
1. IntrodutionGenerally speaking, almost all the ontinuous-time stohasti proess models onsist ofsome ombination of the following:a) di�usion,b) deterministi motion,) random jumps.We onsider random dynamial systems with randomly hosen jumps ating on agiven Polish spae (Y, ̺). Thus, our model is a mixture of deterministi motions andrandom jumps. In other words, it is an example of a non-di�usion model.The aim of this paper is to study stohasti proesses whose paths follow determin-isti dynamis between random times, jump times, at whih they hange their positionrandomly. Hene, we analyse stohasti proesses in whih randomness appears at times
t0 < t1 < t2 < · · · . We assume that a point x0 ∈ Y moves aording to one of the trans-formations Πi : R+ × Y → Y from some set {Π1, . . . ,ΠN}. The motion of the proess isgoverned by the equation X(t) = Πi(t, x0) until the �rst jump time t1. Then we hoosea transformation qs : Y → Y from some set {q1, . . . , qK} and de�ne x1 = qs(Πi(t1, x0)),therefore qs an be alled a jump. The proess restarts from that new point x1 and on-tinues as before. This gives the stohasti proess {X(t)}t≥0 with jump times {t1, t2, . . .}and post jump positions {x1, x2, . . .}. The probability determining the frequeny withwhih the maps Πi and the jumps qs are hosen is desribed by a matrix of probabilities
[pij ]

N
i,j=1, pij : Y → [0, 1] and probability vetors [ps]

K
s=1 , ps : Y → [0, 1], respetively.We are interested in the evolution of distributions of these random dynamial systems.We formulate riteria for stability and the existene of an invariant measure for suhsystems.In the ase of non-di�usion models, the �rst signi�ant steps towards produing gen-eral models were taken by Cox [3℄, Gnedenko and Kovalenko [11℄. The last two authorsintrodued a lass of models alled pieewise-linear Markov proesses to provide a uni�edtreatment of problems arising in queueing theory.There is a substantial literature devoted to the problem of stability and of the existeneof an invariant measure for Markov proesses [37℄. Di�erent lasses of Markov proesseshave been studied therein, for example random dynamial systems based on skew produt�ows [1℄. Our model is not suh a system. It is similar to the so-alled pieewise-deterministi Markov proess introdued by Davis [4℄. There are some stability resultsfor suh a system based on the theory of Meyn and Tweedie [37℄. However, the methodof proving the existene of an invariant measure used by Meyn and Tweedie is not well[5℄



6 K. Horbazadapted to general Polish spaes. In fat, it is di�ult to ensure that the proess underonsideration satis�es all the ergodi properties on a ompat set. On the other hand,the assumption of ompatness is restritive if we want to apply our model in physisand biology. Then the phase spae is usually one of the funtion spaes and it is di�ultto ensure that the ergodi properties hold on some ompat set.Our work is based on the theory of onentrating Markov operators on a Polish spae(see [44℄).The system under study takes into onsideration some very important and widelystudied ases, namely dynamial systems generated by learning systems [2, 22, 23, 35℄,Poisson driven stohasti di�erential equations [10, 17, 34, 48, 49℄, iterated funtion sys-tems with an in�nite family of transformations [30, 50, 51℄, random evolutions [12, 42℄,randomly ontrolled dynamial systems [41℄ and irreduible Markov systems [52℄. A largerange of appliations of suh models, both in physis and biology, is worth mentioninghere: the shot noise, the photo ondutive detetors, the growth of the size of struturalpopulations, the motion of relativisti partiles, both fermions and bosons, and many oth-ers (see [8, 18, 24, 28℄). On the other hand, it should be noted that most Markov hains ap-pear in statistial physis and may be represented as iterated funtion systems (see [25℄).Reently, iterated funtion systems have been used in studying invariant measures for theWa»ewska partial di�erential equation whih desribes the proess of the reprodutionof red blood ells [32, 33℄. Similar nonlinear �rst-order partial di�erential equations fre-quently appear in hydrodynamis [43℄. So alled irreduible Markov systems introduedby Werner (see [52℄) are used for the omputer modelling of various stohasti proesses.The outline of the paper is as follows. In Setion 2 we set out notation and terminology.Setion 3 is divided into two parts. Setion 3.1 ontains basi fats from the theory ofMarkov operators. In Setion 3.2 we reall riteria for the existene of an invariantmeasure and for asymptoti stability on Polish spaes. These riteria are essential in theproofs of our results.The main setion of this paper is Setion 4. Setion 4.1 ontains the desription of ourrandom dynamial systems. In Setion 4.2 we onsider disrete-time random dynamialsystems with jumps on Polish spaes and show that a Markov operator desribing thedynamis of suh systems is asymptotially stable. In Setion 4.3 we give su�ient on-ditions for asymptoti stability of a semigroup generated by the ontinuous-time randomdynamial system in ases where the hoie of jumps does not depend on a position inwhih it happens.Setion 5 is devoted to dimensions of measures. The lower pointwise dimension of aninvariant measure for the semigroup of Markov operators generated by the ontinuous-time random dynamial system is estimated in Setion 5.1. In Setion 5.2 we give an upperbound for the onentration dimension of an invariant measure for the Markov operatordesribing the evolution of measures from jump to jump. Relationships between invariantmeasures of disrete and ontinuous-time random dynamial systems, and between theironentration dimensions are onsidered in Setion 5.3. The results of Setion 5 areused to evaluate the dimensions of invariant measures for dynamial systems generatedby learning systems (Setion 6.1) and Poisson driven stohasti di�erential equations(Setion 6.4).



Invariant measures for random dynamial systems 7Finally, in Setion 6 we apply our results to establish existene of an invariant measureand asymptoti stability of partiular Markov operators. In Setion 6.1 we study iteratedfuntion systems and show that the well known results proved by Barnsley and oauthors[2, 35℄ are a simple appliation of our riterion for asymptoti stability. Our next onernis the behavior of irreduible Markov systems whih are an extension of iterated funtionsystems with plae dependent probabilities. Suh systems on a loally ompat spaehave been onsidered by Werner [52℄. The irreduible Markov system is a partiularexample of a random dynamial system with randomly hosen jumps. However, we wantto point out that the system may not satisfy the essential assumption put forward in thetheorems of Setion 4. This assumption an be replaed by ontrativeness, whih is moreeasily veri�able. Contrativeness has been onsidered in [52℄. In Setion 6.2 we extendWerner's result to the ase of omplete separable metri spaes. Setion 6.3 is devotedto the mathematial theory of the ell yle. In Setion 6.4 we illustrate the usefulnessof our riteria for asymptoti stability of a ontinuous-time random dynamial system byonsidering randomly onneted Poisson driven stohasti di�erential equations.The results of this paper are related to our papers [13�17, 19�21℄. Criteria for asymp-toti stability for disrete-time random dynamial systems without jumps, when Y isloally ompat, are formulated in [13℄. For Polish spaes these riteria are general-ized in [20℄. The results of Setion 4.2 have been proved in [15℄. In [19℄ we onsidera ontinuous-time random dynamial system on Polish spaes, but also without jumps.Relationships between onentration dimensions of invariant measures of disrete andontinuous time random dynamial systems are onsidered in [14℄ for the simpler asewhen {P t}t≥0 is a semigroup generated by the Poisson driven di�erential equation on R
d.Poisson driven di�erential equations on R

d are studied in [14℄ and [17℄. Some estimatesof dimensions of invariant measures are formulated in [16℄.
2. Preliminaries2.1. Basi notions. Let (Y, ̺) be a Polish spae, i.e. a separable, omplete metrispae. We denote by B(x, r) the open ball with enter at x and radius r. For any set

A ⊂ Y , clA, diam̺A, and 1A stand for the losure, diameter, and indiator funtionof A, respetively.We denote by B(Y ) the σ-algebra of Borel subsets of Y , by M = M(Y ) the family ofall �nite Borel measures on Y , and by Ms the spae of all �nite signed Borel measureson Y . We write M1 = M1(Y ) for the family of all µ ∈ M suh that µ(Y ) = 1. Theelements of M1 are alled distributions .As usual, B(Y ) denotes the spae of all bounded Borel measurable funtions f : Y →Rand C(Y ) the subspae of all ontinuous funtions. Both spaes are onsidered with thesupremum norm ‖ · ‖0. For f ∈ B(Y ) and µ ∈ Ms we write
〈f, µ〉 =

\
Y

f(x)µ(dx).We introdue in Ms the Fortet�Mourier norm ‖ · ‖̺ (see [6, 7, 9℄) given by
‖µ‖̺ = sup{|〈f, µ〉| : f ∈ F̺} for µ ∈ Ms,



8 K. Horbazwhere F̺ is the set of all f ∈ C(Y ) suh that |f(x)| ≤ 1 and |f(x) − f(y)| ≤ ̺(x, y) for
x, y ∈ Y .We say that a sequene {µn}n≥1, µn ∈ M, onverges weakly to a measure µ ∈ M if

lim
n→∞

〈f, µn〉 = 〈f, µ〉 for every f ∈ C(Y ).It is well known (see [6℄) that the onvergene in the Fortet�Mourier norm ‖ · ‖̺ isequivalent to the weak onvergene.We introdue the lass Φ of funtions ϕ : R+ → R+ satisfying the following onditions:(i) ϕ is ontinuous and ϕ(0) = 0;(ii) ϕ is nondereasing and onave, i.e.
n∑

k=1

αkϕ(yk) ≤ ϕ
( n∑

k=1

αkyk

)
, where αk ≥ 0,

n∑

k=1

αk = 1;(iii) ϕ(x) > 0 for x > 0 and limx→∞ ϕ(x) = ∞.We denote by Φ0 the family of all funtions satisfying (i) and (ii). A neessary andsu�ient ondition for a onave funtion ϕ to be subadditive on (0,∞) is that ϕ(0+) ≥ 0.From this result we immediately obtain the triangle inequality for ̺ϕ = ϕ ◦ ̺. Thus forevery ϕ ∈ Φ the funtion ̺ϕ is again a metri on Y . For notational onveniene wewrite Fϕ and ‖ · ‖ϕ instead of F̺ϕ
and ‖ · ‖̺ϕ

, respetively.In our onsiderations an important role is played by the inequality(2.1.1) w(t) + ϕ(at) ≤ ϕ(t) for t ≥ 0,where w ∈ Φ0 is a given funtion and a ∈ [0, 1).The inequality may be studied by lassial methods of the theory of funtional equa-tions (see [27℄). Lasota and Yorke [35℄ preisely disuss the ases for whih (2.1.1) has asolution belonging to Φ and prove the following:Proposition 2.1.1. Assume that a funtion w ∈ Φ0 satis�es the Dini ondition(2.1.2) ǫ\
0

w(t)

t
dt <∞ for some ǫ > 0.Let a ∈ [0, 1). Then inequality (2.1.1) admits a solution in Φ.We say that a vetor (p1, . . . , pN ), where pi : Y → [0, 1], is a probability vetor if

N∑

i=1

pi(x) = 1 for x ∈ Y.Analogously a matrix [pij ]i,j , where pij : Y → [0, 1] for i, j ∈ {1, . . . , N}, is a probabilitymatrix if
N∑

j=1

pij(x) = 1 for x ∈ Y and i ∈ {1, . . . , N}.

2.2. Dimensions of measures. For A ⊂ Y , s > 0 and δ > 0 we de�ne
Hs

δ(A) = inf

∞∑

i=1

(diam̺Ei)
s,



Invariant measures for random dynamial systems 9where the in�mum is taken over all ountable overs {Ei} of A suh that diam̺Ei < δ.Then
Hs(A) = lim

δ→0
Hs

δ(A)de�nes the Hausdor� s-dimensional measure. The Hausdor� dimension of A is de�nedby the formula
dimH A = sup{s > 0 : Hs(A) > 0}.(Here we assume that sup ∅ = 0.)The Hausdor� dimension of µ ∈ M1 is de�ned by the formula

dimH µ = inf{dimH A : A ∈ B(Y ) and µ(A) = 1}.For a given µ ∈ M we de�ne the lower pointwise dimension of µ at x ∈ Y by
dµ(x) = lim inf

r→0

log µ(B(x, r))

log r(here log 0 = −∞) and the Lévy onentration funtion Qµ : (0,∞) → R+ by (see [36℄)
Qµ(r) = sup{µ(B(x, r)) : x ∈ Y } for r > 0.Further, for a measure µ ∈ M1 we de�ne the lower and upper onentration dimensionsof µ by the formulas

dimL µ = lim inf
r→0

logQµ(r)

log r
and dimL µ = lim sup

r→0

logQµ(r)

log r
.If dimL µ = dimL µ then this ommon value, denoted by dimL µ, is alled the onentra-tion dimension (the generalized Rényi dimension) of µ (see [32, 33℄).The Hausdor� dimension and the onentration dimension are losely related to eahother as is shown in the next results proved in [32℄:Proposition 2.2.1. Let µ ∈ M1 and A ∈ B(Y ) be suh that µ(A) > 0. Then

dimH A ≥ dimL µ.Proposition 2.2.2. Let A ⊂ Y be a nonempty ompat set. Then
dimH A = sup dimL µ,where the supremum is taken over all µ ∈ M1 suh that suppµ ⊂ A.

3. Properties of Markov operators3.1. Markov operators. An operator P : M → M is alled a Markov operator if
P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ∈ R+ and µ1, µ2 ∈ Mand

Pµ(Y ) = µ(Y ) for µ ∈ M.It is easy to prove that every Markov operator an be extended to a linear operator onthe spae Ms of all signed measures.



10 K. HorbazA linear operator U : B(Y ) → B(Y ) is alled dual to P if(3.1.1) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(Y ) and µ ∈ M.Setting µ = δx, the point (Dira) measure supported at x, in (3.1.1) we obtain(3.1.2) Uf(x) = 〈f, Pδx〉 for f ∈ B(Y ) and x ∈ Y.From (3.1.2) it follows immediately that U is a linear operator satisfying
(3.1.3) Uf ≥ 0 for f ≥ 0, f ∈ B(Y ),

U1Y = 1Y ,

Ufn ↓ 0 for fn ↓ 0, fn ∈ B(Y ).Conditions (3.1.1)�(3.1.3) allow one to reverse the roles of P and U . Namely, given Usatisfying (3.1.3) we may de�ne a Markov operator P : M → M by setting(3.1.4) Pµ(A) = 〈U1A, µ〉 for A ∈ B(Y ) and µ ∈ M.Assume now that P and U are given. If f : Y → R+ is a Borel measurable funtion, notneessarily bounded, we may de�ne Uf by
Uf(x) = lim

n→∞
Ufn(x),where {fn}n≥1 is an inreasing sequene of bounded Borel measurable funtions onverg-ing pointwise to f . From the Lebesgue monotone onvergene theorem it follows that Ufsatis�es (3.1.1).A Markov operator P is alled a Markov�Feller operator if it has a dual operator Usuh that

Uf ∈ C(Y ) for f ∈ C(Y ).A Markov operator P is alled nonexpansive if
‖Pµ1 − Pµ2‖̺ ≤ ‖µ1 − µ2‖̺ for µ1, µ2 ∈ M1.Remark 3.1.1. Let P be a Markov operator and U its dual. If U(F̺) ⊂ F̺, then P isnonexpansive.A measure µ∗ is alled invariant (or stationary) with respet to P if Pµ∗ = µ∗.A Markov operator P is alled asymptotially stable if there exists a stationary measure

µ∗ ∈ M1 suh that(3.1.5) lim
n→∞

‖Pnµ− µ∗‖̺ = 0 for every µ ∈ M1.Obviously a measure µ∗ satisfying the above ondition is unique.When an invariant measure exists, ondition (3.1.5) is equivalent to a more symmetrirelation(3.1.6) lim
n→∞

‖Pnµ1 − Pnµ2‖̺ = 0 for µ1, µ2 ∈ M1.A sequene {µn}n≥1 (µn ∈ M1) of distributions is alled tight if for every ε > 0 thereexists a ompat set K ⊂ Y suh that µn(K) ≥ 1 − ε for every n ∈ N.We say that a Markov operator P : M → M is tight if for every µ ∈ M1 the sequene
{Pnµ}n≥1 is tight.



Invariant measures for random dynamial systems 11A family {P t}t≥0 of Markov operators is alled a semigroup if P t+s = P tP s for all
t, s ∈ R+ and P 0 is the identity operator on M.Let {P t}t≥0 be given. We denote by {T t}t≥0 the semigroup dual to {P t}t≥0, i.e.

〈T tf, µ〉 = 〈f, P tµ〉 for f ∈ B(Y ), µ ∈ M1.A measure µ∗ ∈ M is alled invariant (or stationary) for the Markov semigroup {P t}t≥0if P tµ∗ = µ∗ for t ≥ 0. The Markov semigroup {P t}t≥0 is alled asymptotially stable ifthere exists a stationary measure µ∗ suh that
lim

t→∞
‖P tµ− µ∗‖̺ = 0 for µ ∈ M1.3.2. Criteria for asymptoti stability. In this setion we present known riteria forthe existene of an invariant measure and for asymptoti stability of Markov operatorson the spae of Borel measures on a Polish spae Y .First results onerning the existene of invariant measures were proved for om-pat spaes ([23℄). The lassial proof goes as follows. One de�nes a positive invariantfuntional on the spae of all ontinuous funtions. By the Riesz theorem it may be rep-resented by a measure. Sine the funtional is invariant, one onludes that the measureis also invariant. This sheme works smoothly when Y is a ompat spae. Lasota andYorke [35℄ managed to extend it to the ase when Y is loally ompat and σ-ompat.Their result on the existene of an invariant measure is similar in spirit to Komorowski'stheorem [26℄, however, only Markov operators ating on absolutely ontinuous measuresare onsidered in [26℄. The approah in [35℄ was partially based on the idea of the lowerbound funtion developed for Markov operators ating on L1-spae (see [31℄). The au-thors introdued the lass of so-alled onentrating Markov operators and showed thatevery operator from this lass admits an invariant measure. Furthermore, assuming thata onentrating Markov operator does not inrease a distane between two measures,they showed that it must be asymptotially stable (see [35℄). In order to state the result,some notation is needed.We say that a metri ˆ̺ is equivalent to ̺ if the lasses of bounded sets and onvergentsequenes in the spaes (Y, ˆ̺) and (Y, ̺) oinide. Obviously, if (Y, ̺) is a Polish spaeand ̺, ˆ̺ are equivalent, then the spae (Y, ˆ̺) is still a Polish spae.A Markov operator P : M → M is alled essentially nonexpansive if there exists ametri ˆ̺ equivalent to ̺ suh that P is nonexpansive with respet to the norm ‖ · ‖ ˆ̺, i.e.(3.2.1) ‖Pµ1 − Pµ2‖ ˆ̺ ≤ ‖µ1 − µ2‖ ˆ̺ for µ1, µ2 ∈ M1.An operator P is alled onentrating if for every ε > 0 there exist a set A ∈ B(Y )with diam̺A ≤ ε and a number θ > 0 suh that(3.2.2) lim inf

n→∞
Pnµ(A) > θ for µ ∈ M1.Proposition 3.2.1. If P is an essentially nonexpansive and onentrating Markov op-erator then P is asymptotially stable.The proof an be found in [44℄ in the ase when Y is a Polish spae.It should be noted that the de�nition of asymptoti stability onsists of two almostindependent statements: the existene of an invariant measure µ∗ and the onvergene



12 K. Horbazondition (3.1.6). It turns out that even if the set A in ondition (3.2.2) depends on thehoie of initial measures, then the proof in Lasota and Yorke [35℄ arries over to a Polishspae and leads to the following result:Proposition 3.2.2. Let P be a nonexpansive Markov operator. Assume that P satis�esthe lower bound ondition: for every ε > 0 there is a number ∆ > 0 suh that for every
µ1, µ2 ∈ M1 there exist A ∈ B(Y ) with diam̺A ≤ ε and n0 ∈ N for whih(3.2.3) Pn0µi(A) ≥ ∆ for i = 1, 2.Then

lim
n→∞

‖Pnµ1 − Pnµ2‖̺ = 0 for µ1, µ2 ∈ M1.In the setting of Polish spaes it might be di�ult or even impossible to prove thata given Markov operator is onentrating. We now desribe results onerning asymp-toti stability of Markov operators on in�nite-dimensional spaes obtained by Szarek [44℄and based on the onept of tightness and the well known Prokhorov theorem. Heintrodued the lass of globally and semi-onentrating Markov operators and gave on-ditions ensuring the existene of an invariant measure for nonexpansive Markov oper-ators. It is important to emphasize that the nonexpansiveness is ruial in these on-siderations: Szarek [47℄ onstruted an example whih shows that it annot be omit-ted.We denote by Cε(Y ), ε > 0, (Cε for abbreviation) the family of all losed sets C forwhih there exists a �nite set {z1, . . . , zn} ⊂ Y suh that C ⊂
⋃n

i=1B(zi, ε).An operator P is alled semi-onentrating if for every ε > 0 there exist C ∈ Cε(Y )and θ > 0 suh that(3.2.4) lim inf
n→∞

Pnµ(C) > θ for µ ∈ M1.Remark 3.2.1. A onentrating Markov operator is semi-onentrating.For µ ∈ M1 we onsider the limit set
(3.2.5) L(µ) = {ν ∈ M1 : there exists {nk} ⊂ {n} suh that lim

k→∞
‖Pnkµ− ν‖̺ = 0}and(3.2.6) L(M1) =

⋃

µ∈M1

L(µ).The following results are proved in [46℄:Proposition 3.2.3. Let P be a nonexpansive and semi-onentrating Markov operator.Then(a) P has an invariant measure;(b) L(µ) 6= ∅ for arbitrary µ ∈ M1;() L(M1) is tight.Let A ∈ B(Y ). We say that a measure µ ∈ M is onentrated on A if µ(Y \ A) = 0.We denote by MA
1 the set of all probability measures onentrated on A.



Invariant measures for random dynamial systems 13An operator P is alled globally onentrating if for every ε > 0 and every boundedBorel set A there exist a bounded Borel set B and a number n0 ∈ N suh that
Pnµ(B) ≥ 1 − ε for n ≥ n0 and µ ∈ MA

1 .A ontinuous funtion V : Y → [0,∞) is alled a Lyapunov funtion if
lim

̺(x,z0)→∞
V (x) = ∞for some z0 ∈ Y .Proposition 3.2.4. Let P be a Markov operator and U its dual. Assume that thereexists a Lyapunov funtion V , bounded on bounded sets , suh that

UV (x) ≤ aV (x) + b for x ∈ Y,where a, b ∈ R+ and a < 1. Then P is globally onentrating.Moreover , for every ε > 0 there exists a bounded Borel set B ⊂ Y suh that
lim inf
n→∞

Pnµ(B) ≥ 1 − ε for µ ∈ M1.De�ne(3.2.7) E(P ) = {ε > 0 : inf
µ∈M1

lim inf
n→∞

Pnµ(A) > 0 for some A ∈ Cε(Y )}.Remark 3.2.2. If a Markov operator P is globally onentrating, then E(P ) 6= ∅.Remark 3.2.3. If inf E(P ) = 0, then P is semi-onentrating.By Proposition 3.2.2 and 3.2.3 we obtain:Theorem 3.2.1. A nonexpansive, semi-onentrating Markov operator satisfying a lowerbound ondition (3.2.3) is asymptotially stable.
4. Random dynamial systems with jumps4.1. Introdution. Let (Y, ̺) be a Polish spae, R+ = [0,∞) and I = {1, . . . , N},

S = {1, . . . ,K}, where N and K are given positive integers.Let Πi : R+ × Y → Y , i ∈ I, be a �nite sequene of semidynamial systems, i.e.
Πi(0, x) = x for i ∈ I, x ∈ Yand

Πi(s+ t, x) = Πi(s,Πi(t, x)) for s, t ∈ R+, i ∈ I and x ∈ Y.We are given probability vetors pi : Y → [0, 1], i ∈ I, ps : Y → [0, 1], s ∈ S, a matrixof probabilities [pij ]i,j∈I , pij : Y → [0, 1], i, j ∈ I, and a family of ontinuous funtions
qs : Y → Y , s ∈ S. We denote the entire system by (Π, q, p).Finally, let (Ω,Σ,P) be a probability spae and {tn}n≥0 be an inreasing sequene ofrandom variables tn : Ω → R+ with t0 = 0 and suh that the inrements ∆tn = tn−tn−1,
n ∈ N, are independent and have the same density g(t) = λe−λt, t ≥ 0.The ation of randomly hosen dynamial systems, with randomly hosen jumps, atrandom moments tk orresponding to the system (Π, q, p) an be roughly desribed asfollows.



14 K. HorbazWe hoose an initial point x0 ∈ Y and randomly selet a transformation Πi from theset {Π1, . . . ,ΠN} in suh a way that the probability of hoosing Πi is equal to pi(x0),and we de�ne
X(t) = Πi(t, x0) for 0 ≤ t < t1.Next, at the random time t1, at the point Πi(t1, x0) we hoose a jump qs from the set

{q1, . . . , qK} with probability ps(Πi(t1, x0)). Then we de�ne
x1 = qs(Πi(t1, x0)).After that we hoose Πi1 with probability pii1(x1), de�ne

X(t) = Πi1(t− t1, x1) for t1 < t < t2and at the point Πi1(t2−t1, x1) we hoose qs1
with probability ps1

(Πi1(t2−t1, x1)). Thenwe de�ne
x2 = qs1

(Πi1(t2 − t1, x1)).Finally, given xn, n ≥ 2, we hoose Πin
in suh a way that the probability of hoosing

Πin
is equal to pin−1in

(xn) and we de�ne
X(t) = Πin

(t− tn, xn) for tn < t < tn+1.At the point Πin
(∆tn+1, xn) we hoose qsn

with probability psn
(Πin

(∆tn+1, xn)). Thenwe de�ne
xn+1 = qsn

(Πin
(∆tn+1, xn)).We obtain a pieewise-deterministi trajetory for {X(t)}t≥0 with jump times

{t1, t2, . . .} and post jump loations {x1, x2, . . .}.We may reformulate the above onsiderations as follows: Let {ξn}n≥0 and {ηn}n≥1 besequenes of random variables, ξn : Ω → I and ηn : Ω → S and let {yn}n≥1 be auxiliaryrandom variables, yn : Ω → Y , suh that(4.1.1) P(ξ0 = i |x0 = x) = pi(x),

P(ξn = k |xn = x and ξn−1 = i) = pik(x),and(4.1.2) yn = Πξn−1
(tn − tn−1, xn−1),

P(ηn = s | yn = y) = ps(y)for n ≥ 1, x, y ∈ Y , k, i ∈ I and s ∈ S .Assume that {ξn}n≥0 and {ηn}n≥0 are independent of {tn}n≥0 and that for every
n ∈ N the variables η1, . . . , ηn−1, ξ1, . . . , ξn−1 are also independent.Given an initial random variable ξ0 the sequene of the random variables {xn}n≥0,
xn : Ω → Y , is given by(4.1.3) xn = qηn

(Πξn−1
(tn − tn−1, xn−1)) for n = 1, 2, . . .and the stohasti proess {X(t)}t≥0, X(t) : Ω → Y , is given by(4.1.4) X(t) = Πξn−1

(t− tn−1, xn−1) for tn−1 ≤ t < tn, n = 1, 2, . . .



Invariant measures for random dynamial systems 15It is easy to see that {X(t)}t≥0 and {xn}n≥0 are not Markov proesses. In orderto use the theory of Markov operators we must rede�ne the proesses {X(t)}t≥0 and
{xn}n≥0 in suh a way that the rede�ned proesses beome Markov.For this purpose, onsider the spae Y × I endowed with the metri ̺ given by(4.1.5) ̺((x, i), (y, j)) = ̺(x, y) + ̺c(i, j) for x, y ∈ Y, i, j ∈ I,where(4.1.6) ̺c(i, j) =

{
c if i 6= j,
0 if i = jand the onstant c will be hosen later on. Now de�ne a stohasti proess {ξ(t)}t≥0,

ξ(t) : Ω → I, by
ξ(t) = ξn−1 for tn−1 ≤ t < tn, n = 1, 2, . . .Then the stohasti proess {(X(t), ξ(t))}t≥0, (X(t), ξ(t)) : Ω → Y × I has the requiredMarkov property.In many appliations we are mostly interested in values of the proess X(t) at theswithing points tn. Therefore, we will also study the stohasti disrete proess (postjump loations) {(xn, ξn)}n≥0 , (xn, ξn) : Ω → Y × I. Clearly {(xn, ξn)}n≥0 is a Markovproess too.4.2. Disrete-time random dynamial systems. Let (Y, ‖ · ‖) be a separableBanah spae. In this setion we onsider the stohasti proess {(xn, ξn)}n≥0 , (xn, ξn) :

Ω → Y × I, de�ned by (4.1.1)�(4.1.3) with the help of the system (Π, q, p). We areinterested in the evolution of distributions orresponding to this disrete-time randomdynamial system. In order to get the existene of invariant measures or asymptotiresults, it is neessary to put some restritions on the system (Π, q, p). We will need thefollowing assumptions:The transformations Πi : R+ × Y → Y , i ∈ I and qs : Y → Y , s ∈ S, are ontinuousand there exists x∗ ∈ Y suh that(4.2.1) \
R+

e−λt‖qs(Πj(t, x∗)) − qs(x∗)‖ dt <∞ for j ∈ I, s ∈ S.The funtions ps, s ∈ S, and pij , i, j ∈ I, satisfy the following onditions:
(4.2.2) ∑

j∈I

|pij(x) − pij(y)| ≤ ψ1(‖x− y‖) for x, y ∈ Y, i ∈ I,

∑

s∈S

|ps(x) − ps(y)| ≤ ψ2(‖x− y‖) for x, y ∈ Y,where the funtions ψ1, ψ2 ∈ Φ0 satisfy the Dini ondition (2.1.2).We also assume that for the system (Π, q, p) there are three onstants L ≥ 1, α ∈ Rand Lq > 0 suh that(4.2.3) ∑

j∈I

pij(y)‖Πj(t, x) − Πj(t, y)‖ ≤ Leαt‖x− y‖ for x, y ∈ Y, i ∈ I, t ≥ 0



16 K. Horbazand(4.2.4) ∑

s∈S

ps(x)‖qs(x) − qs(y)‖ ≤ Lq‖x− y‖ for x, y ∈ Y.Further, there exists i0 ∈ I suh that(4.2.5) inf{pii0(x) : i ∈ I, x ∈ Y } > 0.To begin our study of the stohasti proess {(xn, ξn)}n≥0 onsider the sequene ofdistributions
µn(A) = P((xn, ξn) ∈ A) for A ∈ B(Y × I), n ≥ 0.It is easy to see that there exists a Markov�Feller operator P : M → M suh that

µn+1 = Pµn for n ≥ 0.The operator P is given by the formula(4.2.6) Pµ(A) =
∑

j∈I

∑

s∈S

\
Y ×I

∞\
0

λe−λt1A(qs(Πj(t, x)), j)pij(x)ps(Πj(t, x)) dt µ(dx, di)and its dual operator U by(4.2.7) Uf(x, i) =
∑

j∈I

∑

s∈S

∞\
0

λe−λtf(qs(Πj(t, x)), j)pij(x)ps(Πj(t, x)) dt,where λ is the intensity of the Poisson proess whih governs the inrement ∆tn ofthe random variables {tn}n≥0. The operator P given by (4.2.6) is alled the transitionoperator for this system.The �rst result ensures the existene of an invariant distribution for the transitionoperator P .Theorem 4.2.1. Assume that the system (Π, p, q) satis�es onditions (4.2.1)�(4.2.4). If(4.2.8) LLq + α/λ < 1,then the operator P de�ned by (4.2.6) has an invariant measure.The proof of Theorem 4.2.1 is based on Proposition 3.2.3. Therefore we have to showthat the operator P is essentially nonexpansive and semi-onentrating. These propertiesare interesting in their own right and will be stated separately in the next two lemmas.Lemma 4.2.1. Assume that the system (Π, q, p) satis�es onditions (4.2.2)�(4.2.4) and(4.2.8). Then the operator P given by (4.2.6) is essentially nonexpansive.Proof. Let ψ1, ψ2 ∈ Φ0 be given by ondition (4.2.2). De�ne ψ : R+ → R by
ψ(t) = ψ1(t) + ψ2

(
λL

λ− α
t

) for t ≥ 0.It is evident that ψ ∈ Φ0 and it satis�es the hypotheses of Proposition 2.1.1, thus thereexists ϕ ∈ Φ suh that(4.2.9) ψ(t) + ϕ(at) ≤ ϕ(t) for t ≥ 0 with a =
λLLq

λ− α
< 1.



Invariant measures for random dynamial systems 17Sine ϕ ∈ Φ we may hoose c ∈ R+ suh that ϕ(c) > 2. Consider the metri ̺ (see (4.1.5))with this hoie of c, i.e.
̺((x, i), (y, j)) = ‖x− y‖ + ̺c(i, j) for x, y ∈ Y, i, j ∈ I.Fix f ∈ Fϕ. To omplete the proof it is enough to show that(4.2.10) |Uf(x, i) − Uf(y, j)| ≤ ϕ(̺((x, i), (y, j))) for (x, i), (y, j) ∈ Y × I,where the operator U is given by (4.2.7). Sine ̺c(i, j) = c for i 6= j, ϕ(c) > 2, and

|f | ≤ 1, ondition (4.2.10) is satis�ed for i 6= j. On the other hand, for i = j,
|Uf(x, i) − Uf(y, i)|

≤
∑

j∈I

∑

s∈S

∞\
0

λe−λt|f(qs(Πj(t, x)), j)− f(qs(Πj(t, y)), j)|pij(x)ps(Πj(t, x)) dt

+
∑

j∈I

∑

s∈S

∞\
0

λe−λt|pij(x)ps(Πj(t, x)) − pij(y)ps(Πj(t, y))| dt

≤
∑

j∈I

∑

s∈S

∞\
0

λe−λtϕ(‖qs(Πj(t, x)) − qs(Πj(t, y))‖)pij(x)ps(Πj(t, x)) dt

+
∑

j∈I

∑

s∈S

∞\
0

λe−λt|pij(x) − pij(y)|ps(Πj(t, x)) dt

+
∑

j∈I

∑

s∈S

∞\
0

λe−λtpij(y)|ps(Πj(t, x)) − ps(Πj(t, y))| dt.Using onseutively (4.2.3), (4.2.4), the Jensen inequality, (4.2.2), and (4.2.9), we obtain
|Uf(x, i) − Uf(y, i)|

≤ ϕ
( ∑

j∈I

∞\
0

λe−λtLq‖Πj(t, x) − Πj(t, y)‖pij(x) dt
)

+
∑

j∈I

|pij(x) − pij(y)| +
∑

j∈I

∞\
0

λe−λtpij(y)ψ2(‖Πj(t, x) − Πj(t, y)‖) dt

≤ ϕ
(∞\

0

λe−λtLqLe
αt‖x− y‖ dt

)
+ ψ1(‖x− y‖) + ψ2

(
λL

λ− α
‖x− y‖

)

≤ ϕ(a‖x− y‖) + ψ(‖x− y‖) ≤ ϕ(‖x− y‖).Lemma 4.2.2. Assume that the system (Π, q, p) satis�es onditions (4.2.1)�(4.2.4)and (4.2.8). Then the operator P given by (4.2.6) is semi-onentrating.Proof. De�ne
V (x, i) = ‖x‖ for (x, i) ∈ Y × I.Let us �rst show that there exist a, b ∈ R+, a < 1, suh that(4.2.11) UV (x, i) ≤ aV (x, i) + b for (x, i) ∈ Y × I.



18 K. HorbazBy (4.2.7) and the de�nition of V , we have
UV (x, i) ≤

∑

j∈I

∑

s∈S

∞\
0

‖qs(Πj(t, x)) − qs(Πj(t, x∗))‖λe
−λtpij(x)ps(Πj(t, x)) dt

+
∑

j∈I

∑

s∈S

∞\
0

‖qs(Πj(t, x∗)) − qs(x∗)‖λe
−λtpij(x)ps(Πj(t, x)) dt

+
∑

j∈I

∑

s∈S

∞\
0

‖qs(x∗)‖λe
−λtpij(x)ps(Πj(t, x)) dt,where x∗ is given by ondition (4.2.1). Further, using (4.2.1), (4.2.3) and (4.2.4) weobtain

UV (x, i) ≤
λLqL

λ− α
‖x− x∗‖ + b̃ ≤ a‖x‖ + b,where

a =
λLqL

λ− α
,

b̃ =
∑

j∈I

∑

s∈S

∞\
0

λe−λt‖qs(Πj(t, x∗)) − qs(x∗)‖ dt+
∑

s∈S

‖qs(x∗)‖,

b = b̃+ a‖x∗‖.From (4.2.1) and the fat that the sets I and S are �nite, it follows that b is �nite.Sine a < 1, the proof of (4.2.11) is omplete. By Proposition 3.2.4, we onlude thatthere exists a bounded set A ⊂ Y × I suh that
inf

µ∈M1

lim inf
n→∞

Pnµ(A) > 0whih implies that E(P ), given by (3.2.7), is not empty.We now laim that inf E(P ) = 0.Suppose, ontrary to our laim, that ε̃ = inf E(P ) > 0. We onsider two ases: α < 0and α ≥ 0, where α is given by ondition (4.2.3).Case I: α < 0. We may hoose z0 ∈ Y and r > 0 suh that(4.2.12) inf
µ∈M1

lim inf
n→∞

Pnµ(B(z0, r) × I) > 0.Fix t∗ > 0 suh that
ε = 4rLLqe

αt∗ < ε̃and set
Cε =

⋃

j∈I

⋃

t∈[t∗,2t∗]

⋃

s∈S

(B(qs(Πj(t, z0)), ε) × I).Observe that Cε ∈ Cε. Aording to (4.2.6), for arbitrary µ ∈ M1 we have
(4.2.13) Pn+1µ(Cε)

=
∑

j∈I

∑

s∈S

\
Y ×I

∞\
0

1Cε
(qs(Πj(t, x)), j)λe

−λtpij(x)ps(Πj(t, x)) dt P
nµ(dx, di).



Invariant measures for random dynamial systems 19For x ∈ B(z0, r) and t > t∗ we de�ne
J(x, t) = {j ∈ I : ‖Πj(t, x) − Πj(t, z0)‖ ≤ 2Leαt‖x− z0‖},

S(x, t, j) = {s ∈ S : ‖qs(Πj(t, x)) − qs(Πj(t, z0))‖ ≤ 2Lq‖Πj(t, x) − Πj(t, z0)‖}.Sine ∑

j∈I

pij(x) = 1 for i ∈ I and ∑

s∈S

ps(Πj(t, x)) = 1 for j ∈ I,from (4.2.3) and (4.2.4) we obtain
∑

j∈J(x,t)

pij(x) ≥
1

2
for i ∈ I, and ∑

s∈S(x,t,j)

ps(Πj(t, x)) ≥
1

2
.Let x ∈ B(z0, r) and t ∈ [t∗, 2t∗]. Then for every j ∈ J(x, t) and s ∈ S(x, t, j) we have

‖qs(Πj(t, x)) − qs(Πj(t, z0))‖ ≤ 2Lq‖Πj(t, x) − Πj(t, z0)‖ ≤ 4LLqe
αt‖x− z0‖ ≤ ε,whih gives (qs(Πj(t, x)), j) ∈ Cε. Thus from (4.2.13) it follows that

Pn+1µ(Cε) ≥
\

B(z0,r)×I

2t∗\
t∗

∑

j∈J(t,x)

∑

s∈S(x,t,j)

λe−λtpij(x)ps(Πj(t, x)) dt P
nµ(dx, di)

≥
1

4
e−λt∗(1 − e−λt∗) · Pnµ(B(z0, r) × I).From (4.2.12) and the last inequality, we onlude that

inf
µ∈M1

lim inf
n→∞

Pnµ(Cε) > 0,whih ontradits the fat that ε̃ = inf E(P ) and ompletes the proof in the �rst ase.Case II: α ≥ 0. By (4.2.8) we have LLq < 1. Choose η, δ, t∗ > 0 suh that
(1 + η)(1 + δ)LLqe

αt∗ < 1.Finally, hoose ε0 > ε̃ suh that
ε = (1 + η)(1 + δ)LLqe

αt∗ε0 < ε̃.By the de�nition of E(P ) there exists A ∈ Cε0
suh that(4.2.14) β = inf

µ∈M1

lim inf
n→∞

Pnµ(A) > 0.Without loss of generality we an assume that(4.2.15) A =

m⋃

k=1

(B(zk, ε0) × I).We now de�ne
Cε =

⋃

j∈I

⋃

t∈[0,t∗]

⋃

s∈S

m⋃

k=1

(B(qs(Πj(t, zk)), ε) × I).Fix µ ∈ M1. From (4.2.14) and (4.2.15) it follows that there exists k(n) ∈ {1, . . . ,m}suh that(4.2.16) Pnµ(B(zk(n), ε0) × I) ≥ β/m.



20 K. HorbazFor x ∈ B(zk(n), ε) and t < t∗ we de�ne
J(x, t) = {j ∈ I : ‖Πj(t, x) − Πj(t, zk(n))‖ ≤ (1 + δ)Leαt‖x− zk(n)‖},

S(x, t, j) = {s∈S : ‖qs(Πj(t, x))−qs(Πj(t, zk(n)))‖≤ (1+η)Lq‖Πj(t, x)−Πj(t, zk(n))‖}.Analysis similar to the �rst ase shows that
∑

j∈J(x,t)

pij(x) ≥
δ

1 + δ
for i ∈ I,

∑

s∈S(x,t,j)

ps(Πj(t, x)) ≥
η

1 + η
.Fix x ∈ B(zk(n), ε0) and t < t∗. Set J1 = J(x, t). Let j ∈ J1. Then for every s ∈ S1 =

S(x, t, j) we have
‖qs(Πj(t, x)) − qs(Πj(t, zk(n)))‖ ≤ (1 + η)Lq(1 + δ)Leαt‖x− zk(n)‖

≤ (1 + η)Lq(1 + δ)Leαt∗ε0 = ε.Thus (qs(Πj(t, x)), j) ∈ Cε and
Pn+1µ(Cε) ≥

\
B(zk(n),ε0)×I

t∗\
0

∑

j∈J1

∑

s∈S1

λe−λtpij(x)ps(Πj(t, x)) dt P
nµ(dx, di)

≥
ηδ

(1 + η)(1 + δ)
(1 − e−λt∗)Pnµ(B(zk(n), ε0) × I).Combining this with (4.2.16) gives

lim inf
n→∞

Pnµ(Cε) ≥
ηδβ

(1 + η)(1 + δ)m
(1 − e−λt∗),but µ ∈ M1 was arbitrary and ε < ε̃, whih is impossible.The next result gives su�ient onditions for asymptoti stability:Theorem 4.2.2. Under the hypotheses of Theorem 4.2.1, suppose that moreover ondi-tion (4.2.5) is satis�ed and for α given in (4.2.3) one of the following holds:(i) α < 0 and there exists s0 ∈ S suh that(4.2.17) inf

x∈Y
ps0

(x) > 0,(ii) α ≥ 0 and for every s ∈ S,(4.2.18) inf
x∈Y

ps(x) > 0.Then the operator P given by (4.2.6) is asymptotially stable.Proof. By Theorem 4.2.1 the operator P admits an invariant measure. By virtue ofTheorem 3.2.1 it is su�ient to show that for given ε > 0 there exists θ > 0 suh thatfor any two measures µ1, µ2 ∈ M1, there exist a Borel measurable set A ⊂ Y × I with
diam̺ϕ

A < ε and an integer ñ suh that
P ñµk(A) ≥ θ for k = 1, 2.By Proposition 3.2.3 the set L(M1) is tight. Thus there exists a ompat set F ⊂ Y ×Isuh that

µ(F ) ≥ 4/5 for every µ ∈ L(M1).We onsider two ases: α < 0 and α ≥ 0.



Invariant measures for random dynamial systems 21Case I: α < 0. Set
γ = inf

x∈Y
ps0

(x) and σ = inf
x∈Y, i∈I

pii0(x),where s0 is suh that (4.2.17) holds and i0 is given by ondition (4.2.5). Obviously γ > 0and σ > 0. Let ε > 0 be �xed. Choose t∗ ∈ R+ suh that(4.2.19) LLq

σγ
eαt∗ diam̺ F <

ε

2
,where L, Lq are given by onditions (4.2.3) and (4.2.4), respetively. De�ne

FY = {x ∈ Y : (x, i) ∈ F for some i ∈ I}.Clearly FY is a ompat subset of Y .Sine qs : Y → Y , s ∈ S, and Πi : R+ × Y → Y , i ∈ I, are ontinuous, there exists
t > t∗ suh that(4.2.20) ‖qs(Πi(t, x)) − qs(Πi(t∗, x))‖ < ε/8 for all i ∈ I, s ∈ S, x ∈ FY , t ∈ [t∗, t ].Now for x ∈ FY we set(4.2.21) O(x) = {z ∈ FY : ‖qs(Πi(t∗, z)) − qs(Πi(t∗, x))‖ < ε/8 for s ∈ S, i ∈ I}.Let z1, . . . , zm0

∈ FY be suh that F ⊂ G, where
G =

m0⋃

l=1

(O(zl) × I).Note thatG is an open subset of Y ×I. Let µ1, µ2 ∈ M1 be arbitrary. Set µ = (µ1+µ2)/2.Sine L(µ) 6= ∅ (see Proposition 3.2.3), there exists a subsequene {nk} of {n} and ameasure ν ∈ L(µ) suh that Pnkµ → ν (weakly). Sine ν(G) ≥ 4/5, the Aleksandrovtheorem implies
lim inf
k→∞

Pnkµ(G) ≥ ν(G) ≥ 4/5.It follows that there exists n0 ∈ N suh that
Pn0µ(G) = (Pn0µ1(G) + Pn0µ2(G))/2 ≥ 3/4and onsequently Pn0µk(G) ≥ 1/2 for k = 1, 2. Therefore there exist l1, l2 ∈ {1, . . . ,m0}and i1, i2 ∈ I suh that(4.2.22) Pn0µk(Vk) ≥ 1/(2m0N) for k = 1, 2,where

Vk = O(zlk) × {ik}, k = 1, 2.From (4.2.3) and (4.2.5) it follows that(4.2.23) ‖Πi0(t∗, zl1) − Πi0(t∗, zl2)‖ ≤
L

σ
eαt∗‖zl1 − zl2‖.Set

w1 = Πi0(t∗, zl1), w2 = Πi0(t∗, zl2),where i0 is given by ondition (4.2.5). Moreover, from ondition (4.2.4) it follows that(4.2.24) ‖qs0
(w1) − qs0

(w2)‖ ≤
Lq

γ
‖w1 − w2‖.



22 K. HorbazBy (4.2.19), (4.2.23) and (4.2.24) we have
‖qs0

(w1) − qs0
(w2)‖ ≤

Lq

γ
‖w1 − w2‖ ≤

LqL

σγ
eαt∗‖zl1 − zl2‖ ≤

ε

2
.De�ne

A = (B(qs0
(w1), ε/4) ∪B(qs0

(w2), ε/4)) × {i0}and observe that diam̺ϕ
A < ε.For x ∈ O(zl1) and t ∈ [t∗, t ], using (4.2.20) and (4.2.21), we have

‖qs0
(Πi0(t, x)) − qs0

(w1)‖ ≤ ‖qs0
(Πi0(t, x)) − qs0

(Πi0(t∗, x))‖

+ ‖qs0
(Πi0(t∗, x)) − qs0

(Πi0(t∗, zl1))‖ ≤ ε/8 + ε/8 = ε/4.This gives(4.2.25) (qs0
(Πi0(t, x)), i0) ∈ A for x ∈ O(zl1), t ∈ [t∗, t ].Similarly,

(qs0
(Πi0(t, x)), i0) ∈ A for x ∈ O(zl2), t ∈ [t∗, t ].By (4.2.5), (4.2.6), (4.2.22) and (4.2.25) we have

Pn0+1µk(A) =
∑

j∈I

∑

s∈S

\
Y ×I

∞\
0

1A(qs(Πj(t, x)), j)λe
−λtpij(x)ps(Πj(t, x)) dt P

n0µk(dx, di)

≥
\
Vk

t\
t∗

1A(qs0
(Πi0(t, x)), i0)λe

−λtpii0(x)ps0
(Πi0(t, x)) dt P

n0µk(dx, di) ≥ θ,where θ = γσ(e−λt∗ − e−λt)/(2m0N) and k = 1, 2. Sine the onstant θ does not dependon µk for k = 1, 2, the proof in the �rst ase is omplete.Case II: α ≥ 0. We introdue some further notations. Namely, for s ∈ Sn, i ∈ In and
τ ∈ R

n
+ (i.e. s = (s1, . . . , sn), τ = (τ1, . . . , τn) and i = (i1, . . . , in)), we set

qs = qsn
◦ · · · ◦ qs1

,

(qs ◦ Πi)(τ , x) = qsn
(Πin

(τn, qsn−1
(Πin−1

(τn−1, . . . ,Πi1(τ1, x))))),

dτ = dτ1 · · · dτn, ds = ds1 · · · dsn.Next, for n ≥ 2, onsider the probabilities Pn : Y × In+1 × R
n−1
+ × Sn−1 → [0, 1] and

Pn : Y × In × R
n
+ × Sn → [0, 1] given by

Pn(x, i, i1, . . . , in−1, in, τ1, . . . , τn−1, s1, . . . , sn−1)

= pii1(x)pi1i2(qs1
(Πi1(τ1, x))) · . . . · pin−1in

((qs ◦ Πi)(τ , x))and
Pn(x, i1, . . . , in−1, in, τ1, . . . , τn−1, τn, s1, . . . , sn−1, sn)

= ps1
(Πi1(τ1, x))ps2

(Πi2(τ2, qs2
(Πi1(τ1, x)))) · . . . · psn

(Πin
(τn,qs ◦ Πi(τ , x))),where s = (s1, . . . , sn−1), τ = (τ1, . . . , τn−1), i = (i1, . . . , in−1).Sine α ≥ 0, ondition (4.2.8) implies that Lq < 1. Let n ∈ N be suh that(4.2.26) Ln

q · diam̺ F < ε/2.



Invariant measures for random dynamial systems 23By ontinuity and ompatness there exists δ > 0 suh that(4.2.27) ‖(qs ◦ Πi)(τ , x) − qs(x)‖ < ε/8for every i ∈ In, s ∈ Sn, τ ∈ [0, δ]n and x ∈ FY , where
FY = {x ∈ Y : (x, i) ∈ F for some i ∈ I}.Given x ∈ Y , de�ne(4.2.28) O(x) = {z ∈ FY : ‖qs(x) − qs(z)‖ < ε/8 for s ∈ Sn}.Clearly, O(x) is an open neighborhood of x. Let z1, . . . , zm0

∈ FY be suh that F ⊂ Gwhere
G =

m0⋃

l=1

(O(zl) × I).Let µ1, µ2 ∈ M1. Set µ = (µ1 + µ2)/2. Sine L(µ) 6= ∅ (see Proposition 3.2.3) thereexists a subsequene {nk} of {n} and a measure ν ∈ L(µ) suh that Pnkµ→ ν (weakly).As in Case I there exist n0 ∈ N, l1, l2 ∈ {1, . . . ,m0} and i1, i2 ∈ I suh that(4.2.29) Pn0µk(Vk) ≥ 1/(2m0N) for k = 1, 2,where
Vk = O(zlk) × {ik}, k = 1, 2.Set z̃1 = zl1 and z̃2 = zl2 . By (4.2.4) there exists s0,0 ∈ S suh that

‖qs0,0
(z̃1) − qs0,0

(z̃2)‖ ≤ Lq‖z̃1 − z̃2‖.Next, for qs0,0
(z̃1) and qs0,0

(z̃2) we hoose s0,1 ∈ S suh that
‖qs0,1

(qs0,0
(z̃1)) − qs0,1

(qs0,0
(z̃2))‖ ≤ Lq‖qs0,0

(z̃1) − qs0,0
(z̃2)‖and so on. Thus there exists s0 = (s0,0, . . . , s0,n−1) ∈ Sn suh that(4.2.30) ‖qs0(z̃1) − qs0(z̃2)‖ ≤ Ln

q ‖z̃1 − z̃2‖.De�ne
A = (B(qs0(z̃1), ε/4) ∪B(qs0(z̃2), ε/4)) × {i0},where i0 is given by ondition (4.2.5). From (4.2.26) and (4.2.30) it follows that

diam̺ϕ
A < ε. For x ∈ O(z̃l), l = 1, 2, i ∈ In and τ ∈ [0, δ]n, by (4.2.27), (4.2.28),we have

‖(qs0 ◦ Πi)(τ , x) − qs0(z̃l)‖ ≤ ‖(qs0 ◦ Πi)(τ , x) − qs0(x)‖ + ‖qs0(x) − qs0(z̃l)‖ ≤ ε/4.This gives
((qs0 ◦ Πi)(τ , x), i0) ∈ A for x ∈ O(z̃l), i ∈ In, l = 1, 2 and τ ∈ [0, δ]n.



24 K. HorbazCombining this with (4.2.5), (4.2.6), and (4.2.29), we obtain
Pn0+nµk(A) =

∑

j=(j1,...,jn)∈In

\
Y ×I

\
Rn

+

∑

s=(s1,...,sn)∈Sn

1A((qs ◦ Πj)(τ , x), jn)

· Pn(x, i, j, τ1, . . . , τn−1, s1, . . . , sn−1) · Pn(x, j, τ , s)λe−λ(τ1+···+τn) dτ Pn0µk(dx, di)

≥ (γσ)n
\
Vk

\
[0,δ]n

λne−λ(τ1+···+τn)1A((qs0 ◦ Πi0)(τ , x), i0)dτ Pn0µk(dx, di)

≥ (γσ)n
( δ\

0

λe−λτ dτ
)n

Pn0µk(Vk) ≥
(γσ)

n
(1 − e−λδ)n

2m0N
for k = 1, 2,where i0 = (i0, . . . , i0) ∈ In,

γ = inf
x∈Y, s∈S

ps(x), σ = inf
x∈Y, i∈I

pii0(x),and onsequently the right-hand side does not depend on µk for k = 1, 2.We onlude this setion with a result desribing the asymptoti behavior of distri-butions of the proess {xn}n≥0 on the spae (Y, ‖ · ‖). Let µ̃ be the distribution of theinitial random vetor x0 and µ̃n the distribution of xn , i.e.(4.2.31) µ̃n(A) = P(xn ∈ A) for A ∈ B(Y ) and n ≥ 1.Theorem 4.2.3. Under the hypotheses of Theorem 4.2.2, there exists a measure µ̃0 ∈

M1(Y ) suh that for every µ̃ the sequene {µ̃n}n≥1 given by (4.2.31) onverges weaklyto µ̃0. Furthermore, if the initial vetor x0 is distributed aording to µ̃0, that is ,
P(x0 ∈ A) = µ̃0(A) for A ∈ B(Y ),then µ̃n(A) = µ̃0(A) for A ∈ B(Y ) and n ≥ 1.Proof. By Theorem 4.2.2 the operator P given by (4.2.6) is asymptotially stable. Thusthere exists an invariant measure µ0 ∈ M1(Y × I) suh that(4.2.32) lim

n→∞
〈f , µn〉 = 〈f , µ0〉 for f ∈ C(Y × I),where µn+1 = Pµn, n = 1, 2, . . . . For every funtion f ∈ C(Y ) we de�ne the sequene offuntions f j : Y × I → R, j ∈ I, by the formula
f j(x, i) =

{
f(x) for i = j,
0 for i 6= j.It is evident that f j ∈ C(Y × I) for every j ∈ I. From (4.2.32) it follows that

lim
n→∞

∑

j∈I

\
Y ×I

f j(x, i)µn(dx, di) =
∑

j∈I

\
Y ×I

f j(x, i)µ0(dx, di)and onsequently
lim

n→∞

∑

j∈I

\
Y

f(x)µn(dx× {j}) =
∑

j∈I

\
Y

f(x)µ0(dx× {j}).Sine µn is the distribution of (xn, ξn), from (4.2.31) we have
µ̃n(A) = P(xn ∈ A) = P((xn, ξn) ∈ A× I) = µn(A× I) for A ∈ B(Y ).



Invariant measures for random dynamial systems 25Taking
µ̃0(A) = µ0(A× I) for A ∈ B(Y ),we obtain
lim

n→∞
〈f, µ̃n〉 = 〈f, µ̃0〉 for f ∈ C(Y ),as required. Furthermore,

µ̃n(A) = µn(A× I) = Pnµ0(A× I) = µ0(A× I) = µ̃0(A) for A ∈ B(Y ).4.3. Continuous-time random dynamial systems. In this setion we study theasymptoti behavior of the distributions of stohasti proesses {(X(t), ξ(t))}t≥0 and
{X(t)}t≥0, where the hoie of a jump does not depend on the position in whih ittakes plae. We additionally replae S = {1, . . . ,K} with a ompat spae. In [19℄the authors onsidered ontinuous-time dynamial systems on Polish spaes, but withoutjumps.Let (Y, ‖ · ‖) be a separable Banah spae and Θ be a ompat metri spae. Let
{ηn}n≥0 be a sequene of identially distributed random elements ηn : Ω → Θ, n ∈ N.We assume that {ηn}n≥0 is independent of {tn}n≥0 and we denote by ν the distributionof ηn, i.e. ν(A) = P(η−1

n (A)), n ∈ N, A ∈ B(Θ).Let q : Y × Θ → Y be a ontinuous transformation suh that(4.3.1) ‖q(x, ·) − q(y, ·)‖L1(ν) ≤ Lq‖x− y‖ for all x, y ∈ Ywith a onstant Lq ≥ 0, and(4.3.2) c̃ =
\
Θ

‖q(0, θ)‖ ν(dθ) <∞.In the remainder of this setion we require, as in Setion 4.2, that Πi : R+ × Y → Y ,
i ∈ I, are ontinuous semidynamial systems, [pi]i∈I is a probability vetor, [pij ]i,j∈I is aprobability matrix, (4.2.2) and (4.2.3) hold, the latter with the onstants L,α suh that(4.3.3) LLq + α/λ < 1,where Lq is now given in (4.3.1) and λ is the intensity of the Poisson proess whihgoverns the inrement ∆tn of the random variables {tn}n≥0. Finally, instead of (4.2.5)we assume that(4.3.4) σ = inf{pij(x) : i, j ∈ I, x ∈ Y } > 0.In this setion we study the stohasti proess {(X(t), ξ(t))}t≥0, (X(t), ξ(t)) :

Ω → Y × I, given by
(X(t), ξ(t)) = (Πξn−1

(t− tn−1, xn−1), ξn−1) for tn−1 ≤ t < tn, n = 1, 2, . . . ,where
xn = q(Πξn−1

(tn − tn−1, xn−1), ηn),

P(ξ0 = i |x0 = x) = pi(x),

P(ξn = k |xn = x, ξn−1 = i) = pik(x) for n = 1, 2, . . . .



26 K. HorbazThe semigroup {P t}t≥0 generated by this proess is given by(4.3.5) 〈P tµ, f〉 = 〈µ, T tf〉 for f ∈ C(Y × I), µ ∈ M1 and t ≥ 0,where(4.3.6) T tf(x, i) = E(f((X(t), ξ(t))(x,i))) for f ∈ C(Y × I).(E denotes the mathematial expetation on (Ω,Σ,P).)Theorem 4.3.1. Assume that the system (Π, q, p) satis�es onditions (4.3.1)�(4.3.4) andthat there exists a onstant β > 0 suh that(4.3.7) ‖Πi(t, x) − x‖ ≤ βt for i ∈ I, t > 0, x ∈ Y.Then the semigroup {P t}t≥0 given by (4.3.5), (4.3.6) is asymptotially stable.The proof of Theorem 4.3.1 is quite long and will be presented later on in this setion.We now proeed with the following observation:Remark 4.3.1. Note that if Θ is equal to the �nite set S = {1, . . . ,K} with the disretetopology then by setting qs(x) = q(x, s) and ps(x) = ν({s}), x ∈ Y, s ∈ Θ, the system
(Π, q, p) under onsideration orresponds to the one in Setion 4.2 with the probabilityvetor ps independent of x. Condition (4.2.4) is then equivalent to (4.3.1), the seondinequality in (4.2.2) is trivially satis�ed, and (4.2.1) follows from (4.3.1) and (4.3.7).We next show that ondition (4.3.3) in Theorem 4.3.1 is essential.Example 4.3.1. Let I = Θ = {1} and Π(t, x) = x, q(x, 1) = −x for x ∈ Y and t ≥ 0.Then L = 1, Lq = 1 and α = 0, so

LLq + α/λ = 1.For arbitrary initial x0 we obtain xn = −xn−1 for every n ∈ N. By (4.1.4) we obtain
X(t) = xn−1 for tn−1 ≤ t < tn.Thus the semigroup {P t}t≥0 generated by this proess is not asymptotially stable.Several lemmas are needed for the proof of Theorem 4.3.1. The general idea of theproof is as follows. First, we show that the semigroup {P t}t≥0 is nonexpansive. Seond,we prove that for some t∗ > 0 the Markov operator P t∗ is semi-onentrating. Finally,we show that the operator P t∗ satis�es a lower bound ondition, whih by Theorem 3.2.1implies that the semigroup {P t}t≥0 is asymptotially stable.We start with some useful notation. For n ∈ N onsider the funtion Πn :

Y × In × R
n
+ × Θn → Y de�ned by the reurrent formula

(4.3.8)
Π1(x, i, s1, θ1) = q(Πi(s1, x), θ1);

Πn(x, i, i1, . . . , in−1, s1, . . . , sn, θ1, . . . , θn)

= q(Πin−1
(sn,Πn−1(x, i, i1, . . . , in−2, s1, . . . , sn−1, θ1, . . . , θn−1)), θn).



Invariant measures for random dynamial systems 27Next onsider the transition probabilities Pn : Y × In+1 × R
n
+ × Θn → [0, 1] given by

Pn(x, i, i1, . . . , in, s1, . . . , sn, θ1, . . . , θn)

= pii1(Π1(x, i, s1, θ1)) · . . . · pin−1in
(Πn(x, i, i1, . . . , in−1, s1, . . . , sn, θ1, . . . , θn))and the funtions qn : Y × Θn → Y given by(4.3.9) q0(x) = x, q1(x, θ1) = q(x, θ1),

qn(x, θ1, . . . , θn−1, θn) = q(qn−1(x, θ1, . . . , θn−1), θn).Remark 4.3.2. Observe that for every n ∈ N, s1, . . . , sn ∈ R+, x ∈ Y, i, i1, . . . , in+1 ∈ Iand θ1, . . . , θn+1 ∈ Θ we have
Pn+1(x, i, i1, . . . , in+1, s1, . . . , sn+1, θ1, . . . , θn+1)

= Pn(Π1(x, i, s1, θ1), i1, . . . , in+1, s2, . . . , sn+1, θ2, . . . , θn+1)pii1(Π1(x, i, s1, θ1))and
(4.3.10) Πn+1(x, i, i1, . . . , in, s1, . . . , sn+1, θ1, . . . , θn+1)

= Πn(Π1(x, i, s1, θ1), i1, . . . , in, s2, . . . , sn+1, θ2, . . . , θn+1).Finally, given a funtion f : Y ×I → R we onsider the funtion fn : Y ×I×R
n+1
+ → Rde�ned by

(4.3.11) fn(x, i, s1, . . . , sn+1)

=
\
Θ

. . .
\
Θ︸ ︷︷ ︸

n

N∑

i1,...,in=1

f(Πin
(sn+1,Πn(x, i, i1, . . . , in−1, s1, . . . , sn, θ1, . . . , θn)), in)

· Pn(x, i, i1, . . . , in, s1, . . . , sn, θ1, . . . , θn) ν(dθ1) . . . ν(dθn).By Remark 4.3.2 we have
(4.3.12) fn+1(x, i, s1, . . . , sn+2)

=
\
Θ

N∑

i1=1

pii1(Π1(x, i, s1, θ1)) · fn(Π1(x, i, s1, θ1), i1, s2, . . . , sn+2) ν(dθ1).For the onveniene of the reader sometimes we will write fn(x, i, s) instead of
fn(x, i, s1, . . . , sn+1) where s = (s1, . . . , sn+1) and analogously Πn(x, i, s,θ) instead of
Πn(x, i1, . . . , in, s1, . . . , sn, θ1, . . . , θn) where i = (i1, . . . , in), s = (s1, . . . , sn) and θ =

(θ1, . . . , θn).We begin with some tehnial estimates:Lemma 4.3.1. Assume that onditions (4.3.1), (4.3.3) and (4.3.4) are satis�ed. Let ϕ ∈ Φand f ∈ Fϕ. Then for every n ∈ N, i ∈ I, x, y ∈ Y and s1, . . . , sn+1 ∈ R+ we have
(4.3.13) |fn(x, i, s1, . . . , sn+1) − fn(y, i, s1, . . . , sn+1)|

≤ ϕ

(
Ln

q

Ln+1

σ
eα(s1+···+sn+1)‖x− y‖

)
+

n∑

k=1

ψ1

(
(LqL)k

σ
eα(s1+···+sk)‖x− y‖

)
.



28 K. HorbazProof. We �rst show that for every n ∈ N, i ∈ I, x, y ∈ Y and s1, . . . , sn+1 ∈ R+,
(4.3.14) |fn(x, i, s1, . . . , sn+1) − fn(y, i, s1, . . . , sn+1)|

≤ ϕ((LqL)
n
eα(s2+···+sn+1)‖Πi(s1, x) − Πi(s1, y)‖)

+

n∑

k=2

ψ1(L
k
qL

k−1eα(s2+···+sk)‖Πi(s1, x) − Πi(s1, y)‖) + ψ1(Lq‖Πi(s1, x) − Πi(s1, y)‖).(Here we assume that for n < 2 the sum ∑n
k=2 ... is equal to zero.)The proof is by indution on n. Let x, y ∈ Y, i ∈ I and s1, . . . , sn+1 ∈ R+ be �xed.Set

u1 = Πi(s1, x) and y1 = Πi(s1, y).First we onsider the ase of n= 1. Combining (4.2.2), (4.2.3) and (4.3.1), (4.3.8), (4.3.11),Jensen's inequality and the fat that |f | ≤ 1, we obtain
|f1(x, i, s1, s2) − f1(y, i, s1, s2)|

≤
\
Θ

N∑

i1=1

|f(Πi1(s2, q(u1, θ1)), i1)−f(Πi1(s2, q(y1, θ1)), i1)| · pii1(q(u1, θ1)) ν(dθ1)

+
\
Θ

N∑

i1=1

|pii1(q(u1, θ1)) − pii1(q(y1, θ1))| ν(dθ1)

≤
\
Θ

N∑

i1=1

ϕ(‖Πi1(s2, q(u1, θ1)) − Πi1(s2, q(y1, θ1))‖)pii1(q(u1, θ1)) ν(dθ1)

+
\
Θ

ψ1(‖q(u1, θ1) − q(y1, θ1)‖) ν(dθ1)

≤ ϕ(LLqe
αs2‖u1 − y1‖) + ψ1(Lq‖u1 − y1‖).Suppose now that inequality (4.3.14) holds for some k ≥ 1. By virtue of (4.3.11), (4.3.12)and Remark 4.3.2 we have

|fk+1(x, i, s1, . . . , sk+2) − fk+1(y, i, s1, . . . , sk+2)|

≤
\
Θ

N∑

i1=1

pii1(Π1(x, i, s1, θ1))|fk(Π1(x, i, s1, θ1), i1, s2, . . . , sk+2)

− fk(Π1(y, i, s1, θ1), i1, s2, . . . , sk+2)| ν(dθ1)

+
\
Θ

N∑

i1=1

|pii1(Π1(x, i, s1, θ1)) − pii1(Π1(y, i, s1, θ1))| ν(dθ1).Further, by (4.3.1), the indution hypothesis, (4.2.2), (4.2.3), and Jensen's inequality we
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|fk+1(x, i, s1, . . . , sk+2) − fk+1(y, i, s1, . . . , sk+2)|

≤
\
Θ

N∑

i1=1

pii1(q(u1, θ1))

× ϕ((LqL)keα(s3+···+sk+2)‖Πi1(s2, q(u1, θ1))−Πi1(s2, q(y1, θ1))‖) ν(dθ1)

+
\
Θ

N∑

i1=1

pii1(q(u1, θ1))

×
k∑

j=2

ψ1(L
j
qL

j−1eα(s3+···+sj+1)‖Πi1(s2, q(u1, θ1)) − Πi1(s2, q(y1, θ1))‖) ν(dθ1)

+
\
Θ

N∑

i1=1

pii1(q(u1, θ1))ψ1(Lq‖Πi1(s2, q(u1, θ1)) − Πi1(s2, q(y1, θ1))‖) ν(dθ1)

+
\
Θ

ψ1(‖q(u1, θ1) − q(y1, θ1)‖) ν(dθ1)

≤
\
Θ

ϕ(Lq
kLk+1eα(s2+···+sk+2)‖q(u1, θ1) − q(y1, θ1)‖) ν(dθ1)

+
\
Θ

k∑

j=2

ψ1(L
j
qL

jeα(s2+···+sj+1)‖q(u1, θ1) − q(y1, θ1)‖) ν(dθ1)

+
\
Θ

ψ1(LqLe
αs2‖q(u1, θ1) − q(y1, θ1)‖) ν(dθ1) + ψ1(Lq‖u1 − y1‖)

≤ ϕ((LqL)k+1eα(s2+···+sk+2)‖u1 − y1‖)

+

k+1∑

j=2

ψ1(L
j
qL

j−1eα(s2+···+sj)‖u1 − y1‖) + ψ1(Lq‖u1 − y1‖),whih ompletes the proof of (4.3.14). Sine
‖u1 − y1‖ = ‖Πi(s1, x) − Πi(s1, y)‖ ≤

L

σ
eαs1‖x− y‖,we obtain (4.3.13).We an now prove the following:Lemma 4.3.2. If onditions (4.3.1), (4.3.3) and (4.3.4) hold , then there exists t∗ > 0 suhthat for every t ≥ t∗ the operator P t given by (4.3.5), (4.3.6) is essentially nonexpansive.Proof. By virtue of (4.3.3), we an hoose t∗ > 0 suh that

r0 =
L

σ
e−(λ−α−λLLq)t∗ < 1.



30 K. HorbazMoreover, let ψ : R+ → R be de�ned by
ψ(t) =





λt∗ψ1

(
LLq

σ
e−λ(1−LLq)t∗t

) if α < 0,
λt∗ψ1

(
1

σ
eαt∗t

) if α ≥ 0.Sine ψ ∈ Φ0 and satis�es the hypotheses of Proposition 2.1.1, there exists ϕ ∈ Φ suhthat(4.3.15) ψ(t) + ϕ(r0t) ≤ ϕ(t) for t ≥ 0.Analogously to the proof of Lemma 4.2.1, hoose c > 0 suh that ϕ(c) ≥ 2 and onsiderthe orresponding metri ̺.Reall that ‖ · ‖ϕ is the Fortet�Mourier norm in M1 given by
‖µ‖ϕ = sup{|〈f, µ〉| : f ∈ Fϕ},where Fϕ is the set of funtions suh that |f | ≤ 1 and

|f(x, i) − f(y, j)| ≤ ̺ϕ((x, i), (y, j)) = ϕ(̺((x, i), (y, j)))for x, y ∈ Y , i, j ∈ I.We will prove that P t∗ is nonexpansive with respet to the norm ‖·‖ϕ. For n ∈ N∪{0}we set
Ωn = Ωn(t∗) = {ω ∈ Ω : tn(ω) ≤ t∗ and tn+1(ω) > t∗}.Obviously, P(

⋃∞
n=0 Ωn(t∗)) = 1 and Ωn(t∗) ∩ Ωm(t∗) = ∅ for n 6= m. Let f : Y × I → Rbe a bounded ontinuous funtion and let x ∈ Y and i ∈ I be given. We write ∆n =

(∆t1, . . . ,∆tn), where ∆tn = tn − tn−1. A simple alulation shows that
(4.3.16) E(f((X(t∗), ξ(t∗))(x,i)))

= e−λt∗f(Πi(t∗, x), i) +

∞∑

n=1

\
Ωn

fn(x, i,∆n(ω), t∗ − tn(ω)) P(dω).

Fix an f ∈ Fϕ. Evidently |T t∗f | ≤ 1, so we have to prove that(4.3.17) |T t∗f(x, i) − T t∗f(y, j)| ≤ ̺ϕ((x, i), (y, j)) for x, y ∈ Y and i, j ∈ I.Sine ̺c(i, j) = c for i 6= j and ϕ(c) ≥ 2, ondition (4.3.17) is satis�ed for i 6= j. Now,let i = j. We have
|T t∗f(x, i) − T t∗f(y, i)| ≤ E(|f((X(t∗), ξ(t∗))(x,i)) − f((X(t∗), ξ(t∗))(y,i))|)

≤ e−λt∗ |f(Πi(t∗, x), i) − f(Πi(t∗, y), i)|

+
∞∑

n=1

\
Ωn

|fn(x, i,∆n(ω), t∗ − tn(ω)) − fn(y, i,∆n(ω), t∗ − tn(ω))|P(dω).
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(4.3.18) |T t∗f(x, i) − T t∗f(y, i)| ≤ e−λt∗ϕ(‖Πi(t∗, x) − Πi(t∗, y)‖)

+

∞∑

n=1

\
Ωn

[
ϕ

(
Ln

qL
n+1

σ
eαt∗‖x− y‖

)
+

n∑

j=1

ψ1

(
(LqL)j

σ
eαtj(ω)‖x− y‖

)]
P(dω).

If α < 0, then we an assume, without loss of generality, that LLq ≥ 1. Thus weobtain
|T t∗f(x, i) − T t∗f(y, i)| ≤ e−λt∗ϕ

(
L

σ
eαt∗‖x− y‖

)

+ e−λt∗

∞∑

n=1

(λt∗)
n

n!

(
ϕ

(
Ln

qL
n+1

σ
eαt∗‖x− y‖

)
+

n∑

j=1

ψ1

(
(LqL)j

σ
‖x− y‖

))

≤ ϕ

(
L

σ
e−(λ−α−λLqL)t∗‖x− y‖

)
+ e−λt∗

∞∑

n=1

(λt∗)
n

(n− 1)!
ψ1

(
(LqL)n

σ
‖x− y‖

)

≤ ϕ(r0‖x− y‖) + ψ(‖x− y‖).Suppose now that α ≥ 0. Then LLq < 1 and by (4.3.18) we have
|T t∗f(x, i) − T t∗f(y, i)| ≤ ϕ(r0‖x− y‖) + e−λt∗

∞∑

n=1

(λt∗)
n

(n− 1)!
ψ1

(
eαt∗

σ
‖x− y‖

)

≤ ϕ(r0‖x− y‖) + ψ(‖x− y‖).From the last inequality and the hoie of ϕ it follows that
|T t∗f(x, i) − T t∗f(y, i)| ≤ ϕ(‖x− y‖).Consequently, for every f ∈ Fϕ and t ≥ t∗ we have
|T tf(x, i) − T tf(y, i)| ≤ ϕ(‖x− y‖),as required.Denote by νn the measure on Θn generated by ν (i.e. νn = ν⊗· · ·⊗ ν). We need onemore tehnial estimate:Lemma 4.3.3. If onditions (4.3.1), (4.3.2), and (4.3.7) hold , then for every n ∈ N,(4.3.19) \

Θn

‖Πn(0, i, s1, . . . , sn,θ)‖ νn(dθ) ≤ Ln
q β(s1 + · · · + sn) + nc̃Ln−1

qfor s1, . . . , sn ∈ R+, i ∈ In, where Lq = max{1, Lq} and c̃ is given by (4.3.2).Proof. For simpliity we use the notation ik = (i, i1, . . . , ik−1) ∈ Ik and sk = (s1, . . . , sk)

∈ R
k
+. Observe that
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Θ

. . .
\
Θ︸ ︷︷ ︸

n

‖Πn(0, in, sn, θ1, . . . , θn)‖ ν(dθ1) . . . ν(dθn)

≤
n−2∑

k=0

\
Θ

. . .
\
Θ︸ ︷︷ ︸

n

‖qk(Πn−k(0, in−k, sn−k, θ1, . . . , θn−k), θn−k+1, . . . , θn)

− qk+1(Πn−k−1(0, in−k−1, sn−k−1, θ1, . . . , θn−k−1), θn−k . . . , θn)‖ ν(dθ1) . . . ν(dθn)

+
\
Θ

. . .
\
Θ︸ ︷︷ ︸

n

‖qn−1(Π1(0, i, s1, θ1), θ2, . . . , θn) − qn(0, θ1, θ2, . . . , θn)‖ ν(dθ1) . . . ν(dθn)

+
\
Θ

. . .
\
Θ︸ ︷︷ ︸

n

‖qn(0, θ1, θ2, . . . , θn)‖ ν(dθ1) . . . ν(dθn).

By (4.3.1), (4.3.7), (4.3.8) and (4.3.9) we obtain\
Θ

. . .
\
Θ︸ ︷︷ ︸

n

‖qk(Πn−k(0, in−k, sn−k, θ1, θ2, . . . , θn−k), θn−k+1, . . . , θn)

− qk+1(Πn−k−1(0, in−k−1, sn−k−1, θ1, . . . , θn−k−1), θn−k . . . , θn)‖ ν(dθ1) . . . ν(dθn)

≤ Lk+1
q βsn−k for k = 0, 1, . . . , n− 2and\

Θ

. . .
\
Θ︸ ︷︷ ︸

n

‖qn−1(Π1(0, i, s1, θ1), θ2, . . . , θn) − qn(0, θ1, . . . , θn)‖ ν(dθ1) . . . ν(dθn) ≤ Ln
q βs1.

Moreover, sine Lq ≥ 1 we have\
Θ

. . .
\
Θ︸ ︷︷ ︸

n

‖qn(0, θ1, . . . , θn)‖ ν(dθ1) . . . ν(dθn) ≤ nc̃Ln−1
q ,

whih ompletes the proof of (4.3.19).Lemma 4.3.4. Let the assumptions of Theorem 4.3.1 hold. Let t∗ > 0 be suh that(4.3.20) L

σ
e−(λ−α−λLqL)t∗ < 1.Then the Markov operator P t∗ given by (4.3.5), (4.3.6) is globally onentrating.Proof. Set

V (x, i) = ‖x‖ for x ∈ Y and i ∈ I.By Proposition 3.2.4 it is enough to show that there exist onstants a, b ∈ R+, a < 1,suh that
T t∗V (x, i) ≤ aV (x, i) + b for x ∈ Y, i ∈ I.
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T t∗V (x, i) = e−λt∗V (Πi(t∗, x), i) +

∞∑

n=1

\
Ωn

Vn(x, i,∆n(ω), t∗ − tn(ω)) P(dω),where Vn is the funtion de�ned by formula (4.3.11) with f replaed by V , ∆n and Ωnare de�ned in Lemma 4.3.2. Thus
T t∗V (x, i) ≤ e−λt∗‖Πi(t∗, x) − Πi(t∗, 0)‖ + e−λt∗‖Πi(t∗, 0)‖

+
∞∑

n=1

\
Ωn

\
Θn

∑

i∈In−1,in∈I

‖Πin
(t∗ − tn(ω),Πn(x, i, i,∆n(ω),θ))

− Πin
(t∗ − tn(ω),Πn(0, i, i,∆n(ω),θ))‖ · Pn(x, i, i, in,∆n(ω),θ) νn(dθ) P(dω)

+
∞∑

n=1

\
Ωn

\
Θn

∑

i∈In−1,in∈I

‖Πin
(t∗ − tn(ω),Πn(0, i, i,∆n(ω),θ))‖

· Pn(x, i, i, in,∆n(ω),θ) νn(dθ) P(dω).By (4.2.3), (4.3.1)�(4.3.4), (4.3.7) and Lemma 4.3.3 we have
T t∗V (x, i) ≤ e−(λ−α)t∗

L

σ
‖x‖ + e−λt∗βt∗ +

∞∑

n=1

\
Ωn

(LLq)
nL

σ
eαt∗‖x‖P(dω)

+

∞∑

n=1

\
Ωn

(β(t∗ − tn(ω)) + βLn
q tn(ω) + nc̃Ln−1

q ) P(dω).Thus
T t∗V (x, i) ≤

L

σ
e−(λ−α−λLqL)t∗‖x‖ + t∗e

−λ(1−Lq)t∗(β + λc̃).Setting a = L
σ e

−(λ−α−λLqL)t∗ and b = t∗e
−λ(1−Lq)t∗(β + λc̃) ompletes the proof.As a onsequene of Lemma 4.3.4 and Remark 3.2.2 we have the following:Corollary 4.3.1. If the assumptions of Lemma 4.3.4 hold , then E(P t∗) given by (3.2.7)is nonempty.Lemma 4.3.5. Under the hypotheses of Theorem 4.3.1 the operator P t∗ is semi-onen-trating.Proof. We hoose t∗ suh that (4.3.20) is satis�ed. Set P̃ = P t∗ . By Corollary 4.3.1 wehave E(P̃ ) 6= ∅. Suppose that, ontrary to our laim, ε̃ = inf E(P̃ ) > 0. Let α be given byondition (4.2.3). Similarly to the proof of Theorem 4.2.2, we onsider two ases: α < 0and α ≥ 0.Case I: α < 0. Without loss of generality we an assume that LLq ≥ 1. Then from(4.3.20) it follows that

L

σ
eαt∗ < 1.Thus we an hoose ε0 > ε̃ suh that

ε =
L

σ
eαt∗ε0 < ε̃.



34 K. HorbazBy Corollary 4.3.1 there exists {z1, . . . , zm} ⊂ Y suh that(4.3.21) inf
µ∈M1

lim inf
n→∞

P̃nµ
( m⋃

k=1

B(zk, ε0) × I
)
> 0.Set

Cε =
N⋃

j=1

m⋃

k=1

(B(Πj(t∗, zk), ε) × I)and observe that Cε ∈ Cε. From (4.2.3) and (4.3.4) it follows that for every x ∈ B(zk, ε0),
k ∈ {1, . . . ,m} and j ∈ I we have

‖Πj(t∗, x) − Πj(t∗, zk)‖ ≤
L

σ
eαt∗‖x− zk‖ = ε,whih gives (Πj(t∗, x), j) ∈ Cε. Obviously, from (4.3.16), we have

P̃ µ(Cε) = 〈1Cε
, P̃ µ〉 = 〈T t∗1Cε

, µ〉 =
\

Y ×I

E(1Cε
(X(t∗), ξ(t∗))) dµ

≥
\

⋃
m
k=1 B(zk,ε0)×I

e−λt∗1Cε
(Πi(t∗, x), i)µ(dx, di) = e−λt∗µ

( m⋃

k=1

B(zk, ε0) × I
)

for µ ∈ M1. From (4.3.21), we obtain
inf

µ∈M1

lim inf
n→∞

P̃nµ(Cε) > 0.Sine ε < ε̃, this ontradits the fat that ε̃ = inf E(P̃ ) and ompletes the proof in the�rst ase.Case II: α ≥ 0. Then by (4.3.3) we have LLq < 1. Choose positive onstants ε0, η, δand t∗ suh that ε0 > ε̃, δ < t∗ and
ε = (1 + η)LLqe

αt∗(ε0 + 2βδ) < ε̃,where β is given by ondition (4.3.7). Set Q = P t∗ . By the de�nition of E(P̃ ) there exists
A ∈ Cε0

suh that
κ = inf

µ∈M1

lim inf
n→∞

P̃nµ(A) > 0.Without loss of generality we an assume that
A =

N⋃

i=1

ni⋃

k=1

(B(zik, ε0) × {i}) for some zik ∈ Y.For any given i ∈ I and k ∈ {1, . . . , ni} de�ne
Vik =

N⋃

j=1

⋃

τ∈[0,δ)

⋃

θ∈Θ

B(Πj(t∗ − τ, q(Πi(τ, zik), θ)), ε) × {j}.De�ne
Θ0 = Θ0(x, τ)

= {θ ∈ Θ : ‖q(Πi(τ, x), θ)− q(Πi(τ, zik), θ)‖ ≤ (1 + η)Lq‖Πi(τ, x) − Πi(τ, zik)‖}.
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ν(Θ0) ≥

η

1 + η
.Further, from (4.2.3) it follows that for every x ∈ B(zik, ε0) and τ < δ there exist j ∈ I(depending on x and τ) and θ ∈ Θ0 suh that

‖Πj(t∗ − τ, q(Πi(τ, x), θ))− Πj(t∗ − τ, q(Πi(τ, zik), θ))‖

≤ Leα(t∗−τ)‖q(Πi(τ, x), θ)− q(Πi(τ, zik), θ)‖ ≤ (1+ η)LLqe
α(t∗−τ)‖Πi(τ, x)−Πi(τ, zik)‖.Sine

‖Πi(τ, x) − Πi(τ, zik)‖ ≤ ‖Πi(τ, x) − x‖ + ‖x− zik‖ + ‖Πi(τ, zik) − zik‖ ≤ ε0 + 2βτ,we obtain
‖Πj(t∗−τ, q(Πi(τ, x), θ))−Πj(t∗−τ, q(Πi(τ, zik), θ))‖ ≤ (1+η)LLqe

α(t∗−τ)(ε0+2βτ) ≤ ε,whih implies
Πj(t∗ − τ, q(Πi(τ, x), θ))× {j} ∈ Vik.Let µ ∈ M1 be arbitrary. We have

Qµ(Vik) =
\

Y ×I

\
Ω

1Vik
(X(t∗), ξ(t∗)) dP dµ.Set

Ωδ = {ω ∈ Ω : t1(ω) < δ and t∗ < t2(ω)}.By the Fubini theorem we have
Qµ(Vik) ≥

\
Ωδ

\
B(zik,ε0)×{i}

1Vik
(X(t∗), ξ(t∗)) dµ dP

=
\

B(zik,ε0)×{i}

\
Ωδ

f1(x, i,∆t1, t∗ − t1) dPµ(dx, di),where
f1(x, i, s1, s2) =

\
Θ

N∑

j=1

pij(q(Πi(s1, x), θ))1Vik
(Πj(s2, q(Πi(s1, x), θ)), j) ν(dθ)for x ∈ Y, i ∈ I, s1, s2 ∈ R+. Consequently,

Qµ(Vik) ≥ σµ(B(zik, ε0) × {i})P(Ωδ).By a standard alulation we obtain
P(Ωδ) = λ2

δ\
0

ds1

∞\
t∗−s1

e−λ(s1+s2) ds2 > 0.Without loss of generality we an assume that
t∗/t∗ = r ∈ N.Then it is evident that

P̃n+1µ = QP̃nQr−1µ for µ ∈ M1, n ∈ N.



36 K. HorbazObserve that for every µ ∈ M1 and m ∈ N there exist im ∈ I and km ∈ {1, . . . , nim
}suh that

P̃m+1µ(Vimkm
) = QP̃mµ̂(Vimkm

) ≥ σP̃mµ̂(B(zimkm
, ε0) × {im})P(Ωδ)(4.3.22)

≥ κσP(Ωδ)/(2N0),where
µ̂ = Qr−1µ and N0 =

N∑

i=1

ni.Now de�ne
C =

N⋃

i=1

ni⋃

k=1

Vik.Observe that there exists ε̂ ∈ (ε, ε0) suh that C ∈ Cε̂(Y × I). Moreover, from (4.3.22)it follows that for arbitrary µ ∈ M1 and m ∈ N we have
P̃m+1µ(C) ≥ κσP(Ωδ)/(2N0),whih ontradits the de�nition of ε̃ and ompletes the proof.Proof of Theorem 4.3.1. By Lemma 4.3.2 there exists t∗ > 0, satisfying ondition (4.3.20),suh that the operator P t∗ is essentially nonexpansive. Moreover, for every t ≥ t∗ theoperator P t is nonexpansive in the same norm as P t∗ . By Lemma 4.3.5 for every t ≥ t∗the operator P t is semi-onentrating.If α < 0, then we may hoose t∗ > 0 suh that not only (4.3.20) is satis�ed but also

LqL

σ
eαt∗ < 1.If α ≥ 0, then we hoose t∗ suh that (4.3.20) is satis�ed. Set P̃ = P t∗ and T̃ = T t∗ .By Proposition 3.2.3 there exists µ∗ ∈ M1 suh that P̃ µ∗ = µ∗. Moreover L(µ) 6= ∅for every µ ∈ M1 and the set L(M1) is tight.We laim that P̃ is asymptotially stable. By Theorem 3.2.1 it is su�ient to show that

P̃ satis�es ondition (3.2.3). Sine L(M1) is tight there exists a ompat set F ⊂ Y × Isuh that
µ(F ) ≥ 4/5 for every µ ∈ L(M1).De�ne

FY = {x ∈ Y : (x, i) ∈ F for some i ∈ I}.We give the proof of the lower bound ondition separately in the two ases: α < 0 and
α ≥ 0.Case I: α < 0. Set

r0 =
LqL

σ
eαt∗ < 1.Let ϕ be the solution of (4.3.15). Fix ε1 > 0. We an �nd ε > 0 suh that ϕ(ε) ≤ ε1.Let m ≥ 2 be suh that

2rm
0 diam̺ F < ε/3.



Invariant measures for random dynamial systems 37Fix i1, . . . , im ∈ I, set i = (i1, . . . , im−1) and t∗ = (t∗, . . . , t∗)︸ ︷︷ ︸
m−1

. Now for z ∈ FY we set
O(z) = {x ∈ Y :

‖Πim
(t∗,Πm−1(q(x, θ1), i, t∗,θ)) − Πim

(t∗,Πm−1(q(z, θ1), i, t∗,θ))‖ ≤ ε/9for θ1 ∈ Θ, θ ∈ Θm−1}.Let z1, . . . , zm0
∈ FY be suh that F ⊂ G, where

G =

m0⋃

l=1

(O(zl) × I).Note thatG is an open subset of Y ×I. Let µ1, µ2 ∈ M1 be arbitrary. Set µ = (µ1+µ2)/2.Sine L(µ) 6= ∅ (see Proposition 3.2.3) there exists a subsequene {nk} of {n} and ameasure ν ∈ L(µ) suh that Pnkµ → ν (weakly). Sine ν(G) ≥ 4/5, the Aleksandrovtheorem implies
lim inf
k→∞

P̃nkµ(G) ≥ ν(G) ≥ 4/5.From this, it follows that there exists n ∈ N suh that
P̃nµ(G) =

P̃nµ1(G) + P̃nµ2(G)

2
≥

3

4
,and onsequently

P̃nµk(G) ≥ 1/2 for k = 1, 2.Therefore there exist l1, l2 ∈ {1, . . . ,m0} and j1, j2 ∈ I suh that
P̃nµk(Ok) ≥

1

2m0N
for k = 1, 2,where O1 = O(zl1) × {j1}, O2 = O(zl2) × {j2}.From the de�nition of Πm and onditions (4.2.3), (4.3.1) and (4.3.4), we have\

Θm

‖Πim
(t∗,Πm−1(q(zl1 , θ1), i, t∗, θ2, . . . , θm))

− Πim
(t∗,Πm−1(q(zl2 , θ1), i, t∗, θ2, . . . , θm))‖ ν(dθ1) · · · ν(dθm)

≤

(
LqL

σ
eαt∗

)m

‖zl1 − zl2‖.From the last inequality it follows that νm(Θ0) ≥ 1/2, where
(4.3.23) Θ0 = Θ0(i, t∗, zl1 , zl2)

=

{
θ1, . . . , θm ∈ Θ : ‖Πim

(t∗,Πm−1(q(zl1 , θ1), i, t∗, θ2, . . . , θm))

− Πim
(t∗,Πm−1(q(zl2 , θ1), i, t∗, θ2, . . . , θm))‖ ≤ 2

(
LqL

σ
eαt∗

)m

‖zl1 −zl2‖

}
.Sine Θm is ompat and the funtions q and Πi are ontinuous there are θl1 , . . . , θlm

∈ Θ0 and a neighborhood B(θl∗) of θl∗ = (θl1 , . . . , θlm) suh that νm(Θl∗) > 0, where
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Θl∗ = B(θl∗) ∩ Θ0 and
(4.3.24) ‖Πim

(t∗,Πm−1(q(x, θ1), i, t∗, θ2, . . . , θm))

− Πim
(t∗,Πm−1(q(x, θl1), i, t∗, θl2 , . . . , θlm))‖ ≤ ε/9for x ∈ FY and (θ1, . . . , θm) ∈ Θl∗Moreover, from (4.3.23) we have

‖Πim
(t∗,Πm−1(q(zl1 , θl1), i, t∗, θl2 , . . . , θlm))

− Πim
(t∗,Πm−1(q(zl2 , θl1), i, t∗, θl2 , . . . , θlm))‖

≤ 2

(
LqL

σ
eαt∗

)m

‖zl1 − zl2‖ ≤ 2rm
0 diam̺ F ≤ ε/3.Now de�ne A = A1 ∪A2, where

Ak = B(Πim
(t∗,Πm−1(q(zlk , θl∗), i, t∗,θl∗)), ε/3) × {im} for k = 1, 2.Then

diam̺ϕ
A = diamϕ◦̺A ≤ ϕ(diam̺A) ≤ ϕ(ε) ≤ ε1.By ontinuity of Πi, q and (4.3.10) there exists η > 0 suh that

(4.3.25) ‖Πim
(δm+1,Πm(x, i, i, δ, θ1, . . . , θm))−Πim

(t∗,Πm−1(q(x, θ1), i, t∗, θ2, . . . , θm))‖

= ‖Πim
(δm+1,Πm(x, i, i, δ, θ1, . . . , θm)) − Πim

(t∗,Πm(x, i, i, 0, t∗, θ1, . . . , θm))‖ ≤ ε/9for arbitrary (x, i) ∈ F, δ = (δ1, . . . , δm), δ1 ∈ (0, η), δ2, . . . , δm+1 ∈ (t∗ − η, t∗ + η) and
(θ1, . . . , θm) ∈ Θl∗ . Set
Ω∗ =

{
ω ∈ Ω : ∆t1(ω) ≤ η, ∆t2(ω), . . . ,∆tm(ω) ∈

(
t∗ −

η

m− 1
, t∗

)
, tm+1(ω) > mt∗

}
.Let n0 = n+m, ∆m = (∆t1, . . .∆tm), and µ̂k = P̃nµk. We have

P̃n0µk(A) =
\

Y ×I

T̃m1A(x, i)µ̂k(dx, di) =
\

Y ×I

E(1Ak
((X(mt∗), ξ(mt∗))(x,i))) µ̂k(dx, di)

≥
\

Ok

\
Ω∗

\
Θl∗

1Ak
(Πim

(mt∗ − tm(ω),Πm(x, jk, i,∆m(ω),θ)), im)

× Pm(x, jk, i,∆m(ω),θ) νm(dθ) P(dω) µ̂k(dx, di)

≥ σm
\

Ok

\
Ω∗

\
Θl∗

1Ak
(Πim

(mt∗− tm(ω),Πm(x, jk, i,∆m(ω),θ)), im) νm(dθ) P(dω) µ̂k(dx, di)for k = 1, 2. By (4.3.24) and (4.3.25) we obtain
(Πim

(mt∗ − tm(ω),Πm(x, jk, i,∆m(ω),θ)), im) ∈ Akfor arbitrary ω ∈ Ω∗, (x, i) ∈ Ok and θ ∈ Θl∗ . Thus
P̃n0µk(A) ≥

σm

2m0N
νm(Θl∗)P(Ω∗) for k = 1, 2.Consequently, the operator P̃ satis�es the lower bound ondition.



Invariant measures for random dynamial systems 39Case II: α ≥ 0. In this ase ondition (4.3.3) implies that Lq < 1. Let m ∈ N be suhthat(4.3.26) Lm
q · diam̺ F < ε/2.By ontinuity and ompatness of Θ and FY there exists δ ∈ (0, ε(16βm)−1) suh that(4.3.27) ‖Πm(x, i, s,θ) − qm(x,θ)‖ < ε/32for every i ∈ Im, s ∈ (0, δ]m, θ ∈ Θm, x ∈ FY . Given θ̃ ∈ Θm we de�ne(4.3.28) V(θ̃) = {θ ∈ Θm : ‖qm(x,θ) − qm(x, θ̃)‖ < ε/32 for every x ∈ FY }.Clearly, V(θ̃) is an open neighborhood of θ̃. Sine Θm is ompat, there exists a �nitefamily Vj = V(θj), j = 1, . . . ,m, suh that Θm =

⋃m
j=1 Vj . Set

J = {j ∈ {1, . . . ,m} : νm(Vj) > 0}and(4.3.29) ϑ = min
j∈J

νm(Vj) > 0.Given x ∈ Y de�ne(4.3.30) O(x) = {z ∈ Y : ‖qm(x,θj) − qm(z,θj)‖ < ε/32 for j ∈ J}.Clearly, O(x) is an open neighborhood of x. Let z1, . . . , zm0
∈ FY be suh that F ⊂ G,where G is de�ned by

G =

m0⋃

l=1

(O(zl) × I).Let µ1, µ2 ∈ M1 be arbitrary. As in the �rst ase there exist n = n(µ1, µ2), l1, l2 ∈

{1, . . . ,m0}, j1, j2 ∈ I suh that
P̃nµk(O(zlk) × {jk}) ≥

1

2m0N
.From ondition (4.3.1) it follows that there exists a subset Θ0 = Θ0(zl1 , zl2) of Θm suhthat νm(Θ0) > 0 and(4.3.31) ‖qm(zl1 ,θ) − qm(zl2 ,θ)‖ ≤ Lm

q ‖zl1 − zl2‖ for every θ ∈ Θ0.Sine Θ0 has a positive measure, there exists j0 ∈ J suh that Θ0 ∩ V0 6= ∅, where
V0 = V(θj0). Choose θ0 ∈ Θ0 ∩ V0, im ∈ I and de�ne

Ak = B(qm(zlk ,θ0), ε/4) × {im} for k = 1, 2and A = A1 ∪A2.From (4.3.26) and (4.3.31) it follows that diam̺ϕ
A < ε. For θ ∈ V0, i ∈ Im−1,

s ∈ [0, δ]m and x ∈ O(zlk), k = 1, 2, we have, by (4.3.27)�(4.3.30),
‖Πm(x, jk, i, s,θ)−qm(zlk ,θ0)‖≤ ‖Πm(x, jk, i, s,θ) − qm(x,θ)‖

+ ‖qm(x,θ)−qm(x,θj0)‖+‖qm(x,θj0)−qm(zlk ,θj0)‖

+ ‖qm(zlk ,θj0) − qm(zlk ,θ0)‖ < ε/8



40 K. Horbazand by (4.3.19) we obtain for every t > 0,
(4.3.32) ‖Πim

(t,Πm(x, jk, i, s,θ)) − qm(zlk ,θ0)‖

≤ βt+ ‖Πm(x, jk, i, s,θ) − qm(zlk ,θ0)‖ ≤ βt+ ε/8.Fix t suh that
δ < t < δ +

ε

16mβand set
Ω∗ = {ω ∈ Ω : ∆ti(ω) ≤ δ for i = 1, . . . ,m and tm+1(ω) > mt}.Let n0 = n + m and µ̂k = P̃nµk. Fix i1, . . . , im−1 ∈ I, set i = (i1, . . . , im−1) and

∆m = (∆t1, . . . ,∆tm). We have
P̃n0µk(A) =

\
Y ×I

T̃m1A(x, i) µ̂k(dx, di) =
\

Y ×I

E(1Ak
((X(mt), ξ (mt))(x,i))) µ̂k(dx, di)

≥
\

O(zlk
)×{jk}

\
Ω∗

\
V0

1Ak
(Πim

(mt − tm(ω),Πm(x, i, i,∆m(ω),θ)), im)

× Pm(x, i, i,∆m(ω),θ) νm(dθ) P(dω) µ̂k(dx, di)

≥ σm
\

O(zlk
)×{jk}

\
Ω∗

\
V0

1Ak
(Πim

(mt − tm(ω),Πm(x, i, i,∆m(ω),θ)), im)

× νm(dθ) P(dω) µ̂k(dx, di) for k = 1, 2.Keeping in mind that δ < ε(16βm)−1 by (4.3.32) we obtain
(Πim

(mt − tm(ω),Πm(x, jk, i,∆m(ω),θ)), im) ∈ Akfor arbitrary ω ∈ Ω∗, x ∈ O(zlk) and θ ∈ V0, k = 1, 2. Thus
P̃n0µk(A) ≥

σm

2m0N
ϑP(Ω∗) for k = 1, 2,whih ompletes the proof of the lower bound ondition.Now, let µ∗ be the invariant distribution of P t∗ . Then for t ∈ R+ we have

P t∗(P tµ∗) = P t(P t∗µ∗) = P tµ∗.Sine µ∗ is the unique invariant measure for the operator P t∗ , we have P tµ∗ = µ∗. Onthe other hand, using nonexpansiveness of {P t}t≥t∗
we obtain

lim
t→∞

‖P tµ− µ∗‖ϕ = lim
t→∞

‖P tµ− P tµ∗‖ϕ ≤ lim
n→∞

‖(P t∗)nµ− µ∗‖ϕ = 0for arbitrary µ ∈ M1(Y × I). However, the metris ̺ and ϕ ◦ ̺ de�ne the same spaeof ontinuous funtions C(Y × I) and the weak onvergene of a sequene of measures inthe spae (Y × I, ̺) and (Y × I, ϕ ◦ ̺) is the same. This proves that {P t}t≥0 given by(4.3.5), (4.3.6) is asymptotially stable also in (Y × I, ̺).Let µ̃ be the distribution of the initial random vetor x0. We denote by Qtµ̃ thedistribution of X(t) on the initial spae (Y, ‖ · ‖), i.e.(4.3.33) Qtµ̃(A) = P(X(t) ∈ A) for A ∈ B(Y ), t > 0.



Invariant measures for random dynamial systems 41From the last theorem we may easily dedue, as in Theorem 4.2.3, a orrespondingasymptoti result for the family {Qt}t≥0.Theorem 4.3.2. Let the assumptions of Theorem 4.3.1 hold. Then there exists a distri-bution µ̃∗ ∈ M1 suh that for every µ ∈ M1 the family {Qtµ}t≥0 given by (4.3.33) isweakly onvergent to µ̃∗.
5. Dimensions of invariant measures of randomdynamial systems with jumpsDimensions of invariant sets are the most important harateristis of dynamial systems.Hausdor� dimension, introdued in 1919, is a notion of size useful for distinguishing be-tween sets of Lebesgue measure zero. The notion has been widely investigated and used,e.g. in the theory of dynamial systems, where many interesting invariant sets are nullin the sense of Lebesgue. Unfortunately, in many ases a straightforward alulation ofthe Hausdor� dimension is very di�ult. This prompted researhers to introdue otherharateristis [40℄, suh as apaity dimension, pointwise dimension, orrelation dimen-sion, onentration dimension, et. Using the notion of the Lévy onentration funtionLasota and Myjak [32℄ introdued the onentration dimension (the generalized Rényidimension) and by use of it they alulated some bounds of the onentration dimensionof fratals and semifratals. It is worth noting that the onentration dimension is usefulin studying the Hausdor� dimension of measures and sets [32, 40℄.In this setion we provide estimates for the lower pointwise dimension and the onen-tration dimension of invariant measures of random dynamial systems with jumps. Theresults of this setion are related to papers [16, 38℄ and [45℄. In [38℄, [45℄ Szarek onsid-ered the apaity and the lower pointwise dimension of invariant measures orrespondingto Poisson driven stohasti di�erential equations. Some estimates of dimensions of in-variant measures are formulated in [16℄.Throughout this setion we assume additionally that Πi : R × Y → Y , i ∈ I, aredynamial systems.5.1. The lower pointwise dimension of an invariant measure. To estimatethe lower pointwise dimension of an invariant measure for the semigroup {P t}t≥0 givenby (4.3.5), (4.3.6) we need additional assumptions onerning the transformations

Πi : R × Y → Y , i ∈ I.We assume that for every j ∈ I there exists a onstant lj ∈ (0, 1] suh that(5.1.1) ‖Πj(t, x) − Πj(t, y)‖ ≥ lj‖x− y‖ for x, y ∈ Yand for every x ∈ Y and j ∈ I there exist δj > 0 and cx,j > 0 suh that(5.1.2) ‖Πj(t, x) − x‖ ≥ cx,jt for 0 < t < δj .As in Setion 4 we require that there exist onstants L ≥ 1 and α ∈ R suh that(5.1.3) ∑

j∈I

pij(y)‖Πj(t, x) − Πj(t, y)‖ ≤ Leαt‖x− y‖ for x, y ∈ Y, i ∈ I, t ≥ 0.



42 K. HorbazTheorem 5.1.1. Let µ∗ be an invariant measure for the semigroup {P t}t≥0 given by(4.3.5), (4.3.6). Assume that Πi : R×Y → Y , i ∈ I, satisfy onditions (5.1.1)�(5.1.3). If(5.1.4) σ = inf
x∈Y, i,j∈I

pij(x) > 0,then
dµ∗(x, i) ≥

log 3

log 3 + log L
σ minj lj

for (x, i) ∈ Y × I.We start with the following tehnial observation:Lemma 5.1.1. Assume that µ∗ is an invariant measure for the semigroup {P t}t≥0 givenby (4.3.5), (4.3.6). Then
µ∗(A) ≥ e−λt

\
Y ×I

1A(Πi(t, x), i)µ∗(dx, di) for A ∈ B(Y × I).Proof. Fix A ∈ B(Y × I) and t ≥ 0. We have(5.1.5) µ∗(A) = P tµ∗(A) = 〈U t1A, µ∗〉 =
\

Y ×I

E(1A((X(t), ξ(t))(x,i)))µ∗(dx, di).Fix (x, i) ∈ Y × I and observe that
E(1A((X(t), ξ(t))(x,i))) =

\
Ω

1A((X(t), ξ(t))(x,i)(ω)) P(dω)

≥
\

Ω0(t)

1A((X(t), ξ(t))(x,i)(ω)) P(dω),where Ω0(t) = {ω ∈ Ω : t ≤ t1(ω)}.Sine (X(t), ξ(t))(x,i)(ω) = (Πi(t, x), i) for ω ∈ Ω0(t) and P(Ω0(t)) = e−λt, we obtain
E(1A((X(t), ξ(t))(x,i))) ≥ e−λt1A(Πi(t, x), i). Combining this with (5.1.5) ompletes theproof.Proof of Theorem 5.1.1. We onsider two ases: α ≥ 0 and α < 0.Case I: α ≥ 0. Let x ∈ Y and k ∈ I be �xed. Choose ε > 0 suh that(5.1.6) r0 =

ln(1 + εσ/L)

2α
≤ δkand hoose η > 0 suh that

1 − e−λr0 < η.Set
θ =

minj lj
3(L/σ + ε)

, β =
1

(3 − 2η)(1 − η)
, s =

log β

log θ
.Sine σminj lj ≤ L, we have s < 1.We will show that there exists C > 0 suh that(5.1.7) µ∗(B((x, k), r)) ≤ Crsfor every r > 0. Set

M =
2L(L/σ + ε)eαr0

σcx,kr0(minj lj)s



Invariant measures for random dynamial systems 43and(5.1.8) C = max{(θr0)
−s, λr0η

−1,Ms/(1−s)}.Obviously, ondition (5.1.7) holds for all r ≥ r0. De�ne
r∗ = inf{r > 0 : µ∗(B((x, k), r)) ≤ Crs for r > r}.Observe that(5.1.9) r∗ ≤M−1/(1−s).We laim that r∗ = 0. Suppose, ontrary to our laim, that r∗ > 0 and hoose

r ∈

(
r∗

3(L/σ + ε)
, r∗

]

suh that(5.1.10) µ∗(B((x, k), rmin
j
lj)) > C(rmin

j
lj)

s.De�ne
z0 = Πk(−t, x), z1 = Πk(t, x)where t = r0(rminj lj)

s. Further, let
B1 = B((x, k), (L/σ + ε)r), B2 = B((z0, k), r), B3 = B((z1, k), (L/σ + ε)r).Now, let (y, i) ∈ B2. Then, from (5.1.3), (5.1.4), and the de�nition of r0, we have

‖Πk(t, y) − x‖ ≤
L

σ
eαt‖y − z0‖ ≤

L

σ
eαr0r <

(
L

σ
+ ε

)
r.Therefore B2 ⊂ {(y, i) : (Πi(t, y), i) ∈ B1}. This shows, by Lemma 5.1.1, that

(5.1.11) µ∗(B1)≥ e−λt
\

Y ×I

1B1
(Πi(t, y), i)µ∗(dy, di)≥ e−λtµ∗(B2)≥ (1−η)µ∗(B2).Analogously, we obtain(5.1.12) µ∗(B3) ≥ (1 − η)µ∗(B2).Sine σ ≤ L, by (5.1.2), we have

‖z1 − x‖ = ‖Πk(t, x) − x‖ ≥ cx,kt ≥
σ

L
e−αr0cx,kt.From the fat that t < r0 and onditions (5.1.2), (5.1.3), it follows that(5.1.13) ‖x− z0‖ ≥

σ

L
e−αtcx,kt ≥

σ

L
e−αr0cx,kt.Sine

r <

(
σcx,kr0(minj lj)

s

2L(L/σ + ε)eαr0

)1/(1−s)

and t = r0(rminj lj)
s, we obtain

‖z1 − x‖ > 2(L/σ + ε)r, ‖x− z0‖ > 2(L/σ + ε)r.Thus B1, B2, B3 are mutually disjoint and
B1 ∪B2 ∪B3 ⊂ B((x, k), 3(L/σ + ε)r).



44 K. HorbazSet B4 = B((x, k), rminj lj). We are now going to verify that(5.1.14) µ∗(B2) > (1 − η)µ∗(B4).Suppose that(5.1.15) µ∗(B2) ≤ (1 − η)µ∗(B4).Sine (Πk(t, y), k) /∈ B4 for (y, k) /∈ B2, we have
µ∗(B4) ≤ e−λt

\
Y ×I

1B4
(Πi(t, y), i)µ∗(dy, di) + 1 − e−λt ≤ e−λtµ∗(B2) + 1 − e−λt

≤ µ∗(B2) + 1 − e−λt .From the last inequality and (5.1.15) it follows immediately that
µ∗(B4) ≤

1 − e−λt

η
≤
λt

η
=
λr0
η

(rmin
j
lj)

s.Consequently, by the hoie of C, we obtain
µ∗(B4) ≤ C(rmin

j
lj)

s,whih ontradits (5.1.10) and ompletes the proof of (5.1.14).Next, from (5.1.11), (5.1.12) and (5.1.14) it follows that
µ∗(B((x, k), 3(L/σ + ε)r)) ≥ (3 − 2η)µ∗(B2) ≥ (3 − 2η)(1 − η)µ∗(B4),thus

µ∗(B4) ≤
µ∗(B((x, k), 3(L/σ + ε)r))

(3 − 2η)(1 − η)
.By the last inequality and the fat that 3(Lσ−1 + ε)r > r∗ we have

µ∗(B4) ≤
C(3(L/σ + ε)r)s

(3 − 2η)(1 − η)
=

(3(L/σ + ε))sC(rminj lj)
s

(minj lj)s(3 − 2η)(1 − η)
.Sine (

3(L/σ + ε)

minj lj

)s

= (3 − 2η)(1 − η),we obtain
µ∗(B4) ≤ C(rmin

j
lj)

s,whih ontradits (5.1.10). Thus r∗ = 0 and
µ∗(B((x, k), r)) ≤ Crs for r > 0.From the last statement it follows that dµ∗(x, k) ≥ s. Letting ε→ 0 and η → 0 ompletesthe proof in the �rst ase.Case II: α < 0. The proof goes as in Case I. We only indiate the main di�erenes.Let x ∈ Y and k ∈ I be �xed. Choose 0 < ε ≤ δk and use r0 = ε,

C = max

{
1

(θr0)s
,
λr0
η
,

(
2L(L/σ + ε)

σcx,kr0(minj lj)s

)s/(1−s)}



Invariant measures for random dynamial systems 45instead of (5.1.6) and (5.1.8). The other onstants remain the same. Then
r ≤

(
σcx,kr0(minj lj)

s

2L(L/σ + ε)

)1/(1−s)

.We have
‖z1 − x‖ = ‖Πk(t, x) − x‖ ≥ cx,kt ≥

σ

L
cx,kt,

‖x− z0‖ ≥
σ

L
e−αtcx,kt ≥

σ

L
cx,kt.The rest of the proof goes as in Case I.5.2. The upper bound for the onentration dimension of an invariant mea-sure. To prove the main results of this setion we need the following lemma due toLasota and Myjak [32℄:Lemma 5.2.1. Let the numbers ai ∈ [0, 1] and bi ∈ (0, 1) for i ∈ J be given (here J is anarbitrary set of indies). Let µ be a probability measure. Assume that for some r0 > 0the Lévy onentration funtion Qµ satis�es the ondition

Qµ(r) ≥ sup
i∈J

aiQµ(r/bi) for r ∈ (0, r0).Then
dimL µ ≤ inf

i∈J

log ai

log bi
.Theorem 5.2.1. Let the assumptions of Theorem 4.2.1 hold and let µ0 be the uniqueinvariant measure with respet to the operator P given by (4.2.6). In addition, assumethat(5.2.1) σ = inf

x∈Y, i,j∈I
pij(x) > 0,(5.2.2) γ = inf

x∈Y, s∈S
ps(x) > 0,and

M0 =
LqL

σγ
< 1.Then

dimL µ0 ≤





log σγ

logLLq − log σγ
when α ≤ 0,

inf
M∈(M0,1)

log(σγ(1 −Mλ/α))

log
LLq

σγM

when α > 0.Proof. Let x ∈ Y , k ∈ I and s ∈ S be �xed. From (4.2.3), (4.2.4), (5.2.1) and (5.2.2) wehave
‖qs(Πk(t, x)) − qs(x)‖ ≤

Lq

γ
‖Πk(t, x) − x‖ ≤

LLq

σγ
eαt‖x− Πk(−t, x)‖.Therefore{

x ∈ Y : (x, k) ∈ B

((
Πk(−t, x), k

)
,

rσγ

LLqeαt

)}

⊂ {x ∈ Y : (qs(Πk(t, x)), k) ∈ B((qs(x), k), r)}.



46 K. HorbazSine µ0 is invariant, (4.2.6) shows that
µ0(B((qs(x), k), r)) ≥ σγ

∞\
0

\
Y ×I

1B((qs(x),k),r)(qs(Πk(t, x)), k)λe−λt dt µ0(dx, di)

≥ σγ

∞\
0

µ0

(
B

(
(Πk(−t, x), k),

rσγ

LLqeαt

))
λe−λt dt.This implies(5.2.3) Qµ0

(r) ≥ σγ

∞\
0

Qµ0

(
rσγ

LLqeαt

)
λe−λt dt.We now onsider two ases: α ≤ 0 and α > 0. Suppose �rst that α ≤ 0. Then

Qµ0

(
rσγ

LLqeαt

)
≥ Qµ0

(
rσγ

LLq

) for t > 0 and r > 0.Consequently,
Qµ0

(r) ≥ σγQµ0

(
rσγ

LLq

) for r > 0.From this and Lemma 5.2.1 we obtain
dimL µ0 ≤

log σγ

logLLq − log σγ
.Suppose now that α > 0. Choose M suh that LLq(σγ)

−1
< M < 1. Then from (5.2.3)we obtain

Qµ0
(r) ≥ σγ

t\
0

Qµ0

(
rσγ

LLqeαt

)
λe−λt dt ≥ σγQµ0

(
Mrσγ

LLq

)
(1 − e−λt),where t = −(lnM)α−1. From this and Lemma 5.2.1 we obtain

dimL µ0 ≤
log(σγ(1 −Mλ/α))

log
LLq

σγM

,whih ompletes the proof, sine M ∈ (M0, 1) was arbitrary.5.3. Relationship between disrete and ontinuous-time random dynamialsystems. Sine the Markov proess {(X(t), ξ(t))}t≥0 is de�ned with the help of theMarkov hain {(xn, ξn)}n≥0, it is natural to try to relate an invariant measure for thetransition operator P , orresponding to the hange of measures from jump to jump, to aninvariant measure for the semigroup {P t}t≥0 generated by the proess {(X(t), ξ(t))}t≥0.In this setion we assume that
Θ = S = {1, . . . ,K} and ps(x) = ν({s}) for x ∈ Y, s ∈ S.Then the results of Setions 4.2 and 4.3 hold.We assume additionally that the �rst inequality in (4.2.2) is satis�ed with ψ1(t) = γ̂t,

t ≥ 0, for some onstant γ̂.



Invariant measures for random dynamial systems 47By the de�nition of the proess {(X(t), ξ(t))}t≥0 and properties of Poisson proesseswe have
P{(X(h), ξ(h))(x,i) = (Πξ(t1)(h− t1, qη(t1)(Πi(t1, x))), ξ(t1))1[0,h](t1)

+ (Πi(h, x), i)1[h,∞)(t1)} ≥ 1 − k1h
2for some positive onstant k1. Sine f ∈ C(Y × I) is bounded and t1 has the densitydistribution funtion λe−λt, we obtain

Thf(x, i) =
∑

j∈I

∑

s∈S

h\
0

f(Πj(h− t, qs(Πi(t, x))), i)pij(qs(Πi(t, x)))psλe
−λt dt(5.3.1)

+ f(Πi(h, x), i)e
−λh + ε1(h),where |ε1(h)| ≤ ‖f‖0k1h

2.In order to formulate the main result of this setion we introdue two operators
H,G : M1 → M1 by the formulas

Hµ(A) =
∑

s∈S

\
Y ×I

1A(qs(x), k)ps µ(dx, dk),

Gµ(A) =
∑

i∈I

\
Y ×I

∞\
0

1A(Πi(t, x), i)pki(x)λe
−λt dt µ(dx, dk) for A ∈ B(Y × I).In this setion we give a one-to-one orrespondene between the set of P -invariantmeasures and the set of invariant measures for {P t}t≥0. Similar results have been provedby Davis [4, Proposition 34.36℄. They have also been studied in [13, 14, 34℄.Theorem 5.3.1. Let the assumptions of Theorem 4.3.1 hold. If µ0 ∈ M1 is an invariantmeasure for the Markov operator P given by (4.2.6), then µ∗ = Gµ0 is an invariantmeasure for the Markov semigroup {P t}t≥0 given by (4.3.5), (4.3.6).On the other hand , if µ∗ ∈ M1 satis�es P tµ∗ = µ∗ for t ≥ 0, then µ0 = Hµ∗ is aninvariant measure for the Markov operator P .Proof. Denote by {St}t≥0 the semigroup of operators orresponding to the system Πi :

R+ × Y → Y , i ∈ I, i.e.
Stf(x, i) = f(Πi(t, x), i) for f ∈ CL(Y × I), (x, i) ∈ Y × I,where CL(Y × I) denotes the losure of the spae of all bounded Lipshitzean funtionswith the supremum norm ‖ · ‖0.We denote by {T̃ t}t≥0 the semigroup of operators given by

T̃ tf = T tf for f ∈ CL(Y × I).Following the main ideas of the proof of Lemma 4.3.2 we obtain T̃ t : CL(Y × I) →

CL(Y × I). By (4.2.3), (4.3.4), and (4.3.7) it follows that St : CL(Y × I) → CL(Y × I)is a ontinuous semigroup.Let A0 be the in�nitesimal generator of the semigroup {St}t≥0 with the domain
D(A0) =

{
f ∈ CL(Y × I) : lim

t↓0

1

t
(Stf − f) exists}.



48 K. HorbazSine the semigroup {St}t≥0 is a ontinuous semigroup of ontrations, D(A0) is densein CL(Y × I). Denote by B the in�nitesimal generator for the semigroup {T̃ t}t≥0. By(5.3.1) we have(5.3.2) Bf = A0f − λf + λQWf for f ∈ D(B),where Q : C(Y × I) → C(Y × I) and W : C(Y × I) → C(Y × I) are bounded linearoperators given by the formulas
(5.3.3) Qf(x, i) =

∑

s∈S

f(qs(x), i)ps for f ∈ C(Y × I) and (x, i) ∈ Y × I,

Wf(x, i) =
∑

j∈I

f(x, j)pij(x) for f ∈ C(Y × I) and (x, i) ∈ Y × I.The domains D(B) and D(A0) are idential.Let us now assume that µ0 is an invariant measure for P and let µ∗ = Gµ0. Sine
R(λ,A0)f(x, i) =

∞\
0

e−λtStf(x, i) dt for f ∈ CL(Y × I) and (x, i) ∈ Y × I,from (4.2.7) and (5.3.3) we obtain
Uf = λWR(λ,A0)Qf for f ∈ CL(Y × I).Sine

〈λWR(λ,A0)f, µ〉 = 〈f,Gµ〉 for f ∈ CL(Y × I), µ ∈ M1and
〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ C(Y × I), µ ∈ M1,we have

〈f, µ∗〉 = 〈f,Gµ0〉 = 〈λWR(λ,A0)f, µ0〉 = 〈λWR(λ,A0)f, Pµ0〉 = 〈λUWR(λ,A0)f, µ0〉

= 〈λQWR(λ,A0)f,Gµ0〉 = 〈λQWR(λ,A0)f, µ∗〉 for f ∈ CL(Y × I).Thus
〈f, µ∗〉 = 〈λQWR(λ,A0)f, µ∗〉 for f ∈ CL(Y × I).Substituting f = (λI −A0)g gives
〈(λI −A0)g, µ∗〉 = 〈λQWg, µ∗〉 for g ∈ D(A0),whih aording to (5.3.2) redues to

〈Bg, µ∗〉 = 0 for g ∈ D(B) = D(A0).Now, sine T̃ sh ∈ D(B) for h ∈ D(B) and
T̃ th− h =

t\
0

BT̃ sh ds for h ∈ D(B),we obtain
〈T̃ th− h, µ∗〉 = 0 for h ∈ D(B), t > 0.Sine D(B) = D(A0) is dense in CL(Y × I) and T̃ th = T th for h ∈ CL(Y × I) we have

〈T th, µ∗〉 = 〈h, µ∗〉 for h ∈ CL(Y × I)), t > 0.



Invariant measures for random dynamial systems 49The last ondition is equivalent to
〈h, P tµ∗〉 = 〈h, µ∗〉 for h ∈ CL(Y × I).From the Aleksandrov theorem it follows that P tµ∗ = µ∗ for t ≥ 0, whih is the desiredonlusion.Next, we show that if µ∗ is an invariant measure of the semigroup {P t}t≥0 then

µ0 = Hµ∗ is an invariant measure of the operator P . From P tµ∗ = µ∗ it follows that
〈T tg − g, µ∗〉 = 0 for g ∈ C(Y × I), t ≥ 0.Thus
〈T̃ tg − g, µ∗〉 = 0 for g ∈ CL(Y × I), t ≥ 0.Sine B is the in�nitesimal generator of the semigroup {T̃ t}t≥0, we obtain

〈Bg, µ∗〉 = 0 for g ∈ D(B).Aording to (5.3.2) this equality may be rewritten in the form
〈(λI −A0)g, µ∗〉 = 〈λQWg, µ∗〉 for g ∈ D(B) = D(A0).Substituting g = R(λ,A0)f gives

〈f, µ∗〉 = 〈λQWR(λ,A0)f, µ∗〉 for f ∈ CL(Y × I),whih implies
〈f, µ0〉 = 〈f,Hµ∗〉 = 〈Qf, µ∗〉 = 〈λQWR(λ,A0)Qf, µ∗〉

= 〈λWR(λ,A0)Qf, µ0〉 = 〈Uf, µ0〉 for f ∈ C(Y × I).This, by the Aleksandrov theorem, fores µ0 = Pµ0.We now use Theorem 5.3.1 to ompare the onentration dimensions of an invariantmeasure for the semigroup {P t}t≥0 and of an invariant measure for the transition operator
P desribing the hange of distributions from jump to jump. A similar problem for thesimpler ase when {P t}t≥0 is a semigroup generated by a Poisson driven di�erentialequation is onsidered in [14℄ and [34℄.Assume that the hypotheses of Theorem 4.3.1 are satis�ed. Let µ0 ∈ M1 be theinvariant measure for the Markov operator P given by (4.2.6) and let µ∗ ∈ M1 be theinvariant measure for the Markov semigroup {P t}t≥0 given by (4.3.5), (4.3.6).De�ne(5.3.4) L0 = inf

s∈S
inf

{
‖qs(x) − qs(y)‖

‖x− y‖
: x 6= y

}
.Theorem 5.3.2. Assume that L0 > 0. Then(5.3.5) dimL µ∗ ≤ dimL µ0 and dimL µ∗ ≤ dimL µ0.Proof. Let x ∈ Y and k ∈ I be �xed. From (5.3.4) it follows that

diam̺{(x, i) : (qs(x), i) ∈ B((x, k), r)} ≤ 2rL−1
0for every s ∈ S and 0 < r < c, where c = ̺c(i, j) for i 6= j. By the de�nition of Qµ∗

,(5.3.6) µ∗({(x, i) : (qs(x), i) ∈ B((x, k), r)}) ≤ Qµ∗
(2rL−1

0 ).



50 K. HorbazTheorem 5.3.1 gives µ0 = Hµ∗, where
Hµ(A) =

∑

s∈S

\
Y ×I

1A(qs(x), i)ps µ(dx, di) for µ ∈ M1, A ∈ B(Y × I).Thus
µ0(B((x, k), r)) =

∑

s∈S

\
Y ×I

1B((x,k),r)(qs(x), i)ps µ∗(dx, di).From (5.3.6) we have
µ0(B((x, k), r)) ≤ Qµ∗

(2rL−1
0 ).Consequently,

Qµ0
(r) ≤ Qµ∗

(2rL−1
0 ),whih implies (5.3.5).To obtain a lower bound for dimL µ∗ we need a more restritive assumption onerningthe transformations Πi : R×Y → Y , i ∈ I. Namely, we assume that there exist onstants

β ∈ R and ci > 0, i ∈ I, suh that(5.3.7) ‖Πi(t, x) − Πi(t, y)‖ ≥ cie
−βt‖x− y‖ for t ≥ 0, x, y ∈ Y and i ∈ I.Theorem 5.3.3. Let Πi : R × Y → Y , i ∈ I, satisfy ondition (5.3.7). If λ > β dimL µ0then(5.3.8) dimL µ∗ ≥ dimL µ0.Proof. Let x ∈ Y and k ∈ I be �xed. Fix h < dimL µ0 suh that λ > βh. From thede�nition of dimL µ0 it follows that there exists r0 ∈ (0, c), where c = ̺c(i, j) for i 6= j,suh that(5.3.9) Qµ0

(r) ≤ rh for r ∈ (0, r0).By Theorem 5.3.1 we have µ∗ = Gµ0, where
Gµ(A) =

∑

j∈I

\
Y ×I

∞\
0

1A(Πj(t, x), j)pij(x)λe
−λt dt µ(dx, di) for A ∈ B(Y × I),and onsequently

µ∗(B((x, k), r)) =

∞\
0

\
Y ×I

1B((x,k),r)(Πk(t, x), k)λe−λtpik(x) dt µ0(dx, di),by the fat that r < r0 < c. Set
σj = sup{pij(x) : (x, i) ∈ Y × I}.Then we obtain

µ∗(B((x, k), r)) ≤ σk

∞\
0

µ0({(x, i) : (Πk(t, x), k) ∈ B((x, k), r)})λe−λt dt.By (5.3.7) we have
{x : (Πk(t, x), k) ∈ B((x, k), r)} ⊂ B(Πk(−t, x), rc−1

k eβt).
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µ∗(B((x, k), r)) ≤ σkN

∞\
0

Qµ0
(rc−1

k eβt)λe−λt dt.Let
r < min{r0, r0 min

k
ck}.Consider �rst the ase of β > 0 and de�ne T (r) = β−1 ln(r0ckr

−1). Then
µ∗(B((x, k), r)) ≤ σkN

( T (r)\
0

Qµ0
(rc−1

k eβt)λe−λt dt+

∞\
T (r)

Qµ0
(rc−1

k eβt)λe−λt dt
)
.

Sine rc−1
k eβt < r0 for t ∈ (0, T (r)), we an use inequality (5.3.9) to get an upper bound

µ∗(B((x, k), r)) ≤

(
λN

λ− βh
·
σk

(ck)h

)
rh + σkNe

−λT (r).Sine r < r0ck and λ > βh, we obtain(5.3.10) µ∗(B((x, k), r)) ≤ Crh for r < min{r0, r0 min
k
ck},where

C =
λN

λ− βh
max

k

σk

(ck)h
+
N

rh
0

max
k

σk

(ck)h
.Sine inequality (5.3.10) is satis�ed for every (x, k) ∈ Y × I, by the de�nition of Qµ∗

(r)we obtain(5.3.11) Qµ∗
(r) ≤ Crh.When β ≤ 0 the alulations are even simpler and (5.3.11) holds with

C =
λN

λ− βh
max

k

σk

(ck)h
.From inequality (5.3.11) it follows that

dimL µ∗ ≥ h.Passing to the limit as h→ dimL µ0 we obtain (5.3.8).Remark 5.3.1. Let the hypotheses of Theorem 4.3.1 hold. Assuming that Πi :

R × Y → Y , i ∈ I, satisfy the following ondition: there exist onstants ci > 0, i ∈ I,suh that
‖Πi(t, x) − Πi(t, y)‖ ≥ ci‖x− y‖ for t ≥ 0, x, y ∈ Y and i ∈ I,Theorems 5.3.2 and 5.3.3 an be restated as:If L0 > 0 then dimL µ∗ = dimL µ0.

6. AppliationsRandomly hosen dynamial systems with randomly hosen jumps desribed in this papergeneralize many important and widely studied random systems, for example dynamial



52 K. Horbazsystems generated by learning systems, by Poisson driven stohasti di�erential equa-tions, iterated funtion systems with an in�nite family of transformations, and irreduibleMarkov systems.In this setion we show how our results may be applied to ensure the existene of aninvariant measure and asymptoti stability of orresponding Markov operators for someof these partiular systems. We also use the results of Setion 5 to obtain estimates fordimensions of invariant measures for dynamial systems generated by learning systemsand Poisson driven stohasti di�erential equations.6.1. Iterated funtion systems. Let (Y, ‖ · ‖) be a separable Banah spae. Aniterated funtion system (IFS) onsists of a sequene of ontinuous transformations
qs : Y → Y, s = 1, . . . ,K,and a probability vetor

ps : Y → [0, 1], s = 1, . . . ,K.Suh a system is brie�y denoted by (q, p)K = (q1, . . . , qK , p1, . . . , pK). The ation of anIFS an be roughly desribed as follows. We hoose an initial point x0 and we randomlyselet from the set S = {1, . . . ,K} an integer s0 in suh a way that the probability ofhoosing it is ps0
(x0). If s0 is drawn, we de�ne x1 = qs0

(x0). Having x1 we selet s1 insuh a way that the probability of hoosing it is ps1
(x1). Now we de�ne x2 = qs1

(x1) andso on.This system is quite often alled a learning system. The system �learns� beause in anew position xn it uses a new strategy p(xn) for hoosing the next step.In [2℄ Barnsley et al. onsidered the evolution of distributions due to the ation of ran-domly hosen transformations, so alled iterated funtion systems with plae dependentprobabilities, and provided su�ient onditions for the existene of an invariant measureand for stability. In [35℄ Lasota and Yorke generalized those results.It is evident that IFS is a partiular example of a random dynamial systemwith randomly hosen jumps. Consider a dynamial system of the form I = {1} and
Π1(t, x) = x for x ∈ Y , t ∈ R+. Moreover assume that p1(x) = 1 and p11(x) = 1 for
x ∈ Y . Then we obtain an IFS (q, p)K .Denoting by µ̃n, n ∈ N, the distribution of xn, i.e., µ̃n(A) = P(xn ∈ A) for A ∈ B(Y ),we de�ne P̃ as the transition operator suh that µ̃n+1 = P̃ µ̃n for n ∈ N. The transitionoperator orresponding to the learning system (q, p)K is given by(6.1.1) P̃µ(A) =

∑

s∈S

\
Y

1A(qs(x))ps(x)µ(dx) for A ∈ B(Y ), µ ∈ M1(Y ).From Theorems 4.2.2 and 4.2.3 we immediately obtain the following result, due to Barns-ley et al. [2℄ (see also [35℄):Theorem 6.1.1. Let (q, p)K be an iterated funtion system satisfying the following on-ditions:(i) for the probability vetor p, the Dini ondition holds and(6.1.2) inf
x∈Y

ps(x) > 0 for s ∈ S,



Invariant measures for random dynamial systems 53(ii) the transformations qs : Y → Y are ontinuous and satisfy (4.2.4) with Lq < 1.Then the operator P̃ given by (6.1.1) is asymptotially stable.Examples 6.1.1 and 6.1.2 are taken from [29℄ and [31℄:Example 6.1.1. The asymptoti behavior of a learning system heavily depends on theproperties of the funtions ps. First of all, they must be stritly positive. Consider, forexample, the system (q, p)2 ating on the spae Y = [0, 1] with the following transforma-tions:
q1(x) = 0, q2(x) = 1, p1(x) = 1 − x, p2(x) = x for x ∈ [0, 1].These assumptions imply that for x0 = 0 we have x1 = q1(x0) = 0 with probability oneand further by indution xn = 0 with probability one for every n ≥ 0. Analogously, if

x0 = 1 then also xn = 1 with probability one for every n ≥ 0. Thus in the �rst ase
µ̃n({0}) = 1 and in the seond µ̃n({0}) = 0 for all n. This shows that the system is notasymptotially stable.Our theorems imply the weak onvergene, but the stationary measure µ0 may besingular and in this ase the onvergene annot be strong:Example 6.1.2. Let Y = R, q1(x) = x and q2(x) = 0 for x ∈ R. Evidently for everyprobability vetor (p1, p2) with p1 < 1 ondition (4.2.4) is satis�ed. Thus for every
µ ∈ M1(Y ) the sequene {P̃nµ}n≥1 given by (6.1.1) onverges weakly to µ0 = δ0.From the proof of Theorem 5.2.1 we immediately obtain the following result, due toLasota and Myjak [32℄:Theorem 6.1.2. Let (q, p)K be an iterated funtion system having an invariant measure
µ0 ∈ M1. Assume that the transformations qs : Y → Y , s ∈ S, satisfy the Lipshitzondition

‖qs(x) − qs(y)‖ ≤ Lq‖x− y‖ for x, y ∈ Ywith Lq < 1 and let
γ = inf

x∈Y, s∈S
ps(x) > 0.Then

dimL µ0 ≤
log γ

logLq
.

6.2. Irreduible Markov systems. Werner [52℄ extended iterated funtion systemswith plae dependent probabilities to muh more general systems, namely, graph diretedonstrutions on loally ompat spaes with an open partition.Barnsley et al. [2℄ and Werner [52℄ studied the problem of the existene of an invariantmeasure from the probabilisti point of view. In this setion we aim to show that Werner'sresult may be studied by employing the methods used in Setion 4.2. In this way, wealso extend Werner's results from a loally ompat spae to the more general ase of aomplete separable metri spae.Let (Y, ̺) be a omplete and separable metri spae and let Y1, . . . , YN be a partitionof Y into nonempty open subsets. For eah i ∈ I = {1, . . . , N}, let
wi1, . . . , wiNi

: Yi → Y



54 K. Horbazbe a family of Borel measurable maps suh that for eah j ∈ {1, . . . , Ni}, Ni ∈ I, thereexists n ∈ I suh that wij(Yi) ⊂ Yn. Furthermore, for eah i ∈ I, let
pi1, . . . , piNi

: Yi → [0, 1]be a family of positive Borel measurable probability funtions, that is, pij > 0 for all jand ∑Ni

j=1 pij(x) = 1 for all x ∈ Yi.We all I the set of verties , and the subsets Y1, . . . , YN the vertex sets . Further, weall
E = {(i, ni) : i ∈ {1, . . . , N}, ni ∈ {1, . . . , Ni}}the set of edges and we write
pe := pin and we := win for e := (i, n) ∈ E.For an edge e ∈ E we denote by i(e) the initial vertex of e, that is, i(e) = j if and only if

e = (j, k) for some k ∈ {1, . . . , Nj}. The terminal vertex t(e) for e = (j, n) ∈ E is equalto k if and only if we(Yj) ⊂ Yk.The quadruple G = (I, E, i, t) is alled a direted multigraph or digraph. A sequene(�nite or in�nite) (. . . , e−1, e0, e1, . . .) of edges is alled a path if t(ek) = i(ek+1) for all k.A Markov system (Yi(e), we, pe)e∈E is alled irreduible if its direted multigraph isirreduible, that is, there is a path from any vertex to any other.An irreduible Markov system is said to have a period d if the set of verties an bepartitioned into d nonempty subsets J1, . . . , Jd suh that
i(e) ∈ Ji ⇒ t(e) ∈ Ji+1for all e ∈ E (with i + 1 taken mod d), and d is the largest number with this property.An irreduible Markov system with period 1 is alled aperiodi.To de�ne a Markov operator on B(Y ) assoiated with the Markov system underonsideration we extend pij onto the whole spae Y by zero; the maps wij are extendedarbitrarily.We de�ne the Markov operator P on M1 by(6.2.1) Pµ(A) =

\
Y

U1A(x)µ(dx) for A ∈ B(Y ) and µ ∈ M1,where U is the dual operator on B(Y ) given by(6.2.2) Uf =
∑

e∈E

pef ◦ we for f ∈ B(Y ).We say that a system (Yi(e), we, pe)e∈E is globally onentrating, semi-onentratingor asymptotially stable when the Markov operator P given by (6.2.1), (6.2.2) has theorresponding property.Reall that a funtion f : Y → R is alled Dini-ontinuous if the assoiated modulusof ontinuity Ψ, given by
Ψ(τ ) = sup{|f(x) − f(y)| : ̺(x, y) ≤ τ, x, y ∈ Y },satis�es the Dini ondition (2.1.1).



Invariant measures for random dynamial systems 55We will assume that the Markov system (Yi(e), we, pe) is ontrative, i.e., there exists
0 < L < 1 suh that(6.2.3) ∑

e∈E

pe(x)̺(we(x), we(y)) ≤ L̺(x, y) for all x, y ∈ Yi and i ∈ I.We all the onstant L an average ontrating rate of the Markov system.The Markov system (Yi(e), we, pe)e∈E is a partiular example of the following randomdynamial system with randomly hosen jumps. Consider the spae Ỹ =
⋃N

i=1(Yi × {i})where Yi ∩ Yj = ∅, i 6= j, S = {1, . . . ,maxiNi} and Π1(τ, (x, i)) = (x, i) for x ∈ Yi,
i = 1, . . . , N and τ ∈ R+. Set

qj(x, i) =

{
(wij(x), t((i, j))) for j = 1, . . . , Ni,arbitrary otherwiseand

pj(x, i) =

{
pij(x) for j = 1, . . . , Ni,
0 otherwisefor x ∈ Yi, i = 1, . . . , N . In this way we obtain a system (Π, q, p).We point out that ondition (6.2.3) does not guarantee that inequality (4.2.4) issatis�ed for all x, y ∈ Ỹ , hene a ontrative Markov system (Yi(e), we, pe)e∈E may notsatisfy the hypotheses of Theorem 4.2.2.Example 6.2.1. Consider Y ⊂ R

2 with norm ‖(x, y)‖1 = |x| + |y| for (x, y) ∈ R
2. Let

Y1 = [0, 1] × [0, 1], Y2 = [3/2, 2] × [0, 2] and Y3 = [0, 1] × [3/2, 2]. Consider the maps
w11 : Y1 → Y2, w12 : Y1 → Y3, w31 : Y3 → Y2, w32 : Y3 → Y1 and w21 : Y2 → Y1 given by

w11(x, y) =
(

1
2x+ 3

2 , 2y
)
, w12(x, y) =

(
x, 1

2y + 3
2

)
,

w31(x, y) =
(
y,−1

3x+ 7
6

)
, w32(x, y) =

(
x, 2

3y −
1
3

)
,

w21(x, y) =
(

1
2y,−

2
3x+ 4

3

)
,with the orresponding probability funtions

p11 = 1
41Y1

, p12 = 3
41Y1

, p31 = 2
31Y3

, p32 = 1
31Y3

, p21 = 1Y2
.An easy alulation shows that they de�ne a ontrative Markov system with an averageontrating rate 8

9 on Y1, Y2, Y3 and this system does not satisfy ondition (4.2.4).Our main results onerning irreduible Markov systems de�ned on Polish spaes arethe following:Theorem 6.2.1. Let (Yi(e), we, pe)e∈E be a ontrative Markov system suh that eah
pe|Yi(e)

is Dini ontinuous. Then the system has an invariant measure. Moreover the set
L(µ) is nonempty for µ ∈ M1 and the set L(M1) is tight.Theorem 6.2.2. Let (Yi(e), we, pe)e∈E be an irreduible ontrative Markov system suhthat pe|Yi(e)

is Dini ontinuous and there exists δ > 0 suh that pe|Yi(e)
≥ δ for all e ∈ E.If , in addition, the system is aperiodi, then it is asymptotially stable.We have divided the proofs of Theorems 6.2.1 and 6.2.2 into a sequene of lemmas.Lemma 6.2.1. Suppose that (Yi(e), we, pe)e∈E is a ontrative Markov system. Then

(Yi(e), we, pe)e∈E is globally onentrating. Moreover for every ε > 0 there exists a



56 K. Horbazbounded Borel set B ⊂ Y suh that
lim inf
n→∞

Pnµ(B) ≥ 1 − ε for all µ ∈ M1.Proof. By Proposition 3.2.4 it is enough to show that there exists a Lyapunov funtion V ,bounded on bounded sets, suh that(6.2.4) UV (x) ≤ aV (x) + b for x ∈ Y,where a, b are nonnegative onstants and a < 1. Choose yi ∈ Yi for i ∈ I. Set V (x) =

̺(x, y1) for x ∈ Y . Let 0 < L < 1 be the average ontrating rate as in (6.2.3). Then
UV (x) =

∑

e∈E

pe(x)̺(we(x), y1)

≤
∑

e∈E

pe(x)(̺(we(x), we(yi(e))) + ̺(we(yi(e)), y1))

≤ L̺(x, yi(e)) +
∑

e∈E

pe(x)̺(we(yi(e)), y1)

≤ L̺(x, y1) + Lmax
j∈I

̺(yj , y1) + max
e∈E, ∈I

̺(we(yj), y1) for x ∈ Y.Hene (6.2.4) holds with a = L and
b = Lmax

j∈I
̺(yj , y1) + max

e∈E, ∈I
̺(we(yj), y1).From now on we will assume that pe, e ∈ E, is Dini ontinuous and let Ψe be itsmodulus of ontinuity. Set Ψ =

∑
e∈E Ψe. From Proposition 2.1.1 it follows that thereexists ϕ ∈ Φ0 satisfying

Ψ(τ ) + ϕ(Lτ) ≤ ϕ(τ ) for τ ≥ 0.We denote by Fϕ the family of all ontinuous funtions f : Y → R suh that |f(x)| ≤ 1and |f(x) − f(y)| ≤ ϕ(˜̺(x, y)) for all x, y ∈ Y , with
˜̺(x, y) =

{
̺(x, y) if x, y ∈ Yi, for i ∈ I,
max(c, ̺(x, y)) otherwise,where c > 0 is suh that ϕ(c) > 2. It is obvious that ˜̺ is a metri on Y equivalent to ̺.Lemma 6.2.2. Under the hypotheses of Theorem 6.2.1 the operator P given by (6.2.1),(6.2.2) is essentially nonexpansive.Proof. Fix f ∈ Fϕ. We have

|Uf(x)| =
∣∣∣
∑

e

pe(x)f(we(x))
∣∣∣ ≤

∑

e

pe(x) = 1 for x ∈ Y.Further, from (6.2.3) it follows that
|Uf(x) − Uf(y)| =

∣∣∣
∑

e

pe(x)f(we(x)) −
∑

e

pe(y)f(we(y))
∣∣∣

≤
∑

e

|pe(x) − pe(y)| +
∑

e

pe(x)|f(we(x)) − f(we(y))|

≤ Ψ(̺(x, y)) +
∑

e

pe(x)ϕ(̺(we(x), we(y)))



Invariant measures for random dynamial systems 57for x, y ∈ Yi, i ∈ I. Sine ϕ is onave and nondereasing,
|Uf(x) − Uf(y)| ≤ Ψ(̺(x, y)) + ϕ(L̺(x, y)) ≤ ϕ(̺(x, y)) = ϕ(˜̺(x, y))for x, y ∈ Yi, i ∈ I.If x and y are in di�erent Yi, then |Uf(x) − Uf(y)| ≤ 2 ≤ ϕ(c) ≤ ϕ(˜̺(x, y)), whihompletes the proof.Lemma 6.2.3. Under the hypotheses of Theorem 6.2.1 the Markov system (Yi(e), we, pe)e∈Eis semi-onentrating.Proof. Lemma 6.2.1 shows that there exists a bounded Borel set B ⊂ Y suh that

lim inf
n→∞

Pnµ(B) > 1/2 for all µ ∈ M1.Without loss of generality we may assume that Bi = B ∩ Yi 6= ∅ for i ∈ I. Fix ε > 0.Choose an integer m ∈ N suh that Lm diam ˜̺B < ε. Further, let η > 0 be suh that
(1 + η)mLm diam ˜̺B ≤ ε.For any i ∈ I, �x yi ∈ Bi and de�ne C ⊂ Y by

C =

N⋃

i=1

⋃

e1,...,em∈E

B(wem
◦ · · · ◦ we1

(yi), ε).Now (6.2.3) implies that for every y ∈ Yi there exists Iy ⊂ Em suh that
̺(wem

◦ · · · ◦ we1
(yi), wem

◦ · · · ◦ we1
(y)) ≤ (1 + η)mLm̺(yi, y)for (e1, . . . , em) ∈ Iy and

∑

(e1,...,em)∈Iy

pe1
(y)pe2

(we1
(y)) · · · pem

(wem−1
◦ · · · ◦ we1

(y)) ≥

(
η

1 + η

)m

.Observe that for every y ∈ Bi and (e1, . . . , em) ∈ Iy we have wem
◦ · · · ◦ we1

(y) ∈ C. Set
α = (η(1 + η)−1)m/2. By indution and the de�nition of C for eah n ∈ N we obtain
P (m+n)µ(C) ≥

\
B

∑

(e1,...,em)∈Iy

1C(wem
◦ · · · ◦ we1

(y))pe1
(y)

· · · pem
(wem−1

◦ · · · ◦ we1
(y))Pnµ(dy)≥

(
η

1 + η

)m

Pnµ(B) for µ ∈ M1and onsequently
lim inf
n→∞

Pnµ(C) ≥ α for µ ∈ M1,whih ompletes the proof.Proof of Theorem 6.2.1. From Lemmas 6.2.2 and 6.2.3 it follows that P is essentiallynonexpansive and semi-onentrating. A simple appliation of Proposition 3.2.3 �nishesthe proof.For the proof of Theorem 6.2.2 we need to know more about properties of irreduibledigraphs.For every j ∈ I we denote by l(j) the smallest number, say k, suh that there is apath (e1, . . . , ek) with i(e1) = j and t(ek) = j.



58 K. HorbazA path c = (e1, . . . , em) is alled a yle if i(e1) = t(em). Further, a yle is alledsimple if it does not ontain any other yle. Let l(c) denote the length of c, i.e., l(c) = mif c = (e1, . . . , em).We denote by [k1, . . . , kM ] the greatest ommon divisor of k1, . . . , kM ∈ N.Finally, C = {c1, . . . , cm} denotes the set of all simple yles in (Yi(e), we, pe)e∈E .Remark 6.2.1. Observe that an irreduible aperiodi Markov system (Yi(e), we, pe)e∈Esatis�es
[l(c1), . . . , l(cM )] = 1.Lemma 6.2.4. If an irreduible Markov system is aperiodi, then for every k, l ∈ I thereexist m∈N and (e1, . . . , em), (ẽ1, . . . , ẽm) suh that i(e1) = k, i(ẽ1) = l and t(em) = t(ẽm).Proof. Fix k, l ∈ I. Let (ek

1 , . . . , e
k
p) and (el

1, . . . , e
l
q) be paths in (I, E, i, t) starting from k,

l, respetively and ontaining all suessive yles from C. Assume that t(ek
k) = t(el

q). If
p = q, then the proof is omplete. Now, assume that p > q. Sine [l(c1), . . . , l(cM )] = 1,there exist integers m1, . . . ,mM suh that

M∑

i=1

mil(ci) = p− q.Let J ⊂ {1, . . . ,M} be suh that mj < 0 for j ∈ J and mj ≥ 0 for j ∈ {1, . . . ,M} \ J .Adding to (ek
1 , . . . , e

k
p) the yle omposed of the yles cj taken mj times for j ∈ J , andsimilarly adding to (el

1, . . . , e
l
q) the yle omposed of the yles cj taken mj times for

j ∈ {1, . . . ,M} \ J , we �nish the proof of the lemma.Proof of Theorem 6.2.2. From Theorem 6.2.1 it follows that P admits an invariant prob-ability measure. In view of Lemma 6.2.3, from Theorem 3.2.1 it follows that to �nish theproof of stability it remains to show that for every ε > 0 there is a β > 0 suh that forevery µ1, µ2 ∈ M1 there exist a bounded Borel set A ⊂ Y with diam ˜̺ϕ
A ≤ ε and n ∈ Nsatisfying(6.2.5) Pnµi(A) ≥ β for i = 1, 2.Fix ε > 0. Aording to Theorem 6.2.1 there is a ompat set K0 ⊂ Y suh that

µ̃(K0) ≥ 4/5 for all µ̃ ∈ L(M1).By the Aleksandrov theorem there exists a sequene {mn}n≥1 suh that for eah openset G with K0 ⊂ G,
lim inf
n→∞

Pmnµi(G) > 1/2 for i = 1, 2.Consequently, there exist k, l ∈ I and a subsequene {m̃n}n≥1 of {mn}n≥1 suh that
lim inf
n→∞

P m̃nµ1(G1) > 1/2N and lim inf
n→∞

P m̃nµ2(G2) >
1

2Nfor arbitrary open neighborhoods G1, G2 of K̃k = K0 ∩ Yk, K̃l = K0 ∩ Yl, respetively.By Lemma 6.2.4 we hoose m̃ ∈ N suh that for k, l ∈ I there exist paths (e1, . . . , em),
(ẽ1, . . . , ẽm) satisfying i(e1) = k, i(ẽ1) = l and t(em) = t(ẽm) and m ≤ m̃. Let Fk =



Invariant measures for random dynamial systems 59
wem

◦ · · · ◦ we1
(K̃k) and Fl = wẽm

◦ · · · ◦ wẽ1
(K̃l). Set F0 = Fk ∪ Fl and observe that

F0 ⊂ Yt(em). It is easily seen that(6.2.6) lim inf
n→∞

Pmn+mµi(G̃) >
1

2N
δm ≥

1

2N
δm̃ for i = 1, 2and every open neighborhood G̃ of F0.Choose an integer n ∈ N suh that

Ln · diam ˜̺F0 ≤ ε/3.For x ∈ F0 and (e1, . . . , en) ∈ En be suh that i(e1) = t(em) we de�ne
O(e1,...,en)(x) = {y ∈ Yt(em) : ̺(wen

◦ · · · ◦ we1
(x), wen

◦ · · · ◦ we1
(y)) < ε/3},

Ox =
⋂
O(e1,...,en)(x) for x ∈ F0,where the intersetion is taken over all paths (e1, . . . , en) in the digraph (Yi(e), we, pe)starting from t(em). Sine F0 is a ompat set, there exists s0 ≥ 1 suh that

F0 ⊂
s0⋃

i=1

Oyi
.Set G̃ =

⋃s0

i=1Oyi
. We laim that (6.2.5) holds with β = δn+m̃/(2Ns0). Indeed, by (6.2.6)there exists M ∈ N suh that

PM+mµi(G̃) >
1

2N
δm̃ for i = 1, 2,therefore there exist O1 = Oyk

and O2 = Oyl
suh that

PM+mµi(Oi) >
1

2Ns0
δm̃,thus, by (6.2.3) and the de�nition of O1 and O2, we an �nd a path (e′1, . . . , e

′
n) suhthat the set

A = we′

n
◦ · · · ◦ we′

1
(O1) ∪ we′

n
◦ · · · ◦ we′

1
(O2)satis�es diam ˜̺ϕ

A < ε, whih implies
PM+m+nµi(A) ≥

\
Oi

pe′

1
(y)pe′

2
(we′

1
(y)) · · · pe′

n
(we′

n−1
◦ · · · ◦ we′

1
(y))

× 1A(we′

n
◦ · · · ◦ we′

1
(y))PM+mµi(dy) ≥

δn+m̃

2Ns0
= β for i = 1, 2.6.3. Mathematial theory of the ell yle. We onsider the in�nite family oftransformations St : Y → Y given by

St(x) = q(Π(t, x)) for t ≥ 0, x ∈ Y,where Π : R+ × Y → Y is a semidynamial system and q : Y → Y is a ontinuousfuntion. Let {tn}n≥0 be a sequene of nonnegative random variables suh that theinrements ∆tn = tn − tn−1 are independent and have the same density distributionfuntion g(t) = λe−λt, t ≥ 0. Set(6.3.1) xn+1 = S∆tn
(xn) for n = 0, 1, . . . .



60 K. HorbazEquation (6.3.1) de�nes an iterated funtion system with an in�nite number of trans-formations. At eah step the new transformation is seleted aording to the densitydistribution funtion λe−λt.Equations similar to (6.3.1) are disussed in the mathematial theory of the ell yle[5, 29, 30, 50, 51℄. For example, in [29℄ Lasota onsidered the following model:Let Y = R
d. The values t1, t2, . . . denote the birth times and xn represents thedistribution of substanes of ells just before mitosis in the nth generation. Thus it isnatural to assume that q(x) = x/2, sine after mitosis eah daughter ell obtains exatlyhalf of the omponents of the mother ell.Assume that Π, whih desribes the evolution of the amounts of real hemials, sat-is�es(6.3.2) ‖Π(t, x) − Π(t, y)‖ ≤ eαt‖x− y‖ for x, y ∈ R

d, t ∈ R+for some α > 0 and there exists x∗ ∈ R
d suh that(6.3.3) sup

t≥0
‖Π(t, x∗)‖ <∞.Further, we assume that(6.3.4) α/λ < 1/2.It is reasonable to think that the behavior of (6.3.1) an be desribed by the sequeneof distributions(6.3.5) µ̃n(A) = P(xn ∈ A) for n = 1, 2, . . . , A ∈ B(Rd).By Theorem 4.2.3 it follows that the sequene {µ̃n}n≥1 given by (6.3.5) onvergesweakly to a unique µ̃0.This fat allows one to obtain some information onerning the behavior of xn (forexample by using some ergodi theorems). Moreover, using the Aleksandrov theorem forthe weak onvergene, there is some biologial onsequene of the weak onvergene of µ̃nto µ̃0. In the spae of dynamial systems (6.3.1) satisfying onditions (6.3.2)�(6.3.4) mostof the systems have a singular stationary measure µ̃0. This fat may have an importantbiologial onsequene: with high probability xn belongs to a small set. This means thatthe omposition of substanes (at birth) is not arbitrary and the ell is highly strutured.6.4. Randomly onneted di�erential equations with Poisson-type perturba-tions. In this setion we shall study stohasti di�erential equations driven by jump-type proesses. They are typially of the form(6.4.1) dX(t) = a(X(t), ξ(t)) dt+
\
Θ

b(X(t), θ)Np(dt, dθ) for t ≥ 0with the initial ondition(6.4.2) X(0) = x0,where {X(t)}t≥0 is a stohasti proess with values in a separable Banah spae (Y, ‖ ·‖),



Invariant measures for random dynamial systems 61or more expliitly(6.4.3) X(t) = x0 +

t\
0

a(X(s), ξ(s)) ds+

t\
0

\
Θ

b(X(s−), θ)Np(ds, dθ) for t ≥ 0with probability one. Here Np is a Poisson random ounting measure, {ξ(t)}t≥0 is astohasti proess with values in a �nite set I = {1, . . . , N}, the solution {X(t)}t≥0has values in Y and is right-ontinuous with left-hand limits, i.e. X(t) = X(t+) =

lims→t+ X(s) for all t ≥ 0, and the left-hand limits X(t−) = lims→t− X(s) exist and are�nite for all t > 0 (equalities here mean equalities with probability one).In order to get existene and uniqueness of solutions to equation (6.4.3), it is neessaryto put some restritions on the objets a, b, ξ, and Np. In our study we make the followingassumptions:On a probability spae (Ω,Σ,P) there is a sequene {tn}n≥0 of random variables suhthat the variables ∆tn = tn − tn−1, where t0 = 0, are nonnegative, independent, andidentially distributed with density g(t) = λe−λt for t ≥ 0.Let {ηn}n∈N be a sequene of independent identially distributed random elementswith values in a ompat metri spae Θ; their distribution will be denoted by ν. Weassume that the sequenes {tn}n≥0 and {ηn}n≥0 are independent, whih implies that themapping ω 7→ p(ω) = (tn(ω), ηn(ω))n≥0 de�nes a stationary Poisson point proess. Thenfor every measurable set Z ⊂ Θ the random variable
Np((0, t] × Z) = #{i : (ti, ηi) ∈ Z}is Poisson distributed with parameter λtν(Z). Np is alled a Poisson random ountingmeasure.The oe�ient a : Y × I → Y , I = {1, . . . , N}, is Lipshitz ontinuous with respetto the �rst variable.We de�ne q : Y × Θ → Y by

q(x, θ) = x+ b(x, θ) for x ∈ Y, θ ∈ Θand assume that q is ontinuous.Finally, suppose that [pij ]i,j∈I , pij : Y → [0, 1] is a probability matrix and [pi]i∈I ,
pi : Y → [0, 1] is a probability vetor.For every i ∈ I, denote by vi(t) = Πi(t, x) the solution of the unperturbed Cauhyproblem(6.4.4) v′i(t) = a(vi(t), i) and vi(0) = x, x ∈ Y.Consider a sequene {xn}n≥0 of random variables xn : Ω → Y and a stohasti proess
{ξ(t)}t≥0, ξ(t) : Ω → I (desribing random swithing at random times tn), suh that
(6.4.5) xn = q(Πξ(tn−1)(tn − tn−1, xn−1), ηn),

P(ξ(0) = k |x0 = x) = pk(x),

P(ξ(tn) = s |xn = y, ξ(tn−1) = i) = pis(y) for n = 1, 2, . . . ,

ξ(t) = ξ(tn−1) for tn−1 ≤ t < tn, n = 1, 2, . . . .



62 K. HorbazThe solution of (6.4.3) is now given by(6.4.6) X(t) = Πξ(tn−1)(t− tn−1, xn−1) for tn−1 ≤ t < tn, n = 1, 2, . . . .For any x ∈ Y we write X(t)x to denote the solution of problem (6.4.1), (6.4.2) with
x0 = x.We are interested in the evolution of distributions of the stohasti proess {X(t)}t≥0.It is desribed with the help of the family {Qt}t≥0, given by(6.4.7) Qtµ̃(A) = P(X(t) ∈ A) =

\
Y

P(X(t)x ∈ A) µ̃(dx) for A ∈ B(Y ),where µ̃ is the distribution of the initial vetor x. The stohasti proess {(X(t), ξ(t))}t≥0,
(X(t), ξ(t)) : Ω → Y × I, is a Markov proess and it generates the semigroup {T t}t≥0de�ned by

T tf(x, i) = E(f((X(t), ξ(t))(x,i))) for f ∈ C(Y × I),with the orresponding semigroup of Markov operators {P t}t≥0, P t : M1 → M1, satis-fying(6.4.8) 〈P tµ, f〉 = 〈µ, T tf〉 for f ∈ B(Y × I), µ ∈ M1 and t ≥ 0.As an immediate onsequene of Theorems 4.3.1 and 4.3.2 we obtain the followingresult, whih is an extension of the main theorem of [17℄:Theorem 6.4.1. Assume that onditions (4.3.1)�(4.3.4) and (4.3.7) are satis�ed. Thenthe semigroup {P t}t≥0 given by (6.4.8) is asymptotially stable and there exists a measure
µ̃∗ ∈ M1 suh that for every µ ∈ M1 the family {Qtµ}t≥0 given by (6.4.7) is weaklyonvergent to µ̃∗Remark 6.4.1. In the ase when the oe�ient a : R

d × I → R
d does not depend on theseond variable, we obtain the stohasti equation onsidered by Traple [49℄, Szarek andW�dryhowiz [48℄.In many appliations we are mostly interested in values of the solution X(t) at theswithing points tn. Setting

µn(A) = P((X(tn), ξ(tn)) ∈ A) for A ∈ B(Y × I),we obtain µn+1 = Pµn, n ∈ N, where P is given by(6.4.9) Pµ(A) =
∑

j∈I

\
Θ

\
Y ×I

\
R+

λe−λt1A(q(Πj(t, x), θ), j)pij(x) dt dν(θ) dµ(x, i)for A ∈ B(Y × I) and µ ∈ M1.We now onsider the Poisson driven stohasti di�erential equation on a separableBanah spae (Y, ‖ · ‖) of the form(6.4.10) dX(t) = a(X(t))dt+ b(X(t))dp for t > 0with the initial ondition(6.4.11) X(0) = x0,



Invariant measures for random dynamial systems 63where a, b : Y → Y are Lipshitz ontinuous transformations, {p(t)}t≥0 is a Poisson pro-ess and the initial ondition x0 is a random variable on Ω with values in Y , independentof {p(t)}t≥0.This is a partiular example of equation (6.4.3) where Θ = I = {1}, q(x, 1) = q(x) =

x+ b(x), and Π1(t, x) = Π(t, x) is the unique solution of the Cauhy problem(6.4.12) u′(t) = a(u(t)) for t ≥ 0,with the initial ondition
u(0) = x0.From Theorems 4.3.1 and 5.1.1 we obtain the following result, whih is similar inspirit to the main result in [38℄.Theorem 6.4.2. Let Π be the solution of the unperturbed system (6.4.12). Assume thatthere exist positive onstants α and Lq suh that

(6.4.13) ‖x− y‖ ≤ ‖Π(t, x) − Π(t, y)‖ ≤ eαt‖x− y‖ for x, y ∈ Y, t ≥ 0,

(6.4.14) ‖q(x) − q(y)‖ ≤ Lq‖x− y‖and(6.4.15) Lq < exp(−α/λ).If a : Y → Y is bounded , then the unique invariant measure µ∗ of the semigroup P t givenby (6.4.8) satis�es
dµ∗(x) ≥ 1 for x ∈ Y.To obtain the upper bound for dimL µ∗ we need a more restritive assumption on-erning q : Y → Y . We assume that there exist positive onstants Lq and L0 suhthat(6.4.16) L0‖x− y‖ ≤ ‖q(x) − q(y)‖ ≤ Lq‖x− y‖ for x, y ∈ Y.From Theorems 5.2.1 and 5.3.2 we obtain:Theorem 6.4.3. Let Π be the solution of (6.4.12) and suppose q : Y → Y satis�esondition (6.4.16). If there exists a positive onstant α satisfying ondition (6.4.15) suhthat(6.4.17) ‖Π(t, x) − Π(t, y)‖ ≤ eαt‖x− y‖ for x, y ∈ Y, t ≥ 0,then

dimL µ∗ ≤ dimL µ0 ≤
ln(1 − e−1)

lnLq + α/λ
,where µ∗ and µ0 are the invariant measures of the semigroup {P t}t≥0 given by (6.4.8)and the operator P given by (6.4.9), respetively.
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