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Abstract

In this paper, the authors propose a new framework under which a theory of generalized Besov-
type and Triebel–Lizorkin-type function spaces is developed. Many function spaces appearing in
harmonic analysis fall under the scope of this new framework. The boundedness of the Hardy–
Littlewood maximal operator or the related vector-valued maximal function on any of these
function spaces is not required to construct these generalized scales of smoothness spaces. In-
stead, a key idea used is an application of the Peetre maximal function. This idea originates
from recent findings in the abstract coorbit space theory obtained by Holger Rauhut and Tino
Ullrich. In this new setting, the authors establish the boundedness of pseudo-differential op-
erators based on atomic and molecular characterizations and also the boundedness of Fourier
multipliers. Characterizations of these function spaces by means of differences and oscillations
are also established. As further applications of this new framework, the authors reexamine and
polish some existing results for many different scales of function spaces.
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1. Introduction

Different types of smoothness spaces play an important role in harmonic analysis, partial

differential equations and approximation theory. For example, Sobolev spaces are widely

used in the theory of elliptic partial differential equations. However, there are several

partial differential equations for which the scale of Sobolev spaces is no longer sufficient. A

proper generalization is given by the classical Besov and Triebel–Lizorkin function spaces.

In recent years, it turned out to be necessary to generalize even further and replace the

fundamental space Lp(Rn) by something more general, like a Lebesgue space with variable

exponents ([11, 12]) or, more generally, an Orlicz space. Another direction is pursued via

replacing Lp(Rn) by the Morrey space Mp
u(Rn) [48, 52, 53] or generalizations thereof

[43, 80, 82, 89, 95, 96, 97, 98, 100, 105]. Thus, the theory of function spaces has become

more and more complicated. Moreover, results on atomic or molecular decompositions

were often developed from scratch again and again for different scales.

A nice approach to unify the theory was proposed by Hedberg and Netrusov [24]. They

developed an axiomatic approach to function spaces of Besov type and Triebel–Lizorkin

type, in which the underlying function space is a quasi-normed space E of sequences of

Lebesgue measurable functions on Rn, satisfying some additional assumptions. The key

property assumed in that approach is that the space E satisfies a vector-valued maximal

inequality of Fefferman–Stein type, namely, for some r ∈ (0,∞) and λ ∈ [0,∞), there

exists a positive constant C such that, for all {fi}∞i=0 ⊂ E,

‖{Mr,λfi}∞i=0‖E ≤ C‖{fi}∞i=0‖E
(see [24, Definition 1.1.1(b)]), where

Mr,λf(x) := sup
R>0

{
1

Rn

∫
|y|<R

|f(x+ y)|r(1 + |y|)−rλ dy
}1/r

for all x ∈ Rn.

Related to [24], Ho [25] also developed a theory of function spaces on Rn under the

additional assumption that the Hardy–Littlewood maximal operator M is bounded on

the corresponding fundamental function space.

Another direction towards a unified treatment has been developed by Rauhut and Ull-

rich [68] based on the generalized abstract coorbit space theory. The coorbit space theory

was originally developed by Feichtinger and Gröchenig [16, 21, 22] with the aim of provid-

ing a unified description of function spaces and their atomic decompositions. The classical

theory uses locally compact groups together with integrable group representations as key

ingredients. Based on the idea to measure smoothness via decay properties of an abstract

wavelet transform one can in particular recover homogeneous Besov–Lizorkin–Triebel

[6]



1. Introduction 7

spaces as coorbits of Peetre spaces Psp,q,a(Rn). The latter fact was observed recently by

Ullrich [93]. In the next step Fornasier and Rauhut [17] observed that a locally compact

group structure is not needed at all to develop a coorbit space theory. While the the-

ory in [17] essentially applies only to coorbit spaces with respect to weighted Lebesgue

spaces, Rauhut and Ullrich [68] extended this abstract theory to a wider variety of coorbit

spaces. The main motivation was to cover inhomogeneous Besov–Lizorkin–Triebel spaces

and generalizations thereof. Indeed, the Besov–Lizorkin–Triebel-type spaces appear as

coorbits of Peetre type spaces Pwp,L,a(Rn) [68].

All the aforementioned theories are either not complete or in some situations too

restrictive. Indeed, the boundedness of maximal operators of Hardy–Littlewood type

or the related vector-valued maximal functions is always required and, moreover, the

Plancherel–Pólya–Nikol’skĭı inequality (see Lemma 1.1 below) and the Fefferman–Stein

vector-valued inequality were key tools in developing a theory of function spaces of Besov

and Triebel–Lizorkin type.

Despite the fact that the generalized coorbit space theory [68] so far only works for

Banach spaces we mainly borrow techniques from there and combine them with recent

ideas from the theory of Besov-type and Triebel–Lizorkin-type spaces (see [80, 82, 89,

97, 98, 99, 100, 105]) to build up our theory for quasi-normed spaces. With a view

to applications also in microlocal analysis, we even introduce these spaces directly in

weighted versions. The key idea, used in this new framework, is some delicate application

of the sequence of the Peetre maximal functions

(ϕ∗jf)a(x) :=


sup
y∈Rn

|Φ ∗ f(x+ y)|
(1 + |y|)a

, j = 0,

sup
y∈Rn

|ϕj ∗ f(x+ y)|
(1 + 2j |y|)a

, j ∈ N,
(1.1)

for all f ∈ S ′(Rn), where Φ and ϕ are, respectively, as in (1.3) and (1.4) below, and

ϕj(·) = 2jnϕ(2j ·) for all j ∈ N. Instead of the pure convolution ϕj ∗ f involved in the

definitions of the classical Besov and Triebel–Lizorkin spaces, we make use of the Peetre

maximal function (ϕ∗jf)a already in the definitions of the spaces considered in the present

paper. The second main feature is the fundamental space L(Rn) involved in the definition

(instead of Lp(Rn)). This space is given in Section 2 via a list of fundamental assump-

tions (L1) through (L6). The key assumption is (L6), which originates in [68] (see (2.2)

below). The most important advantage of the Peetre maximal function in this framework

is that (ϕ∗jf)a can be pointwise controlled by a linear combination of some other Peetre

maximal functions (ψ∗kf)a, whereas in the classical setting, ϕj ∗ f can only be domi-

nated by a linear combination of the Hardy–Littlewood maximal function M(|ψk ∗ f |)
of ψk ∗ f (see (1.5) below). This simple fact illustrates quite well that the boundedness

of M on L(Rn) is not required in the present setting. This represents the key advantage

of our theory since, according to Example 1.2 and Section 11, we are now able to deal

with a greater variety of spaces. However, we do not define abstract coorbit spaces here.

Compared with the results in [68], the approach in the present paper has the following

additional features:
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• Extension of the decomposition results to quasi-normed spaces (Section 4);

• Sharpening the conditions on admissible atoms, molecules, and wavelets (Section 4);

• Intrinsic characterization for spaces on domains (Section 5);

• Boundedness of pseudo-differential operators (Section 6);

• Direct characterizations via differences and oscillations (Section 8).

Our general approach admits at least the treatment of the following list of function spaces

as replacement for Lp(Rn) in the definition of generalized Besov–Lizorkin–Triebel-type

spaces. For details we refer to Section 11.

Weighted Lebesgue spaces. Let ρ be a weight and 0 < p < ∞. We let Lp(ρ) denote

the set of all Lebesgue measurable functions f for which the norm

‖f‖Lp(ρ) :=

{∫
Rn
|f(x)|pρ(x) dx

}1/p

is finite. Assume that (1 + | · |)−N0 ∈ Lp(ρ) for some N0 ∈ (0,∞) and the estimate

‖χQjk‖Lp(ρ) = ‖χ2−jk+2−j [0,1)n‖Lp(ρ) & 2−jγ(1 + |k|)−δ, j ∈ Z+, k ∈ Zn, (1.2)

holds for some γ, δ ∈ [0,∞), where the implicit positive constant is independent of j

and k. The space Lp(ρ) is referred to as a weighted Lebesgue space. In harmonic analysis,

a widely used condition for weights ρ is belonging to the Muckenhoupt class of weights,

Ap(Rn) with p ∈ [1,∞] (see Example 1.2). However, some examples do not fall under the

scope of the class Ap(Rn) in many branches of mathematics. We propose here a remedy

to overcome this by considering (1.2). Observe that if ρ ∈ Ap(Rn) with p ∈ [1,∞], then

(1.2) automatically holds for some γ, δ ∈ (0,∞).

Morrey spaces. Let L(Rn) :=Mp
u(Rn), the Morrey space, with the norm defined by

‖f‖Mp
u(Rn) := sup

x∈Rn, r∈(0,∞)

rn/p−n/u
[ ∫

B(x,r)

|f(y)|u dy
]1/u

,

with 0 < u ≤ p <∞.

Orlicz spaces. A Young function is a function Φ : [0,∞)→ [0,∞) which is convex and

satisfies Φ(0) = 0. Given a Young function Φ, the mean Luxemburg norm of f on a cube

Q ∈ Q(Rn) is defined by

‖f‖Φ,Q := inf

{
λ > 0 :

1

|Q|

∫
Q

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

If Φ(t) := tp for all t ∈ (0,∞) with p ∈ [1,∞), then

‖f‖Φ,Q =

[
1

|Q|

∫
Q

|f(x)|p dx
]1/p

,

that is, the mean Luxemburg norm coincides with the (normalized) Lp norm. The Orlicz–

Morrey space LΦ, φ(Rn) consists of all locally integrable functions f on Rn for which the

norm

‖f‖LΦ,φ(Rn) := sup
Q∈Q(Rn)

φ(`(Q))‖f‖Φ,Q

is finite.
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Herz spaces. Let p, q ∈ (0,∞] and α ∈ R. We let Q0 := [−1, 1]n and

Cj := [−2j , 2j ]n \ [−2j−1, 2j−1]n

for all j ∈ N. The inhomogeneous Herz space Kα
p,q(Rn) is defined to be the set of all

measurable functions f for which the norm

‖f‖Kα
p,q(Rn) := ‖χQ0

f‖Lp(Rn) +
{ ∞∑
j=1

2jqα‖χCjf‖
q
Lp(Rn)

}1/q

is finite, where we modify naturally the definition above when q =∞.

Variable exponent Lebesgue spaces. Let p(·) : Rn → (0,∞) be a measurable func-

tion such that 0 < infx∈Rn p(x) ≤ supx∈Rn p(x) <∞. The space Lp(·)(Rn), the Lebesgue

space with variable exponent p(·), is defined as the set of all measurable functions f for

which the quantity
∫
Rn |εf(x)|p(x) dx is finite for some ε ∈ (0,∞). We let

‖f‖Lp(·)(Rn) := inf

{
λ > 0 :

∫
Rn

[
|f(x)|
λ

]p(x)

dx ≤ 1

}
for such a function f .

Amalgam spaces. Let p, q ∈ (0,∞] and s ∈ R. Recall that Q0z := z+[0, 1]n for z ∈ Zn,

the translate of the unit cube. For a locally Lebesgue integrable function f we define

‖f‖(Lp(Rn),`q(〈z〉s)) :=
∥∥{(1 + |z|)s‖χQ0z

f‖Lp(Rn)}z∈Zn
∥∥
`q
.

Multiplier spaces. There is another variant of Morrey spaces. For r ∈ [0, n/2),
.

Xr(Rn)

is defined as the space of all functions f ∈ L2
loc(Rn) that satisfy

‖f‖ .
Xr(Rn)

:= sup{‖fg‖L2(Rn) <∞ : ‖g‖ .
Hr(Rn)

≤ 1} <∞,

where
.

Hr(Rn) stands for the completion of the space D(Rn) with respect to the norm

‖u‖ .
Hr(Rn)

:= ‖(−∆)r/2u‖L2(Rn) for u ∈ D(Rn). Recall that D(Rn) denotes the set of

all C∞(Rn) functions on Rn with compact support, endowed with the inductive limit

topology.

Ḃσ-spaces. The next example also falls under the scope of our generalized Triebel–

Lizorkin type spaces. Let σ ∈ [0,∞), p ∈ [1,∞] and λ ∈ [−n/p, 0]. Then Ḃσ(Lp,λ)(Rn) is

defined as the space of all f ∈ Lploc(Rn) for which the norm

‖f‖Ḃσ(Lp,λ)(Rn) := sup

{
1

rσ|Q|λ/n+1/p
‖f‖Lp(Q) : r ∈ (0,∞), Q ⊂ Q(0, r)

}
is finite, where Q(0, r) := {x ∈ Rn : |x| < r} for r ∈ (0,∞).

Generalized Campanato spaces. We define

dp(·) := min{d ∈ Z+ : p−(n+ d+ 1) > n}.

Then Lqcomp(Rn) is defined to be the set of all Lq(Rn)-functions with compact support.

For a nonnegative integer d, let

Lq,dcomp(Rn) :=

{
f ∈ Lqcomp(Rn) :

∫
Rn
f(x)xα dx = 0, |α| ≤ d

}
.



10 1. Introduction

Let us now describe the organization of the present paper. In Section 2, we describe the

new setting we propose, which consists of a list of assumptions (L1) through (L6) on the

fundamental space L(Rn). Also several important consequences and further inequalities

are provided.

In Section 3, starting from L(Rn), we introduce two sorts of generalized Besov-type

and Triebel–Lizorkin-type spaces, respectively (Definition 3.1). We justify these defi-

nitions by proving some properties, such as completeness (without assuming L(Rn) is

complete!), containing the Schwartz space S(Rn), and embedding into the distributions

S ′(Rn). An analogous statement holds with the classical 2-microlocal space Bw1,1,a(Rn)

as test functions and its dual, the space B
1/w
∞,∞,a(Rn), as distributions, which is an im-

portant observation for the wavelet characterization in Section 4. Therefore, the latter

spaces, which have been studied intensively by Kempka [34, 35], appear naturally in our

context.

In Section 4, we establish atomic and molecular decomposition characterizations (The-

orem 4.5), which are further used in Section 6 to obtain the boundedness of some pseudo-

differential operators from the Hörmander class S0
1,µ(Rn), with µ ∈ [0, 1) (Theorems 6.6

and 6.11). In addition, characterizations using biorthogonal wavelet bases are given (see

Theorem 4.12). Appropriate wavelets (analysis and synthesis) must be sufficiently smooth,

fast decaying and provide enough vanishing moments. The precise conditions on these three

issues are provided in Subsection 4.4 and allow for the selection of particular biorthog-

onal wavelet bases according to the well-known construction by Cohen, Daubechies and

Feauveau [6]. Characterizations via orthogonal wavelets are contained in this setting.

Section 5 considers pointwise multipliers and the restriction of our function spaces to

Lipschitz domains Ω and provides characterizations within the domain (avoiding exten-

sions).

Section 6 considers Fourier multipliers and pseudo-differential operators, which shows

that our new framework indeed works.

In Section 7, we obtain a sufficient condition for our function spaces to consist of con-

tinuous functions (Theorem 7.1). This is a preparatory step for Section 8, where we deal

with differences and oscillations. Another issue of Section 7 is a further interesting appli-

cation of the atomic decomposition result from Theorem 4.5. Under certain conditions on

the scalar parameters involved (by still using a general fundamental space L(Rn)), our

spaces degenerate to the well-known classical 2-microlocal Besov spaces Bw∞,∞(R).

In Section 8, we obtain a direct characterization in terms of differences and oscilla-

tions of these generalized Besov-type and Triebel–Lizorkin-type spaces (Theorems 8.2 and

8.6). Also, under some mild condition, L(Rn) is shown to fall under our new framework

(Theorem 9.6).

The Peetre maximal construction in the present paper makes it necessary to deal

with an additional parameter a ∈ (0,∞) in the definition of function spaces. However,

this new parameter a does not seem to play a significant role in a generic setting, al-

though we do have an example showing that the space may depend upon a (see Example

3.4). We present several sufficient conditions in Section 9 which allow one to remove the

parameter a (Assumption 8.1).
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Homogeneous counterparts of the above are available and we describe them in Sec-

tion 10. Finally, in Section 11 we present some well-known function spaces as examples

of our abstract results and compare them with earlier contributions. We reexamine and

polish some existing results for these known function spaces.

Notation. Next we clarify some conventions on the notation and review some basic

definitions. In what follows, as usual, we use S(Rn) to denote the classical topological

vector space of all Schwartz functions on Rn and S ′(Rn) for its topological dual space

endowed with weak-∗ topology. For any ϕ ∈ S(Rn), we use ϕ̂ to denote its Fourier

transform, namely, for all ξ ∈ Rn, ϕ̂(ξ) :=
∫
Rn e

−iξxϕ(x) dx. We denote dyadic dilations of

a given function ϕ ∈ S(Rn) by ϕj(x) := 2jnϕ(2jx) for all j ∈ Z and x ∈ Rn. Throughout

the paper we use a system (Φ, ϕ) of Schwartz functions satisfying

supp Φ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and |Φ̂(ξ)| ≥ C > 0 if |ξ| ≤ 5/3 (1.3)

and

supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ C > 0 if 3/5 ≤ |ξ| ≤ 5/3. (1.4)

L1
loc (Rn) denotes the set of all locally integrable functions on Rn; Lηloc (Rn) for any

η ∈ (0,∞) is the set of all measurable functions on Rn such that |f |η ∈ L1
loc (Rn); and

L∞loc (Rn) is the set of all locally essentially bounded functions on Rn. We also let M

denote the Hardy–Littlewood maximal operator defined by setting, for all f ∈ L1
loc (Rn),

Mf(x) = M(f)(x) := sup
r>0

1

rn

∫
|z−x|<r

|f(z)| dz for all x ∈ Rn. (1.5)

One of the main tools in the classical theory of function spaces is the boundedness of M

on a space of functions, say Lp(Rn) or its vector-valued extension Lp(`q), in connection

with the Plancherel–Pólya–Nikol’skĭı inequality connecting the Peetre maximal function

and the Hardy–Littlewood maximal operator.

Lemma 1.1 ([90, p. 16]). Let η ∈ (0, 1], R ∈ (0,∞) and f ∈ S ′(Rn) be such that supp f̂ ⊂
Q(0, R) := {x ∈ Rn : |x| < R}. Then there exists a positive constant cη such that, for all

x ∈ Rn,

sup
y∈Rn

|f(x− y)|
(1 +R|y|)n/η

≤ cη[M(|f |η)(x)]1/η.

The following examples show situations when the boundedness of M can be achieved

and when we cannot expect it.

Example 1.2. (i) Let p ∈ (1,∞). It is known that the Hardy–Littlewood operator M is

not bounded on the weighted Lebesgue space Lp(w) unless w ∈ Ap(Rn), where Ap(Rn)

is the class of Muckenhoupt weights (see, for example, [19, 88] for their definitions and

properties) such that

Ap(w) := sup
Q∈Q

[
1

|Q|

∫
Q

w(x) dx

][
1

|Q|

∫
Q

[w(x)]−1/(p−1) dx

]p−1

<∞.
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Also observe that there exists a positive constant Cp,q such that{∫
Rn

( ∞∑
j=1

[Mfj(x)]q
)q/p

w(x) dx

}1/p

≤ Cp,q
{∫

Rn

[ ∞∑
j=1

|fj(x)|q
]q/p

w(x) dx

}1/p

holds for any q ∈ (1,∞] if and only if w ∈ Ap(Rn). There do exist doubling weights which

do not belong to the Muckenhoupt class A∞(Rn) (see [14]).

(ii) There exists a function space such that even the operator Mr,λ is difficult to

control. For example, if L(Rn) := L
1+χRn

+ (Rn), which is the set of all measurable functions

f on Rn such that

‖f‖
L

1+χRn
+ (Rn)

:= inf

{
λ > 0 :

∫
Rn+

[
|f(x)|
λ

]2

dx+

∫
Rn\Rn+

|f(x)|
λ

dx ≤ 1

}
<∞,

where Rn+ := {x = (x1, . . . , xn) ∈ Rn : xn ∈ (0,∞)}, then it is well known that the

maximal operator Mr,λ is not bounded on L
1+χRn

+ (Rn) (see Lemma 11.11 below).

Throughout the paper, we denote by C a positive constant which is independent of the

main parameters, but it may vary from line to line, while C(α, β, . . .) denotes a positive

constant depending on the parameters α, β, . . . . The symbols A . B and A .α,β,... B
mean, respectively, that A ≤ CB and A ≤ C(α, β, . . .)B. If A . B and B . A, then

we write A ∼ B. If E is a subset of Rn, we denote by χE its characteristic function. In

what follows, for all a, b ∈ R, let a ∨ b := max{a, b} and a ∧ b := min{a, b}. Also, we

let Z+ := {0, 1, 2, . . .}. The notation bxc, for any x ∈ R, means the maximal integer not

larger than x. The following is our convention for dyadic cubes: For j ∈ Z and k ∈ Zn,

denote by Qjk the dyadic cube 2−j([0, 1)n + k). Let Q(Rn) := {Qjk : j ∈ Z, k ∈ Zn},
Qj(Rn) := {Q ∈ Q(Rn) : `(Q) = 2−j}.

For any Q ∈ Q(Rn), we let jQ be − log2 `(Q), `(Q) its side length, xQ its lower left corner

2−jk and cQ its center. When the dyadic cube Q appears as an index, such as
∑
Q∈Q(Rn)

and {·}Q∈Q(Rn), it is understood that Q runs over all dyadic cubes in Rn. For any cube

Q and κ ∈ (0,∞), we denote by κQ the cube with the same center as Q but κ times the

side length of Q. Also, we write

‖~α‖1 :=

n∑
j=1

αj (1.6)

for a multiindex ~α := (α1, . . . , αn) ∈ Zn+. For σ := (σ1, . . . , σn) ∈ Zn+, ∂σ := (∂/∂x1)σ1 · · ·
(∂/∂xn)σn .



2. Fundamental settings and inequalities

2.1. Basic assumptions. First of all, we assume that L(Rn) is a quasi-normed space of

functions on Rn. Following [3, p. 3], we denote by M0(Rn) the topological vector space of

all measurable complex-valued almost everywhere finite functions modulo null functions

(i.e., any two functions coinciding almost everywhere are identified), topologized by

ρE(f) :=

∫
E

min{1, |f(x)|} dx,

where E is any subset of Rn with finite Lebesgue measure. It is easy to show that this

topology is equivalent to the topology of convergence in measure on sets of finite measure,

which makes M0(Rn) a metrizable topological vector space (see [3, p. 30]).

First, we consider a mapping ‖ · ‖L(Rn) : M0(Rn) → [0,∞] satisfying the following

fundamental conditions:

(L1) (Positivity) An element f ∈M0(Rn) satisfies ‖f‖L(Rn) = 0 if and only if f = 0.

(L2) (Homogeneity) Let f ∈M0(Rn) and α ∈ C. Then ‖αf‖L(Rn) = |α| ‖f‖L(Rn).

(L3) (The θ-triangle inequality) The norm ‖ · ‖L(Rn) satisfies the θ-triangle inequality.

That is, there exists a positive constant θ = θ(L(Rn)) ∈ (0, 1] such that

‖f + g‖θL(Rn) ≤ ‖f‖
θ
L(Rn) + ‖g‖θL(Rn)

for all f, g ∈M0(Rn).

(L4) (The lattice property) If a pair (f, g) ∈ M0(Rn)×M0(Rn) satisfies |g| ≤ |f |, then

‖g‖L(Rn) ≤ ‖f‖L(Rn).

(L5) (The Fatou property) Suppose that {fj}∞j=1 is a sequence of functions satisfying

sup
j∈N
‖fj‖L(Rn) <∞, 0 ≤ f1 ≤ f2 ≤ · · · .

Then the limit f := limj→∞ fj belongs to L(Rn) and ‖f‖L(Rn) ≤ supj∈N ‖fj‖L(Rn).

Given a mapping ‖ · ‖L(Rn) satisfying (L1) through (L5), the space L(Rn) is defined by

L(Rn) := {f ∈M0(Rn) : ‖f‖L(Rn) <∞}.

Let ρ be a weight. Note that Lp(ρ) with p ∈ (0,∞) satisfies (L6) below as long as ρ

satisfies (1.2).

Remark 2.1. We point out that the assumptions (L1), (L2) and (L3) can be replaced

by the assumption that L(Rn) is a quasi-normed linear space of functions. Indeed, if

(L(Rn), ‖ · ‖L(Rn)) is a quasi-normed linear space of function, then by the Aoki–Rolewicz

theorem (see [2, 69]), there exists an equivalent quasi-norm ||| · ||| and θ̃ ∈ (0, 1] such that,

[13]
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for all f, g ∈ L(Rn),

‖ · ‖L(Rn) ∼ ||| · |||, |||f + g|||θ̃ ≤ |||f |||θ̃ + |||g|||θ̃. (2.1)

Thus, (L(Rn), ||| · |||) satisfies (L1), (L2) and (L3). Since all results are invariant with

respect to taking equivalent quasi-norms, by (2.1), we know that all results are still true

for the quasi-norm ‖ · ‖L(Rn).

Motivated by [68, 93], we also assume that L(Rn) enjoys the following property:

(L6) (The non-degeneracy condition) The (1 + | · |)−N0 belongs to L(Rn) for some N0 ∈
(0,∞) and the estimate

‖χQjk‖L(Rn) = ‖χ2−jk+2−j [0,1)n‖L(Rn) & 2−jγ(1 + |k|)−δ, j ∈ Z+, k ∈ Zn, (2.2)

holds for some γ, δ ∈ [0,∞), where the implicit positive constant is independent of

j and k.

We point out that (L6) is a key assumption, which makes our definitions of quasi-

normed spaces a little different from that in [3]. This condition has been used by Rauhut

and Ullrich [68, Definition 4.4] in order to define coorbits of Peetre type spaces in a

reasonable way. Indeed, in [3], it is necessary to assume that χE ∈ L(Rn) if E is a

measurable set of finite measure.

Moreover, from (L4) and (L5), we deduce the following Fatou property of L(Rn).

Proposition 2.2. If L(Rn) satisfies (L4) and (L5), then, for all sequences {fm}m∈N of

nonnegative functions of L(Rn),∥∥∥ lim inf
m→∞

fm

∥∥∥
L(Rn)

≤ lim inf
m→∞

‖fm‖L(Rn).

Proof. Without loss of generality, we may assume that lim infm→∞ ‖fm‖L(Rn) < ∞.
Recall that lim infm→∞ fm = supm∈N infk≥m{fk}. For all m ∈ N, let gm := infk≥m{fk}.
Then {gm}m∈N is a sequence of nonnegative functions with g1 ≤ g2 ≤ · · · . Moreover, by

(L4), we conclude that

sup
m∈N
‖gm‖L(Rn) ≤ lim inf

m→∞
‖fm‖L(Rn) <∞.

Then, from (L5), we further deduce that lim infm→∞ fm = supm∈N{gm} ∈ L(Rn) and∥∥∥ lim inf
m→∞

fm

∥∥∥
L(Rn)

≤ sup
m∈N
‖gm‖L(Rn) ≤ lim inf

m→∞
‖fm‖L(Rn).

We also remark that the completeness of L(Rn) is not necessary. It is of interest to

have completeness automatically, as Proposition 3.16 below shows.

Let us additionally recall the following classWα3
α1,α2

of weights which was used recently

in [68]. This class has been introduced for the definition of 2-microlocal Besov-Triebel–

Lizorkin spaces; see [34, 35]. As in Example 1.2(ii), let

Rn+1
+ := {(x, xn+1) : x ∈ Rn, xn+1 ∈ (0,∞)}.

We also let Rn+1
Z+

:= {(x, t) ∈ Rn+1
+ : − log2 t ∈ Z+}.

Definition 2.3. Let α1, α2, α3 ∈ [0,∞). The class Wα3
α1,α2

of weights is defined as the

set of all measurable functions w : Rn+1
Z+
→ (0,∞) satisfying the following conditions:
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(W1) There exists a positive constant C such that, for all x ∈ Rn and j, ν ∈ Z+ with

j ≥ ν,

C−12−(j−ν)α1w(x, 2−ν) ≤ w(x, 2−j) ≤ C2−(ν−j)α2w(x, 2−ν). (2.3)

(W2) There exists a positive constant C such that, for all x, y ∈ Rn and j ∈ Z+,

w(x, 2−j) ≤ Cw(y, 2−j)(1 + 2j |x− y|)α3 . (2.4)

Given a weight w and j ∈ Z+, we often write

wj(x) := w(x, 2−j) (x ∈ Rn, j ∈ Z+), (2.5)

which is a convention used until the end of Section 9. With the convention (2.5), the

conditions (2.3) and (2.4) read

C−12−(j−ν)α1wν(x) ≤ wj(x) ≤ C2−(ν−j)α2wν(x)

and

wj(x) ≤ Cwj(y)(1 + 2j |x− y|)α3 ,

respectively. In what follows, for all a ∈ R, a+ := max(a, 0).

Example 2.4. (i) The most familiar case, the classical Besov spaces Bsp,q(Rn) and

Triebel–Lizorkin spaces F sp,q(Rn), correspond to wj ≡ 2js with j ∈ Z+ and s ∈ R.

(ii) In general when wj(x) with j ∈ Z+ and x ∈ Rn is independent of x, then we

see that α3 = 0. For example, when wj(x) ≡ 2js for some s ∈ R and all x ∈ Rn, then

wj ∈ W0
max(0,−s),max(0,s).

(iii) Let w ∈ Wα3
α1,α2

and s ∈ R. Then the weight given by

w̃j(x) := 2jswj(x) (x ∈ Rn, j ∈ Z+)

belongs to the class Wα3

(α1−s)+,(α2+s)+
.

In the present paper, we consider six underlying function spaces, two of which are

special cases of other four spaces. At first glance the definitions of `q(Lwτ (Rn,Z+)) and

`q(NLwτ (Rn,Z+)) might seem identical. However, in [82], we showed that they are differ-

ent in general cases. In the present paper, we generalize this fact in Theorem 9.12.

Definition 2.5. Let q ∈ (0,∞] and τ ∈ [0,∞). Suppose w ∈ Wα3
α1,α2

with α1, α2, α3 ∈
[0,∞). Let wj for j ∈ Z+ be as in (2.5).

(i) Lw(`q(Rn,Z+)) is defined to be the set of all sequences G := {gj}j∈Z+
of measurable

functions on Rn such that

‖G‖Lw(`q(Rn,Z+)) :=
∥∥∥( ∞∑

j=0

|wjgj |q
)1/q∥∥∥

L(Rn)
<∞. (2.6)

By analogy, the space Lw(`q(Rn, E)) is defined for a subset E ⊂ Z.

(ii) `q(Lw(Rn,Z+)) is defined to be the set of all sequences G := {gj}j∈Z+
of measurable

functions on Rn such that

‖G‖`q(Lw(Rn,Z+)) :=
{ ∞∑
j=0

‖wjgj‖qL(Rn)

}1/q

<∞. (2.7)

In analogy, the space `q(Lw(Rn, E)) is defined for a subset E ⊂ Z.
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(iii) Lwτ (`q(Rn,Z+)) is defined to be the set of all sequences G := {gj}j∈Z+ of measurable

functions on Rn such that

‖G‖Lwτ (`q(Rn,Z+)) := sup
P∈Q(Rn)

1

|P |τ
‖{χPwjgj}∞j=jP∨0‖Lw(`q(Rn,Z+∩[jP ,∞))) <∞. (2.8)

(iv) ELwτ (`q(Rn,Z+)) is defined to be the set of all sequences G := {gj}j∈Z+ of measur-

able functions on Rn such that

‖G‖ELwτ (`q(Rn,Z+)) := sup
P∈Q(Rn)

1

|P |τ
‖{χPwjgj}∞j=0‖Lw(`q(Rn,Z+)) <∞. (2.9)

(v) `q(Lwτ (Rn,Z+)) is defined to be the set of all sequences G := {gj}j∈Z+ of measurable

functions on Rn such that

‖G‖`q(Lwτ (Rn,Z+)) := sup
P∈Q(Rn)

1

|P |τ
‖{χPwjgj}∞j=jP∨0‖`q(Lw(Rn,Z+∩[jP ,∞))) <∞. (2.10)

(vi) `q(NLwτ (Rn,Z+)) is defined to be the set of all sequences G := {gj}j∈Z+ of measur-

able functions on Rn such that

‖G‖`q(NLwτ (Rn,Z+)) :=

{ ∞∑
j=0

sup
P∈Q(Rn)

[‖χPwjgj‖L(Rn)

|P |τ

]q}1/q

<∞. (2.11)

When q =∞, a natural modification is made in (2.6) through (2.11).

We also introduce the homogeneous counterparts of these spaces in Section 10. One

of the reasons why we introduce Wα3
α1,α2

is the necessity of describing the smoothness

by using our new weighted function spaces more precisely than by using the classical

Besov–Triebel–Lizorkin spaces. For example, in [103], Yoneda considered the following

norm. In what follows, P(Rn) denotes the set of all polynomials on Rn.

Example 2.6 ([103]). Ḃ−1,
√
·

∞∞ (Rn) denotes the set of all f ∈ S ′(Rn)/P(Rn) for which

the norm

‖f‖
Ḃ−1,

√
·

∞∞ (Rn)
:= sup

j∈Z
2−j
√
|j|+ 1‖ϕj ∗ f‖L∞(Rn) <∞.

If τ = 0, a ∈ (0,∞) and wj(x) := 2−j
√
|j|+ 1 for all x ∈ Rn and j ∈ Z, then it can be

shown that the space Ḃ−1,
√
·

∞∞ (Rn) and the space Ḃw,0L∞,∞,a(Rn), introduced in Definition

10.3 below, coincide with equivalent norms. This can be proved by an argument similar to

that used in the proof of [93, Theorem 2.9]; we omit the details. An inhomogeneous variant

of this result is also true. Moreover, we refer to Subsection 11.9 for another example of

non-trivial weights w. This is a special case of generalized smoothness. The weight w also

plays a role of variable smoothness.

In the present paper, the spaces `q(Lwτ (Rn,Z+)), `q(NLwτ (Rn,Z+)), Lwτ (`q(Rn,Z+))

and ELwτ (`q(Rn,Z+)) play a central role, while `q(Lw(Rn,Z+)) and Lw(`q(Rn,Z+)) are

auxiliary spaces.

By the monotonicity of `q, we immediately obtain the following useful conclusions.

We omit the details.
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Lemma 2.7. Let 0 < q1 ≤ q2 ≤ ∞ and α1, α2, α3, τ ∈ [0,∞) and w ∈ Wα3
α1,α2

. Then

`q1(Lw(Rn,Z+)) ↪→ `q2(Lw(Rn,Z+)),

Lw(`q1(Rn,Z+)) ↪→ Lw(`q2(Rn,Z+)),

`q1(Lwτ (Rn,Z+)) ↪→ `q2(Lwτ (Rn,Z+)),

`q1(NLwτ (Rn,Z+)) ↪→ `q2(NLwτ (Rn,Z+)),

Lwτ (`q1(Rn,Z+)) ↪→ Lwτ (`q2(Rn,Z+)),

ELwτ (`q1(Rn,Z+)) ↪→ ELwτ (`q2(Rn,Z+))

in the sense of continuous embeddings.

2.2. Inequalities. Suppose that we are given a quasi-normed space L(Rn) satisfying

(L1) through (L6). The following lemma is immediately deduced from (L4) and (L5).

We omit the details.

Lemma 2.8. Let q ∈ (0,∞] and w be as in Definition 2.5. If L(Rn) is a quasi-normed

space, then

(i) the quasi-norms ‖·‖`q(Lw0 (Rn,Z+)), ‖·‖`q(NLw0 (Rn,Z+)) and ‖·‖`q(Lw(Rn,Z+)) are mutually

equivalent;

(ii) the quasi-norms ‖·‖Lw0 (`q(Rn,Z+)), ‖·‖ELw0 (`q(Rn,Z+)) and ‖·‖Lw(`q(Rn,Z+)) are mutually

equivalent.

In view of Lemma 2.8, in what follows, we identify the spaces appearing, respectively,

in (i) and (ii) of Lemma 2.8.

The fundamental estimates (2.13)–(2.16) below follow from the Hölder inequality and

the conditions (W1) and (W2). However, we need to keep in mind that the condition

(2.12) below is used throughout the present paper.

Lemma 2.9. Let D1, D2, α1, α2, α3, τ ∈ [0,∞) and q ∈ (0,∞] be fixed parameters satis-

fying

D1 ∈ (α1,∞), D2 ∈ (nτ + α2,∞). (2.12)

Suppose that {gν}ν∈Z+ is a given family of measurable functions on Rn and w ∈ Wα3
α1,α2

.

For all j ∈ Z+ and x ∈ Rn, let

Gj(x) :=

j∑
ν=0

2−(j−ν)D2gν(x) +

∞∑
ν=j+1

2−(ν−j)D1gν(x).

If L(Rn) satisfies (L1) through (L4), then the following estimates, with the implicit pos-

itive constants independent of {gν}ν∈Z+ , hold:

‖{Gj}j∈Z+
‖`q(Lwτ (Rn,Z+)) . ‖{gν}ν∈Z+

‖`q(Lwτ (Rn,Z+)), (2.13)

‖{Gj}j∈Z+
‖`q(NLwτ (Rn,Z+)) . ‖{gν}ν∈Z+

‖`q(NLwτ (Rn,Z+)), (2.14)

‖{Gj}j∈Z+‖Lwτ (`q(Rn,Z+)) . ‖{gν}ν∈Z+‖Lwτ (`q(Rn,Z+)), (2.15)

‖{Gj}j∈Z+
‖ELwτ (`q(Rn,Z+)) . ‖{gν}ν∈Z+

‖ELwτ (`q(Rn,Z+)). (2.16)
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Proof. Let us prove (2.15). The other proofs are similar. Let us write

I(P ) :=
1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

∣∣∣ j∑
ν=0

wj2
(ν−j)D2gν

∣∣∣q]1/q∥∥∥
L(Rn)

+
1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

∣∣∣ ∞∑
ν=j+1

wj2
(j−ν)D1gν

∣∣∣q]1/q∥∥∥
L(Rn)

,

where P is a dyadic cube chosen arbitrarily. If j, ν ∈ Z+ and ν ≥ j, then by (2.3), we

know that, for all x ∈ Rn,

wj(x) . 2−α1(j−ν)wν(x). (2.17)

If j, ν ∈ Z+ and j ≥ ν, then by (2.3), we see that, for all x ∈ Rn,

wj(x) . 2α2(j−ν)wν(x). (2.18)

If we combine (2.17) and (2.18), then we conclude that, for all x ∈ Rn and j, ν ∈ Z+,

wj(x) .

{
2−α1(j−ν)wν(x), ν ≥ j,
2α2(j−ν)wν(x), ν ≤ j.

(2.19)

We need to show that

I(P ) . ‖{gν}ν∈Z+‖Lwτ (`q(Rn,Z+))

with the implicit constant independent of P and {gν}ν∈Z+
in view of the definitions of

{Gj}j∈Z+ and ‖{Gj}j∈Z+‖Lwτ (`q(Rn,Z+)).

Suppose q ∈ (0, 1] for the moment. Then we deduce from (2.19) and (L4) that

I(P ) .
1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

j∑
ν=0

2−(j−ν)(D2−α2)q|wνgν |q
]1/q∥∥∥

L(Rn)

+
1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

∞∑
ν=j+1

2−(ν−j)(D1−α1)q|wνgν |q
]1/q∥∥∥

L(Rn)
(2.20)

since, for all r ∈ (0, 1] and {aj}j ⊂ C,(∑
j

|aj |
)r
≤
∑
j

|aj |r. (2.21)

In (2.20), we change the order of the summations on the right-hand side to obtain

I(P ) .
1

|P |τ
∥∥∥χP [ ∞∑

ν=0

∞∑
j=ν∨jP∨0

2−(j−ν)(D2−α2)q|wνgν |q
]1/q∥∥∥

L(Rn)

+
1

|P |τ
∥∥∥χP [ ∞∑

ν=jP∨0

ν∑
j=jP∨0

2−(ν−j)(D1−α1)q|wνgν |q
]1/q∥∥∥

L(Rn)
.

Now we decompose the summations with respect to ν according to ν ≥ jP∨0 or ν < jP∨0.

Since D2 ∈ (α2 + nτ,∞), we can choose ε ∈ (0,∞) such that D2 ∈ (α2 + nτ + ε,∞).
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From this, D1 ∈ (α1,∞), the Hölder inequality, (L2) and (L4), it follows that

I(P ) . ‖{gν}ν∈Z+
‖Lwτ (`q(Rn,Z+))

+
1

|P |τ
∥∥∥χP [ jP∨0∑

ν=0

∞∑
j=jP∨0

2−(j−ν)(D2−α2)q|wνgν |q
]1/q∥∥∥

L(Rn)

. ‖{gν}ν∈Z+
‖Lwτ (`q(Rn,Z+))

+
2−(jP∨0)(D2−α2−ε)

|P |τ
∥∥∥χP jP∨0∑

ν=0

2ν(D2−α2−ε)|wνgν |
∥∥∥
L(Rn)

. (2.22)

We write 2jP∨0−νP for the 2jP∨0−ν-fold expansion of P as in our conventions at the end

of Section 1. If we use the assumption (L3), we see that

I(P ) . ‖{gν}ν∈Z+
‖Lwτ (`q(Rn,Z+))

+
2−(jP∨0)(D2−α2−ε)

|P |τ

{ jP∨0∑
ν=0

‖2ν(D2−α2−ε)χPwνgν‖θL(Rn)

}1/θ

. ‖{gν}ν∈Z+‖Lwτ (`q(Rn,Z+)) + 2−(jP∨0)(D2−α2−ε)

×
{ jP∨0∑

ν=0

[
2ν(D2−α2−nτ−ε)+nτ(jP∨0)

|2(jP∨0)−νP |τ
‖χ2(jP∨0)−νPwνgν‖L(Rn)

]θ}1/θ

. ‖{gν}ν∈Z+
‖Lwτ (`q(Rn,Z+)).

Since the dyadic cube P is arbitrary, by taking the supremum of all P , the proof of the

case q ∈ (0, 1] is complete.

When q ∈ (1,∞], choose κ ∈ (0,∞) such that κ + α1 < D1 and κ + nτ + α2 < D2.

Then, by the Hölder inequality, we are led to

I(P ) ≤ 1

|P |τ
{∥∥∥χP [ ∞∑

j=jP∨0

j∑
ν=0

2−(j−ν)(D2−κ−α2)q|wνgν |q
]1/q∥∥∥

L(Rn)

+
∥∥∥χP [ ∞∑

j=jP∨0

∞∑
ν=j+1

2−(ν−j)(D2−κ−α2)q|wνgν |q
]1/q∥∥∥

L(Rn)

}
,

where the only difference from (2.20) is that D1 and D2 are, respectively, replaced by

D1 − κ and D2 − κ. With this replacement, the same argument as above works. This

finishes the proof of Lemma 2.9.

The following lemma is frequently used in the present paper; it appeared in [18,

Lemmas B.1 and B.2], [20, p. 466], [24, Lemmas 1.2.8 and 1.2.9], [71, Lemma 1] or [93,

Lemma A.3]. In the last reference the result is stated in terms of the continuous wavelet

transform. Denote by ωn the volume of the unit ball in Rn and by CL(Rn) the space of

all functions having continuous derivatives up to order L.

Lemma 2.10. Let j, ν ∈ Z+, M,N ∈ (0,∞), and L ∈ N ∪ {0} satisfy ν ≥ j and N >

M + L+ n. Suppose that φj ∈ CL(Rn) has the property that, for all ‖~α‖1 = L,
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|∂~αφj(x)| ≤ A~α
2j(n+L)

(1 + 2j |x− xj |)M
,

where A~α is a positive constant independent of j, x and xj. Furthermore, suppose that

φν is another measurable function such that, for all ‖~β‖1 ≤ L− 1,∫
Rn
φν(y)y

~β dy = 0 and, for all x ∈ Rn, |φν(x)| ≤ B 2νn

(1 + 2ν |x− xν |)N
,

where the former condition is supposed to be vacuous when L = 0. Then∣∣∣∣ ∫
Rn
φj(x)φν(x)dx

∣∣∣∣ ≤ ( ∑
‖~α‖1=L

A~α
~α!

)
N −M − L

N −M − L− n
Bωn 2jn−(ν−j)L(1+2j |xj−xν |)−M .



3. Besov-type and Triebel–Lizorkin-type spaces

3.1. Definitions. Through the spaces in Definition 2.5, we introduce the following

Besov-type and Triebel–Lizorkin-type spaces on Rn.

Definition 3.1. Let a ∈ (0,∞), α1, α2, α3, τ ∈ [0,∞), q ∈ (0, ∞] and w ∈ Wα3
α1,α2

.

Assume that Φ, ϕ ∈ S(Rn) satisfy, respectively, (1.3) and (1.4) and that L(Rn) is a

quasi-normed space satisfying (L1) through (L4). For any f ∈ S ′(Rn), let {(ϕ∗jf)a}j∈Z+

be as in (1.1).

(i) The inhomogeneous generalized Besov-type space Bw,τL,q,a(Rn) is defined to be the set

of all f ∈ S ′(Rn) such that

‖f‖Bw,τL,q,a(Rn) := ‖{(ϕ∗jf)a}j∈Z+
‖`q(Lwτ (Rn,Z+)) <∞.

(ii) The inhomogeneous generalized Besov–Morrey space Nw,τ
L,q,a(Rn) is defined to be the

set of all f ∈ S ′(Rn) such that

‖f‖Nw,τL,q,a(Rn) := ‖{(ϕ∗jf)a}j∈Z+
‖`q(NLwτ (Rn,Z+)) <∞.

(iii) The inhomogeneous generalized Triebel–Lizorkin-type space Fw,τL,q,a(Rn) is defined to

be the set of all f ∈ S ′(Rn) such that

‖f‖Fw,τL,q,a(Rn) := ‖{(ϕ∗jf)a}j∈Z+‖Lwτ (`q(Rn,Z+)) <∞.

(iv) The inhomogeneous generalized Triebel–Lizorkin–Morrey space Ew,τL,q,a(Rn) is defined

to be the set of all f ∈ S ′(Rn) such that

‖f‖Ew,τL,q,a(Rn) := ‖{(ϕ∗jf)a}j∈Z+‖ELwτ (`q(Rn,Z+)) <∞.

The notation Aw,τL,q,a(Rn) stands for either one of Bw,τL,q,a(Rn), Nw,τ
L,q,a(Rn), Fw,τL,q,a(Rn)

or Ew,τL,q,a(Rn). When L(Rn) = Lp(Rn) and wj(x) := 2js for x ∈ Rn and j ∈ Z+, we write

As,τp,q,a(Rn) := Aw,τL,q,a(Rn). (3.1)

In what follows, if τ = 0, we omit τ in the notation of the spaces introduced in

Definition 3.1.

Remark 3.2. Let us review what parameters the function spaces carry with.

(i) The function space L(Rn) is equipped with θ,N0, γ, δ satisfying

θ ∈ (0, 1], N0 ∈ (0,∞), γ ∈ [0,∞), δ ∈ [0,∞). (3.2)

(ii) The class Wα3
α1,α2

of weights is equipped with α1, α2, α3 satisfying

α1, α2, α3 ∈ [0,∞). (3.3)

[21]
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(iii) In general function spaces Aw,τL,q,a(Rn), the indices τ, q and a satisfy

τ ∈ [0,∞), q ∈ (0,∞], a ∈ (N0 + α3,∞), (3.4)

where in (3.28) below we need to assume a ∈ (N0 + α3,∞) in order to guarantee

that S(Rn) is contained in the function space.

In the following, we content ourselves with considering the case when L(Rn) = Lp(Rn)

as an example, which still enables us to see why we introduce these function spaces in

this way. Further examples are given in Section 11.

Example 3.3. Let q ∈ (0,∞], s ∈ R and τ ∈ [0,∞). In [97, 98], the Besov-type space

Bs,τp,q (Rn) with p ∈ (0,∞] and the Triebel–Lizorkin-type space F s,τp,q (Rn) with p ∈ (0,∞)

were, respectively, defined to be the sets of all f ∈ S ′(Rn) such that

‖f‖Bs,τp,q (Rn) := sup
P∈Q(Rn)

1

|P |τ

{ ∞∑
j=jP∨0

[ ∫
P

|2jsϕj ∗ f(x)|p dx
]q/p}1/q

<∞

and

‖f‖F s,τp,q (Rn) := sup
P∈Q(Rn)

1

|P |τ

{∫
P

[ ∞∑
j=jP∨0

|2jsϕj ∗ f(x)|q
]p/q

dx

}1/p

<∞

with the usual modifications for p =∞ or q =∞. Here ϕ0 is understood to be Φ. Then,

we have shown in [45] that Bs,τp,q,a(Rn) coincides with Bs,τp,q (Rn) as long as a ∈ (n/p,∞).

Likewise F s,τp,q,a(Rn) coincides with F s,τp,q (Rn) as long as a ∈ (n/min(p, q),∞). Notice

that Bs,0p,q,a(Rn) and F s,0p,q,a(Rn) are isomorphic to Bsp,q(Rn) and F sp,q(Rn) respectively by

the Plancherel–Pólya–Nikol’skĭı inequality (Lemma 1.1) and the Fefferman–Stein vector-

valued inequality (see [15, 19, 20, 88]). This fact is generalized to our current setting. The

atomic decomposition of these spaces can be found in [82, 104]. Needless to say, in this

setting, L(Rn) = Lp(Rn) satisfies (L1) through (L6).

Observe that the function spaces Bw,τL,q,a(Rn), Fw,τL,q,a(Rn), Nw,τ
L,q,a(Rn) and Ew,τL,q,a(Rn)

depend upon a ∈ (0,∞), as the following example shows.

Example 3.4. Let m ∈ N, b ∈ (0,∞), fm(t) := [2 sin(2−2mbt)/t]m for all t ∈ R, and

L(R) = Lp(R) with p ∈ (0,∞]. If τ , a, q and w are as in Definition 3.1 with w(x, 1)

independent of x ∈ R, then fm ∈ Bw,τL,q,a(R)∪Fw,τL,q,a(R)∪Nw,τ
L,q,a(R)∪Ew,τL,q,a(R) if and only

if

p[min(a,m)] > 1,

and, in this case, we have fm ∈ Bw,τL,q,a(R)∩Fw,τL,q,a(R)∩Nw,τ
L,q,a(R)∩Ew,τL,q,a(R). To see this,

notice that, for all t ∈ R,

χ̂[−2−mb,2−mb](t) =

∫ 2−mb

−2−mb
cos(xt) dx =

2 sin(2−mbt)

t
,

which implies that

f̂m :=

m times︷ ︸︸ ︷
χ[−2−mb,2−mb] ∗ · · · ∗ χ[−2−mb,2−mb]
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and that supp f̂m ⊂ [−m2−mb,m2−mb]. Choose b ∈ (0,∞) large enough that

[−m2−mb,m2−mb] ⊂ [−1/2, 1/2].

Let Φ, ϕ ∈ S(R) satisfy (1.3) and (1.4), and assume additionally that

χB(0,1) ≤ Φ̂ ≤ χB(0,2) and supp ϕ̂ ⊂ {ξ ∈ R : 1/2 ≤ |ξ| ≤ 2}.

Then, by the size of the frequency support, we see that Φ ∗ fm = fm and ϕj ∗ fm = 0 for

all j ∈ N. Therefore, for all x ∈ R,

(Φ∗fm)a(x) = sup
z∈R

|2 sin(2−mb(x+ z))|m

|x+ z|m(1 + |z|)a
∼m (1+ |x|)max(−a,−m) and (ϕ∗jfm)a(x) = 0,

which implies the claim. Here, “∼m” indicate that the implicit constants depend on m.

First, we wish to justify Definition 3.1. We show that the spaces As,τp,q,a(Rn) are inde-

pendent of the choices of Φ and ϕ by proving the following Theorem 3.5, which covers

the local means as well. Notice that a special case As,τp,q,a(Rn) of these results was dealt

with in [99, 105].

Theorem 3.5. Let a, α1, α2, α3, τ, q, w and L(Rn) be as in Definition 3.1. Let L ∈ Z+

be such that

L+ 1 > α1 ∨ (a+ nτ + α2). (3.5)

Assume that Ψ, ψ ∈ S(Rn) have the property that, for all α ∈ Zn+ with ‖α‖1 ≤ L and

some ε ∈ (0,∞),

Ψ̂(ξ) 6= 0 if |ξ| < 2ε, ∂αψ̂(0) = 0, and ψ̂(ξ) 6= 0 if ε/2 < |ξ| < 2ε. (3.6)

Let ψj(·) := 2jnψ(2j ·) for all j ∈ N and {(ψ∗j f)a}j∈Z+ be as in (1.1) with Φ and ϕ

replaced, respectively, by Ψ and ψ. Then

‖f‖Bw,τL,q,a(Rn) ∼ ‖{(ψ∗j f)a}j∈Z+
‖`q(Lwτ (Rn,Z+)), (3.7)

‖f‖Nw,τL,q,a(Rn) ∼ ‖{(ψ∗j f)a}j∈Z+
‖`q(NLwτ (Rn,Z+)), (3.8)

‖f‖Fw,τL,q,a(Rn) ∼ ‖{(ψ∗j f)a}j∈Z+
‖Lwτ (`q(Rn,Z+)), (3.9)

‖f‖Ew,τL,q,a(Rn) ∼ ‖{(ψ∗j f)a}j∈Z+
‖ELwτ (`q(Rn,Z+)), (3.10)

with the implicit constants independent of f .

Proof. We only need to prove that, for all f ∈ S ′(Rn) and x ∈ Rn,

(Ψ∗f)a(x) . (Φ∗f)a(x) +

∞∑
ν=1

2−ν(L+1−a)ϕ∗νf(x) (3.11)

and

(ψ∗j f)a(x) . 2−j(L+1−a)(Φ∗f)a(x) +

∞∑
ν=1

2−|ν−j|(L+1)+a[(j−ν)∨0](ϕ∗νf)a(x). (3.12)

Once we prove (3.11) and (3.12), we can apply Lemma 2.9 to deduce (3.7) through (3.10).

We now establish (3.12). The proof of (3.11) is easier and we omit the details. For a

nonnegative integer L as in (3.5), by [72, Theorem 1.6], there exist Ψ†, ψ† ∈ S(Rn) such
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that, for all β with ‖β‖1 ≤ L, ∫
Rn
ψ†(x)xβ dx = 0 (3.13)

and

Ψ† ∗ Φ +

∞∑
ν=1

ψ†ν ∗ ϕν = δ0 (3.14)

in S ′(Rn), where ψ†ν(·) := 2νnψ†(2ν ·) for ν ∈ N and δ0 is the Dirac distribution at origin.

We decompose ψj along (3.14) into

ψj = ψj ∗Ψ† ∗ Φ +

∞∑
ν=1

ψj ∗ ψ†ν ∗ ϕν . (3.15)

From (3.6) and (3.13), together with Lemma 2.10, we infer that, for all j ∈ Z+ and

y ∈ Rn,

|ψj ∗Ψ†(y)| . 2−j(L+1)

(1 + |y|)n+1+a
and |ψj ∗ ψ†ν(y)| . 2n(j∧ν)−|j−ν|(L+1)

(1 + 2j∧ν |y|)n+1+a
. (3.16)

By (3.16) and (3.15), we further see that, for all j ∈ Z+ and x ∈ Rn,

sup
z∈Rn

|ψj ∗ f(x+ z)|
(1 + 2j |z|)a

. 2−j(L+1−a)(Φ∗f)a(x) +

∞∑
ν=1

2−|j−ν|(L+1)(ϕ∗νf)a(x)

∫
Rn

2n(j∧ν)(1 + 2ν |y|)a

(1 + 2j∧ν |y|)n+1+a
dy

. 2−j(L+1−a)(Φ∗f)a(x) +

∞∑
ν=1

2−|j−ν|(L+1)+a[(j−ν)∨0](ϕ∗νf)a(x)

∫
Rn

2n(j∧ν) dy

(1 + 2j∧ν |y|)n+1

∼ 2−j(L+1−a)(Φ∗f)a(x) +

∞∑
ν=1

2−|j−ν|(L+1)+a[(j−ν)∨0](ϕ∗νf)a(x),

which completes the proof of (3.12) and hence of Theorem 3.5.

Notice that the moment condition on Ψ in Theorem 3.5 is not necessary due to (3.6).

Moreover, in view of the calculation presented in the proof of Theorem 3.5, we also have

the following assertion.

Corollary 3.6. Under the notation of Theorem 3.5, for some N ∈ N and all x ∈ Rn,

let

Mf(x, 2−j) :=


sup
ψ
|ψj ∗ f(x)|, j ∈ N,

sup
Ψ
|Ψ ∗ f(x)|, j = 0,

where the supremum is taken over all ψ and Ψ in S(Rn) satisfying∑
‖α‖1≤N

sup
x∈Rn

(1 + |x|)N |∂αψ(x)|+
∑

‖α‖1≤N

sup
x∈Rn

(1 + |x|)N |∂αΨ(x)| ≤ 1
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as well as (3.6). Then, if N is large enough, for all f ∈ S ′(Rn),

‖f‖Bw,τL,q,a(Rn) ∼ ‖{Mf(·, 2−j)}j∈Z+‖`q(Lwτ (Rn,Z+)),

‖f‖Nw,τL,q,a(Rn) ∼ ‖{Mf(·, 2−j)}j∈Z+‖`q(NLwτ (Rn,Z+)),

‖f‖Fw,τL,q,a(Rn) ∼ ‖{Mf(·, 2−j)}j∈Z+
‖Lwτ (`q(Rn,Z+)),

‖f‖Ew,τL,q,a(Rn) ∼ ‖{Mf(·, 2−j)}j∈Z+
‖ELwτ (`q(Rn,Z+)),

with the implicit constants independent of f .

Another corollary is a characterization of these spaces via local means. Recall that

∆ :=
∑n
j=1 ∂

2/∂x2
j denotes the Laplacian.

Corollary 3.7. Let a, α1, α2, α3, τ, q, w and L(Rn) be as in Definition 3.1. Assume that

Ψ ∈ C∞c (Rn) satisfies χB(0,1) ≤ Ψ ≤ χB(0,2). Assume, in addition, that ψ = ∆`0+1Ψ for

some `0 ∈ Z+ such that

2`0 + 1 > α1 ∨ (a+ nτ + α2).

Let ψj(·) := 2jnψ(2j ·) for all j ∈ N and {(ψ∗j f)a}j∈Z+ be as in (1.1) with Φ and ϕ

replaced, respectively, by Ψ and ψ. Then, for all f ∈ S ′(Rn),

‖f‖Bw,τL,q,a(Rn) ∼ ‖{(ψ∗j f)a}j∈Z+
‖`q(Lwτ (Rn,Z+)),

‖f‖Nw,τL,q,a(Rn) ∼ ‖{(ψ∗j f)a}j∈Z+
‖`q(NLwτ (Rn,Z+)),

‖f‖Fw,τL,q,a(Rn) ∼ ‖{(ψ∗j f)a}j∈Z+
‖Lwτ (`q(Rn,Z+)),

‖f‖Ew,τL,q,a(Rn) ∼ ‖{(ψ∗j f)a}j∈Z+
‖ELwτ (`q(Rn,Z+)),

with the implicit constants independent of f .

3.2. Fundamental properties. With the fundamental theorem on our function spaces

stated and proven as above, we now take up some inclusion relations. The following

lemma is immediately deduced from Lemma 2.7 and Definition 3.1.

Lemma 3.8. Let α1, α2, α3, τ ∈ [0,∞), q, q1, q2 ∈ (0, ∞], q1 ≤ q2 and w ∈ Wα3
α1,α2

. Let

L(Rn) be a quasi-normed space satisfying (L1) through (L4). Then we have continuous

embeddings

Bw,τL,q1,a(Rn) ↪→ Bw,τL,q2,a(Rn),

Nw,τ
L,q1,a(Rn) ↪→ Nw,τ

L,q2,a(Rn),

Fw,τL,q1,a(Rn) ↪→ Fw,τL,q2,a(Rn),

Ew,τL,q1,a(Rn) ↪→ Ew,τL,q2,a(Rn),

Bw,τL,q,a(Rn), Nw,τ
L,q,a(Rn), Fw,τL,q,a(Rn), Ew,τL,q,a(Rn) ↪→ Nw,τ

L,∞,a(Rn). (3.17)

Remark 3.9. (i) It is well known that F sp,q(Rn) ↪→ Bsp,max(p,q)(R
n) ↪→ Bsp,∞(Rn) (see,

for example, [90]). However, as an example in [73] shows, with q ∈ (0,∞] fixed, (3.17) is

optimal in the sense that the continuous embedding Fw,τL,q,a(Rn) ↪→ Nw,τ
L,r,a(Rn) holds for

all admissible a,w, τ and L(Rn) if and only if r =∞.
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(ii) From the definitions of the spaces Aw,τL,q,a(Rn), we deduce that

Aw,τL,q,a(Rn) ↪→ Bw,τL,∞,a(Rn).

Indeed, for example, the proof of Ew,τL,q,a(Rn) ↪→ Bw,τL,∞,a(Rn) is as follows:

‖f‖Ew,τL,q,a(Rn) = sup
P∈Q(Rn)

1

|P |τ
‖{χ[jP ,∞)(j)χPwj(ϕ

∗
jf)a}∞j=0‖Lw(`q(Rn,Z+))

≥ sup
P∈Q(Rn)

sup
j≥jP

1

|P |τ
‖χPwj(ϕ∗jf)a‖L(Rn) = ‖f‖Bw,τL,∞,a(Rn).

Now we are going to discuss the lifting property, which also justifies our new framework

of function spaces. Recall that, for all f ∈ S ′(Rn) and ξ ∈ Rn, we let ((1−∆)s/2f)̂(ξ) :=

(1 + |ξ|2)s/2f̂(ξ) for all ξ ∈ Rn.

Theorem 3.10. Let a, α1, α2, α3, τ, q, w and L(Rn) be as in Definition 3.1 and s ∈ R.

For all x ∈ Rn and j ∈ Z+, let

w(s)(x, 2−j) := 2−jswj(x).

Then the lift operator (1−∆)s/2 is bounded from Aw,τL,q,a(Rn) to Aw
(s),τ
L,q,a (Rn).

For the proof of Theorem 3.10, the following lemma is important. Once we prove this

lemma, Theorem 3.10 is obtained by using (W1).

Lemma 3.11. Let a ∈ (0,∞), s ∈ R and Φ, ϕ ∈ S(Rn) be such that

supp Φ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2}, supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and Φ̂ +

∞∑
j=1

ϕ̂j ≡ 1,

where ϕj(·) := 2jnϕ(2j ·) for each j ∈ N. Then there exists a positive constant C such

that, for all f ∈ S ′(Rn) and x ∈ Rn,

(Φ∗((1−∆)s/2f))a(x) ≤ C[(Φ∗f)a(x) + (ϕ∗1f)a(x)], (3.18)

(ϕ∗1((1−∆)s/2f))a(x) ≤ C[(Φ∗f)a(x) + (ϕ∗1f)a(x) + (ϕ∗2f)a(x)], (3.19)

(ϕ∗j ((1−∆)s/2f))a(x) ≤ C2js(ϕ∗jf)a(x) for all j ≥ 2. (3.20)

Proof. The proofs of (3.18) and (3.19) being simpler, let us prove (3.20). In view of the

size of supports, we see that, for all j ≥ 2 and x ∈ Rn,

(ϕ∗j ((1−∆)s/2f))a(x)

= sup
z∈Rn

|ϕj ∗ [(1−∆)s/2f ](x+ z)|
(1 + 2j |z|)a

= sup
z∈Rn

|(1−∆)s/2(ϕj−1 + ϕj + ϕj+1) ∗ ϕj ∗ f(x+ z)|
(1 + 2j |z|)a

= sup
z∈Rn

1

(1 + 2j |z|)a

∣∣∣∣ ∫
Rn

(1−∆)s/2(ϕj−1 + ϕj + ϕj+1)(y)ϕj ∗ f(x+ z − y) dy

∣∣∣∣.
Now let us show that, for all j ≥ 2 and y ∈ Rn,

|(1−∆)s/2(ϕj−1 + ϕj + ϕj+1)(y)| . 2j(s+n)

(1 + 2j |y|)a+n+1
. (3.21)
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Once we prove (3.21), by inserting it to the above equality we conclude the proof of

(3.20).

To this end, we observe that, for all j ≥ 2 and y ∈ Rn,

(1−∆)s/2
( 1∑
l=−1

ϕj+l

)
(y) = {(1 + | · |2)s/2[ϕ̂(2−j+1·) + ϕ̂(2−j ·) + ϕ̂(2−j−1·)]}∨(y)

Since, for all multiindices ~α, j ≥ 2 and ξ ∈ Rn, a pointwise estimate∣∣∂~α((1 + |ξ|2)s/2[ϕ̂(2−j+1ξ) + ϕ̂(2−jξ) + ϕ̂(2−j−1ξ)])
∣∣ . 2(s−‖~α‖1)j(1 + 2−j |ξ|)−n−1

holds, (3.21) follows from the definition of the Fourier transform.

The next Theorem 3.14 is mainly a consequence of the assumptions (L1) through

(L4) and (L6). To show it, we need to introduce a new class of weights, which are also

used later.

Definition 3.12. Let α1, α2, α3 ∈ [0,∞). The class ?-Wα3
α1,α2

of weights is defined as

the set of all measurable functions w : RnZ+
→ (0,∞) satisfying (W1?) and (W2), where

(W2) is defined as in Definition 2.3 and

(W1?) there exists a positive constant C such that, for all x ∈ Rn and j, ν ∈ Z+ with

j ≥ ν, C−12(j−ν)α1w(x, 2−ν) ≤ w(x, 2−j) ≤ C2−(ν−j)α2w(x, 2−ν).

It is easy to see that ?-Wα3
α1,α2

(Wα3
α1,α2

.

Example 3.13. If s ∈ [0,∞) and wj(x) := 2js for all x ∈ Rn and j ∈ Z+, then it is easy

to see that w ∈ ?-W0
s,s.

Theorem 3.14. Let a, α1, α2, α3, τ and q be as in Definition 3.1. If w ∈ ?-Wα3
α1,α2

and

L(Rn) satisfies (L1) through (L4) and (L6), then Aw,τL,q,a(Rn) ↪→ S ′(Rn) in the sense of

continuous embedding.

Proof. Let Φ, ϕ ∈ S(Rn) be as in Lemma 3.11. Then

Φ̂ +

∞∑
j=1

ϕ̂j ≡ 1. (3.22)

We first assume that (W1?) holds with

α1 −N + n− γ + nτ > 0 and N > δ + n (3.23)

for some N ∈ (0,∞).

For any f ∈ Aw,τL,q,a(Rn), by the definition, we see that, for all Q ∈ Q(Rn) with jQ ∈ N,

1

|Q|τ
‖χQw(·, 2−jQ)(ϕ∗jQf)a‖L(Rn) . ‖f‖Aw,τL,q,a(Rn).

Consequently, from (W1?), we deduce that

‖χQw(·, 1)(ϕ∗jQf)a‖L(Rn) . 2−jQ(α1+nτ)‖f‖Aw,τL,q,a(Rn). (3.24)

Now let ζ ∈ S(Rn) and define

p(ζ) := sup
x∈Rn

(1 + |x|)α3+Nζ(x).



28 3. Besov-type and Triebel–Lizorkin-type spaces

Then from (3.24) and the partition {Qjk}k∈Zn of Rn, we infer that∫
Rn
|ζ(x)ϕj ∗ f(x)| dx . p(ζ)

∑
k∈Zn

(1 + |2−jk|)−N−α3

∫
Qjk

|ϕj ∗ f(x)| dx.

If we use the condition (W2) twice and the fact that j ∈ [0,∞), we obtain∫
Rn
|ζ(x)ϕj ∗ f(x)| dx . p(ζ)

∑
k∈Zn

(1 + |2−jk|)−N inf
y∈Qjk

w(y, 1)

∫
Qjk

|ϕj ∗ f(x)| dx

. p(ζ)
∑
k∈Zn

2jN (1 + |k|)−N |Qjk| inf
y∈Qjk

{w(y, 1)(ϕ∗jf)a(y)}.

Now we use (3.24) and the assumption (L6) to conclude∫
Rn
|ζ(x)ϕj ∗ f(x)| dx . p(ζ)

∑
k∈Zn

2j(N−n+γ)(1 + |k|)−N+δ‖χQjkw(·, 1)(ϕ∗jf)a‖L(Rn)

. p(ζ)
∑
k∈Zn

2−j(α1−N+n−γ+nτ)(1 + |k|)−N+δ‖f‖Aw,τL,q,a(Rn)

∼ 2−j(α1−N+n−γ+nτ)p(ζ)‖f‖Aw,τL,q,a(Rn). (3.25)

By replacing ϕ0 with Φ in the above argument, we see that∫
Rn
|ζ(x)Φ ∗ f(x)| dx . p(ζ)‖f‖Aw,τL,q,a(Rn). (3.26)

Combining (3.22), (3.25) and (3.26), we then conclude that, for all ζ ∈ S(Rn),

|〈f, ζ〉| ≤ |〈Φ ∗ f, ζ〉|+
∞∑
j=1

|〈ϕj ∗ f, ζ〉| . p(ζ)‖f‖Aw,τL,q,a(Rn), (3.27)

which implies that f ∈ S ′(Rn) and hence Aw,τL,q,a(Rn) ↪→ S ′(Rn) in the sense of continuous

embedding.

We still need to remove the restriction (3.23). Indeed, for any α1 ∈ [0,∞) and f ∈
Aw,τL,q,a(Rn), choose s ∈ (−∞, 0) small enough that α1−s > γ+δ−nτ . By Theorem 3.10,

we have (1−∆)s/2f ∈ Aw
(s),τ
L,q,a (Rn). Then, defining a seminorm ρ by ρ(ζ) := p((1−∆)s/2ζ)

for all ζ ∈ S(Rn), by (3.27), we have

|〈f, ζ〉| = |〈(1−∆)s/2f, (1−∆)−s/2ζ〉|

. ρ((1−∆)−s/2ζ)‖(1−∆)s/2f‖
Aw

(s),τ
L,q,a (Rn)

. p(ζ)‖f‖Aw,τL,q,a(Rn).

Remark 3.15. In the course of the proof of Theorem 3.14, the inequality∫
κQjk

|ϕj ∗ f(x)| dx . κM2−j(α1+n+nτ−γ)(1 + |k|)δ‖f‖Aw,τL,q,a(Rn)

is proved. Here κ ≥ 1, M and the implicit constant are independent of j, k and κ.

It follows from Theorem 3.14 that we have the following conclusions, whose proof is

similar to that of [90, pp. 48–49, Theorem 2.3.3]. For convenience, we give some details.

Proposition 3.16. Let a, α1, α2, α3, τ and q be as in Definition 3.1. If w ∈ ?-Wα3
α1,α2

and L(Rn) satisfies (L1) through (L6), then the spaces Bw,τL,q,a(Rn), Nw,τ
L,q,a(Rn), Fw,τL,q,a(Rn)

and Ew,τL,q,a(Rn) are complete.
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Proof. Due to similarity, we only give the proof for Fw,τL,q,a(Rn). Let {fl}l∈N be a Cauchy

sequence in Fw,τL,q,a(Rn). Then from Theorem 3.14, it is also a Cauchy sequence in S ′(Rn).

By the completeness of S ′(Rn), there exists an f ∈ S ′(Rn) such that, for all Schwartz

functions ϕ, ϕ ∗ fl → ϕ ∗ f pointwise as l→∞ and hence

ϕ ∗ (fl − f) = lim
m→∞

ϕ ∗ (fl − fm)

pointwise. Therefore, for all j ∈ Z+ and x ∈ Rn,

sup
z∈Rn

|ϕj ∗ (fl − f)(x+ z)|
(1 + 2j |z|)a

≤ lim inf
m→∞

sup
z∈Rn

|ϕj ∗ (fl − fm)(x+ z)|
(1 + 2j |z|)a

,

which, together with (L4), the Fatou property of L(Rn) in Proposition 2.2, and the Fatou

property of `q, implies that

lim sup
l→∞

‖fl − f‖Fw,τL,q,a(Rn) ≤ lim sup
l→∞

(
lim inf
m→∞

‖fl − fm‖Fw,τL,q,a(Rn)

)
= 0.

Thus, f = limm→∞ fm in Fw,τL,q,a(Rn), which shows that Fw,τL,q,a(Rn) is complete.

Assuming (L6), we can prove that S(Rn) is embedded into Aw,τL,q,a(Rn).

Theorem 3.17. Let a, α1, α2, α3, τ, q and w be as in Definition 3.1. Then if L(Rn) sat-

isfies (L1) through (L6) and

a ∈ (N0 + α3,∞), (3.28)

then S(Rn) ↪→ Aw,τL,q,a(Rn) in the sense of continuous embedding.

Proof. Let f ∈ S(Rn). Then, for all x ∈ Rn and j ∈ N, we have

sup
z∈Rn

|ϕj ∗ f(x+ z)|
(1 + 2j |z|)a

.
1

(1 + |x|)a
sup
y∈Rn

(1 + |y|)a+n+1|f(y)|.

In view of (W2), (L6) and (3.28), we have (1 + | · |)−aw(·, 1) ∈ L(Rn). Consequently,∥∥∥∥wj sup
z∈Rn

|ϕj ∗ f(·+ z)|
(1 + 2j |z|)a

∥∥∥∥
L(Rn)

. 2jα2 sup
y∈Rn

(1 + |y|)a+n+1|f(y)|. (3.29)

Let ε be a positive constant. Set w∗j (x) := 2−j(α2+nτ+ε)wj(x) for all x ∈ Rn and j ∈ Z+.

The estimate (3.29) and its counterpart for j = 0 show that S(Rn) ↪→ Aw
∗,τ
L,q,a(Rn) and

hence Theorem 3.10 shows that S(Rn) ↪→ Aw,τL,q,a(Rn).

Motivated by Theorem 3.17, we postulate (3.28) on the parameter a here and below.

In analogy with Theorem 3.10, we have the following result on the boundedness of

pseudo-differential operators of Hörmander–Mikhlin type.

Proposition 3.18. Let a, α1, α2, α3, τ, q, w and L(Rn) be as in Definition 3.1. Assume

that m ∈ C∞c (Rn) has the property that, for all multiindices ~α,

M~α := sup
ξ∈Rn

(1 + |ξ|)‖~α‖1 |∂~αm(ξ)| <∞.

Define Imf := (mf̂)∨. Then the operator Im is bounded on Aw,τL,q,a(Rn) and there ex-

ists K ∈ N such that the operator norm is bounded by a positive constant multiple of∑
‖~α‖1≤KM~α.
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Proof. Going through an argument similar to the proof of Lemma 3.11, we are led to

(3.21) with s = 0 and (1−∆)s/2 replaced by Im. Except this change, the same argument

works. We omit the details.

In Chapter 5 below, we will give some further results on pseudo-differential operators.

To conclude this section, we investigate an embedding of Sobolev type.

Proposition 3.19. Let a, α1, α2, α3, τ, q, w and L(Rn) be as in Definition 3.1. Define

w∗j (x) := 2j(τ−γ)(1 + |x|)δwj(x) (3.30)

for all x ∈ Rn and j ∈ Z+. Then Aw,τL,q,a(Rn) is embedded into Bw
∗

∞,∞,a(Rn).

Observe that if w ∈ Wα3
α1,α2

, then w∗ ∈ Wα3+δ
(α1+γ−τ)+,(α2+τ−γ)+

and hence

(w∗)−1 ∈ Wα3+δ
(α2+τ−γ)+,(α1+γ−τ)+

.

Proof of Proposition 3.19. Let P ∈ Qj(Rn) be fixed for j ∈ Z+. Then, for all x, z ∈ P ,

|ϕj ∗ f(x+ y)|
(1 + 2j |y|)a

.
|ϕj ∗ f(z + (y + x− z))|

(1 + 2j |y + x− z|)a
,

where, when j = 0, ϕ0 is replaced by Φ. Consequently, by (W2), for all x ∈ P ,

wj(x)(ϕ∗jf)a(x) = sup
u∈P

sup
y∈Rn

wj(u)
|ϕj ∗ f(u+ y)|

(1 + 2j |y|)a

. inf
z∈P

sup
u∈P

sup
y∈Rn

wj(u)
|ϕj ∗ f(z + (y + u− z))|

(1 + 2j |y + u− z|)a

. inf
z∈P

sup
u∈P

sup
w∈Rn

wj(u)
|ϕj ∗ f(z + w)|

(1 + 2j |w|)a

. inf
z∈P

sup
y∈Rn

w(z, 2−j)
|ϕj ∗ f(z + y)|

(1 + 2j |y|)a
. inf
z∈P

w(z, 2−j)(ϕ∗jf)a(z).

Thus,

sup
x∈P

wj(x)(ϕ∗jf)a(x) .
1

‖χP ‖L(Rn)
‖χPwjϕ∗j ∗ f‖L(Rn) ≤

|P |τ

‖χP ‖L(Rn)
‖f‖Aw,τL,q,a(Rn),

which implies the desired result.

It is also of essential importance to provide a duality result of the following type,

when we consider the wavelet decomposition in Section 4.

In what follows, for p, q ∈ (0,∞], w ∈ Wα3
α1,α2

with α1, α2, α3 ∈ [0,∞), wj for j ∈ Z+

as in (2.5), the space Bwp,q(Rn) is defined to be the set of all f ∈ S ′(Rn) such that

‖f‖Bwp,q(Rn) := ‖{wjϕj ∗ f}j∈Z+
‖`q(Lp(Rn,Z+)) <∞,

where Φ, ϕ ∈ S(Rn) satisfy (1.3) and (1.4), ϕ0 := Φ and ϕj(·) := 2jnϕ(2j ·) for all j ∈ N.

Proposition 3.20. Let α1, α2, α3 ∈ [0,∞) and w ∈ Wα3
α1,α2

. Assume, in addition, that

there exist Φ, ϕ ∈ S(Rn) satisfying (1.3) and (1.4) such that

Φ ∗ Φ +

∞∑
j=1

ϕj ∗ ϕj = δ in S ′(Rn).
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Any g ∈ Bw∞,∞(Rn) defines a continuous functional, Lg, on Bw
−1

1,1 (Rn) such that

Lg : f ∈ Bw
−1

1,1 (Rn) 7→ 〈Φ ∗ g,Φ ∗ f〉+

∞∑
j=1

〈ϕj ∗ g, ϕj ∗ f〉 ∈ C.

Proof. The proof is straightforward. Indeed, for all g ∈ Bw∞,∞(Rn) and f ∈ Bw−1

1,1 (Rn),

|〈Φ ∗ g,Φ ∗ f〉|+
∞∑
j=1

|〈ϕj ∗ g, ϕj ∗ f〉| ≤ ‖g‖Bw∞,∞(Rn)‖f‖Bw−1
1,1 (Rn)

.

We remark that the spaces Bwp,q(Rn) were intensively studied by Kempka [34] and it

was proved in [34, p. 134] that they are independent of the choices of Φ and ϕ.



4. Atomic decompositions and wavelets

Now we place ourselves once again in the setting of a quasi-normed space L(Rn) satisfying

only (L1) through (L6); recall that we do not need to use the Hardy–Littlewood maximal

operator.

For a function F on Rn+1
Z+

:= Rn × {2−j : j ∈ Z+}, we define

‖F‖Lw,τL,q,a(Rn+1
Z+

) :=

∥∥∥∥{ sup
y∈Rn

|F (y, 2−j)|
(1 + 2j | · −y|)a

}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

,

‖F‖Nw,τL,q,a(Rn+1
Z+

) :=

∥∥∥∥{ sup
y∈Rn

|F (y, 2−j)|
(1 + 2j | · −y|)a

}
j∈Z+

∥∥∥∥
`q(NLwτ (Rn,Z+))

,

‖F‖Fw,τL,q,a(Rn+1
Z+

) :=

∥∥∥∥{ sup
y∈Rn

|F (y, 2−j)|
(1 + 2j | · −y|)a

}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

,

‖F‖Ew,τL,q,a(Rn+1
Z+

) :=

∥∥∥∥{ sup
y∈Rn

|F (y, 2−j)|
(1 + 2j | · −y|)a

}
j∈Z+

∥∥∥∥
ELwτ (`q(Rn,Z+))

.

4.1. Atoms and molecules. Now we are going to consider atomic decompositions,

where we use (1.6) to denote the length of multi-indices.

Definition 4.1. Let K ∈ Z+ and L ∈ Z+ ∪ {−1}.

(i) Let Q ∈ Q(Rn). A (K,L)-atom (for As,τL,q,a(Rn)) supported near Q is a CK(Rn)-

function A satisfying

(support condition) supp (A) ⊂ 3Q,

(size condition) ‖∂~αA‖L∞(Rn) ≤ |Q|−‖~α‖1/n,

(moment condition if `(Q) < 1)

∫
Rn
x
~βA(x) dx = 0,

for all multiindices ~α and ~β satisfying ‖~α‖1 ≤ K and ‖~β‖1 ≤ L. Here the moment

condition with L = −1 is understood to be vacuous.

(ii) A set {Ajk}j∈Z+, k∈Zn of CK(Rn)-functions is called a collection of (K,L)-atoms (for

As,τL,q,a(Rn)) if each Ajk is a (K,L)-atom supported near Qjk.

Definition 4.2. Let K ∈ Z+, L ∈ Z+ ∪ {−1} and N ∈ R satisfy

N > L+ n.

(i) Let Q ∈ Q(Rn). A (K,L)-molecule (for As,τL,q,a(Rn)) associated with a cube Q is a

CK(Rn)-function M satisfying

[32]
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(decay condition) |∂~αM(x)| ≤ (1 + |x− cQ|/`(Q))−N for all x ∈ Rn,

(moment condition if `(Q) < 1)

∫
Rn
y
~βM(y) dy = 0,

for all multiindices ~α and ~β satisfying ‖~α‖1 ≤ K and ‖~β‖1 ≤ L. Here cQ and `(Q)

denote, respectively, the center and the side length of Q, and the moment condition

with L = −1 is understood to be vacuous.

(ii) A set {Mjk}j∈Z+, k∈Zn of CK(Rn)-functions is called a collection of (K,L)-molecules

(for As,τL,q,a(Rn)) if each Mjk is a (K,L)-molecule associated with Qjk.

Definition 4.3. Let α1, α2, α3, τ ∈ [0,∞), a ∈ (N0 + α3,∞) and q ∈ (0, ∞], where N0

is from (L6). Suppose that w ∈ Wα3
α1,α2

. Let λ := {λjk}j∈Z+, k∈Zn be a doubly indexed

complex sequence. For (x, 2−j) ∈ RnZ+
, let

Λ(x, 2−j) :=
∑
k∈Zn

λjkχQjk(x).

We define the following inhomogeneous sequence spaces:

(i) bw,τL,q,a(Rn) is the set of all λ such that ‖λ‖bw,τL,q,a(Rn) := ‖Λ‖Lw,τL,q,a(Rn+1
Z+

) <∞.
(ii) nw,τL,q,a(Rn) is the set of all λ such that ‖λ‖nw,τL,q,a(Rn) := ‖Λ‖Nw,τL,q,a(Rn+1

Z+
) <∞.

(iii) fw,τL,q,a(Rn) is the set of all λ such that ‖λ‖fw,τL,q,a(Rn) := ‖Λ‖Fw,τL,q,a(Rn+1
Z+

) <∞.
(iv) ew,τL,q,a(Rn) is the set of all λ such that ‖λ‖ew,τL,q,a(Rn) := ‖Λ‖Ew,τL,q,a(Rn+1

Z+
) <∞.

When τ = 0, then τ is omitted from the above notation.

In the present paper we consider many types of atomic decompositions. To formulate

them, we make the following definition.

Definition 4.4. Let X be a function space embedded into S ′(Rn) and X a quasi-normed

space of sequences. The pair (X,X ) is said to admit atomic decompositions if it satisfies

the following two conditions:

(i) (Analysis condition) For any f ∈X, there exist a collection of atoms, {Ajk}j∈Z+, k∈Zn ,

and a complex sequence {λjk}j∈Z+, k∈Zn such that

f =

∞∑
j=0

∑
k∈Zn

λjkAjk

in S ′(Rn) and ‖{λjk}j∈Z+, k∈Zn‖X . ‖f‖X with the implicit constant independent

of f .

(ii) (Synthesis condition) Given a collection of atoms, {Ajk}j∈Z+, k∈Zn , and a complex se-

quence {λjk}j∈Z+, k∈Zn satisfying ‖{λjk}j∈Z+, k∈Zn‖X < ∞, the series f :=∑∞
j=0

∑
k∈Zn λjkAjk converges in S ′(Rn) and ‖f‖X . ‖{λjk}j∈Z+, k∈Zn‖X with the

implicit constant independent of {λjk}j∈Z+, k∈Zn .

In analogy, a pair (X,X ) can be said to admit molecular decompositions or wavelet

decompositions, where the definition of wavelets appears in Subsection 4.4 below.

In this section, we aim to prove the following conclusion.
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Theorem 4.5. Let K ∈ Z+, L ∈ Z+, α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞]. Suppose

that w ∈ Wα3
α1,α2

and that (3.28) holds, namely, a ∈ (N0 + α3,∞). Let δ be as in (L6).

Assume, in addition, that

L > α3 + δ + n− 1 + γ − nτ + α1, (4.1)

N > L+ α3 + δ + 2n, (4.2)

K + 1 > α2 + nτ, L+ 1 > α1. (4.3)

Then the pair (Aw,τL,q,a(Rn), aw,τL,q,a(Rn)) admits atomic/molecular decompositions.

4.2. Proof of Theorem 4.5. The proof is made up of several lemmas. Our primary

concern is the following question:

Do the series
∑∞
j=0

∑
k∈Zn λjkAjk and

∑∞
j=0

∑
k∈Zn λjkMjk converge in S ′(Rn)?

Recall again that we are assuming only (L1) through (L6).

Lemma 4.6. Let α1, α2, α3 ∈ [0,∞) and w ∈ Wα3
α1,α2

. Assume, in addition, that the

parameters K ∈ Z+, L ∈ Z+ and N ∈ (0,∞) in Definition 4.2 satisfy (4.1)–(4.3).

Assume that λ := {λjk}j∈Z+, k∈Zn ∈ bw,τL,∞,a(Rn) and {Mjk}j∈Z+, k∈Zn is a family of

(K,L)-molecules. Then the series

f =

∞∑
j=0

∑
k∈Zn

λjkMjk (4.4)

converges in S ′(Rn).

Proof. Let ϕ ∈ S(Rn). Recall again that γ and δ are constants appearing in the assump-

tion (L6). By (4.1) and (4.2), we can choose M ∈ (α3 + δ + n,∞) such that

L+ 1− γ − α1 −M + nτ > 0 and N > L+M + n. (4.5)

It follows from the definition of molecules and Lemma 2.10 that∣∣∣∣ ∫
Rn

Mjk(x)ϕ(x) dx

∣∣∣∣ . 2−j(L+1)(1 + 2−j |k|)−M .

By the assumption (L6), we conclude that∣∣∣∣ ∫
Rn

Mjk(x)ϕ(x) dx

∣∣∣∣ . 2−j(L+1−γ)(1 + 2−j |k|)−M (1 + |k|)δ‖χQjk‖L(Rn). (4.6)

From the condition (W1), we deduce that, for all j ∈ Z+ and x ∈ Rn, 2−jα1w(x, 1) .
wj(x) and, from (W2), that, for all x ∈ Rn, w(0, 1) . w(x, 1)(1+ |x|)α3 . Combining these,

we conclude that, for all j ∈ Z+ and x ∈ Rn,

w(0, 1) . (1 + |x|)α32jα1wj(x). (4.7)

Consequently, we have

1 . (1 + |k|)α32jα1wj(x) (4.8)

for all x ∈ Qjk with j ∈ Z+ and k ∈ Zn. By (4.6) and (4.8), we further see that, for all

j ∈ Z+ and k ∈ Zn,
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Rn

Mjk(x)ϕ(x) dx

∣∣∣∣ . 2−j(L+1−γ−α1−M+nτ)(1 + |k|)−M+α3+δ‖λ‖bw,τL,∞,a(Rn). (4.9)

So by (4.5), this inequality can be summed over j ∈ Z+ and k ∈ Zn, which completes

the proof.

In view of Lemma 3.8, Lemma 4.6 is sufficient to ensure that, for any f ∈ Aw,τL,q,a(Rn),

the convergence in (4.4) takes place in S ′(Rn). Indeed, in view of Remark 3.9, without loss

of generality, we may assume that f ∈ Bw,τL,∞,a(Rn). Then, by Lemma 4.6, the convergence

in (4.4) takes place in S ′(Rn).

Next, we consider the synthesis part of Theorem 4.5.

Lemma 4.7. Let s ∈ (0,∞), α1, α2, α3, τ ∈ [0,∞), a ∈ (N0 +α3,∞) and q ∈ (0, ∞]. Sup-

pose that w ∈ Wα3
α1,α2

. Assume, in addition, that K ∈ Z+ and L ∈ Z+ satisfy (4.1)–(4.3).

Let λ := {λjk}j∈Z+, k∈Zn ∈ aw,τL,q,a(Rn) and M := {Mjk}j∈Z+, k∈Zn be a collection of

(K,L)-molecules. Then the series

f =

∞∑
j=0

∑
k∈Zn

λjkMjk

converges in S ′(Rn) and defines an element in Aw,τL,q,a(Rn). Furthermore,

‖f‖Aw,τL,q,a(Rn) . ‖λ‖aw,τL,q,a(Rn),

with the implicit constant independent of f .

Remark 4.8. One of the differences from the classical theory of molecules is that there

is no need to distinguish Besov-type spaces and Triebel–Lizorkin-type spaces. Set σp :=

max{0, n/p− n}. For example, recall that in [92, Theorem 13.8] we need to assume

L ≥ max(−1, bσp − sc) or L ≥ max(−1, bmax(σp, σq)− sc)

according as we consider Besov spaces or Triebel–Lizorkin spaces. However, our approach

does not require such a distinction. This seems due to the fact that we are using the Peetre

maximal operator.

Proof of Lemma 4.7. The convergence of f in S ′(Rn) is a consequence of Lemma 4.6.

Let us prove ‖f‖Aw,τL,q,a(Rn) . ‖λ‖aw,τL,q,a(Rn). To this end, we fix z ∈ Rn and j, l ∈ Z+.

Let us abbreviate
∑
k∈Zn λlkMlk to fl. Then we have

sup
z∈Rn

|ϕj ∗ fl(x+ z)|
(1 + 2j |z|)a

.


sup
z∈Rn

{ ∑
k∈Zn

2ln−(j−l)(L+1)|λlk|
(1 + 2l|z|)a(1 + 2l|x+ z − 2−lk|)M

}
, j ≥ l,

sup
z∈Rn

{ ∑
k∈Zn

2jn−(l−j)(K+1)|λlk|
(1 + 2j |z|)a(1 + 2j |x+ z − 2−lk|)M

}
, j < l,

by Lemma 2.10, where M is as in (4.5). Consequently, as 1 + 2j |z| ≤ 1 + 2max(j,l)|z| for

all z ∈ Rn and j, l ∈ Z+, we have
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sup
z∈Rn

|ϕj ∗ fk(x+ z)|
(1 + 2j |z|)a

.


sup

z,w∈Rn

{ ∑
m∈Zn

∑
k∈Zn

2ln−(j−l)(L+1)(1 + 2l|w|)−a|λlm|χQlm(x+ w)

(1 + 2l|x+ z − 2−lk|)M

}
, j ≥ l,

sup
z,w∈Rn

{ ∑
m∈Zn

∑
k∈Zn

2jn+(j−l)(K+1)(1 + 2l|w|)−a|λlm|χQlm(x+ w)

(1 + 2j |x+ z − 2−lk|)M

}
, j < l.

From∑
k∈Zn

2ln

(1 + 2l|x+ z − 2−lk|)M
+
∑
k∈Zn

2jn

(1 + 2j |x+ z − 2−lk|)M
.
∫
Rn

1

(1 + |y|)M
dy

and M ∈ (α3 + δ + n,∞), we conclude that

sup
z∈Rn

|ϕj ∗ fl(x+ z)|
(1 + 2j |z|)a

.


2−(j−l)(L+1)

∑
m∈Zn

[
sup
w∈Rn

|λlm|χQlm(x+ w)

(1 + 2l|w|)a

]
, j ≥ l,

2(j−l)(K+1)
∑
m∈Zn

[
sup
w∈Rn

|λlm|χQlm(x+ w)

(1 + 2l|w|)a

]
, j < l.

(4.10)

If we now use (4.3) and Lemma 2.9, we obtain the desired result.

With these preparations, let us prove Theorem 4.5. We investigate the case of

Fw,τL,q,a(Rn), the other cases being similar.

Proof of Theorem 4.5 (analysis part). Let L ∈ Z+ satisfying (4.1) be fixed. Let us choose

Ψ, ψ ∈ C∞c (Rn) such that

supp Ψ, supp ψ ⊂ {x = (x1, . . . , xn) : max(|x1|, . . . , |xn|) ≤ 1} (4.11)

and ∫
Rn
ψ(x)x

~β dx = 0 (4.12)

for all multiindices ~β with ‖~β‖1 ≤ L, and Ψ ∗ Ψ +
∑∞
j=1 ψj ∗ ψj = δ0 in S ′(Rn), where

ψj := 2jnψ(2j ·) for all j ∈ N. Then, for all f ∈ Fw,τL,q,a(Rn),

f = Ψ ∗Ψ ∗ f +

∞∑
j=1

ψj ∗ ψj ∗ f (4.13)

in S ′(Rn). With this in mind, let us set, for all j ∈ N and k ∈ Zn,

λ0k :=

∫
Q0k

|Ψ ∗ f(y)| dy, λjk := 2jn
∫
Qjk

|ψj ∗ f(y)| dy (4.14)

and, for all x ∈ Rn,

A0k(x) :=
1

λ0k

∫
Q0k

Ψ(x− y)Ψ ∗ f(y) dy, Ajk(x) :=
1

λjk

∫
Qjk

ψj(x− y)ψj ∗ f(y) dy. (4.15)

In (4.15), if λjk = 0 for some j ∈ Z+ and k ∈ Zn, we set Ajk := 0.

Observe that f :=
∑∞
j=0

∑
k∈Zn λjkAjk in S ′(Rn) by (4.13) and (4.15). Let us prove

that Ajk, given by (4.15), is an atom supported near Qjk modulo a multiplicative constant
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and that λ := {λjk}j∈N, k∈Zn , given by (4.14), has the property that

‖λ‖fw,τL,q,a(Rn) . ‖f‖Fw,τL,q,a(Rn). (4.16)

Observe that, when x+ z ∈ Qjk, by the Peetre inequality we have

2jn

(1 + 2j |z|)a

∫
Qjk

|ψj ∗ f(y)| dy =
2jn

(1 + 2j |z|)a

∫
x+z−Qjk

|ψj ∗ f(x+ z − y)| dy

.
∫
x+z−Qjk

2jn

(1 + 2j |z|)a(1 + 2j |y|)a
|ψj ∗ f(x+ z − y)| dy

.
∫
x+z−Qjk

2jn

(1 + 2j |z − y|)a
|ψj ∗ f(x+ z − y)| dy

. sup
w∈Rn

|ψj ∗ f(x− w)|
(1 + 2j |w|)a

.

Consequently,

sup
w∈Qjk

{
2jn

(1 + 2j |x− w|)a

∫
Qjk

|ψj ∗ f(y)| dy
}

. sup
z∈Rn

|ψj ∗ f(x− z)|
(1 + 2j |z|)a

. (4.17)

Since {Qjk}k∈Zn is a disjoint family for each fixed j ∈ Z+, (4.17) reads

sup
z∈Rn

1

(1 + 2j |z|)a
∣∣∣ ∑
k∈Zn

λjkχQjk(x+ z)
∣∣∣ . sup

z∈Rn

|ψj ∗ f(x− z)|
(1 + 2j |z|)a

. (4.18)

In particular, when j = 0, we see that

sup
z∈Rn

1

(1 + |z|)a
∣∣∣ ∑
k∈Zn

λ0kχQ0k
(x+ z)

∣∣∣ . sup
z∈Rn

|Ψ ∗ f(x− z)|
(1 + |z|)a

. (4.19)

Consequently, from (4.18) and (4.19), we deduce the estimate (4.16).

Meanwhile, via (4.11), a direct calculation of the size of supports yields

supp(Ajk) ⊂ Qjk + supp(ψj) ⊂ 3Qjk (4.20)

and there exists a positive constant C~α such that

|∂~αAjk(x)| = 2j(‖~α‖1+n)

λjk

∣∣∣∣ ∫
Qjk

∂~αψ(2j(x− y))ψj ∗ f(y) dy

∣∣∣∣ ≤ C~α2j‖~α‖1 (4.21)

for all multiindices ~α as long as λjk 6= 0.

Keeping (4.20) and (4.21) in mind, let us show that each Ajk is an atom modulo a posi-

tive multiplicative constant
∑
‖~α‖1≤K C~α. The support condition follows from (4.20). The

size condition follows from (4.21). Finally, the moment condition follows from (4.12).

4.3. The regular case. Motivated by Remark 4.8, we now consider the regular case of

Theorem 4.5, that is, the case L = −1. This is achieved by polishing a crude estimate

(2.17). Our result is the following.

Theorem 4.9. Let K ∈ N∪ {0}, L = −1, α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞]. Suppose

that w ∈ ?-Wα3
α1,α2

. Assume, in addition, that (3.28) and (4.2) hold, and that

0 > α3 + δ + n+ γ − nτ − α1 (4.22)
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and

α1 > nτ, K + 1 > α2 + nτ. (4.23)

Then the pair (Aw,τL,q,a(Rn), aw,τL,q,a(Rn)) admits atomic/molecular decompositions.

To prove Theorem 4.9 we need to modify Lemma 2.9.

Lemma 4.10. Let D1, D2, α1, α2, α3, τ ∈ [0,∞) and q ∈ (0,∞] satisfy

D1 + α1 > 0 and D2 − α2 > nτ.

Let {gν}ν∈Z+ be a family of measurable functions on Rn and w ∈ ?-Wα3
α1,α2

. For all

j ∈ Z+ and x ∈ Rn, let

Gj(x) :=

∞∑
ν=j+1

2−(ν−j)D1gν(x) +

j∑
ν=0

2−(j−ν)D2gν(x).

Then (2.13) through (2.16) hold.

Proof. The proof is based upon a modification of (2.19).

If, in Definition 3.12, we let t := 2−ν and s := 2−j for j, ν ∈ Z+ with ν ≥ j, we obtain

wj(x) . 2α1(j−ν)wν(x) for all x ∈ Rn. (4.24)

If, in Definition 3.12, we let t = 2−j and s = 2−ν for j, ν ∈ N with j ≥ ν, we get

wj(x) . 2α2(j−ν)wν(x) for all x ∈ Rn. (4.25)

Combining (4.24) and (4.25), we see that

wj(x) .

{
2α1(j−ν)wν(x), ν ≥ j,
2α2(j−ν)wν(x), ν ≤ j,

(4.26)

for all j, ν ∈ Z+. Let us write

I(P ) :=
1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

∣∣∣ j∑
ν=0

wj2
(ν−j)D2gν

∣∣∣q]1/q∥∥∥
L(Rn)

+
1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

∣∣∣ ∞∑
ν=j+1

wj2
(j−ν)D1gν

∣∣∣q]1/q∥∥∥
L(Rn)

for any dyadic cube P .

Let us suppose q ∈ (0, 1], since when q ∈ (1,∞], an argument similar to Lemma 2.9

works. Then we deduce, from (4.26) and (L4), that

I(P ) .
1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

j∑
ν=0

2−(j−ν)(D2−α2)q|wνgν |q
]1/q∥∥∥

L(Rn)

+
1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

∞∑
ν=j+1

2−(ν−j)(D1+α1)q|wνgν |q
]1/q∥∥∥

L(Rn)
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by (W1) and (2.21). We change the order of summations on the right-hand side of the

above inequality to obtain

I(P ) .
1

|P |τ
∥∥∥χP [ ∞∑

ν=0

∞∑
j=ν∨jP∨0

2−(j−ν)(D2−α2)q|wνgν |q
]1/q∥∥∥

L(Rn)

+
1

|P |τ
∥∥∥χP [ ∞∑

ν=jP∨0

ν∑
j=jP∨0

2−(ν−j)(D1+α1)q|wνgν |q
]1/q∥∥∥

L(Rn)
.

Now we decompose the summand with respect to ν according to j ≥ jP ∨0 or j < jP ∨0.

Since D2 ∈ (α2 + nτ,∞), we can choose ε ∈ (0,∞) such that D2 ∈ (α2 + nτ + ε,∞).

From this, D1 ∈ (−α1,∞), the Hölder inequality, (L2) and (L4), it follows that

I(P ) . ‖{gν}ν∈Z+‖Lwτ (`q(Rn,Z+))

+
1

|P |τ
∥∥∥χP [ jP∨0∑

ν=0

∞∑
j=jP∨0

2−(j−ν)(D2−α2)q|wνgν |q
]1/q∥∥∥

L(Rn)

. ‖{gν}ν∈Z+‖Lwτ (`q(Rn,Z+)) +
2−(jP∨0)(D2−α2−ε)

|P |τ
∥∥∥χP jP∨0∑

ν=0

2ν(D2−α2−ε)|wνgν |
∥∥∥
L(Rn)

,

which is just (2.22). Therefore, we can follow the same argument of the proof of Lemma

2.9.

Proof of Theorem 4.9. The proof is based upon reexamining that of Theorem 4.5. Recall

that the latter proof consists of three parts: Lemma 4.6, Lemma 4.7 and the analysis

condition. Let us start by modifying Lemma 4.6. By (4.22), we choose M ∈ (α3+δ+n,∞)

so that

−γ + α1 −M + nτ > 0 and N > L+ 2n+ α3 + δ. (4.27)

Assuming that w ∈ ?-Wα3
α1,α2

, we see that α1 in the proof of Theorem 4.5 and in the

related statements can be replaced with −α1. More precisely, (4.7) changes to

w(0, 1) . (1 + |x|)α32−jα1wj(x) for all x ∈ Rn and j ∈ Z+.

Assuming L = −1, we can replace (4.9) with the following estimate: for all j ∈ Z+ and

k ∈ Zn,∣∣∣∣λjk ∫
Rn

Mjk(x)ϕ(x) dx

∣∣∣∣ . 2−j(−γ+α1−M+nτ)(1 + |k|)−M+α3+δ‖λ‖bw,τL,∞,a(Rn).

Since we are assuming (4.27), we have a counterpart for Lemma 4.6, that is, the series

f =
∑∞
j=0

∑
k∈Zn λjkMjk converges in S ′(Rn).

Next, we reconsider Lemma 4.7. Its statement remains unchanged except that we

substitute L = −1. Thus, the concluding estimate (4.10) changes to

sup
z∈Rn

|ϕj ∗ fl(x+ z)|
(1 + 2j |z|)a

.


∑
m∈Zn

[
sup
w∈Rn

|λlm|χQlm(x+ w)

(1 + 2l|w|)a

]
, j ≥ l,

2(j−l)(K+1)
∑
m∈Zn

[
sup
w∈Rn

|λlm|χQlm(x+ w)

(1 + 2l|w|)a

]
, j < l.

Assuming (4.23), we can use Lemma 4.10 with D1 = 0 and D2 = K + 1.
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Finally, the analysis part of the proof of Theorem 4.5 remains unchanged. Indeed, we

did not use the condition for weights or the moment condition here.

4.4. Biorthogonal wavelet decompositions. We use biorthogonal wavelet bases on R,

namely, a system of scaling functions (ψ0, ψ̃0) and associated wavelets (ψ1, ψ̃1) satisfy-

ing

〈ψ0(· − k), ψ̃0(· −m)〉L2(R) = δk,m (k,m ∈ Z),

〈2jn/2ψ1(2j · −k), 2νn/2ψ̃1(2ν · −m)〉L2(R) = δ(j,k),(ν,m) (j, k, ν,m ∈ Z),

where δk,m = 1 if k = m and δk,m = 0 if k 6= m, δ(j,k),(ν,m) being defined similarly. Notice

that, for all f ∈ L2(Rn), we have

f =
∑
j,k∈Z

2jn〈f, ψ1(2j · −k)〉L2(R)ψ̃
1(2j · −k)

=
∑
j,k∈Z

2jn〈f, ψ̃1(2j · −k)〉L2(R)ψ
1(2j · −k)

=
∑
k∈Z
〈f, ψ0(· − k)〉L2(R)ψ̃

0(· − k) +
∑

(j,k)∈Z+×Z

2jn〈f, ψ1(2j · −k)〉L2(R)ψ̃
1(2j · −k)

=
∑
k∈Z
〈f, ψ̃0(· − k)〉L2(R)ψ

0(· − k) +
∑

(j,k)∈Z+×Z

2jn〈f, ψ̃1(2j · −k)〉L2(R)ψ
1(2j · −k)

in L2(R). We construct a basis in L2(Rn) by using the well-known tensor product pro-

cedure. Set E := {0, 1}n \ {(0, . . . , 0)}. We need to consider the tensor products

Ψc := ⊗nj=1ψ
cj and Ψ̃c := ⊗nj=1ψ̃

cj

for c := (c1, . . . , cn) ∈ {0, 1}n. The following result is well known for orthonormal

wavelets; see, for example, [6] and [94, Section 5.1]. However, it is straightforward to prove

it for biorthogonal wavelets. Moreover, it can be arranged that the functions ψ0, ψ1, ψ̃0, ψ̃1

have compact supports.

As can be seen from the textbook [6], the existence of ψ0, ψ1, ψ̃0, ψ̃1 is guaranteed.

Indeed, we just construct ψ0, ψ1 which are sufficiently smooth. Accordingly, we obtain

ψ̃0, ψ̃1 which are almost as smooth as ψ0, ψ1. Finally, we obtain {Ψc, Ψ̃c}c∈E .

Lemma 4.11. Suppose that {Ψc, Ψ̃c}c∈E is a biorthogonal system as above. Then for

every f ∈ L2(Rn),

f =
∑

c∈{0,1}n

∑
k∈Zn
〈f, Ψ̃c(· − k)〉L2(Rn)Ψ

c(· − k)

+
∑
c∈E

∞∑
j=0

∑
k∈Zn
〈f, 2jn/2Ψ̃c(2j · −k)〉L2(Rn)2

jn/2Ψc(2j · −k)

with convergence in L2(Rn).

Notice that the above lemma covers the theory of wavelets (see, for example, [10, 26,

41, 94] for elementary facts) in that this reduces to a theory of wavelets when ψ0 = ψ̃0

and ψ1 = ψ̃1. In what follows we state conditions on the smoothness, the decay, and the
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number of vanishing moments for the wavelets ψ1, ψ̃1 and the respective scaling functions

ψ0, ψ̃0 in order to make them suitable for our function spaces.

Recall first that α1, α2, α3, δ, γ, τ are given in Definition 3.1. Suppose that the integers

K,L,N satisfy

L > α3 + δ + n− 1 + γ − nτ + α1, (4.28)

N > L+ α3 + δ + 2n, (4.29)

K + 1 > α2 + nτ, L+ 1 > α1. (4.30)

Assume that the CK(R)-functions ψ0, ψ1 satisfy, for all α ∈ Z+ with α ≤ K,

|∂αψ0(t)|+ |∂αψ1(t)| . (1 + |t|)−N , t ∈ R, (4.31)

and ∫
Rn
tβψ1(t) dt = 0 (4.32)

for all β ∈ Z+ with β ≤ L. Similarly, the integers K̃, L̃, Ñ are supposed to satisfy

L̃ > α3 + 2δ + n− 1 + γ + max(n/2, (α2 − γ)+), (4.33)

Ñ > L̃+ α3 + 2δ + 2n, (4.34)

K̃ + 1 > α1 + γ. (4.35)

Let now the CK̃(R)-functions ψ̃0 and ψ̃1 satisfy, for all α ∈ Z+ with α ≤ K̃,

|∂αψ̃0(t)|+ |∂αψ̃1(t)| . (1 + |t|)−Ñ , t ∈ R, (4.36)

and, for all β ∈ Z+ with β ≤ L̃, ∫
R
tβψ̃1(t) dt = 0. (4.37)

Assume, in addition, that

K̃ + 1 ≥ L̃ > 2a+ nτ, Ñ > a+ n. (4.38)

Observe that (4.31) and (4.32) correspond to the decay condition and the moment

condition of ψ0 and ψ1 in Definition 4.2, respectively. Let us now define the weight

sequence

Wj(x) := [w∗j (x)]−1 ∧ 2jn/2 ∈ Wα3+δ
max(n/2,(α2+τ−γ)+),(α1+γ−τ)+

, (4.39)

where x ∈ Rn, w∗j is defined as in (3.30) and j ∈ Z+.

If a ∈ (n+ α3,∞), using Proposition 9.5 below, which can be proved independently,

together with the translation invariance of L∞(Rn) and L1(Rn), we have

‖f‖Bρ∞,∞,a(Rn) ∼ sup
j∈Z+

‖ρj(ϕj ∗ f)‖L∞(Rn), ‖f‖Bρ1,1,a(Rn) ∼
∞∑
j=0

‖ρj(ϕj ∗ f)‖L1(Rn) (4.40)

for all f ∈ S ′(Rn) and ρ ∈ Wα3
α1,α2

. See also [45, Theorem 3.6] for a similar conclusion,

where the case when ρ is independent of j is treated. Thus, if we assume that

a > n+ α3 + δ, (4.41)
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we see that

‖f‖BW−1
∞,∞,a(Rn) ∼ sup

j∈Z+

‖Wj
−1(ϕj ∗ f)‖L∞(Rn), ‖f‖BW1,1,a(Rn) ∼

∞∑
j=0

‖Wj(ϕj ∗ f)‖L1(Rn).

Observe that (4.33)–(4.35) guarantee that (BW1,1,a(Rn), bW1,1,a(Rn)) admits atomic/

molecular characterizations; see Theorem 4.5 and the assumptions (4.28)–(4.30). In-

deed, in Aw,τL,q,a(Rn), we need to choose

A = B, L(Rn) = L1(Rn), q = 1, w = W, τ = 0,

and hence, we have to replace (α1, α2, α3) with

(max(n/2, (α2 − γ)+), α1 + γ, α3 + δ)

and N0 should be greater than n. Therefore, (4.28)–(4.30) become (4.33)–(4.35), respec-

tively.

In view of Propositions 3.19 and 3.20, we define, for every c ∈ {0, 1}n, a sequence

{λcj,k}j∈Z+,k∈Zn by

λcj,k := λcj,k(f) := 〈f, 2jn/2Ψ̃c(2j · −k)〉, j ∈ Z+, k ∈ Zn, (4.42)

for a fixed f ∈ BW−1

∞,∞(Rn). In particular, when c = 0, we let λcj,k = 0 whenever j ∈ N.

It should be noticed that K and K̃ may differ, as was the case in [68].

Theorem 4.12. Let α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞]. Suppose that L(Rn) satisfies

(L1) through (L6), w ∈ Wα3
α1,α2

and a ∈ (N0 + α3,∞), where N0 is as in (L6). Choose

scaling functions (ψ0, ψ̃0) ∈ CK(R)×CK̃(R) and associated wavelets (ψ1, ψ̃1) ∈ CK(R)×
CK̃(R) satisfying (4.31), (4.32), (4.36), (4.37), where L, L̃,N, Ñ ,K, K̃ ∈ Z+ are chosen

according to (4.28), (4.29), (4.30), (4.33), (4.34), (4.35), (4.38) and (4.41). For every

f ∈ BW−1

∞,∞(Rn) and every c ∈ {0, 1}n, the sequences {λcj,k}j∈Z+,k∈Zn in (4.42) are well

defined.

(i) The sequences {λcj,k}j∈Z+,k∈Zn belong to aw,τL,q,a(Rn) for all c ∈ {0, 1}n if and only if

f ∈ Aw,τL,q,a(Rn). Indeed, for all f ∈ BW−1

∞,∞(Rn),∑
c∈{0,1}n

‖{δj,0〈f, Ψ̃c(· − k)〉}j∈Z+, k∈Zn‖aw,τL,q,a(Rn)

+
∑
c∈E
‖{〈f, 2jn/2Ψ̃c(2j · −k)〉}j∈Z+, k∈Zn‖aw,τL,q,a(Rn) ∼ ‖f‖Aw,τL,q,a(Rn),

where “∞” is admitted on both sides.

(ii) If f ∈ Aw,τL,q,a(Rn), then

f(·) =
∑

c∈{0,1}n

∑
k∈Zn

λc0,kΨc(· − k) +
∑
c∈E

∞∑
j=0

∑
k∈Zn

λcj,k2jn/2Ψc(2j · −k) (4.43)

in S ′(Rn). The equality (4.43) holds in Aw,τL,q,a(Rn) if and only if the finite sequences

are dense in aw,τL,q,a(Rn).

Proof. First, we show that if f ∈ Aw,τL,q,a(Rn), then (4.43) holds in S ′(Rn). By (4.40)

and (4.39), together with Proposition 3.19, the space Aw,τL,q,a(Rn) can be embedded into
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BW
−1

∞,∞(Rn), which coincides with BW
−1

∞,∞,a(Rn) when a satisfies (4.41). Fixing c ∈ {0, 1}n
and letting {λcj,k}j∈Z+,k∈Zn be as in (4.42), we define

fc(·) :=
∑
k∈Zn

λc0,kΨc(· − k) +

∞∑
j=1

∑
k∈Zn

λcj,k2jn/2Ψc(2j · −k). (4.44)

Noticing that Ψc(2j · −k) is a molecule modulo a multiplicative constant, by Lemma 4.7,

we know that fc ∈ Aw,τL,q,a(Rn) and

‖fc‖Aw,τL,q,a(Rn) . ‖{δj,0λc0,k}j∈Z+, k∈Zn‖aw,τL,q,a(Rn) + ‖{λcj,k}j∈Z+, k∈Zn‖aw,τL,q,a(Rn)

∼ ‖{δj,0〈fc, Ψ̃c(· − k)〉}j∈Z+, k∈Zn‖aw,τL,q,a(Rn)

+ ‖{〈fc, 2jn/2Ψ̃c(2j · −k)〉}j∈Z+, k∈Zn‖aw,τL,q,a(Rn).

Then we further see that fc ∈ BW−1

∞,∞(Rn).

We now show that f =
∑

c∈{0,1}n f
c. Indeed, for any

F ∈ BW1,1(Rn) (↪→ B
n/2
1,1 (Rn) ↪→ L2(Rn)), (4.45)

if we let λc0,k(F ) = 〈F,Ψc(· − k)〉 for all k ∈ Zn, and λcj,k(F ) = 2jn/2〈F,Ψc(2j · −k)〉 for

all j ∈ Z+ and k ∈ Zn, then by Theorem 4.5, we conclude that∑
c∈E
‖{λcj,k(F )}j∈Z+, k∈Zn‖bW1,1(Rn) . ‖F‖BW1,1(Rn). (4.46)

From Lemma 4.11 and (4.45), we deduce that

F (·) =
∑

c∈{0,1}n

∑
k∈Zn

λc0,k(F )Ψ̃c(· − k) +
∑
c∈E

∞∑
j=1

∑
k∈Zn

λcj,k(F )2jn/2Ψ̃c(2j · −k) (4.47)

in L2(Rn); moreover, by (4.46), we also see that (4.47) holds in BW1,1(Rn).

Let g :=
∑

c∈{0,1}n f
c. Then g ∈ BW

−1

∞,∞(Rn). By Proposition 3.20, together with

(4.44) and (4.47), we see that g(F ) = f(F ) for all F ∈ BW1,1(Rn), which gives g = f

immediately. Thus, (4.43) holds in S ′(Rn).

Thus, by Lemma 4.7 again, we obtain the “&” relation in (i). Once we prove the “.”

relation in (i), we immediately obtain the second conclusion in (ii), that is, (4.43) holds

in Aw,τL,q,a(Rn) if and only if the finite sequences are dense in aw,τL,q,a(Rn).

So it remains to prove the “.” relation in (i). Returning to the definition of the

coupling 〈f, 2jn/2Ψ̃c(2j · −k)〉 (see Proposition 3.20), we have

〈f, 2jn/2Ψ̃c(2j · −k)〉 = 2jn/2〈Φ ∗ f,Φ ∗ Ψ̃c(2j · −k)〉+

∞∑
`=1

2jn/2〈ϕ` ∗ f, ϕ` ∗ Ψ̃c(2j · −k)〉.

In view of Lemma 2.10, we see that, for all j, ` ∈ Z+, k ∈ Zn and x ∈ Rn,

|2jnϕ` ∗ Ψ̃c(2jx− k)| . 2min(j,`)n−|`−j|L̃(1 + 2min(j,`)|x− 2−jk|)−Ñ ,
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and hence, if Ñ > a+ n (see (4.38)), from 2l ≤ 2min(j,l)+|j−l| we derive

2jn|〈ϕ` ∗ f, ϕ` ∗ Ψ̃c(2j · −k)〉|

. 2min(j,`)n−|`−j|L̃
∫
Rn

|ϕ` ∗ f(x)|
(1 + 2min(j,`)|x− 2−jk|)Ñ

dx

. 2min(j,`)n−|`−j|L̃ sup
y∈Rn

|ϕ` ∗ f(y)|
(1 + 2`|y − 2−jk|)a

∫
Rn

(1 + 2`|x− 2−jk|)a

(1 + 2min(j,`)|x− 2−jk|)Ñ
dx

. 2−|`−j|(L̃−a) sup
y∈Rn

|ϕ` ∗ f(y)|
(1 + 2`|y − 2−jk|)a

with the implicit positive constant independent of j, `, k and f . A similar estimate holds

for 2jn/2〈Φ ∗ f,Φ ∗ Ψ̃c(2j · −k)〉. Consequently, as (1 + |y|)(1 + |z|) ≤ (1 + |y + z|) for all

y, z ∈ Rn, we see that, for all x ∈ Rn,∑
k∈Zn

∞∑
`=1

2jn|〈ϕ` ∗ f, ϕ` ∗ Ψ̃c(2j · −k)〉|χQjk(x)

.
∑
k∈Zn

∞∑
`=1

2−|`−j|(L̃−a) sup
y∈Rn

|ϕ` ∗ f(y)|
(1 + 2`|y − 2−jk|)a

χQjk(x)

.
∑
k∈Zn

∞∑
`=1

2−|`−j|(L̃−2a) sup
y∈Rn

|ϕ` ∗ f(y)|
(1 + 2`|y − x|)a

χQjk(x)

.
∞∑
`=1

2−|`−j|(L̃−2a) sup
y∈Rn

|ϕ` ∗ f(y)|
(1 + 2`|y − x|)a

,

which, together with Lemma 2.9, implies the “.”-inequality in (i).

Remark 4.13. (i) As in [68], biorthogonal systems in Theorem 4.12 can be replaced by

frames.

(ii) Wavelet characterizations for some special cases of the function spaces in Theorem

4.12 are known; see, for example, [27, 29, 31, 94].
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5.1. Pointwise multipliers. Let us recall that Bm(Rn) :=
⋂
‖α‖1≤m{f ∈ Cm(Rn) :

∂αf ∈ L∞(Rn)} for all m ∈ Z+. As an application of the atomic decomposition in the

regular case, we can establish the following result.

Theorem 5.1. Let α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞]. Suppose that w ∈ ?-Wα3
α1,α2

.

Assume, in addition, that (3.28) holds. Then there exists m0 ∈ N such that, for all

m ∈ Bm0(Rn), the mapping f ∈ S(Rn) 7→ mf ∈ Bm0(Rn) extends naturally to Aw,τL,q,a(Rn)

so that it has the property that

‖mf‖Bw,τL,q,a(Rn) .m ‖f‖Bw,τL,q,a(Rn) (f ∈ Bw,τL,q,a(Rn)),

‖mf‖Fw,τL,q,a(Rn) .m ‖f‖Fw,τL,q,a(Rn) (f ∈ Fw,τL,q,a(Rn)),

‖mf‖Nw,τL,q,a(Rn) .m ‖f‖Nw,τL,q,a(Rn) (f ∈ Nw,τ
L,q,a(Rn)),

‖mf‖Ew,τL,q,a(Rn) .m ‖f‖Ew,τL,q,a(Rn) (f ∈ Ew,τL,q,a(Rn)).

Proof. Due to similarity, we only deal with the case of Bw,τL,q,a(Rn).

Let α1, α2 and α3 satisfy (4.22) and (4.23). We show the desired conclusion by in-

duction. Let m0(w) be the smallest number such that w∗ ∈ Wα3
α1α2

, where w∗ν(x) :=

2m0(w)νwν(x) for all ν ∈ Z+ and x ∈ Rn. If m0(w) can be taken 0, then we use Theorem

4.12 to find that it suffices to define

(mf)(·) :=
∑

c∈{0,1}n

∑
k∈Zn

λc0,km(·)Ψc(· − k) +
∑
c∈E

∞∑
j=0

∑
k∈Zn

λcj,km(·)2jn/2Ψc(2j · −k),

which, together with Theorem 4.9 and the fact that m(·)2jn/2Ψc(2j · −k) is a molecule

modulo a multiplicative constant, implies the desired conclusion in this case. Assume now

that our theorem is true for the class of weights m0(w) ∈ {0, 1, . . . , N}, where N ∈ Z+.

For m0(w) = N + 1, let us write f = (1−∆)−1f −
∑n
j=1 ∂j

2(1−∆)−1f. Then we have

mf = m(1−∆)−1f −
n∑
j=1

m∂j
2(1−∆)−1f

= m(1−∆)−1f −
n∑
j=1

∂j(m∂j(1−∆)−1f) +

n∑
j=1

(∂jm)∂j((1−∆)−1f).

Notice that (1 −∆)−1f and ∂j((1 −∆)−1f) belong to the space Bw
∗∗,τ
L,q,a (Rn), where we

write w∗∗ν (x) := 2νwν(x) for all ν ∈ Z+ and x ∈ Rn. Notice that m0(w∗∗) = m0(w)− 1.

[45]
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Consequently, by the induction assumption, we have

‖m(1−∆)−1f‖Bw,τL,q,a(Rn) ≤ ‖m(1−∆)−1f‖
Bw
∗∗,τ
L,q,a (Rn)

.m ‖(1−∆)−1f‖
Bw
∗∗,τ
L,q,a (Rn)

.m ‖f‖Bw,τL,q,a(Rn).

Analogously, by Proposition 3.18 and Theorem 3.10, we have

‖∂j(m∂j(1−∆)−1f)‖Bw,τL,q,a(Rn) . ‖m∂j(1−∆)−1f‖
Bw
∗∗,τ
L,q,a (Rn)

.m ‖∂j(1−∆)−1f‖
Bw
∗∗,τ
L,q,a (Rn)

.m ‖f‖Bw,τL,q,a(Rn)

and

‖(∂jm)∂j((1−∆)−1f)‖Bw,τL,q,a(Rn) ≤ ‖(∂jm)∂j((1−∆)−1f)‖
Bw
∗∗,τ
L,q,a (Rn)

.m ‖∂j((1−∆)−1f)‖Bw,τL,q,a(Rn) .m ‖f‖Bw,τL,q,a(Rn),

which completes the proof of Theorem 5.1.

5.2. Function spaces on domains. In what follows, let Ω be an open subset of Rn,

D(Ω) denote the space of all infinitely differentiable functions with compact support in Ω

endowed with the inductive topology, and D′(Ω) its topological dual with the weak-∗
topology which is called the space of distributions on Ω.

Now we aim at defining the spaces on Ω. Recall that a natural mapping

f ∈ S ′(Rn) 7→ f |Ω ∈ D′(Ω)

is well defined.

Definition 5.2. Let s ∈ R, a ∈ (0,∞), α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞]. Let

w ∈ Wα3
α1,α2

.

(i) Bw,τL,q,a(Ω) is defined to be the set of all f ∈ D′(Ω) such that f = g|Ω for some

g ∈ Bw,τL,q,a(Rn), equipped with the norm

‖f‖Bw,τL,q,a(Ω) := inf{‖g‖Bw,τL,q,a(Rn) : g ∈ Bw,τL,q,a(Rn), f = g|Ω}.

(ii) Fw,τL,q,a(Ω) is defined to be the set of all f ∈ D′(Ω) such that f = g|Ω for some

g ∈ Fw,τL,q,a(Rn), equipped with the norm

‖f‖Fw,τL,q,a(Ω) := inf{‖g‖Fw,τL,q,a(Rn) : g ∈ Fw,τL,q,a(Rn), f = g|Ω}.

(iii) Nw,τ
L,q,a(Ω) is defined to be the set of all f ∈ D′(Ω) such that f = g|Ω for some

g ∈ Nw,τ
L,q,a(Rn), equipped with the norm

‖f‖Nw,τL,q,a(Ω) := inf{‖g‖Nw,τL,q,a(Rn) : g ∈ Nw,τ
L,q,a(Rn), f = g|Ω}.

(iv) Ew,τL,q,a(Ω) is defined to be the set of all f ∈ D′(Ω) such that f = g|Ω for some

g ∈ Ew,τL,q,a(Rn), equipped with the norm

‖f‖Ew,τL,q,a(Ω) := inf{‖g‖Ew,τL,q,a(Rn) : g ∈ Ew,τL,q,a(Rn), f = g|Ω}.

A routine argument shows that Bw,τL,q,a(Ω), Fw,τL,q,a(Ω), Ew,τL,q,a(Ω) and Nw,τ
L,q,a(Ω) are all

quasi-Banach spaces.
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Here we are interested in bounded Lipschitz domains. Let κ : Rn−1 → R be a Lipschitz

function. Then define

Ωκ,+ := {(x′, xn) ∈ Rn : xn > κ(x′)}
Ωκ,− := {(x′, xn) ∈ Rn : xn < κ(x′)}.

Let σ ∈ Sn be a permutation. Then define

Ωκ,±;σ := {(x′, xn) ∈ Rn : σ(x′, xn) ∈ Ωκ,±}.

By a Lipschitz domain, we mean an open set of the form

J⋃
j=1

σj(Ωfj ,+) ∩
I⋃
i=1

τi(Ωgi,−),

where the functions f1, . . . , fJ and g1, . . . , gI are all Lipschitz functions and the mappings

σ1, . . . , σJ and τ1, . . . , τK belong to Sn. With Theorem 5.1, and a partition of unity,

without loss of generality, we may assume that Ω := Ωκ,± for some Lipschitz function

κ : Rn → R. Furthermore, by symmetry, we only need to deal with the case when

Ω := Ωκ,+.

To specify, we let L be the positive Lipschitz constant of κ, the smallest number L

such that for all x′, y′ ∈ Rn−1, |κ(x′) − κ(y′)| ≤ L|x′ − y′|. Also, we let K be the cone

given by

K := {(x′, xn) ∈ Rn : L|x′| > −xn}.

We choose Ψ ∈ D(Rn) so that suppΨ ⊂ K and
∫
Rn Ψ(x) dx 6= 0. Let

Φ(x) := Ψ(x)−Ψ−1(x) = Ψ(x)− 2−nΨ(2−1x)

for all x ∈ Rn. Let L � 1 and choose η, ψ ∈ C∞c (K) so that ϕ := η − η−1 satisfies the

moment condition of order L and ψ∗Ψ+
∑∞
j=1 ϕj ∗Φj = δ in S ′(Rn). DefineMΩ

2−j ,af(x),

for all j ∈ Z+, f ∈ D′(Ω) and x ∈ Rn, by

MΩ
2−j ,af(x) :=


sup
y∈Ω

|Ψ ∗ f(y)|
(1 + |x− y|)a

, j = 0,

sup
y∈Ω

|Φj ∗ f(y)|
(1 + 2j |x− y|)a

, j ∈ N

=


sup
y∈Ω

|〈f,Ψ(y − ·)〉|
(1 + |x− y|)a

, j = 0,

sup
y∈Ω

|〈f,Φj(y − ·)〉|
(1 + 2j |x− y|)a

, j ∈ N.

Observe that this definition makes sense. More precisely, the pairings 〈f,Ψ(y − ·)〉 and

〈f,Φj(y− ·)〉 are well defined, because Ψ(y− ·) and Φj(y− ·) have compact support and,

moreover, are supported on Ω, as the following calculation shows:

supp(Ψ(y − ·)), supp(Φj(y − ·)) ⊂ y −K ⊂ {y + z : |zn| > K|z′|} ⊂ Ω.

Here we used the fact that Ω = Ωκ,+ to obtain the last inclusion.

In what follows, the mapping (x′, xn) 7→ (x′, 2κ(x′)− xn) =: (y′, yn) is said to induce

an isomorphism of L(Rn) with equivalent norms if f ∈ L(Rn) if and only if gf (y′, yn) :=

f(x′, 2κ(x′)− xn) ∈ L(Rn) and moreover ‖f‖L(Rn) ∼ ‖gf‖L(Rn).
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Now we aim to prove the following theorem.

Theorem 5.3. Let Ω := Ωκ,+ be as above and assume that the reflection

ι : (x′, xn) 7→ (x′, 2κ(x′)− xn)

induces an isomorphism of L(Rn) with equivalent norms. Then

(i) f ∈ Bw,τL,q,a(Ω) if and only if f ∈ D′(Ω) and

‖{χΩMΩ
2−j ,af}j∈Z+

‖`q(Lwτ (Rn,Z+)) <∞,

and there exists a positive constant C, independent of f , such that

C−1‖f‖Bw,τL,q,a(Ω) ≤ ‖{χΩMΩ
2−j ,af}j∈Z+‖`q(Lwτ (Rn,Z+)) ≤ C‖f‖Bw,τL,q,a(Ω); (5.1)

(ii) f ∈ Fw,τL,q,a(Ω) if and only if f ∈ D′(Ω) and

‖{χΩMΩ
2−j ,af}j∈Z+

‖Lwτ (`q(Rn,Z+)) <∞,

and there exists a positive constant C, independent of f , such that

C−1‖f‖Fw,τL,q,a(Ω) ≤ ‖{χΩMΩ
2−j ,af}j∈Z+

‖Lwτ (`q(Rn,Z+)) ≤ C−1‖f‖Fw,τL,q,a(Ω);

(iii) f ∈ Nw,τ
L,q,a(Ω) if and only if f ∈ D′(Ω) and

‖{χΩMΩ
2−j ,af}j∈Z+‖`q(NLwτ (Rn,Z+)) <∞,

and there exists a positive constant C, independent of f , such that

C−1‖f‖Nw,τL,q,a(Ω) ≤ ‖{χΩMΩ
2−j ,af}j∈Z+

‖`q(NLwτ (Rn,Z+)) ≤ C‖f‖Nw,τL,q,a(Ω);

(iv) f ∈ Ew,τL,q,a(Ω) if and only if f ∈ D′(Ω) and

‖{χΩMΩ
2−j ,af}j∈Z+

‖ELwτ (`q(Rn,Z+)) <∞,

and there exists a positive constant C, independent of f , such that

C−1‖f‖Ew,τL,q,a(Ω) ≤ ‖{χΩMΩ
2−j ,af}j∈Z+‖ELwτ (`q(Rn,Z+)) ≤ C‖f‖Ew,τL,q,a(Ω).

Proof. By similarity, we only give the proof of (i). The second inequality of (5.1) follows

from Corollary 3.6. Let us prove the first inequality of (5.1). Let f ∈ Bw,τL,q,a(Ω). Choose

G ∈ Bw,τL,q,a(Rn) so that

G|Ω = f, ‖f‖Bw,τL,q,a(Ω) ≤ ‖G‖Bw,τL,q,a(Rn) ≤ 2‖f‖Bw,τL,q,a(Ω).

Define

F := ψ ∗Ψ ∗G+

∞∑
j=1

ϕj ∗ Φj ∗G.

It is easy to see that F |Ω = f and F ∈ S ′(Rn), since ψ ∗Ψ +
∑∞
j=1 ϕj ∗Φj = δ in S ′(Rn).

Then ‖f‖Bw,τL,q,a(Ω) . ‖F‖Bw,τL,q,a(Rn). To show the first inequality of (5.1), it suffices to

show that

‖F‖Bw,τL,q,a(Rn) . ‖{χΩMΩ
2−j ,af}j∈Z+

‖`q(Lwτ (Rn,Z+)).

Since

‖F‖Bw,τL,q,a(Rn) . ‖{MΩ
2−j ,af}j∈Z+

‖`q(Lwτ (Rn,Z+)),
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we only need to prove that

‖{MΩ
2−j ,af}j∈Z+

‖`q(Lwτ (Rn,Z+)) . ‖{χΩMΩ
2−j ,af}j∈Z+

‖`q(Lwτ (Rn,Z+)).

To see this, noticing that if (x′, xn) ∈ Ω and (y′, yn) ∈ Ω, since κ is a Lipschitz mapping,

we conclude that

|x′ − y′|2 + |yn + xn − 2κ(x′)|2 ∼ |x′ − y′|2 + |yn − κ(y′) + xn − κ(x′)|2

∼ |x′−y′|2 + |yn−κ(y′)−xn+κ(x′)|2 + |κ(y′)−κ(x′)|2

& |x′ − y′|2 + |yn − xn|2 ∼ |x− y|2.

From this, together with the isomorphism property with equivalent norms of the trans-

form (x′, xn) ∈ Rn \ Ω 7→ (x′, 2κ(x′)− xn) ∈ Ω, we deduce that

‖{χRn\ΩMΩ
2−j ,af}j∈Z+

‖`q(Lwτ (Rn,Z+)) . ‖{χΩMΩ
2−j ,af}j∈Z+

‖`q(Lwτ (Rn,Z+)),

which further implies the first inequality of (5.1).

To conclude Section 5, we present two examples concerning Theorem 5.3.

Example 5.4. It is necessary to assume that (x′, xn) 7→ (x′, 2κ(x′) − xn) induces an

isomorphism of L(Rn) with equivalent norms. Here is a counterexample which shows

this.

Let n = 1, L(R) := L1((1+tχ(0,∞)(t))
−N dt) and wj(x) := 1 for all x ∈ R and j ∈ Z+.

Consider the space B0,0
L,∞,2((0,∞)), whose notation is based on the convention (3.1).

A passage to the higher dimensional case is readily done. In this case the isomorphism

is t ∈ R 7→ −t ∈ R. Consider the corresponding maximal operators, for all f ∈ D′(0,∞)

and t ∈ R,

M(0,∞)
1,2 f(t) := sup

s∈(0,∞)

|ψ ∗ f(s)|
(1 + |t− s|)2

and, for j ∈ N,

M(0,∞)
2−j ,2 f(t) := sup

s∈(0,∞)

|ϕj ∗ f(s)|
(1 + 2j |t− s|)2

,

where ψ and ϕ belong to C∞c ((−2,−1)) satisfying ϕ = ∆Lψ, and ϕj(t) = 2jϕ(2jt)

for all t ∈ R and j ∈ N. Let f0 ∈ C∞c ((2, 5)) be such that χ(3,4) ≤ f0 ≤ χ(2,5). Set

fa(t) := f0(t− a) for all t ∈ R and some a� 1. Then, for all t ∈ R, we have

M(0,∞)
1,2 fa(t) ∼ 1

(1 + |t− a|)2
and M(0,∞)

2−j ,2 fa(t) ∼ 2−2jL

(1 + |t− a|)2
.

Consequently,

‖{χ(0,∞)M
(0,∞)
2−j ,2 fa}j∈Z+‖`∞(L(R,Z+)) ∼

∫ ∞
0

1

(1 + t)N (1 + |t− a|)2
dt.

Let ρ : R→ R be a smooth function satisfying χ(8/5,∞) ≤ ρ ≤ χ(3/2,∞). If f ∈ B0,0
L,∞,2(Rn)

is such that f |(0,∞) = fa, then ‖f‖B0,0
L,∞,2(Rn) = ‖ρf‖B0,0

L,∞,2(Rn) . ‖f‖B0,0
L,∞,2(Rn) by

Theorem 5.1. Consequently,

‖fa‖B0,0
L,∞,2(Ω) ∼ ‖f0‖B0,0

L,∞,2(Rn) ∼ 1/a. (5.2)
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Moreover,

‖{χ(0,∞)M
(0,∞)
2−j ,2 fa}j∈Z+‖`∞(L(R,Z+))

∼
∫ ∞

0

1

(1 + t)N (1 + |t− a|)2
dt ∼

(∫ a/2

0

+

∫ ∞
a/2

)
1

(1 + t)N (1 + |t− a|)2
dt

.
∫ a/2

0

1

(1 + t)N (1 + |a|)2
dt+

∫ ∞
a/2

1

(1 + a)N (1 + |t− a|)2
dt .

1

a2
.

In view of the above calculation and (5.2), the conclusion (5.1) of Theorem 5.3 fails unless

we assume that (x′, xn+1) 7→ (x′, 2κ(x′)− xn+1) induces an isomorphism of L(Rn).

Example 5.5. As examples satisfying the assumption of Theorem 5.3, we can list weak-

Lp spaces, Orlicz spaces and Morrey spaces. For a detailed discussion of Orlicz spaces

and Morrey spaces, see Section 10. Here we content ourselves with giving the definition

of the norm and checking the assumption of Theorem 5.3 for Orlicz spaces and Morrey

spaces.

(i) By a Young function we mean a convex homeomorphism Φ : [0,∞)→ [0,∞).

Given a Young function Φ, we define the Orlicz space LΦ(Rn) as the set of all mea-

surable functions f : Rn → C such that

‖f‖LΦ(Rn) := inf

{
λ ∈ (0,∞) :

∫
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
<∞.

Indeed, to check the assumption of Theorem 5.3 for weak-Lp spaces and Orlicz spaces,

we just have to bear in mind that the Jacobian of the involution ι is 1 and hence we can

use the formula for the change of variables.

(ii) The Morrey norm ‖ · ‖Mp
u(Rn) with 0 < u ≤ p ≤ ∞ is given by

‖f‖Mp
u(Rn) := sup

x∈Rn, r∈(0,∞)

rn/p−n/u
[ ∫

B(x,r)

|f(y)|u dy
]1/u

,

where B(x, r) denotes the ball centered at x of radius r ∈ (0,∞) and f is a measur-

able function. Unlike the case of Orlicz spaces, for Morrey spaces, we need one more

observation. Since ι ◦ ι = idRn , we have only to prove that ι induces a bounded map-

ping on Morrey spaces. This can be shown as follows: Observe that |x − y| < r implies

|ι(x) − ι(y)| < Dr, since ι(x) = (x′, 2κ(x′) − xn) is a Lipschitz mapping with Lipschitz

constant, say, D. Therefore, ι(B(x, r)) ⊂ B(ι(x), Dr). Hence

rn/p−n/u
[ ∫

B(x,r)

|f(ι(y))|u dy
]1/u

= rn/p−n/u
[ ∫

ι(B(x,r))

|f(y)|u dy
]1/u

≤ rn/p−n/u
[ ∫

B(ι(x),Dr)

|f(y)|u dy
]1/u

≤ Dn/u−n/p‖f‖Mp
u(Rn),

which implies that ι induces a bounded mapping on the Morrey space Mp
u(Rn) with

norm less than or equal to Dn/u−n/p. As a result, we see that Morrey spaces satisfy the

assumption of Theorem 5.3.
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Here, as announced in Section 1, we discuss the boundedness of pseudo-differential oper-

ators.

6.1. Boundedness of Fourier multipliers. We now refine Proposition 3.18. Through-

out Section 6.1, we use a system (Φ, ϕ) of Schwartz functions satisfying (1.3) and (1.4).

For ` ∈ N and α ∈ R, m ∈ C`(Rn\{0}) is assumed to be such that, for all ‖σ‖1 ≤ `,

sup
R∈(1,∞)

[
R−n+2α+2‖σ‖1

∫
R≤|ξ|<2R

|∂σξm(ξ)|2 dξ
]

=: Aσ,1 <∞ (6.1)

and ∫
|ξ|<1

|∂σξm(ξ)|2 dξ =: Aσ,2 <∞. (6.2)

The Fourier multiplier Tm is defined by setting, for all f ∈ S(Rn), T̂mf := mf̂ .

Lemma 6.1. Let m be as in (6.1) and (6.2) and K its inverse Fourier transform. Then

K ∈ S ′(Rn).

Proof. Let ϕ ∈ S(Rn). Then

〈K,ϕ〉 =

∫
Rn
m(ξ)ϕ̂(ξ) dξ =

(∫
|ξ|≥1

+

∫
|ξ|<1

)
m(ξ)ϕ̂(ξ) dξ =: I1 + I2.

Let M = n− α+ 1. For I1, by the Hölder inequality and (6.1), we see that

|I1| .
∞∑
k=0

∫
2k≤|ξ|<2k+1

|m(ξ)| |ϕ̂(ξ)| dξ

.
∞∑
k=0

‖(1 + | · |)M ϕ̂‖L∞(Rn)

(1 + 2k)M

∫
2k≤|ξ|<2k+1

|m(ξ)| dξ

.
∞∑
k=0

2nk/2‖(1 + | · |)M ϕ̂‖L∞(Rn)

(1 + 2k)M

[ ∫
2k≤|ξ|<2k+1

|m(ξ)|2 dξ
]1/2

.
∞∑
k=0

2k(n−α)‖(1 + | · |)M ϕ̂‖L∞(Rn)

(1 + 2k)M
. ‖(1 + | · |)M ϕ̂‖L∞(Rn).

For I2, by the Hölder inequality and (6.2), we conclude that

|I2| . ‖ϕ̂‖L∞(Rn)

[ ∫
|ξ|<1

|m(ξ)|2 dξ
]1/2

. ‖ϕ̂‖L∞(Rn).

This finishes the proof.

[51]



52 6. Boundedness of operators

The next lemma concerns a piece of information adapted to our new setting.

Lemma 6.2. Let Ψ, ψ be Schwartz functions on Rn satisfying, respectively, (1.3) and

(1.4). Assume, in addition, that m satisfies (6.1) and (6.2). If a ∈ (0,∞) and ` > a+n/2,

then there exists a positive constant C such that, for all j ∈ Z+,∫
Rn

(1 + 2j |z|)a|(K ∗ ψj)(z)| dz ≤ C2−jα,

where ψ0 = Ψ and ψj(·) = 2−jnψ(2j ·).

Proof. The proof for j ∈ N is just [102, Lemma 3.2(i)] with t = 2−j . So we still need

to prove the case when j = 0. Its proof is simple but for convenience of the reader, we

supply the details. When j = 0, choose µ such that µ > n/2 and a + µ ≤ `. From the

Hölder inequality, the Plancherel theorem and (6.2), we deduce that[ ∫
Rn

(1 + |z|)a|(K ∗Ψ)(z)| dz
]2

.
∫
Rn

(1 + |z|)−2µ dz

∫
Rn

(1 + |z|)2(a+µ)|(K ∗Ψ)(z)|2 dz

.
∫
Rn

(1 + |z|)2`|(K ∗Ψ)(z)|2 dz

.
∑
|σ|≤`

∫
Rn
|zσ(K ∗Ψ)(z)|2 dz .

∑
|σ|≤`

∫
|ξ|<2

|∂σξ [m(ξ)]|2 dz . 1,

which completes the proof.

Next we show that, in a suitable way, Tm can also be defined on the whole spaces

Fw,τL,q,a(Rn) and Bw,τL,q,a(Rn). Let Φ, ϕ be Schwartz functions on Rn that satisfy, respec-

tively, (1.3) and (1.4). Then there exist Φ† ∈ S(Rn), satisfying (1.3), and ϕ† ∈ S(Rn),

satisfying (1.4), such that

Φ† ∗ Φ +

∞∑
i=1

ϕ†i ∗ ϕi = δ0 (6.3)

in S ′(Rn). For any f ∈ Fw,τL,q,a(Rn) or Bw,τL,q,a(Rn), we define a linear functional Tmf on

S(Rn) by setting, for all φ ∈ S(Rn),

〈Tmf, φ〉 := f ∗ Φ† ∗ Φ ∗ φ ∗K(0) +
∑
i∈N

f ∗ ϕ†i ∗ ϕi ∗ φ ∗K(0) (6.4)

as long as the right-hand side converges. In this sense, we say Tmf ∈ S ′(Rn). The following

result shows that the right-hand side of (6.4) converges and Tmf in (6.4) is well defined.

Lemma 6.3. Let ` ∈ (n/2,∞), α ∈ R, a ∈ (0,∞), α1, α2, α3, τ ∈ [0,∞), q ∈ (0, ∞], w ∈
Wα3
α1,α2

and f ∈ Fw,τL,q,a(Rn) or Bw,τL,q,a(Rn). Then the series in (6.4) is convergent and the

definition of Tmf is independent of the choice of (Φ†,Φ, ϕ†, ϕ). Moreover, Tmf ∈ S ′(Rn).

Proof. Due to similarity, we skip the proof for Besov spaces Bw,τL,q,a(Rn). Assume first

that f ∈ Fw,τL,q,a(Rn). Let (Ψ†,Ψ, ψ†, ψ) be another set of functions satisfying (6.3). Since
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φ ∈ S(Rn), by the Calderón reproducing formula, we know that

φ = Ψ† ∗Ψ ∗ φ+
∑
j∈N

ψ†j ∗ ψj ∗ φ

in S(Rn). Thus,

f ∗ Φ† ∗ Φ ∗ φ ∗K(0) +
∑
i∈N

f ∗ ϕ†i ∗ ϕi ∗ φ ∗K(0)

= f ∗ Φ† ∗ Φ ∗
(

Ψ† ∗Ψ ∗ φ+
∑
j∈N

ψ†j ∗ ψj ∗ φ
)
∗K(0)

+
∑
i∈N

f ∗ ϕ†i ∗ ϕi ∗
(

Ψ† ∗Ψ ∗ φ+
∑
j∈N

ψ†j ∗ ψj ∗ φ
)
∗K(0)

= f ∗ Φ† ∗ Φ ∗Ψ† ∗Ψ ∗ φ ∗K(0) + f ∗ Φ† ∗ Φ ∗ ψ†1 ∗ ψ1 ∗ φ ∗K(0)

+ f ∗ ϕ†1 ∗ ϕ1 ∗Ψ† ∗Ψ ∗ φ ∗K(0) +
∑
i∈N

i+1∑
j=i−1

f ∗ ϕ†i ∗ ϕi ∗ ψ
†
j ∗ ψj ∗ φ ∗K(0),

where the last equality follows from the fact that ϕi ∗ ψj = 0 if |i− j| ≥ 2.

Notice that∣∣∣∣ ∫
Rn
f ∗ ϕi(y − z)ϕi(−y) dy

∣∣∣∣ . ∑
k∈Zn

2in

(1 + |k|)M

∫
Qik

|ϕi ∗ f(y − z)| dy

for M sufficiently large. As w ∈ Wα3
α1,α2

, we see that∫
Qik

|ϕi ∗ f(y − z)| dy . 2i(n−α1)(1 + 2i|z|)α32−inτ‖f‖Aw,τL,q,a(Rn).

Thus, by Lemma 6.2, we conclude that∑
i∈N
|f ∗ ϕi ∗ ϕ†i ∗ ψi ∗ ψ

†
i ∗ φ ∗K(0)|

=
∑
i∈N

∫
Rn
|f ∗ ϕi ∗ ϕ†i (−z)ψi ∗ ψ

†
i ∗ φ ∗K(z)| dz

.
∑
i∈N

2i(n−α1−nτ)‖f‖Aw,τL,q,a(Rn)

∫
Rn

∑
k∈Zn

2in(1 + 2i|z|)α3

(1 + |k|)M
|ψi ∗ ψi ∗ f(z)| dz

.
∑
i∈N

2i(n−α1−nτ)2in‖f‖Aw,τL,q,a(Rn)

∫
Rn

(1 + 2i|z|)α3

∫
Rn

2−iM

(1 + |y − z|)M
|ψi ∗ f(y)| dy dz

.
∑
i∈N

2i(2n−α1−nτ+α3−M)‖f‖Aw,τL,q,a(Rn)

∫
Rn

(1 + 2i|y|)α3 |ψi ∗ f(y)| dy

.
∑
i∈N

2i(2n−α1−nτ−M)‖f‖Aw,τL,q,a(Rn) . ‖f‖Aw,τL,q,a(Rn),

where a is an arbitrary positive number.
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By an argument similar to the above, we conclude that∣∣∣f ∗ Φ† ∗ Φ ∗
(

Ψ† ∗Ψ ∗ φ+
∑
j∈N

ψ†j ∗ ψj ∗ φ
)
∗K(0)

∣∣∣
+
∣∣∣∑
i∈N

f ∗ ϕ†i ∗ ϕi ∗
(

Ψ† ∗Ψ ∗ φ+
∑
j∈N

ψ†j ∗ ψj ∗ φ
)
∗K(0)

∣∣∣ <∞,
which, together with the Calderón reproducing formula, further implies that

f ∗ Φ† ∗ Φ ∗ φ ∗K(0) +
∑
i∈N

f ∗ ϕ†i ∗ ϕi ∗ φ ∗K(0)

= f ∗ Φ† ∗ Φ ∗
(

Ψ† ∗Ψ ∗ φ+
∑
j∈N

ψ†j ∗ ψj ∗ φ
)
∗K(0)

+
∑
i∈N

f ∗ ϕ†i ∗ ϕi ∗
(

Ψ† ∗Ψ ∗ φ+
∑
j∈N

ψ†j ∗ ψj ∗ φ
)
∗K(0)

= f ∗Ψ† ∗Ψ ∗Ψ ∗K(0) +
∑
i∈N

f ∗ ϕ†i ∗ ϕi ∗Ψ ∗K(0).

Thus, Tmf in (6.4) is independent of the choice of (Φ†,Φ, ϕ†, ϕ). Moreover, the previous

argument also implies that Tmf ∈ S ′(Rn).

By Lemma 6.2, we immediately have the following conclusion; we omit the details.

Lemma 6.4. Let α ∈ R, a ∈ (0,∞), ` ∈ N, let Φ,Ψ ∈ S(Rn) satisfy (1.3) and let

ϕ,ψ ∈ S(Rn) satisfy (1.4). Assume that m satisfies (6.1) and (6.2) and f ∈ S ′(Rn) is

such that Tmf ∈ S ′(Rn). If ` > a+n/2, then there exists a positive constant C such that,

for all x, y ∈ Rn and j ∈ Z+,

|(Tmf ∗ ψj)(y)| ≤ C2−jα(1 + 2j |x− y|)a(ϕ∗jf)a(x).

Now we are ready to prove the following conclusion.

Theorem 6.5. Let α ∈ R, a ∈ (0,∞), α1, α2, α3, τ ∈ [0,∞), q ∈ (0, ∞], w ∈ Wα3
α1,α2

and w̃(x, 2−j) = 2jαw(x, 2−j) for all x ∈ Rn and j ∈ Z+. Suppose that m satisfies (6.1)

and (6.2) with ` ∈ N and ` > a+n/2. Then there exists a positive constant C1 such that,

for all f ∈ Fw,τL,q,a(Rn),

‖Tmf‖F w̃,τL,q,a(Rn)
≤ C1‖f‖Fw,τL,q,a(Rn),

and a positive constant C2 such that, for all f ∈ Bw̃,τL,q,a(Rn),

‖Tmf‖Bw̃,τL,q,a(Rn)
≤ C2‖f‖Bw,τL,q,a(Rn).

Similar assertions hold for Ew,τL,q,a(Rn) and Nw,τ
L,q,a(Rn).

Proof. By Lemma 6.4 we conclude that, if ` > a+ n/2, then for all x ∈ Rn and j ∈ Z+,

2jα(ψ∗j (Tmf))a(x) . (ϕ∗jf)a(x).

Then by the definitions of Fw,τL,q,a(Rn) and Bw,τL,q,a(Rn), we immediately deduce the desired

conclusions.
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6.2. Boundedness of pseudo-differential operators. We consider the class S0
1,µ(Rn)

with µ ∈ [0, 1). Recall that a function a ∈ C∞(Rnx × Rnξ ) is said to belong to Sm1,µ(Rn) if

sup
x,ξ∈Rn

(1 + |ξ|)−m−‖~α‖1−µ‖~β‖1 |∂~βx∂~αξ a(x, ξ)| .~α,~β 1

for all multiindices ~α and ~β. One defines, for all x ∈ Rn,

a(X,D)(f)(x) :=

∫
Rn
a(x, ξ)f̂(ξ)eix·ξ dξ,

first on S(Rn), and then on S ′(Rn) via duality.

We aim to establish the following.

Theorem 6.6. Let w ∈ Wα3
α1,α2

with α1, α2, α3 ∈ [0,∞) and suppose a quasi-normed

function space L(Rn) satisfies (L1) through (L6). Let µ ∈ [0, 1), τ ∈ (0,∞) and q ∈
(0,∞]. Assume, in addition, that (3.28) holds, that is, a ∈ (N0 + α3,∞), where N0 is as

in (L6). Then all pseudo-differential operators with symbols in S0
1,µ(Rn) are bounded on

Aw,τL,q,a(Rn).

With the following decomposition, we have only to consider the boundedness of

a(·, ·) ∈ S−M0
1,µ (Rn) with an integer M0 sufficiently large.

Lemma 6.7 ([88]). Let µ ∈ [0, 1), a ∈ Sm1,µ(Rn) and N ∈ N. Then there exists a symbol

b ∈ Sm1,µ(Rn) such that

a(X,D) = (1 + ∆2N ) ◦ b(X,D) ◦ (1 + ∆2N )−1.

Based upon Lemma 6.7, we plan to treat

A(X,D) := b(X,D) ◦ (1 + ∆2N )−1 ∈ S−2N
1,µ (Rn),

B(X,D) := ∆2N ◦ b(X,D) ◦ (1 + ∆2N )−1 ∈ S0
1,µ(Rn).

The following is one of the key observations in this subsection.

Lemma 6.8. Let µ ∈ [0, 1), w, q, τ , a and L be as in Theorem 6.6. Assume that a ∈
S0

1,µ(Rn) has the property that a(·, ξ) = 0 if |ξ| ≥ 1/2. Then a(X,D) is bounded on

Aw,τL,q,a(Rn).

Proof. We fix Φ ∈ S(Rn) so that Φ̂(ξ) = 1 whenever |ξ| ≤ 1 and Φ̂(ξ) = 0 whenever

|ξ| ≥ 2. Then, since a(·, ξ) = 0 if |ξ| ≥ 1/2, we know that, for all f ∈ Aw,τL,q,a(Rn),

a(X,D)f = a(X,D)(Φ∗f). Hence, as the mapping f ∈ Aw,τL,q,a(Rn) 7→ Φ∗f ∈ Aw,τL,q,a(Rn)

is continuous, without loss of generality we may assume that the frequency support of f

is contained in {ξ ∈ Rn : |ξ| ≤ 2}. Let j ∈ Z+ and z ∈ Rn be fixed. Then, for all x ∈ Rn,

ϕj ∗ [a(X,D)f ](x) =

∫
Rn
ϕj(x− y)

[ ∫
Rn
a(y, ξ)f̂(ξ)eiξy dξ

]
dy

=

∫
Rn

[ ∫
Rn
ϕj(x− y)a(y, ξ)eiξy dy

]
f̂(ξ) dξ

=

∫
Rn

[ ∫
Rn
ϕj(x− y)a(y, ·)ei·y dy

]∧
(z)f(z) dz
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by the Fubini theorem. Notice that, again by the Fubini theorem,[ ∫
Rn
ϕj(x− y)a(y, ·)ei·y dy

]∧
(z) =

∫
Rn
e−izξ

[ ∫
Rn
ϕj(x− y)a(y, ξ)eiξy dy

]
dξ

=

∫
Rn
ϕj(x− y)

[ ∫
Rn
a(y, ξ)eiξ(y−z) dξ

]
dy.

Let us set τj := (4−j∆)−Lϕj with L ∈ N large enough, say

L = ba+ n+ α1 + α2 + 1c.

Then τj ∈ S(Rn) and ϕj(x) = 2−2jL∆Lτj(x) for all j ∈ Z+ and x ∈ Rn. Consequently,[ ∫
Rn
ϕj(x− y)a(y, ·)ei·y dy

]∧
(z) = 2−2jL

∫
Rn
τj(x− y)∆L

y

[ ∫
Rn
a(y, ξ)eiξ(y−z) dξ

]
dy

by integration by parts.

Again by integration by parts, we conclude that

∆L
y

(∫
Rn
a(y, ξ)eiξ(y−z) dξ

)
=

∑
‖~α1‖1+‖~α2‖1=2L

∫
Rn

[ξ~α2∂~α1
y a(y, ξ)]eiξ(y−z) dξ

=
1

(1 + |y − z|2)L

∑
‖~α1‖1+‖~α2‖1=2L

∫
Rn

(1−∆ξ)
L[ξ~α2∂~α1

y a(y, ξ)]eiξ(y−z) dξ.

Then, since a ∈ S0
1,µ(Rn) and a(·, ξ) = 0 if |ξ| ≥ 1/2, we see that, for all ξ, y ∈ Rn,

|(1−∆ξ)
L(ξ~α2∂~α1

y a(y, ξ))| . χB(0,2)(ξ), (6.5)

and hence, for all y, z ∈ Rn,∣∣∣∣∆L
y

(∫
Rn
a(y, ξ)eiξ(y−z) dξ

)∣∣∣∣ . 1

(1 + |y − z|2)L
.

Consequently, for all j ∈ Z+ and x, y, z ∈ Rn,∣∣∣∣[ ∫
Rn
ϕj(x− y)a(y, ·)ei·y dy

]∧
(z)

∣∣∣∣ . 2−2jL

∫
Rn

|τj(x− y)|
(1 + |y − z|2)L

dy, (6.6)

and hence

|ϕj ∗ (a(X,D)f)(x+ z)|
(1 + 2j |z|)a

.
∫
Rn

∫
Rn

2−2jL|τj(x+ z − y)|
(1 + 2j |z|)a(1 + |y − w|2)L

|f(w)| dy dw

.
∫
Rn

∫
Rn

2−2jL|τj(x+ z − y)|
(1 + |z|)a(1 + |y − w|2)L

|f(w)| dy dw

. 2−2jL sup
w∈Rn

|f(x+ w)|
(1 + |w|)a

.

A similar argument also works for Φ ∗ (a(X,D)f) (without using integration by parts)

and we obtain

|Φ ∗ (a(X,D)f)(x+ z)|
(1 + |z|)a

. sup
w∈Rn

|f(x+ w)|
(1 + |w|)a

.
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With this pointwise estimate, the condition on L and the assumption that µ < 1, we

obtain the desired result.

If we reexamine the above calculation, we obtain the following:

Lemma 6.9. Assume that µ ∈ [0, 1) and a ∈ S−2M0
1,µ (Rn) satisfies a(·, ξ) = 0 if 2k−2 ≤

|ξ| ≤ 2k+2. Then a(X,D) is bounded on Aw,τL,q,a(Rn). Moreover, there exist a positive

constant E and a positive constant C(E), depending on E, such that the operator norm

has the property that

‖a(X,D)‖Aw,τL,q,a(Rn)→Aw,τL,q,a(Rn) ≤ C(E)2−Ek

provided M0 ∈ (1,∞) is large enough.

Proof. Let us suppose that M0 > 2L+ n, where L ∈ N is chosen so that

L = ba+ n+ α1 + α2 + nτ + 1c. (6.7)

Notice that this time a(X,D)f = a(X,D)(
∑k+3
i=k−3 ϕi ∗ f) for all f ∈ Aw,τL,q,a(Rn). If we

go through a similar argument as we did for (6.6) with the condition on L replaced by

(6.7), we see that, for all j ∈ Z+ and x, z ∈ Rn,∣∣∣∣[ ∫
Rn
ϕj(x− y)a(y, ·)ei·y dy

]∧
(z)

∣∣∣∣ . 2−2jL+k(4L−2M0+n)

∫
Rn

|τj(x− y)|
(1 + |y − z|2)L

dy. (6.8)

Indeed, we just need to replace (6.5) in the proof of (6.6) by the following estimate, for

all k ∈ Z+, ξ, y ∈ Rn and multi-indices α, β such that ‖α‖1 + ‖β‖1 = 2L:

|(1−∆ξ)
L(ξα∂βy a(y, ξ))| . 22k(2L−M0)χB(0,2k+2)\B(0,2k−2)(ξ).

By (6.8), we conclude that, for all j ∈ Z+ and x, z ∈ Rn,

|ϕj ∗ (a(X,D)f)(x+ z)|
(1 + 2j |z|)a

.
∫
Rn

∫
Rn

2−2jL+k(4L−2M0+n)|τj(x+ z − y)|
(1 + 2j |z|)a(1 + |y − w|2)L

3∑
l=−3

|ϕk+l ∗ f(w)| dy dw

. 2−2jL+k(4L−2M0+a+n)
3∑

l=−3

sup
w∈Rn

|ϕk+l ∗ f(x+ w)|
(1 + 2k+l|w|)a

.

Consequently,

|ϕj(D)(a(X,D)f)(x+ z)|
(1 + 2j |z|)a

. 2−2jL+k(4L−2M0+a+n) sup
w∈Rn

l∈[−3,3]∩Z

|ϕk+l(D)f(x+ w)|
(1 + 2k+l|w|)a

. (6.9)

Combining (6.9) and Lemma 2.9 completes the proof.

In view of the atomic decomposition, we have the following conclusion.

Lemma 6.10. Let w be as in Theorem 6.6. Assume that a ∈ S0
1,µ(Rn) can be expressed

as a(X,D) = ∆2M0 ◦ b(X,D) for some b ∈ S−2M0
1,µ (Rn). Then a(X,D) is bounded on

Aw,τL,q,a(Rn) as long as M0 is large.

Proof. For any f ∈ Aw,τL,q,a(Rn), by Theorem 4.5, there exist a collection {Ajk}j∈Z+, k∈Zn

of atoms and a complex sequence {λjk}j∈Z+, k∈Zn such that f =
∑∞
j=0

∑
k∈Zn λjkAjk
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in S ′(Rn) and ‖{λjk}j∈Z+, k∈Zn‖aw,τL,q,a(Rn) . ‖f‖Aw,τL,q,a(Rn). In the course of the proof of

[75, Theorem 3.1], we have shown that the atoms {Ajk}j∈Z+, k∈Zn are transformed into

molecules {a(X,D)Ajk}j∈Z+, k∈Zn satisfying the decay condition. However, if a(X,D) =

∆2M0 ◦ b(X,D), then atoms are transformed into molecules with moment condition of

order 2M0. Therefore, via Theorem 4.5 letting L = 2M0 completes the proof.

With Lemmas 6.8 through 6.10 in mind, we prove Theorem 6.6.

Proof of Theorem 6.6. We decompose a(X,D) according to Lemma 6.7. We fix an integer

M0 large enough as in Lemmas 6.9 and 6.10. Write A(X,D) := a(X,D) ◦ (1 + ∆2M0)−1

and B(X,D) := ∆2M0 ◦ a(X,D) ◦ (1 + ∆2M0)−1.

Let Φ and ϕ be as in (1.3) and (1.4) with Φ̂(ξ) +
∑
j∈N ϕ̂(2−jξ) = 1 for all ξ ∈ Rn.

Then by the Calderón reproducing formula, f = Φ ∗ f +
∑
j∈N ϕj ∗ f in S ′(Rn) for all

f ∈ Aw,τL,q,a(Rn). Therefore,

a(X,D)f(x) =

∞∑
j=0

a(X,D)(ϕj ∗ f)(x)

=

∞∑
j=0

∫
Rn
a(x, ξ)ϕ̂(2−jξ)f̂(ξ)eixξ dξ

=:

∞∑
j=0

∫
Rn
aj(x, ξ)f̂(ξ)eixξ dξ =:

∞∑
j=0

aj(X,D)f(x)

in S ′(Rn), where aj(x, ξ) := a(x, ξ)ϕ̂(2−jξ) for all x, ξ ∈ Rn, and aj(X,D) is the related

operator. It is easy to see that aj ∈ S0
1,µ(Rn) with support in the annulus 2j−2 ≤

|ξ| ≤ 2j+2. Then by Lemmas 6.8 and 6.9, A(X,D) is bounded on Aw,τL,q,a(Rn). Moreover,

Lemma 6.10 shows that B(X,D) is bounded on Aw,τL,q,a(Rn). Consequently, a(X,D) =

A(X,D) +B(X,D) is bounded on Aw,τL,q,a(Rn).

Since molecules are mapped to molecules by pseudo-differential operators if we do not

consider the moment condition, we have the following conclusion. We omit the details.

Theorem 6.11. Under the condition of Theorem 4.9, pseudo-differential operators with

symbols in S0
1,1(Rn) are bounded on Aw,τL,q,a(Rn).
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7.1. Embedding into C(Rn). Here we give a sufficient condition for our function spaces

to be embedded into C(Rn). In what follows, C(Rn) denotes the set of all continuous

functions on Rn. Notice that we do not require that the functions of C(Rn) are bounded.

Theorem 7.1. Let q ∈ (0,∞], a ∈ (0,∞) and τ ∈ [0,∞). Let w ∈ ?-Wα3
α1,α2

with

α1, α2, α3 ∈ [0,∞) and suppose a quasi-normed function space L(Rn) satisfies (L1)

through (L6) such that

a+ γ − α1 − nτ < 0. (7.1)

Then Aw,τL,q,a(Rn) is embedded into C(Rn).

Proof. By Remark 3.9(ii), it suffices to consider Bw,τL,∞,a(Rn), into which Aw,τL,q,a(Rn) is

embedded. Also let us assume (3.22). Let us prove that Bw,τL,∞,a(Rn) is embedded into

C(Rn). Fix x ∈ Rn. From the definition of the Peetre maximal operator, we deduce that,

for all f ∈ Bw,τL,q,a(Rn), j ∈ Z+ and y ∈ B(x, 1),

sup
w∈B(x,1)

|ϕj ∗ f(w)| . 2ja sup
z∈Rn

|ϕj ∗ f(y + z)|
(1 + 2j |z|)a

.

If we consider the L(Rn)-quasi-norm of both sides, then we obtain

sup
z∈B(x,1)

|ϕj ∗ f(z)| .x
2ja

‖χB(x,2−j)‖L(Rn)
‖χB(x,2−j)(ϕ

∗
jf)a‖L(Rn).

Notice that wj(x) = w(x, 2−j) ≥ 2jα1w(x, 1) for all j ∈ Z+ and x ∈ Rn, and hence from

(W2) and (7.1), it follows that

sup
z∈B(x,1)

|ϕj ∗ f(z)| .x 2j(a+γ−α1−nτ)‖f‖Bw,τL,∞,a(Rn).

Since this implies that

f = Φ ∗ f +

∞∑
j=1

ϕj ∗ f

converges uniformly over any ball with radius 1, it follows that f is continuous.

7.2. Function spaces Aw,τL,q,a(Rn) for τ large. The following theorem generalizes [101,

Theorem 1] and explains what happens if τ is too large.

Theorem 7.2. Let ω ∈ Wα3
α1,α2

with α1, α2, α3 ∈ [0,∞). Define a new index τ̃ by

τ̃ := lim sup
j→∞

sup
P∈Qj(Rn)

[
1

nj
log2

1

‖χP ‖L(Rn)

]
(7.2)

[59]
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and a new weight ω̃ by

ω̃(x, 2−j) := 2jn(τ−τ̃)ω(x, 2−j), x ∈ Rn, j ∈ Z+.

Assume that

τ > τ̃ ≥ 0. (7.3)

Then

(i) w̃ ∈ Wα3

(α1−n(τ−τ̃))+,(α2+n(τ−τ̃))+
;

(ii) for all q ∈ (0,∞) and a > α3 +N0, Fw,τL,q,a(Rn) and Bw,τL,q,a(Rn) coincide, respectively,

with F w̃∞,∞,a(Rn) and Bw̃∞,∞,a(Rn) with equivalent norms.

Proof. We only prove Fw,τL,q,a(Rn) coincides with F w̃∞,∞,a(Rn). The assertion (i) can be

proved as in Example 2.4(iii) and the proof for Bw,τL,q,a(Rn) and Bw̃∞,∞,a(Rn) is similar.

By the atomic decomposition of (Fw,τL,q,a(Rn), fw,τL,q,a(Rn)) and (F w̃∞,∞,a(Rn), f w̃∞,∞,a(Rn)),

it suffices to show that fw,τL,q,a(Rn) = f w̃∞,∞,a(Rn) with norm equivalence. Recall that, for

all λ = {λjk}j∈Z+,k∈Zn ,

‖λ‖fw,τL,q,a(Rn)

= sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥[ ∞∑
j=jP∨0

(
χPwj sup

y∈Rn

1

(1 + 2j |y|)a
∑
k∈Zn

|λjk|χQjk(·+ y)

)q]1/q∥∥∥∥
L(Rn)

and

‖λ‖f w̃∞,∞,a(Rn) = sup
x∈Rn, j∈Z+

w̃j(x) sup
y∈Rn

1

(1 + 2j |y|)a
∑
k∈Zn

|λjk|χQjk(x+ y)

= sup
(x,y)∈Rn×Rn, j∈Z+

w̃j(x)
1

(1 + 2j |y|)a
∑
k∈Zn

|λjk|χQjk(x+ y). (7.4)

By (7.4), there exist j0 ∈ Z+, k0 ∈ Zn and x0, y0 ∈ Rn such that

x0 + y0 ∈ Qj0k0
and ‖λ‖f w̃∞,∞,a(Rn) ∼ w̃j0(x0)

|λj0k0
|

(1 + 2j0 |y0|)a
.

A geometric observation shows that there exists P0 ∈ Q(Rn) whose side length is half that

of Qj0k0 and which satisfies y0 +P0 ⊂ Qj0k0 . Thus, for all x ∈ P0, we have |x−x0| . 2−j0

and hence

wj0(x0) ≤ wj0(x)(1 + 2j0 |x− x0|)α3 . wj0(x),

which, together with the assumption on τ , implies that

‖λ‖fw,τL,q,a(Rn)

= sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥[ ∞∑
j=jP∨0

(
χPwj sup

y∈Rn

1

(1 + 2j |y|)a
∑
k∈Zn

|λjk|χQjk(·+ y)

)q]1/q∥∥∥∥
L(Rn)

&
1

|P0|τ
∥∥∥χP0

wj0
|λj0k0 |

(1 + 2j |y0|)a
χQjk(·+ y0)

∥∥∥
L(Rn)

& ‖λ‖f w̃∞,∞,a(Rn)

2−j0n(τ−τ̃)‖χP0‖L(Rn)

|P0|τ
.
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Consequently,

‖λ‖fw,τL,q,a(Rn) & ‖λ‖f w̃∞,∞,a(Rn). (7.5)

To obtain the reverse inclusion, we calculate

‖λ‖fw,τL,q,a(Rn) = sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥( ∞∑
j=jP∨0

[
χPwj sup

y∈Rn

∑
k∈Zn |λjk|χQjk(·+ y)

(1 + 2j |y|)a

]q)1/q∥∥∥∥
L(Rn)

≤ ‖λ‖f w̃∞,∞,a(Rn) sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥χP[ ∞∑
j=jP∨0

(wj
w̃j

)q]1/q∥∥∥∥
L(Rn)

.

Using (7.3) and (7.4), we obtain

‖λ‖fw,τL,q,a(Rn) ≤ ‖λ‖f w̃∞,∞,a(Rn) sup
P∈Q(Rn)

1

|P |τ
∥∥∥χP [ ∞∑

j=jP∨0

2−jnq(τ−τ̃)
]1/q∥∥∥

L(Rn)

∼ ‖λ‖f w̃∞,∞,a(Rn) sup
P∈Q(Rn)

2−(jP∨0)n(τ−τ̃)

|P |τ
‖χP ‖L(Rn).

Since τ̃ ∈ [0,∞) and (7.2) holds, we see that

2−(jP∨0)n(τ−τ̃)

|P |τ
‖χP ‖L(Rn) .

2−jPn(τ−τ̃)

|P |τ
‖χP ‖L(Rn)

∼ 2jPnτ̃‖χP ‖L(Rn) ∼ |P |−τ̃‖χP ‖L(Rn) . 1.

Hence, we conclude that

‖λ‖fw,τL,q,a(Rn) . ‖λ‖f w̃∞,∞,a(Rn). (7.6)

Hence from (7.5) and (7.6), we deduce that Fw,τL,q,a(Rn) and F w̃∞,∞,a(Rn) coincide with

equivalent norms.
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In this section we are going to characterize our function spaces by means of differences

and oscillations. To this end, we need some key constructions from Triebel [91].

For any M ∈ N, Triebel [91, p. 173, Lemma 3.3.1] proved that there exist two smooth

functions ϕ and ψ on R with supp ϕ ⊂ (0, 1), supp ψ ⊂ (0, 1),
∫
R ϕ(τ) dτ = 1 and

ϕ(t)− 1
2ϕ( t2 ) = ψ(M)(t) for t ∈ R. Let ρ(x) :=

∏n
`=1 ϕ(x`) for all x = (x1, . . . , xn) ∈ Rn.

For all j ∈ Z+ and x ∈ Rn, let

Tj(x) :=

M∑
m′=1

M∑
m=1

(−1)M+m+m′+1

M !

(
M

m′

)(
M

m

)
mM (2−jmm′)−nρ

(
x

2−jmm′

)
,

where
(
M
m

)
for m ∈ {1, . . . ,M} denotes the binomial coefficient. For any f ∈ S ′(Rn), let

f j := Tj ∗ f for all j ∈ Z+, and f−1 := 0. (8.1)

From Theorem 3.5 and Triebel [91, pp. 174–175, Proposition 3.3.2], we immediately

deduce the following useful conclusions, the details of whose proofs are omitted.

Proposition 8.1. Let α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞] and let w ∈ Wα3
α1,α2

. Choose

a ∈ (0,∞) and M ∈ N such that

M > α1 ∨ (a+ nτ + α2). (8.2)

For j ∈ Z+, f ∈ S ′(Rn) and x ∈ Rn, let F (x, 2−j) := f j(x) − f j−1(x), where {f j}∞j=−1

is as in (8.1). Then:

(i) f ∈ Bw,τL,q,a(Rn) if and only if F ∈ Lw,τL,q,a(Rn+1
Z+

) and ‖F‖Lw,τL,q,a(Rn+1
Z+

) <∞. Moreover,

‖f‖Bw,τL,q,a(Rn) ∼ ‖F‖Lw,τL,q,a(Rn+1
Z+

) with the implicit constants independent of f .

(ii) f ∈ Nw,τ
L,q,a(Rn) if and only if F ∈ Nw,τ

L,q,a(Rn+1
Z+

) and ‖F‖Nw,τL,q,a(Rn+1
Z+

) <∞. Moreover,

‖f‖Nw,τL,q,a(Rn) ∼ ‖F‖Nw,τL,q,a(Rn+1
Z+

) with the implicit constants independent of f .

(iii) f ∈ Fw,τL,q,a(Rn) if and only if F ∈ Pw,τL,q,a(Rn+1
Z+

) and ‖F‖Pw,τL,q,a(Rn+1
Z+

) <∞. Moreover,

‖f‖Fw,τL,q,a(Rn) ∼ ‖F‖Pw,τL,q,a(Rn+1
Z+

) with the implicit constants independent of f .

(iv) f ∈ Ew,τL,q,a(Rn) if and only if F ∈ Ew,τL,q,a(Rn+1
Z+

) and ‖F‖Ew,τL,q,a(Rn+1
Z+

) <∞. Moreover,

‖f‖Ew,τL,q,a(Rn) ∼ ‖F‖Ew,τL,q,a(Rn+1
Z+

) with the implicit constants independent of f .

8.1. Characterization by differences. In this section, we characterize our function

spaces in terms of differences. For an arbitrary function f , we inductively define ∆M
h f

[62]
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for M ∈ N and h ∈ Rn by

∆hf := ∆1
hf := f − f(· − h) and ∆M

h f := ∆h(∆M−1
h f),

and J
(1)
a,w,L(f) and J

(2)
a,w,L(f) with a ∈ (0,∞) and w0 as in (2.5) by

J
(1)
a,w,L(f) := sup

P∈Q(Rn), |P |≥1

1

|P |τ

∥∥∥∥χPw0 sup
y∈Rn

|f(·+ y)|
(1 + |y|)a

∥∥∥∥
L(Rn)

,

J
(2)
a,w,L(f) := sup

P∈Q(Rn)

1

|P |τ

∥∥∥∥χPw0 sup
y∈Rn

|f(·+ y)|
(1 + |y|)a

∥∥∥∥
L(Rn)

.

In what follows, we denote by
∮
E
f the average of f over a measurable set E.

Theorem 8.2. Let a, α1, α2, α3, τ ∈ [0,∞), u ∈ [1,∞], q ∈ (0, ∞] and w ∈ ?-Wα3
α1,α2

. If

M ∈ N, α1 ∈ (a,M) and (8.2) holds, then there exists a positive constant C̃ := C(M),

depending on M , such that, for all f ∈ S ′(Rn) ∩ L1
loc (Rn), the following hold with the

implicit constants independent of f :

I1 := J
(1)
a,w,L(f) +

∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

(i)

∼ ‖f‖Bw,τL,q,a(Rn),

I2 := J
(1)
a,w,L(f) +

∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

(ii)

∼ ‖f‖Fw,τL,q,a(Rn),

I3 := J
(2)
a,w,L(f) +

∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z+

∥∥∥∥
`q(NLwτ (Rn,Z+))

(iii)

∼ ‖f‖Nw,τL,q,a(Rn),

I4 := J
(2)
a,w,L(f) +

∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z+

∥∥∥∥
ELwτ (`q(Rn,Z+))

(iv)

∼ ‖f‖Ew,τL,q,a(Rn).

Proof. We only prove (i), since the proofs of the other items are similar. To this end, for

any f ∈ S ′(Rn)∩L1
loc (Rn), since ρ ∈ C∞c (Rn) (see [91, pp. 174–175, Proposition 3.3.2]),

we conclude that, for all j ∈ Z+ and x ∈ Rn,

f j(x) :=

M∑
m′=1

M∑
m=1

(−1)M+m+m′−1

M !

(
M

m′

)(
M

m

)
mM

∫
Rn
ρ(y)f(x− 2−jmm′y) dy (8.3)

and hence

f j(x)− f j+1(x)

=

M∑
m′=1

M∑
m=1

(−1)M+m+m′−1

M !

(
M

m′

)(
M

m

)
mM

∫
Rn
ρ(y)f(x− 2−jmm′y) dy
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−
M∑

m′=1

M∑
m=1

(−1)M+m+m′−1

M !

(
M

m′

)(
M

m

)
mM

∫
Rn
ρ(y)f(x− 2−j−1mm′y) dy

=

M∑
m′=0

M∑
m=1

(−1)M+m+m′−1

M !

(
M

m′

)(
M

m

)
mM

∫
Rn
ρ(y)f(x− 2−jmm′y) dy

−
M∑

m′=0

M∑
m=1

(−1)M+m+m′−1

M !

(
M

m′

)(
M

m

)
mM

∫
Rn
ρ(y)f(x− 2−j−1mm′y) dy

=

M∑
m=1

(−1)M+m−1

M !

(
M

m

)
mM

∫
Rn
ρ(y)[∆M

2−jmyf(x)−∆M
2−j−1myf(x)] dy.

As a consequence, for all x ∈ Rn and u ∈ [1,∞],

sup
z∈Rn

|f j(x+ z)− f j+1(x+ z)|
(1 + 2j |z|)a

. sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(x+ z)|u

(1 + 2j |z|)au
dh

]1/u

. (8.4)

Moreover, as T0 ∈ S(Rn) and (1 + |u|)a ≤ (1 + |u+ y|)a(1 + |y|)a for all u, y ∈ Rn, we

see that, for all x ∈ Rn,

sup
y∈Rn

|f0(x+ y)|
(1 + |y|)a

= sup
y∈Rn

1

(1 + |y|)a
∣∣∣ ∫

Rn
T0(u)f(x+ y − u) du

∣∣∣
≤ sup
y∈Rn

∫
Rn

∣∣∣T0(u+ y)
∣∣∣ (1 + |u|)a

(1 + |y|)a
|f(x− u)|
(1 + |u|)a

du

. sup
u∈Rn

|f(x+ u)|
(1 + |u|)a

. (8.5)

Combining (8.4) and (8.5) with Proposition 8.1 (here we need the assumption (8.2)),

we conclude that

I1 & sup
P∈Q(Rn), |P |≥1

1

|P |τ

∥∥∥∥χPw0 sup
y∈Rn

|(f0 − f−1)(·+ y)|
(1 + |y|)a

∥∥∥∥
L(Rn)

+

∥∥∥∥{ sup
z∈Rn

|(f j − f j−1)(·+ z)|
(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

∼ ‖f‖Bw,τL,q,a(Rn),

as desired.

To show the reverse inequality, for any f ∈ Bw,τL,q,a(Rn) ∩ L1
loc (Rn), since {Tj}j∈Z+

is an approximation to the identity (see [91, pp. 174–175, Proposition 3.3.2]), if we fix

|h| ≤ C̃ 2−j and z ∈ Rn, then by [91, p. 195, (3.5.3/7)], we see that, for almost every

x ∈ Rn,[ ∮
|h|<2−j

|∆M
h f(x+ z)|u dy

]1/u

.
∞∑
l=1

{
|fj+l(x+ z)|+

[ ∮
B(x+z,C2−j)

|fj+l(y)|u dh
]1/u}

+ sup
w∈B(x+z,C2−j)

∣∣∣∣ ∫
Rn
DαT0(y)f(w + 2−jy) dy

∣∣∣∣;
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here and in what follows, fj := f j − f j−1 for all j ∈ Z+. Then[ ∮
|h|<2−j

|∆M
h f(x+ z)|u

(1 + 2j |z|)au
dh

]1/u

.
∞∑
l=1

|fj+l(x+ z)|+ [
∮
B(x+z,C2−j)

|fj+l(y)|u dy]1/u

(1 + 2j |z|)a

+ sup
w∈B(x+z,C2−j)

1

(1 + 2j |z|)a

∣∣∣∣ ∫
Rn
DαT0(y)f(w + 2−jy) dy

∣∣∣∣. (8.6)

For the second term on the right-hand side of (8.6), we have

sup
z∈Rn

[
sup

w∈B(x+z,C2−j)

1

(1 + 2j |z|)a

∣∣∣∣ ∫
Rn
DαT0(y)f(w + 2−jy) dy

∣∣∣∣]

= sup
z∈Rn

[
sup

w∈B(0,C2−j)

|(DαT0)j ∗ f̃(x+ z + w)|
(1 + 2j |z|)a

]

≤ sup
z∈Rn

sup
w∈B(0,C2−j)

|(DαT0)j ∗ f̃(x+ z + w)|
(1 + 2j |z + w|)a

[
1 + 2j(|z|+ |w|)

1 + 2j |z|

]a
. sup
z∈Rn

|(DαT0)j ∗ f̃(x+ z)|
(1 + 2j |z|)a

,

where f̃ := f(− ·). This observation, together with the fact that∥∥∥∥{ sup
z∈Rn

|(DαT0)j ∗ f̃(·+ z)|
(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

. ‖f‖Bw,τL,q,a(Rn),

implies that∥∥∥∥{ sup
z∈Rn

sup
w∈B(·+z,C2−j)

1

(1 + 2j |z|)a

∣∣∣∣ ∫
Rn
DαT0(y)f(w + 2−jy) dy

∣∣∣∣}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

. ‖f‖Bw,τL,q,a(Rn).

For the first term on the right-hand side of (8.6), we see that, for all x ∈ Rn,

sup
z∈Rn

[ ∮
y∈B(x+z,2−j)

|fj+l(y)|u dy
]1/u

1

(1 + 2j |z|)a

≤ sup
z∈Rn

{
sup

y∈B(0,2−j)

|fj+l(x+ z + y)|
(1 + 2j+l|z + y|)a

[
1 + 2j+l(|z|+ |y|)

1 + 2j |z|

]a}
. 2la sup

z∈Rn

|fj+l(x+ z)|
(1 + 2j+l|z|)a

. (8.7)

Since w ∈ ?-Wα3
α1,α2

, we have wj(x) . 2−lα1wj+l(x) for all x ∈ Rn and j, l ∈ Z+, which,

together with α1 > a and (8.7), implies that
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∥∥∥∥{ ∞∑
l=1

sup
z∈Rn

[ ∮
y∈B(·+z,2−j)

|fj+l(y)|u dy
]1/u

1

(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

.

∥∥∥∥{ ∞∑
l=1

2la sup
z∈Rn

|fj+l(·+ z)|
(1 + 2j+l|z|)a

}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

.

{ ∞∑
l=1

2laθ̃ sup
P∈Q(Rn)

1

|P |τ

[ ∞∑
j=(0∨jP )

∥∥∥∥χPwj sup
z∈Rn

|fj+l(·+ z)|
(1 + 2j+l|z|)a

∥∥∥∥q
L(Rn)

]θ̃/q}1/θ̃

.

{ ∞∑
l=1

2−l(α1−a)θ̃ sup
P∈Q(Rn)

1

|P |τ

[ ∞∑
j=(0∨jP )

∥∥∥∥χPwj+l sup
z∈Rn

|fj+l(·+ z)|
(1 + 2j+l|z|)a

∥∥∥∥q
L(Rn)

]θ̃/q}1/θ̃

. sup
P∈Q(Rn)

1

|P |τ

{ ∞∑
j=(0∨jP )

∥∥∥∥χPwj sup
z∈Rn

|fj(·+ z)|
(1 + 2j |z|)a

∥∥∥∥q
L(Rn)

}1/q

∼ ‖f‖Bw,τL,q,a(Rn),

where we have chosen θ̃ ∈ (0,min{θ, q}) and θ is as in (L3).

Further, by (8.3), we see that, for all x ∈ Rn,

f0(x) =

M∑
m′=1

M∑
m=1

(−1)M+m+m′−1

M !

(
M

m′

)(
M

m

)
mM

∫
Rn
ρ(y)f(x−mm′y) dy

and

f(x) =

M∑
m=1

(−1)M+m+0−1

M !

(
M

0

)(
M

m

)
mM

∫
Rn
ρ(y)f(x) dy,

which implies that, for all x ∈ Rn,

|f(x)| =
∣∣∣∣ M∑
m=1

(−1)M+m−1

M !

(
M

m

)
mM

∫
Rn
ρ(y)f(x) dy + f0(x)− f0(x)

∣∣∣∣
.

∣∣∣∣ M∑
m′=0

M∑
m=1

(−1)M+m+m′−1

M !

(
M

m′

)(
M

m

)
mM

∫
Rn
ρ(y)f(x−m′my) dy

∣∣∣∣+ |f0(x)|

.

∣∣∣∣ M∑
m=1

(−1)M+m−1

M !

(
M

m

)
mM

∫
Rn
ρ(y)∆M

myf(x) dy

∣∣∣∣+ |f0(x)|.

From this, we deduce that, for all x ∈ Rn,

sup
y∈Rn

|f(x+ y)|
(1 + |y|)a

. sup
y∈Rn

[ ∮
|h|.1

|∆M
h f(x+ y)|u

(1 + |y|)au
dh

]1/u

+ sup
y∈Rn

|f0(x+ y)|
(1 + |y|)a

, (8.8)

which, together with the trivial inequality∥∥∥∥ sup
y∈Rn

|f0(·+ y)|
(1 + |y|)a

∥∥∥∥
L(Rn)

. ‖f‖Bw,τL,q,a(Rn),

implies that
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J
(1)
a,w,L(f) .

∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

+‖f‖Bw,τL,q,a(Rn)

. ‖f‖Bw,τL,q,a(Rn).

This finishes the proof of (i).

If we further assume (7.1) holds, from Theorems 7.1 and 8.2 we immediately deduce

the following conclusions. We omit the details.

Corollary 8.3. Let α1, α2, α3, τ , a, q and w be as in Theorem 8.2. Assume (7.1) and

(8.2). Let {Jj}4j=1 be as in Theorem 8.2. Then, with the implicit constants independent

of f :

(i) f ∈ Bw,τL,q,a(Rn) if and only if f ∈ S ′(Rn) ∩ L1
loc (Rn) and J1 < ∞; moreover,

J1 ∼ ‖f‖Bw,τL,q,a(Rn).

(ii) f ∈ Fw,τL,q,a(Rn) if and only if f ∈ S ′(Rn) ∩ L1
loc (Rn) and J2 < ∞; moreover,

J2 ∼ ‖f‖Fw,τL,q,a(Rn).

(iii) f ∈ Nw,τ
L,q,a(Rn) if and only if f ∈ S ′(Rn) ∩ L1

loc (Rn) and J3 < ∞; moreover,

J3 ∼ ‖f‖Nw,τL,q,a(Rn).

(iv) f ∈ Ew,τL,q,a(Rn) if and only if f ∈ S ′(Rn) ∩ L1
loc (Rn) and J4 < ∞; moreover, J4 ∼

‖f‖Ew,τL,q,a(Rn).

By the Peetre maximal function characterizations of the Besov space Bsp,q(Rn) and

the Triebel–Lizorkin space F sp,q(Rn) (see, for example, [93]), we know that, if q ∈ (0,∞],

L(Rn) = Lp(Rn) and wj ≡ 2js for some s ∈ R and all j ∈ Z+, thenBw,τL,q,a(Rn) = Bsp,q(Rn)

for all p ∈ (0,∞] and a ∈ (n/p,∞), and Fw,τL,q,a(Rn) = F sp,q(Rn) for all p ∈ (0,∞) and

a ∈ (n/min{p, q},∞). Then, applying Theorem 8.2, we have the corollary below. In

what follows, for all measurable functions f , a ∈ (0,∞) and x ∈ Rn, we define the Peetre

maximal function of f as

f∗a (x) := sup
z∈Rn

|f(x+ z)|
(1 + |z|)a

.

Corollary 8.4. Let M ∈ N, u ∈ [1,∞] and q ∈ (0,∞].

(i) Let p ∈ (0,∞), a ∈ (n/min{p, q},M/2) and s ∈ (a,M − a). Then there exists a

positive constant C̃ := C(M), depending on M , such that f ∈ F sp,q(Rn) if and only

if f ∈ S ′(Rn) ∩ L1
loc (Rn) and

J1 := ‖f∗a‖Lp(Rn) +

∥∥∥∥∥∥∥∥{2js sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z+

∥∥∥∥
`q(Z+)

∥∥∥∥
Lp(Rn)

is finite. Moreover, J1 is equivalent to ‖f‖F sp,q(Rn) with the equivalence constants

independent of f .

(ii) Let p ∈ (0,∞], a ∈ (n/p,M/2) and s ∈ (a,M − a). Then there exists a positive

constant C̃ := C(M), depending on M , such that f ∈ Bsp,q(Rn) if and only if f ∈
S ′(Rn) ∩ L1

loc (Rn) and

J2 := ‖f∗a‖Lp(Rn) +

∥∥∥∥{∥∥∥∥2js sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u∥∥∥∥
Lp(Rn)

}
j∈Z+

∥∥∥∥
`q(Z+)
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is finite. Moreover, J2 is equivalent to ‖f‖Bsp,q(Rn) with the equivalence constants

independent of f .

Proof. Recall that by [85, Theorem 3.3.2] (see also [70, pp. 33–34]), F sp,q(Rn) ⊂ L1
loc (Rn)

if and only if either p ∈ (0, 1), s ∈ [n(1/p−1),∞) and q ∈ (0,∞], or p ∈ [1,∞), s ∈ (0,∞)

and q ∈ (0,∞], or p ∈ [1,∞), s = 0 and q ∈ (0, 2]; and Bsp,q(Rn) ⊂ L1
loc (Rn) if and only if

either p ∈ (0,∞], s ∈ (n{max(0, 1/p−1)},∞) and q ∈ (0,∞], or p ∈ (0, 1], s = n(1/p−1)

and q ∈ (0, 1], or p ∈ (1,∞], s = 0 and q ∈ (0,min(p, 2)]. From this, the aforementioned

Peetre maximal function characterizations of Bsp,q(Rn) and F sp,q(Rn), and Theorem 8.2,

we immediately deduce the conclusions of (i) and (ii).

We remark that the difference characterizations in Corollary 8.4 are a little different

from the classical difference characterizations of Besov and Triebel–Lizorkin spaces in

[91, Section 3.5.3]. Indeed, Corollary 8.4 can be seen as the Peetre maximal function

version of [91, Theorem 3.5.3] in the case u = ∞. We also remark that the condition

that a ∈ (n/p,M) and s ∈ (a,∞) is necessary, since in the classical case, the condition

s ∈ (n/p,∞) is necessary; see, for example, [5].

8.2. Characterization by oscillations. In this section, we characterize our function

spaces in terms of oscillations.

Let PM be the set of all polynomials of degree less than M . By convention P−1 stands

for {0}. We define, for all (x, t) ∈ Rn+1
+ ,

oscMu f(x, t) := inf
P∈PM

[
1

|B(x, t)|

∫
B(x,t)

|f(y)− P (y)|u dy
]1/u

.

We invoke the following estimates from [91].

Lemma 8.5. For any f ∈ S ′(Rn), let {f j}∞j=−1 be as in (8.1). Then there exists a positive

constant C such that:

(i) for all j ∈ N and x ∈ Rn,

|f j(x)− f j−1(x)| ≤ C oscMu f(x, 2−j); (8.9)

(ii) for all j ∈ Z+, x ∈ Rn and y ∈ B(x, 2−j),∣∣∣∣f j(x)−
∑

‖α‖1≤M−1

1

α!
Dαf j(x)(y − x)α

∣∣∣∣ ≤ C2−jM sup
z∈B(x, 2−j)

∑
‖α‖1=M

|Dαf j(z)|. (8.10)

Proof. Estimates (8.9) and (8.10) appear, respectively, in [91, p. 188] and [91, p. 182].

Theorem 8.6. Let a, α1, α2, α3, τ ∈ [0,∞), u ∈ [1,∞], q ∈ (0, ∞] and w ∈ ?-Wα3
α1,α2

. If

M ∈ N, α1 ∈ (a,M) and (8.2) holds, then, for all f ∈ S ′(Rn) ∩ L1
loc (Rn), the following

hold with the implicit constants independent of f :

H1 := J
(1)
a,w,L(f) +

∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

(i)

∼ ‖f‖Bw,τL,q,a(Rn),
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H2 := J
(1)
a,w,L(f) +

∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

(ii)

∼ ‖f‖Fw,τL,q,a(Rn),

H3 := J
(2)
a,w,L(f) +

∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
`q(NLwτ (Rn,Z+))

(iii)

∼ ‖f‖Nw,τL,q,a(Rn),

H4 := J
(2)
a,w,L(f) +

∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
ELwτ (`q(Rn,Z+))

(iv)

∼ ‖f‖Ew,τL,q,a(Rn).

Proof. We only prove (ii) since the proofs of other items are similar.

By (8.5) and (8.9), we have

H2 & sup
P∈Q(Rn), |P |≥1

1

|P |τ

∥∥∥∥χPw0 sup
y∈Rn

|(f0 − f−1)(·+ y)|
(1 + |y|)a

∥∥∥∥
L(Rn)

+

∥∥∥∥{ sup
z∈Rn

|(f j − f j−1)(·+ z)|
(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

∼ ‖f‖Fw,τL,q,a(Rn).

For the reverse inequality, by (8.8) and Theorem 8.2(ii), we conclude that

sup
P∈Q(Rn), |P |≥1

1

|P |τ

∥∥∥∥χPw0 sup
y∈Rn

|f(·+ y)|
(1 + |y|)a

∥∥∥∥
L(Rn)

. ‖f‖Fw,τL,q,a(Rn).

Therefore, we only need to prove that∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

. ‖f‖Fw,τL,q,a(Rn).

We use the estimate [91, p. 188, (11)] with k0 replaced by T0: for all x, z ∈ Rn,

oscMu f(x+ z, 2−j)

.
∞∑
l=1

∮
y∈B(x+z,2−j)

|fj+l(y)| dy + sup
w∈B(x+z,C2−j)

∣∣∣∣ ∫
Rn
DαT0(y)f(w + 2−jy) dy

∣∣∣∣,
where C is a positive constant. Consequently, for all x, z ∈ Rn,

oscMu f(x+ z, 2−j)

(1 + 2j |z|)a
.
∞∑
l=1

supy∈B(x+z,2−j) |fj+l(y)|
(1 + 2j |z|)a

+ sup
w∈B(x+z,C2−j)

1

(1 + 2j |z|)a

∣∣∣∣ ∫
Rn
DαT0(y)f(w + 2−jy) dy

∣∣∣∣. (8.11)

Then by an argument similar to that used in the proof of Theorem 8.2, for the second

term on the right-hand side of (8.11), we see that∥∥∥∥{ sup
z∈Rn

sup
w∈B(·+z,C2−j)

1

(1 + 2j |z|)a

∣∣∣∣ ∫
Rn
DαT0(y)f(w + 2−jy) dy

∣∣∣∣}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

. ‖f‖Fw,τL,q,a(Rn),



70 8. Characterizations via differences and oscillations

It remains to consider the first term on the right-hand side of (8.11). Indeed, by w ∈ ?-
Wα3
α1,α2

, we have wj(x) . 2−lα1wj+l(x) for all j, l ∈ Z+ and x ∈ Rn, which, together with

α1 > a and (8.7), implies that∥∥∥∥{ ∞∑
l=1

sup
z∈Rn

supy∈B(·+z,2−j) |fj+l(y)|
(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

.

∥∥∥∥{ ∞∑
l=1

2la sup
z∈Rn

|fj+l(·+ z)|
(1 + 2j+l|z|)a

}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

.

{ ∞∑
l=1

2laθ̃ sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥( ∞∑
j=(0∨jP )

χP

[
wj sup

z∈Rn

|fj+l(·+ z)|
(1 + 2j+l|z|)a

]q)1/q∥∥∥∥θ̃
L(Rn)

}1/θ̃

.

{ ∞∑
l=1

2−l(α1−a)θ̃ sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥( ∞∑
j=(0∨jP )

χP

[
wj+l sup

z∈Rn

|fj+l(·+ z)|
(1 + 2j+l|z|)a

]q)1/q∥∥∥∥θ̃
L(Rn)

}1/θ̃

. sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥{ ∞∑
j=(0∨jP )

χP

[
wj sup

z∈Rn

|fj(·+ z)|
(1 + 2j |z|)a

]q}1/q∥∥∥∥
L(Rn)

∼ ‖f‖Fw,τL,q,a(Rn),

where we have chosen θ̃ ∈ (0,min{θ, q}).

If we further assume that (7.1) holds, then from Theorems 7.1 and 8.6, we immediately

deduce the following conclusions. We omit the details.

Corollary 8.7. Let α1, α2, α3, τ , a, q and w be as in Theorem 8.6. Assume that (7.1)

and (8.2) hold. Let {Hj}4j=1 be as in Theorem 8.6. Then the following hold with the

implicit constants independent of f :

(i) f ∈ Bw,τL,q,a(Rn) if and only if f ∈ S ′(Rn) ∩ L1
loc (Rn) and H1 < ∞; moreover,

H1 ∼ ‖f‖Bw,τL,q,a(Rn).

(ii) f ∈ Fw,τL,q,a(Rn) if and only if f ∈ S ′(Rn) ∩ L1
loc (Rn) and H2 < ∞; moreover,

H2 ∼ ‖f‖Fw,τL,q,a(Rn).

(iii) f ∈ Nw,τ
L,q,a(Rn) if and only if f ∈ S ′(Rn) ∩ L1

loc (Rn) and H3 < ∞; moreover,

H3 ∼ ‖f‖Nw,τL,q,a(Rn).

(iv) f ∈ Ew,τL,q,a(Rn) if and only if f ∈ S ′(Rn) ∩ L1
loc (Rn) and H4 < ∞; moreover,

H4 ∼ ‖f‖Ew,τL,q,a(Rn).

Again, applying the Peetre maximal function characterizations of the spaces Bsp,q(Rn)

and F sp,q(Rn) (see, for example, [93]), and Theorem 8.6, we have the following corollary.

Its proof is similar to that of Corollary 8.4. We omit the details.

Corollary 8.8. Let M ∈ N, u ∈ [1,∞] and q ∈ (0,∞].

(i) Let p ∈ (0,∞), a ∈ (n/min{p, q},M) and s ∈ (a,M − a). Then f ∈ F sp,q(Rn) if and

only if f ∈ S ′(Rn) ∩ L1
loc (Rn) and

K1 := ‖f∗a‖Lp(Rn) +

∥∥∥∥∥∥∥∥{2js sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z+

∥∥∥∥
`q(Z+)

∥∥∥∥
Lp(Rn)

<∞.
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Moreover, K1 is equivalent to ‖f‖F sp,q(Rn) with the equivalence constants independent

of f .

(ii) Let p ∈ (0,∞], a ∈ (n/p,M) and s ∈ (a,M − a). Then f ∈ Bsp,q(Rn) if and only if

f ∈ S ′(Rn) ∩ L1
loc (Rn) and

K2 := ‖f∗a‖Lp(Rn) +

∥∥∥∥{∥∥∥∥2js sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

∥∥∥∥
Lp(Rn)

}
j∈Z+

∥∥∥∥
`q(Z+)

<∞.

Moreover, K2 is equivalent to ‖f‖Bsp,q(Rn) with the equivalence constants independent

of f .

Again, Corollary 8.8 can be seen as the Peetre maximal function version of [91, The-

orem 3.5.1] in the case u ∈ [1,∞].



9. Isomorphisms between spaces

In this section, under some additional assumptions on L(Rn), we establish some isomor-

phisms between Aw,τL,q,a(Rn) spaces. First, in Subsection 9.1, we prove that if the parameter

a is sufficiently large, then Aw,τL,q,a(Rn) coincides with Aw,τL,q (Rn), which is independent of a.

In Subsection 9.2, we give some further assumptions on L(Rn) which ensure that L(Rn)

coincides with E0,0
L,2,a(Rn). Finally, in Subsection 9.3, under some additional assumptions

on L(Rn), we prove that Ew,τL,q,a(Rn) and Fw,τL,q,a(Rn) coincide.

9.1. The role of the new parameter a. The new parameter a, which we added, seems

not to play any significant role. We now consider some conditions which permit removing

a from the definition of Aw,τL,q,a(Rn).

Here we consider the following conditions.

Assumption 9.1. Let ηj,R(x) := 2jn(1 + 2j |x|)−R for j ∈ Z+, R� 1 and x ∈ Rn.

(L7) There exist R � 1, r ∈ (0,∞) and a positive constant C(R, r), depending on R

and r, such that, for all f ∈ L(Rn) and j ∈ Z+,

‖wj(ηj,R ∗ |f |r)1/r‖L(Rn) ≤ C(R, r)‖wjf‖L(Rn).

(L7?) There exist r ∈ (0,∞) and a positive constant C(r), depending on r, such that,

for all f ∈ L(Rn) and j ∈ Z+,

‖wjM(|f |r)1/r‖L(Rn) ≤ C(r)‖wjf‖L(Rn).

(L8) Let q ∈ (0,∞]. There exist R � 1, r ∈ (0,∞) and a positive constant C(R, r, q),

depending on R, r and q, such that, for all {fj}j∈N ⊂ L(Rn),

‖{wj(ηj,R ∗ |fj |r)1/r}j∈Z+‖L(`q(Rn,Z+)) ≤ C(R, r, q)‖{wjfj}j∈Z+
‖L(`q(Rn,Z+)).

(L8?) Let q ∈ (0,∞]. There exist r ∈ (0,∞) and a positive constant C(r, q), depending

on r and q, such that, for all {fj}j∈N ⊂ L(Rn),

‖{wj [M(|fj |r)]1/r}j∈Z+‖L(`q(Rn,Z+)) ≤ C(r, q)‖{wjfj}j∈Z+‖L(`q(Rn,Z+)).

We now claim that in most cases the parameter a is only auxiliary, by proving the

following theorem.

Theorem 9.2. Let α1, α2, α3, τ ∈ [0,∞), a ∈ (N0 + α3,∞) and q ∈ (0, ∞], where N0

is as in (L6). Let w ∈ Wα3
α1,α2

, τ ∈ [0,∞) and q ∈ (0, ∞]. Assume that Φ, ϕ ∈ S(Rn)

satisfy, respectively, (1.3) and (1.4).

[72]
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(i) Assume that (L7) holds and, in addition, a� 1. Then

‖f‖Bw,τL,q,a(Rn) ∼
∥∥∥∥{[∫

Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

∼ ‖{ϕj ∗ f}j∈Z+
‖`q(Lwτ (Rn,Z+))

and

‖f‖Nw,τL,q,a(Rn) ∼
∥∥∥∥{[∫

Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
`q(NLwτ (Rn,Z+))

∼ ‖{ϕj ∗ f}j∈Z+‖`q(NLwτ (Rn,Z+))

with the implicit constants independent of f . In particular, if (L7?) holds, then the

above equivalences hold.

(ii) Assume that (L8) holds and, in addition, a� 1. Then

‖f‖Fw,τL,q,a(Rn) ∼
∥∥∥∥{[∫

Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

∼ ‖{ϕj ∗ f}j∈Z+‖Lwτ (`q(Rn,Z+)) (9.1)

and

‖f‖Ew,τL,q,a(Rn) ∼
∥∥∥∥{[∫

Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
ELwτ (`q(Rn,Z+))

∼ ‖{ϕj ∗ f}j∈Z+
‖ELwτ (`q(Rn,Z+))

with the implicit constants independent of f . In particular, if (L8?) holds, then the

above equivalences hold.

Motivated by Theorem 9.2, let us define

‖f‖Bw,τL,q (Rn) := ‖{ϕj ∗ f}j∈Z+‖`q(Lwτ (Rn,Z+)),

‖f‖Nw,τL,q (Rn) := ‖{ϕj ∗ f}j∈Z+
‖`q(NLwτ (Rn,Z+)),

‖f‖Fw,τL,q (Rn) := ‖{ϕj ∗ f}j∈Z+
‖Lwτ (`q(Rn,Z+)),

‖f‖Ew,τL,q (Rn) := ‖{ϕj ∗ f}j∈Z+
‖ELwτ (`q(Rn,Z+)),

for all f ∈ S ′(Rn) as long as the assumptions of Theorem 9.2 are satisfied.

Lemma 9.3. Let α1, α2, α3, τ ∈ [0,∞), a ∈ (N0 + α3,∞), q ∈ (0, ∞] and ε ∈ (0,∞).

Assume that Φ, ϕ ∈ S(Rn) satisfy, respectively, (1.3) and (1.4). Then:

(i) For all f ∈ S ′(Rn),

‖f‖Bw,τL,q,a(Rn) &

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar+n+ε
dy

]1/r}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

, (9.2)

‖f‖Bw,τL,q,a(Rn) .

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

, (9.3)
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‖f‖Nw,τL,q,a(Rn) &

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar+n+ε
dy

]1/r}
j∈Z+

∥∥∥∥
`q(NLwτ (Rn,Z+))

, (9.4)

‖f‖Nw,τL,q,a(Rn) .

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
`q(NLwτ (Rn,Z+))

, (9.5)

where ϕ0 is understood to be Φ and the implicit constants are independent of f .

(ii) For all f ∈ S ′(Rn),

‖f‖Fw,τL,q,a(Rn) &

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar+n+ε
dy

]1/r}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

, (9.6)

‖f‖Fw,τL,q,a(Rn) .

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

, (9.7)

‖f‖Ew,τL,q,a(Rn) &

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar+n+ε
dy

]1/r}
j∈Z+

∥∥∥∥
ELwτ (`q(Rn,Z+))

, (9.8)

‖f‖Ew,τL,q,a(Rn) .

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
ELwτ (`q(Rn,Z+))

, (9.9)

where ϕ0 is understood to be Φ and the implicit constants are independent of f .

Proof. Estimates (9.2), (9.4), (9.6) and (9.8) are immediate from the definitions, while

(9.3), (9.5), (9.7) and (9.9) depend on the following estimate: By [93, (2.29)], we see that,

for all t ∈ [1, 2], N � 1, r ∈ (0,∞), ` ∈ N and x ∈ Rn,

[(φ∗2−`tf)a(x)]r .
∞∑
k=0

2−kNr2(k+`)n

∫
Rn

|((φk+`)t ∗ f)(y)|r

(1 + 2`|x− y|)ar
dy.

In particular, when l = 0, for all x ∈ Rn, we have

(φ∗t f)a(x) .

[ ∞∑
k=0

2−kNr2kn
∫
Rn

|((φk)t ∗ f)(y)|r

(1 + |x− y|)ar
dy

]1/r

. (9.10)

If we combine Lemma 2.9 and (9.10), we obtain the desired result.

The key to the proof of Theorem 9.2 is the following dilation estimate. The next

lemma translates the assumptions (L7) and (L8) into our function spaces.

Lemma 9.4. Let {Fj}j∈Z+
be a sequence of positive measurable functions on Rn.

(i) If (L7) holds, then

‖{(ηj,2R ∗ [Fj ]
r)1/r}j∈Z+

‖`q(Lwτ (Rn,Z+)) . ‖{Fj}j∈Z+
‖`q(Lwτ (Rn,Z+)),

‖{(ηj,2R ∗ [Fj ]
r)1/r}j∈Z+

‖`q(NLwτ (Rn,Z+)) . ‖{Fj}j∈Z+
‖`q(NLwτ (Rn,Z+)),

with the implicit constants independent of {Fj}j∈Z+ .

(ii) If (L8) holds, then

‖{(ηj,2R ∗ [Fj ]
r)1/r}j∈Z+

‖Lwτ (`q(Rn,Z+)) . ‖{Fj}j∈Z+
‖Lwτ (`q(Rn,Z+)), (9.11)

‖{(ηj,2R ∗ [Fj ]
r])1/r}j∈Z+‖ELwτ (`q(Rn,Z+)) . ‖{Fj}j∈Z+

‖ELwτ (`q(Rn,Z+)),

with the implicit constants independent of {Fj}j∈Z+
.
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Proof. Due to similarity, we only prove (9.11).

For all sequences F = {Fj}j∈Z+
of positive measurable functions on Rn, define

‖F‖ := ‖{Fj}j∈Z+
‖Lwτ (`q(Rn,Z+)).

Then ‖ · ‖ is still a quasi-norm. By the Aoki–Rolewicz theorem (see [2, 69]), there exists

a quasi-norm ||| · ||| and θ̃ ∈ (0, 1] such that, for all sequences F and G, ‖F‖ ∼ |||F ||| and

|||F +G|||θ̃ ≤ |||F |||θ̃ + |||G|||θ̃.
Therefore,∥∥∥{[ ∞∑

l=0

ηk,2R ∗(Gk,l)
r
]1/r}

k∈Z+

∥∥∥θ̃
Lwτ (`q(Rn,Z+))

∼
∣∣∣∣∣∣∣∣∣{[ ∞∑

l=0

ηk,2R ∗(Gk,l)
r
]1/r}

k∈Z+

∣∣∣∣∣∣∣∣∣θ̃
.
∞∑
l=0

|‖|{[ηk,2R ∗(Gk,l)
r]1/r}k∈Z+

|||θ̃

∼
∞∑
l=0

‖{[ηk,2R ∗(Gk,l)
r]1/r}k∈Z+

‖θ̃Lwτ (`q(Rn,Z+)) (9.12)

for all sequences {Gk,l}k,l∈Z+ of positive measurable functions.

We fix a dyadic cube P . Our goal is to prove

I :=
∥∥∥( ∞∑

k=jP∨0

χP (wk)q[ηk,2R ∗(Fk)r]q/r
)1/q∥∥∥

L(Rn)
. |P |τ‖{Fj}j∈Z+

‖Lwτ (`q(Rn,Z+)) (9.13)

with the implicit constant independent of {Fj}j∈Z+ and P .

By using (9.12), we conclude that

I .
{ ∑
m∈Zn

[∥∥∥( ∞∑
k=jP∨0

χP (wk)q[ηk,2R ∗ (χ`(P )m+PFk)r]q/r
)1/q∥∥∥

L(Rn)

]min(θ,q,r)} 1
min(θ,q,r)

.

A geometric observation shows that
1
2 |m|`(P ) ≤ |x− y| ≤ 2n|m|`(P )

whenever x ∈ P and y ∈ `(P )m+ P with |m| ≥ 2. Hence, for all m ∈ Zn and x ∈ Rn,

ηk,2R ∗ (χ`(P )m+PFk)r(x) =

∫
`(P )m+P

2kn(1 + 2k|x− y|)−R(1 + 2k|x− y|)−R[Fk(y)]r dy

.
1

|m|R

∫
`(P )m+P

2kn[1 + 2k|m|`(P )]−R[Fk(y)]r dy

.
1

|m|R
ηjP ,R ∗ [χ`(P )m+P (Fk)r](x).

From this and (L8), we further conclude that

I .
{ ∑
m∈Zn

[∥∥∥( ∞∑
k=jP∨0

[ηk,2R ∗ (χ`(P )m+PFk)r]q/r
)1/q∥∥∥

L(Rn)

]min(θ,q,r)} 1
min(θ,q,r)

. |P |τ‖{Fj}j∈Z+‖Lwτ (`q(Rn,Z+)).
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Proof of Theorem 9.2. Due to similarity, we only prove the estimates for Fw,τL,q,a(Rn).

By Lemma 9.3, we have

‖f‖Fw,τL,q,a(Rn) .

∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

. (9.14)

Observe that the right-hand side of (9.14) is just

‖{(ηj,ar ∗ [|ϕj ∗ f(·)|r])1/r}j∈Z+
‖Lwτ (`q(Rn,Z+)).

By Lemma 9.4,∥∥∥∥{[∫
Rn

2jn|ϕj ∗ f(y)|r dy
(1 + 2j | · −y|)ar

]1/r}
j∈Z+

∥∥∥∥
Lwτ (`q(Rn,Z+))

. ‖f‖Fw,τL,q (Rn). (9.15)

Also, it follows trivially from the definition of Fw,τL,q,a(Rn) that

‖f‖Fw,τL,q (Rn) ≤ ‖f‖Fw,τL,q,a(Rn). (9.16)

Combining (9.14)–(9.16), we obtain (9.1).

Proposition 9.5. Let q ∈ [1,∞]. Assume that θ = 1 in the assumption (L3) and,

additionally, there exist some M ∈ (0,∞) and a positive constant C(M), depending

on M , such that, for all f ∈ L(Rn) and x ∈ Rn,

‖f(· − x)‖L(Rn) ≤ C(M)(1 + |x|)M‖f‖L(Rn). (9.17)

Then, whenever a� 1,

‖f‖Bw,τL,q,a(Rn) ∼
∥∥∥∥{[∫

Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
`q(Lwτ (Rn,Z+))

∼ ‖f‖Bw,τL,q (Rn),

‖f‖Nw,τL,q,a(Rn) ∼
∥∥∥∥{[∫

Rn

2jn|ϕj ∗ f(y)|r

(1 + 2j | · −y|)ar
dy

]1/r}
j∈Z+

∥∥∥∥
`q(NLwτ (Rn,Z+))

∼ ‖f‖Nw,τL,q (Rn),

with the implicit constants independent of f .

It is not clear whether the counterpart of Proposition 9.5 for Ew,τL,q,a(Rn) and Fw,τL,q,a(Rn)

is true or not.

Proof of Proposition 9.5. We concentrate on the B-scale, the proof for the N -scale being

similar. By Theorem 9.2, we see that

‖f‖Bw,τL,q,a(Rn)

. sup
P∈Q(Rn)

1

|P |τ

{ ∞∑
k=jP∨0

∥∥∥∥χP[wk(∫
Rn

2kn|ϕk ∗ f(y)|r

(1 + 2k| · −y|)ar+n+ε
dy

)1/r]∥∥∥∥q
L(Rn)

}1/q

.

Now that θ = 1, we can use the triangle inequality to obtain

‖f‖Bw,τL,q,a(Rn) . sup
P∈Q(Rn)

1

|P |τ
{ ∞∑
k=jP∨0

‖χPwk[ϕk ∗ f ]‖qL(Rn)

}1/q

whenever a� 1. The reverse inequality being trivial, we obtain the desired estimates.

To conclude this section, with Theorems 4.12 and 9.2 proved, we have already obtained

the biorthogonal wavelet decompositions of Morrey spaces; see also Section 11.2 below.
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9.2. Identification of the space L(Rn). The following lemma is a natural extension

with | · | in the definition of ‖f‖L(Rn) replaced by `2(Z). In this subsection, we always

assume that θ = 1 in (L3) and that, for any set E of finite measure, there exists a positive

constant C(E), depending on E, such that, for all f ∈ L(Rn),∫
E

|f(x)| dx ≤ C(E)‖f‖L(Rn). (9.18)

In this case L(Rn) is a Banach space of functions and the dual space L′(Rn) can be

defined.

Theorem 9.6. Let L be as above, let ψ,ϕ ∈ S(Rn) be even and satisfy, respectively, (1.3)

and (1.4), and let N ∈ N. Suppose that a ∈ (N,∞) and

(1 + | · |)−N ∈ L(Rn) ∩ L′(Rn). (9.19)

Assume, in addition, that there exists a positive constant C such that, for any finite

sequence {εk}k0

k=1 ⊂ {−1, 1}, f ∈ L(Rn) and g ∈ L′(Rn),
∥∥∥ψ ∗ f +

k0∑
k=1

εkϕk ∗ f
∥∥∥
L(Rn)

≤ C‖f‖L(Rn),

∥∥∥ψ ∗ g +

k0∑
k=1

εkϕk ∗ g
∥∥∥
L′(Rn)

≤ C‖g‖L′(Rn).

(9.20)

Then L(Rn) and L′(Rn) are embedded into S ′(Rn), and L(Rn) and E0,0
L,2,a(Rn) coincide.

Proof. The fact that L(Rn) and L′(Rn) are embedded into S ′(Rn) is a simple consequence

of (9.18) and (9.19). By using the Rademacher sequence {rj}∞j=1, we obtain∥∥∥( ∞∑
j=1

|ϕj ∗ f |2
)1/2∥∥∥

L(Rn)
= lim
k0→∞

∥∥∥( k0∑
j=1

|ϕj ∗ f |2
)1/2∥∥∥

L(Rn)

. lim
k0→∞

∥∥∥∥ k0∑
j=1

∫ 1

0

|rj(t)ϕj ∗ f | dt
∥∥∥∥
L(Rn)

,

which, together with the assumption a > N , Theorem 9.2 and (9.20), implies that

‖f‖E0,0
L,2,a(Rn) ∼

∥∥∥(|ψ ∗ f |2 +

∞∑
j=1

|ϕj ∗ f |2
)1/2∥∥∥

L(Rn)
. ‖f‖L(Rn).

If we fix g ∈ C∞c (Rn), we see that∫
Rn
f(x)g(x) dx =

∫
Rn
ψ ∗ f(x)ψ ∗ g(x) dx+

∞∑
j=1

∫
Rn
ϕj ∗ f(x)ϕj ∗ g(x) dx.

From Theorem 9.2, the Hölder inequality and the duality, we deduce that

‖f‖L(Rn) . sup{‖f‖E0,0
L,2,a(Rn)‖g‖E0,0

L′,2,a(Rn) : g ∈ C∞c (Rn), ‖g‖L′(Rn) = 1}.

Since we have proved that L′(Rn) is embedded into E0,0
L′,2,a(Rn), by the second estimate

of (9.20), we conclude that

‖f‖L(Rn) . ‖f‖E0,0
L,2,a(Rn).

The reverse inequality was already proved before.
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Let L(Rn) be a Banach space of functions and define

Lp(Rn) := {f : Rn → C : f is measurable and |f |p ∈ L(Rn)}

for p ∈ (0,∞), and ‖f‖Lp(Rn) := ‖ |f |p ‖1/pL(Rn) for all f ∈ Lp(Rn). A criterion for (9.20) to

hold is given in the book [9]. Here we invoke the following fact.

Proposition 9.7. Let L(Rn) be a Banach space of functions such that Lp(Rn) is a

Banach space of functions and the maximal operator M is bounded on (Lp(Rn))′ for

some p ∈ (1,∞).

Assume, in addition, that Z is a set of pairs (f, g) of positive measurable functions

such that, for all p0 ∈ (1,∞) and w ∈ Ap0
(Rn),∫

Rn
[f(x)]p0w(x) dx .Ap0

(w)

∫
Rn

[g(x)]p0w(x) dx (9.21)

with the implicit constant depending on the weight constant Ap0(w) of w, but not on (f, g).

Then ‖f‖L(Rn) . ‖g‖L(Rn) for all (f, g) ∈ Z, with the implicit constant independent

of (f, g).

A direct consequence of this proposition is a criterion for (9.20) to hold.

Theorem 9.8. Let L(Rn) be a Banach space of functions such that Lp(Rn) and (L′)p(Rn)

are Banach spaces of functions and the maximal operator M is bounded on (Lp(Rn))′

and ((L′)p(Rn))′ for some p ∈ (1,∞). Then (9.20) holds. In particular, if a > N and

(1 + | · |)−N ∈ L(Rn) ∩ L′(Rn), then L(Rn) and L′(Rn) are embedded into S ′(Rn), and

L(Rn) and E0,0
L,2,a(Rn) coincide.

Proof. We have only to check (9.20). Let

Z =
{(
ψ ∗ f +

N∑
k=1

εkϕk ∗ f, f
)

: f ∈ L(Rn), N ∈ N, {εk}k∈N ⊂ {−1, 1}
}
.

Then (9.21) holds according to the well-known Calderón–Zygmund theory (see [13, Chap-

ter 7], for example). Thus, (9.20) holds.

9.3. F -spaces and E-spaces. As we have seen in [82], when L(Rn) is the Morrey space

Mp
q(Rn), we have Es,τL,q,a(Rn) = F s,τL,q,a(Rn) with norm equivalence. The same happens

under some mild assumptions (9.22) and (9.24) below. Recall that L(Rn) carries the

parameter N0 from (L6).

Theorem 9.9. Let a ∈ (N0 + α3,∞), q ∈ (0,∞] and s ∈ R. Assume that L(Rn) sat-

isfies the assumption (L8) and there exist positive constants C and τ0 such that, for all

P ∈ Q(Rn),

C−1‖χP ‖L(Rn) ≤ |P |τ0 ≤ C‖χP ‖L(Rn). (9.22)

Then for all τ ∈ [0, τ0), Es,τL,q,a(Rn) = F s,τL,q,a(Rn) with equivalent norms.

Proof. By the definition of ‖ · ‖Es,τL,q,a(Rn) and ‖ · ‖F s,τL,q,a(Rn), we need only show that

F s,τL,q,a(Rn) ↪→ Es,τL,q,a(Rn). (9.23)

In view of the atomic decomposition theorem (Theorem 4.5), instead of proving (9.23)

directly, we can reduce the matter to the level of sequence spaces. So we have only to
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prove

fs,τL,q,a(Rn) ↪→ es,τL,q,a(Rn).

First, by (L8),

‖λ‖es,τL,q,a(Rn) := sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥[ ∞∑
j=0

(
χP 2js sup

y∈Rn

∑
k∈Zn |λjk|χQjk(·+ y)

(1 + 2j |y|)a

)q]1/q∥∥∥∥
L(Rn)

∼ sup
P∈Q(Rn)

1

|P |τ
∥∥∥[ ∞∑

j=0

(
χP 2js

∑
k∈Zn

|λjk|χQjk
)q]1/q∥∥∥

L(Rn)
.

Similarly, by (L8),

‖λ‖fs,τL,q,a(Rn) := sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥[ ∞∑
j=jP∨0

(
χP 2js sup

y∈Rn

∑
k∈Zn |λjk|χQjk(·+ y)

(1 + 2j |y|)a

)q]1/q∥∥∥∥
L(Rn)

∼ sup
P∈Q(Rn)

1

|P |τ
∥∥∥[ ∞∑

j=jP∨0

(
χP 2js

∑
k∈Zn

|λjk|χQjk
)q]1/q∥∥∥

L(Rn)
.

Thus, it suffices to show that, for all dyadic cubes P with jP ≥ 1,

I :=
1

|P |τ
∥∥∥[ jP−1∑

j=0

(
χP 2js

∑
k∈Zn

|λjk|χQjk
)q]1/q∥∥∥

L(Rn)
. ‖λ‖fs,τL,q,a(Rn).

For all j ∈ {0, . . . , jP − 1}, there exists a unique k ∈ Zn such that P ∩ Qjk 6= ∅. Set

λj := λjk and Qj := Qjk; then for all j ∈ {0, . . . , jP − 1}, by (9.22), we have

2js|λj |
|Qj |τ−τ0

∼
‖2js|λj |χQj‖L(Rn)

|Qj |τ

.
1

|Qj |τ
∥∥∥[ ∞∑

i=j

(
χQj2

is
∑
k∈Zn

|λik|χQik
)q]1/q∥∥∥

L(Rn)
. ‖λ‖fs,τL,q,a(Rn),

which implies that

I =
1

|P |τ
∥∥∥[ jP−1∑

j=0

(
χP 2js

∑
k∈Zn

|λjk|χQjk
)q]1/q∥∥∥

L(Rn)
.
‖χP ‖L(Rn)

|P |τ
( jP−1∑
j=0

2jsq|λj |q
)1/q

. ‖λ‖fs,τL,q,a(Rn)|P |τ0−τ
[ jP−1∑
j=0

|Qj |q(τ−τ0)
]1/q

. ‖λ‖fs,τL,q,a(Rn).

The following is a variant of Theorem 9.9.

Theorem 9.10. Let τ ∈ [0,∞) and q ∈ (0,∞]. Assume that there exist a positive constant

A and a positive constant C(A), depending on A, such that, for all P ∈ Q(Rn) and

k ∈ Z+,

‖χPwjP−k‖L(Rn) ≤ C(A)2−Ak‖χ2kPwjP−k‖L(Rn) (9.24)

and assume that (L8) holds. Then Ew,τL,q,a(Rn) = Fw,τL,q,a(Rn) with equivalent norms for all

τ ∈ [0, A).
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Proof. By the definition, we have only to show that Fw,τL,q,a(Rn) ↪→ Ew,τL,q,a(Rn). By Theo-

rem 4.5, we know that this reduces to investigating the corresponding sequence spaces.

First, by (L8),

‖λ‖ew,τL,q,a(Rn) := sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥[ ∞∑
j=0

(
χPwj sup

y∈Rn

∑
k∈Zn |λjk|χQjk(·+ y)

(1 + 2j |y|)a

)q]1/q∥∥∥∥
L(Rn)

∼ sup
P∈Q(Rn)

1

|P |τ
∥∥∥[ ∞∑

j=0

(
χPwj

∑
k∈Zn

|λjk|χQjk
)q]1/q∥∥∥

L(Rn)
.

Similarly, by (L8), we also conclude that

‖λ‖Fw,τL,q,a(Rn) := sup
P∈Q(Rn)

1

|P |τ

∥∥∥∥[ ∞∑
j=jP∨0

(
χPwj sup

y∈Rn

∑
k∈Zn |λjk|χQjk(·+ y)

(1 + 2j |y|)a

)q]1/q∥∥∥∥
L(Rn)

∼ sup
P∈Q(Rn)

1

|P |τ
∥∥∥[ ∞∑

j=jP∨0

(
χPwj

∑
k∈Zn

|λjk|χQjk
)q]1/q∥∥∥

L(Rn)
.

Thus, it suffices to show that, for all dyadic cubes P with jP ≥ 1,

I :=
1

|P |τ
∥∥∥[ jP−1∑

j=0

(
χPwj

∑
k∈Zn

|λjk|χQjk
)q]1/q∥∥∥

L(Rn)
. ‖λ‖fw,τL,q,a(Rn).

For all j ∈ {0, . . . , jP − 1}, there exists a unique k ∈ Zn such that P ∩ Qjk 6= ∅. Set

λj := λjk and Qj := Qjk; then for all j ∈ {0, . . . , jP − 1},

1

|Qj |τ
‖wjλjχQj‖L(Rn) ≤

1

|Qj |τ
∥∥∥[ ∞∑

i=j

(
χQjwi

∑
k∈Zn

|λik|χQik
)q]1/q∥∥∥

L(Rn)
≤ ‖λ‖fw,τL,q,a(Rn).

Assume q ∈ [1,∞] for the moment. Then by the assumption q ∈ [1,∞] and the

triangle inequality for ‖ · ‖θL(Rn), we see that

I =
1

|P |τ
∥∥∥[ jP−1∑

j=0

(
χPwj

∑
k∈Zn

|λjk|χQjk
)q]1/q∥∥∥

L(Rn)

≤ 1

|P |τ
∥∥∥ jP−1∑
j=0

χPwj |λj |χQj
∥∥∥
L(Rn)

≤ 1

|P |τ
[ jP−1∑
j=0

‖χPwjλjχQj‖θL(Rn)

]1/θ
.

If we use the assumption (9.24), we see that

I ≤ ‖λ‖fw,τL,q,a(Rn)

1

|P |τ
[ jP−1∑
j=0

2−jAθ|Qj |τθ
]1/θ

. ‖λ‖fw,τL,q,a(Rn).

For q ∈ (0, 1), since L1/q(Rn) is still a quasi-normed space of functions, by the Aoki–

Rolewicz theorem (see [2, 69]), there exist an equivalent quasi-norm ||| · ||| and θ̃ ∈ (0, 1]

such that, for all f, g ∈ L1/q(Rn),

‖f‖L1/q(Rn) ∼ |||f |||, |||f + g|||θ̃ ≤ |||f |||θ̃ + |||g|||θ̃.
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It follows that

Iθ̃ .
1

|P |τθ̃

jP−1∑
j=0

|||χPwjλjχQj |||θ̃ ∼
1

|P |τθ̃

jP−1∑
j=0

‖χPwjλjχQj‖θ̃L(Rn)

.
1

|P |τθ̃

jP−1∑
j=0

2−jAθ̃‖wjλjχQj‖θ̃L(Rn)

. ‖λ‖θ̃fw,τL,q,a(Rn)

1

|P |τθ̃

jP−1∑
j=0

2−jAθ̃|Qj |τθ̃ . ‖λ‖θ̃fw,τL,q,a(Rn).

Remark 9.11. In many examples (see Section 11), it is not hard to show that (9.22)

holds.

The following theorem generalizes [82, Theorem 1.1].

Theorem 9.12. Let ω ∈ Wα3
α1,α2

with α1, α2, α3 ∈ [0,∞).

(i) Assume τ ∈ (0,∞), q ∈ (0,∞) and (L7) holds. If a� 1, then Nw,τ
L,q,a(Rn) is a proper

subspace of Bw,τL,q,a(Rn).

(ii) If a ∈ (0,∞) and τ ∈ [0,∞), then Nw,τ
L,∞,a(Rn) = Bw,τL,∞,a(Rn) with equivalent norms.

Proof. Since (ii) is immediate from the definition, we only prove (i). By (L7) and Theo-

rems 4.5 and 9.2, we see that

‖λ‖bw,τL,q,a(Rn)

= sup
P∈Q(Rn)

1

|P |τ

{ ∞∑
j=jP∨0

∥∥∥∥χPwj sup
y∈Rn

1

(1 + 2j |y|)a
∑
k∈Zn

|λjk|χQjk(·+ y)

∥∥∥∥q
L(Rn)

}1/q

∼ sup
P∈Q(Rn)

1

|P |τ
{ ∞∑
j=jP∨0

∥∥∥χPwj ∑
k∈Zn

|λjk|χQjk
∥∥∥q
L(Rn)

}1/q

and

‖λ‖nw,τL,q,a(Rn)

=

{ ∞∑
j=0

sup
P∈Q(Rn)

1

|P |τq

∥∥∥∥χPwj sup
y∈Rn

1

(1 + 2j |y|)a
∑
k∈Zn

|λjk|χQjk(·+ y)

∥∥∥∥q
L(Rn)

}1/q

∼
{ ∞∑
j=0

sup
P∈Q(Rn)

1

|P |τq

∥∥∥∥χPwj ∑
k∈Zn

|λjk|χQjk
∥∥∥∥q
L(Rn)

}1/q

.

We abbreviate

Qj(1,...,1) :=

n times︷ ︸︸ ︷
[2−j , 21−j)× · · · × [2−j , 21−j)

to Rj for all j ∈ Z and set

λQ :=

{
‖wjχRj‖−1

L(Rn)|Rj |
τ , Q = Rj for some j ∈ Z,

0, Q 6= Rj for any j ∈ Z.
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Then we have

‖λ‖bw,τL,q,a(Rn) ∼ sup
P∈Q(Rn)

1

|P |τ
{ ∞∑
j=jP∨0

‖χP∩RjwjλRj‖
q
L(Rn)

}1/q

.

In order that the inner summand is not zero, there are there possibilities: (a) P contains

{Rk, Rk+1, . . .}; (b) P agrees with Rk for some k ∈ Z; (c) P is a proper subset of Rk for

some k ∈ Z. Case (c) dose not yield the supremum, while case (a) can be covered by (b).

Hence

‖λ‖bw,τL,q,a(Rn) ∼ sup
k∈Z

1

|Rk|τ
{ ∞∑
j=k∨0

‖χRk∩RjwjλRj‖
q
L(Rn)

}1/q

∼ sup
k∈Z

1

|Rk|τ
‖χRkwkλRk‖L(Rn) ∼ 1. (9.25)

On the other hand, keeping in mind that q is finite, we have

‖λ‖nw,τL,q,a(Rn) ≥
{ ∞∑
j=0

sup
k∈Z

1

|Rk|τq
‖χRk∩RjwjλRj‖

q
L(Rn)

}1/q

=∞.

This, together with Theorem 4.1, the atomic decompositions of (Bw,τL,q,a(Rn), bw,τL,q,a(Rn))

and (Nw,τ
L,q,a(Rn), nw,τL,q,a(Rn)), and (9.25), completes the proof.



10. Homogeneous spaces

What we have done so far can be extended to homogeneous cases. Here we give definitions

and state theorems but the proofs are omitted.

Following Triebel [90], we let

S∞(Rn) :=

{
ϕ ∈ S(Rn) :

∫
Rn
ϕ(x)xγ dx = 0 for all multi-indices γ ∈ Zn+

}
and consider S∞(Rn) as a subspace of S(Rn), including the topology. Write S ′∞(Rn) to

denote the topological dual of S∞(Rn), that is, the set of all continuous linear functionals

on S∞(Rn). We endow S ′∞(Rn) with the weak-∗ topology. Let P(Rn) be the set of all

polynomials on Rn. It is well known that S ′∞(Rn) = S ′(Rn)/P(Rn) as topological spaces

(see, for example, [105, Proposition 8.1]).

To develop a theory of homogeneous spaces, we need to modify the class of weights.

Let Rn+1
Z := {(x, t) ∈ Rn+1

+ : log2 t ∈ Z}.

Definition 10.1. Let α1, α2, α3 ∈ [0,∞). We define the class Ẇα3
α1,α2

of weights as the

set of all measurable functions w : Rn+1
Z → (0,∞) satisfying the following conditions:

(H-W1) There exists a positive constant C such that, for all x ∈ Rn and j, ν ∈ Z with

j ≥ ν,

C−12−(j−ν)α1w(x, 2−ν) ≤ w(x, 2−j) ≤ C2−(ν−j)α2w(x, 2−ν).

(H-W2) There exists a positive constant C such that, for all x, y ∈ Rn and j ∈ Z,

wj(x) ≤ Cw(y, 2−j)(1 + 2j |x− y|)α3 .

The class ?-Ẇα3
α1,α2

is defined by making modifications similar to Definition 3.12.

As we did for the inhomogeneous case, we write wj(x) := w(x, 2−j) for x ∈ Rn and

j ∈ Z.

Definition 10.2. Let q ∈ (0,∞] and τ ∈ [0,∞). Suppose, in addition, that w ∈ Ẇα3
α1,α2

with α1, α2, α3 ∈ [0,∞).

(i) `q(Lwτ (Rn,Z)) is defined to be the space of all sequences G := {gj}j∈Z of measurable

functions on Rn such that

‖G‖`q(Lwτ (Rn,Z)) := sup
P∈Q(Rn)

1

|P |τ
‖{χPwjgj}∞j=jP ‖Lw(`q(Rn,Z)) <∞. (10.1)

[83]
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(ii) `q(NLwτ (Rn,Z)) is defined to be the space of all sequences G := {gj}j∈Z of measur-

able functions on Rn such that

‖G‖`q(NLwτ (Rn,Z)) :=

{ ∞∑
j=−∞

sup
P∈Q(Rn)

(‖χPwjgj‖L(Rn)

|P |τ

)q}1/q

<∞. (10.2)

(iii) Lwτ (`q(Rn,Z)) is defined to be the space of all sequences G := {gj}j∈Z of measurable

functions on Rn such that

‖G‖Lwτ (`q(Rn,Z)) := sup
P∈Q(Rn)

1

|P |τ
‖{χPwjgj}∞j=jP ‖`q(Lw(Rn,Z)) <∞. (10.3)

(iv) ELwτ (`q(Rn,Z)) is defined to be the space of all sequencesG := {gj}j∈Z of measurable

functions on Rn such that

‖G‖ELwτ (`q(Rn,Z)) := sup
P∈Q(Rn)

1

|P |τ
‖{χPwjgj}∞j=−∞‖`q(Lw(Rn,Z)) <∞. (10.4)

When q =∞, a natural modification is made in (10.1) through (10.4), and τ is omitted

in the notation when τ = 0.

10.1. Homogeneous Besov-type and Triebel–Lizorkin-type spaces. Based upon

the inhomogeneous case, we present the following definitions.

Definition 10.3. Let a ∈ (0,∞), α1, α2, α3, τ ∈ [0,∞), q ∈ (0, ∞] and w ∈ Ẇα3
α1,α2

.

Assume also that L(Rn) is a quasi-normed space satisfying (L1) through (L4) and that

ϕ ∈ S∞(Rn) satisfies (1.4). For all f ∈ S ′∞(Rn), x ∈ Rn and j ∈ Z, let

(ϕ∗jf)a(x) := sup
y∈Rn

|ϕj ∗ f(x+ y)|
(1 + 2j |y|)a

. (10.5)

(i) The homogeneous generalized Besov-type space Ḃw,τL,q,a(Rn) is defined to be the space

of all f ∈ S ′∞(Rn) such that

‖f‖Ḃw,τL,q,a(Rn) := ‖{(ϕ∗jf)a}j∈Z‖`q(Lwτ (Rn,Z)) <∞.

(ii) The homogeneous generalized Besov-Morrey space Ṅw,τ
L,q,a(Rn) is defined to be the

space of all f ∈ S ′∞(Rn) such that

‖f‖Ṅw,τL,q,a(Rn) := ‖{(ϕ∗jf)a}j∈Z‖`q(NLwτ (Rn,Z)) <∞.

(iii) The homogeneous generalized Triebel–Lizorkin-type space Ḟw,τL,q,a(Rn) is defined to be

the space of all f ∈ S ′∞(Rn) such that

‖f‖Ḟw,τL,q,a(Rn) := ‖{(ϕ∗jf)a}j∈Z‖Lwτ (`q(Rn,Z)) <∞.

(iv) The homogeneous generalized Triebel–Lizorkin-Morrey space Ėw,τL,q,a(Rn) is defined to

be the space of all f ∈ S ′∞(Rn) such that

‖f‖Ėw,τL,q,a(Rn) := ‖{(ϕ∗jf)a}j∈Z‖ELwτ (`q(Rn,Z)) <∞.

(v) Denote by Ȧw,τL,q,a(Rn) any of the above spaces.

Example 10.4. One of the advantages of introducing the class Ẇα3
α1,α2

is that inter-

sections of these function spaces still fall under this scope. Indeed, let α1, α2, α3, β1, β2,
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β3, τ ∈ [0,∞), q, q1, q2 ∈ (0, ∞], w ∈ Ẇα3
α1,α2

and w′ ∈ Ẇβ3

β1,β2
. Then it is easy to see

Ȧw,τL,q1,a(Rn) ∩ Ȧw
′,τ
L,q1,a(Rn) = Ȧw+w′,τ

L,q1,a (Rn).

The following lemma is immediate from the definitions (cf. Lemma 3.8).

Lemma 10.5. Let α1, α2, α3, τ ∈ [0,∞), q, q1, q2 ∈ (0, ∞] and w ∈ Ẇα3
α1,α2

. Then

Ḃw,τL,q1,a(Rn) ↪→ Ḃw,τL,q2,a(Rn),

Ṅw,τ
L,q1,a(Rn) ↪→ Ṅw,τ

L,q2,a(Rn),

Ḟw,τL,q1,a(Rn) ↪→ Ḟw,τL,q2,a(Rn),

Ėw,τL,q1,a(Rn) ↪→ Ėw,τL,q2,a(Rn),

Ḟw,τL,q,a(Rn) ↪→ Ṅw,τ
L,∞,a(Rn)

in the sense of continuous embeddings.

The next theorem is a homogeneous counterpart of Theorem 3.14.

Theorem 10.6. Let α1, α2, α3, τ ∈ [0,∞), q ∈ (0, ∞] and w ∈ Ẇα3
α1,α2

. Then Ḃw,τL,q,a(Rn)

and Ḟw,τL,q,a(Rn) are continuously embedded into S ′∞(Rn).

Proof. In view of Lemma 10.5, we have only to prove that

Ḃw,τL,∞,a(Rn) ↪→ S ′∞(Rn).

Suppose that Φ satisfies (1.3) and Φ̂ equals 1 in a neighborhood of the origin. We write

ϕ(·) := Φ(·) − 2−nΦ(2−1·) and define L1(f) := f − Φ ∗ f for all f ∈ S ′∞(Rn). Then by

Theorem 3.14, we have L1(Ḃw,τL,q,a(Rn)) ↪→ S ′(Rn) ↪→ S ′∞(Rn). Therefore, we need to

prove that

L2(f) :=

0∑
j=−∞

ϕj ∗ f

converges in S ′∞(Rn) and that L2 is a continuous operator from Ḃw,τL,∞,a(Rn) to S ′∞(Rn).

Notice that, for all α ∈ Zn+, j ∈ Z and x ∈ Rn,

|∂α(ϕj ∗ f)(x)| . 2j‖α‖1((∂αϕ)∗jf)a(x).

Consequently, for any κ ∈ S∞(Rn), we have, for α ∈ Zn+,∣∣∣∣ ∫
Rn
κ(x)∂α(ϕj ∗ f)(x) dx

∣∣∣∣ ≤ ∫
Rn
|κ(x)∂α(ϕj ∗ f)(x)| dx

≤ 2j‖α‖1
∫
Rn
|κ(x)|((∂αϕ)∗jf)a(x) dx.

Now we use the condition (H-W2) to conclude that, for α ∈ Zn+,∣∣∣∣ ∫
Rn
κ(x)∂α(ϕj ∗ f)(x) dx

∣∣∣∣ ≤ 2j(‖α‖1−α1)

∫
Rn

|κ(x)|
w(x, 1)

wj(x)((∂αϕ)∗jf)a(x) dx

≤ 2j(‖α‖1−α1)

∫
Rn

1

(1 + |x|)M
wj(x)((∂αϕ)∗jf)a(x) dx
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= 2j(‖α‖1−α1)
∑
k∈Zn

∫
Qjk

1

(1 + |x|)M
wj(x)((∂αϕ)∗jf)a(x) dx

. 2j(‖α‖1−α1−M)
∑
k∈Zn

(|k|+ 1)−M
∫
Qjk

wj(x)((∂αϕ)∗jf)a(x) dx.

By (L6) and (H-W2), together with Theorem 10.7 below, we further see that, for α ∈ Zn+,∣∣∣∣ ∫
Rn
κ(x)∂α(ϕj ∗ f)(x) dx

∣∣∣∣ . 2j(‖α‖1−α1−δ0)
∑
k∈Zn

(|k|+ 1)−M+δ0‖wj((∂αϕ)∗jf)a‖L(Rn)

. 2j(‖α‖1−α1−δ0)‖f‖Ḃw,τL,∞,a(Rn).

Therefore, the summation defining L2(f) converges in S ′∞(Rn).

We remark that these homogeneous spaces have many properties similar to those of

their inhomogeneous counterparts. However, similar to the classical homogeneous Besov

spaces and Triebel–Lizorkin spaces (see [90, p. 238]), some of the most striking features

of the spaces Bw,τL,q,a(Rn), Fw,τL,q,a(Rn), Nw,τ
L,q,a(Rn) and Ew,τL,q,a(Rn) have no counterparts,

such as the boundedness of pointwise multipliers in Section 5.

10.2. Characterizations. We have the following counterparts of Theorem 3.5.

Theorem 10.7. Let a, α1, α2, α3, τ, q, w and L(Rn) be as in Definition 10.3. Assume that

ψ ∈ S∞(Rn) has the property that

ψ̂(ξ) 6= 0 if ε/2 < |ξ| < 2ε

for some ε ∈ (0,∞). Let ψj(·) := 2jnψ(2j ·) for all j ∈ Z and {(ψ∗j f)a}j∈Z be as in (10.5)

with ϕ replaced by ψ. Then

‖f‖Ḃw,τL,q,a(Rn) ∼ ‖{(ψ
∗
j f)a}j∈Z‖`q(Lwτ (Rn,Z)),

‖f‖Ṅw,τL,q,a(Rn) ∼ ‖{(ψ
∗
j f)a}j∈Z‖`q(NLwτ (Rn,Z)),

‖f‖Ḟw,τL,q,a(Rn) ∼ ‖{(ψ
∗
j f)a}j∈Z‖Lwτ (`q(Rn,Z)),

‖f‖Ėw,τL,q,a(Rn) ∼ ‖{(ψ
∗
j f)a}j∈Z‖ELwτ (`q(Rn,Z)),

with the implicit constants independent of f .

We also characterize these function spaces in terms of local means (see Corollary 3.6).

Corollary 10.8. Under the notation of Theorem 10.7, let

Mf(x, 2−j) := sup
ψ
|ψj ∗ f(x)|

for all (x, 2−j) ∈ Rn+1
Z and f ∈ S ′∞(Rn), where the supremum is taken over all ψ in

S∞(Rn) such that ∑
|α|≤N

sup
x∈Rn

(1 + |x|)N |∂αψ(x)| ≤ 1

and, for some ε ∈ (0,∞),∫
Rn
ξαψ̂(ξ) dξ = 0, ψ̂(ξ) 6= 0 if ε/2 < |ξ| < 2ε.
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If N is large enough, then for all f ∈ S ′∞(Rn),

‖f‖Ḃw,τL,q,a(Rn) ∼ ‖{Mf(·, 2−j)}j∈Z‖`q(Lwτ (Rn,Z)),

‖f‖Ṅw,τL,q,a(Rn) ∼ ‖{Mf(·, 2−j)}j∈Z‖`q(NLwτ (Rn,Z)),

‖f‖Ḟw,τL,q,a(Rn) ∼ ‖{Mf(·, 2−j)}j∈Z‖Lwτ (`q(Rn,Z)),

‖f‖Ėw,τL,q,a(Rn) ∼ ‖{Mf(·, 2−j)}j∈Z‖ELwτ (`q(Rn,Z)),

with the implicit constants independent of f .

10.3. Atomic decompositions. Now we place ourselves once again in the setting of

a quasi-normed space L(Rn) satisfying only (L1) through (L6). Now we are going to

consider the atomic decompositions of the spaces in Definition 10.3.

Definition 10.9 (cf. Definition 4.1). Let K ∈ Z+ and L ∈ Z+ ∪ {−1}.

(i) Let Q ∈ Q(Rn). A (K,L)-atom (for Ȧs,τL,q,a(Rn)) supported near a cube Q is a

CK(Rn)-function a satisfying

(the support condition) supp (a) ⊂ 3Q,

(the size condition) ‖∂αa‖L∞(Rn) ≤ |Q|−‖α‖1/n,

(the moment condition)

∫
Rn
xβa(x) dx = 0,

for all multiindices α and β satisfying ‖α‖1 ≤ K and ‖β‖1 ≤ L. Here the moment

condition with L = −1 is understood to be vacuous.

(ii) A set {ajk}j∈Z, k∈Zn of CK(Rn)-functions is called a collection of (K,L)-atoms (for

Ȧs,τL,q,a(Rn)) if each ajk is a (K,L)-atom supported near Qjk.

Definition 10.10 (cf. Definition 4.2). Let K ∈ Z+, L ∈ Z+ ∪ {−1} and N � 1.

(i) Let Q ∈ Q(Rn). A (K,L)-molecule (for Ȧs,τL,q,a(Rn)) supported near a cube Q is a

CK(Rn)-function M satisfying

(the decay condition) |∂αM(x)| ≤ (1 + |x− cQ|/`(Q))−N for all x ∈ Rn,

(the moment condition)

∫
Rn
xβM(x) dx = 0,

for all multiindices α and β satisfying ‖α‖1 ≤ K and ‖β‖1 ≤ L. Here cQ and `(Q)

denote, respectively, the center and the side length of Q, and the moment condition

with L = −1 is understood to be vacuous.

(ii) A collection {Mjk}j∈Z, k∈Zn of CK(Rn)-functions is called a collection of (K,L)-

molecules (for Ȧs,τL,q,a(Rn)) if each Mjk is a (K,L)-molecule supported near Qjk.
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For a function F on Rn+1
Z , we define

‖F‖Lw,τL,q,a(Rn+1
Z ) :=

∥∥∥∥{ sup
y∈Rn

|F (y, 2−j)|
(1 + 2j | · −y|)a

}
j∈Z

∥∥∥∥
`q(Lwτ (Rn,Z))

,

‖F‖Nw,τL,q,a(Rn+1
Z ) :=

∥∥∥∥{ sup
y∈Rn

|F (y, 2−j)|
(1 + 2j | · −y|)a

}
j∈Z

∥∥∥∥
`q(NLwτ (Rn,Z))

,

‖F‖Fw,τL,q,a(Rn+1
Z ) :=

∥∥∥∥{ sup
y∈Rn

|F (y, 2−j)|
(1 + 2j | · −y|)a

}
j∈Z

∥∥∥∥
Lwτ (`q(Rn,Z))

,

‖F‖Ew,τL,q,a(Rn+1
Z ) :=

∥∥∥∥{ sup
y∈Rn

|F (y, 2−j)|
(1 + 2j | · −y|)a

}
j∈Z

∥∥∥∥
ELwτ (`q(Rn,Z))

.

Definition 10.11 (cf. Definition 4.3). Let α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞]. Suppose

that w ∈ Ẇα3
α1,α2

. Assume that Φ, ϕ ∈ S(Rn) satisfy, respectively, (1.3) and (1.4). Define

Λ : Rn+1
Z → C by setting, for all (x, 2−j) ∈ Rn+1

Z ,

Λ(x, 2−j) :=
∑
m∈Zn

λjmχQjm(x),

when λ := {λjm}j∈Z,m∈Zn , a doubly-indexed complex sequence, is given.

(i) The homogeneous sequence space ḃw,τL,q,a(Rn) is defined to be the space of all λ such

that ‖λ‖ḃw,τL,q,a(Rn) := ‖Λ‖L̇w,τL,q,a(Rn+1
Z ) <∞.

(ii) The homogeneous sequence space ṅw,τL,q,a(Rn) is defined to be the space of all λ such

that ‖λ‖ṅw,τL,q,a(Rn) := ‖Λ‖Ṅw,τL,q,a(Rn+1
Z ) <∞.

(iii) The homogeneous sequence space ḟw,τL,q,a(Rn) is defined to be the space of all λ such

that ‖λ‖ḟw,τL,q,a(Rn) := ‖Λ‖Ḟw,τL,q,a(Rn+1
Z ) <∞.

(iv) The homogeneous sequence space ėw,τL,q,a(Rn) is defined to be the space of all λ such

that ‖λ‖ėw,τL,q,a(Rn) := ‖Λ‖Ėw,τL,q,a(Rn+1
Z ) <∞.

As we did for inhomogeneous spaces, we present the following definition.

Definition 10.12 (cf. Definition 4.4). Let X be a function space continuously embedded

into S ′∞(Rn) and X a quasi-normed space of sequences. The pair (X,X ) is said to admit

atomic decompositions if it satisfies the following two conditions:

(i) For any f ∈ X, there exist a collection of atoms, {ajk}j∈Z, k∈Zn , and a sequence

{λjk}j∈Z, k∈Zn such that f=
∑∞
j=−∞

∑
k∈Zn λjkajk in S ′∞(Rn) and ‖{λjk}j∈Z, k∈Zn‖X

. ‖f‖X with the implicit constant independent of f .

(ii) Suppose that {ajk}j∈Z, k∈Zn is a collection of atoms, and {λjk}j∈Z, k∈Zn a sequence

such that ‖{λjk}j∈Z, k∈Zn‖X < ∞. Then the series f :=
∑∞
j=−∞

∑
k∈Zn λjkajk con-

verges in S ′∞(Rn) and ‖f‖X . ‖{λjk}j∈Z, k∈Zn‖X with the implicit constant inde-

pendent of {λjk}j∈Z, k∈Zn .

Analogously one defines the notion of a pair (X,X ) admitting molecular decompositions.

Theorem 10.13. Let α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞]. Suppose that w ∈ Ẇα3
α1,α2

and (3.28) and (4.1)–(4.3) hold. Then the pair (Ȧw,τL,q,a(Rn), ȧw,τL,q,a(Rn)) admits atomic

decompositions.
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In principle, the proof of Theorem 10.13 is analogous to that of Theorem 4.5: we

just need to modify the related proofs. In particular, we have to prove the following

counterpart of Lemma 4.7.

Lemma 10.14. Let α1, α2, α3 ∈ [0,∞) and w ∈ Ẇα3
α1,α2

. Assume that K ∈ Z+ and

L ∈ Z+ satisfy (4.1)–(4.3). Let λ := {λjk}j∈Z, k∈Zn ∈ ḃw,τL,∞,a(Rn) and {Mjk}j∈Z, k∈Zn be

a family of molecules. Then f =
∑∞
j=−∞

∑
k∈Zn λjkMjk converges in S ′∞(Rn).

Proof. Let ϕ ∈ S∞(Rn). Lemma 4.7 shows f+ :=
∑∞
j=1

∑
k∈Zn λjkMjk converges in

S ′∞(Rn). So we need to prove f− :=
∑0
j=−∞

∑
k∈Zn λjkMjk converges in S ′∞(Rn).

Let M � 1. From Lemma 2.10, the definition of molecules and the fact that ϕ ∈
S∞(Rn), it follows that, for all j ≤ 0 and k ∈ Zn,∣∣∣∣ ∫

Rn
Mjk(x)ϕ(x) dx

∣∣∣∣ . 2j(M+1)(1 + 2−j |k|)−N .

By (L6), we conclude that∣∣∣∣ ∫
Rn

Mjk(x)ϕ(x) dx

∣∣∣∣ . 2j(M+1−γ)(1 + 2−j |k|)−N (1 + |k|)δ0‖χQjk‖L(Rn).

Consequently,∣∣∣∣λjk ∫
Rn

Mjk(x)ϕ(x) dx

∣∣∣∣ . 2j(M+1−γ−α1)(1 + |k|)−N+α3+δ0‖λ‖bw,τL,∞,a(Rn).

By the assumption, this inequality is summable over j ≤ 0 and k ∈ Zn, which completes

the proof.

The homogeneous version of Theorem 4.9, which is the regular case of decompositions,

is given below; its proof is similar to that of Theorem 4.9. We omit the details.

Theorem 10.15. Let K ∈ Z+, L = −1, α1, α2, α3, τ ∈ [0,∞) and q ∈ (0, ∞]. Sup-

pose that w ∈ ?-Ẇα3
α1,α2

. Assume, in addition, that (3.28), (4.2), (4.22) and (4.23) hold,

namely, a ∈ (N0 + α3,∞). Then (Ȧw,τL,q,a(Rn), ȧw,τL,q,a(Rn)) admits atomic/molecular de-

compositions.

10.4. Boundedness of operators. We first focus on the counterpart of Theorem 6.5.

To this end, for ` ∈ N and α ∈ R, let m ∈ C`(Rn\{0}) be such that, for all ‖σ‖1 ≤ `,

sup
R∈(0,∞)

[
R−n+2α+2‖σ‖1

∫
R≤|ξ|<2R

|∂σξm(ξ)|2 dξ
]
≤ Aσ <∞. (10.6)

The Fourier multiplier Tm is defined by setting, for all f ∈ S∞(Rn), T̂mf := mf̂ .

We remark that when α = 0, the condition (10.6) is just the classical Hörmander

condition (see, for example, [88, p. 263]). A typical example satisfying (10.6) with α = 0

is the kernel of the Riesz transform Rj given by R̂jf(ξ) := −i ξi|ξ| f̂(ξ) for all ξ ∈ Rn \ {0}
and j ∈ {1, . . . , n}. When α 6= 0, a typical example satisfying (10.6) for any ` ∈ N is

given by m(ξ) := |ξ|−α for ξ ∈ Rn \{0}; another example is the symbol of the differential

operator ∂σ of order α := σ1 + · · ·+ σn with σ := (σ1, . . . , σn) ∈ Zn+.

It was proved in [102] that the Fourier multiplier Tm is bounded on some Besov-type

and Triebel–Lizorkin-type spaces for suitable indices.
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Let m be as in (10.6) and K its inverse Fourier transform. To obtain the boundedness

of Tm on Ḃw,τL,q,a(Rn) and Ḟw,τL,q,a(Rn), we need [102, Lemma 3.1]:

Lemma 10.16. K ∈ S ′∞(Rn).

The next lemma is [4, Lemma 4.1]; see also [102, Lemma 3.2].

Lemma 10.17. Let ψ be a Schwartz function on Rn satisfying (1.4). Assume that m

satisfies (10.6). If a ∈ (0,∞) and ` > a + n/2, then there exists a positive constant C

such that, for all j ∈ Z,∫
Rn

(1 + 2j |z|)a|(K ∗ ψj)(z)| dz ≤ C2−jα.

Next we show that, in a suitable way, Tm can also be defined on the whole spaces

Ḟw,τL,q,a(Rn) and Ḃw,τL,q,a(Rn). Let ϕ be a Schwartz function on Rn satisfy (1.4). Then there

exists ϕ† ∈ S(Rn) satisfying (1.4) such that∑
i∈Z

ϕ†i ∗ ϕi = δ0 (10.7)

in S ′∞(Rn). For any f ∈ Ḟw,τL,q,a(Rn) or Ḃw,τL,q,a(Rn), we define a linear functional Tmf on

S∞(Rn) by setting, for all φ ∈ S∞(Rn),

〈Tmf, φ〉 :=
∑
i∈Z

f ∗ ϕ†i ∗ ϕi ∗ φ ∗K(0) (10.8)

as long as the right-hand side converges. In this sense, we say Tmf ∈ S ′∞(Rn). The

following result shows that Tmf in (10.8) is well defined.

Lemma 10.18. Let ` ∈ (n/2,∞), α ∈ R, a ∈ (0,∞), α1, α2, α3, τ ∈ [0,∞), q ∈ (0, ∞],

w ∈ Ẇα3
α1,α2

and f ∈ Ḟw,τL,q,a(Rn) or Ḃw,τL,q,a(Rn). Then the series in (10.8) is convergent

and the sum on the right-hand side of (10.8) is independent of the choice of the pair

(ϕ†, ϕ). Moreover, Tmf ∈ S ′∞(Rn).

Proof. By similarity, we only consider f ∈ Ḟw,τL,q,a(Rn). Let (ψ†, ψ) be another pair satis-

fying (10.7). Since φ ∈ S∞(Rn), by the Calderón reproducing formula we have

φ =
∑
j∈Z

ψ†j ∗ ψj ∗ φ

in S∞(Rn). Thus,∑
i∈Z

f ∗ ϕ†i ∗ ϕi ∗ φ ∗K(0) =
∑
i∈Z

f ∗ ϕ†i ∗ ϕi ∗
(∑
j∈Z

ψ†j ∗ ψj ∗ φ
)
∗K(0)

=
∑
i∈Z

i+1∑
j=i−1

f ∗ ϕ†i ∗ ϕi ∗ ψ
†
j ∗ ψj ∗ φ ∗K(0),

where the last equality follows from the fact that ϕi ∗ ψj = 0 if |i− j| ≥ 2.

Similar to the argument in Lemma 6.3, we see that
∞∑
i=0

|f ∗ ϕi ∗ ϕ†i ∗ ψi ∗ ψ
†
i ∗ φ ∗K(0)| . ‖f‖Ḟw,τL,q,a(Rn),
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where a is an arbitrary positive number. When i < 0, notice that, for all z ∈ Rn,∫
Rn
|ϕi ∗ f(y − z)| |ϕi(−y)| dy

.
∑
k∈Zn

2in

(1 + 2i|2−ik|)a

∫
Qik

|ϕi ∗ f(y − z)| dy

.
∑
k∈Zn

2in−iα1(1 + 2i|z|)α3

(1 + 2i|2−ik|)a−α3
inf

y∈Qik
ω(y − z, 2−i)

∫
Qik

|ϕi ∗ f(y − z)| dy

.
∑
k∈Zn

2−iα1(1 + 2i|z|)α3

(1 + 2i|2−ik|)a−α3
inf

y∈Qik
{ω(y − z, 2−i)|ϕ∗i f(y − z)|}

. 2in−iα1(1 + 2i|z|)α32−inτ‖f‖Ȧw,τL,q,a(Rn),

which, together with the fact that, for M sufficiently large and all y, z ∈ Rn,

|ψi ∗ φ(y − z)| . 2iM
2in

(1 + 2i|y − z|)n+M
,

and Lemma 10.17, further implies that∑
i<0

|f ∗ ϕi ∗ ϕ†i ∗ ψi ∗ ψ
†
i ∗ φ ∗K(0)|

=
∑
i<0

∫
Rn
|f ∗ ϕi ∗ ϕ†i (−z)ψi ∗ ψ

†
i ∗ φ ∗K(z)| dz

.
∑
i<0

2in−iα12−inτ‖f‖Ḟw,τL,q,a(Rn)

∫
Rn

(1 + 2i|z|)α3 |ψi ∗ ψ†i ∗ φ ∗K(z)| dz

.
∑
i<0

2in−iα12iM2−inτ‖f‖Ḟw,τL,q,a(Rn)

∫
Rn

∫
Rn

2in(1 + 2i|z|)α3

(1 + 2i|y − z|)n+M
|ψ†i ∗K(y)| dy dz

.
∑
i<0

22in+iM−iα1‖f‖Ḟw,τL,q,a(Rn) . ‖f‖Ḟw,τL,q,a(Rn),

where we have chosen M > α1 − 2n.

Similar to the previous arguments, we see that∣∣∣∑
i∈Z

i+1∑
j=i−1

f ∗ ϕ†i ∗ ϕi ∗ ψ
†
j ∗ ψj ∗ φ ∗K(0)

∣∣∣ . ‖f‖Ḟw,τL,q,a(Rn).

Thus, Tmf in (10.8) is independent of the choice of (ϕ†, ϕ). Moreover, the previous

argument also implies that Tmf ∈ S ′∞(Rn), which completes the proof.

Next, Lemma 10.17 immediately yields the following result; we omit the details.

Lemma 10.19. Let α ∈ R, a ∈ (0,∞), ` ∈ N and ϕ, ψ ∈ S∞(Rn) satisfy (1.4). Assume

that m satisfies (10.6) and f ∈ S ′∞(Rn) is such that Tmf ∈ S ′∞(Rn). If ` > a+n/2, then

there exists a positive constant C such that, for all x, y ∈ Rn and j ∈ Z,

|(Tmf ∗ ψj)(y)| ≤ C2−jα(1 + 2j |x− y|)a(ϕ∗jf)a(x).
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Theorem 10.20. Let α ∈ R, a ∈ (0,∞), α1, α2, α3, τ ∈ [0,∞), q ∈ (0, ∞], w ∈ Ẇα3
α1,α2

and w̃(x, 2−j) = 2jαw(x, 2−j) for all x ∈ Rn and j ∈ Z. Suppose that m satisfies (10.6)

with ` ∈ N and ` > a + n/2. Then there exists a positive constant C1 such that, for all

f ∈ Ḟw,τL,q,a(Rn), ‖Tmf‖Ḟ w̃,τL,q,a(Rn)
≤ C1‖f‖Ḟw,τL,q,a(Rn) and a positive constant C2 such that,

for all f ∈ Ḃw̃,τL,q,a(Rn), ‖Tmf‖Ḃw̃,τL,q,a(Rn)
≤ C2‖f‖Ḃw,τL,q,a(Rn). Similar assertions hold for

Ėw,τL,q,a(Rn) and Ṅw,τ
L,q,a(Rn).

Proof. By Lemma 10.19, we see that, if ` > a+ n/2, then for all j ∈ Z and x ∈ Rn,

2jα(ψ∗j (Tmf))a(x) . (ϕ∗jf)a(x).

Then the definitions of Ḟw,τL,q,a(Rn) and Ḃw,τL,q,a(Rn) immediately yield the desired conclu-

sions.

The following analogue to Theorem 3.10 can be proven similarly. We omit the details.

Theorem 10.21. Let s ∈ [0,∞), a > α3 + N0, α1, α2, α3, τ ∈ [0,∞), q ∈ (0,∞] and

w ∈ Ẇα3
α1,α2

. Set w∗(x, 2−j) := 2jswj(x) for all x ∈ Rn and j ∈ Z. Then the lift operator

(−∆)s/2 is bounded from Ȧw,τL,q,a(Rn) to Ȧw
∗,τ
L,q,a(Rn).

We consider the class Ṡ0
1,µ(Rn) with µ ∈ [0, 1). Recall that a C∞(Rnx × Rnξ )-function

a is said to belong to the class Ṡm1,µ(Rn) if

sup
x,ξ∈Rn

|ξ|−m−‖~α‖1−µ‖~β‖1 |∂~βx∂~αξ a(x, ξ)| .~α,~β 1

for all multiindices ~α and ~β. One defines

a(X,D)(f)(x) :=

∫
Rn
a(x, ξ)f̂(ξ)eix·ξ dξ

for all f ∈ S∞(Rn) and x ∈ Rn. Theorem 6.6 has the following counterpart, whose proof

is similar and omitted.

Theorem 10.22. Let w ∈ Ẇα3
α1,α2

with α1, α2, α3 ∈ [0,∞) and let a quasi-normed func-

tion space L(Rn) satisfy (L1) through (L6). Let µ ∈ [0, 1), τ ∈ (0,∞) and q ∈ (0,∞].

Assume, in addition, that (3.28) holds, that is, a ∈ (N0 +α3,∞), where N0 is as in (L6).

Then pseudo-differential operators with symbol in Ṡ0
1,µ(Rn) are bounded on Ȧw,τL,q,a(Rn).

10.5. Function spaces Ȧw,τL,q,a(Rn) for τ large. Now we have the following counterpart

for Theorem 7.2.

Theorem 10.23. Let ω ∈ Ẇα3
α1,α2

with α1, α2, α3 ≥ 0. Define a new index τ̃ by

τ̃ := lim sup
j→∞

sup
P∈Qj(Rn)

[
1

nj
log2

1

‖χP ‖L(Rn)

]
and a new weight ω̃ by

ω̃(x, 2−j) := 2jn(τ−τ̃)ω(x, 2−j), x ∈ Rn, j ∈ Z.

Assume that τ > τ̃ ≥ 0. Then

(i) w̃ ∈ Ẇα3

(α1−n(τ−τ̃))+,(α2+n(τ−τ̃))+
;
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(ii) for all q ∈ (0,∞) and a > α3 +N0, Ḟw,τL,q,a(Rn) and Ḃw,τL,q,a(Rn) coincide, respectively,

with Ḟ w̃∞,∞,a(Rn) and Ḃw̃∞,∞,a(Rn) with equivalent norms.

10.6. Characterizations via differences and oscillations. We can extend Theorems

8.2 and 8.6 to homogeneous spaces as follows; the proofs are omitted.

Theorem 10.24. Let a, α1, α2, α3, τ ∈ [0,∞), u ∈ [1,∞], q ∈ (0, ∞] and w ∈ ?-Wα3
α1,α2

.

If M ∈ N, α1 ∈ (a,M) and (8.2) holds, then there exists a positive constant C̃ := C(M)

such that, for all f ∈ S ′∞(Rn) ∩ L1
loc (Rn), the following hold with the implicit constants

independent of f :∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z

∥∥∥∥
`q(Lwτ (Rn,Z))

∼ ‖f‖Ḃw,τL,q,a(Rn),(i)

∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z

∥∥∥∥
Lwτ (`q(Rn,Z))

∼ ‖f‖Ḟw,τL,q,a(Rn),(ii)

∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z

∥∥∥∥
`q(NLwτ (Rn,Z))

∼ ‖f‖Ṅw,τL,q,a(Rn),(iii)

∥∥∥∥{ sup
z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z

∥∥∥∥
ELwτ (`q(Rn,Z))

∼ ‖f‖Ėw,τL,q,a(Rn).(iv)

Theorem 10.25. Let a, α1, α2, α3, τ ∈ [0,∞), u ∈ [1,∞], q ∈ (0,∞] and w ∈ ?-Ẇα3
α1,α2

.

If M ∈ N, α1 ∈ (a,M) and (8.2) holds, then, for all f ∈ S ′∞(Rn)∩L1
loc (Rn), the following

hold with the implicit constants independent of f :∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z

∥∥∥∥
`q(Lwτ (Rn,Z))

∼ ‖f‖Ḃw,τL,q,a(Rn),(i) ∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z

∥∥∥∥
Lwτ (`q(Rn,Z))

∼ ‖f‖Ḟw,τL,q,a(Rn),(ii) ∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z

∥∥∥∥
`q(NLwτ (Rn,Z))

∼ ‖f‖Ṅw,τL,q,a(Rn),(iii) ∥∥∥∥{ sup
z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z

∥∥∥∥
ELwτ (`q(Rn,Z))

∼ ‖f‖Ėw,τL,q,a(Rn).(iv)

Next, we transplant Theorems 9.6 and 9.8 to the homogeneous case. Again, since the

proofs are similar to the respective inhomogeneous cases, we omit the details.

Theorem 10.26. Suppose that a > N and that (9.19) is satisfied:

(1 + | · |)−N ∈ L(Rn) ∩ L′(Rn).

Assume, in addition, that there exists a positive constant C such that, for any finite

sequence {εk}k0

k=−k0
taking values {−1, 1},∥∥∥ k0∑

k=−k0

εkϕk ∗ f
∥∥∥
L(Rn)

≤ C‖f‖L(Rn),
∥∥∥ k0∑
k=−k0

εkϕk ∗ g
∥∥∥
L′(Rn)

≤ C‖g‖L′(Rn) (10.9)
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for all f ∈ L(Rn) and g ∈ L′(Rn). Then L(Rn) and L′(Rn) are embedded into S ′∞(Rn),

and L(Rn) and Ė0,0
L,2,a(Rn) coincide.

Theorem 10.27. Let L(Rn) be a Banach space of functions such that Lp(Rn) and

(L′)p(Rn) are Banach spaces of functions and the maximal operator M is bounded on

(Lp(Rn))′ and on ((L′)p(Rn))′ for some p ∈ (1,∞). Then (10.9) holds. In particular, if

a > N and (1 + | · |)−N ∈ L(Rn) ∩ L′(Rn), then L(Rn) and L′(Rn) are embedded into

S ′∞(Rn), and L(Rn) and Ė0,0
L,2,a(Rn) coincide.

As a corollary, L(Rn) enjoys the following characterization.

Corollary 10.28. Let L(Rn) be a Banach space of functions such that Lp(Rn) and

(L′)p(Rn) are Banach spaces of functions and the maximal operator M is bounded on

(Lp(Rn))′ and on ((L′)p(Rn))′ for some p ∈ (1,∞). If a > N and (1 + | · |)−N ∈
L(Rn) ∩ L′(Rn), then

‖f‖L(Rn) ∼
∥∥∥∥{ sup

z∈Rn

[ ∮
|h|≤C̃ 2−j

|∆M
h f(·+ z)|u

(1 + 2j |z|)au
dh

]1/u}
j∈Z

∥∥∥∥
EL1

0(`2(Rn,Z))

∼
∥∥∥∥{ sup

z∈Rn

oscMu f(·+ z, 2−j)

(1 + 2j |z|)a

}
j∈Z

∥∥∥∥
EL1

0(`2(Rn,Z))

with the implicit constants independent of f ∈ L(Rn).



11. Applications and examples

Now we present some examples for L(Rn) and survey what has been obtained recently.

11.1. Weighted Lebesgue spaces. Let ρ be a weight and p ∈ (0,∞). We let Lp(ρ)

denote the set of all Lebesgue measurable functions f for which the norm

‖f‖Lp(ρ) :=

[ ∫
Rn
|f(x)|pρ(x) dx

]1/p

is finite. Assume that (1 + | · |)−N0 ∈ Lp(ρ) for some N0 ∈ (0,∞) and the estimate

‖χQjk‖Lp(ρ) = ‖χ2−jk+2−j [0,1)n‖Lp(ρ) & 2−jγ(1 + |k|)−δ, j ∈ Z+, k ∈ Zn (11.1)

holds for some γ, δ ∈ [0,∞), where the implicit constant is independent of j and k. The

space Lp(ρ) is referred to as the weighted Lebesgue space.

In this example, N0 and γ, δ are included in (11.1). The assumption (3.2) actually

reads

L(Rn) := Lp(ρ), θ := min{1, p},

and L(Rn) satisfies (L1) through (L6). Notice that if ρ satisfies

ρ(x+ y) . (1 + |y|)Mρ(y) for all x, y ∈ Rn,

then ρ satisfies (9.17), and if ρ ∈ A∞(Rn) =
⋃

1≤u<∞Au(Rn), then ρ satisfies (L8).

Moreover (3.3) actually reads

wj(x) := 1 for all x ∈ Rn and j ∈ Z+, α1 = α2 = α3 = 0.

Hence, (3.4) is replaced by τ ∈ [0,∞), q ∈ (0,∞], a > N0.

11.2. Morrey spaces

Morrey spaces. To begin, we consider the case when L(Rn) := Mp
u(Rn), the Morrey

space. Recall that the definition was given in Example 5.5. Besov–Morrey spaces and

Triebel–Lizorkin–Morrey spaces are function spaces whose norms are obtained by replac-

ing Lp-norms with Morrey norms. More precisely, the Besov–Morrey norm ‖ · ‖N spqr(Rn)

is given by

‖f‖N spqr(Rn) := ‖Φ ∗ f‖Mp
q(Rn)+

[ ∞∑
j=1

2jsr‖ϕj ∗ f‖rMp
q(Rn)

]1/r
[95]
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and the Triebel–Lizorkin–Morrey norm ‖ · ‖Espqr(Rn) is given by

‖f‖Espqr(Rn) := ‖Φ ∗ f‖Mp
q(Rn)+

∥∥∥( ∞∑
j=1

2jsr|ϕj ∗ f |r
)1/r∥∥∥

Mp
q(Rn)

for 0 < q ≤ p < ∞, r ∈ (0,∞] and s ∈ R, where Φ and ϕ are, respectively, as in (1.3)

and (1.4), and ϕj(·) = 2jnϕ(2j ·) for all j ∈ N. The spaces N s
pqr(Rn) and Espqr(Rn) are

the sets of all f ∈ S ′(Rn) such that the norms ‖f‖N spqr(Rn) and ‖f‖Espqr(Rn) are finite,

respectively. Let Aspqr(Rn) denote either N s
pqr(Rn) or Espqr(Rn). Write

Bw,τp,u,q,a(Rn) := Bw,τMp
u,q,a

(Rn) and Fw,τp,u,q,a(Rn) := Fw,τMp
u,q,a

(Rn).

If we let wj(x) := 2js (x ∈ Rn, j ∈ Z+) with s ∈ R, then it is easy to show that

N s
p,u,q,a(Rn) := N s,0

p,u,q,a(Rn) coincides with N s
puq(Rn) when a > n/min(1, u), and that

F sp,u,q,a(Rn) := F s,0p,u,q,a(Rn) coincides with Espuq(Rn) when a > n/min(1, u, q). Indeed,

this is just a matter of applying the Plancherel–Pólya–Nikol’skĭı inequality (Lemma 1.1)

and the maximal inequalities obtained in [80, 89]. These function spaces are dealt with

in [80, 89].

Observe that (L1) through (L6) hold in this case.

There exists another point of view on these function spaces. Recall that the function

space As,τp,q(Rn), defined by (3.1), originated from [97, 98, 99]. The following is known,

which is extended in our Theorem 9.12.

Proposition 11.1 ([104, Theorem 1.1]). Let s ∈ R.

(i) If 0<p<u<∞ and q ∈ (0,∞), then N s
upq(Rn) is a proper subset of B

s,1/p−1/u
p,q (Rn).

(ii) If 0 < p < u < ∞ and q = ∞, then N s
upq(Rn) = B

s,1/p−1/u
p,q (Rn) with equivalent

norms.

(iii) If 0 < p ≤ u < ∞ and q ∈ (0,∞], then Esupq(Rn) = F
s,1/p−1/u
p,q (Rn) with equivalent

norms.

An analogue for homogeneous spaces is also true.

Other related spaces are inhomogeneous Hardy–Morrey spaces hMp
q(Rn), whose norm

is given by

‖f‖hMp
q(Rn) :=

∥∥∥ sup
0<t≤1

|t−nΦ(t−1·) ∗ f |
∥∥∥
Mp

q(Rn)

for all f ∈ S ′(Rn) and 0 < q ≤ p <∞, where Φ is as in (1.3).

Now in this example (3.2) actually reads

L(Rn) :=Mp
q(Rn), θ := min{1, q}, N0 := n/p+ 1, γ := n/p, δ := 0,

and L(Rn) satisfies (L1) through (L6) and (L8) (see [79, 89]). Moreover (3.3) reads

wj(x) := 1 for all x ∈ Rn and j ∈ Z+, α1 = α2 = α3 = 0.

Hence, (3.4) is replaced by

τ ∈ [0,∞), q ∈ (0,∞], a > n/p+ 1.

We refer to [32, 33, 43, 74, 75, 80, 83] for more details and applications of Hardy–

Morrey spaces, Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Indeed, in [43,



11.2. Morrey spaces 97

74, 80], Besov–Morrey spaces and their applications are investigated; Triebel–Lizorkin–

Morrey spaces are dealt with in [74, 75, 80]; Hardy–Morrey spaces are defined and consid-

ered in [32, 33, 75, 83] and Hardy–Morrey spaces are applied to PDE in [33]. We also refer

to [30] for more related results about Besov–Morrey spaces and Triebel–Lizorkin–Morrey

spaces, where weighted settings are covered.

Generalized Morrey spaces. We can also consider generalized Morrey spaces. Let

p ∈ (0,∞) and φ : (0,∞) → (0,∞) be a suitable function. For a function f locally in

Lp(Rn), we set

‖f‖Mφ,p(Rn) := sup
Q∈Q(Rn)

φ(`(Q))

[
1

|Q|

∫
Q

|f(x)|p dx
]1/p

,

where `(Q) denotes the side length of the cubeQ. The generalized Morrey spaceMφ,p(Rn)

is defined to be the space of all functions f locally in Lp(Rn) such that ‖f‖Mφ,p(Rn) <∞.

Let L(Rn) :=Mφ,p(Rn). Observe that (L1) through (L6) are true under a suitable condi-

tion on φ. At least (L1) through (L5) hold without assuming any condition on φ. Morrey–

Campanato spaces with growth function φ were first introduced by Spanne [86, 87] and

Peetre [67], which treat singular integrals of convolution type. In 1991, Mizuhara [54]

studied the boundedness of the Hardy–Littlewood maximal operator on Morrey spaces

with growth function φ. Later in 1994, Nakai [56] considered the boundedness of singu-

lar integrals (with non-convolution kernel), and fractional integral operators on Morrey

spaces with growth function φ. In [58], Nakai defined the space Mφ,p(Rn). Later, this

type of function space was used in [44, 56, 76]. We refer to [60] for more details. In [57,

p. 445], Nakai proved the following (see [78, (10.6)] as well).

Proposition 11.2. Let p ∈ (0,∞) and φ : (0,∞) → (0,∞) be an arbitrary function.

Then there exists a function φ∗ : (0,∞)→ (0,∞) such that

φ∗(t) is nondecreasing and [φ∗(t)]pt−n is nonincreasing, (11.2)

and Mφ,p(Rn) and Mφ∗,p(Rn) coincide.

We rephrase (L8) by using (11.2) as follows.

Proposition 11.3 ([73, Theorem 2.5]). Suppose that φ : (0,∞)→ (0,∞) is an increasing

function. Assume that φ : (0,∞)→ (0,∞) satisfies∫ ∞
r

φ(t)
dt

t
∼ φ(r) (11.3)

for all r ∈ (0,∞). Then, for all u ∈ (1,∞] and all sequences {fj}∞j=1 of measurable

functions, ∥∥∥( ∞∑
j=1

[Mfj ]
u
)1/u∥∥∥

Mφ,p(Rn)
∼
∥∥∥( ∞∑

j=1

|fj |u
)1/u∥∥∥

Mφ,p(Rn)

with the implicit constants independent of {fj}∞j=1.

Remark 11.4. In [73], it was actually assumed that∫ ∞
r

φ(t)
dt

t
. φ(r) for all r ∈ (0,∞). (11.4)
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However, under the assumption (11.2), the conditions (11.3) and (11.4) are mutually

equivalent.

Now in this example, (3.2) reads

L(Rn) :=Mφ,p(Rn), θ := 1, N0 := n/p+ 1, γ := n/p, δ := 0

and L(Rn) satisfies (L8) by Proposition 11.3 and also (L1) through (L6). Moreover (3.3)

reads

wj(x) := 1 for all x ∈ Rn and j ∈ Z+, α1 = α2 = α3 = 0.

Hence, (3.4) is replaced by

τ ∈ [0,∞), q ∈ (0,∞], a > n/p+ 1.

11.3. Orlicz spaces. Recall the definition of Orlicz spaces given in Example 5.5. The

proof of the following estimate can be found in [8].

Lemma 11.5. If a Young function Φ satisfies

(doubling condition) sup
t>0

Φ(2t)

Φ(t)
<∞, (∇2-condition) inf

t>0

Φ(2t)

Φ(t)
> 2,

then for all u ∈ (1,∞] and all sequences {fj}∞j=1 of measurable functions,∥∥∥( ∞∑
j=1

[Mfj ]
u
)1/u∥∥∥

LΦ(Rn)
∼
∥∥∥( ∞∑

j=1

|fj |u
)1/u∥∥∥

LΦ(Rn)
(11.5)

with the implicit constants independent of {fj}∞j=1.

Thus, by Lemma 11.5, LΦ(Rn) satisfies (L8). In this example L(Rn) := LΦ(Rn) also

satisfies (L1) through (L6) with (3.2), and (3.3) reading

L(Rn) := LΦ(Rn), θ := 1, N0 := n+ 1, γ := n, δ := 0.

Indeed, since Φ is a Young function, we have∫
Rn

Φ(2jnχQj0(x)) dx = 2−jnΦ(2jn) ≥ 1.

Consequently, ‖χQj0‖LΦ(Rn) ≥ 2−jn. Moreover as before,

wj(x) := 1 for all x ∈ Rn and j ∈ Z+, α1 = α2 = α3 = 0.

Hence (3.4) now reads

τ ∈ [0,∞), q ∈ (0,∞], a > n+ 1.

This example can be generalized somewhat. Given a Young function Φ, define the

mean Luxemburg norm of f on a cube Q ∈ Q(Rn) by

‖f‖Φ,Q := inf

{
λ > 0 :

1

|Q|

∫
Q

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

When Φ(t) := tp for all t ∈ (0,∞) with p ∈ [1,∞), we have

‖f‖Φ,Q =

[
1

|Q|

∫
Q

|f(x)|p dx
]1/p

,
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that is, the mean Luxemburg norm coincides with the (normalized) Lp norm. The Orlicz–

Morrey space LΦ, φ(Rn) consists of all locally integrable functions f on Rn for which the

norm

‖f‖LΦ,φ(Rn) := sup
Q∈Q(Rn)

φ(`(Q))‖f‖Φ,Q

is finite. As stated in [77, Section 1], we can assume without loss of generality that the

real functions t 7→ φ(t) and t 7→ tnφ(t)−1 are both increasing on (0,∞).

Using [77, Proposition 2.17], we extend [37, 38] and [77, Proposition 2.17] to the

vector-valued version. In the next proposition, we shall establish that (L8) holds provided

that ∫ t

1

Φ(t/s) ds ≤ Φ(Ct) (t ∈ (0,∞))

for some positive constant C and for all t ∈ (1,∞).

Proposition 11.6. Let q ∈ (0,∞]. Let Φ be a normalized Young function. Then the

following are equivalent:

(i) The maximal operator M is locally bounded in the norm determined by Φ, that is,

there exists a positive constant C such that, for all cubes Q ∈ Q(Rn),

‖M(gχQ)‖Φ,Q ≤ C‖g‖Φ,Q.

(ii) The function space L(Rn) := LΦ, φ(Rn) satisfies (L8) with some 0 < r < q and

w ≡ 1. Namely, there exist R� 1 and r ∈ (0,∞) such that

‖{(ηj,R ∗ |fj |r)1/r}j∈Z+
‖LΦ,φ(`q(Rn,Z+)) . ‖{fj}j∈Z+

‖LΦ,φ(`q(Rn,Z+))

for all {fj}j∈N ⊂ LΦ, φ(Rn), where the implicit constant is independent of {fj}j∈N.

(iii) For some positive constant C and all t ∈ (1,∞),∫ t

1

t

s
Φ′(s) ds ≤ Φ(Ct).

(iv) For some positive constant C and all t ∈ (1,∞),∫ t

1

Φ(t/s) ds ≤ Φ(Ct).

Therefore, a theory of Besov–Orlicz spaces and Triebel–Lizorkin–Orlicz spaces similar

to the theory of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces as in [32, 33,

43, 74, 75, 80, 83] can be developed as before.

Proof of Proposition 11.6. The proof is based upon a minor modification of known re-

sults. However, not having found the proof in the literature, we outline it here. In [77,

Proposition 2.17] we have shown that (i), (iii) and (iv) are mutually equivalent. It is clear

that (ii) implies (i). Therefore, we need to prove that (iv) implies (ii). In [77, Claim 5.1]

we have also shown that the space LΦ, φ(Rn) remains the same if we change the value

Φ(t) for t ≤ 1. Therefore, we can and do assume∫ t

0

t

s
Φ′(s) ds ≤ Φ(Ct)
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for all t ∈ (0,∞). Consequently,∫
Rn

Φ
({ ∞∑

j=1

[M(|fj |r)(x)]q/r
}1/q)

dx

=

∫ ∞
0

Φ′(t)
∣∣∣{x ∈ Rn :

( ∞∑
j=1

[M(|fj |r)(x)]q/r
)1/q

> t
}∣∣∣ dt

.
∫
Rn

∫ ∞
0

Φ′(t)

t
χ{x∈Rn : [

∑∞
j=1 |fj(x)|q ]1/q>t/2}(x)

[ ∞∑
j=1

|fj(x)|q
]1/q

dt

.
∫
Rn

Φ
(
C0

[ ∞∑
j=1

|fj(x)|q
]1/q)

dx

for some positive constant C0. This implies that whenever∥∥∥[ ∞∑
j=1

|fj |q
]1/q∥∥∥

LΦ,φ(Rn)
≤ 1

C0
,

we have ∫
Rn

Φ
({ ∞∑

j=1

[M(|fj |r)(x)]q/r
}1/q)

dx ≤ 1.

From the definition of the Orlicz norm ‖·‖LΦ,φ(Rn), we have (11.5). Once we obtain (11.5),

we can go through the same argument as in [79, Theorem 2.4]. We omit the details.

In this example, if we assume the conditions of Proposition 11.6, then (L1) through

(L6) hold with (3.2) and (3.3) reading

L(Rn) := LΦ,φ(Rn), θ := 1, N0 := n+ 1, γ := n, δ := 0.

Indeed, since Φ is a Young function, again we have

2jn
∫
Rn

Φ(χQj0(x)/λ) dx = Φ(λ−1)

for λ > 0. Consequently, ‖χQj0‖Φ,Qj0 = 1/Φ−1(1) and hence

φ(2−j)‖χQj0‖Φ,Qj0 = φ(2−j) = φ(2−j)2jn2−jn ≥ φ(1)2−jn.

Here we invoked the assumption that φ(t)t−n is a decreasing function.

Since LΦ,φ(Rn) satisfies (L8), we obtain Mχ[−1,1]n ∈ LΦ,φ(Rn), showing that N0 := n

will do in this setting.

Moreover, as before,

wj(x) := 1 for all x ∈ Rn and j ∈ Z+, α1 = α2 = α3 = 0.

Hence (3.4) now reads

τ ∈ [0,∞), q ∈ (0,∞], a > n+ 1.

Finally, we remark that Orlicz spaces are examples to which the results in Subsection

9.2 apply.
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11.4. Herz spaces. Let p, q ∈ (0,∞] and α ∈ R. We let Q0 := [−1, 1]n and Cj :=

[−2j , 2j ]n \ [−2j−1, 2j−1]n for all j ∈ N. Define the inhomogeneous Herz space Kα
p,q(Rn)

to be the set of all measurable functions f for which the norm

‖f‖Kα
p,q(Rn) := ‖χQ0f‖Lp(Rn) +

( ∞∑
j=1

2jqα‖χCjf‖
q
Lp(Rn)

)1/q

is finite, where we modify naturally the definition above when p =∞ or q =∞.

The following is shown by Izuki [28], which is (L8) of this case. A complete theory of

Herz-type spaces was given in [46].

Proposition 11.7. Let p ∈ (1,∞), q, u ∈ (0,∞] and α ∈ (−1/p, 1/p′). Then, for all

sequences {fj}∞j=1 of measurable functions,∥∥∥( ∞∑
j=1

[Mfj ]
u
)1/u∥∥∥

Kα
p,q(Rn)

∼
∥∥∥( ∞∑

j=1

|fj |u
)1/u∥∥∥

Kα
p,q(Rn)

with the implicit constants independent of {fj}∞j=1.

In this example (L1) through (L6) hold with (3.2)–(3.4) reading

L(Rn) := Kα
p,q(Rn), θ := min(1, p, q), N0 := n/q + 1 + max(α, 0), γ := n/p+ α,

δ := 0, wj(x) := 1 for all x ∈ Rn and j ∈ Z+, α1 = α2 = α3 = 0,

τ ∈ [0,∞), q ∈ (0,∞], a ∈ (n/q + 1,∞).

By Proposition 11.7, we know that (L8) holds as well.

Therefore, again a theory of Besov–Herz spaces and Triebel–Lizorkin–Herz spaces

similar to the theory of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces as in

[32, 33, 43, 74, 75, 80, 83] can be developed as before. A homogeneous counterpart of

the above is available. Define the homogeneous Herz space K̇α
p,q(Rn) to be the set of all

measurable functions f for which the norm

‖f‖K̇α
p,q(Rn) :=

[ ∞∑
j=−∞

‖2jqαχCjf‖
q
Lp(Rn)

]1/q
is finite, where we modify naturally the definition above when q =∞.

An analogous result is available but we do not go into details.

11.5. Variable exponent Lebesgue spaces. Starting from the recent work by Diening

[11], there exist a series of results of the theory of variable exponent function spaces. Let

p(·) : Rn → (0,∞) be a measurable function such that 0 < infx∈Rn p(x) ≤ supx∈Rn p(x) <

∞. Then Lp(·)(Rn), the Lebesgue space with variable exponent p(·), is defined as the set

of all measurable functions f for which the quantity
∫
Rn |εf(x)|p(x) dx is finite for some

ε ∈ (0,∞). We let

‖f‖Lp(·)(Rn) := inf

{
λ > 0 :

∫
Rn

[
|f(x)|
λ

]p(x)

dx ≤ 1

}
for such a function f . As a special case of the theory of Nakano and Luxemburg [47, 62, 63],

we see (Lp(·)(Rn), ‖ · ‖Lp(·)(Rn)) is a quasi-normed space. It is customary to let p+ :=

supx∈Rn p(x) and p− := infx∈Rn p(x).
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The following was shown in [7] and hence we have (L8) for Lp(·)(Rn).

Proposition 11.8. Suppose that p(·) : Rn → (0,∞) is a function satisfying

1 < p− := inf
x∈Rn

p(x) ≤ p+ := sup
x∈Rn

p(x) <∞, (11.6)

(log-Hölder continuity) |p(x)− p(y)| . 1

log(1/|x− y|)
for all |x− y| ≤ 1/2, (11.7)

(decay condition) |p(x)− p(y)| . 1

log(e+ |x|)
for all |y| ≥ |x|. (11.8)

Let u ∈ (1,∞]. Then, for all sequences {fj}∞j=1 of measurable functions,∥∥∥( ∞∑
j=1

[Mfj ]
u
)1/u∥∥∥

Lp(·)(Rn)
∼
∥∥∥( ∞∑

j=1

|fj |u
)1/u∥∥∥

Lp(·)(Rn)

with the implicit constants independent of {fj}∞j=1.

In this example (L1) through (L6) hold with the parameters in (3.2)–(3.4) satisfying

L(Rn) := Lp(·)(Rn), θ := min(1, p−), N0 := n/p− + 1, γ := n/p−, δ := 0,

wj(x) := 1 for all x ∈ Rn and j ∈ Z+, α1 = α2 = α3 = 0,

τ ∈ [0,∞), q ∈ (0,∞], a > n/p− + 1.

Also, by Proposition 11.8, we have (L8) as well. For simplicity, let us write As,τp(·),q(R
n)

instead of As,τ
Lp(·)(Rn),q,a

(Rn).

The function space As,0p(·),q(R
n) is well investigated and we have the following propo-

sition, for example.

Proposition 11.9 ([61]). Let f ∈ S ′(Rn) and p(·) satisfy (11.6)–(11.8). Then the fol-

lowing are equivalent:

(i) f belongs to the local Hardy space hp(·)(Rn) with variable exponent p(·), that is,

‖f‖hp(·)(Rn) :=
∥∥∥ sup

0<t≤1
|t−nΦ(t−1·) ∗ f |

∥∥∥
Lp(·)(Rn)

<∞;

(ii) f satisfies

‖f‖F 0
p(·),2(Rn) := ‖Φ ∗ f‖Lp(·)(Rn) +

∥∥∥( ∞∑
j=1

|ϕj ∗ f |2
)1/2∥∥∥

Lp(·)(Rn)
<∞.

Lemma 1.1, Theorem 9.2, and Propositions 11.8 and 11.9 yield

Proposition 11.10. The function space hp(·)(Rn) coincides with F 0,0
p(·),2,a(Rn) whenever

a� 1.

Recall that Besov/Triebel–Lizorkin spaces with variable exponent date back to the

works by Almeida and Hästö [1] and Diening, Hästö and Roudenko [12]. Xu investigated

the fundamental properties of Asp(·),q(R
n) [95, 96]. Among other things he obtained atomic

decomposition results. Just as for Asp(·),q(R
n), in [64], Noi and Sawano have investigated

the complex interpolation of F s0p0(·),q0(Rn) and F s1p1(·),q1(Rn).

Finally, as announced in Section 1, we show the unboundedness of the Hardy–Little-

wood maximal operator and the maximal operator Mr,λ.



11.6. Amalgam spaces 103

Lemma 11.11. The maximal operator Mr,λ is not bounded on L
1+χRn

+ (Rn), for all r ∈
(0,∞) and λ ∈ (0,∞). In particular, the Hardy–Littlewood maximal operator M is not

bounded on L
1+χRn

+ (Rn).

Proof. Let r, λ ∈ (0,∞). Consider fr(x) := χ[−r,0](xn)χ[−1,1]n−1(x1, . . . , xn−1) for all

x = (x1, . . . , xn) in Rn. Then, for all x in the support of fr, we have

Mr,λfr(x) ∼Mfr(x) ∼ χ[−r,r](xn)χ[−1,1]n−1(x1, . . . , xn−1).

Hence ‖Mr,λf‖
L

1+χRn
+ (Rn)

& r−1/2, while ‖f‖
L

1+χRn
+ (Rn)

∼ r−1, showing the unbounded-

ness.

Lebesgue spaces with variable exponent date back to the works by Orlicz and Nakano

[66, 62, 63], where the case p+ < ∞ is considered. When p+ ≤ ∞, Sharapudinov con-

sidered Lp(·)([0, 1]) [84] and then Kováčik and Rákosńık extended the theory to domains

[40].

11.6. Amalgam spaces. Let p, q ∈ (0,∞] and s ∈ R. Let Q0z := z + [0, 1]n for z ∈ Zn
be the translation of the unit cube. For a Lebesgue locally integrable function f we define

‖f‖(Lp(Rn),`q(〈z〉s)) := ‖{(1 + |z|)s‖χQ0zf‖Lp(Rn)}z∈Zn‖`q .

In this example (L1) through (L6) hold with (3.2)–(3.4) reading

L(Rn) := (Lp(Rn), `q(〈z〉s)), θ := min(1, p, q), N0 := n+ 1 + s, γ := n/p,

δ := max(−s, 0), wj(x) := 1 for all x ∈ Rn and j ∈ Z+, α1 = α2 = α3 = 0.

τ ∈ [0,∞), q ∈ (0,∞], a > n+ 1 + s.

The following is shown essentially in [36] (actually, in [36] the boundedness of singular

integral operators was established). Using the technique employed in [19, p. 498], we get

Proposition 11.12. Let q, u ∈ (1,∞], p ∈ (1,∞) and s ∈ R. Then, for all sequences

{fj}∞j=1 of measurable functions,∥∥∥( ∞∑
j=1

[Mfj ]
u
)1/u∥∥∥

(Lp(Rn),`q(〈z〉s))
∼
∥∥∥( ∞∑

j=1

|fj |u
)1/u∥∥∥

(Lp(Rn),`q(〈z〉s))

with the implicit constants independent of {fj}∞j=1.

Therefore, (L6) holds and the results above apply to these amalgam spaces. Note that

amalgam spaces can be used to describe the range of the Fourier transform; see [81] for

details.

11.7. Multiplier spaces. There is another variant of Morrey spaces:

Definition 11.13. For r ∈ [0, n/2),
.

Xr(Rn) is defined as the space of all functions

f ∈ L2
loc(Rn) that satisfy

‖f‖ .
Xr(Rn)

:= sup{‖fg‖L2(Rn) <∞ : ‖g‖ .
Hr(Rn)

≤ 1} <∞,

where
.

Hr(Rn) stands for the completion of D(Rn) with respect to the norm ‖u‖ .
Hr(Rn)

:=

‖(−∆)r/2u‖L2(Rn).
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We refer to [51] for the field of multiplier spaces. Here and below we place ourselves

in the setting of Rn with n ≥ 3.

We will characterize the above norm in terms of
.

Hr(Rn)-capacity and wavelets. Here

we recall the definition of capacity (see [50, 51]). Denote by K the set of all compact sets

in Rn.

Definition 11.14 ([51]). Let r ∈ [0, n/2) and e ∈ K. Then cap(e,
.

Hr(Rn)) stands for

the
.

Hr-capacity, defined by

cap(e,
.

Hr(Rn)) := inf{‖u‖2.
Hr(Rn)

: u ∈ D(Rn), u ≥ 1 on e}.

Set 1/u := 1/2−r/n, that is, u = 2n/(n− 2r). Notice that by the Sobolev embedding

theorem, we have

|e|1/u = ‖χe‖Lu(Rn) ≤ ‖u‖Lu(Rn) . ‖u‖ .
Hr(Rn)

for all u ∈ D(Rn). Consequently,

cap(e,
.

Hr(Rn)) ≥ |e|(n−2r)/n. (11.9)

Let us now formulate our main result. We choose a system {ψε,jk}ε∈{1,...,2n−1}, j∈Z, k∈Zn

so that it forms a complete orthonormal basis of L2(Rn) and

ψε,jk(x) = ψε(2
jx− k) for all j ∈ Z, k ∈ Zn and x ∈ Rn.

Proposition 11.15 ([23, 51]). Let r ∈ [0, n/2) and f ∈ L2
loc(Rn) ∩ S ′(Rn). Then the

following are equivalent:

(i) f ∈
.

Xr(Rn).

(ii) f can be expanded as follows:

f =

2n−1∑
ε=1

∑
(j,k)∈Z×Zn

λε,jkψε,jk in the topology of S ′(Rn),

where

2n−1∑
ε=1

∑
(j,k)∈Z×Zn

|λε,jk|2
∫
e

|ψε,jk(x)|2[Mχe(x)]4/5 dx ≤ (C1)2 cap(e,
.

Hr(Rn))

for e ∈ K.

(iii) If n ≥ 3 then f can be expanded as follows:

f =

2n−1∑
ε=1

∑
(j,k)∈Z×Zn

λε,jkψε,jk in the topology of S ′(Rn),

where
2n−1∑
ε=1

∑
(j,k)∈Z×Zn

|λε,jk|2
∫
Rn
|ψε,jk(x)|2 dx ≤ (C2)2 cap(e,

.

Hr(Rn))

for e ∈ K.

Furthermore, the smallest values of C1 and C2 are both equivalent to ‖f‖Ẋr(Rn).
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To show that this function space falls under the scope of our theory, set

‖F‖(1)

Ẋr(Rn)
:= sup

e∈K

{
1

cap(e,
.

Hr(Rn))

∫
Rn
|F (x)|2 dx

}1/2

,

‖F‖(2)

Ẋr(Rn)
:= sup

e∈K

{
1

cap(e,
.

Hr(Rn))

∫
e

|F (x)|2[Mχe(x)]4/5 dx

}1/2

.

Then Ẋ
(i)
r (Rn), i ∈ {1, 2}, denotes the set of all measurable function F : Rn → C for

which ‖F‖(i)
Ẋr(Rn)

<∞.

The following lemma, which can be used to check (L6), is known.

Lemma 11.16 ([23, Lemma 2.1]). Let e be a compact set and κ ∈ (0,∞). Define Eκ =

{x ∈ Rn : Mχe(x) > κ}. Then

cap(Eκ,
.

Hr(Rn)) . κ−2cap(e,
.

Hr(Rn))

By (11.9) and Lemma 11.16, (L1) through (L6) hold with (3.2) reading

L(Rn) := Ẋ(i)
r (Rn) for i ∈ {1, 2}, θ := 1, N0 := n+ 1, γ := 2, δ := 0.

In this case the condition (3.3) on w is trivial:

wj(x) := 1 for all j ∈ Z+ and x ∈ Rn, α1 = α2 = α3 = 0.

Consequently, (3.4) reads

τ ∈ [0,∞), q ∈ (0,∞], a > n+ 1.

In view of Proposition 11.15 we make the following definition.

Definition 11.17. For any given sequence λ := {λjk}j∈Z+,k∈Zn , let

‖λ‖(1)
ẋr(Rn) := ‖λ‖ḃ0,0

Ẋ
(1)
r (Rn),2

, ‖λ‖(2)
ẋr(Rn) := ‖λ‖ḃ0,0

Ẋ
(2)
r (Rn),2

.

Then ẋ
(i)
r (Rn) for i ∈ {1, 2} is the set of all sequences λ := {λjk}j∈Z+, k∈Zn for which

‖λ‖(i)ẋr(Rn) is finite.

In [23], essentially, we have shown the following conclusions.

Proposition 11.18. Let r ∈ (0, n/2).

(i) If n ≥ 3, then (Ẋr(Rn), ẋ
(1)
r (Rn)) admits atomic/molecular decompositions.

(ii) If n ≥ 1, then (Ẋr(Rn), ẋ
(2)
r (Rn)) admits atomic/molecular decompositions.

Thanks to Proposition 9.5, this can be improved as follows.

Proposition 11.19. Let r ∈ (0, n/2) and n ≥ 1. Then (Ẋr(Rn), ẋ
(1)
r (Rn)) admits

atomic/molecular decompositions.

11.8. Ḃσ(Rn) spaces. The next example also falls under the scope of our generalized

Triebel–Lizorkin type spaces.
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Definition 11.20. Let σ ∈ [0,∞), p ∈ [1,∞] and λ ∈ [−n/p, 0]. Then Ḃσ(Lp,λ)(Rn) is

defined as the space of all f ∈ Lploc(Rn) for which the norm

‖f‖Ḃσ(Lp,λ)(Rn) := sup

{
1

rσ|Q|λ/n+1/p
‖f‖Lp(Q) : r ∈ (0,∞), Q ⊂ Q(0, r)

}
is finite.

In this example (L1) through (L6) hold with (3.2) and (3.3) reading

L(Rn) := Ḃσ(Lp,λ)(Rn), θ := 1, N0 := −λ+ 1, γ := −λ, δ := 0,

wj(x) := 1 for all j ∈ Z+ and x ∈ Rn, α1 = α2 = α3 = 0.

Hence (3.4) now reads

τ ∈ [0,∞), q ∈ (0,∞], a > −λ+ 1.

We remark that Ḃσ(Rn)-spaces have been introduced recently to unify λ-central Morrey

spaces, λ-central mean oscillation spaces and usual Morrey–Campanato spaces [49]. Recall

that in Lemma 1.1 we have defined Q(0, r). We refer to [39] for further generalizations.

Definition 11.21 ([42]). Let p ∈ (1,∞), σ ∈ (0,∞), λ ∈ [−n/p,−σ) and let ϕ satisfy

(1.3) and (1.4). Given f ∈ S ′(Rn), set

‖f‖Ḃσ(LDp,λ)(Rn) := sup
r∈(0,∞)

Q∈Q(Rn), Q⊂Q(0,r)

1

rσ|Q|λ/n+1/p

∥∥∥( ∞∑
j=jQ

|ϕj ∗ f |2
)1/2∥∥∥

Lp(Q)
.

Then Ḃσ(LDp,λ)(Rn) denotes the space of all f ∈ S ′(Rn) for which ‖f‖Ḃσ(LDp,λ)(Rn) is finite.

Lemma 11.22 ([42]). Let p ∈ (1,∞), u ∈ (1,∞], σ ∈ [0,∞) and λ ∈ (−∞, 0). Assume,

in addition, that σ + λ < 0. Then∥∥∥( ∞∑
j=1

[Mfj ]
u
)1/u

∥∥∥∥
Ḃσ(Lp,λ)(Rn)

∼
∥∥∥( ∞∑

j=1

|fj |u
)1/u∥∥∥

Ḃσ(Lp,λ)(Rn)

with the implicit constants independent of {fj}∞j=1 ⊂ Ḃσ(Lp,λ)(Rn).

Proposition 11.23 ([42]). Let p ∈ (1,∞), σ ∈ (0,∞) and λ ∈ [−n/p,−σ). Then

Ḃσ(LDp,λ)(Rn) and Ḃσ(Lp,λ)(Rn)

coincide. More precisely, the following hold:

(i) Ḃσ(Lp,λ)(Rn) ↪→ S ′(Rn) in the sense of continuous embedding.

(ii) Ḃσ(LDp,λ)(Rn) ↪→ S ′(Rn) ∩ Lploc(Rn) in the sense of continuous embedding.

(iii) f ∈ Ḃσ(Lp,λ)(Rn) if and only if f ∈ Ḃσ(LDp,λ)(Rn) and the norms are mutually

equivalent.

(iv) Different choices of ϕ yield equivalent ‖ · ‖Ḃσ(LDp,λ)(Rn) norms.

The atomic decomposition of Ḃσ(Rn) is as follows. First we introduce the sequence

space.
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Definition 11.24. Let σ ∈ [0,∞), p ∈ [1,∞] and λ ∈ [−n/p, 0]. Then ḃσ(LDp,λ)(Rn) is

defined to be the space of all λ := {λjk}j∈Z+, k∈Zn such that

‖λ‖ḃσ(LDp,λ)(Rn) := sup
r∈(0,∞)

Q∈Q(Rn), Q⊂Q(0,r)

1

rσ|Q|λ/n+1/p

∥∥∥ ∞∑
j=jQ

λjkχQjk

∥∥∥
Lp(Q)

<∞.

In view of Theorem 6.6, we have the following direct corollary of Theorem 4.5.

Theorem 11.25. The pair (Ḃσ(LDp,λ)(Rn), ḃσ(LDp,λ)(Rn)) admits atomic/molecular de-

compositions.

11.9. Generalized Campanato spaces. Returning to the variable exponent setting

described in Section 11.5, we define

dp(·) := min{d ∈ Z+ : p−(n+ d+ 1) > n}.
Let Lqcomp(Rn) be the set of all Lq(Rn)-functions with compact support. For a nonnegative

integer d, let

Lq,dcomp(Rn) :=

{
f ∈ Lqcomp(Rn) :

∫
Rn
f(x)xα dx = 0, ‖α‖1 ≤ d

}
.

Likewise if Q is a cube, we write

Lq,d(Q) :=

{
f ∈ Lq(Q) :

∫
Q

f(x)xα dx = 0, ‖α‖1 ≤ d
}
,

where Lq(Q) is the closed subspace of functions in Lq(Rn) having support in Q.

Recall that Pd(Rn) is the set of all polynomials having degree at most d. For a

locally integrable function f , a cube Q and a nonnegative integer d, there exists a unique

polynomial P ∈ Pd(Rn) such that, for all q ∈ Pd(Rn),∫
Q

[f(x)− P (x)]q(x) dx = 0.

Denote this unique polynomial P by P dQf . It follows immediately from the definition that

P dQg = g if g ∈ Pd(Rn).

We postulate the following conditions on φ : Rn+1
+ → (0,∞):

(A1) (Doubling condition) There exist positive constants M1 and M2 such that

M1 ≤
φ(x, 2r)

φ(x, r)
≤M2 (x ∈ Rn, r ∈ (0,∞)).

(A2) (Compatibility condition) There exist positive constants M3 and M4 such that

M3 ≤
φ(x, r)

φ(y, r)
≤M4 (x, y ∈ Rn, r ∈ (0,∞), |x− y| ≤ r).

(A3) (∇2-condition) There exists a positive constant M5 such that∫ r

0

φ(x, t)

t
dt ≤M5φ(x, r) (x ∈ Rn, r ∈ (0,∞)).

(A4) (∆2-condition) There exists a positive constant M6 such that∫ ∞
r

φ(x, t)

td+2
dt ≤M6

φ(x, r)

rd+1
for some integer d ∈ [0,∞).

(A5) (Uniform condition) supx∈Rn φ(x, 1) <∞.
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Here the constants M1, . . . ,M6 need to be specified for later considerations.

Notice that the Morrey–Campanato space with variable growth function φ(x, r) was

first introduced by Nakai [55, 59] by using an idea from [65]. In [56], Nakai established

the boundedness of the Hardy–Littlewood maximal operator, singular integral operators

(of Calderón–Zygmund type), and fractional integral operators on Morrey spaces with

variable growth function φ(x, r).

Recently, Nakai and Sawano considered a more general version in [61].

Let us say that φ : Q(Rn) → (0,∞) is a nice function if there exists b ∈ (0, 1) such

that, for all cubes Q ∈ Q(Rn),

1

φ(Q)

[
1

|Q|

∫
Q

|f(x)− P dQf(x)|q dx
]1/q

> b

for some f ∈ Lq,φ,d(Rn) with norm 1. In [61, Lemma 6.1], we showed that φ can be

assumed to be nice. Actually, there exists a nice function φ† such that Lq,φ,d(Rn) and

Lq,φ†,d(Rn) coincide as sets and the norms are equivalent [61, Lemma 6.1].

Definition 11.26 ([61]). Let φ : Rn+1
+ → (0,∞) be a function, which is not necessarily

nice, and f ∈ Lqloc(Rn). Define, when q ∈ (1,∞),

‖f‖Lq,φ,d(Rn) := sup
(x,t)∈Rn+1

+

1

φ(x, t)

{
1

|Q(x, t)|

∫
Q(x,t)

|f(y)− P dQ(x,t)f(y)|q dy
}1/q

,

and

‖f‖L∞,φ,d(Rn) := sup
(x,t)∈Rn+1

+

1

φ(x, t)
‖f − P dQ(x,t)f‖L∞(Q(x,t)).

The Campanato space Lq,φ,d(Rn) is defined to be the set of all f such that ‖f‖Lq,φ,d(Rn)

is finite.

Definition 11.27 ([61]). Let q ∈ [1,∞], suppose ϕ satisfies (1.4) and let φ : Rn+1
+ →

(0,∞) be a function. A distribution f ∈ S ′(Rn) is said to belong to LDq,φ(Rn) if

‖f‖LDq,φ(Rn) := sup
(x,t)∈Rn+1

Z

1

φ(x, t)

{
1

|Q(x, t)|

∫
Q(x,t)

|ϕ(log2 t
−1) ∗ f(y)|q dy

}1/q

<∞.

Proposition 11.28 ([61]). Assume (A1) through (A5). Then

(i) The spaces LDq,φ(Rn) and Lq,φ,d(Rn) coincide. More precisely, the following hold:

(a) Let f ∈ LDq,φ(Rn). Then there exists P ∈ P(Rn) such that f −P ∈ Lq,φ,d(Rn). In

this case, ‖f −P‖Lq,φ,d(Rn) . ‖f‖LDq,φ(Rn) with the implicit constant independent

of f .

(b) If f ∈ Lq,φ,d(Rn), then f ∈ LDq,φ(Rn) and ‖f‖LDq,φ(Rn) . ‖f‖Lq,φ,d(Rn) with the

implicit constant independent of f . In particular, the definition of LDq,φ(Rn) is

independent of the admissible choices of ϕ: Any ϕ ∈ S(Rn) does the job as long

as χQ(0,1) ≤ ϕ̂ ≤ χQ(0,2).

(ii) The function space LDq,φ(Rn) is independent of q.
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In view of Definition 11.27, if we assume that φ satisfies (A1) through (A5), then we

have the following proposition.

Proposition 11.29. Let ϕ satisfy (1.4). If φ : Q(Rn) → (0,∞) satisfies (A1) through

(A5), then

‖f‖LD∞,φ(Rn) ∼ sup
(x,t)∈Rn+1

Z

1

φ(Q(x, t))
sup

y∈Q(x,t)

{
sup
z∈Rn

|ϕ(log2 t
−1) ∗ f(y + z)|

(1 + t−1|z|)a

}
whenever a� 1, with the implicit constants independent of f .

To prove Proposition 11.29, we just need to check (9.17) by using (A1) and (A2). We

omit the details.

Definition 11.30. Define

‖λ‖lD∞,φ(Rn)

:= sup
(x,t)∈Rn+1

Z

1

φ(Q(x, t))
sup

y∈Q(x,t)

{
sup
z∈Rn

1

(1 + t−1|z|)a
∑
k∈Zn

|λ(log2 t
−1)k|χQ(log2 t

−1)k

}
.

Now in this example (L1) through (L6) hold with the parameters in (3.2) and (3.3)

satisfying

L(Rn) := L∞(Rn), θ := 1, N0 := 0, γ := 0, δ := 0

and w(x, t) := 1/φ(Q(x, t)) for all x ∈ Rn and t ∈ (0,∞), α1 = log2M1
−1, α2 = log2M2,

α3 = log2 (M2/M1), respectively. Furthermore, unlike the preceding examples, we choose

τ = 0, q =∞, a > N0 + log2 (M2/M1).

Therefore, Lq,φ,d(Rn) and LDq,φ(Rn) fall under the scope of our theory.

Theorem 11.31. Under the conditions (A1) through (A5), the pair (LD∞,φ(Rn), lD∞,φ(Rn))

admits atomic/molecular decompositions.

Theorem 11.31 is just a consequence of Theorem 4.5. We omit the details.
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