgue space. In harmonic analysis,
a widely used condition for weights p is belonging to the Muckenhoupt class of weights,
Ap(R™) with p € [1, 00] (see Example . However, some examples do not fall under the
scope of the class A,(R™) in many branches of mathematics. We propose here a remedy
to overcome this by considering . Observe that if p € A,(R™) with p € [1,00], then
(1.2) automatically holds for some 7,4 € (0, 00).

Morrey spaces. Let L(R") := M2(R™), the Morrey space, with the norm defined by

1/u
g = sup //[ / If(y)l“dy] ,
z€R™, re(0,00) B(z,r)

with 0 < u < p < oo.
Orlicz spaces. A Young function is a function @ : [0,00) — [0, 00) which is convex and

satisfies ®(0) = 0. Given a Young function ®, the mean Luzemburg norm of f on a cube
Q € Q(R™) is defined by

. 1 (@)
||f<b,Q-lnf{>\>O.|Q|/Q<I>< < >dz§1}.

If ®(t) := P for all t € (0,00) with p € [1,00), then

B i ) 1/p
oo = [Q| /Q 7)) da:] ,

that is, the mean Luxemburg norm coincides with the (normalized) LP norm. The Orlicz—
Morrey space L® ¢(R™) consists of all locally integrable functions f on R™ for which the
norm

[fllzo.omny = sup  o(LQ)flle.q
QEeQ(R™)

is finite.
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Herz spaces. Let p,q € (0,00] and o € R. We let Qg := [—1,1]™ and
C; i= (=20, 271"\ [, 2]

for all j € N. The inhomogeneous Herz space K (R") is defined to be the set of all
measurable functions f for which the norm

> 1/q
[ fllxs @) = IXQo fllLr®n) + { > 2””‘|\chf||%p(w)}
J=1

is finite, where we modify naturally the definition above when ¢ = oo

Variable exponent Lebesgue spaces. Let p(-) : R™ — (0,00) be a measurable func-
tion such that 0 < inf,egn p(x) < sup,cpn p(z) < 0o. The space LP()(R™), the Lebesgue
space with variable exponent p(-), is defined as the set of all measurable functions f for
which the quantity [, [¢f(z)[P®) dz is finite for some e € (0, 00). We let

p(z)
||f||LP(')(R”) = inf {)\ >0: /" |:|f()\x):| dx S 1}

for such a function f.

Amalgam spaces. Let p, ¢ € (0,00] and s € R. Recall that Qq, := z+[0, 1]™ for z € Z",

the translate of the unit cube. For a locally Lebesgue integrable function f we define
1Nl 2o @n) eaczyeyy = [HL + 12D 21X Q0. fll o (n) }zez | 4o

Multiplier spaces. There is another variant of Morrey spaces. For r € [0,1/2), X, (R™)
is defined as the space of all functions f € L _(R") that satisfy

£l gy = SPL 172wy < 50 ¢ 1l oy < 1} < 00,
where H”(R™) stands for the completion of the space D(R™) with respect to the norm
||uHH7,(Rn) = |[(=A)/2u||p2(gny for u € D(R™). Recall that D(R™) denotes the set of

all C>°(R™) functions on R™ with compact support, endowed with the inductive limit
topology.

Bg-spaces. The next example also falls under the scope of our generalized Triebel—
Lizorkin type spaces. Let o € [0,00), p € [1,00] and A € [-n/p,0]. Then B, (L, »)(R™) is
defined as the space of all f € L} (R™) for which the norm

1
112000 =500 { sz I i@y 7 € (0,00, @ € Q)

is finite, where Q(0,7) := {z € R™ : |z| < r} for r € (0, 0).
Generalized Campanato spaces. We define
dpy :==min{d € Zy : p_(n+d+1) > n}.
Then L2, (R™) is defined to be the set of all LI(R™)-functions with compact support.

comp
For a nonnegative integer d, let

Ll (B = {femep< Y [ s o |a|gd}.
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Let us now describe the organization of the present paper. In Section 2] we describe the
new setting we propose, which consists of a list of assumptions (£1) through (£6) on the
fundamental space £(R™). Also several important consequences and further inequalities
are provided.

In Section [3] starting from L(R™), we introduce two sorts of generalized Besov-type
and Triebel-Lizorkin-type spaces, respectively (Definition . We justify these defi-
nitions by proving some properties, such as completeness (without assuming L(R") is
complete!), containing the Schwartz space S(R™), and embedding into the distributions
S'(R™). An analogous statement holds with the classical 2-microlocal space B{’; ,(R")

as test functions and its dual, the space B%&,G(R”), as distributions, which is an im-
portant observation for the wavelet characterization in Section [d} Therefore, the latter
spaces, which have been studied intensively by Kempka [34], 35], appear naturally in our
context.

In Section[4] we establish atomic and molecular decomposition characterizations (The-
orem , which are further used in Section |§| to obtain the boundedness of some pseudo-
differential operators from the Hormander class S7 ,(R™), with y € [0,1) (Theorems
and . In addition, characterizations using biorthogonal wavelet bases are given (see
Theorem[4.12)). Appropriate wavelets (analysis and synthesis) must be sufficiently smooth,
fast decaying and provide enough vanishing moments. The precise conditions on these three
issues are provided in Subsection 4.4 and allow for the selection of particular biorthog-
onal wavelet bases according to the well-known construction by Cohen, Daubechies and
Feauveau [6]. Characterizations via orthogonal wavelets are contained in this setting.

Section [5] considers pointwise multipliers and the restriction of our function spaces to
Lipschitz domains Q and provides characterizations within the domain (avoiding exten-
sions).

Section [6] considers Fourier multipliers and pseudo-differential operators, which shows
that our new framework indeed works.

In Section 7} we obtain a sufficient condition for our function spaces to consist of con-
tinuous functions (Theorem . This is a preparatory step for Section [8) where we deal
with differences and oscillations. Another issue of Section [7]is a further interesting appli-
cation of the atomic decomposition result from Theorem [£.5] Under certain conditions on
the scalar parameters involved (by still using a general fundamental space £(R™)), our
spaces degenerate to the well-known classical 2-microlocal Besov spaces BY, . (R).

In Section [8] we obtain a direct characterization in terms of differences and oscilla-
tions of these generalized Besov-type and Triebel-Lizorkin-type spaces (Theorems and
. Also, under some mild condition, £(R™) is shown to fall under our new framework
(Theorem [9.6)).

The Peetre maximal construction in the present paper makes it necessary to deal
with an additional parameter a € (0,00) in the definition of function spaces. However,
this new parameter a does not seem to play a significant role in a generic setting, al-
though we do have an example showing that the space may depend upon a (see Example
. We present several sufficient conditions in Section |§| which allow one to remove the
parameter a (Assumption 8.1).
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Homogeneous counterparts of the above are available and we describe them in Sec-
tion Finally, in Section [11| we present some well-known function spaces as examples
of our abstract results and compare them with earlier contributions. We reexamine and
polish some existing results for these known function spaces.

Notation. Next we clarify some conventions on the notation and review some basic
definitions. In what follows, as usual, we use S(R™) to denote the classical topological
vector space of all Schwartz functions on R"™ and S’(R™) for its topological dual space
endowed with weak-x topology. For any ¢ € S(R™), we use  to denote its Fourier
transform, namely, for all £ € R™, 3(€) := [z e~ %y (z) dz. We denote dyadic dilations of
a given function ¢ € S(R™) by ¢, (z) := 27"¢(2/z) for all j € Z and = € R™. Throughout
the paper we use a system (®, ) of Schwartz functions satisfying

supp @ C {€ € R": |¢] <2} and |®(€)|>C > 0if ¢ <5/3 (1.3)
and
supp pC {£eR":1/2< ¢ <2} and |§(§)|>C>0if3/5<|£]<5/3. (14)

L. (R") denotes the set of all locally integrable functions on R™; L7  (R™) for any

n € (0,00) is the set of all measurable functions on R™ such that |f|" € L} _(R"); and

loc

L. (R™) is the set of all locally essentially bounded functions on R”. We also let M

denote the Hardy-Littlewood mazimal operator defined by setting, for all f € L1 _(R"),
1

Mf(x)=M(f)(x) :=sup — |f(2)|dz for all x € R™. (1.5)

n
r>0 7T |z—z|<r

One of the main tools in the classical theory of function spaces is the boundedness of M
on a space of functions, say LP(R"™) or its vector-valued extension LP(¢7), in connection
with the Plancherel-Poélya—Nikol’skii inequality connecting the Peetre maximal function
and the Hardy-Littlewood maximal operator.

LeMMA 1.1 (J90, p. 16]). Letn € (0,1], R € (0,00) and f € S'(R™) be such that supp f C
Q(0,R) := {z € R : |z| < R}. Then there exists a positive constant c,, such that, for all
reR™,
[f(z —y)| 1
sup ———L_ < e [M(|f[") ()],
The following examples show situations when the boundedness of M can be achieved
and when we cannot expect it.

EXAMPLE 1.2. (i) Let p € (1, 00). It is known that the Hardy-Littlewood operator M is
not bounded on the weighted Lebesgue space LP(w) unless w € A,(R™), where A,(R™)
is the class of Muckenhoupt weights (see, for example, [19] B8] for their definitions and
properties) such that

p—1

Ayfw) = s B | wte) Al L@yl <o
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Also observe that there exists a positive constant Cj, ;, such that

([ (Swser) sww) " <cf [ [ZIfJ ] ueya

j=1
holds for any ¢ € (1, o0] if and only if w € A,(R™). There do exist doubling weights which
do not belong to the Muckenhoupt class A (R™) (see [14]).
(ii) There exists a function space such that even the operator M, » is difficult to
control. For example, if L(R™) := L (R™), which is the set of all measurable functions
f on R™ such that

. . 1f(@)]]? |f ()]
T )—1nf{A>o./i [A } daz+/Rn\Ri : dx§1}<oo

where R} := {x = (21,...,2) € R : € (0,00)}, then it is well known that the
. . 1+XR71 n
maximal operator M, » is not bounded on L +(R™) (see Lemma |11.11] below).

Throughout the paper, we denote by C' a positive constant which is independent of the
main parameters, but it may vary from line to line, while C(a, 3,...) denotes a positive
constant depending on the parameters «, 3, .... The symbols A < B and A S, 5. B
mean, respectively, that A < CB and A < C( ,8,...)B. If A fj B and B < A, then
we write A ~ B. If F is a subset of R™, we denote by xg its characteristic function. In
what follows, for all a, b € R, let a V b := max{a, b} and a A b := min{a, b}. Also, we
let Z4 :={0,1,2,...}. The notation |z, for any x € R, means the maximal integer not
larger than x. The following is our convention for dyadic cubes: For j € Z and k € Z",

denote by Q;x the dyadic cube 277([0,1)" + k). Let Q(R") :={Qjx : j € Z, k € Z"},
Q;(R") = {Q € Q(R™) : £(Q) = 277}.

For any () € Q(R"™), we let jg be —log, £(Q), £(Q) its side length, g its lower left corner

277k and cq its center. When the dyadic cube @ appears as an index, such as ZQGQ(R")

and {-}geco(rn), it is understood that @ runs over all dyadic cubes in R™. For any cube

Q and « € (0,00), we denote by k@ the cube with the same center as @) but x times the
side length of Q). Also, we write

@l = "o (1.6)
j=1

for a multiindex @ := (o!,...,a") € Z}. For 0 := (01,...,0,) € 21, 87 := (8/0x1)7* - - -
(0/0zn).



2. Fundamental settings and inequalities

2.1. Basic assumptions. First of all, we assume that £(R") is a quasi-normed space of
functions on R™. Following [3] p. 3], we denote by My(R™) the topological vector space of
all measurable complex-valued almost everywhere finite functions modulo null functions
(i.e., any two functions coinciding almost everywhere are identified), topologized by

pe(f) = /E min{1, |f(z)[} dz,

where E is any subset of R™ with finite Lebesgue measure. It is easy to show that this
topology is equivalent to the topology of convergence in measure on sets of finite measure,
which makes My(R"™) a metrizable topological vector space (see [3, p. 30]).
First, we consider a mapping || - ||z@®n») : Mo(R™) — [0, 00] satisfying the following

fundamental conditions:
(L£1) (Positivity) An element f € My(R") satisfies || f||z(») = 0 if and only if f = 0.
(£2) (Homogeneity) Let f € My(R") and o € C. Then |af||z@n) = |af || fllzmn)-
(£3) (The 6-triangle inequality) The norm || - ||z~ satisfies the O-triangle inequality.

That is, there exists a positive constant § = (L(R™)) € (0, 1] such that

1f JFQHGL(]R") < HfHGL(R") + ||g||6£(R”)

for all f,g € My(R™).
(£4) (The lattice property) If a pair (f,g) € Mo(R™) x My(R™) satisfies |g| < |f], then

lgllceny < I fllcen)-
(£5) (The Fatou property) Suppose that {f;}32; is a sequence of functions satisfying

sup || fillzmny <00, 0 fi<fo<-oo.
jEN

Then the limit f := lim;_, f; belongs to L(R™) and || f||z®n) < supjen |£5llc@n)-
Given a mapping || - || z(rn) satisfying (£1) through (£5), the space L(R") is defined by
LR") :={f € Mo(R") - || fllcmn) < 00}

Let p be a weight. Note that LP(p) with p € (0,00) satisfies (£6) below as long as p
satisfies (1.2]).

REMARK 2.1. We point out that the assumptions (£1), (£2) and (£3) can be replaced
by the assumption that £(R™) is a quasi-normed linear space of functions. Indeed, if
(LR™), || | zmny) is a quasi-normed linear space of function, then by the Aoki-Rolewicz
theorem (see [2,169]), there exists an equivalent quasi-norm || - || and 6 € (0, 1] such that,

(13]
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for all f,g € L(R™),

Iy ~ - IF+ gl < IF1° + gl (2.1)

Thus, (L(R™),]|| - ||) satisfies (£1), (£2) and (£3). Since all results are invariant with
respect to taking equivalent quasi-norms, by (2.1)), we know that all results are still true
for the quasi-norm | - || £(r»)-

Motivated by [68] 03], we also assume that £(R™) enjoys the following property:

(£6) (The non-degeneracy condition) The (1+|-|)~"° belongs to £L(R") for some Ny €
(0,00) and the estimate

X le@n) = IX2-ikt2-s0,0)n le@ny 2 2777+ k)72, je€Zy, kel (22)
holds for some 7,4 € [0, 00), where the implicit positive constant is independent of
J and k.

We point out that (£6) is a key assumption, which makes our definitions of quasi-
normed spaces a little different from that in [3]. This condition has been used by Rauhut
and Ullrich [68, Definition 4.4] in order to define coorbits of Peetre type spaces in a
reasonable way. Indeed, in [3], it is necessary to assume that xg € L(R") if F is a
measurable set of finite measure.

Moreover, from (£4) and (£5), we deduce the following Fatou property of L(R™).

PROPOSITION 2.2. If L(R™) satisfies (£4) and (L5), then, for all sequences { fim }men of
nonnegative functions of L(R™),

1..me < T int || £ | oo,
‘ iminf f|| S lminf | fnllcgen)

Proof. Without loss of generality, we may assume that liminf,, o [|fimllz@n) < oo.
Recall that liminf,, o frm = sup,,cyinfr>m{fr}. For all m € N, let g,,, := infp> {fi}
Then {gm }men is a sequence of nonnegative functions with g; < go < --- . Moreover, by
(£4), we conclude that

SUp [|gm||c(rny < Hminf | fin ]l z@n) < oo
meN m—r00
Then, from (£5), we further deduce that liminf,, o fm = sup,,en{gm} € L(R™) and

1"me < ol egny < Hminf || fol £ (.-
[tmin fu o < s llgmlleeey < liminf 1l

We also remark that the completeness of L(R™) is not necessary. It is of interest to
have completeness automatically, as Proposition below shows.

Let us additionally recall the following class Wg? , - of weights which was used recently
in [68]. This class has been introduced for the definition of 2-microlocal Besov-Triebel-

Lizorkin spaces; see [34], [35]. As in Example i), let
R = {(2,2p11) s 2 € R", 2y p1 € (0,00)}.
We also let jol = {(z,t) e RT : —log,t € Z. }.

DEFINITION 2.3. Let ai,ag, a3 € [0,00). The class W3 - of weights is defined as the

Q1,02
set of all measurable functions w : jol — (0, 00) satisfying the following conditions:
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(W1) There exists a positive constant C such that, for all x € R"™ and j, v € Z; with

J2v,
O~ Uy (g, 277) < w(x,277) < 02~ W2z, 27Y). (2.3)
(W2) There exists a positive constant C' such that, for all z, y € R” and j € Z,
w(z,277) < Cw(y,279) (1 + 27|z — y|)s. (2.4)

Given a weight w and j € Z,, we often write

wi(@) = w(w,279) (€ R", jELy), (2.5)
which is a convention used until the end of Section [9] With the convention (2.5)), the
conditions (2.3 and ([2.4) read

Clom UMy, (z) < wj(x) < 0272y, (1)
and
wj(x) < Cw;(y) (1 + 27|z —y[)*,

respectively. In what follows, for all a € R, a4 := max(a,0).
ExampLE 2.4. (i) The most familiar case, the classical Besov spaces B,  (R") and
Triebel-Lizorkin spaces F} . (R™), correspond to w; = 2% with j € Z, and s € R.

(ii) In general when w;(x) with j € Z; and z € R™ is independent of z, then we
see that a3 = 0. For example, when w;(z) = 27¢ for some s € R and all z € R™, then
w; € W&ax(o,fs),max(o,s)'

(iii) Let w € Wg? ,, and s € R. Then the weight given by

w;(z) == 2%w;(z) (z €R™, jE€Z)

as
belongs to the class W(a1_5)+7(a2+8)+-

In the present paper, we consider six underlying function spaces, two of which are
special cases of other four spaces. At first glance the definitions of £4(L¥(R™,Z,)) and
LN LY(R™, Z,)) might seem identical. However, in [82], we showed that they are differ-
ent in general cases. In the present paper, we generalize this fact in Theorem [9.12

DEFINITION 2.5. Let ¢ € (0,00] and 7 € [0,00). Suppose w € Wg? . with ay, g, a3 €
[0,00). Let w; for j € Z4 be as in (2.5).

(i) £¥(L1(R™,Zy4)) is defined to be the set of all sequences G := {g;};ez, of measurable
functions on R™ such that

= 1/q
Gl zw(earn,z1)) == H(Z \’wjgj\q) H < oo0. (2.6)
= L(R™)
By analogy, the space £*(¢4(R", E)) is defined for a subset £ C Z.

(ii) £9(L"(R™,Zy)) is defined to be the set of all sequences G := {g;}jez, of measurable
functions on R™ such that

> 1/q
1Gleaem ez = { 3 Igilltgn ) < o (2.7)
j=0

In analogy, the space ¢4(L*(R", E)) is defined for a subset E C Z.
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(iii) £ (¢9(R™,Z,)) is defined to be the set of all sequences G := {g;}jez, of measurable
functions on R™ such that

1 o0
|Gl w(eamn zyy) == sup BT {xPw;g;}52 i vollcw (ta®n 2y Alip,00))) < 00-  (2.8)
PeQ(R™) | |

(iv) ELY(L1(R™,Z,)) is defined to be the set of all sequences G := {g,} ez, of measur-
able functions on R” such that

IGllecwea@n,z,y) = sup [{xPw;g;}520llcwea@n zyy) < 00 (2.9)

PEQ(R™) |P "
(v) £9(LY(R™,Zy)) is defined to be the set of all sequences G := {g;} ez, of measurable
functions on R™ such that

1
Glles(ew @,z = poSb TPl I{xPw; 9535 pvolles(cw ®n 2, nljp,00)) <00 (2.10)

(vi) LANLY(R™, Zy)) is defined to be the set of all sequences G := {g;} ez, of measur-
able functions on R™ such that

s Wi 19 e
1Gllesnvew®nzy)) = {Z sup ['XPJQ]HE(R)] } < o0. (2.11)
i S peo®m) [P

When ¢ = oo, a natural modification is made in (2.6 through (2.11).

We also introduce the homogeneous counterparts of these spaces in Section One
of the reasons why we introduce Wg? . is the necessity of describing the smoothness
by using our new weighted function spaces more precisely than by using the classical
Besov—Triebel-Lizorkin spaces. For example, in [I03], Yoneda considered the following

norm. In what follows, P(R™) denotes the set of all polynomials on R"™.

EXAMPLE 2.6 ([103]). B;OL;;”(R”) denotes the set of all f € S'(R™)/P(R") for which

the norm

”f”B;olo’o‘[(R") = 516122ij 7] + s * fllpoe @ny < 00.
J

If 7=0,a€ (0,00) and wj(z) :=277/|j| + 1 for allx € R™ and j € Z, then it can be
shown that the space Bo_oéo\/(R") and the space BY L°° oo, o(R™), introduced in Definition
below, coincide with equivalent norms. This can be proved by an argument similar to
that used in the proof of [93] Theorem 2.9]; we omit the details. An inhomogeneous variant
of this result is also true. Moreover, we refer to Subsection for another example of
non-trivial weights w. This is a special case of generalized smoothness. The weight w also
plays a role of variable smoothness.

In the present paper, the spaces ¢4(LY(R™,Z4)), AN LY (R"™, Zy)), LY (L1(R",Z4))
and ELY(¢1(R™,Z4)) play a central role, while ¢2(L*(R",Z,)) and LY (¢1(R™,Z.)) are
auxiliary spaces.

By the monotonicity of ¢4, we immediately obtain the following useful conclusions.
We omit the details.
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LEMMA 2.7. Let 0 < q1 < g2 < 00 and ay,az,a3,7 € [0,00) and w € W52 .. Then
(LY (R, Z+)) = (2 (LY(R", Zy)),
LY (R, Zy)) = LY (%R, Zy.)),
(L (R",Z+)) (2 (L7 (R, Zy ),
LNLEY (R, Zy)) = 2 (NLEY (R, Z4)),
Lo (R, Zy)) = L2(67 (R", Z4.)),
ELY(UN (R, Zy)) — ELY (U2 (R, Z4))
in the sense of continuous embeddings.

2.2. Inequalities. Suppose that we are given a quasi-normed space L£(R") satisfying
(L£1) through (£6). The following lemma is immediately deduced from (£4) and (L£5).
We omit the details.

LEMMA 2.8. Let g € (0,00] and w be as in Definition 2.5 If L(R™) is a quasi-normed
space, then

(i) the quasi-norms ||-[la(ce @®n z,))s I lea(nvce ®e z.)) and |||l ea(cw ®n 2,y are mutually
equivalent;
(ii) the quasi-norms |||l cwearr 2. ))s | lecw wa@mn 2, )y and ||+ || cwparn 2, ) are mutually

equivalent.

In view of Lemma in what follows, we identify the spaces appearing, respectively,

n (i) and (ii) of Lemma 2.8

The fundamental estimates | - - ) below follow from the Holder inequality and
the conditions (W1) and (W2). However, we need to keep in mind that the condition
below is used throughout the present paper.

LEMMA 2.9. Let Dy, Do, a1, a9,a3,7 € [0,00) and g € (0,00] be fized parameters satis-
fying
D; € (aq,00), Dy € (n7+ ag, ). (2.12)

Suppose that {g, },ez, is a given family of measurable functions on R™ and w € Wg? ..
For all j € Z4 and x € R™, let

J S
G)fa) = 32U () + 30 2 IPrg )
v=0 v=j+1

If L(R™) satisfies (L1) through (L£4), then the following estimates, with the implicit pos-
itive constants independent of {g, }vez, , hold:

I{Gj}iez Neacw®n z,)) S Hgvtvez, leace @ z,))s (2.13)
IH{Gj}iezleawv e ®n 2,y S IHgvtvezy leavee @n 24y, (2.14)
I{Gj}iezyllcw@a@nzy) S IHgvtvezy |l cw ea@n 2, ) (2.15)
I{G;}iez lecw wamn z,)) S I tvez, lecw (pamn 2. ))- (2.16)
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Proof. Let us prove (2.15)). The other proofs are similar. Let us write

1 - Va
1) = 1o e d %O‘VZOM " } Hc(Rn)
1
+ Pl p| > | > w2t V)DIQH H

j=jpVO0 v=j+1

where P is a dyadic cube chosen arbitrarily. If j,v € Z, and v > j, then by (_2.3]), we
know that, for all z € R",

wi(z) <270y, (z). (2.17)
If j,v € Zs and j > v, then by , we see that, for all x € R™,

wi(z) < 2020y, (). (2.18)
If we combine and , then we conclude that, for all z € R™ and j,v € Z,,

—a1(j—v) > g
wi(x) S > wo(@), v27 (2.19)
~ 2042(]7”)'11)” x)’ 1% <]

‘We need to show that

I(P) S Hgv}vez, |

with the implicit constant independent of P and {g,},ez, in view of the definitions of
{Gj}jez, and ||{Gj}j€Z+”L;U(IZ‘?(R",Z+))~
Suppose g € (0,1] for the moment. Then we deduce from (2.19) and (£4) that

L (0a(R Z4))

1 © J . 1/q
1(P) S e[ 32 D027 Pemenitjug, o]
1P| ~ L)
J—JPVOV*O

[ Z Z 9= (=) (Dr1=an)a|yy g |} H . (2.20)

j=jpVOvr=j+1

|P|T
since, for all r € (0,1] and {a;},; C C,
(D lail) <D layl” (2:21)
J J

In (2.20)), we change the order of the summations on the right-hand side to obtain

. 1/q
9—(F—v)(D2—a2)q L0y q} H
I(P) S |P|T XP[Z > gl |
v=0j= V\/]P\/O
9~ (v=4)(D1—a1)q } H
|P|T | >y L B .

v=3pV0j=jpVO0

Now we decompose the summations with respect to v according tov > jpV0or v < jpVO0.
Since Dy € (ag + n7,00), we can choose € € (0,00) such that Dy € (ag + nt + €, 00).
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From this, D; € (a1, 00), the Holder inequality, (£2) and (£4), it follows that

I(P) S IH9v}vezy lcwpamn 2, ))
jpV0 oo

. 1/q
XP[ Z Z 2_(]—V)(D2—a2)Q|ngV|Q] Hﬁ(Rn)

v=0 j=jpV0

n 1
[P
S H{gu}uem||L$(eq(Rn,z+))

9-UPVO)(Da—az—e),  JEYD
P e X 2P g,
v=0

: 2.22
) (2.22)

+

We write 277V9=¥ P for the 297V0~¥_fold expansion of P as in our conventions at the end
of Section [} If we use the assumption (£3), we see that

I(P) < ||{9u}ueZ+||[:;v(zq(Rn,Z+))

9-UPVO)(D2—az—e) (I 1/6
e DA ey

v=0

+

S ||{gV}V€Z+||£¢’(Z4(R7L7Z+)) 4+ 2~ (PVO)(D2—az—e)

JjpVO 2V(D2—()(2—1’LT—6)+717’(jP\/0)
x { |: ‘2(jPV0)7VP|T

0 1/6
||X2(JPV0>“PngV||£(R"):| }
v=0

S ||{9V}V€Z+||£$’(Z<1(R",Z+))'
Since the dyadic cube P is arbitrary, by taking the supremum of all P, the proof of the
case ¢ € (0,1] is complete.
When q € (1, 00], choose k € (0,00) such that £ + a3 < Dy and Kk + n7 + @z < Da.
Then, by the Holder inequality, we are led to

1 o J i Ca 1/q
15 e fll 5 Sororormmnunid ...

j=7pV0 =0

~(v=§)(D2—k—a2)
-I-HXP[‘Z Z 27T ”Iwugulq] HE(Rn)}
j=jpVOvr=j+1
where the only difference from (2.20]) is that Dy and Ds are, respectively, replaced by
Dy — k and Dy — k. With this replacement, the same argument as above works. This
finishes the proof of Lemma[2.9] =

The following lemma is frequently used in the present paper; it appeared in [I8]
Lemmas B.1 and B.2], [20 p. 466], [24, Lemmas 1.2.8 and 1.2.9], [71, Lemma 1] or [93]
Lemma A.3]. In the last reference the result is stated in terms of the continuous wavelet
transform. Denote by w,, the volume of the unit ball in R” and by C*(R") the space of
all functions having continuous derivatives up to order L.

LEmMA 2.10. Let j,v € Zy, M,N € (0,00), and L € NU {0} satisfy v > j and N >
M + L+ n. Suppose that ¢; € CE(R™) has the property that, for all ||@|j; = L,
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. 9J(n+L)
(63 . < N
10%¢;(x)| < Aa (1+ 27z — x; )M’

where Ag is a positive constant independent of j, x and x;. Furthermore, suppose that
¢, is another measurable function such that, for all |51 < L —1,

- 21/n
Bdy = R"™ <B
- oY)y dy =0 and, for allz € R", |o,(x)| < 02—z’

where the former condition is supposed to be vacuous when L = 0. Then
Az N-M-L . . )
’/ oj(x)pu(x)dz| < < Z a) — —  Buw, QJnf(ufa)L(1_|_23|xj_xu‘)—M.
RTL

@' )J)N—-M—L—n
&=L




3. Besov-type and Triebel-Lizorkin-type spaces

3.1. Definitions. Through the spaces in Definition [2.5] we introduce the following
Besov-type and Triebel-Lizorkin-type spaces on R”.
DEFINITION 3.1. Let a € (0,00), a1, az,a3,7 € [0,00), ¢ € (0, 0] and w € Wg? .
Assume that ®, ¢ € S(R™) satisfy, respectively, (1.3) and (1.4) and that L(R") is a
quasi-normed space satisfying (£1) through (£4). For any f € S'(R"), let {(¢}f)a}jez,
be as in (L.1)).

(i) The inhomogeneous generalized Besov-type space B'7 ,(R™) is defined to be the set

of all f € §’'(R™) such that

11

(ii) The inhomogeneous generalized Besov-Morrey space N7, (R™) is defined to be the
set of all f € §'(R™) such that

Ber @) = (@) Natiez, lleace @ z,)) < oo

[f vz @y o= I{(0j fatiezs lesnvew @ zyy) < oo
(iii) The inhomogeneous generalized Triebel-Lizorkin-type space FZ’QT o(R™) is defined to

be the set of all f € §'(R™) such that
/]

(iv) The inhomogeneous generalized Triebel-Lizorkin—Morrey space EZ’;; o(R™) is defined
to be the set of all f € S'(R™) such that
[ ] X (R = ||{(90;f)a}jez+H&cg(zq(w,m)) < Q.

The notation A7  (R") stands for either one of Bj’7 (R"), N7 (R™), F°7 (R™)

or &7 (R™). When L(R") = LP(R") and w;(z) := 27° for z € R™ and j € Z,, we write

Fer . @n) = [{(@5)ajez, v o @ z,)) < o0

AST (R™) = AYT (R™). (3.1)

D:q,a L,q,a
In what follows, if 7 = 0, we omit 7 in the notation of the spaces introduced in
Definition 311
REMARK 3.2. Let us review what parameters the function spaces carry with.
(i) The function space L£L(R™) is equipped with 6, Ny, ~, ¢ satisfying
6 €(0,1], Ngye€ (0,00), v€]0,00), §e€]l0,00). (3.2)
(ii) The class W52 ,, of weights is equipped with ay, ag, a3 satisfying

ay,ag, az € [0,00). (3.3)

(21]
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(iii) In general function spaces Ag)’;a(R"), the indices 7, q and a satisfy
T€[0,00), qe€(0,00], a€(Nyg+ agz, ), (3.4)

where in (3.28]) below we need to assume a € (Ny + as,00) in order to guarantee
that S(R™) is contained in the function space.

In the following, we content ourselves with considering the case when £(R™) = LP(R"™)
as an example, which still enables us to see why we introduce these function spaces in
this way. Further examples are given in Section

EXAMPLE 3.3. Let ¢ € (0,00], s € R and 7 € [0,00). In [97, 98], the Besov-type space
BT (R™) with p € (0,00] and the Triebel-Lizorkin-type space Fy:7(R™) with p € (0, 00)
were, respectively, defined to be the sets of all f € S8'(R™) such that

1 e , a/py 1/q
£l By7rny == sup )|p|T{ > [/|2”<Pj*f(w)lpd4 } <0
P

PeQ(R™ =IO
and
1 - is p/q 1/p
I fllpsrmny == sup PT{/ [ Z 127, *f(x)|q} dz} < 00
peo) [PIT Lp L 2=

with the usual modifications for p = 0o or ¢ = co. Here ¢y is understood to be ®. Then,
we have shown in [45] that B;7 ,(R™) coincides with By7(R") as long as a € (n/p, 0o).

P.q,a
Likewise F.7 (R™) coincides with F:7(R") as long as a € (n/min(p,q),o0). Notice
s,0 n s,0 n : : s n s n :
that B> ,(R™) and F) ,(R") are isomorphic to By ,(R™) and F; (R™) respectively by

the Plancherel-Pdélya—Nikol’skii inequality (Lemma and the Fefferman—Stein vector-
valued inequality (see [15], 19, 20} [88]). This fact is generalized to our current setting. The
atomic decomposition of these spaces can be found in [82] [I04]. Needless to say, in this
setting, L(R™) = LP(R"™) satisfies (£1) through (L£6).

Observe that the function spaces B’y ,(R"), Fpl (R™), N7 (R™) and €777 (R™)

depend upon a € (0,00), as the following example shows.

EXAMPLE 3.4. Let m € N, b € (0,00), fin(t) := [2sin(272m%)/t]|™ for all t € R, and
L(R) = LP(R) with p € (0,00]. If 7, a, ¢ and w are as in Definition [3.1] with w(x, 1)
independent of # € R, then f,,, € By'7 ,(R)UF T (R)UN " (R)UELT (R) if and only
if

p[min(a, m)] > 1,
and, in this case, we have f,, € B (R)NF7 (R)NN/7 (R)NELT (R). To see this,

L,q,a L,q,a L,q,a L,q,a
notice that, for all ¢t € R,
27m,b . —mb
~ 2sin(27™%
X[—2-mb,2-mb) (1) = cos(xt) dx = g,
’ _9o—mb t
which implies that
m times

o~

fm = X[—Q_Mb,Q_m’I’] koo X X[—Q_mb,Z_mb]
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and that supp f,, C [-m2~™" m2-™"]. Choose b € (0, 00) large enough that
[-m27 ™0 m27™) ¢ [-1/2,1/2].
Let @, ¢ € S(R) satisfy and (L.4), and assume additionally that
XB0,1) < ® < Xpog2 and supp §C{E€R:1/2< ¢ <2},

Then, by the size of the frequency support, we see that ® * f,, = f,, and ¢; * f,, = 0 for
all j € N. Therefore, for all z € R,

. 2sin(27™0(x + 2))|™
P* f)a(x) = su
(B )al) = 500 o+ e

“

which implies the claim. Here, “~,,” indicate that the implicit constants depend on m.

. (1+|x|)max(—a,—m) and (@;fm)a(x) =0,

First, we wish to justify Definition 3.1} n We show that the spaces A7 ,(R™) are inde-
pendent of the choices of ® and ¢ by proving the following Theorem which covers

the local means as well. Notice that a special case A37 (R™) of these results was dealt

with in [99] 105].

THEOREM 3.5. Let a, a1, a9, as3,7,q, w and L(R™) be as in Definition . Let L € Zy
be such that

P‘Ia

L+1>a1\/(a+n7+a2). (35)

Assume that W,vp € S(R™) have the property that, for all « € Z with || < L and
some € € (0,00),

V() #0if || <2, 0°“P(0)=0, and $(&)#0ife/2< |¢| < 2e. (3.6)

Let 4j(-) = 27™p(27-) for all j € N and {(¢}f)a}jez, be as in (L1) with ® and ¢
replaced, respectively, by W and . Then

1B @y ~ W] Fatiezy lleacce @n 2.y, (3.7)
I f g, ey ~ (W5 Fatiez leanv e @z, (3.8)
1 lFer @y ~ I{@F flatiezy v @n 2.1 (3.9)
Ifllegr  @my ~ {45 Hatiez, llecy wa@n 2, (3.10)
with the implicit constants independent of f.
Proof. We only need to prove that, for all f € §'(R") and = € R",
(U falz) S )+ 22 VIO or f () (3.11)

and

(V3 fla(z) S 277EF=0)(@ f), +Z2 Il FalG=VOl (o £), (). (3.12)

v=1
Once we prove (3.11)) and (3.12)), we can apply Lemma 2.9 to deduce (3.7)) through (3.10).

We now establish (3.12). The proof of (3.11)) is easier and we omit the details. For a
nonnegative integer L as in (3.5), by [72, Theorem 1.6], there exist T, 1T € S(R™) such
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that, for all 8 with ||5|l1 < L,
5 Yi(x)zP dz =0 (3.13)
and
wf*q>+i¢i*%=50 (3.14)
v=1

in §’(R™), where ¥, (-) := 2v")T(2".) for v € N and d; is the Dirac distribution at origin.
We decompose ; along (3.14]) into

Y= U@+ Yyl . (3.15)

v=1

From (3.6) and (3.13)), together with Lemma we infer that, for all j € Z, and
y € R™,

9—J(L+1) on(jAv)—|j—v|(L+1)

il <_ -
Vi VWIS Gy ez oty

By (3.16)) and (3.15)), we further see that, for all j € Z, and = € R™,

|1 * f(x + 2)|
sup —————
zern (1+27]2))

206714 27y
< gi(E+1-a) (g 9-li=vI(L+1) (% f). / |
( f + Z ( f) (LU) R (1 + 2]/\u|y|)n+l+a

and  |; = ¥l (y)| S (3.16)

v=1

< 9mi(LHl- a)(q; a +ZQ li—v[(L+1)+a[(— V)VO](<p alz )/ M
= an (14 207 [y])oHl

~ 2 J(L+1— a)((p f 22 lj—v|(L+1)+al(G— UVO]((,O f) ( )
v=1

which completes the proof of (3.12)) and hence of Theorem ]

Notice that the moment condition on ¥ in Theorem is not necessary due to (3.6]).
Moreover, in view of the calculation presented in the proof of Theorem we also have
the following assertion.

COROLLARY 3.6. Under the notation of Theorem[3.5], for some N € N and all x € R™,
let

‘ sup [¢; * f(z)], j €N,
Mf(z,277):= ¥
sgpl\l’*f(x)h j=0,

where the supremum is taken over all ¥ and ¥ in S(R™) satisfying

Yo sup (L [z)V[0%g(@) + Y sup (L4 |2)V]0* U (w)| < 1

n
ol <N “<R flafl <N =EE"
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as well as (3.6). Then, if N is large enough, for all f € 8'(R™),

1fllBer @y ~ I{MF(, 279} ez, loaccw ®n 2, )

L.q,a

[l aver eny ~ I{OS (-, 2 Nz leswvew @z, ))s
1l ey ~ {277 ez, o o mn 21 ))

L,q,a

I fllewr @y~ {MF(,277)} ez, llecw (parn z4))s

L,q,a

with the implicit constants independent of f.

Another corollary is a characterization of these spaces via local means. Recall that
A= 3"" | 9%/9x7 denotes the Laplacian.

COROLLARY 3.7. Let a,aq, s, as,7,q, w and L(R™) be as in Definition , Assume that
U € C°(R™) satisfies xp(o,1) <V < XB(o,2)- Assume, in addition, that 1) = ALt for
some £y € Z4 such that

200+ 1> aqV(a+nt+ as).

Let j(-) = 27™p(27-) for all j € N and {(¢}f)a}jez, be as in with ® and ¢
replaced, respectively, by U and . Then, for all f € §’'(R™),

I £l 5o @ny ~ (] fatiezy leaccw@®n z,))s

L,q,a

Il ey ~ (W5 Faticz, leavew @z,

(¢35 1)
Il Egr @ny ~ @] Pabjez, |
(5 F)

s Lo (0a(RP Z4))

Ifllegr @y ~ {45 F

i atiezy lecw s z,)))

with the implicit constants independent of f.

3.2. Fundamental properties. With the fundamental theorem on our function spaces
stated and proven as above, we now take up some inclusion relations. The following
lemma is immediately deduced from Lemma and Definition

LEMMA 3.8. Let aj,as,a3,7 € [0,00), ¢,q1,¢2 € (0, 0], ¢1 < g2 and w € W33 Let

ay,02 "

L(R™) be a quasi-normed space satisfying (L1) through (L£4). Then we have continuous
embeddings

,th a R") = B £ ,q2, a(Rn)v

(R™)
L q1 (RTL) L q2 a(Rn)
(R") —

,qua R™ ,ng a(Rn)7
EqaR") = €Ly, o(R"),
Bw7;a(Rn)’ ﬁqa(Rn) F[’l:u(;-a( ) gz',unu,( ) — ﬁooa(Rn) (317)

REMARK 3.9. (i) It is well known that F; (R") — B (R") = By (R") (see,

p,max(p,q)
for example, [90]). However, as an example in [73] shows, with ¢ € (0, o0 ﬁxed (3-17) is
optimal in the sense that the continuous embedding F." (R") < N7 (R™) holds for

all admissible a,w, 7 and £(R") if and only if r = cc.
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(ii) From the definitions of the spaces A’ (R™), we deduce that

L,q,a
Apr J(R™) < BT (R™).
Indeed, for example, the proof of £, (R") = B[ (R") is as follows:
1
[fllegr @y = sup 5= l{X(jp,00) (D)XPW; (0] a}tiZoll 2w ea(mn z
2q,a(®™) Peo(R™) |P[™ [ip,00) AN J=0l1Lw (ea( +))

1
> sup  sup ——|Ixpw; (@5 Palle@n = 1fl e @e-
PeQ(®n) j2jr |PI7 a\wgljallL®) W7 W (R

Now we are going to discuss the lifting property, which also justifies our new framework
of function spaces. Recall that, for all f € S'(R") and & € R, we let ((1—A)%/2f)7(€) :=
(1+ [€[2)%/2f(€) for all £ € R™.

THEOREM 3.10. Let a, oy, o, as, 7, ¢, w and L(R™) be as in Deﬁnition and s € R.
For all x € R™ and j € Z, let
w® (2,277 = 275w, ().

Then the lift operator (1 — A)*/? is bounded from Aps J(R™) to AZ(:(;T (R™).

For the proof of Theorem the following lemma is important. Once we prove this
lemma, Theorem is obtained by using (W1).

LEMMA 3.11. Let a € (0,00), s € R and ®,p € S(R™) be such that

supp ® C {€¢ € R": [¢| <2}, supp FC {E €R™:1/2< |¢] <2} and@—i—Z@EL
j=1

where @;(-) := 29"@(27-) for each j € N. Then there exists a positive constant C' such
that, for all f € S'(R™) and z € R",

(@ (1= A2 f))a(@) < CUR* fa(®) + (0] f)a(@)], (3.18)
(@11 = A2 ))a(z) < CUR* alz) + (¢7 Fa(@) + (95 f)a(@)], (3.19)
(@5 (1= D)2 f))a(z) < C25(@1 falm)  for all j > 2. (3.20)

Proof. The proofs of (3.18]) and (3.19) being simpler, let us prove (3.20). In view of the
size of supports, we see that, for all j > 2 and z € R",
(@5 (1= A)*2f))a()

lpj % [(1 = A)*2 (2 + 2)|

= sup

-€Rn (1 +27z[)
_ sup (0B pim1 + 05+ 0j41) 2 0 # S +2)]
-€Rn (1+27]z[)
1
= sup —————— 1— A% (pi_14 0+ ¢; ik flr+2—y)dy|.
S A o)e /Rn( )5 (pj—1 + i+ i) W)es * f( y) dy

Now let us show that, for all j > 2 and y € R",

. 9i(s+n)
0= 8)"2(ps1 95+ 23| S g (3.21)
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Once we prove (3.21)), by inserting it to the above equality we conclude the proof of
(13.20]).
To this end, we observe that, for all j > 2 and y € R",

(1= 802 (S ) ) = {0+ PY2RE) + B + 3T ()
l=—1

Since, for all multiindices @, j > 2 and £ € R", a pointwise estimate

|0%((L+ [€%)*2[B(2771€) + B(277€) + (277 1g)))| S 207 19T (1 4 27 )=
holds, follows from the definition of the Fourier transform. m

The next Theorem is mainly a consequence of the assumptions (£1) through

(£4) and (£6). To show it, we need to introduce a new class of weights, which are also
used later.

DEFINITION 3.12. Let oy, az,a3 € [0,00). The class »-W393 | of weights is defined as

1,02

the set of all measurable functions w : Ry, — (0, 00) satisfying (W1*) and (W2), where
(W2) is defined as in Definition [2.3 and

(W1*) there exists a positive constant C' such that, for all z € R™ and j,v € Z; with
§ > v, C7R2U Moy (g, 277) < w(x,277) < C2- W=Dz (x, 277).

It is easy to see that x-Wos — C Wes

Qp,02 = Qay,02”
EXAMPLE 3.13. If s € [0,00) and w;(z) := 27¢ for all z € R" and j € Z, then it is easy
to see that w € WY .

THEOREM 3.14. Let a, a1, a0, a3,7 and q be as in Definition . If w € x- W and

1,002
L(R") satisfies (L1) through (L4) and (L6), then Ay (R") — S'(R™) in the sense of
continuous embedding.

Proof. Let @, € S(R™) be as in Lemma Then
o+ p=1. (3.22)
j=1

We first assume that (W1*) holds with
ar—N4+n—y+nr>0 and N>d+n (3.23)

for some N € (0,00).
For any f € AZ;G(R"), by the definition, we see that, for all @ € Q(R™) with jo € N,
1
QI
Consequently, from (W1*), we deduce that

Ixqu(-, D)@, Halle@ny S 2790+ 7]
Now let ¢ € S(R™) and define

p(¢) == sup (1 +[])**+N((x).
rER™

Ixgw(-2799) (@5 allen < 1 fllazs g

AN (n- (3.24)

L.,q,a
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Then from (3.24) and the partition {Q, }rezr of R™, we infer that

| @@l de 00 3 4127k [ gy s f(o)]de

kezn ij
If we use the condition (W2) twice and the fact that j € [0, 00), we obtain

[ Cares s s@lda 50 3 @+ 27K ot wi) [ oy« fo)]da

kezn €Qn Qj

Q) > 2N+ k)" Nngkl Inf {w(y, (@5 1)a()}-
kezn
Now we use (3.24) and the assumption (£6) to conclude

/R @)y * f(x) dz S p(¢) S 2N (14 k)N xg, w(, 1)(] Fall 2y
" kezn
) Y grileamNan=ainn) () g B )TN £y

ot L,q,a
~ 27““171\””7%”)1)(0Hf||A2’;;,a(R")- (3.25)

By replacing ¢ with @ in the above argument, we see that
/ @@ (@) do S pOIS Lz - (3.26)
Combining ([3.22] and -, we then conclude that, for all ¢ € S(R"™),

(4,01 < 1@ 1,01+ 3 ey 101 S pOIS
j=1
which implies that f € S'(R") and hence A7 ,(R™) < S'(R") in the sense of continuous
embedding.
We still need to remove the restriction (3.23]). Indeed, for any ay € [0,00) and f €
AT (R™), choose s € (—o0,0) small enough that oy —s > v+ —n7. By Theorem

L,q,a
we have (1—A)%/2f ¢ AZ:?(’;(R"). Then, defining a seminorm p by p(¢) := p((1—A)%/2¢)
for all ¢ € S(R™), by (3.27), we have

(£ = (1= A)2f, (1= 8)=/%¢)]
S p((L—=2)7 2 - )S/zfllAw<s> rmy S PO agr @n).

REMARK 3.15. In the course of the proof of Theorem [3.14] the inequality

/ e S de S BT () g o
K ik

(R™)

AL (R (3.27)

(R™) ™~

is proved. Here k > 1, M and the implicit constant are independent of j, k and k.

It follows from Theorem that we have the following conclusions, whose proof is
similar to that of [90, pp. 48-49, Theorem 2.3.3]. For convenience, we give some details.

PROPOSITION 3.16. Let a, oy, a0, 03,7 and q be as in Deﬁm’tion@ If w € - Wg‘f s
and L(R™) satisfies (L£1) through (L£6), then the spaces BY"" (R™), (R™), F

L q a(Rn)
and £77 ,(R™) are complete.

[,qa an
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Proof. Due to similarity, we only give the proof for FZ’qTa (R™). Let {fi}ien be a Cauchy
sequence in F;"7 (R™). Then from Theorem it is also a Cauchy sequence in S’'(R™).
By the completeness of S&’(R™), there exists an f € S’(R™) such that, for all Schwartz

functions ¢, ¢ * fi — @ * f pointwise as [ — oo and hence
px(fi=f)= lim o*(fi—fm)
pointwise. Therefore, for all j € Z; and x € R™,

sup g * (fi = )z +2)| < liminf sup |05 * (fe = f) (& + 2)|,

N s TG W T (2l
which, together with (£4), the Fatou property of £L(R") in Proposition and the Fatou
property of £4, implies that

limsup || fi = fllper (gn) < limsup (hminf Ifo = finllper (]R")) =0.
l—00 e l—00 m—oo \q,a

Thus, f = 1iMy e fr in F7(R™), which shows that F"" (R™) is complete. m

Assuming (£6), we can prove that S(R") is embedded into A7 (R™).

THEOREM 3.17. Let a, a1, as,a3,7,q and w be as in Definition . Then if L(R™) sat-
isfies (L1) through (L6) and
a < (N(] + as, OO), (328)

then S(R™) — Ay (R") in the sense of continuous embedding.

Proof. Let f € S(R™). Then, for all z € R™ and j € N, we have

|90]*f(x+z)| 1 4n+1
sup } S sup (1 + [y)*™™ [ f (y)l-
z€ER™ (1 + 2J|Z|)a (1 + |x‘)a yeR™

In view of (W2), (£6) and (3.28)), we have (1+|-|)"%w(-,1) € L(R™). Consequently,
‘ w; sup 7|ij * 704 2)]

S T 2

Let € be a positive constant. Set wj(z) := 2 i(aztnTHe)y () for all 2 € R™ and j € Z,.
The estimate (3.29) and its counterpart for 5 = 0 show that S(R") — Alqua (R™) and
hence Theorem shows that S(R™) «— A7 (R"). m

<27 sup (1+ [y)*™ | f(y)l- (3.29)
L(R™) yeR™

L,q,a

Motivated by Theorem we postulate (3.28) on the parameter a here and below.
In analogy with Theorem we have the following result on the boundedness of
pseudo-differential operators of Hormander—Mikhlin type.

PROPOSITION 3.18. Let a,aq, a9, a3, 7,q,w and L(R™) be as in Definition . Assume
that m € C°(R™) has the property that, for all multiindices &,

Mg := sup (1 + [€))191110%m(€)| < .
£ER

Define I, f = (mf)v. Then the operator I,, is bounded on AZ;G(R") and there ex-

ists K € N such that the operator norm is bounded by a positive constant multiple of
2l <x Ma-
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Proof. Going through an argument similar to the proof of Lemma we are led to
(3.21)) with s = 0 and (1 — A)*/? replaced by I,,,. Except this change, the same argument
works. We omit the details. m

In Chapter [5| below, we will give some further results on pseudo-differential operators.
To conclude this section, we investigate an embedding of Sobolev type.

PROPOSITION 3.19. Let a, a1, a9, as3,7,q,w and L(R™) be as in Definition . Define

wj(z) = 2N (1 + |z])ow; (x) (3.30)

for allz € R™ and j € Zy. Then AT (R™) is embedded into BY _ ,(R™).

L,q,a 00,00,a

: o * az+d
Observe that if w € Wg? , , then w* € 1/\/(al+w_7)+,(062_#7_“”+ and hence

*\—1 asz+9d
(W)™ € W(a2+7—"/)+7(0t1+7—7')+'

Proof of Proposition . Let P € Q;(R™) be fixed for j € Z,. Then, for all z,z € P,

lpj x fla+y)l _ o x fz+ (Y +2—2))
A+2yhe ~ A+2y+z—2])°

where, when j = 0, ¢ is replaced by ®. Consequently, by (W2), for all z € P,

)

: |0 * flu+y)
w.ilx . T) = su sup w.(u) XL —2x— 70
(@) (#] falz) sup sup (1) T
< inf sup sup w;(u) | * f(2,+ (y+u—2))]
z€P yecp ycRn (1+21|y+u_z‘)a
i = f(z + w)|

< inf sup sup w;(u :
Nzepuelgweﬂg)" J( ) (1+2j|w|)a

lpj * fz+y)l

< inf sup w(z,277) in}f)w(z,2_j)(tp;f)a(2)-

:2p b R
Thus,
) . [P
sup w;(2)(#] f)a(®) S xPw; e * fllomny < fllawr (®ny,
ecP J( )( J ) ( ) ||XP||£(]R")H J¥j || (R™) ||XP||L',(R") || | L,q,a(R)

which implies the desired result. m

It is also of essential importance to provide a duality result of the following type,
when we consider the wavelet decomposition in Section [4]
In what follows, for p,q € (0,00}, w € Wg3 ,, with ay, g, a3 € [0,00), w; for j € Z

as in (2.5)), the space B}’ (R") is defined to be the set of all f € S'(R™) such that
||fHB;{q(Rn) = [{wjp; * f}iezy llear@n,z,)) < 00,
where @, p € S(R") satisfy (1.3) and (1.4), po := ® and ¢;(-) := 27"p(27) for all j € N.

PROPOSITION 3.20. Let oy, s, a3 € [0,00) and w € W3 Assume, in addition, that

g, ”

there exist ®,p € S(R™) satisfying (1.3)) and (1.4) such that

‘I)*<I)+ngj*<pj:5 in §'(R™).

j=1
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Any g € BY, (R™) defines a continuous functional, Ly, on B{‘j;l(R") such that

Ly:feBY (R") s (@xg,@% )+ (pj*g,05 % f) €C.

j=1

Proof. The proof is straightforward. Indeed, for all g € BY, , (R") and f € B}‘j;l (R™),

(@xg,@x )|+ D s * 9,05 % N < lgllpg @ 1l pprr gy ®

j=1
We remark that the spaces B}, (R") were intensively studied by Kempka [34] and it
was proved in [34 p. 134] that they are independent of the choices of ® and ¢.



4. Atomic decompositions and wavelets

Now we place ourselves once again in the setting of a quasi-normed space L(R™) satisfying
only (L£1) through (L£6); recall that we do not need to use the Hardy—Littlewood maximal
operator.

For a function F' on jol =R" x {277 : j € Z, }, we define

1F|

L1£u ;’a(]Rn«l»l) .

P27 }
yE]R" (1+27]- —y\) jezy\lea(cw®n,z,))

£ { P2l
NWT Rn+1 = 9
caa®i) yein (1+27]- = jezy leawey ®nzy))

1| o R

)
L,q,a

y\ }
\F y,2” 3 }

yeR" 1+ 27| —y\ jezy e (pa(®n z1))
y\ }

o C|F@.27)
Ry = sup

F w,T
1Elg O ST p— T

e jezyllecy (ea(rm zy))

4.1. Atoms and molecules. Now we are going to consider atomic decompositions,
where we use (1.6)) to denote the length of multi-indices.
DEFINITION 4.1. Let K € Zy and L € Z U {—1}.
(i) Let Q € Q(R™). A (K, L)-atom (for A}7, ,(R™)) supported near Q is a C*(R")-
function 2 satisfying
(support condition)  supp () C 3Q,
(size condition) ||a&QlHLoc(]Rn) < |Q|~Nelh/n

(moment condition if £(Q) < 1) / xEQl(x) dr =0,

for all multiindices @ and 3 satisfying ||@||; < K and ||8]|; < L. Here the moment
condition with L = —1 is understood to be vacuous.
(i) A set {%x}jez,, kezn of CK(R™)-functions is called a collection of (K, L)-atoms (for
A7" (R™)) if each Uy, is a (K, L)-atom supported near Q.
DEFINITION 4.2. Let K € Zy, L € Z, U{-1} and N € R satisfy
N >L+n.

(i) Let @ € QR™). A (K, L)-molecule (for A", ,(R™)) associated with a cube Q is a
CK (R™)-function M satisfying

(32]
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(decay condition)  |9%M(z)| < (1 + |z — cg|/€(Q))™  for all z € R™,

(moment condition if £(Q) < 1) / yPM(y) dy = 0,

for all multiindices @ and 3 satisfying ||@||; < K and |||, < L. Here ¢g and £(Q)
denote, respectively, the center and the side length of ), and the moment condition
with L = —1 is understood to be vacuous.

(ii) Aset {9M;i}jez,, wezn Of CH(R™)-functions is called a collection of (K, L)-molecules

(for A7, o(R™)) if each 9y, is a (K, L)-molecule associated with Q;y.

DEFINITION 4.3. Let aq, a9, a3, 7 € [0,00), a € (Ng + a3,00) and ¢q € (0, co], where Ny
is from (£6). Suppose that w € Wg? .. Let A\ := {\jx}jez, rez» be a doubly indexed
complex sequence. For (z,277) € R% 7, let

)= ) Aikxe (@)

kezm™

We define the following inhomogeneous sequence spaces:

(i) sz ‘2.a(R™) is the set of all A such that [[Allyzr (gn) = [[A] L7 R+ < 00
(ii) npy o(R™) is the set of all A such that ”/\”TLZ,’;,Q(R”) = ”A”N;”;q’,a(RQf) < 0.
(ili) fz ), o(R™) is the set of all A such that HAHfZU,‘;a(R") = ||A||F£J$;a(RH1) < 0.
(iv) ez o(R™) is the set of all A such that H)‘HG?,’;a(R") = ||A||52u’,;a(R;:1) < 00.

When 7 = 0, then 7 is omitted from the above notation.

In the present paper we consider many types of atomic decompositions. To formulate
them, we make the following definition.

DEFINITION 4.4. Let X be a function space embedded into 8'(R™) and X a quasi-normed
space of sequences. The pair (X, X) is said to admit atomic decompositions if it satisfies
the following two conditions:

(i) (Analysis condition) For any f€ X, there exist a collection of atoms, {21 }jez, , kezn,
and a complex sequence {\j} ez, kez» such that

F=Y000 Nk

j=0 keznr
in 8'(R™) and |[{A\jx}jez,, keze||lx S || fllx with the implicit constant independent
of f.

(ii) (Synthesis condition) Given a collection of atoms, {4} ez, , kezn, and a complex se-
quence {Ajr}jez, kezn satisfying |[{Ajr}jez. reznlx < oo, the series f :=
Z;io > kezn AjEjk converges in S'(R™) and || flx S [{\jx}jez,, vezn|lx with the
implicit constant independent of {\jx} ez, kezn-

In analogy, a pair (X, X) can be said to admit molecular decompositions or wavelet
decompositions, where the definition of wavelets appears in Subsection [1.4] below.

In this section, we aim to prove the following conclusion.
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THEOREM 4.5. Let K € Z,, L € Zy, aq,a9,a3,7 € [0,00) and q € (0, co]. Suppose
that w € W2 and that (3.28) holds, namely, a € (Ny + as,00). Let § be as in (L6).

1,02
Assume, in addition, that

L>az+d0+n—14+vy—n71+ay, (4.1)
N>L+ a3+ 0+ 2n,
K+1>ay+nr, L+1>a;.

Then the pair (A7 (R™),az7 ,(R™)) admits atomic/molecular decompositions.

4.2. Proof of Theorem The proof is made up of several lemmas. OQur primary
concern is the following question:

Do the series 377 >y czn Ajen and 3272 304z Ajej converge in S'(R™)?
Recall again that we are assuming only (£1) through (£6).

LEMMA 4.6. Let a1, as,a3 € [0,00) and w € W53 Assume, in addition, that the

aq,09 "
parameters K € Zy, L € Z, and N € (0,00) in Definition satisfy (4.1)—(4.3)).
Assume that X = {\jx}jez, kezr € b%;a(R”) and {Mjr}jcz, kezn is a family of

(K, L)-molecules. Then the series
o
F=20 2 Ak (4.4)
3=0 kezn
converges in §'(R™).

Proof. Let p € S(R™). Recall again that v and ¢ are constants appearing in the assump-
tion (£6). By (4.1) and (4.2)), we can choose M € (ag + 0 + n,00) such that

L+1l—-y—a1s—-M+nr>0 and N>L+M+n. (4.5)
It follows from the definition of molecules and Lemma 2.10] that

/ m]k dx

By the assumption (£6), we conclude that

<27 IEAD (1 o7 |k))M

Dﬁjk dx

n

<2 AL 2RV W+ K xalleeny.  (46)

From the condition (W1), we deduce that, for all j € Z, and z € R", 279 w(z,1) <
wj(z) and, from (W2), that, for all z € R, w(0,1) < w(x,1)(1+|z|)*s. Combining these,
we conclude that, for all j € Z, and z € R",
w(0,1) < (1 + |2])** 2% w; (2). (4.7)
Consequently, we have
LS (1+ k)27 w; () (4.8)

for all x € Qi with j € Z4 and k € Z". By (4.6) and (4.8), we further see that, for all
j€Zy and k € Z™,
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A | My (@) p(x) de
Rn

S 2T M) (| ) MR A ). (49)

So by (4.5)), this inequality can be summed over j € Z, and k € Z", which completes
the proof. m

L,q,a
the convergence in (4.4)) takes place in &’(R™). Indeed, in view of Remark 3.9} without loss

of generality, we may assume that f € Bg;a(R”) Then, by Lemma the convergence
in (4.4) takes place in S'(R™).
Next, we consider the synthesis part of Theorem

In view of Lem Lemma is sufficient to ensure that, for any f € A" (R"),
4.4

LEMMA 4.7. Let s € (0,00), a1, a2, a3,7 € [0,00), a € (Ng+az,00) and g € (0, co]. Sup-
pose that w € Wg? . Assume, in addition, that K € Zy and L € Zy satisfy (4.1])—(4.3).

Let X := {\ji}jez, kezn € a%:;a(R”) and M = {M;r}jez, rezr be a collection of
(K, L)-molecules. Then the series

F=300 Ney

j=0 kezZ"

converges in 8'(R™) and defines an element in AT (R™). Furthermore,

Eqa
[fllazr @) S IAlawr @),

with the implicit constant independent of f.

REMARK 4.8. One of the differences from the classical theory of molecules is that there
is no need to distinguish Besov-type spaces and Triebel-Lizorkin-type spaces. Set o, :=
max{0,n/p — n}. For example, recall that in [92] Theorem 13.8] we need to assume

L > max(—1,|op, —s]) or L > max(—1,|max(op,0,) —s])

according as we consider Besov spaces or Triebel-Lizorkin spaces. However, our approach
does not require such a distinction. This seems due to the fact that we are using the Peetre
maximal operator.

Proof of Lemma[4.7, The convergence of f in &'(R") is a consequence of Lemma

Let us prove || f] AYT(Rn) S [ Allawr (mny. To this end, we fix 2 € R™ and j,1 € Z+
Let us abbreviate ZkeZ" )\lki)ﬁlk to fl Then we have

sup { 3 2Dy | } j>1
s o * fi(z + 2)| c )= L (14 24z))e(1 + 2z + 2z — 2= k)M |7 2 b

A2~ gin—(1—4)(K+1)| \
zern (1+27]z]) sup { A S | _ i<l
. 1+ 221+ Y]z + 2 -2 Lk|)M

z€R™

by Lemma [2.10, where M is as in (@.5)). Consequently, as 1 + 27|z| < 1 4 222U |z| for
all z € R™ and j,] € Z,, we have
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oy 1935 fi(a 4 2)
2ER™ (1 + 27 |Z|)a

sup
z,weR"

{ Z Z 9ln—(i=1)(L+1)(1 +2lw|)a|/\lmXle(x+w)} S
.5 (1T+ 22 + 2z = 27 Tk)M e

9in+(i-0(K+1) (1 4 9l U\,
sup Z Z (1 +2"w[)” Ll XQun (7 + w) <l
(1+27|x+2z—27k|)M

2weR™ L S orn kezn
From
gln 2Jn 1
. Sy
kezzn (1+ 2z + 2z —271k)M kezz (1+ 2|2+ 2 =27k ™ Jgo (L+ [y)M

and M € (a3 + 6 + n,00), we conclude that

2-G-0(+) §° [ IAzmIXle(w+w)} o

sup l a -
s * filw+2)] mezn Luerr — (1+2wl)
sup ——————= <
zern (14 27]2) (=1 (K+1)

Nimlxou (@ +w)] (4.10)
e l a 3 1< l.
mezZn weR™ (1 + 2 |w|)

If we now use (4.3) and Lemma[2.9] we obtain the desired result. m

With these preparations, let us prove Theorem [£.5] We investigate the case of
o7 (R™), the other cases being similar.

Proof of Theorem/[4.5| (analysis part). Let L € Z satisfying (4.1 be fixed. Let us choose
U, € C°(R™) such that
supp ¥, supp ¢ C {z = (z1,...,2,) : max(|z1], ..., |zn]) <1} (4.11)

and
w(x)xg dx =0 (4.12)

Rn

for all multiindices 3 with ||3]y < L, and ¥ = ¥ + Z‘;’;l i x1p; = § in S'(R™), where
; :=29)(27+) for all j € N. Then, for all f € F;7 (R"),

L,q,a
f:\y*q/*f+zzpj*¢j*f (4.13)
j=1
in §’(R™). With this in mind, let us set, for all j € N and k € Z"™,
o= [ sl =2 [ s Sl (114)

and, for all x € R"™,

Bosle)i= s [ W@ sy )= [ e s Sy (015)

Jk Q]k
In (4.15)), if ;5 = 0 for some j € Z, and k € Z™, we set A, := 0.

Observe that f := Y7737, 70 \jk2ljx in S'(R™) by (£.13) and (£.15). Let us prove
that 2, given by (4.15)), is an atom supported near @ ;5 modulo a multiplicative constant
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and that A := {\jr}jen, kezn, given by (4.14), has the property that
(Al per @ny S NfllF2r @ny- (4.16)

L,q,a L,q,a

Observe that, when = + 2 € @, by the Peetre inequality we have

2Jn / Jn
o [ Wy = e [ e fa e -yl dy
(L+27]z) Jg,, L +29]2D)* Jayzoq,
2im
< < Vi s f(@ 4z —y)ldy
/x+zczjk (1+ 27[2])(1 + 27]y[)e
</ xStz -yl
S T g Vi k@2 —y)lay
wtamQy (L+ 27z =yl
< o i fa—w)]
~wern (14 27[w])®
Consequently,
2 / [ * flz — 2)]
sup § ——— vi*x f(y dy} < sup ———— 4.17
2 T Jy, o i) < e B e
Since {Q;x }rezn is a disjoint family for each fixed j € Z4, (4.17) reads
1 |t * fz — 2)|
sup —————— Aj . x+z‘§ sup —2—— "2 4.18
I AT 2]ae kz #XQu (2| X P T i (419
In particular, when j = 0, we see that
1 U« f(z — 2)]
sup ————— A0k XOo, (T + 2 ‘ < sup ———————. 4.19
cern (14 |2])e 2 Qo (7+2) zern (14 ]2])e (419

kezn

Consequently, from (4.18) and (4.19), we deduce the estimate (4.16]).
Meanwhile, via (4.11]), a direct calculation of the size of supports yields

supp(2;x) C Qji + supp(p;) C 3Q ;i (4.20)
and there exists a positive constant Cz such that
97 (l&ll1+n)

- (@@ — )y Fly)dy < Ce2IT a21)
ik

Qjk
for all multiindices & as long as Aji # 0.
Keeping (4.20]) and (4.21)) in mind, let us show that each 2 is an atom modulo a posi-

tive multiplicative constant ), - l,<x Ca- The support condition follows from (4.20). The
size condition follows from (4.21]). Finally, the moment condition follows from (4.12)). =

071, ()| =

4.3. The regular case. Motivated by Remark we now consider the regular case of
Theorem that is, the case L. = —1. This is achieved by polishing a crude estimate

(2.17)). Our result is the following.
THEOREM 4.9. Let K e NU{0}, L = -1, aq, a9, a3, 7 € [0,00) and g € (0, co]. Suppose
that w € x-W2s Assume, in addition, that (3.28) and (4.2) hold, and that

Qy,02 "

0>as+d+n+y—nrT—o (4.22)
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and
ay >nt, K+1>ay+nr. (4.23)
Then the pair (A7 ,(R"),az7 ,(R™)) admits atomic/molecular decompositions.
To prove Theorem we need to modify Lemma
LEMMA 4.10. Let D1, Ds, a1, a0, a3,7 € [0,00) and g € (0,00] satisfy
Di+a1 >0 and Dy —as > nrt.

Let {g,}vez, be a family of measurable functions on R™ and w € x-Wg? . . For all
jE€Zs and x € R™, let

oo J
S 2 Iy ) 4 3 2 0P, ).
v=j+1 v=0

Then (2.13) through (2.16)) hold.

Proof. The proof is based upon a modification of (2.19).
If, in Definition we let t := 27" and s := 277 for j,v € Z, with v > j, we obtain

wi(z) <220y, () for all z € R™, (4.24)
If, in Definition [3.12] we let t = 277 and s = 2" for j,v € N with j > v, we get

wj(z) <2020y, (z)  for all z € R™. (4.25)
Combining and 7 we see that

201~y >

) 4.26
2020, (2), v <, (4:26)

for all j,v € Z,. Let us write

1

1/q
L ]
1P|

I(P):=

[ ’ZwQV J)Dz

j\/Ol/O

o & |5 w1,

=jpV0 v=j+1

E(Rn)

IPIT

for any dyadic cube P.

Let us suppose ¢ € (0, 1], since when ¢ € (1, 00|, an argument similar to Lemma
works. Then we deduce, from (4.26) and (£4), that

I(P) 9= ([F—v)(D2— az)Q|w 'y | H
IPIT [j %:VO;) } L(R™)
1
9—(r=3)(D1t+a1)g }
el >y hougel' ]| gy

j=jpVOv=j+1
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by (W1) and (2.21]). We change the order of summations on the right-hand side of the
above inequality to obtain

, 1/q
I(P) < P {Z Z 2—<J—u>(D2—a2>q|wygV|q}
‘ | v=0j=vVjipVO0 L(R™)
1 > - , 1/q
+—|x { 9= (=) (Ditar)a|y, o q] _
el X% wgt)

v=3jpV0 j=jpV0
Now we decompose the summand with respect to v according to 7 > jpV0or j < jp V0.
Since Dy € (ag + n7,00), we can choose € € (0,00) such that Dy € (ag + n1 + €, 00).
From this, Dy € (—ay,00), the Holder inequality, (£2) and (£4), it follows that

I(P) < H{gu}uem”cw(eq (R",Z4))
jpVO oo

(j—v)(D2—«
XP[Z Z 270 Damealtfu, g,,|] HL(R")

v=0 j=jpVO

IPIT

92— (jpV0)(D2—az—¢)

S H{gl/}V€Z+| |P|T

jpVO
coea(®n,zy)) T ‘XP > 22w, g, |
v=0

£(Rn) ’

which is just (2.22)). Therefore, we can follow the same argument of the proof of Lemma
29 =

Proof of Theorem[[.9. The proof is based upon reexamining that of Theorem [£.5] Recall
that the latter proof consists of three parts: Lemma [£.6] Lemma [4.7] and the analysis
condition. Let us start by modifying Lemma[4.6] By (4.22)), we choose M € (ag+d+n,0)
so that

—vy+a1—M+nr>0 and N >L+2n+as+4. (4.27)

Assuming that w € - W23 we see that «q in the proof of Theorem and in the

1,027

related statements can be replaced with —a;q. More precisely, (4.7) changes to
w(0,1) < (1 + |z))**2 7w, (z) for allz € R™ and j € Z,.
Assuming L = —1, we can replace (4.9) with the following estimate: for all j € Z, and

kez",
]k/ gﬁjk d.T

Since we are assuming , we have a counterpart for Lemma that is, the series
f=3000 Y ke /\jkimjk converges in §'(R").

Next, we reconsider Lemma [{.7] Its statement remains unchanged except that we
substitute L = —1. Thus, the concluding estimate changes to

S 27T T (1 [k |) MO

Q(Rn).

[ p Dinliaele o) o
o * filz +2)| _ ) mczn Lwer (1 + 24wl | -
sup L L <
zern (14 27|z|)e 9(i—D(K+1) su At X Qi (z + w) :
) <.
2| s )

mezn

Assuming (4.23)), we can use Lemma with D1 =0 and Dy = K + 1.
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Finally, the analysis part of the proof of Theorem [4.5] remains unchanged. Indeed, we
did not use the condition for weights or the moment condition here. m

4.4. Biorthogonal wavelet decompositions. We use biorthogonal wavelet bases on R,
namely, a system of scaling functions (1°,1%) and associated wavelets (¢!, 4!) satisfy-
ing

WO = k), 0% —m) 2@ = Okm  (k,m € Z),

(@227 k), 2PN (27 - —m)) 2wy = Oy vm) (i Ko vm € Z),

where 6 = 1if k = m and 6y, = 0if k # m, §(; ), (,m) being defined similarly. Notice
that, for all f € L?(R"), we have

F=3" 20N k) o ¥ (2 - —k)

j.kEL

= > PPN k) ey (2 k)
J,kEZL

=D AL =@y =R+ Y PN k)@Yt (2 k)
kEZ (4,k)EZ 4 XTZ

=D (R e@y’C =R+ Y 2L k) ey (2 )
kez (j,k)EZ X7

in L?(R). We construct a basis in L?(R™) by using the well-known tensor product pro-
cedure. Set F :={0,1}"\ {(0,...,0)}. We need to consider the tensor products
U= @79 and U= @7 %

for ¢ := (c1,...,¢,) € {0,1}™. The following result is well known for orthonormal
wavelets; see, for example, [6] and [94 Section 5.1]. However, it is straightforward to prove
it for biorthogonal wavelets. Moreover, it can be arranged that the functions ¥°, !, ¢°,
have compact supports.

As can be seen from the textbook [6], the existence of 10,4, 40 ¢! is guaranteed.

Indeed, we just construct ¥°,1! which are sufficiently smooth. Accordmgly7 we obtain
z/JO wl which are almost as smooth as 1%, ! Finally, we obtain {¥¢, ye tecE.

LEMMA 4.11. Suppose that {‘I’c,\lfc}ceE is a biorthogonal system as above. Then for
every f € L*(R"),

F=> DT = k)o@ V(- —k)

ce{0,1}™ keZn
Y DTN 2T —k)) Lo 272 UC (27 —)
cEE j=0 keZn
with convergence in L*(R™).
Notice that the above lemma covers the theory of wavelets (see, for example, [10], [26]

471, [94] for elementary facts) in that this reduces to a theory of wavelets when 0 = Y0
and ¢! = 1/11. In what follows we state conditions on the smoothness, the decay, and the
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number of vanishing moments for the wavelets 1!, qzl and the respective scaling functions
PO, 120 in order to make them suitable for our function spaces.

Recall first that oy, g, as, 6,7, T are given in Definition [3.I] Suppose that the integers
K, L, N satisfy

L>as+0+n—14+v—n7+aq, (4.28)
N>L+as+0+2n, (4.29)
K+1>as+nr, L+1>a. (4.30)
Assume that the C¥ (R)-functions ¢°, ¢! satisfy, for all a € Z, with a < K,
0 @t) + 0% ()] S L+ [t) ™Y, teR, (4.31)
and
/ tPpL(t) dt = 0 (4.32)
for all 8 € Z, with # < L. Similarly, the integers K , f, N are supposed to satisfy
L>as3420+n—1+~+max(n/2, (az —7)1), (4.33)
N > L+ as+26+2n, (4.34)
K+1>a;+7. (4.35)

Let now the CK (R)-functions 1;0 and 121 satisfy, for all o € Z with o < f(,
090 (0)] +10°9 (1) S (1 + [H) N, teR, (4.36)
and, for all 8 € Z, with 8 < L,
/R Pt (t) dt = 0. (4.37)
Assume, in addition, that

K+1>L>2u+n7r, N>a+n. (4.38)

Observe that (4.31)) and (4.32) correspond to the decay condition and the moment
condition of ¥° and ' in Definition respectively. Let us now define the weight
sequence

* - in 0
W;(z) = [w](z)] "t A2/ € ngi /22t T 1)) (a4 =) (4.39)

where z € R", w} is defined as in (3.30) and j € Z.
If a € (n + a3, 0), using Proposition below, which can be proved independently,
together with the translation invariance of L>(R") and L*(R™), we have

||fHBgo,oc,a(Rn) ~ Seuzp pj (@5 * F)llLe®n), Hf||Bf,La(]R<n Z lpj(@s* Fllrwny  (4.40)
JEL+

for all f € S'(R™) and p € W23 . See also [45, Theorem 3.6] for a similar conclusion,

1,02
where the case when p is independent of j is treated. Thus, if we assume that

a>n+as+4, (4.41)
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we see that

1 w1 ey ~ s W57 (05 % Pz @), 1f |y,
©0,00,a ]EZ+

1,1,a

®) ~ Z IWi(ej * F)llzr®ny-
§=0

Observe that (4.33)—(4.35) guarantee that (B} ,(R™),b"; ,(R™)) admits atomic/
molecular characterizations; see Theorem and the assumptions (4.28)—(4.30). In-

deed, in A7 (R™), we need to choose
A=DB, LR")=LYR"), ¢q=1, w=W, 7=0,
and hence, we have to replace (a1, ag, a3) with
(max(n/2, (az — 7)), a1 +7,as + )

and Ng should be greater than n. Therefore, f become 7, respec-
tively.

Ii view of Propositions and we define, for every ¢ € {0,1}", a sequence
{AS tiezy kezn by

XS4 = XS4 (f) = (27282 - —k),  jeZy, ke L, (4.42)

for a fixed f € BO‘Z;(R”) In particular, when ¢ = 0, we let A7, = 0 whenever j € N.
It should be noticed that K and K may differ, as was the case in [68].

THEOREM 4.12. Let o, a9, as,7 € [0,00) and g € (0, oo|. Suppose that L(R™) satisfies
(L£1) through (L£6), w € Wg? ,, and a € (No + a3z, 00), where Ny is as in (L6). Choose
scaling functions (¢°, ¥0) € CK(R) x CK(R) and associated wavelets (t, Pl € CK(R) %
CE(R) satisfying [@.31)), [.32), (£.36), [@.37), where L,L,N,N,K,K € Z, are chosen
according to (4.28), (4.29), (4.30), (4.33), (4.34), (4.35), (4.38) and (4.41). For every
fe Bovg;(]R") and every ¢ € {0,1}", the sequences {Af; }jez, kezn in are well
defined.

(i) The sequences {\,}jez, kezn belong to ap' (R™) for all c € {0,1}" if and only if
feALT (R™). Indeed, for all f € BY __(R™),

L,q,a
D M0 = k)Y jeny ke laz s @y
ce{0,1}n
+ 2202 —k) ez, hezn o @~ [ fllawr @n),
ceFlk
where “co0” is admitted on both sides.
(ii) If f € Agy o (R™), then
FO= 0 D OXTC -k + DY A2 P20 —k)  (4.43)

ce{0,1}n keZr ceE j=0 keZ"
in S'(R™). The equality [4.43)) holds in Ay} (R™) if and only if the finite sequences
are dense in ay’; (R™).
Proof. First, we show that if f € AF7 (R"), then (£43) holds in &'(R"). By ‘4.40[)
and (4.39), together with Proposition [3.19} the space A7 ,(R™) can be embedded into
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BW oo (R™), which coincides with BOVKOO G(R") when a satisfies (4.41). Fixing ¢ € {0,1}"
and letting {Af ;. }jez, kezn be as in ([#.42), we define

= > ART(-—k) +Z D XYY - k). (4.44)

kezn j=1kezn

Noticing that W¢(27 - —k) is a molecule modulo a multiplicative constant, by Lemma

we know that f¢ € A7 (R™) and

1Nz wny S {05,070 w}icze kezn oz ey + AT kliezs, kezn oz r  mn)
~ {8500/ WO (- = k) Yyeny kezn llazr  @n)
+ (e, 22T —k)) Y seny kezn llapr  @ny:

Then we further see that f¢ € BW oo (R™).
We now show that f = ZCE{O,I}" /€. Indeed, for any

F € B(R") (= B’ (R™) — L*(R")), (4.45)

if we let AG . (F)) = (F,U¢(- — k)) for all k € Z", and A, (F) = 29m/2(F, (27 . —k)) for
all j € Z, and k € Z", then by Theorem we conclude that

DIk sezy ke lyw, @y S Il sy, @e)- (4.46)
ceE

From Lemma and ([4.45)), we deduce that
F(y= 3 S 80w —k) + ZZ DAL (F)2MAT(2 - k) (4.47)

ce{0,1}™ kezn ceE j=1kez"
in L?(R™); moreover, by 1) we also see that |D holds in B}/VJ(R").

Let g := ZCE{O 1}n f€. Then g € BO"Z;(R") By Proposition together with
([4.44) and ([£.47), we see that g(F) = f(F) for all F € B}Y;(R"), which gives g = f
immediately. Thus, ) holds in S'(R™).

Thus, by Lemmaagaln we obtain the “>” relation in (i). Once we prove the “”
relation in (i), we immediately obtain the second conclusion in (ii), that is, ) holds
in A7 ,(R™) if and only if the finite sequences are dense in a7 ,(R").

So it remains to prove the “<” relation in Returning to the definition of the

ﬁ

coupling (f, 23"/2\11'3(23 —k)) (see Proposition ), we have

(F,2m200(2 - —k)) = 22 (Bx £, 0% U(2 - —k)) + > _ 27"y f, 00 % UE(27 - k).
(=1

In view of Lemma we see that, for all 5,/ € Z,, k € Z" and x € R™,

|2an02 " \EC(?jx _ k)‘ < 2min(j,()nf|€7j|i(1 + 2min(j,()‘x _ 27jk‘)7N
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and hence, if N > a +n (see (4.38)), from 2! < 2mnGD+HI~! we derive

2™ (pe % f, 0 % WE(2 - —k))|

< 2min(j,€)n—\€—j\f/ |@€ * f(x)l _

- re (1 + 2minG.0|g — 2-9[)N

< 2min(j,€)n—\€—j\z sup |§0£ * f(y)| / (1 + 26‘1, — 2_jk|)a _
~ yern (L4 28y —279k))® Jpn (1 + 2minG0) |z — 2-7k|)N
< 2_|z_j|(Z_a) sup |<Pé * f(y)|

b T2y —2 k)"
with the implicit positive constant independent of j, ¢, k and f. A similar estimate holds

for 29m/2(® % f,®  We(27 - —k)). Consequently, as (1 + |y|)(1+ |z]) < (1 + |y + z|) for all
Y,z € R™ we see that, for all z € R™,

S D2k foe x BT —)) ()

kezZm™ =1
< 9-1t~il(T—a) e F)l |
PP <t (1+2€\y—2—ak|)ax%(“’)

kEZ™ (=1 yeR™
S 3 lpe * f(y)]
< 9—16=jl(L—2a) sup X0, ()
22 yere (L4 27y — af)2 %

< 227|ij|(572a) sup |<Pe;<f(y)| _
=1 yeR™ (1 +2 |y - .Z‘D

which, together with Lemma implies the “<”-inequality in (i). =

REMARK 4.13. (i) As in [68], biorthogonal systems in Theorem can be replaced by
frames.

(ii) Wavelet characterizations for some special cases of the function spaces in Theorem
m are known,; see, for example, [27] 29] BT, [04].



5. Pointwise multipliers and function spaces on domains

5.1. Pointwise multipliers. Let us recall that B™(R") := (,,,<n{f € C"(R") :
0%f € L>®(R™)} for all m € Z,. As an application of the atomic decomposition in the
regular case, we can establish the following result.

THEOREM 5.1. Let oy, az,a3,7 € [0,00) and q € (0, 0o]. Suppose that w € x-Wg? ..

Assume, in addition, that - holds. Then there exists mg € N such that, for all
m € B"°(R"), the mapping f € S(R™) = mf € B™(R") extends naturally to Ay"7 (R")
so that it has the property that

Imfllper ®ny Smllfllper @y (f€ Bﬁqa(Rn))v

L,q,a L,q,a
”mf”FZ’qTa(]R") Sm ”fHFZ’qTa(R") (feF (R )

Imfllner @ Sm lflver @y (€ cqa(R"))
Im.flle v @y (f€EL(R™)).

Erlva

Proof. Due to similarity, we only deal Wlth the case of By’ n. o (R™).
Let a1, a9 and ag satisfy (4.22)) and ( . We show the desired conclusion by in-
duction. Let mg(w) be the smallest number such that w* € Wg3,,, where w;(z) =
2mo(Wvyy,(z) for all v € Z, and x € R™. If mg(w) can be taken 0, then we use Theorem

[4.12 to find that it suffices to define

(mf)C) = D D MmO =R+ DY Y AGum ()22 - k),

ce{0,1}n keZr ceE j=0 kezn

ger @) Sm llflle

which, together with Theorem and the fact that m(-)2/"/2We(27 - —k) is a molecule
modulo a multiplicative constant, implies the desired conclusion in this case. Assume now
that our theorem is true for the class of weights mg(w) € {0,1,..., N}, where N € Z.
For mg(w) = N + 1, let us write f = (1 — A)~1f — > i1 9;%(1 — A)~! f. Then we have

mf=m(l—A)"'f - zn:majz(l —A)f

=m(l—A)1f - Za (md; (1 — D)7 ) + Y (@;m)d; (1 — A)7f).

=1 j=1

Notice that (1 — A)~'f and 8;((1 — A)~'f) belong to the space BY aa "(R™), where we
write w*(z) := 2w, (x) for all v € Z and = € R™. Notice that mg(w*™*) = mg(w) — 1.

(45]
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Consequently, by the induction assumption, we have
(1= 8) 7 Fllpr gy < (1 = Al
Ko 101 = 87 fll ey S 1l ooy
Analogously, by Proposition [3.18 and Theorem [3.10} we have
105(mds (1~ A Pl ey S 1m0~ A) 7l e

sm Ha](l - A)_lfHBZ’*q*’;T(Rn) Sm ||f|

BZ’:;G (R™)
and

10m)a;((1 = A)~1 /)]

sy @) < [@m)9 (1= 2)7 )l gy gy

S 10,1 = ) Dy oy Son 1 (e

which completes the proof of Theorem [5.1] m

5.2. Function spaces on domains. In what follows, let 2 be an open subset of R",
D(Q) denote the space of all infinitely differentiable functions with compact support in
endowed with the inductive topology, and D’(Q) its topological dual with the weak-x
topology which is called the space of distributions on Q.

Now we aim at defining the spaces on (2. Recall that a natural mapping

feSR") — fIQ eD(Q)
is well defined.

DEFINITION 5.2. Let s € R, a € (0,00), aj,as,as,7 € [0,00) and g € (0, oo]. Let
w e W

Qp,02”
(i) Bpyo(Q) is defined to be the set of all f € D'(Q) such that f = g|Q for some

g€ BT

£7q7a(R"), equipped with the norm

Ifllgz ) =inf{llgllprr ®n) 9 € By (R"), f=glQ}.

(i) Fz7,(Q) is defined to be the set of all f € D'(Q) such that f = g|Q for some
g€ F,Z’;a(R"), equipped with the norm

I fll pr Q) ‘= inf{HgHFZ'q’:a(R") ‘g€ FEU,};,a(Rn)» f= 9|Q}~

L,q,a

(iii) N7 () is defined to be the set of all f € D'(Q) such that f = g|Q for some

L,q,a
w)

g € Ny .(R"), equipped with the norm

1l @ = mt{llgllaer o : 9 € NETL(R™), £ = gl2},

L,q,a

(iv) €7 4(Q) is defined to be the set of all f € D'(Q2) such that f = g|Q for some

g €& (R™), equipped with the norm

L,q,a
Ifllezr ) =nf{llgllezr @n) 9 €ELG (R, f =g}

L,q,a
A routine argument shows that B (Q), F7,(Q), E477,(Q) and N[ (Q) are all
quasi-Banach spaces.
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Here we are interested in bounded Lipschitz domains. Let x : R*~! — R be a Lipschitz
function. Then define

Qe t ={(@,z,) ER" 1 2, > k(2')}
Q- ={(@,z,) eR" : z,, < K(z")}.
Let o € S,, be a permutation. Then define
Qg0 ={(@",2,) ER" 1 0(2', 1) € Qo 1}

By a Lipschitz domain, we mean an open set of the form

J I
U o-j(ijH') N U Ti(qu—))
j=1 i=1
where the functions fi,..., f; and g1, ..., g; are all Lipschitz functions and the mappings

01,...,05 and Ty,...,Tg belong to S,. With Theorem and a partition of unity,
without loss of generality, we may assume that Q := Q, 1 for some Lipschitz function
k : R™ — R. Furthermore, by symmetry, we only need to deal with the case when
Q.= Q&J’_.

To specify, we let L be the positive Lipschitz constant of k, the smallest number L
such that for all 2/, y’ € R"7!, |(2’) — k(y')| < L|z’ — y/|. Also, we let K be the cone
given by

K :={(a',z,) e R": L|z'| > —x,}.
We choose ¥ € D(R") so that supp¥ C K and [, ¥(z)dz # 0. Let
O(z) :=V(z) — U_1(z) = ¥(x) — 27"T(27'z)
for all z € R™. Let L > 1 and choose 1,9 € C(K) so that ¢ := n — n_; satisfies the
moment condition of order L and 1/1*\IJ+Z;°;1 @;*®; = 0 in &'(R"). Define M, _ f(z),
forall j € Z,, f € D'(Q) and = € R™, by

W+ £(y)] -
Sup ——————— . ]707
M f(z) = yea (L4 |z —y|)e
S I 7L () I
yEQ (14 27|z —y|)*’
RIS
SUp -\’ :Ov
) jen <|1<+\x(—y|>;>| /
a fa (I)j y— .
sup 2 ML e N,
vet (1+ 2]z — g|)e

Observe that this definition makes sense. More precisely, the pairings (f, U(y — -)) and
(f,®;(y—-)) are well defined, because ¥(y —-) and ®;(y — -) have compact support and,
moreover, are supported on (2, as the following calculation shows:

supp(¥(y —-)), supp(®;(y — ) Cy — K C{y +z: [zn] > K|} C Q.
Here we used the fact that 2 = €2, 4 to obtain the last inclusion.
In what follows, the mapping (', z,) — (2/,2k(z") — z,) =: (v, yn) is said to induce
an isomorphism of L(R™) with equivalent norms if f € L(R™) if and only if g;(y', yn) :=
7!, 26(2') — ) € LR") and moreover || lc(zey ~ g7 cen)-
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Now we aim to prove the following theorem.
THEOREM 5.3. Let Q :=Q, 1 be as above and assume that the reflection
L2 xy) = (2, 26(2") — )
induces an isomorphism of L(R™) with equivalent norms. Then
(i) f € B, .(Q) if and only if f € D'(Q?) and
{xeM5s o FYiez, lescw @ z,)) < 00,
and there exists a positive constant C, independent of f, such that

C U fllper @) < I{xaMSs o fYiez, leaew @z, < Clifliser @  (5:1)

L,q,a
(ii) f € Fg [, (Q) if and only if f € D'(Q) and
{xeMSs ofYiez, lcwagn .z, ) < o0,
and there ezists a positive constant C', independent of f, such that

C U lrpr (@) < HxaME o ez llewamn iz < CHIfllrpr o)
(il) f € Nz .(Q) if and only if f € D'(Q) and
ll{XQM2 J af}j€Z+ll€q(N£}r“(R",Z+)) < 00,
and there exists a positive constant C, independent of f, such that
Cil||f||Ng;* ) < IHxaMEs o fiez, leavew @n 2.y < Clifllaer s
(iv) fe&py () if and only if f€D'(Q) and
{xaMSs of Yiez, lece @a@n 2,y < o0,
and there exists a positive constant C, independent of f, such that

w,T ).

C_1||f||£;;;;a(n) < [{xaMSs o fYiez, lecw @a@n 2,y < CIIf] g

Proof. By similarity, we only give the proof of (i). The second inequality of (5.1]) follows
from Corollary 6} Let us prove the first inequality of (5.1)). Let f € B}"7 (). Choose
G € B} (R") so that

G =1, Iflser. @ < IClser @ < 20fl527. -

an

,an

Define
F::z/)*\II*G+Z<pj*<I>j*G.

j=1

It is easy to see that F|Q = f and F' € §'(R"), since Y+ U + Y72, ;+®; = § in §'(R™).
Then ||f||Bza,;a(Q) < ||F||Bg.;a(Rn). To show the first inequality of (5.1), it suffices to
show that ’
IF]

BET (R S < HxaMSs o fYiez, oo @n zy))-
Since

1Flper @y S HMEs o Fhien, oo @n 2,
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we only need to prove that

IIME; o fYiez leaer@nzy)) S I{xeMEs of Yz, leaqee @ z,))-
To see this, noticing that if (2, 2z,) € Q and (y',y,) € Q, since k is a Lipschitz mapping,
we conclude that
" =P+ lyn +an — 262 ~ J2" =y P + lyn — K(Y) + 20 — w(2)]?

~ o =y Pt lyn — 5 (Y) — 20+ R(2) P+ [6(y) — k(")
P e e o R

From this, together with the isomorphism property with equivalent norms of the trans-

form (z',z,) € R"\ Q — (2/,2k(2") — z,) € Q, we deduce that

HxemoMs-s of ez, loace @n 2,y S ||{XQM2 iaftiez lescw ®n,zy)),
which further implies the first inequality of ( . L]

To conclude Section [5, we present two examples concerning Theorem

EXAMPLE 5.4. It is necessary to assume that (z/,2,) — (2/,2k(2') — z,) induces an
isomorphism of £(R™) with equivalent norms. Here is a counterexample which shows
this.

Let n =1, L(R) := L*((1+tx(0,00)(t)) "V dt) and wj(z) := 1 forallz € R and j € Z.
Consider the space Bg’go,z((o,oo)), whose notation is based on the convention (3.I).
A passage to the higher dimensional case is readily done. In this case the isomorphism
is t € R+— —t € R. Consider the corresponding maximal operators, for all f € D’(0, 00)
and t € R,

FYICEO PP LD (C)]
A Y e

and, for j € N,

- o+ f(5)]
M(OJ )ft = sup WJ.—,
22 0= SR T 2l — ol
where ¢ and ¢ belong to C2°((—2,—1)) satisfying ¢ = AL, and ¢;(t) = 27p(271)
for all t € R and j € N. Let fo € C°((2,5)) be such that x4y < fo < X(2,5). Set
fa(t) := fo(t —a) for all t € R and some a > 1. Then, for all ¢ € R, we have

1
1+t —al)?

2—2jL

and MQOJOOQfa() Orf—ap

(Ooo fa()

Consequently,

o0 1
M) £ e N/
X Mo 0 fabierelles ez ~ | GpFa T = a2

Let p : R — R be a smooth function satisfying x(s/5,.00) < 0 < X(3/2,00)- If f € B%)%O)Q(R")
is such that f|(0,00) = fo, then [fllgoo  @ny = lIofllpoe_ wny S Iflloe, ,@ny by
Theorem [5.1] Consequently,

HfaHBOO L@~ ||fo||B00 2@ 1/a. (5:2)
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Moreover,

0,00
X (0,00) M5 ,g)fa}jew e (£(R,Z4))

00 1 a/2 0o 1
N N S T
o (L+ON(A A+t —al) 0 a2/ (LN + [t - a)
1 1

a/2 1 S
< dt + / dt < —.
N/o (L+ N1+ |af)? a2 L+a)N(L+]t—al)? "~ a?
In view of the above calculation and ([5.2)), the conclusion (5.1)) of Theoremfails unless
we assume that (2/,z,41) — (2/,26(2") — 2511) induces an isomorphism of L(R™).

EXAMPLE 5.5. As examples satisfying the assumption of Theorem we can list weak-
LP spaces, Orlicz spaces and Morrey spaces. For a detailed discussion of Orlicz spaces
and Morrey spaces, see Section Here we content ourselves with giving the definition
of the norm and checking the assumption of Theorem for Orlicz spaces and Morrey
spaces.

(i) By a Young function we mean a convex homeomorphism & : [0, 00) — [0, 00).

Given a Young function ®, we define the Orlicz space L®(R") as the set of all mea-
surable functions f : R™ — C such that

I fllLe@®n) = inf{)\ € (0,00) : /n <I><f(/\x)|) dzx < 1} < 00.

Indeed, to check the assumption of Theorem for weak-LP spaces and Orlicz spaces,
we just have to bear in mind that the Jacobian of the involution ¢ is 1 and hence we can
use the formula for the change of variables.

(ii) The Morrey norm || - || pz ey With 0 < u < p < oo is given by

1/u
g = sup r”/P—”/“[ / If(y)l“dy] ,
z€R™, re(0,00) B(z,r)

where B(z,r) denotes the ball centered at x of radius » € (0,00) and f is a measur-
able function. Unlike the case of Orlicz spaces, for Morrey spaces, we need one more
observation. Since ¢ o ¢ = idg~, we have only to prove that ¢ induces a bounded map-
ping on Morrey spaces. This can be shown as follows: Observe that |x — y| < r implies
|t(x) — u(y)| < Dr, since t(z) = (2/,2k(2’) — x,,) is a Lipschitz mapping with Lipschitz
constant, say, D. Therefore, «(B(x,r)) C B(i(z), Dr). Hence

1/u 1/u
n/p=n/u {/ | (e(y)]" dy} = pn/pon/u [/ [f )l dy}
B(z,r) (B(z,T))

1/u
<ol [ la]
B(u(z),Dr)

< DU fl| g ey

which implies that ¢ induces a bounded mapping on the Morrey space M2 (R™) with
norm less than or equal to D™/%~"/P_ As a result, we see that Morrey spaces satisfy the
assumption of Theorem [5.3]



6. Boundedness of operators

Here, as announced in Section I} we discuss the boundedness of pseudo-differential oper-
ators.

6.1. Boundedness of Fourier multipliers. We now refine Proposition [3.18] Through-
out Section we use a system (@, ¢) of Schwartz functions satisfying (1.3) and (L.4).
For ¢ N and acR me CK(R”\{O}) is assumed to be such that, for all ||o]|; < ¢,

sup |:Rn+2a+2|0'||1/ |agm(€)|2d§ = Ay < 00 (6.1)
RE(1,00) R<|¢|<2R

and

[ 1opm@Pde = Arz < o (6.2)
|€]<1

The Fourier multiplier T, is defined by setting, for all f € S(R™), T/m\f = mf.

LEMMA 6.1. Let m be as in (6.1) and (6.2) and K its inverse Fourier transform. Then
K € §'(R™).

Proof. Let ¢ € S(R™). Then

<K7<P>=/n( d£—</>1 /|<1> P(E)de =11 +1,.

Let M =n — «a+ 1. For I;, by the Holder inequality and -, we see that

|11\<Z/ m(©)] 1P| d¢

k<\§\<2k“
! 1+2k 2k <|g|<arH
272N (L4 |- )M Bl Lo~ 1/2

<y ] | Im(©)[? de

P (14 2F) 2k <|¢|<2k+1

. D1+ | VBl o
< SNA+]-DMP| poo -
5 I S0+ DMl

k=0
For Iy, by the Holder inequality and (6.2]), we conclude that

~ vz _
Ll S 1Plleemny | [ (e de] S 1ol
l€l<1
This finishes the proof. m

(51]
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The next lemma concerns a piece of information adapted to our new setting.

LEMMA 6.2. Let U, v be Schwartz functions on R™ satisfying, respectively, (1.3) and
(1.4). Assume, in addition, that m satisfies (6.1) and (6.2). If a € (0,00) and £ > a+n/2,
then there exists a positive constant C such that, for all j € Z,

/ (1+ 29 [2])2|(K * ;)(2)] dz < C279,
where Yo = U and ;(-) = 277")(27.).

Proof. The proof for j € N is just [102, Lemma 3.2(i)] with ¢t = 277. So we still need
to prove the case when j = 0. Its proof is simple but for convenience of the reader, we
supply the details. When j = 0, choose pu such that g > n/2 and a + p < £. From the
Holder inequality, the Plancherel theorem and , we deduce that

[l s w)a:]
z|) 72 dz z|)?(atr) * 2)2dz
S [ [ Qe w)ka
S [ QDI s 1)) d:
§Z/nl (K +W)(z \de<2/ ¢ m(6)]? d= S 1,

o<t lo|<e” 161<2

which completes the proof. m

Next we show that, in a suitable way, T;, can also be defined on the whole spaces
Fpol (R") and B (R"™). Let ®, ¢ be Schwartz functions on R™ that satisfy, respec-

tively, (1.3) and (T.4). Then there exist &7 € S(R"), satisfying (1.3)), and ¢! € S(R"),
satisfying (1.4)), such that

O x®+> "l p; =y (6.3)
i=1
in S'(R™). For any f € F, 7 (R") or By ,(R"), we define a linear functional T}, f on
S(R™) by setting, for all ¢ € S(R™),

(T fy &) ::f*(IﬂL*<I>*¢*K(O)+Zf*<pj*cpi*(b*K(O) (6.4)

ieN
as long as the right-hand side converges. In this sense, we say T,,, f € S’(R™). The following
result shows that the right-hand side of (6.4)) converges and T, f in (6.4]) is well defined.

LEMMA 6.3. Let £ € (n/2,00), a € R, a € (0,00), a1, as,a3,7 € [0,00), ¢ € (0, o0], w €
W, and f € F2ol (R™) or Bp', (R™). Then the series in (6.4)) is convergent and the

definition of Ty, f is independent of the choice of (®T, ®, o1, ). Moreover, T,, f € S'(R™).

Proof. Due to similarity, we skip the proof for Besov spaces Bj’7 ,(R"). Assume first

that f € Fp/,(R"). Let (Ut W, 4t 9)) be another set of functions satisfying (6.3)). Since
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¢ € S(R™), by the Calderén reproducing formula, we know that

d=TTxTxg+ Y ¢lxy; g

JEN

in S(R™). Thus,

f*d)T*<I>*¢*K(O)+Zf*<p;[*(pi*qh*K(O)
ieN
:f*qﬂ*@*(\I/T*\Iz*¢+z1/}j*¢j*¢)*K(O)
jEN
> Frpl s (W wao+ > 0l €y 40) « K(0)
ieN JEN
=[x 0T 5@ x U« Wi 5 K(0) + [ O % @ xp] x9h1 + ¢+ K(0)
i1
Hfrplr o s U s Wa g K(O0)+ > D faplwipsxplxapy ¢ K(0),
ieN j=i—1
where the last equality follows from the fact that ¢; x¢; = 0if |i — j| > 2.
Notice that

2in

kezn

A [xoily — 2)pi(—y) dy’ <

for M sufficiently large. As w € W3 | we see that

1,027
| lers fly = 2)ldy S 2000+ 212 g o

Thus, by Lemma we conclude that

ST ix ol xy xyf x 9% K(0)]

ieN

=3 [ sl (o il <o K] ds

1€EN

i(n—ay—nT) 2”‘ 142

<Z2 b ”f”A’“T o (R™) / Z 1+|k| 2™ [th; % i x f(2)]dz
€N kezn |

< 1(n—a1—nT1)oin w.r . i as o .

< ieZN2 2" fllawr = )/Rn(l +2°|2() / EaTE Z|)MWJ, « f(y)| dy dz

5 Z 2i(2n—a1—n~r+a3—M)||f||AZ:;a(Rn) /Rn(l + 2i|y|)a3|¢i % f(y)\ dy

ieN

5 Z 2i(2n—a1—nr—M) Hf|

i€N

Az @y S /]

v AT (Rn);

L.q.a

where a is an arbitrary positive number.
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By an argument similar to the above, we conclude that

f*q)T*(I)*(\I/T*II/*¢+Z¢;*¢J‘*¢)*K<O)’
jEN

+’Zf*<pz*<pi*(\IIT*\IJ*¢+Z¢;*¢j*¢)*K(O)‘<oo,
€N JjEN

which, together with the Calderén reproducing formula, further implies that

f*<I>T*(I)*gb*K(O)—i—Zf*gozT*cpi*(ﬁ*K(O)
ieN
=fxdl D« (\IIT*\I/*¢+Z1/);*%»*¢) * K (0)
jeN
3 frpl g (Ve ws o+ 39l 0) £ K(0)
ieN jEN
=FrUtw Wx U R K(0)+ D fxpl w0« K(0).
ieN

Thus, T, f in (6.4) is independent of the choice of (®T, ®, T, ¢). Moreover, the previous
argument also implies that T, f € S'(R"™). n

By Lemma we immediately have the following conclusion; we omit the details.

LEMMA 6.4. Let « € R, a € (0,00), £ € N, let &, ¥ € S(R™) satisfy and let
¢, € S(R™) satisfy (L.4). Assume that m satisfies and and f € S'(R™) is
such that T, f € S'(R™). If £ > a+n/2, then there exists a positive constant C such that,
forallxz, y e R™ and j € Z,

(T f *95) ()] < C277%(1 + 27|z — y|)*(¢] fa(2)-
Now we are ready to prove the following conclusion.

THEOREM 6.5. Let a € R, a € (0,00), a1, az,a3,7 € [0,00), ¢ € (0, o], w € W32,
and w(x,277) = 27%w(x,277) for all x € R™ and j € Z, . Suppose that m satisfies (6.1
and (6.2) with £ € N and £ > a+n/2. Then there exists a positive constant Cy such that,

for all f € F77 (R™),

L,q,a

||Tmf||Fg’q'ra(Rn) S Cle”FZ/"(;a(R”)?

and a positive constant Co such that, for all f € Bz’;a(R”),

”Tmf”Bff;a(Rn) < CQHf||BZ:;a(R“)~

Similar assertions hold for ;7 (R™) and N[ (R").

Proof. By Lemma, we conclude that, if £ > a + n/2, then for all x € R and j € Z,

2%} (T f))a() S (#5f)al@).
Then by the definitions of F./ (R") and B’/ ,(R"), we immediately deduce the desired

conclusions. m
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6.2. Boundedness of pseudo-differential operators. We consider the class S7 , (R")
with g € [0,1). Recall that a function a € C*°(R} x RY) is said to belong to S7",(R") if

Sup (1 [g)y o=t o oga(z, €)] S5 51
z,£ER™

for all multiindices & and E One defines, for all x € R",

a(X, D)(f)(x) := / oz, €) F(€)i de

n

first on S(R™), and then on S’(R™) via duality.
We aim to establish the following.

THEOREM 6.6. Let w € WS, with a1, a9, a3 € [0,00) and suppose a quasi-normed
function space L(R™) satisfies (L1) through (L£6). Let 1 € [0,1), 7 € (0,00) and q €
(0, 00]. Assume, in addition, that (3.28) holds, that is, a € (Ny + a3, 00), where Ny is as
in (L£6). Then all pseudo-differential operators with symbols in SY ,(R™) are bounded on
Ar'gaR).
With the following decomposition, we have only to consider the boundedness of
a(-,-) € Sil]y" (R™) with an integer M, sufficiently large.
LEMMA 6.7 ([88]). Let p € [0,1), a € ST, (R") and N € N. Then there exists a symbol
be ST, (R") such that
a(X,D) = (1+A*M)ob(X, D)o (1+A*N)L,
Based upon Lemma[6.7] we plan to treat
A(X,D) :=b(X,D)o (1+AN)"t € S2N(R™),
B(X,D) :=A*Nob(X,D)o (1+A*N)"t e 8) (R").
The following is one of the key observations in this subsection.

LEMMA 6.8. Let u € [0,1), w, q, 7, a and L be as in Theorem . Assume that a €
S? (R™) has the property that a(-,€) = 0 if |£] > 1/2. Then a(X, D) is bounded on
ALla(R").

Proof. We fix ® € S(R") so that ®(¢) = 1 whenever |¢] < 1 and ®(¢) = 0 whenever
|€] > 2. Then, since a(-,€) = 0 if |{] > 1/2, we know that, for all f € A}7 (R"),

L,q,a

a(X,D)f = a(X, D)(®* f). Hence, as the mapping f € A7 (R") = ®xf e A7 (R™)

is continuous, without loss of generality we may assume that the frequency support of f
is contained in {£ € R™ : || < 2}. Let j € Z, and z € R™ be fixed. Then, for all z € R™,

e D)) = [ este=n)| [ alne
= [ ] et vt an] Fieyas

~

(€)eiey df] dy

— /n [/n pi(z —y)aly,-)e"? dy} A(Z)f(Z) dz
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by the Fubini theorem. Notice that, again by the Fubini theorem,

{/ pi(x —ylaly, )e™ dy:| A(Z) - / izt [/ 0i(@ — y)aly, €)e'c dy} dé

= /R i@ —y) [ /R _a(y, et d&} dy.

Let us set 7; := (477A)~Lyp; with L € N large enough, say
L=|a+n+a+a+1].
Then 7; € S(R™) and ¢;(x) = 272 LALT;(z) for all j € Z; and 2 € R™. Consequently,

[/Rn pile —y)aly, e dy:| A(Z) _ 92l /n (e — )AL [/Rn aly, €)= dg} ay

by integration by parts.
Again by integration by parts, we conclude that

Ay ( /R _a(y, ettt df)

= ¥ [

la1ll1+ (@2 |l1=2L
1

- - _ Li¢dos /a1 i&(y—=z)
= v =) [ = 20 e 05 aly 1) de.

l&1ll1+(|@zl1=2L

Then, since a € 57 ,(R") and a(-, &) = 0 if |§] > 1/2, we see that, for all £,y € R",

I(1— Ag)L(5&28§1a(y,£))| < XB(0,2)()s (6.5)
and hence, for all y,z € R™,

([ o) 5 g e

Consequently, for all j € Z and z,y,z € R”,

‘ {/Rn il —yaly, e dy] A(Z)

< 2—2jL/ |Tj($_y)| dy, 6.6
e (L4 g = 22)7 (6.6)

and hence

s * (@(X, D)) +2)| _ 2-2Lr (2 + = — y)|
(1+27]2)e // 1+2J|z| L+ Jy—wpye /Wy dw

—2jL
S| s )l dydu
nJrn (L4121 + Jy — w|?)E
< 2—2]L su ‘f(.’l? + ’U))'
wern (14 [w])*”
A similar argument also works for ® x (a(X, D)f) (without using integration by parts)
and we obtain

@ * (a(X, D) f)(z +2)| _ |f(x + w)|
(1+]z])e ~ wern (14 [w])*”
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With this pointwise estimate, the condition on L and the assumption that pu < 1, we
obtain the desired result. m

If we reexamine the above calculation, we obtain the following:

LEMMA 6.9. Assume that pn € [0,1) and a € S| 2M° (R™) satisfies a(-, &) = 0 if 282 <
€| < 2%+2. Then a(X, D) is bounded on Azjga( ™). Moreover, there exist a positive
constant E and a positive constant C(E), depending on E, such that the operator norm

has the property that

la(X, D)llazr @nyaws @ < C(E)27FF

provided My € (1,00) is large enough.

Proof. Let us suppose that My > 2L + n, where L € N is chosen so that
L=la+n+a;+as+nr+1]. (6.7)

Notice that this time a(X, D)f = a(X, D)(Zk+3 gpix f) forall fe Apr (R™). If we
go through a similar argument as we did for ) with the condition on L replaced by
, we see that, for all j € Z4 and z,z € R",

A
y o _ n T

[ oita—vatnremay] )| gz [ BEZDL g, o

n re (14 1]y —2/?)
Indeed, we just need to replace (6.5) in the proof of by the following estimate, for
all k € Zy, &,y € R" and multi-indices «, 8 such that |a||1 + |51 = 2L:

|(1 - As)L(ﬁ‘“afa(y,f))l N 22I€(2L_MO)XB(0,2k+2)\B(0,2k72)(5)~

By (6.8), we conclude that, for all j € Z and z,z € R",

lpj * (a(X, D) f)(z + 2)|

(L +20]2])°
—2jL+k(4L— 2M0+n)|7_ (z+2—y)| 3
rt1* f(w)| dy dw
I B m e 2 lowwx fw)

3
sup |or41 * fx 4+ w)|

wern (1428 w)®

5 272jL+k(4L72I\/Io+a+n)

=-3

Consequently,
lp;(D)(a(X, D) f)(x + 2)| < 9=2jL+k(AL—2Mo+a+n) o, lor1(D) f(z + w)| (6.9)
(1+27]z)) ~ werr (14264 |w[)e '

le[—3,3]NZ
Combining and Lemma completes the proof. m
In view of the atomic decomposition, we have the following conclusion.

LEMMA 6.10. Let w be as in Theorem . Assume that a € S%#(R”) can be expressed
as a(X,D) = A*™o o p(X, D) for some b € S 2M°(R"). Then a(X, D) is bounded on

Apr (R™) as long as My is large.

Proof. For any f € Az;a(R"), by Theorem there exist a collection {1} ez, kezn

of atoms and a complex sequence {\jx}jez, kezn such that f = 37737 0 XU,
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in S'(R") and [{A\j}jez, keznllawr @n) S Hf||Aw 7 (rny- In the course of the proof of
[75, Theorem 3.1], we have shown that the atoms {ngk}gez ., kezn are transformed into
molecules {a(X, D), }jez,  kezn satisfying the decay condition. However, if a(X, D) =
A2Mo o b(X, D), then atoms are transformed into molecules with moment condition of
order 2Mj. Therefore, via Theorem letting L = 2Mj completes the proof. =

With Lemmas through in mind, we prove Theorem

Proof of Theorem . We decompose a(X, D) according to Lemma We fix an integer
My large enough as in Lemmas [6.9) . and |6.10) - Write A(X, D) := a(X, D) o (14 A2Mo)~1
and B(X,D) := A*Mo o a(X D) (14 A2Moy—1

Let ® and ¢ be as in and (L.4) with (§ djenP(277¢) =1 for all € € R™

Then by the Calderén reproducmg formula, f = @ f+ 3, cyp; * f in S'(R") for all
fe APl (R"). Therefore,
a(X,D)f(x) =Y a(X, D)(¢; * f)(x)
7=0
=Y [ alwo)ae i fEe de
j=0/R"
=3 [ a@ R =Y (X, D)s ()
j=0"R" 3=0

in 8'(R"), where a;(z,&) = a(z,&)P(277¢) for all x,¢ € R", and a;(X, D) is the related
operator. It is easy to see that a; € S ,M(R”) with support in the annulus 2972 <
|¢] < 2772, Then by Lemmas 6.8 and A(X, D) is bounded on A’/ (R™). Moreover,
Lemma shows that B(X, D) is bounded on A%'" (R™). Consequently, a(X, D) =

L,q,a
A(X, D) + B(X, D) is bounded on A7 (R"). =

Since molecules are mapped to molecules by pseudo-differential operators if we do not
consider the moment condition, we have the following conclusion. We omit the details.

THEOREM 6.11. Under the condition of Theorem [A.9] pseudo-differential operators with

symbols in S 1 (R™) are bounded on A} aa(R™).
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7.1. Embedding into C(R"). Here we give a sufficient condition for our function spaces
to be embedded into C(R™). In what follows, C'(R™) denotes the set of all continuous
functions on R™. Notice that we do not require that the functions of C(R™) are bounded.

THEOREM 7.1. Let ¢ € (0,00], a € (0,00) and 7 € [0,00). Let w € x-Wg?,, with
a1, ag,a3 € [0,00) and suppose a quasi-normed function space L(R™) satisfies (L1)
through (L£6) such that

a+v—o1 —nt <0 (7.1)

Then Ay, ,(R™) is embedded into C'(R™).

Proof. By Remark (ii), it suffices to consider B[  ,(R"), into which A7 (R™) is
embedded. Also let us assume . Let us prove that BZ’;’G(R”) is embedded into
C(R™). Fix € R™. From the definition of the Peetre maximal operator, we deduce that,
for all f € BY'” (R™), j € Z4 and y € B(x,1),

L,q,a

o g, 195 ¥ (Y +2)]
sup [y + flw)] S 29 sup LLIWEE]
weB(z,1) ! z€R™ (1 +2J|Z|)a
If we consider the £(R™)-quasi-norm of both sides, then we obtain
ja

sup )|<Pj * f(2)| Se IXB(w,2-5) (@ [allcmny-

z€B(z,1 ||XB($,2_j) ||L'(R")
Notice that wj(z) = w(z,277) > 29 w(x,1) for all j € Z, and € R”, and hence from
(W2) and (7.1)), it follows that

sup Jp; * f(2)] S 27T £l g

(Rn).
z€B(z,1) £r00.e

Since this implies that
oo
F=0xf+) wj*f
j=1
converges uniformly over any ball with radius 1, it follows that f is continuous. =

7.2. Function spaces AZ’; .(R™) for 7 large. The following theorem generalizes [101]

Theorem 1] and explains what happens if 7 is too large.

THEOREM 7.2. Let w € W3 with aq, e, a3 € [0,00). Define a new index T by

1,02
~ . 1
7:=limsup sup

— logy ——— (7.2)
oo Pe;n) L0 lIxpllon

(59]
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and a new weight © by
O(x,277) == 2Dy (,279), zeR™, jeZ,.

Assume that
T>72>0. (7.3)

Then

() @ €W, —nr-) (aztnir—7).
(ii) for all g € (0,00) and a > az+ Ny, F[ (R™) and B/ 7 ,(R") coincide, respectively,
with F2  ,(R™) and BY, ., ,(R™) with equivalent norms.

Proof. We only prove F/7 (R") coincides with F% _ (R™). The assertion (i) can be
proved as in Example 111) and the proof for BT (R™) and BY . .(R™) is similar.
By the atomic decomposmon of (F 7, (R™), Z;a( "and (F? _ (R™), f& _ (R™)),

00,00,a 00,00,a

it suffices to show that .7 (R") = f& . ,(R") with norm equivalence. Recall that, for
all X = {Njx}jez, kezns

1A

f24a®™)
00 a1 1/q
N Pesg(%") |Pl\7 [j_jzpvo <XPwJ e (1+21J| e gzjn ol +y)) } L(R™)
and
I i) =0 (0 330 (g 3 laade +0)
= e en, BT 2 Pahaue k) (0

By , there exist jo € Zy, kg € Z™ and xg,yo € R™ such that

|)‘joko|
(1+ 2%0|yol)*
A geometric observation shows that there exists Py € Q(R™) whose side length is half that
of Qjyk, and which satisfies yo + Py C Qjok,- Thus, for all 2 € Py, we have |z — x| < 2770
and hence

xo + Yo € Qjok, and ”)‘”f;”;m)a(R“) ~ Wj, (o)

wjo (o) < wjo (2)(1+ 2% |2 — wo|)** < wjy (),

which, together with the assumption on 7, implies that

Az @)

1 > 1 a11/q
= sup —— XpW;j SUp —————— INjklxq,. (- +y)) }
PeQ(R™) P‘ [j—%:v0< ij n (1+2]| | gz:" ! " L(R™)
1 | Ajokol
> _ - __ Aokl (. + H
2 TR X Ty X U )y

270" |Ix g || L (reny
Z ”)‘”foo oo,a(R™) | P
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Consequently,
Mm@y R IM 52

To obtain the reverse inclusmn, we calculate

- (7.5)

00,00,a

1 = Yrezn irlxeu C + 1)1\
Wiz = s ol (2 [ew, sup e
T2l (®) pea(r) [P j:jZPVO 7 yern (14 27y[)* L(R™)
o 1/q
wi\ 4
<Mz @ny Sup 5= p[ (Tj) ] .
oo,oo,a( )PEQ(R") |P| j:jZP\/O w] ﬁ(]R“)
Using ([7.3) and (7.4)), we obtain
> . ~711/4
A o <Al e { grimalr=7]
Mz, e < e ey s e S .
J=Jjp
Il 2
~ s (Rn) SUPp  ————=——|[XPllc®n)-
T 00,al )PGQ(R") |P| (R™)
Since T € [0,00) and (7.2) holds, we see that
9—(jpVO)n(r—7) e < 9—jpn(r—7) e
— 5 IXPllewn) S 57— IXPlle®n
1P| &™) |P| &™)
~ 2P Ixplle@ny ~ [P Ixplle@n) < 1
Hence, we conclude that
Mz @y S TAgz  @e)- (7.6)
Hence from (7.5) and (7.6), we deduce that F" (R") and F  ,(R") coincide with

equivalent norms. =



8. Characterizations via differences and oscillations

In this section we are going to characterize our function spaces by means of differences
and oscillations. To this end, we need some key constructions from Triebel [91].

For any M € N, Triebel [91], p. 173, Lemma 3.3.1] proved that there exist two smooth
functions ¢ and ¢ on R with supp ¢ C (0,1), supp ¢ C (0,1), [¢(T)dr = 1 and
p(t) — 2p(2) = () for t € R. Let p(z) := [[,_, p(z,) for all z = (21,...,2,) € R™
For all j € Z; and x € R", let

1= >0 50 O (0 (00 oy (1),

m/=1m=1
where (%) for m € {1,..., M} denotes the binomial coefficient. For any f € S&'(R"), let
fl=Tj«f forallj€Zy, and f':=0. (8.1)

From Theorem [3.5| and Triebel [91, pp. 174-175, Proposition 3.3.2], we immediately
deduce the following useful conclusions, the details of whose proofs are omitted.

PROPOSITION 8.1. Let ay, g, 3,7 € [0,00) and q € (0, oo] and let w € Wg? ,,. Choose
a € (0,00) and M € N such that

M > a1V (a+nT+ ag). (8.2)

ForjeZy, feS'R") and x € R", let F(x,277) == f/(x) — fI7"(x), where {f7}52_,
is as in (8.1). Then:

(i) f € B (R") if and only if F € sz,’;’a(R’ZLi‘l) and ”FHLZ’.’Z@(Rﬂl) < 00. Moreover,

1Flper oy ~ 1]

(i) fe N (R™) if and only if F € E;H(Rzrl) and ”FHNZ’JQ(RZII) < 00. Moreover,

LZ”,’;Q(RZ:l) with the implicit constants independent of f.

I fllaer (@) ~ HF||NZ,,T (rp+1) with the implicit constants independent of f.
a,a V2

L,q,a

(iti) f € Fp, ,(R™) if and only if F € PZ’;G(RQF) and ||F||PZU’,qT’a(R21) < 00. Moreover,

||f||F2v’;a(Rn) ~ |\F||sz,qr.a(RZl) with the implicit constants independent of f.

(iv) f €& (R™) if and only if F € 52’7’(;&(]1%%1'1) and ||F||52u’,;"a(Rgi~l) < 00. Moreover,
/]

£ (Rm) ™ ||FH£Z,1,;‘1(R21) with the implicit constants independent of f.

8.1. Characterization by differences. In this section, we characterize our function
spaces in terms of differences. For an arbitrary function f, we inductively define AM f

(62]
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for M € N and h € R" by
Apfi=ALf:=f—f(-—h) and A} f:=A(A ),
and Jl(ll)wﬁ(f) and J¢(121)u[,'(f) with a € (0,00) and wp as in ([2.5)) by

1 lf(+y)l
J(l) f = sup XPpWo SUP —————~ )
. Pyere (L 10D | 2y
4y
1= s sup KDL
L Peo(n) [PI” yern (14190 {| £y

In what follows, we denote by fE f the average of f over a measurable set E.

THEOREM 8.2. Let a,ay, g, 3,7 € [0,00), u € [1,00], g € (0, o0] and w € x-Wg3 . If
M eN, a; € (a, M) and (8.2) holds, then there exists a positive constant C = C(M),
depending on M, such that, for all f € S'(R™) N LY .(R"), the following hold with the

implicit constants independent of f:

i u 11/u
(i) T=J0, )+ {Sup f{ A C+ 21 }
I | jez,

zern [ Jjnj<@o—s (1 +27]z])on 0a(Lw (R Z4))

~ | fllBwr (mny

L,q,a
(i) Lo=J0) (F)+

~ || f]

r AM . u 1
wp[§ LI,
z€R™ | J|n|<C 2-7 (1 + 29[z])an

JEZ4 N L (L9 (R™,Zy )

Fpor L (RY)
(i) Is:=JC) () +

~ g, @

an

—

(iv) Iy:= J¢(12)u;£(f) + |9 sup

z€R™ |

AM . u
sup 7{ Mdh }
seRn [ Jipj<@o-s (1+27]2]) J jezy sV ew ®n,2,))

[ 7{ A+ T

hj<&2-s (14 27]z[) jezyllecw(ea(rn zy))
~ A fllewr  @n-

Proof. We only prove (i), since the proofs of the other items are similar. To this end, for

any f € S'(R*)N LY (R"), since p € C°(R™) (see [01) pp. 174-175, Proposition 3.3.2]),

loc

we conclude that, for all j € Z; and z € R",

=30 > EDIE Y (MY [ st 2 mminay (59

m’/=1m=1

and hence
f(z) - f”l(x)
M M+m+m -1 )
Z —! (%) (%) m! / py)f (@ =27 mm'y) dy
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R

é&éi COEZ () (Y m [ oty ste 27 vy a
7§§§i A”mﬂﬂl(y)<%> [ st —2mnty)ay
- i % i 1)M+m+m - (% ( ) . p(y)f(x—Tj‘lmm’y) dy

§§“4§ZW4<Z)mMAm<>m¥mwﬂ> Ao S @) .

m=1

As a consequence, for all x € R"™ and u € |

qp @+ = 7wt 2)] [ |AMﬂx+a“d4“? 5.4
<

2€R" (1+27]z[)e n<@o-i (1+27|z[)*
Moreover, as Ty € S(R™) and (1 + |u\)
see that, for all x € R™,
oty _
VI o
verr (L+y))*  yern (1+[y[)®

sup/
yeR™ n

p @t
™ uern (14 |uf)e

Combining (8.4) and (8.5 with Proposition (here we need the assumption (8.2)),

we conclude that

1+ u+y)*(1+|y)* for all u,y € R™, we

To(w)f(z +y — ) dul

(Lt [u)® |f@—w)]
T+ ly)" (1+Tul)"

n

IN

TO(quy)‘

(8.5)

1 I(f* =D+
L 2 sup XpWo Sup
PEQ(R™), |P|>1 P yERN (1+ [y])e

Kﬁﬁlx+@q
{Z£ A+2[2) [ en,

L(R")

+

~ g oy
La(Ly(R™,Z4)) Y

as desired.
(R") N L}

loc

To show the reverse inequality, for any f € B ha (R™), since {T}}jez,
is an approximation to the identity (see [91), pp. 174-175, Proposition 3.3.2]), if we fix
|h| < C277 and z € R", then by [91], p. 195, (3.5.3/7)], we see that, for almost every
r e R™

1/u
[f wA%ﬂx+aw@}
|h|<2-7

00 1/u
S e+ [f, )

=1

DTy (y) f(w + 27 7y) dy|;

+ sup

wEB(z+2,0277) | JR™
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here and in what follows, f; := f — fi=! for all j € Z. Then

[]g A f(x+ 2)]" dhr/“
<2 (14 27]z])ov

< = (e +2)] + fB(H-z co-i | fini(y )[* dy]t/
- (1 +27]z[)

1
+ sup _
weB(atz,02-) (14 27]2])®

[ DT+ 2y dy\. (8.6)

For the second term on the right-hand side of , we have

1 .
sup sup _ DTo(y) fw+277y dyH
o Lemm,m-j) ESTETIN SR )
{ (D Ty), *f<x+z+w>|}
= sup sup
2€R" | weB(0,02-7) (1+27|z])*
« ] a
o DT fatztw) =R
2€R™ we B(0,02-7) (1+ 27|z + w|)e 1+ 27|z

|(D°Ty); * Ja + )
sup y
i N T L

A

where ]?:: f(="-). This observation, together with the fact that

H{ (DTo); * (- +2)] }jeh

sup

- < w,T nY,
2cRn (1 + 2j|Z|)a ~ ||fHB£,q,a(R )

fa(L (R Z1))

implies that

1
sup sup —_
H{ 2€R" weB(-4=,c2-7) (14 27]2])®

- DTy (y) f(w +277y) dy‘}

JEZ4 LA (Ly (R™Zy))

S 1A

For the first term on the right-hand side of , we see that, for all x € R™,

BZ’;’Q(Rn).

1/u 1
sup ]{ Jivi(y “dy] RN YIRuEY
{ ) 1+ 27]2])"

< sup { szt 24 u) [1+2J‘“<|z|+|y|>r}

su : :
yeB((]PQ*j) (1 + 29+ 2z + y|)e 1+ 27|z]

+2)|
2la Su |f]+l(x
e (L4 27H]z])e

zER™

(8.7)

Since w € W2 . we have w;(z) < 2711w, (z) for all x € R" and j,1 € Z, which,

1,2

together with a1 > a and (8.7]), implies that
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H{ [ h 1
sup froatl* ] )
1=1 #€R" LJyeB(-+2,279) ’ (1+27]2]) jezyllea(cw (R Zy))

< ’{Zgla . |fﬂ+l()}
A cein (L+ 2H[2])a ez Nea(ew e z,))
L Gl " 17
< { glad sup [ ‘ Xpwj sup SEE RSN LA
; pea® |P|” j_(%v:m zern (1420022 | £ gn)
00 o) 5/(1 1/§
Hor—a)F 1 |fimaG+2)] |°
5 2 Z(Oél a Sup |: ‘XPU) I Sup -77
93 P TR L 2o PP 3 T
1=1 =(0Vjp)
- PTG |
< sup { ‘xpw- sup —= e ~ I fllBer  @ny,
peg(rn) [P j:gv:jp) T eern (14 2702)) || 2gan) e )

where we have chosen 6 € (0, min{f, ¢}) and 6 is as in (£3).
Further, by (8.3), we see that, for all x € R™,

=y 3 R (30) () [ sttt = ) ay

m m
m’/=1m=1

and

f: S (10\4> (%) m / () f(z) dy,

m=1

which implies that, for all z € R™,

M \M+m-—1
/()] = W(M

M1 )mM [ oty @) - )

m

§ ey GO GO [ ot st =) dy\ @)

m m
0m=1

D (MYt [yt o) 5 1776

1= 1

A

’

m

M=

<

3
I

From this, we deduce that, for all x € R™,

p K0l <y [f MRSl r/“ £+ )
ueR" (1 +Jyhe ysélﬂgﬂ %<1 (1 + |y|)ov dh +USE]RR’ Ty (8.8)

which, together with the trivial inequality

sup ¢+ )

yern (14 |y|)@ = ||f||BZU,’;,a(R")’

(R™)

implies that
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AM . u 1/u
J((1171) L H{ sup [ AV f(j+ zzl dh} } 1 fllper g
zER™ | J|h|<C 23 (1+27]2]) jezy llea(Lw(®Rn,Z,)) -
S llzer @)

This finishes the proof of (i). m

If we further assume (|7.1)) holds, from Theorems and we immediately deduce
the following conclusions. We omit the details.

COROLLARY 8.3. Let aq,as,a3,7, a, ¢ and w be as in Theorem . Assume and

. Let {Jj}?=1 be as in Theorem . Then, with the implicit constants independent

of f:

(i) f € Bﬁqa( ™) if and only if f € S'(R™) N Li..
Ji~ ||fHB‘” T o (R

(i) f € Fry, ( ™) if and only if f € S'(R™) N LY . (R™) and Jo < oo; moreover,
Jo ~ N llFer @y

(iii) f € ﬁqa(R”) if and only if f € S'(R") N Li,,
Js ~ [ fllner @y

(iv) f €&y (RY) if and only if f € S'(R™) N L, (R") and J4 < co; moreover, Jy ~
[ fllegr, m)-

By the Peetre maximal function characterizations of the Besov space B, ,(R") and
the Triebel-Lizorkin space F, ,(R") (see, for example, [93]), we know that, if ¢ € (0, oc],
L(R") = LP(R") and w; = 27° for some s € Rand all j € Zy, then B, ,(R") = By ,(R")
for all p € (0,00] and a € (n/p,00), and F [, (R") = Fy (R") for all p € (0,00) and
a € (n/min{p, q},o00). Then, applying Theorem we have the corollary below. In
what follows, for all measurable functions f, a € (0,00) and = € R"™, we define the Peetre
mazimal function of f as

(R™) and J; < oo; moreover,

(R™) and J3 < oo; moreover,

COROLLARY 8.4. Let M € N, u € [1,00] and ¢ € (0, c0].

(i) Let p € (0,00), a € (n/min{p,q},M/2) and s € (a,M — a). Then there exists a
positive constant C' := C(M), depending on M, such that f € F,; (R") if and only
if feS'RY)NLY, (R") and

M g(. u 1/u
'H{st sup [}{ A} f('-l-zgl dh] }
zeRn | Jjnj<do-i (1+27]2]) jETs

is finite. Moreover, Jq is equivalent to | f|
independent of f.

(ii) Let p € (0,00], a € (n/p,M/2) and s € (a,M — a). Then there exists a positive
constant C = C(M), depending on M, such that f € B, ,(R") if and only if f €

Ji =[5 ler@ny +

ea(z) |l Le ()

Fs  (R™) with the equivalence constants

S'(R") N L}, (R™) and
. ; AM (g e M
Sy [ Py - - L
zER™ [h|<C2-3 (1+2J|Z|> Lr(R") ) ez, ea(zy)
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is finite. Moreover, Jo is equivalent to Hf||B§q(]Rn) with the equivalence constants
independent of f.

Proof. Recall that by [85, Theorem 3.3.2] (see also [70, pp. 33-34]), F5 (R") C L, (R™)
if and only if either p € (0,1), s € [n(1/p—1),00) and g € (0,00], or p € [1,00), s € (0, 00)
and g € (0,00, or p € [1,00), s = 0 and ¢ € (0,2]; and Bj ,(R™) C L} . (R™) if and only if
either p € (0,00], s € (n{max(0,1/p—1)},00) and q € (O oo] orpe (0,1, s=n(l/p—-1)
and ¢ € (0,1], or p € (1,00], s =0 and ¢ € (0, min(p, 2)]. From this, the aforementioned
Peetre maximal function characterizations of By (R™) and F;  (R"), and Theorem

we immediately deduce the conclusions of (i) and (ii). m

We remark that the difference characterizations in Corollary are a little different
from the classical difference characterizations of Besov and Triebel-Lizorkin spaces in
[9T, Section 3.5.3]. Indeed, Corollary can be seen as the Peetre maximal function
version of [91, Theorem 3.5.3] in the case u = oo. We also remark that the condition
that a € (n/p, M) and s € (a,o0) is necessary, since in the classical case, the condition
s € (n/p,00) is necessary; see, for example, [5].

8.2. Characterization by oscillations. In this section, we characterize our function
spaces in terms of oscillations.

Let Pp; be the set of all polynomials of degree less than M. By convention P_; stands
for {0}. We define, for all (z,t) € R},

1/u

oscy! f(x,t) == inf [f(y) = P(y)|" dy

PGPMLB( O )

We invoke the following estimates from [91].

LEMMA 8.5. Forany f € 8'(R"), let {f7}52_, be as in (8.1). Then there exists a positive
constant C' such that:

(i) for allj €N and x € R",
(@) = [P (@) < Coscy! f(,277); (8.9)
(i) forallj €Z,, x € R™ and y € B(x,277),

P~ Y Dt P - <M ap Y DR (8.10)

: —i
lali<M—1 #€B(@,270) o) ,=m

Proof. Estimates and (88.10) appear, respectively, in [91] p. 188] and [91], p. 182]. =

THEOREM 8.6. Let a, a1, g, 3,7 € [0,00), u € [1,00], g € (0, 0] and w € x-Wg3 . If

M €N, oy € (a,M) and (8:2)) holds, then, for all f € S’(R”) N Li,. (R™), the following
hold with the implicit constants independent of f:

M J
(i) H; := H{ sup S 4227 )}
zER" 1 (1 +27[z])e GELL

ta(Lw (R Z4))

||f||Bw T (R")

L,q,a



(i)

(iii)

(iv)

8.2. Characterization by oscillations

Scijy f( + 2, 27J)

Hy := J((llﬂ)u.c(f) + { zseu]lgl 1+ 27[z])e }jEZ+
~ N f e @y
@ osc J(-+2,279)
H;s = Ja,w’z:(f) + { ZSellﬂg 1+ 27[z))e }j€Z+
~ e s
scM f(- 42,277
H, = JE?,L,Af) + {Zseuﬂgl 721{:2;4)@ )}jeZ+
~ A flle s mey-

L (ea(R™,Z4.))

(N LY (B Z4))

£Lw (ba(RZy))

Proof. We only prove (ii) since the proofs of other items are similar.

By (8.5) and , we have

1 (O =D+
Hy 2 sup XPWy SUp
PEQ(RM), |P\>1 \P\ yER™ (1+[yhe
-7+ 2)|

i

sup
z€R™

j

1+2]\Z|)”

ez e (varn zy))

L(R™)

~ N e @y

For the reverse inequality, by (8.8]) and Theorem ii)7 we conclude that

sup

peony, |p|>1 [P

Therefore, we only need to prove that

sup

{

z€R™

L 1 +y)
XPWo Sub S Na S lEer @ny-
yeR™ (1 + |y|) L(R™) E,q,a( )
M . —j
Sculf(; z,z )} <l qany-
(1+27]2]) jez | eweamn 2, )) 7

We use the estimate [91) p. 188, (11)] with ko replaced by Tp: for all z, z € R™,

M
0sC,,

08C;,

fla+2277)

o0
sy ¢ 1)) dy +
lz:; yEB(z+2,277) !

where C' is a positive constant. Consequently, for all z, z € R™,

M f(x+4 2,277

sup
weB(z+2z,0277)

SUPyeB(z+2,2-7) |fj+l( )|

~

(14 27|z])e

+

Z

sup
weB(x+2z,C277)

(1

+27]z))

1+2J\z|)

1

Rn

DTy (y)f(w+277y) dy|,

69

) DTy (y) f(w +277y) dy‘. (8.11)

Then by an argument similar to that used in the proof of Theorem for the second
term on the right-hand side of (8.11)), we see that

I

sup sup
2€R™ weB(-+2,0277)

(14 27]z[)

1

n

DT (y) f(w +277y) dy‘}

JEZ4 LY (L9(R™,Zy))

S 7

w,
Frlia

(R™)>
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It remains to consider the first term on the right-hand side of (8.11]). Indeed, by w € -
Wes - we have w;(z) < 271w, (@) for all §,1 € Z, and x € R™, which, together with

aq,02?

a1 > a and (8.7, implies that

H{ SupyGB(-+z,2*J’) |fivi(y)l }
D N (W S

HZQla sup | fia(- “l‘z)| }
sern (L+27%z)e |, 0p

£ (ea(RZ1))

£ (ea(RZ4))

L s i+ 20 1Y
2la0 sup  —— < XP |:U/ sup ]7
{ Z peo(rn) |P| j_(ozij) 7 ern (1427 z])a L)
1 oo |f l(‘i’Z)‘ g\ 1/q 0 1/§

< 9—l(en— a)d sup < XP [w,_H sup I T A)T

{IZ; peo(rm | P j—(%v:jp) I ern (14 29H|2])a £(&™)

LSS oy sp

~  Sup 5 XP|Wj sUp —=————— ~ ||f||Fw,T R,

peon) | Pl H j_([z)vjjp) 7 zern (14 27]2)) L(R™) 2.0 (®")

where we have chosen 6 € (0, min{6, ¢}).

If we further assume that ([7.1]) holds, then from Theoremsand we immediately
deduce the following conclusions. We omit the details.

COROLLARY 8.7. Let aq,a9,a3,7, a, ¢ and w be as in Theorem . Assume that ([7.1)
and (8:2) hold. Let {H; }J 1 be as in Theorem . Then the following hold with the

implicit constants independent of f:

(i) f € B (R™) if and only if f € S'(R*) N L}, (R") and Hy < oo; moreover,

Hy ~ ||f| By (R
ii) f € F2T (R™) if and only 1 e SR NLL (R*) and Hy < o0o; moreover,
( ) L,q,a loc

).
(iii) f € ﬁqa(R”) if and only if f € S'(R™) N L,
Hs ~ [[fllnger @)
(iv) f € & (R ") if and only if f € S'(R") N Li,.(R™) and Hy < oo; moreover,
Hy ~ [fllegr, mn-
Again, applying the Peetre maximal function characterizations of the spaces B;, ,(R™)

and F; (R"™) (see, for example, [93]), and Theorem we have the following corollary.
Its proof is similar to that of Corollary We omit the details.

(R™) and Hs < oo; moreover,

COROLLARY 8.8. Let M € N, u € [1,00] and q € (0, c0].

(i) Let p € (0,00), a € (n/min{p,q}, M) and s € (a, M — a). Then f € F; (R") if and
only if f € S'(R")N L _(R") and

loc
M .
o s b2 2270
JELy

Ki = |follerwn) + < 0.

zER™ (14 27]z])® 09(z )l Le (R7)
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Moreover, K1 is equivalent to ||f||ng(Rn) with the equivalence constants independent
of f.
(ii) Let p € (0,00], a € (n/p, M) and s € (a, M — a). Then f € By (R") if and only if

feS®RY)NLL (R") and
ot ey LI+ 2,270

loc
{ sern (L4 29]z))
Moreover, Ko is equivalent to || f|
of f.
Again, Corollary can be seen as the Peetre maximal function version of [91], The-
orem 3.5.1] in the case u € [1, o0].

< 00.
£9(Z4-)

Ko i= | o e + \ }
Lr(gn)) jez,

B (R™) with the equivalence constants independent



9. Isomorphisms between spaces

In this section, under some additional assumptions on £(R™), we establish some isomor-
phisms between Az:;a(R") spaces. First, in Subsection we prove that if the parameter
a is sufficiently large, then A7 (R™) coincides with Aj’ (R™), which is independent of a.
In Subsection we give some further assumptions on £(R™) which ensure that £(R™)
coincides with &£ ’g’a(R"). Finally, in Subsection under some additional assumptions
on L(R"), we prove that £.°" (R") and F" (R") coincide.

9.1. The role of the new parameter a. The new parameter a, which we added, seems
not to play any significant role. We now consider some conditions which permit removing
a from the definition of Aj’7 (R™).

Here we consider the following conditions.

ASSUMPTION 9.1. Let n; g(z) := 29"(1 4 27|z|)~F for j € Z4, R>> 1 and x € R™.

(L7) There exist R > 1, r € (0,00) and a positive constant C(R,r), depending on R
and r, such that, for all f € L(R™) and j € Z,

lwi(nj.r * | FI)Y ]| c@ny < (R ) ||w; f| £ @n)-

(L7*) There exist r € (0,00) and a positive constant C(r), depending on r, such that,
for all f € L(R™) and j € Zy.,

w; MOV N 2@y < CO)wifllegeny.

(L8) Let g € (0,00]. There exist R > 1, r € (0,00) and a positive constant C(R,r,q),
depending on R, and ¢, such that, for all {f;};en C L(R"),

{ew;(mjre = 51 Ysez N ewo @ 20y < OBy @)ll{w; fi}jez Nl ewamn 2.y
(L£8*) Let ¢ € (0,00]. There exist r € (0,00) and a positive constant C(r, q), depending
on r and ¢, such that, for all {f;}jen C L(R"),
{w; M (1 f51Y Y sez lcea@n zay) < O @) I{w; £} jez Nl eges@n 2
We now claim that in most cases the parameter a is only auxiliary, by proving the

following theorem.

THEOREM 9.2. Let oy, az,a3,7 € [0,00), a € (Ng + az,00) and q € (0, oo], where Ny
is as in (L£6). Let w € W3, 7 € [0,00) and q € (0, co]. Assume that ,¢ € S(R™)

ap,02”?

satisfy, respectively, (1.3]) and (1.4).

(72]
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(i) Assume that (L7) holds and, in addition, a > 1. Then

20" % f(y)|" v
Aszzen~ [{ . 35 e
1Al @ o (1+27] - —y[)or iety

~ [{pj * f}jez, ||lq([l;“(R",Z+))

27| 5 f(y)|" y}
w, T n ~ —d
[f 1wz ey H{ UR” (1+ 2] - —y[)or Y €z,

~ {wj * fYiez, leanvew ®n 2, ))

fa(Ly (R, Z1))

and

(NLE (B Z4)

with the implicit constants independent of f. In particular, if (L7*) holds, then the
above equivalences hold.
(ii) Assume that (L8) holds and, in addition, a > 1. Then

205 % f(y)|" T/T}
w,T ny "~ T —onar @
1fllFer mm) H{ {/R” (14 27| —y|)or Y J€Zy

~ {wj * fliez lcwea@n z,)) (9.1)

) /T
27, * f(y)|” } }
w,r Y~ —d
I fllewr @ H{{/R" a+2] ) Y f,e

~ {j * f}iez, lecw wamn z,))

L3 (e4(R™,Z4.))

and

L (ea(Rn Z1))

with the implicit constants independent of f. In particular, if (L8*) holds, then the
above equivalences hold.

Motivated by Theorem let us define
1l @ny = @5 * Fliez, leaccw ®nz4))
1f v ey == [{@s * fliezy lleavew @n 21,
1flFer @y := @i * fliezy lcw o @n 21y
1fllezr@ny == {s * fliezy lecw o @ 2.y
for all f € S8'(R™) as long as the assumptions of Theorem are satisfied.

LEMMA 9.3. Let ay,a9,a3,7 € [0,00), a € (Nyg + a3,00), ¢ € (0, 00] and € € (0,00).
Assume that @, p € S(R™) satisfy, respectively, (1.3) and (1.4). Then:

(i) For all f € S'(R™),

207 ;% f(y)]” Hr
TP NH{[ nl' g, L (92)
caa(®) n (L4 27] - —y[)ortnte jezy leacw®n z.)
9Jn T
e dy} } S 9
e (1427]- —y) iz les(er ®nzy))
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T H{[ 2"lip; * FW)I d]w} 0.0
N a2 S dy (9
- n (L4 27] - —y|)artnte JEL4 LN LY (R, Z.4))
207 | f(y)|"
1 llacz s H{ [ 2+ W) 1 . 95)
«(®") w (14 27]- —yl)or jezy llea(wWew (R, Z,4))

where @q is understood to be ® and the implicit constants are independent of f.
(ii) For all f € S'(R™),

[ 217 p; % f(y)]
1lrer o 2 { / i dy} } . 96)
£ () LS (14 27] - —y)artnte jezy lloweamn zy))
[ 2"y * f(y)|"
ez, 5 |{ | [ G2 a | ©.7)
L‘,q,a( ) (]_ + 2]| yl) jez, w (g (R",7.1))
[ 2" | f(y)]" L
Iflews g 2 { / nl g, 98)
£lae(87) LS (1427 —yjortnt jezilleceeamn,zy))
r 1/r
fllewr @m < / wdy / 9.9)
L S e TR 2T 007 Y S ecomonny @
L jezi lecwea®rn,zy))

where @q is understood to be ® and the implicit constants are independent of f.

Proof. Estimates (9.2)), (9.4)), and are immediate from the definitions, while

9.3), (9.5), (9.7) and depend on the following estimate: By [93] (2.29)], we see that,
forallt € [1,2], N> 1,r € (0,00), £ € Nand z € R",

" iNrotron [ 1(@rro)e = )"
(@3- )a@]" 3 kZO? ? /n 1+ 2w —y)or ¥

In particular, when [ = 0, for all z € R™, we have
- (IS
(z) < [ 2 ’CN’“z’m/ Pyl (9.10)
2 (U o — gl
If we combine Lemma and (9.10)), we obtain the desired result. m

The key to the proof of Theorem [0.2) is the following dilation estimate. The next
lemma translates the assumptions (£7) and (£8) into our function spaces.

LEMMA 9.4. Let {Fj}jez. be a sequence of positive measurable functions on R™.
(i) If (L7) holds, then
||{(77j,2R * [Fj]r)l/r}jeh ||l‘1(£:’(R" Zy)) ~ ||{F }]€Z+ ||eq(Lw R™,Z4y))s
{2k * [F)Y Yiez lesv e ®n z,y) S IFs}jez lesnvew®n 2,4y,

with the implicit constants independent of {F}}jez, -
(i) If (£8) holds, then

{(j2r * ()Y Yez, N ew@a@n 2, S HFsYiez, | ow aee 2, ), (9.11)

{(j2r * [(FI DY }iezs lecw womn 2y S IFs}jez lecw eamn 2y,

with the implicit constants independent of {F}}jez, -
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Proof. Due to similarity, we only prove (9.11)).
For all sequences F' = {F}};cz, of positive measurable functions on R", define

IFN == [{F;}iezy |l cw eamn 2y )-
Then || - || is still a quasi-norm. By the Aoki-Rolewicz theorem (see [2, 69]), there exists
a quasi-norm || - || and 6 € (0, 1] such that, for all sequences F and G, ||F|| ~ | F|| and

IF +GI7 < IFI + IGIP.
Therefore,

o G - 1/r
*
H{[;nk,ﬂ% ( k’l) } }keZ+ Lw(0a(R™,Z4))

- ‘ H { [gnkﬂ% * (Gk’l)r} l/r}keZJr

oo

6

’ 6

D M k2 (Ge) 1 ez, NI

1=0
~ Y k2 * (Grd) 1 ez o a2y (9-12)
1=0
for all sequences {G,1}x,cz, of positive measurable functions.
We fix a dyadic cube P. Our goal is to prove

I::H< i XP(Wk)q[nk,zR*(F’f)T]q/T)I/qH

k=3jpVO

SIPITI{F)}jez, |

w (pa(RP 9.13
- copa®nzyy)  (913)

with the implicit constant independent of {F}};cz, and P.
By using (9.12)), we conclude that

3 g riasr) min(0,,7) \ inte gy
IS{ Z [H( Z xp(wk) [nk,zR*(XZ(P)m+PFk) ] ) HL(RnJ } .

mezn k=jpVO
A geometric observation shows that
3lm|e(P) < |z —y| < 2n|m|l(P)
whenever x € P and y € ¢{(P)m + P with |m| > 2. Hence, for all m € Z" and z € R",

k2R * (XePym+pEr)" (2) = / 257 (14 28|z — y) (1 + 2% — y)) " [Fr(y)]" dy
L(P)m+P

1 n - r
S TR /m 2 2 P R dy
m+

1 r
W%’P,R * [XZ(P)erP(Fk) J().

From this and (£8), we further conclude that

0o ol 1/q min(60,q,r) m
I§{ > [H( > e+ (XepymsrFi) ]q/) Hﬁ(w)} } :

mezn k=jpVO

~

SIPITI{E ezl cweamn zy))- ®
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Proof of Theorem . Due to similarity, we only prove the estimates for ngTa (R™).
By Lemma we have

2p; + f)” 1Y
T{——— H{ [ | e gy (9.14)
L’q’a( ) n (1 + 2J| : _y|) jezyllcw(ea(Rn,Z.4))
Observe that the right-hand side of (9.14]) is just
{(jar * [l05 * FOIDY Yz, 2w ean z.)-
By Lemma [9.4]
2fi; * f()" dy]""
H{ L] SWlrggen. (015)
R" Yy j€Zy L (e (R 21))

Also, it follows trivially from the definition of FZ’; o(R™) that
1 lFer ey S WF s, ey (9.16)
Combining (9.14)—(9.16)), we obtain (9.1). m

PROPOSITION 9.5. Let ¢ € [1,00]. Assume that 6 = 1 in the assumption (L3) and,
additionally, there exist some M € (0,00) and a positive constant C (M), depending
on M, such that, for all f € L(R™) and x € R",

1FC = @)l e@ny < COM)(L A+ |2)M]| £l £gen)- (9.17)
Then, whenever a > 1,

27 f(y)|" rﬁ}
w,T ny "~ 1 L9 . —..Nar d
Il @n) H{ [/R 1+ 2] -y @ jeLy

2" % f(y)I" }/}
H [/ L+ 2] —y)or ¥

with the implicit constants independent of f.

It is not clear whether the counterpart of Propositionfor Erga®") and Fo7 (R™)
is true or not.

~ s @nys
La(Ly (R™,Zy))

~ ||f||/\/2’;q’(ﬂ{n)7

1l ey ~ LR R Z1)
T s

Proof of Proposition[9.5, We concentrate on the B-scale, the proof for the A'-scale being
similar. By Theorem we see that

[ ]
2kn|§0k % f(y)\r 1/r
v {wk(/ﬂ«n (14 2F] - —y[)artnte dy) }

Now that # = 1, we can use the triangle inequality to obtain

BZ’;— o (R™)

1 o0
S sup {

PeQ(R” k=7 p\0

q }1/q
C(Rn) .

1 > 1/q
Il S s —=={ 37 Ixewlon Ml |
Bﬁ,q,a(R ) PEQ(R"’) IP‘T k_jzpvo ﬁ(R )

whenever a > 1. The reverse inequality being trivial, we obtain the desired estimates. m

To conclude this section, with Theorems[.12]and[9.2] proved, we have already obtained
the biorthogonal wavelet decompositions of Morrey spaces; see also Section [T1.2] below.
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9.2. Identification of the space L£L(R™). The following lemma is a natural extension
with | - | in the definition of ||f||z&n) replaced by ¢*(Z). In this subsection, we always
assume that § = 1 in (£3) and that, for any set F of finite measure, there exists a positive
constant C(E), depending on E, such that, for all f € L(R"),

/E (@) dz < CE) |l o) (9.18)

In this case L(R™) is a Banach space of functions and the dual space L£'(R™) can be
defined.

THEOREM 9.6. Let L be as above, let 1, p € S(R™) be even and satisfy, respectively, (1.3))
and (1.4), and let N € N. Suppose that a € (N, 00) and

(147N e LR™) N L' (R™). (9.19)

Assume, in addition, that there exists a positive constant C' such that, for any finite
sequence {ex }v0, € {~1,1}, f € L(R™) and g € L'(R"),

ko
[543 cvnx 1), < Clilleen
k=1

Then L(R™) and L'(R™) are embedded into S’'(R™), and L(R™) and Sg’g’a(R") coincide.

Proof. The fact that L(R™) and £'(R™) are embedded into S’(R™) is a simple consequence
of (9.18) and (9.19). By using the Rademacher sequence {r;}32,, we obtain

o0 1/2 . ko 1/2
[t 8) ey = i (1o 1)
ko 1
> [ g+ sl
j=

which, together with the assumption a > N, Theorem and ({9.20)), implies that

> 1/2
1£ls0s, oy ~ || (10 24D g £2) L L S W een):
j=1

L(R™)

(9.20)

<C (R7Y-
£rRn) = 9]l 27y

9

L(R™)

If we fix g € C°(R"™), we see that

dm—/ v f(x)x gl dac+Z/ ; * f(x)p; * g(z) d.

From Theorem the Holder inequality and the duality, we deduce that
7 leqeey S supllfllens, oy llenp, gy 9 € CER™), lglerqery = 13,

Since we have proved that £/'(R™) is embedded into £2;° 2.0(R™), by the second estimate
of (9 -, we conclude that

[ lle@ny S 1Flle2s  @ny:

The reverse inequality was already proved before. m
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Let L£(R™) be a Banach space of functions and define
LP(R™) :={f:R" = C: f is measurable and |f|’ € L(R")}

for p € (0,00), and || f|| zrmny := || [f|P Hlﬁ/&n) for all f € LP(R™). A criterion for to
hold is given in the book [J]. Here we invoke the following fact.
PROPOSITION 9.7. Let L(R™) be a Banach space of functions such that LP(R™) is a
Banach space of functions and the maximal operator M is bounded on (LP(R™)) for
some p € (1,00).

Assume, in addition, that Z is a set of pairs (f,g) of positive measurable functions
such that, for all py € (1,00) and w € A, (R™),

[ @@ ds Sa,,0 [ o) ds (9.21)

with the implicit constant depending on the weight constant A, (w) of w, but not on (f, g).
Then || fllcwmny S gllz@ny for all (f,g) € Z, with the implicit constant independent
of (f,9)-

A direct consequence of this proposition is a criterion for to hold.

THEOREM 9.8. Let L(R™) be a Banach space of functions such that LP(R™) and (L")P(R™)
are Banach spaces of functions and the mazimal operator M is bounded on (LP(R™))
and ((L)P(R™))" for some p € (1,00). Then holds. In particular, if a > N and
1+ |-)7N € L(R™) N L' (R™), then L(R™) and L' (R™) are embedded into S'(R"), and
L(R™) and Sg’g)a(R") coincide.

Proof. We have only to check (9.20). Let

z={(v=s+ > e “ff) 1 F € LRY, N €N, {eibien € (~1,1}}.
k=1

Then (9.21)) holds according to the well-known Calderén—Zygmund theory (see [13, Chap-
ter 7], for example). Thus, (9.20) holds. =

9.3. F-spaces and £-spaces. As we have seen in [82], when £(R™) is the Morrey space
MBE(R™), we have £ (R") = F7 (R") with norm equivalence. The same happens
under some mild assumptions (9.22) and (9.24) below. Recall that £(R™) carries the

parameter Ny from (£6).

THEOREM 9.9. Let a € (Ny + a3,0), ¢ € (0,00] and s € R. Assume that L(R™) sat-

isfies the assumption (L8) and there exist positive constants C and 1o such that, for all
P e QR"),

C7Ixplle@n) < IPI™ < Clixplle@n)- (9.22)
Then for all T € [0,79), £77 ,(R") = Fpo (R™) with equivalent norms.
Proof. By the definition of || - | g7 (rm) and Il - ”FZ’Z . (&n), we need only show that
FroaR") = 27 ,(RY). (9.23)

In view of the atomic decomposition theorem (Theorem |4.5)), instead of proving (9.23)
directly, we can reduce the matter to the level of sequence spaces. So we have only to
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prove
fﬂqa( ) ;)685727(1(]:&")'
First, by (£8),

= ez Niklxg, -+ 1)\
1A 7 a(®Y) = SUp |P|'r [Z (XPQJS sup (1 + 2i[y[)e
PeQ(R™) yER™ ) L(R)
> . qa11/q
. IS o2 5 )
PeQ(Rn) |P| ]go keZZn J k L(R™)
Similarly, by (£8),
1 S o e Nklxgu G +y)\ 17
Mz ey o= sup 1o { > (XPQJ sup )
PeQ(R™) | | j=jpVO0 yER™ ( + |y|) L(R™)
1 > . qq1/q
U
peo(rn) [P j:jzpvo kezzn SHAR L(R™)

Thus, it suffices to show that, for all dyadic cubes P with jp > 1,

jp—1
1

Z ) Z q11/q
1P| {j_o (XP keZn| skxa L(R™) |

For all j € {0,...,jp — 1}, there exists a unique k € Z" such that P N Qji # 0. Set
Aj = \ji and Q; = Qj; then for all j € {0,...,jp — 1}, by (9.22), we have

275\ N 12751 A51xq,; lcrmy
Q|70 Q|

1 = a11/q
S IS (a2 3 aven) ] S WAz o
@ 12 (2™ 3 Palan) | ) Pz

which implies that

fe g0 R

1ol s aq1/a Ixplle@ny (= /4
I= P { E (XP2J E |)‘jk|Xij) ] H S .,-( )< E 2 q|)‘j‘q>
|P| —r = L(R") P —
J €L 7=0
jp—1
S Mgz L[ PIPT T[ E Q177 TO)] (®) ™

The following is a variant of Theorem

THEOREM 9.10. Let T € [0,00) and q € (0,00]. Assume that there exist a positive constant
A and a positive constant C(A), depending on A, such that, for all P € Q(R™) and
keZy,

IxPwip—kllc@ny < C(A)2™ Xt pwip—kllc(rm) (9.24)

and assume that (L8) holds. Then E7°7 (R") = F;

Lna oaa(R™) with equivalent norms for all
T€[0,4).
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Proof. By the definition, we have only to show that F"" (R") < €. (R™). By Theo-

rem 4.5, we know that this reduces to investigating the corresponding sequence spaces.
First, by (£8),

Mg oy o= sup 1 {i (o sup ezt 20 ) : -
Similarly, by (£8), we also conclude that
H)\HFE»JQ(Rn) = Pesg(%n |Pl|T { Ji::vo <Xij yseuﬂg Ekezzltkg%’“@(- + y)> q] 1/q -
Pesg%n ‘Pl‘ [ Ji::vo (Xij kgzzn ‘)\jk|Xij>qT/q L(R)

Thus, it suffices to show that, for all dyadic cubes P with jp > 1,

1 jp—1

1/q
_ Z R H H <Al oy
[P [ — (Xpw] keZ"| Hxa L®n) ™ Mz

For all j € {0,...,jp — 1}, there exists a unique k € Z" such that P N Q;x # 0. Set
)\j = )\jk and Qj = Q]‘k; then for all j € {0, e Jp — 1},

{i (xasur Y Parlxan)’]”

kezn

1 1
2 wirixo, |l e < ——— < (Al o,
|Q]|T|| 7 Q]H (R) |Q]|T L(]Rn) || ||f£<17a(R)

Assume ¢ € [1,00] for the moment. Then by the assumption ¢ € [1,00] and the

triangle inequality for | - [|% ., we see that
1ot 1/q
1=l [ 32 (e 32 Mivixess)']
1P| Z * Jk;an s L&)
1 jp—1 , 1/6
< Pr Z el | S o [ 2 Ipwidina Iz
§=0

If we use the assumption (9.24)), we see that

jp—1

1< Wlzz, e [ZQWIQ ] S gz o

For q € (0,1), since £Y/%(R") is still a quasi-normed space of functions, by the Aoki-
Rolewicz theorem (see [2, [69]), there exist an equivalent quasi-norm || - || and 6 € (0, 1]
such that, for all f,g € LY9(R"),

1Fllzrrany ~ WAL 0F+ gl < AN+ Ngh®
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It follows that

- 1 jp—1 ~ jp—1
05 o 2 i I~ 5 3 v ey
|PI™ =5 |P|
1 jp—1 ~ B
—7 A0 0
S i 2 27 e, e
7=0
jp—1
<INy 3 279491077 < A .
feiqa@®™) |P\T§ J ~ fET (R
7=0

REMARK 9.11. In many examples (see Section [IT), it is not hard to show that (9.22)
holds.

The following theorem generalizes [82) Theorem 1.1].

THEOREM 9.12. Let w € W3 with ay,ag, oz € [0,00).

1,02
(i) Assume T € (0,00), q € (0,00) and (L7) holds. If a > 1, then N ,(R™) is a proper
subspace of B’y (R").
(i) Ifa € (0,00) and 7 € [0,00), then N/ [(R™) = B (R") with equivalent norms.

Proof. Since (ii) is immediate from the definition, we only prove (i). By (£7) and Theo-
rems [£.5] and [9.2] we see that

Al ®n)
sup . { f: X sup . > klxeu (- +v) q }1/‘1
P T el N 13
peaten) [P, 2= 117 yen (T 2ify)e Sz, M0 £(®)
1 > q 1/q
sup 77.{ Z HXij Z |>‘jk‘Xij n }
peon [Pl L 2= Pyt L(R™)
and
[Allner )
0 1 1 q 1/q
{3 s e s g 3 a4
{]Z—:oPeQW) [P T yemn (L+27]y) kg e L@
0o q 1/q
AR, e 3 e, F
=0 PEQ(R") kezn [,(R")

We abbreviate

n times
Qja,..1) = [277,2179) x ... x [279,217)
to R; for all j € Z and set

N ||ijRJ.||Z(1Rn)|Rj|T, @ = R; for some j € Z,
@ 0, Q # R; for any j € Z.
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Then we have

1 = 1/q
[Allpw:r @ny ~ sup 77{ X PR, wjAR; % } :
lae () peo(rn) | P jzgpjvo ’ e

In order that the inner summand is not zero, there are there possibilities: (a) P contains
{Rk, Rk+1,..-}; (b) P agrees with Ry, for some k € Z; (c) P is a proper subset of Ry, for
some k € Z. Case (c¢) dose not yield the supremum, while case (a) can be covered by (b).
Hence

1 > /q
AMlpw (mn Nsupi{ XR.AR; WiAR, || % n}
I brlg.a(®™) vz | Rl j;o\l kNR; Wy JHL;(R)
1
~ SUP 75— [ X R, WkAR, [ c(gm) ~ 1. (9.25)

rez |Re|™
On the other hand, keeping in mind that ¢ is finite, we have

> 1 1/q
H)‘an:;a(R”) z { ZO?CIEHZD WHXR/CORJ'U)]')\RJ- ||q£(Rn)} = Q.
]:

This, together with Theorem 4.1, the atomic decompositions of (B, ,(R"), b7 ,(R™))
and (N7 (R™),n7" (R™)), and (9.25)), completes the proof. m

L,q,a ' L,q.a
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What we have done so far can be extended to homogeneous cases. Here we give definitions
and state theorems but the proofs are omitted.

Following Triebel [90], we let

Su(R?) = {cp € SR™ : /

and consider So(R™) as a subspace of S(R™), including the topology. Write S._(R™) to
denote the topological dual of S (R™), that is, the set of all continuous linear functionals
on Soo(R™). We endow S/ (R™) with the weak-* topology. Let P(R™) be the set of all
polynomials on R™. It is well known that S, (R™) = S'(R™)/P(R™) as topological spaces
(see, for example, [105, Proposition 8.1]).

p(x)z? dz = 0 for all multi-indices v € Z:‘_}

n

To develop a theory of homogeneous spaces, we need to modify the class of weights.
Let Ry := {(z,t) € RT"" :log, t € Z}.

DEFINITION 10.1. Let ag, ag, a3 € [0,00). We define the class Was  of weights as the

Q1,02
set of all measurable functions w : R%H — (0, 00) satisfying the following conditions:

(H-W1) There exists a positive constant C' such that, for all z € R™ and j,v € Z with
Jjzv,
Oty (g, 277) < w(x,277) < €27 W2y (z,277).
(H-W2) There exists a positive constant C such that, for all z,y € R"™ and j € Z,
wj(z) < Cw(y,277)(1+ 27|z — y|)*.

The class *—ng is defined by making modifications similar to Definition

;2

As we did for the inhomogeneous case, we write w;(z) := w(z,277) for z € R™ and
jeL.

DEFINITION 10.2. Let ¢ € (0,00] and 7 € [0, 00). Suppose, in addition, that w € ngaz
with aq, ag, az € [0,00).

(i) 1LY (R™,Z)) is defined to be the space of all sequences G := {g; };cz of measurable
functions on R™ such that
1 oo
|Glleacw ®n zy) == sup ?H{Xpwjgj}j:jpHEW(F!(]R",Z)) < oo. (10.1)
PcQ(R™) | |

(83]
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(ii) L9(NLY(R™,Z)) is defined to be the space of all sequences G := {g; },cz of measur-
able functions on R" such that

e Wi qs BONCARYL
|Gl ea (A 2w (7, 2)) ;:{ Z sup (W) } < 0. (10.2)

oo PcQ(R"™)

(ili) L£¥(¢1(R™,7Z)) is defined to be the space of all sequences G := {g; }jez of measurable
functions on R™ such that

1G]

Lw(ea(Rn,Z)) *=  Sup H{Xp’wjgj}] jPng (Lw(Rm,7)) < OO. (103)

PeQ(R") |P|T

(iv) ELY(¢1(R™, Z)) is defined to be the space of all sequences G := {g, };ez of measurable
functions on R™ such that

|Gllecwea@n,z)) = sup [{xPw;gi}52 —collea(cw @n z)) < 00 (10.4)

PeQ(R™) |P|T

When g = o0, a natural modification is made in ((10.1)) through ((10.4)), and 7 is omitted
in the notation when 7 = 0.

10.1. Homogeneous Besov-type and Triebel-Lizorkin-type spaces. Based upon
the inhomogeneous case, we present the following definitions.

DEFINITION 10.3. Let a € (0,00), a1,as,a3,7 € [0,00), ¢ € (0, oo] and w € Wes

Q02"

Assume also that £(R™) is a quasi-normed space satisfying (£1) through (£4) and that
¢ € Soo(R™) satisfies (1.4). For all f € S, (R™), z € R" and j € Z, let

(@5 falz) := S S 2y (10.5)

(i) The homogeneous generalized Besov-type space BZ”qTa(R") is defined to be the space
of all f e 8. (R™) such that

”fHBZ’;a(]Rn) = ||{(Spjf)a}jez||€q(£g’(R"7Z)) < o0.

(ii) The homogeneous generalized Besov-Morrey space Ng;a(R”) is defined to be the
space of all f € S/_(R™) such that

[ llxrr @y = {5 Natjezlleaney @n z)) < oo

(iii) The homogeneous generalized Triebel-Lizorkin-type space FZ’;G(R") is defined to be
the space of all f € S, (R™) such that

1l ) o= (& Fabieal

(iv) The homogeneous generalized Triebel-Lizorkin-Morrey space SZ’qTa( ") is defined to
be the space of all f € S,_(R™) such that

L (ta(Rn,2)) < OO

Hf||g’w=f SR T H{(‘P;f)a}jezHSL;“(Z‘I(]R",Z)) < 00.
(v) Denote by A% a.a(R™) any of the above spaces.

EXAMPLE 10.4. One of the advantages of introducing the class W23 s that inter-

a1,
sections of these function spaces still fall under this scope. Indeed, let oy, as, as, 51, B2,
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B3, € [0,00), ¢,q1,¢2 € (0, ], w € Wos  and w' € ngﬁz Then it is easy to see

Q1,02

. R . I, . + /’
LR OVAL T (RY) = Az T (R™).

The following lemma is immediate from the definitions (cf. Lemma [3.8).
LEMMA 10.5. Let o, g, a3, 7 € [0,00), ¢,q1,q2 € (0, 0] and w € W Then

Q1,02 "

Bw,r (Rn)%Bw,T (Rn)’

L,q1,a L,q2,a
Paa®) S NEL L(RY),
Er (R = BT (R,
grr J(RY) < ERT (R,
EpT (RY) < NP2 L (R™)

in the sense of continuous embeddings.
The next theorem is a homogeneous counterpart of Theorem [3.14]

THEOREM 10.6. Let oy, a, 3,7 € [0,00), q € (0, o] and w € W23 Then BY'” (R™)

. Qar,az” L,q,a
and F (R™) are continuously embedded into S, (R™).

Proof. In view of Lemma [10.5) we have only to prove that

By % o(R") < SL(R™).
Suppose that ® satisfies (1.3]) and o equals 1 in a neighborhood of the origin. We write
(1) == ®(:) —27®(271) and define Li(f) := f — ® x f for all f € S/ (R"). Then by

Theorem we have Ll(BZ’;a(R”)) — S'(R™) — S, (R™). Therefore, we need to
prove that

0
Ly(f) == > @j*f

j=—00

converges in S_(R™) and that Lo is a continuous operator from Bf;a(R") to SL(R™).
Notice that, for all o € Z"}, j € Z and € R",

10 (; % f)(@)] £ 2711 ((8¢); fa(2)-

Consequently, for any x € S (R"), we have, for a € Z7,

[ s ) do

< /R k()0 (o5 + @) do
<1l [ @[(0°9); Nalo) d

Now we use the condition (H-W2) to conclude that, for o € Z",

RGN

< el [ Ol @) (0703 )a(e) o

< gillalli—as) / wa@((aa@;na(m) da
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_ gilllali—o1) Z/

w;()((0%¢)j f)a(x) da

kezn Qak 1+ |x|
< gilali=ai=a) §™ () 4 1)~ / wy (@) (0°¢): )a(x) d.
kezn Qi

By (£6) and (H-W2), together with Theorem 10.7 below, we further see that, for o € Z7}
[ )0y x Do) da] 200050 S (] 1)y (00 e
" kezn

< 2](\|04H1—<11—50)Hf||3w -y
~ £)oo,a(R™)"

Therefore, the summation defining Lo(f) converges in S, (R™). m

We remark that these homogeneous spaces have many properties similar to those of
their inhomogeneous counterparts. However, similar to the classical homogeneous Besov
spaces and Triebel-Lizorkin spaces (see [90 p. 238]), some of the most striking features

of the spaces By (R™), Fp " (R™), Nz7 (R") and €77 (R™) have no counterparts,

such as the boundedness of pointwise multipliers in Section 5.

10.2. Characterizations. We have the following counterparts of Theorem [3.5]

THEOREM 10.7. Let a, a1, a9, as,T,q, w and L(R™) be as in Definition|10.3. Assume that
Y € Soo(R™) has the property that

GE) A0 ife/2 <] <2

for some e € (0,00). Let 1;(-) := 2/"4)(27-) for all j € Z and {(4} f)a}jez be as in (10.5)
with @ replaced by . Then

1Al g r @y ~ {5 F)
1A llarer ey ~ {5 )
||fHFija(Rn) ~ {5 fatiezll cweamn z))
1fllger @y ~ [R5 )

with the implicit constants mdependent of f.

atiezllea(cy @ z)),

atjezlleaww ®n,z))s

atjez lecwea®n,z)),

We also characterize these function spaces in terms of local means (see Corollary [3.6]).

COROLLARY 10.8. Under the notation of Theorem[10.7], let
Mf(x,277) : —sipw] f(@)|

for all (x,277) € RZH and f € S/ (R™), where the supremum is taken over all i in
S (R™) such that

> sup (1+[e)Mo () < 1

la|<N TER"

and, for some ¢ € (0, ),

[ EUQde=0, DO A0 Fe/2<lgl <2
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If N is large enough, then for all f € S, (R™),

1Al @y ~ {90

(~27)
”fH/\'/Z’,‘q’:a(R") ~ {Mf (277 Yezlleawvee v z))s
(n27)
(~277)

Yiezllea(cw ®n ),

”fHFZ'q’:a(R") ~ M (27 ezl cw s mn 2),

”f”é‘}é’y’;a(R") ~ {MfC,277) bezllecw earn z))s

with the implicit constants independent of f.

10.3. Atomic decompositions. Now we place ourselves once again in the setting of
a quasi-normed space L£(R"™) satisfying only (£1) through (£6). Now we are going to
consider the atomic decompositions of the spaces in Definition [10.3]

DEFINITION 10.9 (cf. Definition [4.1). Let K € Z; and L € Z; U {—1}.

(i) Let Q@ € QR™). A (K, L)-atom (for AZZG(R”)) supported near a cube @ is a
CE (R™)-function a satisfying

(the support condition)  supp (a) C 3Q,

(the size condition)  [|0%a||feemn) < |Q\*”‘1”1/"7

(the moment condition) / zPa(x)dr =0,

for all multiindices o and 3 satisfying ||a||; < K and ||8||1 < L. Here the moment
condition with L = —1 is understood to be vacuous.

(ii) A set {aji}jez, kezn of CF(R™)-functions is called a collection of (K, L)-atoms (for
Aqua(R")) if each ajy, is a (K, L)-atom supported near Q.

DEFINITION 10.10 (cf. Definition [£.2). Let K € Zy, L € Z; U{—1} and N > 1.

(i) Let @ € Q(R™). A (K, L)-molecule (for A‘ZTqa(R")) supported near a cube @ is a
CE(R"™)-function 91 satisfying

(the decay condition)  [0“M(z)| < (14 |z — cg|/€(Q)) ™ for all x € R™,

(the moment condition) / 2PM(z) dz = 0,

for all multiindices o and f satisfying ||afjy < K and |||l < L. Here ¢ and 4(Q)
denote, respectively, the center and the side length of @), and the moment condition
with L = —1 is understood to be vacuous.

(ii) A collection {9M;;}jez kezn of CK(R™)-functions is called a collection of (K, L)-

molecules (for ASLZG(R")) if each M, is a (K, L)-molecule supported near Q ;.
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n+1
RZ

For a function F' on , we define

)
La(Ly (R™,Z))

F(y,277)
||FHL2,T ®pHY = { sup _Fw: 27 }
q,a yER™ (1 + 2-7 Y

|
|F(y,27 )]
|E|| jpwor n+1y i= {Sup ,
Nl a R yeR? (1 + 2J —y| zllea(N Lw (R 7))
|Fy,27 )]
||F|| w,T n+ly ‘= { Sup 9
Fria®:) yerr (1+27] - —y[)e *2/| 2zl 2w (ea(rm,z))

[F(y,277)|
||| gwr (ui1y i= { sup ———-— .
eaa®) yER™ (1+27] - —y)* jezlleLcy (va(Rn,Z))
DEFINITION 10.11 (cf. Definition [£.3). Let oy, a2, a3, 7 € [0,00) and g € (0, oc]. Suppose
that w € ng’ ,- Assume that @, ¢ € S(R") satisfy, respectively, (1.3) and (1.4)). Define

A :RPT — C by setting, for all (z,277) € RE™,

Az, 27 J Z )‘JWXQJm ),

mezn

when A := {\jn}jez, mezn, a doubly-indexed complex sequence, is given.

(i) The homogeneous sequence space by’ 7.a(R™) is defined to be the space of all A such
that ||)\||bw T Rﬂ = ||AHLw T (Rn+1) < 0.
(ii) The homogeneoub sequence space My q.a(R™) is defined to be the space of all A such

that ||)\||nw T (Rn = ||AHNw T (Rn+1) < oQ.

L.q.a

(iii) The homogeneous sequence space fc 0 " ,(R™) is defined to be the space of all \ such
that [All por (@n) = [[Allger @per) < oo

(iv) The homogeneous sequence space ¢, ,(R™) is defined to be the space of all A such
that Al i= A

SZ;;;D(RZJA) < OQ.
As we did for inhomogeneous spaces, we present the following definition.

DEFINITION 10.12 (cf. Deﬁnition. Let X be a function space continuously embedded
into S (R™) and X a quasi-normed space of sequences. The pair (X, X) is said to admit
atomic decompositions if it satisfies the following two conditions:

(i) For any f € X, there exist a collection of atoms, {aji}jez, kezn, and a sequence
{Njn}Yiez, nezn suchthat f=3777 37 cpn Ajrajn in SO (R™) and [|{Ajk}jez, vezn [ x
< ||fllx with the implicit constant independent of f.

(i) Suppose that {a;i}jez, kezn is a collection of atoms, and {\;i} ez, ez a sequence
such that [[{\jx}jez, kezn||x < 0o. Then the series f:= 372 3%, /. Ajrajx con-
verges in S (R™) and ||f||x < [{\jk}jez, kezn||x with the implicit constant inde-

pendent of {\ji} ez, kezn-
Analogously one defines the notion of a pair (X, X') admitting molecular decompositions.

THEOREM 10.13. Let ay,a2,a3,7 € [0,00) and g € (0, o0]. Suppose that w € W33

and [B.28) and ([@1)(4.3) hold. Then the pair (A% (R™),ap ,(R™)) admits atomic

L,q,a
decompositions.
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In principle, the proof of Theorem [10.13] is analogous to that of Theorem we
just need to modify the related proofs. In particular, we have to prove the following
counterpart of Lemma [1.7]

LEMMA 10.14. Let aj,as,a3 € [0,00) and w € Wes Assume that K € Zy and

ar,on
L € Zy satisfy @EA)-{3). Let X := {\jr}jez, kezn € bz;)a(R") and {M;1}jez, kezn be
a family of molecules. Then f =372 >4z AjkDy, converges in SL,(R™).
Proof. Let ¢ € Soo(R™). Lemma shows fy := Zj’;l > kezn AjEDljk converges in
SL(R™). So we need to prove f_ := Z?:_m Y kezn Ak converges in S._(R™).

Let M > 1. From Lemma the definition of molecules and the fact that ¢ €
Soo(R™), it follows that, for all j <0 and k € Z™,

/ f)ﬁ]k d{E

y (£6), we conclude that

/ Sﬁ]k dm

Consequently,

]k/ Dﬁ]k d$

By the assumption, this inequality is summable over j < 0 and k € Z™, which completes
the proof. m

< 2D (1 4 279 ||y~

S PO 4 27 k)TN (L4 KD lIx | 2en)-

S PO (L ) =Nt

a(Rn).

The homogeneous version of Theorem [£.9] which is the regular case of decompositions,
is given below; its proof is similar to that of Theorem We omit the details.

THEOREM 10.15. Let K € Zy, L = —1, aj,a9,a3,7 € [0,00) and g € (0, oo]. Sup-

pose that w € *- ng ay- Assume, in addition, that (3.28), (4.2)), (4.22) and (4.23) hold,

namely, a € (No + asz,00). Then (Az;a(R"),dlz:;a(R”)) admits atomic/molecular de-

compositions.

10.4. Boundedness of operators. We first focus on the counterpart of Theorem
To this end, for £ € N and a € R, let m € C*(R™\{0}) be such that, for all ||o||; < ¢,

sup [R_”H“H””ll/ \8gm(§)\2d§ < A, < oo. (10.6)
Re(0,00) R<|¢|<2R
The Fourier multiplier T,, is defined by setting, for all f € S (R™), T/m\f = mf.

We remark that when o = 0, the condition is just the classical Hormander
condition (see, for example, [88] p. 263]). A typlcal example satlsfylng with o =0
is the kernel of the Riesz transform R; given by R, f &) = f (f ) for all & e R™\ {0}
and j € {1,...,n}. When a # 0, a typical example satlsfymg ) for any ¢ € N is
given by m(§) := [£|~* for £ € R™\ {0}; another example is the bymbol of the differential
operator 07 of order a := 0y + -+ + 0y, with 0 := (01,...,0,) € Z7.

It was proved in [102] that the Fourier multiplier T, is bounded on some Besov-type
and Triebel-Lizorkin-type spaces for suitable indices.
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Let m be as in (10.6) and K its inverse Fourier transform. To obtain the boundedness

of T;,, on BZ’;@(R”) and FZ’;G(R"), we need [102] Lemma 3.1]:

LEMMA 10.16. K € S/_(R™).
The next lemma is [4, Lemma 4.1]; see also [102], Lemma 3.2].

LEMMA 10.17. Let ¢ be a Schwartz function on R™ satisfying (1.4). Assume that m
satisfies (10.6). If a € (0,00) and ¢ > a + n/2, then there exists a positive constant C
such that, for all j € Z,

/n(l + 27| 2)*[(K *1p;)(2)]| dz < €279,

Next we show that, in a suitable way, T;, can also be defined on the whole spaces

Fg’qTa (R™) and BZ’;a(R"). Let ¢ be a Schwartz function on R" satisfy (1.4). Then there

exists ol € S(R™) satisfying (T.4)) such that

Z%T * p; = 0o (10.7)
i€z
in 8/ (R™). For any f € Fg;a (R™) or BZ’;Q(R”), we define a linear functional T}, f on
S (R™) by setting, for all ¢ € Soo (R™),
(T fy &) ::Zf*@l*(pi*¢*[((0) (10.8)
i€z

as long as the right-hand side converges. In this sense, we say T,,f € S. (R™). The
following result shows that T,, f in (10.8]) is well defined.

LEMMA 10.18. Let £ € (n/2,00), a € R, a € (0,0), aj,as,a3,7 € [0,00), ¢ € (0, 0],
we W, and f € Fp7 (R™) or By'7 (R"™). Then the series in (10.8) is convergent

and the sum on the right-hand side of (10.8) is independent of the choice of the pair
(¢t ). Moreover, Ty, f € S’ (R™).

Proof. By similarity, we only consider f € ngTa(]R”) Let (',4) be another pair satis-

fying ((10.7). Since ¢ € So (R™), by the Calderdén reproducing formula we have
p=> Plxv*o

JEZ
in Seo(R™). Thus,

S feelepir oK)= frl s (30l 0) « K(0)

iEZ i€Z JEL
i+1
:Z Z f*(pj*gpi*z/;;[*z/}j*qb*K(OL
1€Z j=1—1

where the last equality follows from the fact that ¢; * ¢; = 0 if |[i — j| > 2.
Similar to the argument in Lemma [6.3] we see that

SO xpix ol wah syl 5 ¢ 5 K(0)] < Il @nys
=0
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where ¢ is an arbitrary positive number. When i < 0, notice that, for all z € R",

| tece st =2lled-nlay
2in
§Zm/ lpi * fy — 2)| dy

kezm

2zn71a1(1+21|2|)a3 -
< inf w(y—2z,2 Z)/ los * fy — 2)| dy
kEZZ” ( +2Z|2 zk|)a 3 YEQik ik
271&1(1+21| |)a3 p
< - - inf {w(y — 2,2 i * .,
NZ T+ 22k ot i fly =21}

)?

which, together with the fact that, for M sufficiently large and all y, z € R",
2in

(1 42y — z[)m+M

< gin—ia (1 + 2i|z|)a327inT||f||A2’j;a(R"

i+ Sy — 2)| S 27
and Lemma further implies that

D I wpix ol w iy xp x 95 K(0)]

<0

= [ s eorel-ainul s ox K ()] ds

<0

< Z gin—ia 27im||f||FZ’;;,,,(R") /R (1 + 2% 2])%2 [a; * 1/;: xpx K(z)|dz

i<0
in—ix X3 inT 21" 1 Jr 27‘|Z|)a3
<22 19iMg— Hf”F‘” (&™) / / 1_~_21| Z‘)n+M|¢J*K(y)|dydz
<0 n .
S 2P i oy S W iy, o

i<0
where we have chosen M > a7 — 2n.
Similar to the previous arguments, we see that
it1

33 Feel ol ety o KO IF

i€7 j=i—1

FETL )
Thus, T, f in (10.§) is independent of the choice of (¢f, ). Moreover, the previous
argument also implies that T, f € S._(R™), which completes the proof. m

Next, Lemma [T0.17] immediately yields the following result; we omit the details.

LEMMA 10.19. Let « € R, a € (0,00), £ € N and ¢, ¥ € Soo(R") satisfy (1.4). Assume
that m satisfies (10.6) and f € S, (R™) is such that T, f € SL.(R™). If ¢ > a+n/2, then
there exists a positive constant C such that, for all x,y € R™ and j € Z,

(T f ) ()] < C277° (1 + 2|z — y1)* (¢ fa(@).



92 10. Homogeneous spaces

THEOREM 10.20. Let o € R, a € (0,00), a1, a9, a3, 7 € [0,00), ¢ € (0, 0], w € ngaz
and w(x,277) = 29%w(z,277) for all z € R™ and j € Z. Suppose that m satisfies (10.6)
with £ € N and £ > a +n/2. Then there exists a positive constant Cy such that, for all

fe YT (R, | T f| e ® < C’1||f|\FZJ,T (rny and a positive constant Ca such that,
L,q,a ,q,a

L,q,a
f.or all f € BZ’;G(R”), ”TMfHBf;;a(R") < CQHf”BZ’;,a(R")' Similar assertions hold for
Er'ga®Y) and N'\7 (R™).

Proof. By Lemma [10.19} we see that, if £ > a + n/2, then for all j € Z and = € R",
2%} (T f))a() S (95 f)al@).
Then the definitions of quqTa(R") and BY'" (R™) immediately yield the desired conclu-

L,q,a
sions. m

The following analogue to Theorem can be proven similarly. We omit the details.

THEOREM 10.21. Let s € [0,00), a > as + Ny, aj,as,a3,7 € [0,00), ¢ € (0,00] and
w € W3 Set w*(x,277) 1= 27%w;(x) for all x € R™ and j € Z. Then the lift operator

Q1,02 "
(—A)*/? is bounded from A%;G(R") to Azqua(R")
We consider the class S’?M(]R") with u € [0,1). Recall that a C*°(R} x Rf)-function
a is said to belong to the class S{”H(]R") if

sup |§|—m—|\&\l1—u|\5\l1 |8§8§a(x7§)| Sagl
x,£€R™ ’

for all multiindices & and E One defines

a(X, D)(f)(x) := / alz, €) f(€) de

n

for all f € Soo(R™) and = € R™. Theorem has the following counterpart, whose proof
is similar and omitted.

THEOREM 10.22. Let w € V'Vf;f'ﬂ2 with oy, as, as € [0,00) and let a quasi-normed func-
tion space L(R™) satisfy (L1) through (L£6). Let p € [0,1), 7 € (0,00) and q € (0, 00].
Assume, in addition, that (3.28)) holds, that is, a € (Nog+ ag,00), where Ny is as in (L6).

Then pseudo-differential operators with symbol in S?,M(R") are bounded on Az;a(R”)

10.5. Function spaces Az; .(R™) for 7 large. Now we have the following counterpart
for Theorem

THEOREM 10.23. Let w € ngaz with ay, s, a3 > 0. Define a new index T by

~ . 1

7:=limsup sup — logg ——

j—oo PeQ;(Rm) LTV HXP”L:(Rn)
and a new weight w by
O(x,277) == 2Dy (,277), zeR”, jeL

Assume that T > T > 0. Then
(1) we W

(a1—n(r=7))1,(az4n(r—7))4
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(ii) for all g € (0,00) and a > ag+ No, Fﬁwqra(R”) and BZqTa(R") coincide, respectively,
with FY __ (R"™) and B®

o000 % 0.0 (R™) with equivalent norms.

10.6. Characterizations via differences and oscillations. We can extend Theorems
and [8.6] to homogeneous spaces as follows; the proofs are omitted.

THEOREM 10.24. Let a,ay, g, a3,7 € [0,00), u € [1,00], g € (0, 00] and w € x-Wg? ..
IfM €N, a; € (a, M) and (8:2) holds, then there exists a positive constant C :=C(M)
such that, for all f € S, (R")N L}, (R"), the following hold with the implicit constants

loc
independent of f:

(i) H{ sup { Wdh} } ~ [ fll - (Rn)
cern [ Jjnj<@a-i (14 27]2]) jezllea(en@n ) Fiaa
AM . u 1/u
(i) H{ sup { Wdh} } ~ e g,
sern LJjn<@a-s (L+27]2]) jezll co an ) Liaa

M g/, u 1/u
(ii) H{ sup [ 7{ Wdh} }
zerr [ Jjp<@o-s (1 +27]z])ov jez

: | W‘dh] ”“}
(tv) H{“p Mmgaw (1427 jez

THEOREM 10.25. Let a, a1, ag, a3, 7 € [0,00), u € [1,00], q € (0,00] and w € W33

ay,02 "
IfM €N, oy € (a, M) and (8:2)) holds, then, for all f € S! (R")OLIOC (R™), the following
hold with the implicit constants mdependem‘ of f:

N ey

ZER™ 1 +23|z\)

o NS

~ e e
(N L (R™Z)) 2,0 (R™)?

~ A llge s @y
££$(ZQ(R",Z)) E‘Cy(ba(R )

~Ifllger @n
La(Lw(Rn,Z)) £lg.a(R")

~ i @y

zerr (14 23|ZD L (0a(R", 7))
Mf( +2,279)
iy [ { s } -
semn (L4 27[2])e jezllea(NLw (R, Z)) Neaa®)
oscM f(-+2,277)
(iv) H{ Sup } ~ [ fllgwr gn
i S NI T (P EpT (R

Next, we transplant Theorems [0.6] and [0.8] to the homogeneous case. Again, since the
proofs are similar to the respective inhomogeneous cases, we omit the details.

THEOREM 10.26. Suppose that a > N and that (9.19)) is satisfied:
L+[-NY e L®™) N L' RY).

Assume, in addition, that there exists a positive constant C' such that, for any finite
sequence {sk}Z“:_k taking values {—1,1},

<C (R 10.9
LrEn) — lgllermmy  ( )

ko
H Z 5k<Pk*fH <C||fHL‘(R")7 H > enpn *9‘
k=—ho

k=—ko
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for all f € L(R™) and g € L'(R™). Then L(R™) and L'(R™) are embedded into S._(R™),
and L(R™) and 52’2@(]1%") coincide.
THEOREM 10.27. Let L(R™) be a Banach space of functions such that LP(R™) and
(L")P(R™) are Banach spaces of functions and the mazimal operator M is bounded on
(LP(R™))" and on ((L)P(R™))" for some p € (1,00). Then (10.9) holds. In particular, if
a>Nand (1+]-])~N € LR™) N L(R"), then L(R") and L'(R") are embedded into
SL(R™), and L(R™) and 52’7%’(1(11%”) coincide.

As a corollary, L(R™) enjoys the following characterization.
COROLLARY 10.28. Let L(R™) be a Banach space of functions such that £P(R™) and
(L")P(R™) are Banach spaces of functions and the mazimal operator M is bounded on
(LP(R™))" and on ((L')P(R™)) for some p € (1,00). If a > N and (1 + |- )7V €
LR™) N L (R™), then

M p(. w 1/u
e ~[{ e [, BELEI 0] ™)
err [ Jjnj<@a-s (14 27z]) ien

| f s Mf(+z2j)}
N GRS CR

with the implicit constants independent of f € L(R™).

ELY(C2(R™,Z))

ELL(e2(R,2))



11. Applications and examples

Now we present some examples for L(R™) and survey what has been obtained recently.

11.1. Weighted Lebesgue spaces. Let p be a weight and p € (0,00). We let LP(p)
denote the set of all Lebesgue measurable functions f for which the norm

1/p
sy = | [ 156@m0ta) ]
is finite. Assume that (14 |- |)~"Ne € LP(p) for some Ny € (0,00) and the estimate

Ix@,llLe() = Ixe-skr2-s00)0 Loy 2277 A+ K)™°,  je€Zy, kezZ®  (11.1)

holds for some v, d € [0, 00), where the implicit constant is independent of j and k. The
space LP(p) is referred to as the weighted Lebesgue space.

In this example, Ny and ~,d are included in ((11.1). The assumption (3.2)) actually
reads

L(R"™) := LP(p), 6:=min{l,p},
and L(R™) satisfies (£1) through (£6). Notice that if p satisfies
pla+y) < A+y)"ply) forall 2,y € R",

then p satisfies (9.17), and if p € A (R") = Ujcyen Au(R™), then p satisfies (£8).
Moreover (3.3 actually reads

w;i(x):=1 forallz e R" and j € Zy, o1 =ay=a3=0.

Hence, (3.4) is replaced by 7 € [0, 00), ¢ € (0,00], a > No.

11.2. Morrey spaces

Morrey spaces. To begin, we consider the case when L(R™) := MZE(R™), the Morrey
space. Recall that the definition was given in Example [5.5] Besov—Morrey spaces and
Triebel-Lizorkin—Morrey spaces are function spaces whose norms are obtained by replac-
ing LP-norms with Morrey norms. More precisely, the Besov-Morrey norm | - || x5, =)
is given by

- ) ST r yr
1 fllavs, gy o= (| * fHM@(R")"’[Z? llp; = f||M§(R"):|

par
j=1

(95]
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and the Triebel-Lizorkin-Morrey norm || - [|g;_

_(rn) s given by

1]

o 1/r
Z ") @ ¥ a(R? H( 238? * r) H
ez, @) =[P fllaazgny+ ;:1 lpj * [ MEE)

for0<g<p< oo, r € (0,00] and s € R, where ® and ¢ are, respectively, as in (|1.3)
and (L.4), and @;(-) = 27"¢(27.) for all j € N. The spaces N5, (R ") and &5,.(R") are
the sets of all f € S’(R") such that the norms || flnz, (rn)

_(rn) are finite,
respectively. Let A5 . (R") denote either NV (R™) or qur( . erte
BYT (R"):= B, (R") and FY%T (R"):=F“ (R").

p,u,q,a M?E q,a p,u,q,a ME q,a

If we let wj(x) := 29° (x € R", j € Z;) with s € R, then it is easy to show that
N gaR?) = N5D (R") coincides with NS, (R™) when a > n/min(1,u), and that

F? gaR?) == F50  (R") coincides with £3,,(R™) when a > n/min(1,u,q). Indeed,
this is just a matter of applying the Plancherel-Pé6lya—Nikol’skil inequality (Lemma
and the maximal inequalities obtained in [0, 89]. These function spaces are dealt with
in [80L [89].

Observe that (£1) through (£6) hold in this case.

There exists another point of view on these function spaces. Recall that the function
space A57(R™), defined by (3.1, originated from [97, 98, [99]. The following is known,
which is extended in our Theorem [0.121
ProPOSITION 11.1 ([104] Theorem 1.1]). Let s € R.

(i) If 0<p<u<oo and q € (0,00), then N3, (R™) is a proper subset of By /p= 1/"(R")
(i) If 0 < p < wu < o0 and ¢ = oo, then N, (R™) = ;,;/p 1/U(R”) with equivalent

norms.
(iii) If 0 <p < u < oo and q € (0,00], then E5,,(R™) = F; 1/p 1/u(}R”) with equivalent
norms.

An analogue for homogeneous spaces is also true.

Other related spaces are inhomogeneous Hardy-Morrey spaces hME(R™), whose norm
is given by

p(RnY) 1= o) H
I7lhatzary = || sup | 1]
for all f € §/(R™) and 0 < ¢ < p < oo, where ® is as in (L.3).
Now in this example (3.2) actually reads
LR™) := MIR"™), 6:=min{l,q}, No:=n/p+1, ~vy:=n/p, §:=0,
and L£(R™) satisfies (£1) through (£6) and (£8) (see [79] [89]). Moreover (3.3 reads
wj(x):=1 forallz e R" and j € Zy, o3 =az=a3=0.
Hence, (3.4) is replaced by
7€[0,00), g€ (0,00], a>n/p+1.

We refer to [32] 33, 43}, [74], [75] [80, [83] for more details and applications of Hardy—
Morrey spaces, Besov—Morrey spaces and Triebel-Lizorkin—Morrey spaces. Indeed, in [43]
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74, [R0], Besov—Morrey spaces and their applications are investigated; Triebel-Lizorkin—
Morrey spaces are dealt with in [74] [75] [80]; Hardy—Morrey spaces are defined and consid-
ered in [32] 33 [75] 83] and Hardy—Morrey spaces are applied to PDE in [33]. We also refer
to [30] for more related results about Besov—Morrey spaces and Triebel-Lizorkin-Morrey
spaces, where weighted settings are covered.

Generalized Morrey spaces. We can also consider generalized Morrey spaces. Let
p € (0,00) and ¢ : (0,00) — (0,00) be a suitable function. For a function f locally in
LP(R™), we set

1/p
TR ——— [|@| / fa |,,d4 ,

G Q(Rn

where £(Q) denotes the side length of the cube Q. The generalized Morrey space Mg ,(R™)
is defined to be the space of all functions f locally in LP(R™) such that || f||q,, ,&n) < 00
Let L(R™) := M ,(R™). Observe that (£1) through (£6) are true under a suitable condi-
tion on ¢. At least (£1) through (£5) hold without assuming any condition on ¢. Morrey—
Campanato spaces with growth function ¢ were first introduced by Spanne [86, [87] and
Peetre [67], which treat singular integrals of convolution type. In 1991, Mizuhara [54]
studied the boundedness of the Hardy—Littlewood maximal operator on Morrey spaces
with growth function ¢. Later in 1994, Nakai [56] considered the boundedness of singu-
lar integrals (with non-convolution kernel), and fractional integral operators on Morrey
spaces with growth function ¢. In [58], Nakai defined the space My ,(R™). Later, this
type of function space was used in [44 [56| [76]. We refer to [60] for more details. In [57]
p. 445], Nakai proved the following (see [78] (10.6)] as well).

PROPOSITION 11.2. Let p € (0,00) and ¢ : (0,00) — (0,00) be an arbitrary function.
Then there exists a function ¢* : (0,00) — (0,00) such that

¢*(t) is nondecreasing and [¢*(t)|Pt™" is nonincreasing, (11.2)
and Mgy »,(R™) and My- ,(R™) coincide.

We rephrase (£8) by using (|11.2)) as follows.

ProposITION 11.3 ([73] Theorem 2. 5]) Suppose that ¢ : (0,00) — (0, 00) is an increasing
function. Assume that ¢ : (0,00) — (0,00) satisfies

/ o) % o (11.3)

for all r € (0,00). Then, for all w € (1,00] and all sequences {f;}52, of measurable

functions,
1/u o 1/u

with the implicit constants independent of {f;}32,

REMARK 11.4. In [73], it was actually assumed that

/ o(t) — < ¢(r) for all r € (0, 00). (11.4)



98 11. Applications and examples

However, under the assumption (11.2)), the conditions (11.3)) and (11.4) are mutually
equivalent.

Now in this example, (3.2) reads
LR") =My ,R"), 8:=1, No:=n/p+1, y:=n/p, 6:=0

and L(R™) satisfies (£8) by Proposition and also (£1) through (£6). Moreover ({3.3))
reads
wj(z):=1 forallz € R" and j € Z;, o1 =as=a3=0.

Hence, (3.4) is replaced by

T €[0,00), ¢q€(0,00], a>n/p+1.
11.3. Orlicz spaces. Recall the definition of Orlicz spaces given in Example The
proof of the following estimate can be found in [8].

LEMMA 11.5. If a Young function ® satisfies

d(2t) e e D(2t)
doubling condit Vo-condition) Inf
(doubling condition) it;%) (1) <00, (Va-condition) s D(t)

then for all u € (1, oo] and all sequences {f;}32, of measurable functions,

) e~ I 5

with the implicit constants independent of { f;}32,

Thus, by Lemma L?(R™) satisfies (£8). In this example £L(R") := L?(R") also
satisfies (£1) through (£6) with (3.2]), and (3.3]) reading

LR"):=L*R"), #:=1, Ny:=n+1, ~:=n, §:=0.

> 2,

(11.5)

L®(R™)

Indeed, since ® is a Young function, we have
/ (2" xq,0 (x)) do =277"(2") > 1.
Consequently, [|xq;,llze®n) > 277" Moreover as before,
wij(z):=1forallz e R"and j € Z;, o1 =0y =a3=0.
Hence now reads
T€[0,00), ¢€(0,0], a>n+1.

This example can be generalized somewhat. Given a Young function ®, define the
mean Luzemburg norm of f on a cube Q € Q(R™) by
> dr < 1}

1nf{)\>0 |Q|/ (

When ®(t) := P for all t € (0, 00) with p € [1,00), we have

B L ) 1/p
oo = [Q| /Q @) dx] ,
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that is, the mean Luxemburg norm coincides with the (normalized) LP norm. The Orlicz—
Morrey space L% ?(R™) consists of all locally integrable functions f on R” for which the
norm

[fllze0 mn) = o@D flle.Q

sup
QeQ(R™)
is finite. As stated in [77, Section 1], we can assume without loss of generality that the
real functions ¢ + ¢(t) and t — t"¢(t)~! are both increasing on (0, 00).

Using [77, Proposition 2.17], we extend [37, B8] and [T, Proposition 2.17] to the
vector-valued version. In the next proposition, we shall establish that (£8) holds provided
that

t
/ O(t/s)ds < ®(Ct) (t € (0,00))
1
for some positive constant C' and for all ¢ € (1, 00).

PROPOSITION 11.6. Let ¢ € (0,00]. Let ® be a normalized Young function. Then the
following are equivalent:

(i) The maximal operator M s locally bounded in the norm determined by ®, that is,
there exists a positive constant C' such that, for all cubes Q € Q(R™),

M (gxe)lle.q < Clglle.q-

(ii) The function space L(R™) := L¥*(R™) satisfies (£8) with some 0 < r < q and
w = 1. Namely, there exist R > 1 and r € (0,00) such that

H{ i, = 1 F17) Y Y ieze oo eamn 2y ) S It iezs e an 2,y

for all {f;j}jen C LT ?(R™), where the implicit constant is independent of {f;}jen.
(iii) For some positive constant C' and all t € (1,00),

/t E<I>’(s) ds < ®(Ct).

S

(iv) For some positive constant C' and all t € (1,00),

/t B(t/s) ds < B(Ct).

Therefore, a theory of Besov—Orlicz spaces and Triebel-Lizorkin—Orlicz spaces similar
to the theory of Besov—Morrey spaces and Triebel-Lizorkin—-Morrey spaces as in [32, 33,
43, 74, 75, 80, 83] can be developed as before.

Proof of Proposition [I1.6, The proof is based upon a minor modification of known re-
sults. However, not having found the proof in the literature, we outline it here. In [77]
Proposition 2.17] we have shown that (i), (iii) and (iv) are mutually equivalent. It is clear
that (ii) implies (i). Therefore, we need to prove that (iv) implies (ii). In [77, Claim 5.1]
we have also shown that the space £ ?(R") remains the same if we change the value
®(t) for t < 1. Therefore, we can and do assume

/t La/(s) ds < B(C1)
0

S
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for all ¢ € (0, 00). Consequently,

/| ({Z (@) do

oo

:/“@(t\{xew(z () > Yt

.

(252 15 (@)]9 ]1/q>t/2} [Z|f] } th

FRC [i @] ") e

for some positive constant Cy. This implies that whenever

ST =
we have
s 1/q
[ o Spasn@re} s <o
Jj=1

From the definition of the Orlicz norm ||-|| L4 g, we have (11.5). Once we obtain ([L1.5)),
we can go through the same argument as in [79, Theorem 2.4]. We omit the details. m

In this example, if we assume the conditions of Proposition |[11.6} then (£1) through
(L£6) hold with (3.2) and (3.3]) reading

LR") :=L"?R"), 6:=1, Ny:=n+1, ~:=n, §:=0.

Indeed, since ® is a Young function, again we have

2" [ Blxg,(e)/A) do =207
for X > 0. Consequently, ||xq,,|l¢,0,0 = 1/® (1) and hence
6(277) o= 6(27) = p(27)2ma I > (12,
Here we invoked the assumption that ¢(¢)t~" is a decreasing function.

Since LP:¢(R™) satisfies (£8), we obtain Mx[_y 1= € LP?(R™), showing that Ny := n
will do in this setting.

Moreover, as before,
wj(x):=1 forallz e R" and j € Zy, o3 =az=a3=0.
Hence now reads
T€0,00), g€ (0,00, a>n+1Ll.

Finally, we remark that Orlicz spaces are examples to which the results in Subsection
9.2 apply.
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11.4. Herz spaces. Let p,q € (0,00] and o« € R. We let Qo := [—1,1]" and C; :=
[—27,27]" \ [=2771,2971]" for all j € N. Define the inhomogeneous Herz space K (R™)
to be the set of all measurable functions f for which the norm

> 1/q
£z = X0 Pl + (32 2%, Fldoqzn
j=1

is finite, where we modify naturally the definition above when p = 0o or ¢ = oc.
The following is shown by Izuki [28], which is (£8) of this case. A complete theory of
Herz-type spaces was given in [46].

PROPOSITION 11.7. Let p € (1,00), ¢,u € (0,00] and o € (=1/p,1/p"). Then, for all
sequences { f;}3, of measurable functions,

oo oo 1/u
M ~[ ()
“(;[ ] ) Kg , (R") ;' il Kg  (R")
with the implicit constants independent of {f;}32;.
In this example (£1) through (£6) hold with (3.2)—(3.4]) reading

LR = KO,(BY), 0:=min(Lp.g), No=n/q+1+max(@0), 7:=n/p+a,
0:=0, wj(z):=1 foralz eR"and je€Zy, o1 =a=a3=0,

1/u

T€[0,00), g€ (0,00], ac€(n/qg+1,00).

By Proposition we know that (£8) holds as well.

Therefore, again a theory of Besov—Herz spaces and Triebel-Lizorkin—Herz spaces
similar to the theory of Besov—Morrey spaces and Triebel-Lizorkin—Morrey spaces as in
[32, 33, 43, 74, 75, 80, 83] can be developed as before. A homogeneous counterpart of
the above is available. Define the homogeneous Herz space K;fq(R") to be the set of all
measurable functions f for which the norm

> ) 1/q
Wl oy 3= | D0 1279 x0, S

j=—00
is finite, where we modify naturally the definition above when g = oc.
An analogous result is available but we do not go into details.

11.5. Variable exponent Lebesgue spaces. Starting from the recent work by Diening

[11], there exist a series of results of the theory of variable exponent function spaces. Let

p(-) : R™ — (0, 00) be a measurable function such that 0 < inf epn p(x) < sup,cpn p(x) <

0o. Then LPO)(R™), the Lebesgue space with variable exponent p(-), is defined as the set

of all measurable functions f for which the quantity [p., [ef (z)[P®) dz is finite for some
€ (0,00). We let

p(z)
11l o ey 1= inf{)\>0;/n Pf(;)] dwq}

for such a function f. As a special case of the theory of Nakano and Luxemburg [47} [62] [63],
we see (LPO)(R™), || - [ Lr¢)(mn)) is a quasi-normed space. It is customary to let py :=
SUp,crn» P(x) and p_ = inf crn p(z).




102 11. Applications and examples

The following was shown in [7] and hence we have (£8) for LP()(R™).
PROPOSITION 11.8. Suppose that p(-) : R™ — (0,00) is a function satisfying

1<p_:= inf p(x) <p;:= sup p(z) < oo, (11.6)
zeR™ zER™
1
log-Hélder continuity) |p(x) —p(y)| < ————= forall |z —y| <1/2, (11.7
( ) bl =50 S -yl <12, (117)
1
decay condition) |p(x) —p(y)| < ———  for all ly| > |z|. 11.8
( ) Ip(x) = p(y)| Tog(e £ [2) lyl = |z (11.8)

Let u € (1,00]. Then, for all sequences {f;}52, of measurable functions,

13501 sy ~ 1515

with the implicit constants independent of {f;}32,
In this example (£1) through (£6) hold with the parameters in (3.2)(3.4) satisfying
L(R™) := Lp(')(R"), 0 :=min(1l,p_), No:=n/p_+1, ~y:=n/p_, §:=0,
wj(z) =1 forallz e R"and j € Zy, o3 =as=0a3=0,

Lr() (R™)

T €1[0,00), g€ (0,00, a>n/p_+1.

Also, by Proposition [11.8] we have (£8) as well. For simplicity, let us write A;’(T) q(R")

instead of AL’:U (R"),q,a )

The function space Ap( Y (R™) is well investigated and we have the following propo-

sition, for example.

PROPOSITION 11.9 ([61]). Let f € S'(R™) and p(-) satisfy (11.6)-(11.8). Then the fol-

lowing are equivalent:

(i) f belongs to the local Hardy space h?)(R™) with variable exponent p(-), that is,

1l oy 5= | sup [t « 1]
0<t<1

003
Lp(-)(]Rn)

(ii) f satisfies
£ 1l o

<
()2 LP() (R™)

> o\ 1/2
@y = 125 Fllrorgn + || (D les « £12) |
j=1
Lemma [I.1} Theorem [0.2] and Propositions [I1.8] and [T1.9] yield

PROPOSITION 11.10. The function space h?C)(R™) coincides with F]?(O) 2.a(R™) whenever
a>1.

Recall that Besov/Triebel-Lizorkin spaces with variable exponent date back to the
works by Almeida and Hésto [I] and Diening, Hést6 and Roudenko [12]. Xu investigated
the fundamental properties of AZ(,), q(IR”) [95,96]. Among other things he obtained atomic
decomposition results. Just as for AZ(,), q(R"), in [64], Noi and Sawano have investigated
the complex interpolation of F;(‘:(.)’qo (R™) and F;j(‘),‘]l (R™).

Finally, as announced in Section [I we show the unboundedness of the Hardy-Little-
wood maximal operator and the maximal operator M, ».
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LEMMA 11.11. The mazimal operator M, x is not bounded on L T+xry +(R™), for all r €

(0,00) and X\ € (0,00). In particular, the Hardy—Littlewood maximal operator M is not
bounded on L' (R™).

Proof. Let m,A € (0,00). Consider f.(z) := X[—r0(Zn)X[-1,17—1 (21,...,Tn_1) for all

x = (z1,...,2,) in R™. Then, for all z in the support of f,., we have
My fr(x) ~ M fr(2) ~ X[=r)(Tn)X[=1,17 1 (T1, -+ o Tn1)-
> .—1/2 : ~ 1 3 _
Hence ||MT7>\f||L1+XR1 @~ while Hf||L1+XR1 &y~ showing the unbounded
ness. m

Lebesgue spaces with variable exponent date back to the works by Orlicz and Nakano
[66) [62], [63], where the case py < oo is considered. When p; < oo, Sharapudinov con-
sidered LP()([0,1]) [84] and then Kovacik and Rakosnik extended the theory to domains
[40].

11.6. Amalgam spaces. Let p, ¢ € (0,00] and s € R. Let Q. := z + [0, 1]"™ for z € Z"
be the translation of the unit cube. For a Lebesgue locally integrable function f we define

I llcee@ny,eaizyoy) = IHA + 12D X Qo. fll Lo v }2ezn |lea
In this example (£1) through (£6) hold with f reading
LR"™) := (LP(R"),£1((2)®)), 0 :=min(l,p,q), No:=n+1+s, ~vy:=n/p,
0 :=max(—s,0), wj(z):=1 forallzeR"andj€Zs, a;=az=a3=0.
7€[0,00), g€ (0,00, a>n+1+s.

The following is shown essentially in [36] (actually, in [36] the boundedness of singular
integral operators was established). Using the technique employed in [19] p. 498], we get

PROPOSITION 11.12. Let q,u € (1,00], p € (1,00) and s € R. Then, for all sequences
{fi}521 of measurable functions,

1/u i 1/u
M) ~[(Z)
H ( fi (LP () £9((2)2)) ; 1l (L (®n),0((2)))

with the lmplzczt constants independent of { f;}32,

Therefore, (L£6) holds and the results above apply to these amalgam spaces. Note that
amalgam spaces can be used to describe the range of the Fourier transform; see [81] for
details.

11.7. Multiplier spaces. There is another variant of Morrey spaces:

DEFINITION 11.13. For r € [0,n/2), X,.(R") is defined as the space of all functions
f € L% (R") that satisfy

11 %, @y 7= suPE gl L2y <002 |9l i gy < 1} < 00,

where H”(R™) stands for the completion of D(R™) with respect to the norm ||ul|

l (—A)T/QUHH(R”)-

Hr(®Rn)
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We refer to [51] for the field of multiplier spaces. Here and below we place ourselves
in the setting of R™ with n > 3.

We will characterize the above norm in terms of H” (R™)-capacity and wavelets. Here
we recall the definition of capacity (see [50] [51]). Denote by K the set of all compact sets
in R™.

DEFINITION 11.14 ([51]). Let 7 € [0,n/2) and e € K. Then cap(e, H"(R™)) stands for
the H "-capacity, defined by

cap(e, H"(R™)) := inf{”””ip(w) :u € DR™), u>1 on e}.

Set 1/u :=1/2—r/n, that is, u = 2n/(n — 2r). Notice that by the Sobolev embedding
theorem, we have

'/ = ey < Nl S Ml o g

for all u € D(R™). Consequently,
cap(e, H"(R™)) > |e|(=27)/ (11.9)

Let us now formulate our main result. We choose a system {4 jx }eq1,....2n—1}, jez, kezn
so that it forms a complete orthonormal basis of L?(R") and

Ve ir(x) =Y (270 — k) forallj€Z, k€ Z" and x € R™.

ProposITION 11.15 ([23, B1]). Let r € [0,n/2) and f € L _(R") N S'(R™). Then the
following are equivalent:

(i) f € X (R").
(ii) f can be expanded as follows:

2m 1
f= Z Z AejkWe ik in the topology of S'(R™),
e=1 (j,k)ELXL™
where
2n 1

> Y Bl [ Wea@P M @] do < (1) caple, HT®)

e=1 (j,k)EZXZ"

foree K.
(iii) If n > 3 then f can be expanded as follows:
2" -1
f= Z Z Ae ik ik in the topology of S'(R™),
e=1 (j,k)€LXL™
where
2" -1

S Y WP [ e de < (Co) caple, HTR™)

e=1 (j,k)ELXZL"

foree K.

Furthermore, the smallest values of Cy and C are both equivalent to || f|x gn)-
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To show that this function space falls under the scope of our theory, set

" 1 1/2
F|Y = sup{_ / F(x de} ,
I HX'”(R ) ek Leap(e, H(R™)) Jen el

1/2
1
IPI oy o= w0 { ——— [P @) ds )
Xr®) T ek cap(e, H"(R")) Je
Then X" (R") i € {1,2}, denotes the set of all measurable function F' : R — C for
which ||F||X (Eny < 00

The following lemma, which can be used to check (£6), is known.

LEMMA 11.16 ([23, Lemma 2.1]). Let e be a compact set and k € (0,00). Define E,, =
{z € R" : Mx.(x) > k}. Then

cap(Ey, H"(R")) $ ™ *cap(e, H"(R"))
By (11.9) and Lemma [11.16] (£1) through (£6) hold with (3.2)) reading
LR™) := XD(R") forie{l1,2}, #:=1, Ny:=n+1, ~y:=2, 4§:=0.
In this case the condition on w is trivial:
wi(z) =1 forall j€Z; andxz € R”, o3 =as=a3=0.
Consequently, reads
T7€[0,00), q€ (0,00, a>n+1.
In view of Proposition [11.15] we make the following definition.

DEFINITION 11.17. For any given sequence X := {\jx}jcz, kezn, let

A = || A0 ;A my = IA
IS gy = | Hbj(zl) NI gy 1= A0

®™),2 %@ (gn) >
Then A (R™) for i € {1,2} is the set of all sequences A\ := {Aji}jez, kezn for which

||/\|| is finite.

. (R™)
In [23], essentially, we have shown the following conclusions.

PROPOSITION 11.18. Let r € (0,n/2).

(i) If n > 3, then (X,,(R”),:igl)(]R")) admits atomic/molecular decompositions.
(ii) If n > 1, then (XT(R"),:tg) (R™)) admits atomic/molecular decompositions.

Thanks to Proposition [0.5] this can be improved as follows.
PROPOSITION 11.19. Let r € (0,n/2) and n > 1. Then (X,.(R"), m(R")) admits

atomic/molecular decompositions.

11.8. B,(R") spaces. The next example also falls under the scope of our generalized
Triebel-Lizorkin type spaces.
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DEFINITION 11.20. Let o € [0,00), p € [1,00] and A € [-n/p,0]. Then By (L, )(R") is
defined as the space of all f € L (R™) for which the norm

120, 0 = 500 { ot sl i) 7 € (0,000, @ @0}
is finite.
In this example (£1) through (£6) hold with and reading
L(R") == B,(Lp»)(R"), 60:=1, No:=-A+1, 7y:=-\ §:=0,
wj(xz):=1forall j€Zy and z € R", a3 =ag=a3 =0.
Hence now reads
€[0,00), ¢q€(0,00], a>-X+1.

We remark that B?(R™)-spaces have been introduced recently to unify A-central Morrey
spaces, A-central mean oscillation spaces and usual Morrey—Campanato spaces [49]. Recall
that in Lemma |1.1| we have defined Q(0,7). We refer to [39] for further generalizations.

DEFINITION 11.21 ([42]). Let p € (1,00), 0 € (0,00), A € [—n/p, —0) and let ¢ satisfy

(1.3) and (1.4). Given f € §&’(R™), set

1 > 2\ 1/2
”fHBU(LPD,A)(]R") = sup WH( Z |05 * f1 > ’
J=je

re(0,00)
QeQ(R™),QCQ(0,r)

Then Ba(Lf,?)\)(Rn) denotes the space of all f € S'(R™) for which Hf||Bo(L£>\)(R”) is finite.

Lr(Q)

LEMMA 11.22 ([42]). Let p € (1,00), u € (1,00], 0 € [0,00) and A € (—00,0). Assume,
in addition, that o + A < 0. Then

(o) ~(Zer)”]

with the implicit constants independent of {f;}32, C B, (L,2)(R™).

Bo(Lp,x)(R™) Bo(Lp,»)(R™)

PROPOSITION 11.23 ([42]). Let p € (1,00), o € (0,00) and A € [-n/p,—0). Then
BU(L;?)\)(Rn) and BU(LP’A)(RH)
coincide. More precisely, the following hold:

(1) By(Lpx)(R") = S'(R™) in the sense of continuous embedding.

(ii) B, (LD J(R™) — S'(R™) N LY (R™) in t.he sense of continuous embedding.

(iit) f € Bo(Lyx)(R™) if and only if f € By (LD\)(R™) and the norms are mutually
equivalent.

(iv) Different choices of ¢ yield equivalent || - ||BU(L£A)(R“) norms.

The atomic decomposition of BU(R”) is as follows. First we introduce the sequence
space.
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DEFINITION 11.24. Let o € [0,00), p € [1,00] and A € [-n/p,0]. Then b, (LD,)(R") is
defined to be the space of all A := {\ji};ez, kezn such that

1 o0
All; ny = sup _ Ak X0, < 0.
Wlhosgomn = =0 gl & A,

QeQR™), QCR(0,r)
In view of Theorem [6.6] we have the following direct corollary of Theorem [4.5]

THEOREM 11.25. The pair (BU(LQ)\)(R"),bU(LI?A)(R’L)) admits atomic/molecular de-
compositions.

11.9. Generalized Campanato spaces. Returning to the variable exponent setting
described in Section we define

dpy :=min{d € Zy : p_(n+d+1) > n}.
Let LZ . (R™) be the set of all L(R™)-functions with compact support. For a nonnegative

comp

integer d, let

Lt (R) = {f € L8, (R™) :

Likewise if ) is a cube, we write
194Q) = {1 € Q@) [ fw)a dz =0, ol < a},
Q

where L9(Q) is the closed subspace of functions in L?(R™) having support in Q.

F(e)e® do =0, [|afly < d}.

Rn

Recall that Py(R™) is the set of all polynomials having degree at most d. For a
locally integrable function f, a cube @ and a nonnegative integer d, there exists a unique
polynomial P € Py(R™) such that, for all ¢ € P4(R"),

/Q [F(z) = P(e))qz) do = 0.
Denote this unique polynomial P by Pg f. It follows immediately from the definition that
ng =g if g € Py(R™).
We postulate the following conditions on ¢ : Riﬂ — (0,00):
(A1) (Doubling condition) There exist positive constants M; and Ms such that

o(x,2r)
¢(x,r)

(A2) (Compatibility condition) There exist positive constants M3 and My such that
< 8@0)

oy r)

(A3) (Va-condition) There ex1sts a positive constant Mj such that

/ oz t) dt < Msgp(z,r)  (xzeR™ re(0,00)).

M, < <My, (xeR™ re(0,00)).

<My (z,yeR", re(0,00), |z —yl<r).

(A4) (As-condition) There exists a positive constant Mg such that

t)
/r (bt;iQ dt < Mg ¢7§d+’1) for some integer d € [0, 00).

(A5) (Uniform condition) sup,cpn ¢(z,1) < oo.
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Here the constants M7, ..., Mg need to be specified for later considerations.

Notice that the Morrey-Campanato space with variable growth function ¢(z,r) was
first introduced by Nakai [55, [59] by using an idea from [65]. In [56], Nakai established
the boundedness of the Hardy—Littlewood maximal operator, singular integral operators
(of Calderén—Zygmund type), and fractional integral operators on Morrey spaces with
variable growth function ¢(z,r).

Recently, Nakai and Sawano considered a more general version in [61].

Let us say that ¢ : Q(R™) — (0,00) is a nice function if there exists b € (0,1) such
that, for all cubes @ € Q(R"),

1/q

for some f € L44a(R ") with norm 1. In [6I, Lemma 6.1], we showed that ¢ can be
assumed to be nice. Actually, there exists a nice function ¢ such that £, 4 4(R™) and
L, t.4(R™) coincide as sets and the norms are equivalent [61, Lemma 6.1].

DEFINITION 11.26 ([61]). Let ¢ : R’Y™ — (0,00) be a function, which is not necessarily
nice, and f € L{ (R™). Define, when ¢ € (1, 0),

loc

1/q

1 1

TS —— { Fy)— PA, f(y)lqdy} ,
La0a®) (z, t)ER"Jrl (]5(58 t) |Q(1‘7t)| Q(z,t) Q)

and

1
[fll e gamny == sup 7||f—Pdg; FllLo(Q(a,t))-
J¢,da(R™) o t)e]R”“ ¢( ) Q(z,t) (Q(z,1))

The Campanato space Ly 4 4(R™) is defined to be the set of all f such that | f| ¢, , ,&")
is finite.

DEFINITION 11.27 ([61]). Let ¢ € [1,00], suppose ¢ satisfies (I.4) and let ¢ : R} —
(0,00) be a function. A distribution f € §’(R™) is said to belong to ££¢(R") if

1 1 o
TP — { L 1ot *f(y)lqdy} < .
Loo®) T e errt 6(2,1) LQ@. 8)] Joe.s) (logz ¢7)

ProPOSITION 11.28 ([61]). Assume (A1) through (A5). Then

(i) The spaces ££¢(R”) and Lq 4 a(R™) coincide. More precisely, the following hold:

(a) Let f € ED s(R™). Then there exists P € P(R") such that f — P € Ly 4 4(R"). In
this case, Hf Pllz, ya@ S Hf||LD¢(Rn) with the implicit constant independent

of f.

(b) If f € Looa(®?), then f € L2,R") and ||flco sy S 1fllc, ) with the
implicit constant independent of f. In particular, the definition of ££¢(R”) 18
independent of the admissible choices of v: Any ¢ € S(R™) does the job as long
as XQ0,1) < @ < XQ(0,2)-

(ii) The function space ££¢(R") is independent of q.
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In view of Definition [11.27] if we assume that ¢ satisfies (A1) through (A5), then we
have the following proposition.

PROPOSITION 11.29. Let ¢ satisfy (1.4). If ¢ : QR™) — (0,00) satisfies (A1) through
(Ab), then

[fllen ey~ sup ——=—ss sup
(z, t)GR"+1 ¢(Q(l‘,t)) yeQ(x,t

whenever a > 1, with the implicit constants independent of f.

To prove Proposition [11.29] we just need to check (9.17) by using (A1) and (A2). We
omit the details.

{ ¥ 10, t—1) *f(y+z)}
sup ] p
) | zern (1+t712])

DEFINITION 11.30. Define

Ao, @y
1 { 1 Z B | }
= sup —————— sup { Sup ——————— logy -1 IXQ s 10, (-
(, t)G]R”Jrl ¢(Q($,t)) yeQ(z,t) L zeRn (1 +t 1|Z|)a 5 (logy t—1) Q(log2 Lk

Now in this example (£1) through (£6) hold with the parameters in and (3.3)
satisfying
LR™):=L>®[R"), 0:=1, Ny:=0, v:=0, §:=0

and w(z,t) := 1/¢(Q(z,t)) forall z € R" and t € (0,00), a1 = logy M1~ 1, g = logy Mo,
ag = logy (M /M), respectively. Furthermore, unlike the preceding examples, we choose

7=0, q=o00, a>N0—|—10g2 (MQ/Ml)
Therefore, L4, 4.4(R™) and E(’i s(R™) fall under the scope of our theory.

THEOREM 11.31. Under the conditions (A1) through (A5), the pair (LODO@(]R"), lg(b(R”))
admits atomic/molecular decompositions.

Theorem [11.31] is just a consequence of Theorem We omit the details.
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