
Introduction

We study the function spaces with dominating mixed smoothness. First spaces of this

kind were defined by S. M. Nikol’skĭı in [21] and [22]. He introduced the spaces of Sobolev

type

SrpW (R2) =

{
f ∈ Lp(R2) : ‖f |SrpW (R2)‖ = ‖f |Lp‖+

∥∥∥∥
∂r1f

∂xr11

∣∣∣∣Lp
∥∥∥∥

+

∥∥∥∥
∂r2f

∂xr22

∣∣∣∣Lp
∥∥∥∥+

∥∥∥∥
∂r1+r2f

∂xr11 ∂x
r2
2

∣∣∣∣Lp
∥∥∥∥ <∞

}
,

where 1 < p < ∞, ri = 0, 1, 2, . . . (i = 1, 2). The mixed derivative ∂r1+r2f/∂xr11 ∂x
r2
2

plays the dominant part here and gave the name to this class of spaces. The detailed study

of such spaces was performed by many authors, for example T. I. Amanov, O. V. Besov,

K. K. Golovkin, P. I. Lizorkin, S. M. Nikol’skĭı, M. K. Potapov and H.-J. Schmeisser. We

refer to [1] for a systematic treatment of this topic. As in the theory of classical Sobolev

spaces, an alternative definition in terms of Fourier transform may be given (see (1.8)

and (1.9)). This definition is based on a decomposition

f =
∑

k∈Nd
0

(ϕk1 ⊗ · · · ⊗ ϕkd f̂)∨, convergence in S′(Rd),

where {ϕk}k∈N0
is a decomposition of unity on R known from the theory of classical

Besov spaces and ϕk = ϕk1 ⊗ · · · ⊗ ϕkd , k = (k1, . . . , kd), is a tensor product.

We refer mainly to [26] as far as the Fourier-analytic approach to these spaces is

concerned. In Chapter 2 of that book the classical theory of spaces with dominating mixed

smoothness properties is developed. Several types of equivalent quasinorms, embedding

and trace theorems and characterisation of these spaces by differences are proved there.

The authors also study basic properties of crucial operators on these spaces, namely

lifting and maximal operators and Fourier multipliers. We recall some facts from that

book, which will be useful later on. In contrast to [26], we do not restrict the dimension of

the underlying Euclidean space to d = 2: the results are formulated for general dimension

d ≥ 2. As mentioned in [26], this generalisation is obvious.

The second chapter is devoted to local means, and atomic, subatomic and wavelet

decompositions of spaces with dominating mixed smoothness. We state the result for

both Besov and Triebel–Lizorkin spaces but in some cases we give the proofs only for the

Triebel–Lizorkin scale. The proofs for Besov-type spaces are omitted as they are very

similar to the proofs presented here. First of all, we characterise this class of spaces by

so-called local means. See Theorem 1.25 for details. This fundamental characterisation

serves as a basis for all three decomposition techniques.

[5]
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By an atomic decomposition of a function f one usually means a decomposition of

the type

f(x) =
∑

ν

∑

m

λν maν m(x), convergence in S′(Rd),

where aν m are some simple building blocks, called atoms, and λν m are complex num-

bers. A function f then belongs to some function space if, and only if, the sequence

of coefficients {λν m}ν,m belongs to some sequence space. For the exact formulation see

Theorem 2.4. Let us mention that the atoms are specified only implicitly: a function a

is an atom if, and only if, it has some qualitative properties (see Definition 2.3).

By a subatomic decomposition we mean a decomposition of the type

f(x) =
∑

β

∑

ν

∑

m

λβν m(βqu)ν m(x), convergence in S′(Rd),

where (βqu)ν m(x) are so-called quarks and λβν m are complex numbers. A quark is a spe-

cial type of atom defined explicitly by (2.36). Hence the basic building blocks, quarks,

are much more specific in this kind of decomposition. The price one has to pay for that is

a more complicated connection between f and {λβν m}. It is described in detail in Theo-

rem 2.6. In this sense each of these decompositions has its advantages and disadvantages.

But all of them have something in common: they establish a connection between function

spaces and sequence spaces. As the sequence spaces are simpler to deal with, it turns

out that this connection is very useful in many situations (embeddings, traces, entropy

numbers, . . . ). Here we have to mention another important way to switch from function

spaces to sequence spaces—the so-called ϕ-transform of M. Frazier and B. Jawerth. We

refer to [15] and references given there for details.

The classical theory of atomic decompositions of Besov and Triebel–Lizorkin spaces

was developed mainly in the works M. Frazier and B. Jawerth ([12], [13]) and H. Triebel

([33], [34]). The subatomic decomposition of these spaces is due to H. Triebel ([35],

[37]). We follow their ideas and prove similar decomposition theorems for spaces with

dominating mixed derivatives. This is done in Chapter 2 and is one of the main results

of this work.

The last decomposition technique developed here is the wavelet decomposition. In

that case a class of compactly supported wavelets is used as the building blocks (see

Theorems 2.10 and 2.11 for precise formulation). The main advantage of the wavelet

decomposition is the uniqueness of the series obtained. The price paid for that is the

limited smoothness of the compactly supported wavelets.

In the third chapter we study the entropy numbers of embeddings of sequence spaces

associated with the function spaces with dominating mixed smoothness. The notion

of entropy numbers has its roots in the study of metric entropy done in the 1930’s by

Kolmogorov. Given a bounded linear operator T between two quasi-Banach spaces A

and B (T ∈ L(A,B)), the quantity ek(T ), k ∈ N, denotes, roughly speaking, the smallest

radius ε > 0 such that the image of the unit ball of A under the operator T may be

covered by 2k−1 balls in B of radius ε. The sequence {ek(T )}∞k=1 tends to zero if, and

only if, the operator T is compact. The decay of this sequence is then understood as

a measure of compactness of T . The crucial property of entropy numbers was observed
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by Carl [6], who proved that the entropy numbers of a compact operator T ∈ L(A,A)
dominate in some sense its eigenvalues. In general, we use the method of [10] in this part.

We use the decomposition techniques to reduce this question to the sequence space

level. Namely, it turns out that

ek(id : Sr1p1,q1A(Ω) →֒ Sr2p2,q2A(Ω)) ≈ ek(id : sr1p1,q1a(Ω) →֒ sr2p2,q2a(Ω)), (1)

where the equivalence constants do not depend on k ∈ N. So, in the third chapter we

study mainly the entropy numbers of embeddings of sequence spaces. We restrict our-

selves to the case r1 = (r1, . . . , r1) ∈ R
d and r2 = (r2, . . . , r2) ∈ R

d. Unlike the case

of the classical Besov and Triebel–Lizorkin spaces, it turns out that the estimates of en-

tropy numbers depend on the second, fine, summability parameter q. Unfortunately, the

method used here gives the optimal answer only under some restriction on the parameters

involved. We prove that the embedding appearing in (1) is compact if, and only if,

α = r1 − r2 −max

(
1

p1
− 1

p2
, 0

)
> 0. (2)

But the direct method gives the estimates for (1) only for

α >
1

min(p1, p2, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)
.

We overcome this obstacle in Chapter 4 by the use of a complex interpolation method as

developed by O. Mendez and M. Mitrea in [20]. Our final result may be summarised in

the following way.

Under condition (2),

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≥ ckr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1)+ .

If r1 − r2 − 1/q1 + 1/q2 > 0 then

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≤ ckr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1).

If r1 − r2 − 1/q1 + 1/q2 ≤ 0 then for every ε > 0 there is a constant cε > 0 such that

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≤ cεkr2−r1(log k)ε.
(See Theorem 4.11 for exact formulation.) Finally, we compare results obtained by this

method with estimates on entropy numbers of embeddings of function spaces with dom-

inating mixed smoothness obtained by Belinsky [4], Dinh Dung [8] and Temlyakov [30].

I would like to thank Prof. Schmeisser and Prof. Sickel for supervising my research

and for many valuable discussions.

1. Function spaces on R
d

Our aim in this chapter is to recall the known aspects of the theory of function spaces

with dominating mixed smoothness, Srp,qB(Rd) and Srp,qF (R
d). First of all, we intro-

duce some basic notation. Then we quote some definitions and theorems stated in [26]

which are crucial in the following. In the last part we develop the so-called local mean

characterisation of the spaces Srp,qB(Rd) and Srp,qF (R
d).
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1.1. Notation. As usual, Rd denotes the d-dimensional real Euclidean space, N the

collection of all natural numbers and N0 = N∪ {0}. The letter Z stands for the set of all

integer numbers and C denotes the plane of complex numbers.

We denote points of the underlying Euclidean space by x, y, z, . . . . Their components

are numbered from 1 to d, hence x = (x1, . . . , xd). If x, y ∈ R
d, we write x > y if,

and only if, xi > yi for every i = 1, . . . , d. Similarly, we define the relations x ≥ y,

x < y, x ≤ y. Finally, by slight abuse of notation, we write x > λ for x ∈ R
d, λ ∈ R if

xi > λ, i = 1, . . . , d. The d-dimensional vector indices will be denoted by k, l,m, . . . and

their components are also numbered, hence k = (k1, . . . , kd). When α = (α1, . . . , αd) ∈
N
d
0 is a multi-index, we denote its length by |α| = ∑d

j=1 αj . The derivatives Dα =

∂|α|/∂xα1
1 · · · ∂xαd

d have the usual distributional meaning; moreover xα = xα1
1 · · ·xαd

d .

Let S(Rd) be the Schwartz space of all complex-valued rapidly decreasing infinitely

differentiable functions on R
d. We denote the d-dimensional Fourier transform of a func-

tion ϕ ∈ S(Rd) by Fϕ, F(ϕ) or ϕ̂. Its inverse is denoted by F−1ϕ, F−1(ϕ) or ϕ∨. Both
F and F−1 are extended to the dual Schwartz space S′(Rd) in the usual way. Sometimes,

we need to distinguish between the d-dimensional and one-dimensional Fourier transform.

In that case we denote the latter by F1 or ∧1 and its inverse by F−11 or ∨1 . We point out

that for functions ϕ(x) = ϕ1(x1) · · ·ϕd(xd) = (ϕ1 ⊗ · · · ⊗ ϕd)(x) the following formula

connects F with F1:

(Fϕ)(ξ) = (F1ϕ1)(ξ1) · · · (F1ϕd)(ξd) = ((F1ϕ1)⊗ · · · ⊗ (F1ϕd))(ξ), ξ ∈ R
d. (1.1)

Let 0 < p, q ≤ ∞. Having a sequence of complex-valued functions {fk}k∈Nd
0
on R

d, we

put

‖fk | ℓq(Lp)‖ =
(∑

k∈Nd
0

‖fk |Lp(Rd)‖q
)1/q

=
(∑

k∈Nd
0

( �

Rd

|fk(x) dx|p
)q/p)1/q

(1.2)

and

‖fk |Lp(ℓq)‖ =
∥∥∥
(∑

k∈Nd
0

|fk(x)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥ =
( �

Rd

(∑

k∈Nd
0

|fk(x)|q
)p/q

dx
)1/p

, (1.3)

appropriately modified when p and/or q =∞.

We write a+ = max(a, 0) for a real number a ∈ R. Furthermore, let

σpq =

(
1

min(p, q)
− 1

)

+

and σp =

(
1

p
− 1

)

+

(1.4)

for every 0 < p ≤ ∞ and 0 < q ≤ ∞.

All unimportant constants are denoted by c. So, the meaning of the letter c may

change from one occurrence to another. By ak ≈ bk we mean that there are constants

c1, c2 > 0 such that c1ak ≤ bk ≤ c2ak for every admissible k.

1.2. Definitions and basic properties. In this section we define the function spaces

with dominating mixed smoothness on R
d and recall their basic properties as described

in [26]. We quote the results for general d, although they were stated and proved only

for d = 2 in [26]. But, as mentioned there, this generalisation is rather obvious.
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1.2.1. Definitions

Definition 1.1. Let Φ(R) be the collection of all systems {ϕj}∞j=0 ⊂ S(R) such that
{
suppϕ0 ⊂ {t ∈ R : |t| ≤ 2},
suppϕj ⊂ {t ∈ R : 2j−1 ≤ |t| ≤ 2j+1} if j = 1, 2, . . . ,

(1.5)

for every α ∈ N0 there exists a positive constant cα such that

2jα|Dαϕj(t)| ≤ cα for all j = 0, 1, 2, . . . and all t ∈ R, (1.6)

and
∞∑

j=0

ϕj(t) = 1 for every t ∈ R. (1.7)

For k = (k1, . . . , kd) ∈ N
d
0 and x = (x1, . . . , xd) ∈ R

d define ϕk(x) = ϕk1(x1) · · ·ϕkd(xd).
Using this kind of notation, we can give a definition of the spaces Srp,qB(Rd) and Srp,qF (R

d).

Definition 1.2. Let r = (r1, . . . , rd) ∈ R
d, 0 < q ≤ ∞ and ϕ = {ϕj}∞j=0 ∈ Φ(R).

(i) Let 0 < p ≤ ∞. Then Srp,qB(Rd) is the collection of all f ∈ S′(Rd) such that

‖f |Srp,qB(Rd)‖ϕ =
(∑

k∈Nd
0

2qk·r‖(ϕkf̂)∨ |Lp(Rd)‖q
)1/q

= ‖2k·r(ϕkf̂)∨ | ℓq(Lp)‖ (1.8)

is finite.

(ii) Let 0 < p <∞. Then Srp,qF (R
d) is the collection of all f ∈ S′(Rd) such that

‖f |Srp,qF (Rd)‖ϕ =
∥∥∥
(∑

k∈Nd
0

|2k·r(ϕkf̂)∨(·)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥ = ‖2k·r(ϕkf̂)∨ |Lp(ℓq)‖ (1.9)

is finite.

Remark 1.3. According to (1.7), we have

∑

k∈Nd
0

ϕk(x) =
( ∞∑

k1=0

ϕk1(x1)
)
· · ·

( ∞∑

kd=0

ϕkd(xd)
)
= 1 for all x = (x1, . . . , xd) ∈ R

d.

In this sense, {ϕk}k∈Nd
0
is also a decomposition of unity, in this case on R

d.

Remark 1.4. The symbol Srp,qA(R
d) stands, as usual, for Srp,qB(Rd) and Srp,qF (R

d)

respectively.

1.2.2. Basic inequalities. One of the most important questions in the theory of the spaces

Srp,qA(R
d) is the independence of Definition 1.2 on the system ϕ = {ϕk}k∈Nd

0
. The answer

is given by

Theorem 1.5. Let {ϕj}∞j=0, {ψj}∞j=0 ∈ Φ(R). Let r = (r1, . . . , rd) ∈ R
d and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. Then ‖f |Srp,qB(Rd)‖ϕ and ‖f |Srp,qB(Rd)‖ψ are equivalent quasi-

norms. Furthermore, Srp,qB(Rd) is a quasi-Banach space (Banach space if min(p, q) ≥ 1)

and

S(Rd) ⊂ Srp,qB(Rd) ⊂ S′(Rd).
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(ii) Let 0 < p < ∞. Then ‖f |Srp,qF (Rd)‖ϕ and ‖f |Srp,qF (Rd)‖ψ are equivalent quasi-

norms. Furthermore, Srp,qF (R
d) is a quasi-Banach space (Banach space if min(p, q) ≥ 1)

and

S(Rd) ⊂ Srp,qF (Rd) ⊂ S′(Rd).
For the proof in the case d = 2, see [26, pp. 87, 93]. So, we may write ‖f |Srp,qB(Rd)‖

and ‖f |Srp,qF (Rd)‖ without any index ϕ or ψ meaning one of these equivalent quasi-

norms.

Remark 1.6. The reader may have noticed that we have not defined the spaces Srp,qF (R
d)

for p =∞. The reason is very similar to the case of classical Triebel–Lizorkin spaces. If

one extends Definition 1.2 to the case p =∞, which is actually possible, then there is no

counterpart of Theorem 1.5. In particular, these spaces do depend on the choice of the

system {ϕj} ∈ Φ(R).
We also recall the following version of the famous Nikol’skĭı inequality which is due

to B. Stöckert [29] and A. P. Uninskĭı [39].

Theorem 1.7 (Nikol’skĭı inequality). Let 0 < p ≤ u ≤ ∞ and α = (α1, . . . , αd) ∈ N
d
0.

Let b = (b1, . . . , bd) > 0 and Qb = [−b1, b1] × · · · × [−bd, bd] ⊂ R
d. Then there exists a

positive constant c, which is independent of b, such that

‖Dαf |Lu(Rd)‖ ≤ cbα1+1/p−1/u
1 · · · bαd+1/p−1/u

d ‖f |Lp(Rd)‖
for every f ∈ S′(Rd) ∩ Lp(Rd) with supp f̂ ⊂ Qb.

1.2.3. Lifting property. As in the case of classical Besov and Triebel–Lizorkin spaces, we

can define a lifting operator.

Definition 1.8. Let ρ = (ρ1, . . . , ρd) ∈ R
d. Then we define the lifting operator Iρ by

Iρf = F−1(1 + ξ21)
ρ1/2 · · · (1 + ξ2d)

ρd/2Ff, f ∈ S′(Rd). (1.10)

Theorem 1.9. Let 0 < q ≤ ∞, ρ, r ∈ R
d.

(i) Let 0 < p ≤ ∞. Then Iρ maps Srp,qB(Rd) isomorphically onto Sr−ρp,q B(Rd) and

‖Iρf |Sr−ρp,q B(Rd)‖ is an equivalent quasinorm in Srp,qB(Rd).

(ii) Let 0 < p < ∞. Then Iρ maps Srp,qF (R
d) isomorphically onto Sr−ρp,q F (R

d) and

‖Iρf |Sr−ρp,q F (R
d)‖ is an equivalent quasinorm in Srp,qF (R

d).

The proof may again be found in [26, p. 98].

1.2.4. Maximal operators. Maximal operators (and their boundedness on appropriate

function spaces) play a crucial role in harmonic analysis and function spaces theory. Our

constructions given later are based on the Hardy–Littlewood maximal operator and the

maximal operator of Peetre. Now we give the definition of the former. For the definition

of the latter, see Section 1.3.1.

For every locally integrable function f ∈ Lloc
1 (Rd) we define the classical Hardy–

Littlewood maximal operator

(Mf)(x) = sup
Q

1

|Q|
�

Q

|f(y)| dy, x ∈ R
d, (1.11)
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where the supremum is taken over all cubes Q centred at x with sides parallel to co-

ordinate axes. The symbol |Q| denotes the Lebesgue mass of the cube Q. The famous

Hardy–Littlewood inequality says that for every p with 1 < p ≤ ∞ there is a c such that

‖Mf |Lp(Rd)‖ ≤ c‖f |Lp(Rd)‖, f ∈ Lp(Rd). (1.12)

The following theorem is a vector-valued generalisation of (1.12) and is due to C. Feffer-

man and E. M. Stein [11].

Theorem 1.10. Let 1 < p <∞ and 1 < q ≤ ∞. There exists a constant c such that

‖Mfk |Lp(ℓq)‖ ≤ c‖fk |Lp(ℓq)‖ (1.13)

for all sequences {fk}k∈Nd
0
of locally Lebesgue-integrable functions on R

d.

To reflect the tensor structure of the decomposition of unity ϕ = {ϕk} used in Defi-

nition 1.2, we consider the following “directional” maximal operators. We define

(M1f)(x) = sup
s>0

1

2s

x1+s�

x1−s

|f(t, x2, . . . , xd)| dt (1.14)

and in a similar way for other variables. We denote the composition of these operators by

M = Md ◦ · · · ◦M1. The following maximal theorem is due to R. J. Bagby [2] (actually,

it is a special case of a more general theorem given there).

Theorem 1.11. Let 1 < p <∞ and 1 < q ≤ ∞. There exists a constant c such that

‖Mifk |Lp(ℓq)‖ ≤ c‖fk |Lp(ℓq)‖, i = 1, . . . , d, (1.15)

for all sequences {fk}k∈Nd
0
⊂ Lp(ℓq) of functions on R

d.

Iteration of this theorem shows that the estimate (1.15) also holds for the operator M .

1.2.5. Fourier multipliers. Let Ω = {Ωk}k∈Nd
0
be the sequence of compact subsets of Rd

defined by

Ωk = {x ∈ R
d : |x1| ≤ a1,k1 , . . . , |xd| ≤ ad,kd} with a1,k1 , . . . , ad,kd > 0.

Theorem 1.12. Let 0 < p < ∞, 0 < q ≤ ∞ and r = (r1, . . . , rd) > 1/min(p, q) + 1/2.

Let Ω = {Ωk}k∈Nd
0
, a1,k1 , . . . , ad,kd > 0 be as above. Then there is a positive constant c

such that

‖(̺kf̂k)∨ |Lp(ℓq)‖ ≤ c( sup
k∈Nd

0

‖̺k(a1,k1 ·, . . . , ad,kd ·) |Sr2,2F (Rd)‖) · ‖fk |Lp(ℓq)‖

for all systems {fk} ∈ Lp(ℓq) with supp f̂k ⊂ Ωk and all systems {̺k} ⊂ Sr2,2F (Rd).

Remark 1.13. The proof may be found in [26, p. 77].

1.2.6. Littlewood–Paley theory. We also state a theorem of Littlewood–Paley type for

spaces with dominating mixed smoothness. But first we define the Sobolev spaces with

dominating mixed smoothness. This is the very direct generalisation of the definition of

Nikol’skĭı given in the Introduction.
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Definition 1.14. Let 1 < p <∞ and r = (r1, . . . , rd) ∈ N
d
0. We put

SrpW (Rd) =
{
f ∈ Lp(Rd) : ‖f |SrpW (Rd)‖ =

∑

0≤α≤r

‖Dαf |Lp(Rd)‖ <∞
}
.

Clearly, we have S0
pW (Rd)=Lp(R

d). The connection between SrpW (Rd) and Srp,qF (R
d)

is then given by

Theorem 1.15. Let 1 < p <∞ and r = (r1, . . . , rd) ∈ N
d
0. Then

SrpW (Rd) = Srp,2F (R
d)

with equivalent norms.

Remark 1.16. See [26, p. 104] for details.

1.3. Local means. In this section we present the main technical tool, namely, we

characterise the spaces Srp,qA(R
d) by the so-called local means. In general, we follow the

method presented by Rychkov [25]. Recall that the spaces Srp,qA(R
d) were introduced

in Definition 1.2 and, according to Theorem 1.5, this definition does not depend on the

choice of the decomposition of unity {ϕj}∞j=0 ⊂ Φ(R). Hence we may fix some specific

system {ϕj}∞j=0 for the rest of our work.

We fix ϕ ∈ S(R) with

ϕ(x) =

{
1 if |x| ≤ 4/3,

0 if |x| ≥ 3/2.

We put ϕ0 = ϕ, ϕ1(x) = ϕ(x/2)− ϕ(x) and

ϕj(x) = ϕ1(2
−j+1x), x ∈ R, j ∈ N.

One verifies easily that (1.5)–(1.7) hold.

1.3.1. The Peetre maximal operator. Next we discuss the analogue of the Peetre maximal

operator introduced in [23]. The construction of Peetre adapted to the case of function

spaces with dominating mixed smoothness assigns to every system {ψk}k∈Nd
0
⊂ S(Rd),

to every distribution f ∈ S′(Rd) and to every vector a > 0 the following quantities:

sup
y∈Rd

|(ψkf̂)∨(y)|∏d
i=1(1 + |2ki(yi − xi)|ai)

, x ∈ R
d, k ∈ N

d
0. (1.16)

As ψk ∈ S(Rd) for every k ∈ N
d
0 the product ψkf̂ is well defined for every f ∈ S′(Rd)

and, according to the theorem of Paley–Wiener–Schwartz (see [32] and references given

there for details), (ψkf̂)
∨ is an analytic function. In particular, (ψkf̂)

∨(y) makes sense

pointwise.

Unfortunately, as we are also interested in non-smooth kernels (for details, see Sec-

tion 2.4), we need to consider also kernels ψk 6∈ S(Rd). We weaken the definition of the

Schwartz space S(Rd) in a natural way and obtain the class of spaces XS(Rd) defined
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for every S ∈ N
d
0 by

XS(Rd) = {ϕ ∈ SS2W (Rd) : ‖ϕ |XS(Rd)‖ <∞},

‖ϕ |XS(Rd)‖ =
( ∑

0≤α,β≤S

‖xβDαϕ(x) |L2(R
d)‖2

)1/2

.

We set ω(x) =
∏d
i=1(1 + x2i )

Si/2 and observe that ϕ ∈ XS(Rd) if, and only if, ω ·Dαϕ ∈
L2(R

d) for every 0 ≤ α ≤ S. This is obviously equivalent to Dα(ω ·ϕ) ∈ L2(R
d) for every

0 ≤ α ≤ S, which may be written as ω · ϕ ∈ SS2W (Rd). Hence

ϕ ∈ XS(Rd) if, and only if, ω · ϕ ∈ SS2W (Rd).

This allows us to characterise the dual of XS(Rd). We get

ψ ∈ (XS(Rd))′ if, and only if, ω−1 · ψ ∈ (SS2W (Rd))′ = S−S2,2 F (R
d).

As a trivial consequence of the embedding (S ∈ N
d
0)

XS(Rd) →֒ SS2W (Rd) →֒ SS−1/2∞,∞ B(Rd)

we get for every K ∈ N
d
0 and every S ≥ K + 1,

XS(Rd) →֒ CK(Rd).

Having now a function Ψk ∈ XS(Rd) and some distribution f ∈ (XS(Rd))′, we write

(f ∗ Ψk)(y) =
�

Rd

f(x)Ψk(y − x) dx = f(Ψk(y − ·)), y ∈ R
d.

So, given a system {ψk}k∈Nd
0
⊂ XS(Rd) for some S ∈ N

d
0, we denote Ψk = ψ̂k ∈ XS(Rd)

and define in analogy with (1.16) for every f ∈ (XS(Rd))′,

(Ψ∗
k
f)a(x) = sup

y∈Rd

|(Ψk ∗ f)(y)|∏d
i=1(1 + |2ki(yi − xi)|ai)

, x ∈ R
d, k ∈ N

d
0. (1.17)

Furthermore, for S =∞, we put XS(Rd) = S(Rd).

1.3.2. Helpful lemmas. We split the proof of the local-mean characteristics of Besov and

Triebel–Lizorkin spaces in two parts and give now the technical lemmas. This will allow

us a straightforward proof later on. The lemmas originate in [25] and we quote them

only with some minor modifications, mainly forced by the tensor product structure of

function spaces with dominated mixed smoothness.

We start with a lemma describing the use of the so-called moment conditions.

Lemma 1.17. Let K ∈ N0 and g, h ∈ XK+2(R). Furthermore, let −1 ≤ M ≤ K be an

integer and

(Dαĝ)(0) = 0, 0 ≤ α ≤M.

Then for every N ∈ N0 with 0 ≤ N ≤ K there is a constant CN such that

sup
z∈R
|(gb ∗ h)(z)|(1 + |z|N ) ≤ CNbM+1, 0 < b < 1, (1.18)

where gb(t) = b−1g(t/b).
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Proof. Using the elementary properties of the Fourier transform we get

LHS(1.18) ≤ c max
0≤α≤N

‖Dα[(gb ∗ h)∧] |L1(R)‖.

By the Leibniz formula,

|Dα[ĝ(b ·)ĥ(·)](ξ)| ≤ c
∑

0≤β≤α

bβ |(Dβ ĝ)(bξ)(Dα−β ĥ)(ξ)|, ξ ∈ R. (1.19)

As ĝ ∈ CM+1(R), we may use the Taylor formula to get

|(Dβ ĝ)(bξ)| ≤ c|bξ|M−β+1, 0 ≤ β ≤M, (1.20)

for |bξ| ≤ 1. But, as Dβ ĝ ∈ C(R), (1.20) holds for all b, ξ ∈ R. Hence, for 0 ≤ β ≤ M ,

we get

bβ |(Dβ ĝ)(bξ)(Dα−β ĥ)(ξ)| ≤ c bM+1|(Dα−β ĥ)(ξ)| · |ξ|(M−β+1)+ , ξ ∈ R. (1.21)

If M < β ≤ K and 0 < b < 1, we have bβ ≤ bM+1, which, together with Dβ ĝ ∈ C(R),
gives (1.21) for all 0 ≤ β ≤ K.

We put (1.21) into (1.19) and obtain (1.18).

Furthermore, we shall need the following convolution inequality.

Lemma 1.18. Let 0 < p, q ≤ ∞ and δ > 0. Let {gk}k∈Nd
0
be a sequence of nonnegative

measurable functions on R
d and let

Gν(x) =
∑

k∈Nd
0

2−|ν−k|δgk(x), x ∈ R
d, ν ∈ N

d
0. (1.22)

Then there is some constant C = C(p, q, δ) such that

‖Gk | ℓq(Lp)‖ ≤ C‖gk | ℓq(Lp)‖, (1.23)

‖Gk |Lp(ℓq)‖ ≤ C‖gk |Lp(ℓq)‖. (1.24)

Proof. Step 1. We start with the proof of (1.23). If p ≥ 1, by the triangle inequality

we get

‖Gν |Lp(Rd)‖ ≤
∑

k∈Nd
0

2−|ν−k|δ‖gk |Lp(Rd)‖, ν ∈ N
d
0.

When q ≤ 1, we use the embedding ℓq →֒ ℓ1 to get

‖Gν | ℓq(Lp)‖ ≤
(∑

ν∈Nd
0

∑

k∈Nd
0

2−|ν−k|δq‖gk |Lp(Rd)‖q
)1/q

.

Interchanging the order of summation, we get (1.23) with C = C1 = (
∑
k∈Zd 2−|k|δq)1/q.

If q > 1, we apply Young’s inequality. We define

λk = 2−|k|δ, k ∈ Z
d,

(1.25)
γk =

{
‖gk |Lp(Rd)‖ for k ∈ N

d
0,

0 for k ∈ Z
d \ Nd0.

Then we get

‖Gν |Lp(Rd)‖ ≤ (λ ∗ γ)(ν), ν ∈ N
d
0,
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and Young’s convolution inequality gives

‖λ ∗ γ | ℓq‖ ≤ ‖λ | ℓ1‖ · ‖γ | ℓq‖.
This proves (1.23) with C = C2 = ‖λ | ℓ1‖.

If p < 1, we use the ℓp →֒ ℓ1 embedding to get�

Rd

Gpν(x) dx ≤
∑

k∈Nd
0

2−|ν−k|δp
�

Rd

gp
k
(x) dx

For q/p ≤ 1 this implies
∑

ν∈Nd
0

‖Gν |Lp(Rd)‖q ≤
∑

ν∈Nd
0

∑

k∈Nd
0

2−|ν−k|δq‖gk |Lp(Rd)‖q.

Now we again interchange the order of summation and take the (1/q)th power. This

proves (1.23) with C = C1.

Finally, if q/p > 1, we use again Young’s inequality with λp and γp instead of λ and γ.

This gives

‖Gν | ℓq(Lp)‖p ≤ ‖λp | ℓ1‖ · ‖γp | ℓq/p‖,
which proves (1.23) with C = ‖λ|ℓp‖.
Step 2. Next we turn to (1.24). This is a trivial consequence of the pointwise inequality

‖Gν(x) | ℓq‖ ≤ C‖gν(x) | ℓq‖, x ∈ R
d, (1.26)

with C independent of x ∈ R
d.

To prove (1.26), just use the ℓq →֒ ℓ1 embedding for q ≤ 1 and Young’s inequality for

q > 1. We do not give the details, which are very similar to the calculation in Step 1.

As we do not want to exclude the case of arbitrarily smooth functions, we use the

following notation. We write that the vector N =∞ if Ni =∞ for all i = 1, . . . , d. The

symbol N ∈ N
d
0 ∪ {∞} then means that either N = ∞ or N is a vector of nonnegative

integers.

Lemma 1.19. Let 0 < r ≤ 1, and let {γν}ν∈Nd
0
, {βν}ν∈Nd

0
be sequences taking values in

(0,∞). Assume that , for some N0 ∈ N
d
0,

γν = O(2ν·N
0

), |ν| → ∞. (1.27)

Furthermore, assume that there is N1 ∈ N
d
0 ∪ {∞} with N1 ≥ N0 such that

γν ≤ CN
∑

k∈Nd
0

2−k·Nβk+νγ
1−r

k+ν
, ν ∈ N

d
0, CN <∞, (1.28)

for every 0 ≤ N ≤ N1 if N1 is finite or for every N ∈ N
d
0 if N1 = ∞. Then, for the

same set of N ,

γrν ≤ CN
∑

k∈Nd
0

2−k·Nrβk+ν , ν ∈ N
d
0, (1.29)

with the same constants CN .

Proof. Put

Γν,N = sup
k∈Nd

0

2−k·Nγk+ν , ν,N ∈ N
d
0.
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By (1.28),

Γν,N ≤ CN sup
k∈Nd

0

∑

l∈Nd
0

2−(k+l)·Nβl+k+νγ
1−r

l+k+ν
= CN sup

k∈Nd
0

∑

l∈Nd
0+k

2−l·Nβl+νγ
1−r

l+ν

= CN

∑

l∈Nd
0

2−l·Nβl+νγ
1−r

l+ν
≤ CNΓ 1−r

ν,N

∑

l∈Nd
0

2−l·Nrβl+ν . (1.30)

When Γν,N <∞, we finish the proof by

γrν ≤ Γ rν,N ≤ CN
∑

l∈Nd
0

2−l·Nrβl+ν . (1.31)

From (1.27), Γν,N is finite for all N0 ≤ N ≤ N1 (or for all N0 ≤ N if N1 = ∞). As

the right-hand side of (1.29) decreases when N increases in any coordinate, this proves

(1.29) also for all N 6≥ N0 with the constant CN∗ , where N∗i = max(N0
i , N i). Take now

any N 6≥ N0 and apply (1.29) with CN∗ instead of CN to get

Γν,N = sup
k∈Nd

0

2−k·Nγk+ν

≤ sup
k∈Nd

0

(
CN∗

∑

l∈Nd
0

2−(k+l)·Nrβl+k+ν

)1/r

= C
1/r

N∗

(∑

l∈Nd
0

2−l·Nrβl+ν

)1/r

,

which is finite whenever the right-hand side of (1.29) is finite (otherwise there is nothing

to prove). So, even in this case, we may apply (1.30) and (1.31) and finish the proof of

the lemma.

1.3.3. Comparison of different Peetre maximal operators. In this subsection we give an

inequality between different Peetre maximal operators. This inequality (together with

the boundedness of the Peetre maximal operator) forms the basis for our characterisation

of Srp,qA(R
d) through local means.

Because of the limited smoothness of our kernel functions (discussed in detail in

Section 2.4), we cannot expect to get such an inequality for all f ∈ S′(Rd).
We start with (given) functions ψi0, ψ

i
1, i = 1, . . . , d, defined on R and set

ψij(t) = ψi1(2
−j+1t), t ∈ R, j = 2, 3, . . . ,

ψk(x) =

d∏

i=1

ψiki(xi), x ∈ R
d, k ∈ N

d
0, (1.32)

Ψk = ψ̂k, k ∈ N
d
0.

To (given) functions φi0, φ
i
1, i = 1, . . . , d, we associate φk and Φk in the same way. Fur-

thermore, we suppose that ψk, φk ∈ XS(Rd) for some S ∈ N
d
0.

Using this notation we may state the main result of this section.

Theorem 1.20. Let a, r ∈ R
d, R ∈ N

d
0, 0 < p, q ≤ ∞ with a > 0 and r < R + 1. If

S > R is large enough and

Dlψi(0) = 0, i = 1, . . . , d, l = 0, 1, . . . , Ri, (1.33)
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and , for every i = 1, . . . , d and some ε > 0,

|φi0(t)| > 0 on {t ∈ R : |t| < ε}, (1.34)

|φi1(t)| > 0 on {t ∈ R : ε/2 < |t| < 2ε}, (1.35)

then

‖2k·r(Ψ∗
k
f)a | ℓq(Lp)‖ ≤ c‖2k·r(Φ∗kf)a | ℓq(Lp)‖, (1.36)

‖2k·r(Ψ∗
k
f)a |Lp(ℓq)‖ ≤ c‖2k·r(Φ∗kf)a |Lp(ℓq)‖, (1.37)

for all f ∈ (XS(Rd))′.

Proof. Step 1: formal calculations. It follows from (1.34) and (1.35) that there exist

functions {λij}∞j=0, i = 1, . . . , d, with

∞∑

j=0

λij(t)φ
i
j(t) = 1, t ∈ R, (1.38)

λij(t) = λi1(2
−j+1t), t ∈ R, j ∈ N, (1.39)

suppλi0 ⊂ {t ∈ R : |t| ≤ ε}, suppλij ⊂ {t ∈ R : 2j−2ε ≤ |t| ≤ 2jε}, j ∈ N. (1.40)

Now we define, as usual, λk(x) = λ1k1(x1) · · ·λdkd(xd) for every k ∈ N
d
0. From (1.38) we

obtain ∑

k∈Nd
0

λk(x)φk(x) = 1, x ∈ R
d.

Finally, we set Λk = λ̂k, k ∈ N
d
0. This gives us the following identities:

f =
∑

k∈Nd
0

Λk ∗ Φk ∗ f, Ψν ∗ f =
∑

k∈Nd
0

Ψν ∗ Λk ∗ Φk ∗ f, ν ∈ N
d
0. (1.41)

We have

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)| ≤
�

Rd

|(Ψν ∗ Λk)(z)| · |(Φk ∗ f)(y − z)| dz

≤ (Φ∗
k
f)a(y)

�

Rd

|(Ψν ∗ Λk)(z)|
d∏

i=1

(1 + |2kizi|ai) dz

≡ (Φ∗
k
f)a(y)Iνk = (Φ∗

k
f)a(y)

d∏

i=1

Iνiki , (1.42)

where

Iνiki =
�

R

|(Ψ iνi ∗ Λiki)(zi)|(1 + |2kizi|ai) dzi.

We claim that by Lemma 1.17,

Iνiki ≤ C
{
2(ki−νi)(Ri+1) if ki ≤ νi,
2(νi−ki)(ai+|ri|+1) if ki ≥ νi.

(1.43)
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Namely, we have (for 1 ≤ ki < νi) with the change of variables 2kizi → zi,

Iνiki =
1

2

�

R

|(Ψ iνi−ki ∗ Λi1(·/2))(zi)|(1 + |zi|ai) dzi

≤ c sup
z∈R
|(Ψ iνi−ki ∗ Λi1(·/2))(zi)|(1 + |zi|ai+2) ≤ c 2(ki−νi)(Ri+1),

when Si are chosen sufficiently large.

Analogously, for 1 ≤ νi < ki with the change of variables 2νizi → zi,

Iνiki ≤ 2(ki−νi)ai
�

R

|(Ψ i1 ∗ Λiki−νi)(zi)|(1 + |zi|ai) dzi

≤ c 2(νi−ki)(−ai+M+1),

where M may be taken as large as Si allows. Taking M > 2ai + |ri| (which is possible

for Si large enough), we get (1.43). This covers the cases where νi, ki ≥ 1, νi 6= ki. The

cases ki = νi ≥ 1, ki > νi = 0 and νi > ki = 0 can be treated separately in a similar way.

The needed moment conditions are always satisfied by (1.33) or (1.40), respectively. The

case ki = νi = 0 is covered by the constant C in (1.43).

Next, we point out that

(Φ∗
k
f)a(y) ≤ (Φ∗

k
f)a(x)

d∏

i=1

(1 + |2ki(xi − yi)|ai)

≤ c (Φ∗
k
f)a(x)

d∏

i=1

(1 + |2νi(xi − yi)|ai)max(1, 2(ki−νi)ai).

We put this into (1.42) and use (1.43) to get

sup
y∈Rd

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)|∏d
i=1(1 + |2νi(xi − yi)|ai)

≤ (Φ∗
k
f)a(x)

d∏

i=1

Iνiki max(1, 2(ki−νi)ai)

≤ c (Φ∗
k
f)a(x)

d∏

i=1

{
2(ki−νi)(Ri+1) if ki ≤ νi,
2(νi−ki)(|ri|+1) if ki ≥ νi.

This inequality, together with (1.41) and (1.42), gives for

δ = min{1, Ri + 1− ri; i = 1, . . . , d} > 0

the estimate

2ν·r(Ψ∗ν f)a(x) ≤ c
∑

k∈Nd
0

2−|k−ν|δ2k·r(Φ∗
k
f)a(x), ν ∈ N

d
0, x ∈ R

d.

Lemma 1.18 now gives the desired result immediately.

Step 2: theoretical background. In Step 1 we did not take care about problems caused

by limited smoothness of the functions ψij , φ
i
j not to disturb the elegant calculation done

there. Nevertheless, to complete the proof, we have to fill some gaps. We go through the

proof of Step 1 once more and discuss the theoretical aspects of the calculation.

• Functions λij . By the choice λij(t) = ϕj(3t/2ε)/φ
i
j(t) we ensure (1.38)–(1.40). The

functions ϕj , j ∈ N0, were fixed at the beginning of Section 1.3. By (1.34) and (1.35)

we get λk ∈ XS(Rd).



Function spaces with dominating mixed smoothness 19

• Identities (1.41). First, we point out that the expression Λk ∗ Φk ∗ f is well defined

for every k ∈ N
d
0. As the function λk = Λ∨

k
has compact support, we have Λk ∗ Φk =

(λkφk)
∧ ∈ XS(Rd). The same holds for Ψν ∗ Λk ∗ Φk.

Next we prove the convergence of both sums in (1.41) for every f ∈ (XS(Rd))′ and

every ν ∈ N
d
0 in (XS(Rd))′. By duality arguments, it is enough to prove that

∑

k∈Nd
0

ψνλkφkµ→ ψνµ, ν ∈ N
d
0,

in XS(Rd) for every µ ∈ XS(Rd). This follows from (1.38) and (1.40).

Finally, to pass from (1.41) to (1.42), we have to ensure that (1.41) converges also

pointwise. More precisely, we need to prove

|(Ψν ∗ f)(y)| ≤
∑

k∈Nd
0

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)| (1.44)

for all ν ∈ N
d
0 and almost all y ∈ R

d.

Fix ν ∈ N
d
0 and let fk(y) = (Ψν ∗ Λk ∗ Φk ∗ f)(y). Then we know from (1.42) that

|fk(y)| ≤ (Φ∗
k
f)a(y)Iνk, y ∈ R

d.

By (1.43) (and by Hölder’s inequality for q > 1)
∑

k∈Nd
0

‖fk |Lp(Rd)‖ ≤ c‖2k·r(Φ∗kf)a | ℓq(Lp)‖.

So, whenever the right-hand side of (1.36) is finite, we obtain the Lp-convergence of

the series
∑
k∈Nd

0
|fk|. Hence, this series converges in the Lebesgue measure as well

and therefore also pointwise almost everywhere. We recommend [19] as far as various

types of convergence of sequences of functions are concerned. So, whenever the right-

hand side of (1.36) is finite, we get (1.44).

When the right-hand side of (1.37) is finite, we use

‖2k·r(Φ∗
k
f)a | ℓmax(p,q)(Lp)‖ ≤ c‖2k·r(Φ∗kf)a |Lp(ℓq)‖

and apply the same arguments as above.

Remark 1.21. The conditions (1.33) are usually called moment conditions while (1.34)

and (1.35) are Tauberian conditions.

1.3.4. Boundedness of the Peetre maximal operator. In this subsection we describe the

boundedness of the Peetre maximal operator in the framework of weighted Lp(ℓq) and

ℓq(Lp) spaces. We use the notation explained at the beginning of Section 1.3.3. In

particular, we still suppose that the functions ψk, k ∈ N
d
0, belong to the space XS(Rd),

where the vector S will be specified later on. Our main result now is

Theorem 1.22. Let a, r ∈ R
d, 0 < p, q ≤ ∞. Suppose that for every i = 1, . . . , d,

|ψi0(t)| > 0 on {t ∈ R : |t| < ε}, (1.45)

|ψi1(t)| > 0 on {t ∈ R : ε/2 < |t| < 2ε}. (1.46)
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(i) If a > 1/p and S > 0 is large enough then

‖2k·r(Ψ∗
k
f)a | ℓq(Lp)‖ ≤ c‖2k·r(Ψk ∗ f) | ℓq(Lp)‖ (1.47)

for all f ∈ (XS−a−1(Rd))′.

(ii) If a > 1/min(p, q) and S > 0 is large enough then

‖2k·r(Ψ∗
k
f)a |Lp(ℓq)‖ ≤ c‖2k·r(Ψk ∗ f) |Lp(ℓq)‖ (1.48)

for all f ∈ (XS−a−1(Rd))′.

Proof. In analogy to (1.38)–(1.40) we find functions {λij}∞j=0, i = 1, . . . , d, with (1.39),

(1.40) and
∞∑

j=0

λij(t)ψ
i
j(t) = 1, t ∈ R. (1.49)

Instead of (1.41) we now get the identity

f =
∑

k∈Nd
0

Λk ∗ Ψk ∗ f.

A dilation t 7→ 2−νit in (1.49) leads to

Ψν ∗ f =
∑

k∈Nd
0

Λk,ν ∗ Ψk,ν ∗ Ψν ∗ f, ν ∈ N
d
0, (1.50)

where

Λk,ν(ξ) = [λk(2
−ν ·)]∧(ξ) = 2|ν|Λk(2

νξ), k, ν ∈ N
d
0.

Ψk,ν is defined similarly. We recall that 2νξ = (2ν1ξ1, . . . , 2
νdξd). Hence, for k ≥ 1 and

ν ∈ N
d
0, we obtain Ψk,ν = Ψk+ν . To simplify the notation, we point out that

ψk(2
−νx)ψν(x) = σk,ν(x)ψk+ν(x), k, ν ∈ N

d
0,

where

σk,ν(x) =

d∏

i=1

σiki,νi(xi), σiki,νi(xi) =

{
ψiνi(xi) if ki > 0,

ψi0(2
−νixi) if ki = 0.

Hence we may rewrite (1.50) as

Ψν ∗ f =
∑

k∈Nd
0

Λk,ν ∗ σ̂k,ν ∗ Ψk+ν ∗ f, ν ∈ N
d
0. (1.51)

By Lemma 1.17,

|(Λk,ν ∗ σ̂k,ν)(z)| ≤ CN2|ν|
2−k·N

∏d
i=1(1 + |2νizi|ai)

for k, ν ∈ N
d
0 with any N ≤ S − 2. The last estimate, together with (1.51), gives

|(Ψν ∗ f)(y)| ≤ CN2|ν|
∑

k∈Nd
0

�

Rd

2−k·N
∏d
i=1(1 + |2νi(yi − zi)|ai)

|(Ψk+ν ∗ f)(z)| dz (1.52)
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Fix now any s ∈ (0, 1]. Divide both sides of (1.52) by
∏d
i=1(1+ |2νi(xi− yi)|ai), take the

supremum over y ∈ R
d and apply the inequalities

(1 + |2νi(yi − zi)|ai)(1 + |2νi(xi − yi)|ai) ≥ c(1 + |2νi(xi − zi)|ai),

|(Ψk+ν ∗ f)(z)| ≤ |(Ψk+ν ∗ f)(z)|s(Ψ∗k+νf)a(x)
1−s

d∏

i=1

(1 + |2ki+νi(xi − zi)|ai)1−s,

(1 + |2ki+νi(xi − zi)|ai)1−s
(1 + |2νi(xi − zi)|ai)

≤ 2kiai

(1 + |2ki+νi(xi − zi)|ai)s
.

Finally, we get

(Ψ∗ν f)a(x) ≤ cN
∑

k∈Nd
0

2k·(a−N−1)(Ψ∗
k+ν

f)a(x)
1−s

�

Rd

2|k+ν||(Ψk+ν ∗ f)(z)|s∏d
i=1(1 + |2ki+νi(xi − zi)|ai)s

dz,

and apply Lemma 1.19 with

γν = (Ψ∗ν f)a(x), βν =
�

Rd

2|ν||(Ψν ∗ f)(z)|s∏d
i=1(1 + |2νi(xi − zi)|ai)s

dz, ν ∈ N
d
0,

N1 = S − a− 1 and N0 giving the order of the distribution f , which is finite for S =∞
and smaller than S if S is finite.

By Lemma 1.19, we obtain, for every N ≤ S − a− 1, x ∈ R
d and ν ∈ N

d
0,

(Ψ∗ν f)a(x)
s ≤ CN

∑

k∈Nd
0

2−k·Ns
�

Rd

2|k+ν||(Ψk+ν ∗ f)(z)|s∏d
i=1(1 + |2ki+νi(xi − zi)|ai)s

dz. (1.53)

We point out that (1.53) holds for s > 1 as well with much simpler proof. In that case,

we take (1.52) with a + 1 instead of a, divide by
∏d
i=1(1 + |2νi(xi − yi)|ai) and apply

Hölder’s inequality for series and integrals.

We now choose s > 0 with 1/ai < s < p (or 1/ai < s < min(p, q), respectively) for

every i = 1, . . . , d. Then
1

∏d
i=1(1 + |zi|)ais

∈ L1(R
d),

and by the majorant property of the Hardy–Littlewood maximal operator M (see [28,

Chapter 2]) it follows that

(Ψ∗ν f)a(x)
s ≤ C ′

N

∑

k∈Nd
0

2−k·NsM(|Ψk+ν ∗ f |s)(x). (1.54)

We choose N > 0 such that N > −r and set

gk(x) = 2k·rsM(|Ψk ∗ f |s)(x).

Then from (1.54) we get

Gν(x) = 2ν·rs(Ψ∗ν f)a(x)
s ≤ C ′

N

∑

k≥ν

2s(k−ν)(−N−r)gk(x).
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Hence, for 0 < δ < min{Ni+ri | i = 1, . . . , d}, we may apply Lemma 1.18 with Lp/s(ℓq/s)

and ℓq/s(Lp/s) norm respectively. This results in

‖2k·rs(Ψ∗
k
f)a(x) | ℓq/s(Lp/s)‖ ≤ c‖2k·rsM(|Ψk ∗ f |s)(x) | ℓq/s(Lp/s)‖ (1.55)

and

‖2k·rs(Ψ∗
k
f)a(x) |Lp/s(ℓq/s)‖ ≤ c‖2k·rsM(|Ψk ∗ f |s)(x) |Lp/s(ℓq/s)‖. (1.56)

In the first case, we rewrite the left-hand side of (1.55) and use the classical Hardy–

Littlewood Theorem (see (1.12) for details, we recall that s < p) to obtain

‖2k·r(Ψ∗
k
f)a(x) | ℓq(Lp)‖ ≤ c‖2k·r(Ψk ∗ f)(x) | ℓq(Lp)‖.

In the second case, we rewrite the left-hand side of (1.56) and use Theorem 1.11 (now

we recall that s < min(p, q)) to get

‖2k·r(Ψ∗
k
f)a(x) |Lp(ℓq)‖ ≤ c‖2k·r(Ψk ∗ f)(x) |Lp(ℓq)‖,

which concludes the proof.

1.3.5. Local means characterisation. We summarise Sections 1.3.3 and 1.3.4 and give the

usual formulation of the local means characterisation. We still use the tensor construction

of functions ψk described at the beginning of Section 1.3.3. The spaces XS(Rd) and the

Peetre maximal function (Ψ∗
k
f)a were defined in Section 1.3.1. We still suppose that

ψi0, ψ
i
1 ∈ XS(Rd), where the vector S will be specified later on.

Theorem 1.23. (i) Let 0 < p, q ≤ ∞, r, a ∈ R
d, R,S ∈ Z

d with r ≤ R+ 1 and a > 1/p.

If S > R is large enough and

Dαψi1(0) = 0, i = 1, . . . , d, α = 0, 1, . . . , Ri, (1.57)

and

|ψi0(t)| > 0 on {t ∈ R : |t| < ε}, (1.58)

|ψi1(t)| > 0 on {t ∈ R : ε/2 < |t| < 2ε} (1.59)

for some ε > 0, then

‖f |Srp,qB(Rd)‖ ≈ ‖2k·r(Ψk ∗ f) | ℓq(Lp)‖ ≈ ‖2k·r(Ψ∗kf)a | ℓq(Lp)‖

for all f ∈ (XS−a−1(Rd))′.

(ii) Let 0 < p <∞, 0 < q ≤ ∞, r, a ∈ R
d, R,S ∈ Z

d with r ≤ R+1 and a > 1/min(p, q).

If S > R is large enough, and (1.57)–(1.59) are satisfied , then

‖f |Srp,qF (Rd)‖ ≈ ‖2k·r(Ψk ∗ f) |Lp(ℓq)‖ ≈ ‖2k·r(Ψ∗kf)a |Lp(ℓq)‖

for all f ∈ (XS−a−1(Rd))′.

Remark 1.24. 1. Theorem 1.23 is just a reformulation of Theorems 1.20 and 1.22.

2. In the proof of Theorems 1.20 and 1.22 we followed essentially the approach described

in [25]. We point out that recently very similar results were obtained in [3].

3. We may set S = ∞ in Theorem 1.23. Then one obtains equivalent quasinorms on

S′(Rd). By choosing S large, but finite, we may always ensure that the new quasinorms

are equivalent at least on Srp,qA(R
d) ⊂ (XS−a−1(Rd))′.
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Next we reformulate Theorem 1.23 using the local means in the sense of [33].

Theorem 1.25. Let 0 < p, q ≤ ∞ (with p < ∞ in the F -case), r ∈ R
d, S1, S2 ∈ N

d
0

with S1 − S2 > 1/p + 1 in the B-case and S1 − S2 > 1/min(p, q) + 1 in the F-case. Let

R ∈ N
d
0 be a vector of d nonnegative integers with R > r. Further let k0, k

1, . . . , kd be

complex-valued functions from XS1

(R) whose supports lie in the set {t ∈ R : |t| < 1} and
F1(k0)(0) 6= 0, F1(k

i)(0) 6= 0, i = 1, . . . , d. (1.60)

Define

ki0(t) = k0(t). kin(t) = 2n
(
dRi

dtRi
ki
)
(2nt), i = 1, . . . , d, n ∈ N, t ∈ R.

As usual , denote by kν(x) = k1ν1(x1) · · · kdνd(xd), ν = (ν1, . . . , νd) ∈ N
d
0, the tensor product

of these functions. The corresponding local means are defined by

kν(f)(x) =
�

Rd

kν(y)f(x+ y) dy, ν ∈ N
d
0, x ∈ R

d, (1.61)

appropriately interpreted for any f ∈ (XS1

(Rd))′. Then, if S2 is large enough,

‖2ν·rkν(f) |Lp(ℓq)‖ ≈ ‖f |Srp,qF (Rd)‖, f ∈ (XS2

(Rd))′, (1.62)

and

‖2ν·rkν(f) | ℓq(Lp)‖ ≈ ‖f |Srp,qB(Rd)‖, f ∈ (XS2

(Rd))′. (1.63)

Proof. Put ψi0 = F−11 k0 and ψi1 = F−11

(
dRi

dtRi
ki
)
. Then the Tauberian conditions (1.58)

and (1.59) are satisfied and (1.57) is also true. If we define ψν , ν ∈ N
d
0, as in (1.32), we

get

(ψν f̂)
∨(x) = c

�

Rd

(ψν)
∨(y)f(x− y) dy = c

�

Rd

(Fψν)(y)f(x+ y) dy (1.64)

= c
�

Rd

( d∏

i=1

(F1ψ
i
νi)(yi)

)
f(x+ y) dy.

Finally, if νi = 0 we get (F1ψ
i
0)(yi) = ki0(yi), and if νi ≥ 1 we obtain in a similar way

(F1ψ
i
νi)(yi) = (F1(ψ

i(2−νi ·)))(yi) = 2νi(F1ψ
i)(2νiyi) = 2νi

(
dRi

dtRi
ki
)
(2νiyi) = kiνi(yi).

Using this calculation and (1.64) we get

(ψν f̂)
∨(x) =

�

Rd

kν(y)f(x+ y) dy, ν ∈ N
d
0, x ∈ R

d,

and the theorem follows.

Remark 1.26. We point out that S1 = S2 =∞ is allowed in Theorem 1.25.

We shall need some other modifications of Theorem 1.23. But first we give some

necessary notation. For ν ∈ N
d
0 and m ∈ Z

d we denote by Qν m the cube with centre at

2−νm = (2−ν1m1, . . . , 2
−νdmd) and with sides parallel to coordinate axes and of lengths

2−ν1 , . . . , 2−νd . Hence

Qν m = {x ∈ R
d : |xi − 2−νimi| ≤ 2−νi−1, i = 1, . . . , d}, ν ∈ N

d
0, m ∈ Z

d. (1.65)
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If γ > 0 then γQν m denotes the cube concentric with Qν m with sides also parallel to

coordinate axes and of lengths γ2−ν1 , . . . , γ2−νd .

Defining the Peetre maximal function by (1.17), we get

(Ψ∗ν f)a(x) ≥ c sup
x−y∈γQν,0

|(Ψν ∗ f)(y)|, ν ∈ N
d
0, x ∈ R

d,

where the constant c depends on a, γ > 0 but neither on x nor on ν. This very simple

observation together with Theorem 1.23 gives the following

Theorem 1.27. Let r ∈ R
d and 0 < p, q ≤ ∞ (p < ∞ in the F -case). Let R ∈ N

d
0 with

R > r, S1, S2 ∈ N
d
0 and kν be as in Theorem 1.25. Then, for any γ > 0,

∥∥∥
(∑

ν∈Nd
0

2qν·r sup
x−y∈γQν ,0

|kν(f)(y)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥ ≈ ‖f |Srp,qF (Rd)‖, f ∈ (XS2

(Rd))′,

(1.66)

and
(∑

ν∈Nd
0

2qν·r‖ sup
x−y∈γQν ,0

|kν(f)(y)| |Lp(Rd)‖q
)1/q

≈ ‖f |Srp,qB(Rd)‖, f ∈ (XS2

(Rd))′.

(1.67)

Another modification of Theorem 1.23 is rather technical and deals with “directional”

local means, namely with local means of the form (d = 2)
�

R

k1ν1(y1)f(x1 + y1, x2) dy1.

To introduce these local means in the general dimension, we define for every A ⊂
{1, . . . , d},

kν,A(f)(x) =
�

R|A|

(∏

i∈A

kiνi(yi)
)
f(x1 + y1χA(1), . . . , xd + ydχA(d))

(∏

i∈A

dyi

)
. (1.68)

This means that we restrict the integration in (1.61) to those variables yi for which i ∈ A.
The others are left unchanged.

Using this notation, we may state our next lemma.

Lemma 1.28. Let 0 < p <∞, 0 < q ≤ ∞, A ⊂ {1, . . . , d} and γ > 0. Let r ∈ R
d be such

that ri > 1/min(p, q) for i 6∈ A. Let Ri ∈ N0 and kiν be as in Theorem 1.25 for every

i ∈ A. Further let kν,A(f) be defined by (1.68). Then

∥∥∥
( ∑

ν∈Nd
0

νi=0, i6∈A

2qν·r sup
x−y∈γQν,0

|kν,A(f)(y)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥ ≤ c‖f |Srp,qF (Rd)‖ (1.69)

for every f ∈ Srp,qF (Rd). The sum is taken over all ν = (ν1, . . . , νd) ∈ N
d
0 with νi = 0

whenever i 6∈ A. The Lp-quasinorm is then taken with respect to x.

Remark 1.29. There is again a direct analogue of this lemma for the B-scale and for

nonsmooth kernels. The proof follows the proof of Theorem 1.23.
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2. Decomposition theorems

In this chapter we present three decomposition theorems. We give atomic, subatomic and

wavelet decomposition characterisations of spaces with dominating mixed smoothness.

But first of all we explain some notation used in connection with sequence spaces.

2.1. Sequence spaces. We recall that for ν ∈ N
d
0 and m ∈ Z

d we denote by Qν m the

cube with centre at 2−νm = (2−ν1m1, . . . , 2
−νdmd) and with sides parallel to coordinate

axes and of lengths 2−ν1 , . . . , 2−νd . By χ
(p)
ν m we denote the p-normalised characteristic

function of Qν m, that is, χ
(p)
ν m(x) = 2|ν|/pχQν m

(x). Furthermore, we write χν m(x) =

χQν m
(x).

Definition 2.1. If 0 < p, q ≤ ∞, r ∈ R
d and

λ = {λν m ∈ C : ν ∈ N
d
0, m ∈ Z

d} (2.1)

then we define

srp,qb =
{
λ : ‖λ | srp,qb‖ =

(∑

ν∈Nd
0

2ν·(r−1/p)q
( ∑

m∈Zd

|λν m|p
)q/p)1/q

<∞
}

(2.2)

and

srp,qf =
{
λ : ‖λ | srp,qf‖ =

∥∥∥
(∑

ν∈Nd
0

∑

m∈Zd

|2ν·rλν mχν m(·)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥ <∞
}

(2.3)

with the usual modification for p and/or q equal to ∞.

Remark 2.2. We point out that with λ given by (2.1) and gν(x) =
∑
m∈Zd λν mχν m(x),

we obtain

‖λ | srp,qb‖ = ‖2ν·rgν | ℓq(Lp)‖, ‖λ | srp,qf‖ = ‖2ν·rgν |Lp(ℓq)‖.
Sequence spaces of this kind were denoted by Edis in [14] and may be viewed as a discrete

version of Srp,qF (R
d) and Srp,qB(Rd).

2.2. Atomic decomposition

Definition 2.3. Let K ∈ N
d
0, L+1 ∈ N

d
0, and γ > 1. A K-times differentiable complex-

valued function a is called a [K,L]-atom centred at Qν m if

supp a ⊂ γQν m, (2.4)

|Dαa(x)| ≤ 2α·ν for 0 ≤ α ≤ K (2.5)

and �

R

xjia(x) dxi = 0 if i = 1, . . . , d; j = 0, . . . , Li and νi ≥ 1. (2.6)

Using this notation we may state the atomic decomposition theorem.

Theorem 2.4. Let 0 < p, q ≤ ∞ (p < ∞ in the F -case) and r ∈ R
d. Fix K ∈ N

d
0 and

L+ 1 ∈ N
d
0 with

Ki ≥ (1 + [ri])+, Li ≥ max(−1, [σpq − ri]), i = 1, . . . , d (2.7)

(Li ≥ max(−1, [σp − ri]) in the B-case).
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(i) If λ ∈ srp,qa and {aν m(x)}ν∈Nd
0 ,m∈Z

d are [K,L]-atoms centred at Qν m, then the sum

∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x) (2.8)

converges in S′(Rd), its limit f belongs to the space Srp,qA(R
d) and

‖f |Srp,qA(Rd)‖ ≤ c‖λ | srp,qa‖, (2.9)

where the constant c is universal for all admissible λ and aν m.

(ii) For every f ∈ Srp,qA(R
d) there is a λ ∈ srp,qa and [K,L]-atoms centred at Qν m

(denoted again by {aν m(x)}ν∈Nd
0 ,m∈Z

d) such that the sum (2.8) converges in S′(Rd) to f

and

‖λ | srp,qa‖ ≤ c‖f |Srp,qA(Rd)‖. (2.10)

The constant c is again universal for every f ∈ Srp,qA(Rd).

Proof. We give the proof only for the F -case. The proof for the B-scale is very similar.

Step 1. First of all we prove the convergence of (2.8) in S′(Rd). Let ϕ ∈ S(Rd). We use

the Taylor expansion of ϕ with respect to the first variable,

ϕ(y) =
∑

α1≤L1

D(α1,0,...,0)ϕ(2−ν1m1, y2, . . . , yd)

α1!
(y1 − 2ν1m1)

α1 (2.11)

+
1

L1!

y1�

2−ν1m1

(t1 − 2−ν1m1)
L1D(L1+1,0,...,0)ϕ(t1, y2, . . . , yd) dt1,

and (2.6) to obtain
�

Rd

aν m(y)ϕ(y) dy

=
�

Rd

aν m(y)

L1!

y1�

2−ν1m1

(t1 − 2−ν1m1)
L1D(L1+1,0,...,0)ϕ(t1, y2, . . . , yd) dt1 dy. (2.12)

Using an analogue of (2.11) iteratively for the remaining d− 1 variables we see that the

left-hand side of (2.12) is equal to

�

Rd

aν m(y)

L!

y1�

2−ν1m1

. . .

yd�

2−νdmd

d∏

i=1

(ti − 2−νimi)
LiDL+1ϕ(t1, . . . , td) dt dy.

Using the support property (2.4) of aν m we may estimate the absolute value of the inner

d-dimensional integral from above by (y ∈ γQν m)

c 2−ν·(L+1) sup
x∈γQν m

|(DL+1ϕ)(x)| ≤ cM2−ν·(L+1)〈y〉−M sup
x∈γQν m

〈x〉M |(DL+1ϕ)(x)|,

where M is at our disposal. Here we write 〈x〉 = (1 + |x|2)1/2 for x ∈ R
d.

Now suppose that p ≥ 1 and use (2.5) and Hölder’s inequality to get, for M large

enough,
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∣∣∣
�

Rd

∑

m∈Zd

λν maν m(y)ϕ(y) dy
∣∣∣

≤ c 2−ν·(L+1)2−ν·(1/p) sup
x∈Rd

〈x〉M |(DL+1ϕ)(x)|
�

Rd

( ∑

m∈Zd

2ν·(1/p)|λν m|χγQν m
(y)

)
〈y〉−M dy

≤ c 2−ν·(r+L+1) · 2ν·(r−1/p)
( ∑

m∈Zd

|λν m|p
)1/p

· sup
x∈Rd

〈x〉M |(DL+1ϕ)(x)|.

As λ ∈ srpqf ⊂ srp,∞b and r + L+ 1 > 0, the convergence of (2.8) in S′(Rd) now follows.

If p < 1, we get a similar estimate
∣∣∣
�

Rd

∑

m∈Zd

λν maν m(y)ϕ(y) dy
∣∣∣
p

≤ c 2−ν·(L+1)p sup
x∈Rd

|(DL+1ϕ)(x)|p
∑

m∈Zd

|λν m|p
∣∣∣
�

Rd

χγQν m
(y) dy

∣∣∣
p

≤ c 2−ν·(r+L+1−1/p+1)p sup
x∈Rd

|(DL+1ϕ)(x)|p
∑

m∈Zd

2ν·(r−1/p)p|λν m|p.

In this case we use the fact that r+L+1−1/p+1 > 0 and the embedding srp,qf ⊂ srp,∞b.

Step 2. Next we prove (2.9). We use the equivalent quasinorms in Srp,qF (R
d) given by

(1.62). Choose R > K and define the functions kl for l ∈ N
d
0 as in Theorem 1.25. Then

for all l, ν ∈ N
d
0 and all m ∈ Z

d we have

2l·rkl(aν m)(x) = 2l·r
�

Rd

k1l1(y1) · · · kdld(yd)aν m(x+ y) dy. (2.13)

Further calculation depends on the size of the supports of kl and aν m. Hence we have to

distinguish between li ≥ νi and li < νi. This leads to 2d cases. We describe the first one

(l ≥ ν) and the last one (l < ν) in full detail and then we discuss the “mixed” cases.

I. l ≥ ν. We suppose that l > 0. This only simplifies the notation, the terms with

li = νi = 0 may be incorporated afterwards. We use the definition of kili and perform

partial integration (Ki-times in the ith variable) to obtain

2l·rkl(aν m)(x) = 2l·(r+1)
�

Rd

d∏

i=1

(
dRi

dtRi
ki
)
(2liyi)aν m(x+ y) dy

= 2l·r
�

Rd

d∏

i=1

(
dRi

dtRi
ki
)
(yi)aν m(x1 + 2−l1y1, . . . , xd + 2−ldyd) dy

= 2l·(r−K)
�

Rd

d∏

i=1

(
dRi−Ki

dtRi−Ki
ki
)
(yi)(D

Kaν m)(x1 + 2−l1y1, . . . , xd + 2−ldyd) dy.

Next we use the smoothness of ki, the boundedness of their supports and the properties

(2.4) and (2.5) to estimate the absolute value of this expression:
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2l·r|kl(aν m)(x)| ≤ c2l·(r−K)2ν·K ·

·
�

Rd

( d∏

i=1

χsupp ki(yi)
)
χγQν m

(x1 + 2−l1y1, . . . , xd + 2−ldyd) dy.

As supp ki ⊂ {t ∈ R : |t| ≤ 1}, i = 1, . . . , d, it follows that

2l·r|kl(aν m)(x)| ≤ c2−(K−r)(l−ν)2ν·(r−1/p)χ(p)
γQν m

(x). (2.14)

II. l < ν. The integration in (2.13) may be restricted to {y : |yi| ≤ 2−li}. We use the

Taylor expansion of kili(yi) with respect to the off-points 2−νimi − xi up to order Li,

2−likili(yi) =
∑

0≤βi≤Li

ciβi
(xi)(yi − 2−νimi + xi)

βi + 2li(Li+1)O(|xi + yi − 2−νimi|Li+1),

(2.15)

and (2.6) to get

2l·rkl(aν m)(x) = 2l·(r+1)
�

{y : |yi|≤2−li}

aν m(x+y)
d∏

i=1

2li(Li+1)O(|xi+yi−2−νimi|Li+1) dy.

Since |aν m(x+ y)| ≤ χγQν m
(x+ y) we obtain

2l·r|kl(aν m)(x)| ≤ c 2l·(r+1)2(l−ν)·(L+1)
�

{y : |yi|≤2−li}

χγQν m
(x+ y) dy. (2.16)

The last integral is always smaller than c 2−|ν| and is zero if {y : x + y ∈ γQν m} ∩ {y :

|yi| ≤ 2−li} = ∅. Hence
�

{y : |yi|≤2−li}

χγQν m
(x+ y) dy ≤ c 2−|ν|χc2ν−lQν m

(x). (2.17)

But the last expression may be estimated from above by the use of maximal operators

Mi defined by (1.14),

2−|ν−l|χc2ν−lQν m
(x) ≤ c (Mχν m)(x). (2.18)

Let 0 < ω < min(1, p, q). Taking the (1/ω)th power of (2.18) and inserting it in (2.17)

we obtain �

{y : |yi|≤2−li}

χγQν m
(x+ y) dy ≤ c 2−|ν|2|ν−l|/ω(Mχν m)1/ω(x). (2.19)

Next we replace χν m by χ
(p)
ν m in (2.19) and insert it in (2.16):

2l·r|kl(aν m)(x)| ≤ c 2(l−ν)·(r+1+L+1−1/ω)2ν·(r−1/p)(Mχ
(p)ω
ν m )1/ω(x).

By (2.7) and (1.4) we may choose the number ω such that κ = (r+1+L+1− 1/ω) > 0.

III. Mixed terms. We estimate for example the term with l1 ≥ ν1, li < νi, i = 2, . . . , d.

First we apply (2.15) for i = 2, . . . , d and use (2.6) to get rid of the terms with β ≤ L.

Then we use K1 partial integrations in the first variable. In the expression we get we use
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again the support properties of the functions involved and (2.5) to obtain

2l·r|kl(aν m)(x)| ≤ 2ν·r2(l1−ν1)(r1−K1)2
∑d

i=2(li(ri+1)+(li−νi)(Li+1)−νiri)

·
�

Al

χγQν m
(x1 + 2−l1y1, x2 + y2, . . . , xd + yd) dy,

where Al = {y ∈ R
d : |y1| ≤ 1, |yi| ≤ 2−li , i = 2, . . . , d}. Due to the product structure

of the integrated function we may split the last integral into a one-dimensional integral

with respect to dy1 and a (d−1)-dimensional integral with respect to the remaining vari-

ables. The first integral may then be estimated from above by cχ{t : |t−2−ν1m1|≤2−νi}(x1).

Finally, we use the maximal operators Mi, i = 2, . . . , d, to estimate the second inte-

gral. Exactly as in the second step, it turns out that there is some vector ̺ > 0 such

that

2l·r|kl(aν m)(x)| ≤ c 2−
∑d

i=1 |li−νi|̺i2ν·(r−1/p)(Mχ
(p)ω
ν m )1/ω(x). (2.20)

Observe that also (2.14) may be estimated from above by the right-hand side of (2.20).

Hence the estimate (2.20) is valid for all l, ν ∈ N
d
0.

Using this estimate, we get for q ≤ 1,

∣∣∣2l·rkl
(∑

ν,m

λν maν m

)
(x)

∣∣∣
q

≤ c
∑

ν,m

|λν m|q2ν·(r−1/p)q2−q
∑d

i=1 |li−νi|̺i(Mχ
(p)ω
ν m )q/ω(x).

For q > 1, the same estimate is justified by Hölder’s inequality.

We sum over l, take the (1/q)th power and then apply the Lp-quasinorm with respect

to x. Setting gν m = 2ν·(r−1/p)λν mχ
(p)
ν m we arrive at

∥∥∥
(∑

l∈Nd
0

∣∣∣2l·rkl
(∑

ν,m

λν maν m

)
(x)

∣∣∣
q)1/q ∣∣∣Lp(Rd)

∥∥∥

≤ c
∥∥∥
(∑

ν,m

2ν·(r−1/p)q|λν m|q(Mχ
(p)ω
ν m )q/ω(x)

)1/q ∣∣∣Lp(Rd)
∥∥∥

= c
∥∥∥
(∑

ν,m

(Mgων m)q/ω(x)
)ω/q ∣∣∣Lp/ω(Rd)

∥∥∥
1/ω

.

Using Theorem 1.11 and the definition of ω, we see that this expression may be estimated

from above by c‖λ | srp,qf‖. On the other hand, from Theorem 1.23, this already ensures

that f belongs to Srp,qF (R
d) and proves (2.9).

Step 3. It remains to prove (ii). Assume first that

L = −1, K > r, r > σpq, 0 < p <∞, 0 < q ≤ ∞. (2.21)

Furthermore, let N ∈ N
d
0 be a vector of integers with N > r. According to the construc-

tion in [34, p. 68], we may find functions k0, k
1, . . . , kd such that
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k0, k
1, . . . , kd ∈ S(R); (2.22)

supp k0, supp k
i ⊂ {t ∈ R : |t| ≤ 1}, i = 1, . . . , d; (2.23)

1 = F1(k0)(ξ) +
∞∑

νi=1

F1( d
Niki)(2−νiξ), ξ ∈ R, i = 1, . . . , d; (2.24)

F1k0(0) = 1; (2.25)

F1( d
Niki)(ξ) = (F1k0)(ξ)− (F1k0)(2ξ), ξ ∈ R, i = 1, . . . , d. (2.26)

We define kl(x) and kl(f)(x) as in Theorem 1.25. We claim that then

f =
∑

l∈Nd
0

kl(f)(x) = lim
P→∞

∑

l≤P

kl(f), convergence in S′(Rd). (2.27)

To prove this, fix ϕ ∈ S(Rd). Since the Fourier transform is an isomorphic mapping from

S′(Rd) onto itself and

(kl(f))
∧(ξ) =

( d∏

i=1

F1(k
i
li)(−ξi)

)
f̂(ξ),

it is enough to show that

ϕ(ξ)
∑

l≤P

( d∏

i=1

F1(k
i
li)(−ξi)

)
→ ϕ(ξ) in S(Rd). (2.28)

The last sum may be rewritten using (2.26) as

∑

l≤P

( d∏

i=1

F1(k
i
li)(−ξi)

)
=

d∏

i=1

(
(F1k0)(−ξi) +

P∑

li=1

(F1( d
Niki))(−2−liξi)

)

=

d∏

i=1

(F1k0)(−2−P ξi).

We denote the last expression by 1 − Φ(2−P ξ) and fix M ∈ N. Using the fact that

ϕ ∈ S(Rd) we obtain

pM (ϕ(ξ)Φ(2−P ξ)) ≤ c sup
0≤α,β≤M
ξ∈Rd

2−P ·β(Dαϕ)(ξ)(DβΦ)(2−P ξ)

d∏

i=1

〈ξi〉M

≤ c sup
0≤β≤M
ξ∈Rd

2−P ·β(DβΦ)(2−P ξ)
d∏

i=1

〈ξi〉−1

where the constant c does not depend on P (but depends on M). Here pM are the func-

tionals defining the topology on S(Rd), namely pM (ϕ) = sup0≤α≤M,x∈Rd |Dαϕ(x)|〈x〉M .
If at least one βi > 0, then this expression tends to zero as P → ∞. If β = 0,

then we split the supremum into sup|ξ|≥2P and sup|ξ|<2P . The first supremum may be

estimated from above by c2−P . To estimate the second one, we notice that |Φ(ξ)| ≤ c|ξ|
in {ξ : |ξ| ≤ 1}. Hence
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c sup
|ξ|≤2P

Φ(2−P ξ)

d∏

i=1

〈ξi〉−1 ≤ c sup
ξ∈Rd

2−P |ξ|
〈ξ〉

and pM (ϕ(ξ)Φ(2−P ξ))→ 0 as P →∞. This proves (2.28) and, consequently, also (2.27).

Next we find a nonnegative function ψ which satisfies

ψ ∈ S(R), suppψ is compact and
∑

m∈Zd

ψ(x−m) = 1 for x ∈ R
d, (2.29)

and we define for ν ∈ N
d
0 and m ∈ Z

d the function ψν m(x) = ψ(2νx−m). Then there is

a γ such that

suppψν m ⊂ γQν m, ν ∈ N
d
0, m ∈ Z

d. (2.30)

We multiply (2.27) by these decompositions of unity and obtain

f =
∑

ν∈Nd
0

∑

m∈Zd

ψν m(x)kν(f)(x) =
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x), (2.31)

where

λν m =
∑

0≤α≤K

sup
y∈γQν m

|Dα[kν(f)](y)|, aν m(x) = λ−1ν mψν m(x)kν(f)(x).

(If some λν m = 0, then we take aν m(x) = 0 as well.) It follows that aν m are [K,L]-

atoms centred at Qν m. The properties (2.4) and (2.6) are satisfied trivially (recall that

L = −1), and the property (2.5) is fulfilled up to some constant c independent of ν, m

and x. To prove that this decomposition satisfies (2.10), write

‖λ|srp,qf‖ ≤ c
∑

0≤α≤K

∥∥∥
(∑

ν∈Nd
0

∑

m∈Zd

2ν·rq2ν·q/p sup
x−y∈γQν m

|Dα[kν(f)(y)]|q
)1/q ∣∣∣Lp

∥∥∥ (2.32)

and use Theorem 1.27 with Dαik0 and D
αiki in place of k0 and k

i. We lose the Tauberian

conditions (1.60) for these new kernels but according to Theorem 1.20, they are not

necessary in the proof of (2.32).

Step 4. Now we prove the existence of the optimal decomposition for all r ∈ R
d and L

restricted by (2.7). To simplify the notation, we restrict ourselves in this step to d = 2. So,

take f ∈ Srp,qF (R2). In Definition 1.8 we may substitute (1+x2)ρ by (1+x2ρ11 )(1+x2ρ22 )

for ρ ∈ N
2
0 and (using twice Theorem 1.12) we obtain the counterpart of Theorem 1.9.

Hence f can be decomposed as

f = g +
∂2M1g

∂x2M1
1

+
∂2M2g

∂x2M2
2

+
∂2M1+2M2g

∂x2M1
1 x2M2

2

, (2.33)

where M = (M1,M2) ∈ 2N2
0 is at our disposal and may be chosen arbitrarily large,

g ∈ Sr+2M
p,q F (R2) and ‖g |Sr+2M

p,q F (R2)‖ ≈ ‖f |Srp,qF (R2)‖. The optimal decomposition

of f will be obtained as a sum of decompositions of these four terms.

To decompose the first term, choose M such that

‖g |SKC(R2)‖ ≤ c‖g |Sr+2M
p,q F (R2)‖.
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This is possible according to [26, Theorem 2.4.1]. Then we decompose

g(x) =
∑

m∈Zd

ψ(x−m)g(x) =
∑

m∈Zd

λ10ma
1
0m,

where

λ10m = c1
∑

0≤α≤K

sup
|y−m|≤c2

|(Dαg)(y)|,

a10m =
1

λ10m
ψ(x−m)g(x),

for c1, c2 sufficiently large and for ψ satisfying (2.29) and (2.30). Then a10m are [K,L]-

atoms centred at Q0m. Furthermore, according to Lemma 1.28, we have

‖λ1 | srp,qf‖ =
( ∑

m∈Zd

|λ10m|p
)1/p

≤ c1
∑

α≤K

‖ sup
·−y∈γQ0 0

|(Dαg)(y)| |Lp(Rd)‖

≤ c‖g |Sr+2M
p,q F (R2)‖ ≤ c‖f |Srp,qF (R2)‖.

We have used Lemma 1.28 with d = 2 and A = ∅.
As for the last term in the decomposition (2.33), we may assume that M is large

enough to apply Step 3. So we may assume that we have a decomposition (2.31)

for g with, say, λ4ν m and a4ν m(x) instead of λν m and aν m(x) and ‖λ4ν m | sr+2M
p,q f‖ ≤

c‖g |Sr+2M
p,q F (R2)‖. As a4ν m(x) are [K + 2M,−1]-atoms, 2−2ν·MD2(M1,M2)a4ν m(x) are

[K, 2M − 1]-atoms.

In the case of the second term we use the decomposition

g(x) =
∑

ν∈N2
0

ν2=0

∑

m∈Zd

ψν m(x)kν,A(g)(x) =
∑

ν∈N2
0

ν2=0

∑

m∈Zd

λ2ν ma
2
ν m(x),

where A = {1}, kν,A(g)(x) are defined by (1.68),

λ2ν m = c12
2ν1M1

∑

β≤K+(2M1,0)

sup
y∈c2Qν m

|Dβ(kν,A(g))(y)|,

a2ν m(x) =
1

λ2ν m
ψν m(x)kν,A(g)(x).

If c1 and c2 are large enough, then D(2M1,0)a2ν m(x) are [K,L]-atoms for L1 ≤ 2M1 − 1.

Finally, we use Lemma 1.28 to estimate ‖λ2 | srp,qf‖:

‖λ2 | srp,qf‖ ≤ c1
∑

β≤K+(2M1,0)

∥∥∥
(∑

ν∈N2
0

ν2=0

2qν1(2M1+r1) sup
·−y∈c2Qν 0

|Dβ(kν,A(g))(y)|q
)1/q ∣∣∣Lp

∥∥∥

≤ c‖g |Sr+2M
p,q F (Rd)‖ ≤ c‖f |Srp,qF (Rd)‖,

ifM is chosen sufficiently large. We have used Lemma 1.28 with Dβ1k1 and Dβ2g instead

of k1 and f . The third term can be estimated in a similar way. The sum of these four

decompositions then gives the decomposition for f .

For general d one has to use the full generality of Lemma 1.28 but the idea of the

proof is still the same.
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2.3. Subatomic decomposition. In this section we describe the subatomic decompo-

sition for the spaces Srp,qA(R
d). We follow closely [35] and [37].

First of all, we shall introduce some special building blocks called quarks.

Definition 2.5. Let ψ ∈ S(R) be a nonnegative function with

suppψ ⊂ {t ∈ R : |t| < 2φ} (2.34)

for some φ ≥ 0 and ∑

n∈Z

ψ(t− n) = 1, t ∈ R. (2.35)

We define Ψ(x) = ψ(x1) · · ·ψ(xd) and Ψβ(x) = xβΨ(x) for x = (x1, . . . , xd) and β ∈ N
d
0.

Further let r ∈ R
d and 0 < p ≤ ∞. Then

(βqu)ν m(x) = Ψβ(2νx−m), ν ∈ N
d
0, m ∈ Z

d, (2.36)

is called a β-quark related to Qν m.

Recall that the spaces srp,qa were defined by (2.2) and (2.3).

Theorem 2.6. Let 0 < p, q ≤ ∞ (with p <∞ in the F -case) and r ∈ R
d be such that

r > σp in the B-case and r > σpq in the F -case.

(i) Let

λ = {λβ : β ∈ N
d
0} with λβ = {λβν m ∈ C : ν ∈ N

d
0, m ∈ Z

d}
and let ̺ > φ, where φ comes from (2.34). If

sup
β∈Nd

0

2̺|β|‖λβ | srp,qa‖ <∞

then the series ∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

λβν m(βqu)ν m(x) (2.37)

converges in S′(Rd), its limit f belongs to Srp,qA(R
d) and

‖f |Srp,qA(Rd)‖ ≤ c sup
β∈Nd

0

2̺|β|‖λβ | srp,qa‖. (2.38)

(βqu)ν m has the same meaning as in (2.36).

(ii) Every f ∈ Srp,qA(Rd) can be represented by (2.37) with convergence in S′(Rd) and

sup
β∈Nd

0

2̺|β|‖λβ | srp,qa‖ ≤ c‖f |Srp,qA(Rd)‖. (2.39)

Proof. We give again only the proof for the F -scale. The proof for the B-scale is very

similar.

Step 1. First of all, we shall discuss convergence of (2.37). It turns out that this series

converges not only in S′(Rd) but also in some Lu(R
d), u ≥ 1.

Let 1 ≤ p <∞. Then r > 0 and we get

|f(x)| ≤ c
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2φ|β||λβν m|χ̃ν m(x), (2.40)
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where χ̃ν m is the characteristic function of 2φ+1Qν m. Using Hölder’s inequality twice,

we get for every ε > 0,

|f(x)| ≤ c sup
β∈Nd

0

2(φ+ε)|β| sup
ν∈Nd

0

2|ν|ε sup
m∈Zd

|λβν m|χ̃ν m(x).

Taking the pth power and replacing the suprema with sums we get

|f(x)|p ≤ c
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2(φ+ε)|β|p2|ν|εp|λβν m|pχ̃ν m(x). (2.41)

Set q̃ = max(p, q) and choose ε such that 0 < 2ε < ̺−φ and ε < r. Integration of (2.41)

and Hölder’s inequality result in

‖f |Lp(Rd)‖ ≤ c sup
β∈Nd

0

2(φ+2ε)|β|
(∑

ν∈Nd
0

∑

m∈Zd

2−ν·(1/p−ε)p|λβν m|p
)1/p

≤ c sup
β∈Nd

0

2(φ+2ε)|β|
(∑

ν∈Nd
0

2ν·(r−1/p)q̃
( ∑

m∈Zd

|λβν m|p
)q̃/p)1/q̃

≤ c sup
β∈Nd

0

2̺|β|‖λβ | srp,q̃b‖ ≤ c sup
β∈Nd

0

2̺|β|‖λβ | srp,qf‖. (2.42)

Therefore, for 1 ≤ p < ∞, (2.37) converges in Lp(R
d). If p = ∞, we get the uniform

pointwise convergence of (2.37) by similar arguments.

Let 0 < p < 1. Then r > 1/p − 1 and we get again (2.40). Integrating this estimate

and using Hölder’s inequality, we get for every ε > 0,

‖f |L1(R
d)‖ ≤ c

∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2φ|β|2−|ν||λβν m| ≤ c sup
β∈Nd

0

2(φ+ε)|β|
∑

ν∈Nd
0

∑

m∈Zd

2−|ν||λβν m|.

By arguments similar to (2.42) we get

‖f |L1(R
d)‖ ≤ c sup

β∈Nd
0

2̺|β|‖λβ | srp,qf‖

and (2.37) converges in L1(R
d).

Step 2. We now prove that the function f defined as a limit of (2.37) belongs to

Srp,qF (R
d), and the estimate (2.38). We decompose (2.37) into

f =
∑

β∈Nd
0

fβ (2.43)

with

fβ =
∑

ν∈Nd
0

∑

m∈Zd

λβν m(βqu)ν m(x). (2.44)

We show that (βqu)ν m are (up to some normalising constants) [K,−1]-atoms centred at

Qν m for every K ∈ N
d
0. The conditions (2.4) and (2.6) are satisfied trivially. To prove

(2.5) we choose 0 ≤ α ≤ K and estimate

Dα(βqu)ν m(x) =

d∏

i=1

2νiαiDαi(ψβi)(2νixi −mi)
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where ψβi(t) = tβiψ(t). But for 0 ≤ αi ≤ Ki and any t ∈ suppψ we get by the Leibniz

rule

|Dαi(ψβi)(t)| ≤ cKi
sup
γ1≤Ki

sup
γ2≤Ki

|Dγ1tβi | · |(Dγ2ψ)(t)| ≤ cKi,ψ sup
γ1≤Ki

|Dγ1tβi |.

The last absolute value may be estimated from above by (1+βi)
Ki2φβi . Hence we obtain

|Dαi(ψβi)(t)| ≤ cKi,ψ(1 + βi)
Ki2φβi

and

|Dα(βqu)ν m(x)| ≤ c1 2α·ν(1 + β)K2φ|β| ≤ c2 2α·ν2(φ+ε)|β|

for every ε > 0. The constant c2 is independent of β but may depend on K, ψ and ε.

It follows that the functions c−12 2−(φ+ε)|β|(βqu)ν m(x) are [K,−1]-atoms and (2.44)

may be understood as an atomic decomposition of fβ . By Theorem 2.4 it follows that

‖fβ |Srp,qF (Rd)‖ ≤ c2(φ+ε)|β|‖λβ | srp,qf‖
and for η = min(1, p, q) we get by the triangle inequality for Srp,qF (R

d)-quasinorms

‖f |Srp,qF (Rd)‖η ≤
∑

β∈Nd
0

‖fβ |Srp,qF (Rd)‖η

≤ c
∑

β∈Nd
0

2(φ+ε)η|β|‖λβ | srp,qf‖η

≤ c sup
β∈Nd

0

2(φ+2ε)η|β|‖λβ | srp,qf‖η.

If we choose ε > 0 so small that φ + 2ε < ̺ we obtain (2.38). This finishes the proof of

part (i).

Step 3. By Remark 1.3 we have

f̂(ξ) =
∑

ν∈Nd
0

ϕν(ξ)f̂(ξ)

with convergence in S′(Rd). Let Qν be a cube in R
d centred at the origin with side

lengths 2π2ν1 , . . . , 2π2νd . Hence suppϕν ⊂ Qν and we may interpret ϕν f̂ as a periodic

distribution. Using its expansion in a Fourier series we get

(ϕν f̂)(ξ) =
∑

m∈Zd

bν me
−i(2−νm)·ξ, ξ ∈ Qν , (2.45)

with

bν m = c 2−|ν|
�

Qν

e−i(2
−νm)·ξ(ϕν f̂)(ξ) dξ = c′2−|ν|(ϕν f̂)

∨(2−νm).

Here we have used again the notation 2−νm = (2−ν1m1, . . . , 2
−νdmd) for ν ∈ N

d
0 and

m ∈ Z
d.

Let now ω ∈ S(Rd) with suppω ⊂ Q0 and ω(ξ) = 1 if |ξi| ≤ 2 for all i = 1, . . . , d.

Then the functions ων(ξ) = ω(2−νξ) satisfy

suppων ⊂ Qν , ων(ξ) = 1 if ξ ∈ suppϕν
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for all ν ∈ N
d
0. We multiply (2.45) with ων , extend it by zero outside Qν , and take the

inverse Fourier transform:

(ϕν f̂)
∨(x) =

∑

m∈Zd

bν mω
∨
ν (x− 2−νm) =

∑

m∈Zd

2|ν|bν mω
∨(2νx−m), x ∈ R

d.

Using (2.35) and the definition of Ψ , we get

(ϕν f̂)
∨(x) =

∑

m∈Zd

2|ν|bν m
∑

l∈Zd

Ψ(2νx− l)ω∨(2νx−m).

Expanding the entire analytic function ω∨(2ν ·−m) with respect to the off-point 2−ν l we

arrive at

(ϕν f̂)
∨(x) =

∑

m∈Zd

2|ν|bν m
∑

l∈Zd

Ψ(2νx− l)
∑

β∈Nd
0

2ν·β
(Dβω∨)(l −m)

β!
(x− 2−ν l)β

=
∑

m∈Zd

2|ν|bν m
∑

l∈Zd

∑

β∈Nd
0

Ψβ(2νx− l) (D
βω∨)(l −m)

β!
.

Hence

f =
∑

ν∈Nd
0

∑

β∈Nd
0

∑

l∈Zd

λβ
ν l
Ψβ(2νx− l) =

∑

ν∈Nd
0

∑

β∈Nd
0

∑

l∈Zd

λβ
ν l
(βqu)ν l(x),

where

λβ
ν l

= 2|ν|
∑

m∈Zd

bν m
(Dβω∨)(l −m)

β!
= c

∑

m∈Zd

(ϕν f̂)
∨(2−νm)

(Dβω∨)(l −m)

β!
.

It remains to prove (2.39). To this end we define

Λν m = (ϕν f̂)
∨(2−νm)

and prove that

sup
β∈Nd

0

2̺|β|‖λβ | srp,qf‖ ≤ c‖Λ | srp,qf‖ ≤ c′‖f |Srp,qF (Rd)‖. (2.46)

We start with the second inequality in (2.46). Let x ∈ Qν m be fixed. Then

|(ϕν f̂)∨(2−νm)| ≤ sup
x−y∈Qν,0

|(ϕν f̂)∨(y)| ≤ c(ϕ∗νf)a(x) (2.47)

for every a ∈ R
d
+. We multiply (2.47) by 2ν·r, take the qth power and sum over m ∈ Z

d

to get

2ν·rq
∑

m∈Zd

|Λν m|q|χν m(x)|q ≤ c 2ν·rq(ϕ∗νf)qa(x), x ∈ R
d, ν ∈ N

d
0.

Taking a > n/min(p, q), we finally get, with the help of Theorem 1.22,

‖Λ | srp,qf‖ =
∥∥∥
(∑

ν∈Nd
0

∑

m∈Zd

2ν·rq|Λν mχν m(x)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥

≤ c
∥∥∥
(∑

ν∈Nd
0

2ν·rq(ϕ∗νf)
q
a(x)

)1/q ∣∣∣Lp(Rd)
∥∥∥ ≤ c‖f |Srp,qF (Rd)‖.
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To prove the first inequality in (2.46), we mention that

λβ
ν l

=
1

β!

∑

m∈Zd

Λν m(Dβω∨)(l −m) (2.48)

and recall a result proven in [36], namely that for any given a > 0 there are constants

ca > 0 and C > 0 such that

|Dβω∨(x)| ≤ ca2C|β|(1 + |x|2)−a, x ∈ R
d, β ∈ N

d
0. (2.49)

Furthermore, we define

hβν (x) = 2ν·r
∑

l∈Zd

λβ
ν l
χν l(x), (2.50)

Hν(x) = 2ν·r
∑

l∈Zd

Λν lχν l(x), (2.51)

and let 0 < κ < min(1, p, q). We prove (2.46) by the following chain of inequalities:

2̺|β|‖λβ | srp,qf‖ = 2̺|β|‖hβν |Lp(ℓq)‖ = 2̺|β|‖ |hβν |κ |Lp/κ(ℓq/κ)‖1/κ

≤ c 2̺|β|
(
2C|β|

β!

)κ
‖M(|Hν |κ) |Lp/κ(ℓq/κ)‖1/κ

≤ c′‖ |Hν |κ |Lp/κ(ℓq/κ)‖1/κ = ‖Λ | srp,qf‖. (2.52)

The equalities in (2.52) involve only the definitions of the corresponding spaces. The

second inequality follows from Theorem 1.10, the choice of κ and the growth of β! for

|β| → ∞. Hence only the first inequality in (2.52) needs to be proven.

To prove it, put (2.49) into (2.48) to obtain for every a > 0,

|λβ
ν l
| ≤ ca2

C|β|

β!

∑

m∈Zd

|Λν m|
(1 + |l −m|2)a

. (2.53)

Let x ∈ Qν l. Using the definition of hβν from (2.50), (2.53) and the property κ < 1 we

get

|hβν (x)|κ = 2ν·rκ|λβ
ν l
|κ ≤ cκa2

C|β|κ

(β!)κ
2ν·rκ

∑

m∈Zd

|Λν m|κ
(1 + |l −m|2)aκ

. (2.54)

We split the summation over m ∈ Z
d into two sums according to the size of |l −m|:

∑

m∈Zd

|Λν m|κ
(1 + |l −m|2)aκ

=

∞∑

k=0

1

(1 + k2)aκ

∑

m : |l−m|=k

|Λν m|κ. (2.55)

Finally, we estimate the last sum using the iterated maximal operator M :
∑

m : |l−m|=k

|Λν m|κ ≤ 2−ν·rκ2|ν|
�

y : y−x∈(k+2)Qν,0

|Hν(y)|κ dy

≤ 2−ν·rκ(k + 2)dM(|Hν |κ)(x). (2.56)

We combine (2.54), (2.55) and (2.56) and arrive at

|hβν (x)|κ ≤ c′a
2C|β|κ

(β!)κ
M(|Hν |κ)(x)
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for every a > (d+ 1)/2κ. This finishes the proof of (2.52) and, consequently, also the

proof of (2.46) and hence also of part (ii) of Theorem 2.6.

Next we shall deal with subatomic decompositions in the general case. Namely, we

would like to prove an analogue of Theorem 2.6 without the restriction r > σpq.

Remark 2.7. We introduce temporarily the following notation. Let A ⊂ {1, . . . , d} and
N = (N1, . . . , Nd) ∈ R

d. Then we define the vector NA = (NA
1 , . . . , N

A
d ) by

NA
i =

{
Ni if i ∈ A,
0 if i 6∈ A.

Furthermore, we denote by Dγ
i the operator

Dγ
i =

∂γ

∂xγi
, i = 1, . . . , n, γ ∈ N0,

and by DL
A the operator

DL
A =

∏

i∈A

DLi

i = DLA , A ⊂ {1, . . . , n}, L ∈ N
d
0.

Theorem 2.8. Let 0 < p, q ≤ ∞ (p < ∞ in the F -case) and r ∈ R
d. Further let

L+ 1 ∈ N
d
0 and σ ∈ R

d satisfy

Li ≥ max(−1, [σp − ri]), σi > max(σp, ri), i = 1, . . . , d,

in the B-case and

Li ≥ max(−1, [σpq − ri]), σi > max(σpq, ri), i = 1, . . . , d,

in the F -case.

(i) For every A ⊂ {1, . . . , d} let
λA = {λA,β : β ∈ N

d
0} with λA,β = {λA,βν m ∈ C : ν ∈ N

d
0, m ∈ Z

d}
and let ̺ > φ, where φ is as in (2.34). If

sup
A⊂{1,...,d}

sup
β∈Nd

0

2̺|β|‖λA,β | srp,qa‖ <∞

then the series
∑

A⊂{1,...,d}

∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

(∏

i6∈A

2νi(ri−σi)
)
λA,βν m [DL+1

A Ψβ ](2νx−m) (2.57)

converges in S′(Rd), its limit f belongs to Srp,qA(R
d) and

‖f |Srp,qA(Rd)‖ ≤ c sup
A⊂{1,...,d}

sup
β∈Nd

0

2̺|β|‖λA,β | srp,qa‖. (2.58)

(ii) Every f ∈ Srp,qA(Rd) can be represented by (2.57) with convergence in S′(Rd) and

sup
A⊂{1,...,d}

sup
β∈Nd

0

2̺|β|‖λA,β | srp,qa‖ ≤ c‖f |Srp,qA(Rd)‖. (2.59)

Remark 2.9. Because of the notational difficulties we shall give the proof only for d = 2.

Furthermore, we deal only with the F -scale. The proof for the B-scale is again similar

and technically simpler.
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Proof of Theorem 2.8 for d = 2. Step 1. First we discuss the convergence of (2.57). As

the first sum is finite, we may discuss the convergence of the triple sum over β, ν and m

separately for each A ⊂ {1, 2}. Let us do this for example for A = {1}. Then we may

rewrite the terms in (2.57) as

2ν2(r2−σ2)[D(L1+1,0)Ψβ ](2νx−m) = 2ν2(r2−σ2)2−ν1(L1+1)[D(L1+1,0)(βqu)ν m](x) (2.60)

where (βqu)ν m(x) are β-quarks according to Definition 2.5. As L1+1 > 0 and σ2−r2 > 0,

we may use the same arguments as in the proof of Theorem 2.6 and obtain the same kind

of convergence. In particular, the convergence of (2.57) in S′(Rd) is ensured.

Step 2. Let f be given by (2.57). Then we may view this decomposition as

f =
∑

A⊂{1,2}

fA. (2.61)

We shall prove that, for every admissible set A,

‖fA |Srp,qF (Rd)‖ ≤ c sup
β∈Nd

0

2̺|β|‖λA,β | srp,qf‖. (2.62)

If A = ∅ then the decomposition of f∅ into the triple sum according to (2.57) can

be understood as a subatomic decomposition of f∅ in the space Sσp,qF (R
d) and from

Theorem 2.6 it follows that

f∅ ∈ Sσp,qF (Rd) ⊂ Srp,qF (Rd)
and

‖f∅ |Srp,qF (Rd)‖ ≤ c sup
β∈Nd

0

2̺|β|‖2ν·(r−σ)λ∅,β | sσp,qf‖ = c sup
β∈Nd

0

2̺|β|‖λ∅,β | srp,qf‖.

If A = {1} then we use (2.60) to find that f{1} = D(L1+1,0)g, where

g ∈ S(r1+L1+1,σ2)
p,q F (Rd), ‖g |S(r1+L1+1,σ2)

p,q F (Rd)‖ ≤ c sup
β∈Nd

0

2̺|β|‖λ{1},β | srp,qf‖.

Hence

‖f{1} |S(r1,r2)
p,q F (Rd)‖ ≤ ‖f{1} |S(r1,σ2)

p,q F (Rd)‖ = ‖D(L1+1,0)g |S(r1,σ2)
p,q F (Rd)‖

≤ ‖g |S(r1+L1+1,σ2)
p,q F (Rd)‖ ≤ c sup

β∈Nd
0

2̺|β|‖λ{1},β | srp,qf‖. (2.63)

Using a similar technique we prove (2.62) also for A = {2} and A = {1, 2}. Now (2.61)

together with (2.62) shows that (2.58) holds.

Step 3. We prove part (ii) of the theorem. By similar arguments to Step 4 of the proof

of Theorem 2.4 we prove in analogy with (2.33) that for every M ∈ N
d
0 such that

r +M + 1 ≥ σ, M ≥ L, M + 1 ∈ 4N2,

there is a function g ∈ Sr+M+1
p,q F (Rd) with

f = g +
∂M1+1g

∂xM1+1
1

+
∂M2+1g

∂xM2+1
2

+
∂M1+1+M2+1g

∂xM1+1
1 xM2+1

2

. (2.64)

Furthermore

‖g |Sr+M+1
p,q F (Rd)‖ ≈ ‖f |Srp,qF (Rd)‖. (2.65)
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Define

g1 = g, g2 = D(M1−L1,0)g, g3 = D(0,M2−L2)g, g4 = D(M1−L1,M2−L2)g.

Then we can rewrite (2.64) and (2.65) as

f = g1 +
∂L1+1g2

∂xL1+1
1

+
∂L2+1g3

∂xL2+1
2

+
∂L1+1+L2+1g4

∂xL1+1
1 xL2+1

2

(2.66)

with 



g1 ∈ Sr+M+1
p,q F (Rd) ⊂ Sσp,qF (Rd),

g2 ∈ S(r1+L1+1,r2+M2+1)
p,q F (Rd) ⊂ S(r1+L1+1,σ2)

p,q F (Rd),

g3 ∈ S(r1+M1+1,r2+L2+1)
p,q F (Rd) ⊂ S(σ1,r2+L2+1)

p,q F (Rd),

g4 ∈ Sr+L+1
p,q F (Rd).

(2.67)

Furthermore, the norm of gi in the corresponding space may be estimated from above

by ‖f |Srp,qF (Rd)‖ for all i = 1, . . . , 4. We may use Theorem 2.6 for each function gi to

get four optimal decompositions and an analogue of (2.39). Putting these estimates into

(2.67) and using (2.60) we get (2.59).

2.4. Wavelet decomposition. In this subsection we describe the wavelet decompo-

sition for Srp,qA(R
d). In general, we follow the ideas in [38]. First of all, we recall the

following crucial theorem from wavelet theory.

Theorem 2.10. For any s ∈ N there are real-valued compactly supported functions

ψ0, ψ1 ∈ Cs(R) (2.68)

with �

R

tαψ1(t) dt = 0, α = 0, 1, . . . , s, (2.69)

such that

{2j/2ψjm(t) : j ∈ N0, m ∈ Z} (2.70)

with

ψjm(t) =

{
ψ0(t−m) if j = 0, m ∈ Z,√
2−1ψ1(2

j−1t−m) if j ∈ N, m ∈ Z,
(2.71)

is an orthonormal basis in L2(R).

We have already observed in the previous sections the importance of tensor product

constructions in the theory of function spaces with dominating mixed derivative. Fol-

lowing this idea, we consider a tensor product version of Theorem 2.10. Let ψ0 and ψ1

be the functions from Theorem 2.10 satisfying (2.68) and (2.69). Let ψjm be defined by

(2.71). Then we define their tensor product counterparts by

Ψkm(x) = ψk1m1
(x1) · · ·ψkdmd

(xd), (2.72)

where

x = (x1, . . . , xd) ∈ R
d, k = (k1, . . . , kd) ∈ N

d
0, m = (m1, . . . ,md) ∈ Z

d. (2.73)

The tensor version of Theorem 2.10 then reads:
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Theorem 2.11. For any s ∈ N there are real-valued compactly supported functions

ψ0, ψ1 ∈ Cs(R) satisfying (2.69) such that
{
2|k|/2Ψkm(x) : k ∈ N

d
0, m ∈ Z

d
}
, (2.74)

with Ψkm defined by (2.72) and (2.71), is an orthonormal basis in L2(R
d).

Now we have all the necessary definitions at hand and we may state our wavelet

decomposition theorem. As usual Srp,qA(R
d) stands for Srp,qB(Rd) or Srp,qF (R

d), and

srp,qa for srp,qb or s
r
p,qf , respectively.

Theorem 2.12. Let

r = (r1, . . . , rd) ∈ R
d, 0 < p ≤ ∞, 0 < q ≤ ∞

with p <∞ in the F -case. Then there is a natural number s(r, p, q) such that the following

statements hold.

(i) Let λ ∈ srp,qa. Then we have:

1. The sum ∑

k∈Nd
0 ,m∈Z

d

λkmΨkm (2.75)

converges in S′(Rd) to some distribution f .

2. f ∈ Srp,qA(Rd) and
‖f |Srp,qA(Rd)‖ ≤ c‖λ | srp,qa‖, (2.76)

where the constant c does not depend on λ.

3. The sum (2.75) converges unconditionally in Sr−εp,q A(R
d) for any ε > 0.

4. If max(p, q) <∞ then (2.75) converges unconditionally in Srp,qA(R
d).

(ii) Let f ∈ Srp,qA(Rd). Then we may define the sequence λ by

λkm = 2|k|(f, Ψkm), k ∈ N
d
0, m ∈ Z

d, (2.77)

and we have

1. λ ∈ srp,qa and

‖λ | srp,qa‖ ≤ c‖f |Srp,qA(Rd)‖, (2.78)

where the constant c does not depend on f .

2. The sum (2.75) converges in S′(Rd) to f .

3. If γ ∈ srp,qa and
∑
k∈Nd

0 ,m∈Z
d γkmΨkm converges in S′(Rd) to f then γ = λ.

Before we come to the proof of Theorem 2.12 we clarify the technical problems caused

by the limited smoothness of the functions Ψkm.

2.4.1. Duality. As the functions Ψkm are of bounded smoothness, they do not belong

to S(Rd). According to (2.68), (2.71) and (2.72), we only have Ψkm ∈ C(s,...,s)(Rd).

Hence it is impossible to view the expression (f, Ψkm) in the distributional sense for

every f ∈ S′(Rd).
To give a meaning to the symbol (f, Ψkm), one has to study the dual spaces of

Srp,qA(R
d) first. As far as the Fourier-analytic version of classical Besov and Triebel–

Lizorkin spaces is concerned, the corresponding theory was presented in [32, Chap-

ter 2.11]. It is not difficult to see that one may adapt these results to the spaces with
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dominating mixed smoothness. We do not intend to give an exhaustive theory. The only

fact we need is

[Srp,pB(Rd)]′ = S
−r+σp

p′p′ B(Rd), r ∈ R
d, 0 < p <∞,

where
1

p
+

1

p′
= 1 for 1 < p <∞, p′ =∞ for p ≤ 1.

The functions DαΨkm, 0 ≤ α ≤ (s, . . . , s), are bounded functions with compact support.

Using Hölder’s inequality, we see that

‖DαΨkm |Lp̃(Rd)‖ <∞, 0 ≤ α ≤ (s, . . . , s), 0 < p̃ ≤ ∞.
Using the Littlewood–Paley theory, we get

Ψkm ∈ Ssp̃,2F (Rd), 1 < p̃ <∞,
for s = (s, . . . , s). And, by the Sobolev embedding,

Ssp̃,2F (R
d) →֒ [Sr−εp,p B(Rd)]′ = S

−r+ε+σp

p′,p′ B(Rd)

for s large enough and every ε > 0. So, for f ∈ Srp,qA(R
d) →֒ Sr−εp,p B(Rd) we may

interpret Ψkm as a bounded linear functional on a space f belongs to. And (f, Ψkm) is

then the value of this functional at f .

We may also reverse these arguments. The functions Ψkm belong to

Ssp̃,2F (R
d), 1 < p̃ <∞,

and Ssp̃,2F (R
d) →֒ Ss−εp̃,p̃ B(Rd). Hence, for s large, we get f ∈ [Ss−εp̃,p̃ B(Rd)]′. In this case

we may interpret f as a bounded linear functional on a space Ψkm belongs to. (f, Ψkm)

is then the value of this functional at Ψkm.

Proof of Theorem 2.12(i). Let λ ∈ srp,qf . If
s > max{(1 + [ri])+, [σpq − ri] : i = 1, . . . , d}

and s = (s, . . . , s) ∈ R
d then Ψkm are [s, s]-atoms centred at Qkm. So, for s large, all the

assumptions of Theorem 2.4 are satisfied and, according to this theorem, (2.75) converges

in S′(Rd). We denote its limit by f . The same theorem tells us that f ∈ Srp,qF (Rd) and
implies even the estimate (2.76). Hence points 1 and 2 are proven. Very similar arguments

apply also to the B-case.

For λ ∈ srp,qa and natural number µ we define

λµ = {λµ
km

: k ∈ N
d
0, m ∈ Z

d}
by

λµ
km

=

{
λkm if |k| > µ,

0 otherwise.

If max(p, q) <∞ then

lim
µ→∞

‖λµ | srp,qa‖ = 0. (2.79)

This is clear in the b-case and one has to use Lebesgue’s dominated convergence theorem

in the f -case. Using (2.76), already proven, we finish the proof of 4.
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In the proof of the third point, we replace (2.79) by

lim
µ→∞

‖λµ | sr−εp,q a‖ = 0. (2.80)

To see that (2.80) holds, one uses the same reasoning as in (2.79), and Hölder’s inequality.

This finishes the proof of (i).

Proof of Theorem 2.12(ii). The meaning of the expression (f, Ψkm) was already discussed

in Section 2.4.1. For the rest of the proof we consider only the F -case. The proof for

B-spaces is very similar.

Before we prove the first statement of the second part we do some calculation. We

may rewrite the norm in srp,qf as

‖λ | srp,qf‖ = ‖2k·rgk |Lp(ℓq)‖, (2.81)

where

gk(x) =
∑

m∈Zd

λkmχkm(x). (2.82)

If x ∈ Qkm and λ is defined by (2.77) we use (2.82) to get

gk(x) = λkm = 2|k|
�

Rd

Ψkm(y)f(y) dy = 2|k|
�

Rd

ψk1m1
(y1) · · ·ψkdmd

(yd)f(y) dy.

We assume that k ≥ 1, insert the definition (2.71) and substitute zi = yi − 2−kimi:

gk(x) = 2|k|
�

Rd

ψ1(2
k1z1) · · ·ψ1(2

kdzd)f(2
−k1m1 + z1, . . . , 2

−kdmd + zd) dz

= Kk(f)(2−km).

Here Kk(f)(2−km) denotes the local means

Kk(f)(y) =
�

Rd

Kk(z)f(y + z) dz, y ∈ R
d, (2.83)

for the kernel

Kk(z) = 2|k|ψ1(2
k1z1) · · ·ψ1(2

kdzd).

We point out that all integrals have to be interpreted in the distributional sense. If one

(or more) ki = 0, only notational changes are necessary. Hence, for every x ∈ Qkm,

|gk(x)| ≤ sup
y−x∈Qk,0

|Kk(f)(y)|.

Applying Theorem 1.27 we see that

‖λ | srp,qf‖ = ‖2k·rgk |Lp(ℓq)‖ ≤ c‖f |Srp,qF (Rd)‖.
This finishes the proof of 1.

To prove the second statement, we define a new function g by

g =
∑

k∈Nd
0 ,m∈Z

d

λkmΨkm, (2.84)

where λkm are given by (2.77). The convergence of this sum is guaranteed by λ ∈ srp,qf
(which we have just proved) and by part (i). It shows even that g ∈ Srp,qF (Rd). We need



44 J. Vybiral

to prove that g = f or, equivalently, that

(g, ϕ) = (f, ϕ) for every ϕ ∈ S(Rd).
First we consider the expressions (g, Ψk′m′). As λ ∈ srp,qf , (2.84) converges in any

Sr−εp,2 F (R
d), where ε > 0 may be chosen arbitrarily. If the number s is chosen suffi-

ciently large then, according to Section 2.4.1, Ψk′m′ ∈ [Sr−εp,2 F (R
d)]′. Hence

(g, Ψk′m′) = lim
µ→∞

( ∑

|k|≤µ,m∈Zd

λkmΨkm, Ψk′m′

)

= lim
µ→∞

∑

|k|≤µ,m∈Zd

2|k|(f, Ψkm)(Ψkm, Ψk′m′).

Using orthogonality of system (2.74) we arrive at

(g, Ψk′m′) = (f, Ψk′m′), k
′ ∈ N

d
0, m

′ ∈ Z
d.

One may extend this argument to any finite linear combination of Ψk′m′ . For a general

function ϕ ∈ S(Rd) we consider its Fourier series decomposition with respect to system

(2.74):

ϕ =
∑

k,m

2|k|(ϕ, Ψkm)Ψkm. (2.85)

As S(Rd) is a subset of all Fourier-analytic Besov and Triebel–Lizorkin spaces, we see

that (for s large enough) (2.85) converges also in the space [Sr−εp,2 F (R
d)]′. Hence we get

(g, ϕ) = lim
µ→∞

∑

|k|≤µ,m∈Zd

2|k|(ϕ, Ψkm)(g, Ψkm)

= lim
µ→∞

∑

|k|≤µ,m∈Zd

2|k|(ϕ, Ψkm)(f, Ψkm) = (f, ϕ).

Hence the sum (2.75) converges to f .

The final step, namely the proof of the third statement, follows now very easily.

Suppose that the assumptions are satisfied. We define the coefficients λkm by (2.77) and

g by (2.84). Then we get f = g according to point 2. And by the same duality arguments

as there we obtain

γkm = 2|k|/2(f, Ψkm) = 2|k|/2(g, Ψkm) = λkm, k ∈ N
d
0, m ∈ Z

d.

3. Entropy numbers—direct results

3.1. Notation and definitions. We have seen in the previous section the close con-

nection between the function spaces Srp,qA(R
d) and the corresponding sequence spaces

srp,qa given by several decomposition techniques. We use these results to study the en-

tropy numbers of embeddings of function spaces with dominating mixed smoothness on

domains.

First, we define function spaces on domains by restrictions of function spaces defined

on R
d.
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Definition 3.1. Let Ω be an arbitrary bounded domain in R
d. Then Srp,qA(Ω) is the

restriction of Srp,qA(R
d) to Ω:

Srp,qA(Ω) = {f ∈ D′(Ω) : ∃g ∈ Srp,qA(Rd) with g|Ω = f}, (3.1)

‖f |Srp,qA(Ω)‖ = inf ‖g |Srp,qA(Rd)‖, (3.2)

where the infimum is taken over all g ∈ Srp,qA(Rd) such that its restriction to Ω, denoted

by g|Ω, coincides in D′(Ω) with f .

Next, we define the sequence spaces corresponding to Srp,qA(Ω). The change with

respect to srp,qa is rather simple. In Definition 2.2 the sum over m ∈ Z
d represents a

discrete analogue of Lp(R
d)-norm and the sum over ν ∈ N

d
0 the sum over all coverings of

plane with dyadic cubes. So, to adapt Definition 2.2 to fit function spaces on domains,

we have to restrict the sum to those m which are in some relation with Ω.

For that reason we define, for every bounded domain Ω ⊂ R
d,

AΩν = {m ∈ Z
d : Qν m ∩Ω 6= ∅}, ν ∈ N

d
0.

The sequence spaces associated with a bounded domain Ω are then defined by

Definition 3.2. If 0 < p ≤ ∞, 0 < q ≤ ∞, r ∈ R
d and

λ = {λν m ∈ C : ν ∈ N
d
0, m ∈ AΩν }

then we define

sr,Ωp,q b =
{
λ : ‖λ | sr,Ωp,q b‖ =

(∑

ν∈Nd
0

2ν·(r−1/p)q
( ∑

m∈AΩ
ν

|λν m|p
)q/p)1/q

<∞
}

(3.3)

and

sr,Ωp,q f =
{
λ : ‖λ | sr,Ωp,q f‖ =

∥∥∥
(∑

ν∈Nd
0

∑

m∈AΩ
ν

|2ν·rλν mχν m(·)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥ <∞
}
. (3.4)

Furthermore, we define the corresponding building blocks.

Definition 3.3. Let 0 < p ≤ ∞, 0 < q ≤ ∞, r ∈ R
d and let µ ∈ N0 be fixed. If

λ = {λν m ∈ C : ν ∈ N
d
0, |ν| = µ, m ∈ AΩν }

then we define

(sr,Ωp,q b)µ =
{
λ : ‖λ | (sr,Ωp,q b)µ‖ =

( ∑

|ν|=µ

2ν·(r−1/p)q
( ∑

m∈AΩ
ν

|λν m|p
)q/p)1/q

<∞
}

(3.5)

and

(sr,Ωp,q f)µ =
{
λ : ‖λ | (sr,Ωp,q f)µ‖ =

∥∥∥
( ∑

|ν|=µ

∑

m∈AΩ
ν

|2ν·rλν mχν m(·)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥ <∞
}
.

(3.6)

Remark 3.4. 1. We point out that for the number of elements of AΩν we have trivially

#(AΩν ) ≈ 2|ν|, ν ∈ N
d
0, (3.7)
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where the equivalence constants depend only on Ω. The dimension of (sr,Ωp,q a)µ will be

denoted by

Dµ :=
∑

|ν|=µ

#(AΩν ), µ ∈ N0. (3.8)

2. As usual, we write sr,Ωp,q a for sr,Ωp,q b or s
r,Ω
p,q f respectively. The same holds for (sr,Ωp,q a)µ.

Next we define the notion of entropy numbers and recall their basic properties. We

refer to [10] and references given there for details.

Definition 3.5. Let A,B be quasi-Banach spaces and let T be a bounded linear operator

T ∈ L(A,B). Let UA and UB denote the unit balls in A and B, respectively. Then for

every k ∈ N we define the kth dyadic entropy number by

ek(T ) := inf
{
ε > 0 : T (UA) ⊂

2k−1⋃

j=1

(bj + εUB)
}

for some b1, . . . , b2k−1 ∈ B.

Definition 3.6. Given any p ∈ (0, 1] and a quasi-Banach space B, we say that B is a

p-Banach space if

‖x+ y |B‖p ≤ ‖x |B‖p + ‖y |B‖p for all x, y ∈ B. (3.9)

It can be shown that if ‖ · |B‖1 is a quasinorm on B, then there is p ∈ (0, 1] and a

quasinorm ‖ · |B‖2 with (3.9) on B which is equivalent to ‖ · |B‖1. We refer again to

[10] and references given there for details.

Theorem 3.7. Let A,B,C be quasi-Banach spaces , S, T ∈ L(A,B), R ∈ L(B,C). Then

• ‖T‖ ≥ e1(T ) ≥ e2(T ) ≥ · · · ≥ 0.

• ek+l−1(R ◦ S) ≤ ek(R)el(S), k, l ∈ N.

• If B is a p-Banach space, then epk+l−1(S + T ) ≤ epk(S) + epl (T ).

Remark 3.8. We refer to the first property of entropy numbers from Theorem 3.7 as

monotonicity , the second is called submultiplicativity , and the last one is subadditivity.

Although we shall not need it, we quote the fundamental result of Carl (see [6], [7]

and [10] for details). It illustrates the importance of estimates of entropy numbers in the

study of spectral properties of compact operators.

Theorem 3.9. Let A be a quasi-Banach space and let T ∈ L(A,A) = L(A) be a compact

operator on A. Denote its non-zero eigenvalues (counted with multiplicity) by

|λ1(T )| ≥ |λ2(T )| ≥ |λ3(T )| ≥ · · · > 0.

Then

|λk(T )| ≤
√
2 ek(T ).

In what follows we restrict ourselves to r = (r1, . . . , rd) ∈ R
d with r1 = · · · = rd.

3.2. Basic lemmas. Now we collect some basic properties of the building blocks defined

by (3.5) and (3.6). We start with the following



Function spaces with dominating mixed smoothness 47

Lemma 3.10. 1. Let 0 < p1, p2 ≤ ∞ and N ∈ N. Then

‖id : ℓNp1 → ℓNp2‖ =
{
1, p1 ≤ p2,
N1/p2−1/p1 , p1 ≥ p2.

(3.10)

2. Let 0 < p ≤ ∞ and r = (r, . . . , r) ∈ R
d. Then

(sr,Ωp,p b)µ = (sr,Ωp,p f)µ = 2µ(r−1/p)ℓDµ
p , µ ∈ N0, (3.11)

sr,Ωp,p b = sr,Ωp,p f. (3.12)

The number Dµ is given by (3.8).

3. Let 0 < p2 ≤ p1 ≤ ∞, 0 < q ≤ ∞ and r = (r, . . . , r) ∈ R
d. Then

‖id : (sr,Ωp1,qa)µ → (sr,Ωp2,qa)µ‖ ≈ 1, µ ∈ N0. (3.13)

4. Let 0 < q2 ≤ q1 ≤ ∞, 0 < p ≤ ∞ and r = (r, . . . , r) ∈ R
d. Then

‖id : (sr,Ωp,q1a)µ → (sr,Ωp,q2a)µ‖ ≈ µ(d−1)(1/q2−1/q1), µ ∈ N. (3.14)

The equivalence constants in (3.13) and (3.14) do not depend on µ ∈ N0.

Proof. The proof of 1 and 2 involves only (3.5) and (3.6). For the proof of 3 in the case

a = b we write

‖λ | sr,Ωp2,qb‖ =
( ∑

|ν|=µ

2ν·(r−1/p2)q
( ∑

m∈AΩ
ν

|λν m|p2
)q/p2)1/q

= 2µ(r−1/p2)
( ∑

|ν|=µ

( ∑

m∈AΩ
ν

|λν m|p2
)q/p2)1/q

≤ c2µ(r−1/p2)2µ(1/p2−1/p1)
( ∑

|ν|=µ

( ∑

m∈AΩ
ν

|λν m|p1
)q/p1)1/q

= c‖λ | sr,Ωp1,qb‖,

where we have used (3.10).

In the case a = f , by Hölder’s inequality and boundedness of Ω we get

‖λ | sr,Ωp2,qf‖ =
∥∥∥
(∑

ν∈Nd
0

∑

m∈AΩ
ν

|2ν·rλν mχν m(·)|q
)1/q ∣∣∣Lp2(Rd)

∥∥∥

≤ c
∥∥∥
(∑

ν∈Nd
0

∑

m∈AΩ
ν

|2ν·rλν mχν m(·)|q
)1/q ∣∣∣Lp1(Rd)

∥∥∥

= c‖λ | sr,Ωp1,qf‖.

The proof of 4 involves only 1 and

#{ν ∈ N
d
0 : |ν| = µ} ≈ µd−1, µ ∈ N.

Next, we recall a fundamental result which is essentially due to Schütt [27] and Kühn

[17].
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Lemma 3.11. (i) If 0 < p1 ≤ p2 ≤ ∞ and k and N are natural numbers , then

ek(id : ℓNp1 → ℓNp2) ≈





1 if 1 ≤ k ≤ log 2N,

(k−1 log(1 +N/k))1/p1−1/p2 if log 2N ≤ k ≤ 2N,

2−k/2NN1/p2−1/p1 if 2N ≤ k,
(3.15)

where the equivalence constants do not depend on k and N .

(ii) If 0 < p2 < p1 ≤ ∞ and k and N are natural numbers , then

ek(id : ℓNp1 → ℓNp2) ≈ 2−k/2NN1/p2−1/p1 (3.16)

where the implied constants again do not depend on k and N .

Remark 3.12. We refer to [27], [17], [10] and references given there for the proofs of this

fundamental result.

Lemma 3.13. Let

r1 = (r1, . . . , r1) ∈ R
d, r2 = (r2, . . . , r2) ∈ R

d, 0 < p1, p2, q1, q2 ≤ ∞.
Let k ≥ 2Dµ. Then

ek(id : (sr1,Ωp1,q1a)µ → (sr2,Ωp2,q2a
†)µ) ≈ 2−k/2Dµµ(d−1)(1/q2−1/q1)2µ(r2−r1) (3.17)

with equivalence constants independent of k and µ.

Remark 3.14. The symbols a and a† stand for b or f , not necessarily for the same letter.

Hence the formula (3.17) represents actually four different equivalences and, consequently,

eight inequalities are to be proven.

Proof. Set

γ1 = min(p1, q1), γ2 = min(p2, q2) (3.18)

δ1 = max(p1, q1), δ2 = max(p2, q2). (3.19)

Step 1. We use the following diagram to estimate ek(id) from above:

(sr1,Ωp1,q1a)µ
id−−−−→ (sr2,Ωp2,q2a

†)µ

id1

y
xid3

(sr1,Ωγ1,γ1a)µ
id2−−−−→ (sr2,Ωδ2,δ2

a†)µ

(3.20)

Using the submultiplicativity of entropy numbers (see Theorem 3.7) we get

ek(id) ≤ ‖id1‖ · ‖id3‖ · ek(id2). (3.21)

To estimate ‖id1‖ and ‖id3‖ we use (3.13), resp. (3.14) to get

‖id1‖ ≤ cµ(d−1)(1/γ1−1/q1), ‖id3‖ ≤ cµ(d−1)(1/q2−1/δ2). (3.22)

To estimate ek(id2) we use Lemma 3.11 and (3.11),

(sr1,Ωγ1,γ1a)µ ≈ 2µ(r1−1/γ1)ℓDµ
γ1 ,

and its counterpart for (sr2,Ωδ2,δ2
a†)µ. This gives

ek(id2) ≤ c 2µ(−r1+1/γ1+r2−1/δ2)2−k/2DµD1/δ2−1/γ1
µ . (3.23)
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Putting (3.22) and (3.23) into (3.21) and using Dµ ≈ µd−12µ we get the desired result

and finish Step 1.

Step 2. We now prove the estimates from below. Let γ1, γ2, δ1, δ2 be still defined by

(3.18) and (3.19), respectively. We use the diagram

(sr1,Ωp1,q1a)µ
id−−−−→ (sr2,Ωp2,q2a

†)µ

id1

x
yid3

(sr1,Ωδ1,δ1
a)µ

id2−−−−→ (sr2,Ωγ2,γ2a
†)µ

(3.24)

As id2 = id1 ◦ id ◦ id3 we may use again the submultiplicativity of entropy numbers. The

estimate for the entropy numbers of id2 is given by Lemma 3.11:

ek(id2) ≥ c2µ(−r1+r2+1/δ1−1/γ2)2−k/2DµD1/γ2−1/δ1
µ

and for ‖id1‖ and ‖id3‖ we use estimates similar to those in Step 1:

‖id1‖ ≤ cµ(d−1)(1/q1−1/δ1), ‖id3‖ ≤ cµ(d−1)(1/γ2−1/q2). (3.25)

From this the result follows immediately.

Lemma 3.13 is a generalisation of Lemma 3.11 as far as the third line of (3.15) and

(3.16) are concerned. So, for k ≥ 2Dµ, the estimate (3.17) provides four equivalences

with constants independent of k and µ. In the case k ≤ 2Dµ the situation is not so simple

any more; we give two different estimates from above.

Lemma 3.15. Let

r1 = (r1, . . . , r1) ∈ R
d, r2 = (r2, . . . , r2) ∈ R

d, 0 < p1, p2, q1, q2 ≤ ∞
with p1 ≤ p2. Let k ≤ 2Dµ. Then

ek(id : (sr1,Ωp1,q1a)µ → (sr2,Ωp2,q2a
†)µ) ≤ cµ(d−1)(1/γ1−1/q1+1/q2−1/δ2)2µ(−r1+1/γ1+r2−1/δ2)

· [k−1 log(µd−12µ/k + 1)]1/γ1−1/δ2 , (3.26)

where γ1, γ2, δ1, δ2 are given by (3.18) and (3.19). The constant c is independent of k

and µ.

The proof of Lemma 3.15 copies exactly the first step of the proof of Lemma 3.13.

The second estimate from above follows closely the idea of Kühn, Leopold, Sickel and

Skrzypczak in [18].

Lemma 3.16. Let

r1 = (r1, . . . , r1) ∈ R
d, r2 = (r2, . . . , r2) ∈ R

d, 0 < p1, p2, q1, q2 ≤ ∞
with

p1 ≤ p2,
1

p1
− 1

p2
>

1

q1
− 1

q2
.

Let (d− 1)µd−1 log µ ≤ k ≤ 2Dµ = 2
∑
|ν|=µ#A

Ω
ν . Then

ek(id : (sr1,Ωp1,q1b)µ → (sr2,Ωp2,q2b)µ) ≤ c2µ(−r1+r2+1/p1−1/p2)µ1/p1−1/p2+1/q2−1/q1

· k1/p2−1/p1 [log(µd−12µ/k + 1)]1/p1−1/p2 . (3.27)



50 J. Vybiral

Proof. Set Xi = (sri,Ωpi,qib)µ, i = 1, 2. We shall construct an ε-net of X2-balls covering

the unit ball BX1
of X1. For that purpose we fix some ordering of the set {ν ∈ N

d
0 :

|ν| = µ} = {ν1, . . . , νS(µ,d)}, where

S(µ, d) = #{ν ∈ N
d
0 : |ν| = µ} =

(
µ+ d− 1

µ

)
, µ ∈ N0. (3.28)

First we consider the subset of BX1
,

B = {λ ∈ BX1
: ‖λν1 |X1‖ ≥ ‖λν2 |X1‖ ≥ · · · ≥ ‖λνS(µ,d) |X1‖}

and construct an ε-net N in X2 for B. Then, if Π is any permutation of the index set

{1, . . . , S(µ, d)} and
BΠ = {λ ∈ BX1

: ‖λνΠ(1) |X1‖ ≥ ‖λνΠ(2) |X1‖ ≥ · · · ≥ ‖λνΠ(S(µ,d)) |X1‖}
we get, by permutation of coordinates, ε-nets NΠ for BΠ , all having the same cardinality

as N , say 2k.

Clearly, BX1
=

⋃
Π BΠ , where the union is over all permutationsΠ of {1, . . . , S(µ, d)}.

Hence
⋃
Π NΠ is an ε-net in X2 for BX1

of cardinality

S(µ, d)!2k ≤ µ(d−1)µd−1

2k = 2(d−1)µ
d−1 log µ+k.

It remains to construct an ε-net for BX in X2. For λ ∈ B we have ‖λνj |X1‖ ≤ j−1/q1 .

If k1, . . . , kS(µ,d) are arbitrary natural numbers, we set

εj := cj−1/q12µ(−r1+1/p1+r2−1/p2)[k−1j log(2µ/kj + 1)]1/p1−1/p2

and, according to Lemma 3.11, we find an εj-net Nj in 2µ(r2−1/p2)ℓ
Aj
p2 for j−1/q1BY ,

where Y = 2µ(r1−1/p1)ℓ
Aj
p1 and Aj = #(AΩ

νj ). Thus N1 × · · · × NS(µ,d) is an ε-net in X2

for B of cardinality 2k1+···+kS(µ,d) , where

ε =
(S(µ,d)∑

j=1

εq2j

)1/q2
.

Finally, we choose kj , j = 1, . . . , S(µ, d). Fixm ∈ N and set kj = 2mj−α, where 0 < α < 1

is chosen such that α(1/p1 − 1/p2) > 1/q1 − 1/q2 Then

k =

S(µ,d)∑

j=1

kj ≈ 2mµ(d−1)(−α+1) (3.29)

and

(S(µ,d)∑

j=1

εq2j

)1/q2
≈ 2µ(−r1+1/p1+r2−1/p2)2m(1/p2−1/p1)

· S(µ, d)α(1/p1−1/p2)−1/q1+1/q2 [log(2µ−mµα + 1)]1/p1−1/p2 .

Substituting for 2m from (3.29) we get

(S(µ,d)∑

j=1

εq2j

)1/q2
≈ 2µ(−r1+1/p1+r2−1/p2)k1/p2−1/p1

· µ(d−1)(1/p1−1/p2+1/q2−1/q1)[log(µd−12µ/k + 1)]1/p1−1/p2 ,

which finishes the proof.
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3.3. Main result. In this subsection we present our main results concerning sequence

spaces. Our aim is to estimate the entropy numbers of

id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†. (3.30)

First we split the identity (3.30) into a sum of identities between building blocks,

id =

∞∑

µ=0

idµ, idµ : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†, (3.31)

where

(idµ λ)ν m =

{
λν m if |ν| = µ,

0 otherwise,
(3.32)

for all ν ∈ N
d
0,m ∈ AΩν . Next we observe that

ek(idµ) = ek(id
′
µ), k ∈ N, µ ∈ N0, (3.33)

where

id′µ : (sr1,Ωp1,q1a)µ → (sr2,Ωp2,q2a
†)µ, µ ∈ N0, (3.34)

are the natural identities between our building blocks.

First, we characterise when the embedding (3.30) is compact.

Theorem 3.17. Let

r1 = (r1, . . . , r1) ∈ R
d, r2 = (r2, . . . , r2) ∈ R

d, 0 < p1, p2, q1, q2 ≤ ∞. (3.35)

Then the embedding (3.30) is compact if and only if

α = r1 − r2 −
(

1

p1
− 1

p2

)

+

> 0. (3.36)

Proof. Part 1. In the first part we prove that (3.36) is sufficient for compactness of

(3.30). First we restrict to the case

• 0 < p1 ≤ p2 ≤ ∞ and a = a† = b.

It is an easy exercise to show that

‖idµ | sr1,Ωp1,q1b→ sr2,Ωp2,q2b‖ = ‖ id
′
µ | (sr1,Ωp1,q1b)µ → (sr2,Ωp2,q2b)µ‖

≤ 2−µ(r1−r2+1/p2−1/p1)S(µ, d)(1/q2−1/q1)+ ,

where S(µ, d) was defined in (3.28). So, if (3.36) is satisfied, then we may approximate

the operator id by finite rank operators Pj =
∑j
µ=0 idµ.

• 0 < p1 ≤ p2 ≤ ∞.

In this case we choose ε > 0 such that

r1 − r2 −
(

1

p1
− 1

p2

)
> 2ε

and use the trivial embeddings

sr1,Ωp1,q1a→ sr1−ε,Ωp1,q1 b→ sr2+ε,Ωp2,q2 b→ sr2,Ωp2,q2a
†.

All these embeddings are continuous, the middle one is even compact.
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• 0 < p2 ≤ p1 ≤ ∞.

Now we use the embeddings

sr1,Ωp1,q1a→ sr1,Ωp2,q1a→ sr2,Ωp2,q2a
†.

We have already proven that the second embedding is compact. As the first embedding

is continuous, this finishes the proof of part 1.

Part 2. If (3.36) is not satisfied, we construct a sequence {eµ}∞µ=0 from the unit ball of

sr1,Ωp1,q1a such that ‖eµ − eµ′ | sr2,Ωp2,q2a
†‖ ≥ c > 0 for µ 6= µ′.

Let us start with the case p1 ≤ p2. For µ ∈ N0 fixed, we choose one νµ ∈ N
d
0 with

|νµ| = µ and one mµ ∈ AΩνµ
. Then we set

(eµ)ν m =

{
2−µ(r1−1/p1) for ν = νµ, m = mµ,

0 otherwise.

When p1 > p2 we fix again one νµ ∈ N
d
0 with |νµ| = µ and define (eµ)ν m = 2−µr1 for

ν = νµ and m ∈ AΩνµ
and (eµ)ν m = 0 otherwise.

It is our main task to estimate the decay of ek(id) for id given by (3.30) when this

sequence tends to zero, i.e. when (3.36) is satisfied. First we get estimates from below.

Theorem 3.18. Let r1, r2, p1, p2, q1, q2 be given by (3.35) and (3.36). Then

ek(id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†) ≥ ckr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1)+ , k ≥ 2, (3.37)

where the constant c does not depend on k.

Proof. Step 1. For every µ ∈ N we consider the following diagram:

(sr1,Ωp1,q1a)µ
id′

µ−−−−→ (sr2,Ωp2,q2a
†)µ

id1

y
xid2

sr1,Ωp1,q1a
id−−−−→ sr2,Ωp2,q2a

†

(3.38)

The meaning of id and id′µ was explained by (3.30)–(3.34). id1 extends a given finite

sequence by zeros while id2 is the identity restricted to the µth building block. Hence

id1({λν m} : |ν| = µ, m ∈ AΩν )
= ({γν m} : γν m = λν m for |ν| = µ and γν m = 0 otherwise)

and

id2({λν m} : ν ∈ N
d
0, m ∈ AΩν ) = ({λν m} : |ν| = µ).

For
k = 2Dµ (3.39)

we get, by Lemma 3.13,

cµ(1/q2−1/q1)2µ(r2−r1) ≤ ek(id′µ) ≤ ‖id1‖ · ‖id2‖ · ek(id) = ek(id).

If k is given by (3.39) we get µ ≈ log k and 2µ ≈ k/logd−1 k. Hence
ek(id) ≥ ckr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1).

By monotonicity, we extend this result to all k ≥ 2.
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Step 2. We repeat the same arguments with different building blocks. The diagram

(3.38) is replaced by

2µ(r1−1/p1)ℓ
Aµ
p1

id′
µ−−−−→ 2µ(r2−1/p2)ℓ

Aµ
p2

id1

y
xid2

sr1,Ωp1,q1a
id−−−−→ sr2,Ωp2,q2a

†

(3.40)

where Aµ = #(AΩν ) for some ν with |ν| = µ. Instead of Lemma 3.13 we use Lemma 3.11

to get, for k = 2Aµ,

c 2µ(r2−r1) ≤ ek(id′µ) ≤ ‖id1 ‖ · ‖id2 ‖ · ek(id) = ek(id).

Finally, we substitute 2µ ≈ k, get ek(id) ≥ ckr2−r1 and use monotonicity arguments to

extend the result to all k ≥ 2.

Theorem 3.19. Let r1, r2, p1, p2, q1, q2 be given by (3.35) and (3.36). If

α > V1(p1, q1, p2, q2) :=
1

min(p1, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)
(3.41)

for p1 ≤ p2, and

α > V1(p2, q1, p2, q2) :=
1

min(p2, q1)
− 1

max(p2, q2)
(3.42)

for p1 > p2, then

ek(id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†) ≤ ckr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1), k ≥ 2, (3.43)

where the constant c does not depend on k.

Proof. Step 1. We first restrict ourselves to the case p1 ≤ p2. We split id as indicated

in (3.31),

id =

J∑

µ=0

idµ+

L∑

µ=J+1

idµ+

∞∑

µ=L+1

idµ,

where the numbers J ≤ L will be specified later on. Furthermore, we shall later define

natural numbers kµ, µ = 0, . . . , L, and k =
∑L
µ=0 kµ. This will yield the fundamental

estimate

e̺k(id) ≤
J∑

µ=0

e̺kµ(idµ) +

L∑

µ=J+1

e̺kµ(idµ) +

∞∑

µ=L+1

‖idµ‖̺, ̺ = min(1, p2, q2). (3.44)

We recall that by (3.33) one may substitute ekµ(idµ) by ekµ(id
′
µ).

Step 2. Fix now J ∈ N. We show how to choose the numbers L and kµ (in dependence

on J) and we estimate the three sums in (3.44).

We start with the last one. First we remark that

‖idµ ‖ ≤ c 2−µαµ(d−1)(1/q2−1/q1)+ , µ ∈ N,

and
∞∑

µ=L+1

‖idµ ‖̺ ≤ c
∞∑

µ=L+1

2−̺µαµ̺(d−1)(1/q2−1/q1)+ ≤ c 2−̺αLL̺(d−1)(1/q2−1/q1)+ .
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Finally, we choose L ≥ J large such that the last expression may be estimated from above

by
∞∑

µ=L+1

‖idµ ‖̺ ≤ c J̺(d−1)(1/q2−1/q1)2̺J(r2−r1).

Step 3. We estimate the first sum in (3.44). We define

kµ = 2Dµ2
(J−µ)ε ≥ 2Dµ, µ = 0, . . . , J,

where ε is an arbitrary fixed number with 0 < ε < 1. Then we get

J∑

µ=0

kµ ≈ Jd−12J . (3.45)

By Lemma 3.13,

ekµ(idµ) ≈ 2−2
(J−µ)ε

µ(d−1)(1/q2−1/q1)2µ(r2−r1),
(3.46)

J∑

µ=0

e̺kµ(idµ) ≈ J̺(d−1)(1/q2−1/q1)2̺J(r2−r1).

Step 4. We estimate the second sum in (3.44). We set

kµ = 2Dµ2
(J−µ)κ ≤ 2Dµ, J + 1 ≤ µ ≤ L,

where κ is chosen such that

κ > 1, r1 − r2 > κ

(
1

γ1
− 1

δ2

)
. (3.47)

γ1 and δ2 were defined by (3.18) and (3.19), respectively. Then we get

L∑

µ=J+1

kµ ≈ Jd−12J . (3.48)

By Lemma 3.15 we get

ekµ(idµ) ≤ cµ(d−1)(1/q2−1/q1)2µ(r2−r1)2(J−µ)κ(1/δ2−1/γ1)[log(c2−(J−µ)κ + 1)]1/γ1−1/δ2 .

By (3.47) we get
L∑

µ=J+1

e̺kµ(idµ) ≈ J
̺(d−1)(1/q2−1/q1)2̺J(r2−r1). (3.49)

Finally, we put (3.45), (3.48) together with (3.46) and (3.49) into (3.44) to obtain

ec1Jd−12J (id) ≤ c2J (d−1)(1/q2−1/q1)2J(r2−r1).

Substituting k = c1J
d−12J and using monotonicity arguments, we finish the proof of the

theorem for p1 ≤ p2.
Step 5. In the case p1 > p2 we use the chain of embeddings

sr1,Ωp1,q1a →֒ sr1,Ωp2,q1a →֒ sr2,Ωp2,q2a
†.

The first embedding is then continuous (as p1 > p2 and Ω is bounded), the second is

covered by the previous steps. Altogether, this finishes the proof.
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Remark 3.20. 1. One notices immediately a gap between (3.36) and (3.41). To eliminate

this gap we use a complex interpolation method in the next chapter.

2. Lemma 3.16 allows us to reduce the gap a bit in the special case where a = a† = b.

If we use Lemma 3.16 instead of Lemma 3.15 in Step 4 of the previous proof, we get the

same result, namely (3.43), for

p1 ≤ p2, r1 − r2 +
1

p2
− 1

p1
> 0,

1

p1
− 1

p2
>

1

q1
− 1

q2
.

4. Complex interpolation

In Theorem 3.18 we obtained an estimate from below for entropy numbers of the embed-

ding

id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†. (4.1)

The corresponding estimate from above was obtained in Theorem 3.19 for

α = r1 − r2 −
(

1

p1
− 1

p2

)

+

>
1

min(p1, p2, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)
. (4.2)

So for any p1, p2, q1, q2 we have one natural bound for r1− r2 which ensures compactness

of (4.1) (see Theorem 3.17) and a second one, in general larger and given by (4.2), where

the estimates from above and from below for the entropy numbers of (4.1) coincide. The

main purpose of this chapter is to eliminate this gap by using a complex interpolation

method. We follow closely [20].

4.1. Abstract background. In this subsection we briefly describe the complex inter-

polation method of [20]. We quote only the minimum needed for our purposes.

We say that two quasi-Banach spaces X0, X1 form an interpolation couple (X0, X1)

if there is a Hausdorff topological vector space X such that X0 and X1 are continuously

embedded in X. Given an interpolation couple (X0, X1), we define the space X0 ∩X1 by

X0 ∩X1 = {x ∈ X : ‖x |X0 ∩X1‖ <∞},
where

‖x |X0 ∩X1‖ = max{‖x |X0‖, ‖x |X1‖}.
Similarly, we define the space X0 +X1 by

X0 +X1 = {x ∈ X : ‖x |X0 +X1‖ <∞},
where

‖x |X0 +X1‖ = inf{‖x0 |X0‖+ ‖x1 |X1‖ : x = x0 + x1, xj ∈ Xj , j = 0, 1}.
It is easy to verify that X0 ∩X1 and X0 +X1 are quasi-Banach spaces (see for example

[5] for details).

If X is a quasi-Banach space and Ω ⊂ C is an open subset then f : Ω → X is called

analytic if for each z0 ∈ Ω there exists r > 0 such that there is a power series expansion

f(z) =
∑∞
n=0 xn(z − z0)n, xn ∈ X, converging uniformly for |z − z0| < r.
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Given an interpolation couple (X0, X1) of quasi-Banach spaces, we consider the class

F of all functions f with values in X0 +X1, which are bounded and continuous on the

strip

S = {z ∈ C : 0 ≤ Re z ≤ 1},
and analytic in the open strip

S0 = {z ∈ C : 0 < Re z < 1},
and moreover, the functions t 7→ f(j + it) (j = 0, 1) are bounded continuous functions

into Xj . We endow F with the quasinorm

‖f | F‖ = max{sup
t∈R
‖f(it) |X0‖, sup

t∈R
‖f(1 + it) |X1‖}. (4.3)

Finally, we set

[X0, X1]θ := {x ∈ X0 +X1 : x = f(θ) for some f ∈ F}, 0 < θ < 1.

This space is equipped with the quasinorm

‖x | [X0, X1]θ‖ := inf{‖f | F‖ : f ∈ F , f(θ) = x}, x ∈ [X0, X1]θ.

For the classical complex interpolation theory of Peetre, we refer again to [5] and refer-

ences given there. However, it is well known that the extension of this complex interpo-

lation method to quasi-Banach spaces is not possible due to the possible failure of the

Maximum Modulus Principle in the quasi-Banach context. However, there is a significant

class of quasi-Banach spaces, called A-convex, in which the Maximum Modulus Principle

is valid (see [20] and references given there for details).

Definition 4.1. A quasi-Banach space (X, ‖ · |X‖) is called A-convex if there is a

constant C such that for every polynomial P : C→ X we have

‖P (0) |X‖ ≤ C max
|z|=1

‖P (z) |X‖.

The next theorem shows that in A-convex quasi-Banach spaces the Maximum Mod-

ulus Principle holds.

Theorem 4.2. For a quasi-Banach space (X, ‖ · |X‖) the following conditions are equiv-

alent :

(i) X is A-convex ,

(ii) there exists C such that

max{‖f(z) |X‖ : z ∈ S0} ≤ Cmax{‖f(z) |X‖ : z ∈ S \ S0}
for any function f : S → X analytic on S0 and continuous and bounded on S.

In the special case when X0 and X1 are quasi-Banach lattices, it was observed by

Calderón that the interpolation space [X0, X1]θ coincides with the so-called Calderón

product of X0 and X1, usually denoted by X1−θ
0 Xθ

1 . We quote again necessary definitions

and theorems from [20].

First, let (X,S, µ) be a σ-finite measure space and let M be the class of all complex-

valued, µ-measurable functions on X. Then a quasi-Banach space X ⊂ M is called a
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quasi-Banach lattice of functions if for every f ∈ X and g ∈ M with |g(x)| ≤ |f(x)| for
µ-a.e. x ∈ X one has g ∈ X with ‖g |X‖ ≤ ‖f |X‖.

Furthermore, a quasi-Banach lattice of functions (X, ‖ · |X‖) is called lattice r-convex

if ∥∥∥
( m∑

j=1

|fj |r
)1/r ∣∣∣X

∥∥∥ ≤
( m∑

j=1

‖fj |X‖r
)1/r

for any finite family {fj}1≤j≤m of functions from X.

The following theorem gives a very simple condition for a lattice of functions to be

A-convex.

Theorem 4.3. Let X be a complex quasi-Banach lattice of functions. Then the following

assertions are equivalent :

(i) X is A-convex ,

(ii) X is lattice r-convex for some r > 0.

Finally, if (Xj , ‖· |Xj‖), j = 0, 1, are quasi-Banach lattices of functions and 0 < θ < 1

then the Calderón product X1−θ
0 Xθ

1 is the function space defined by the quasinorm

‖f |X1−θ
0 Xθ

1‖ := inf{‖f0 |X0‖1−θ‖f1 |X1‖θ : |f | ≤ |f0|1−θ|f1|θ, fj ∈ Xj , j = 0, 1}.
The connection between complex interpolation and Calderón products is given by

Theorem 4.4. Let (X,S, µ) be a complete separable metric space, let µ be a σ-finite

Borel measure on X, and let X0, X1 be a pair of quasi-Banach lattices of functions on

(X, µ). If both X0 and X1 are A-convex and separable, then X0 + X1 is A-convex and

[X0, X1]θ = X1−θ
0 Xθ

1 , 0 < θ < 1.

As pointed out in [20] in the case of quasi-Banach sequence lattices, only one of the

spaces in 4.4 must be separable.

4.2. Interpolation of sr,Ωp,q a. Now we apply Theorem 4.4 to interpolate the sequence

spaces sr,Ωp,q a. First, we have to prove that these spaces are A-convex. According to

Theorem 4.3 it is enough to prove that they are lattice s-convex for some s > 0. Trivially,

s = min(1, p, q) works fine in both b- and f -cases.

Hence, it is enough to compute the Calderón products

(sr1,Ωp1,q1a)
1−θ(sr2,Ωp2,q2a)

θ, 0 < θ < 1.

The answer is given by

Theorem 4.5. Let

r1, r2 ∈ R
d, 0 < p1, p2, q1, q2 ≤ ∞, 0 < θ < 1. (4.4)

If r, p and q are given by

1

p
=

1− θ
p1

+
θ

p2
,

1

q
=

1− θ
q1

+
θ

q2
, r = (1− θ)r1 + θr2, (4.5)

then

(sr1,Ωp1,q1a)
1−θ(sr2,Ωp2,q2a)

θ = sr,Ωp,q a.
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Proof. Step 1. First, let λ ∈ sr,Ωp,q a and λj ∈ srj ,Ωpj ,qja, j = 1, 2, with

|λν m| ≤ |λ1ν m|1−θ · |λ2ν m|θ, ν ∈ N
d
0, m ∈ AΩν . (4.6)

We have to show that

‖λ | sr,Ωp,q a‖ ≤ ‖λ1 | sr1,Ωp1,q1a‖1−θ · ‖λ2 | sr2,Ωp2,q2a‖θ.
But this is a simple exercise on Hölder’s inequality in both b- and f -cases.

Step 2. Now we prove the reverse inequality for a = b. Given λ ∈ sr,Ωp,q b, we will find

λj ∈ srj ,Ωpj ,qj b, j = 1, 2, with (4.6) such that

‖λ | sr,Ωp,q b‖ = ‖λ1 | sr1,Ωp1,q1b‖1−θ · ‖λ2 | sr2,Ωp2,q2b‖θ. (4.7)

First we deal with the case pj , qj <∞, j = 1, 2. We choose

λjν m = cjν |λν m|p/pj , j = 1, 2, ν ∈ N
d
0, m ∈ AΩν , (4.8)

where

cjν = 2(ν·r)q/qj2−ν·rjΛ
q/qj−p/pj
ν , j = 1, 2, ν ∈ N

d
0, (4.9)

and

Λν =
( ∑

m∈AΩ
ν

|λν m|p
)1/p

, ν ∈ N
d
0. (4.10)

(If Λν = 0 for some ν ∈ N
d
0 we set cν = 0.) By this choice we see that

|λ1ν m|1−θ · |λ2ν m|θ = 2ν·rq[
1−θ
q1

+ θ
q2

]2−ν·r1(1−θ)−ν·r2θΛ
q[ 1−θ

q1
+ θ

q2
]−p[ 1−θ

p1
+ θ

p2
]

ν |λν m|p[
1−θ
p1

+ θ
p2

]

= |λν m|.
This proves (4.6).

To prove (4.7) we use (4.8)–(4.10) to get

‖λj |srj ,Ωpj ,qj b‖ =
[∑

ν∈Nd
0

2ν·rjqj (cjν)
qj
( ∑

m∈AΩ
ν

|λν m|
p
pj
pj
)qj/pj]1/qj

=
[∑

ν∈Nd
0

2ν·rqΛqν

]1/qj
.

From this (4.7) follows immediately.

If max(p1, q1, p2, q2) =∞ only notational changes are necessary.

Step 3. For the f -case, one may modify slightly the proof for the sequence spaces fsp,q
given in [13, Theorem 8.2].

We start again with given λ ∈ sr,Ωp,q f and we need to find λj ∈ srj ,Ωpj ,qjf , j = 1, 2, with

(4.6) such that

‖λ1 | sr1,Ωp1,q1f‖1−θ‖λ2 | sr2,Ωp2,q2f‖θ ≤ c‖λ | sr,Ωp,q f‖. (4.11)

First we deal with the case qj <∞, j = 1, 2. For every k ∈ Z, let

Ak =
{
x ∈ R

d :
( ∑

ν∈Nd
0 ,m∈A

Ω
ν

2ν·rq|λν m|qχν m(x)
)1/q

> 2k
}

and

Ck = {(ν,m) : |Qν,m ∩Ak| ≥ |Qν m|/2 and |Qν,m ∩Ak+1| < |Qν m|/2}.
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We note that if (ν,m) 6∈ ⋃
k∈Z Ck, then λν m = 0. We define the sequences λj , j = 1, 2,

by

λ1ν m = 2kγ2ν·u|λν m|q/q1 , λ2ν m = 2kδ2ν·v|λν m|q/q2 ,
where

γ =
p

p1
− q

q1
, δ =

p

p2
− q

q2
,

u = qθ

[
r2
q1
− r1
q2

]
, v = q(1− θ)

[
r1
q2
− r2
q1

]

if (ν,m) ∈ Ck, and λ1ν m = λ2ν m = 0 if (ν,m) 6∈ ⋃
k∈Z Ck. We point out that

(1− θ)γ + δθ = (1− θ)u+ θv = 0.

An easy calculation shows that

|λ1ν m|1−θ · |λ2ν m|θ = 2k[(1−θ)γ+θδ]+ν·[(1−θ)u+θv]|λν m|q(
1−θ
q1

+ θ
q2

) = |λν m|.
In the following we assume that γ ≥ 0, since the other case follows by interchanging

sr1,Ωp1q1 f with sr2,Ωp2q2 f and θ with 1− θ.
We prove that

‖λj | srj ,Ωpjqj f‖ ≤ c‖λ | sr,Ωpq f‖p/pj , j = 1, 2. (4.12)

From this, (4.11) clearly follows. To prove (4.12) for j = 1 we write

‖λ1 | sr1,Ωp1q1 f‖ =
∥∥∥
( ∞∑

k=−∞

∑

(ν,m)∈Ck

|2ν·r1λ1ν m|q1χν m(x)
)1/q1 ∣∣∣Lp1

∥∥∥

≤ c
∥∥∥
( ∞∑

k=−∞

∑

(ν,m)∈Ck

|2ν·r1λ1ν m|q1χQν m∩Ak
(x)

)1/q1 ∣∣∣Lp1
∥∥∥,

where in the second line we use the definition of the set Ck and the boundedness of the

maximal operator M as described by Theorem 1.11.

We set Dk =
⋃k
l=−∞ Cl and continue

‖λ1 | sr1,Ωp1q1 f‖ ≤ c
∥∥∥
∞∑

k=−∞

χAk\Ak+1
(x)

( ∑

(ν,m)∈Dk

|2ν·r1λ1ν m|q1χν m(x)
)1/q1 ∣∣∣Lp1

∥∥∥

≤ c
∥∥∥
∞∑

k=−∞

χAk\Ak+1
(x)2kγ

( ∑

(ν,m)∈Dk

2ν·r1q12ν·uq1 |λν m|qχν m(x)
)1/q1 ∣∣∣Lp1

∥∥∥

≤ c
∥∥∥
∞∑

k=−∞

χAk\Ak+1
(x)2kγ

( ∑

ν∈Nd
0 ,m∈A

Ω
ν

2ν·rq|λν m|qχν m(x)
)1/q1 ∣∣∣Lp1

∥∥∥

≤ c
∥∥∥
( ∑

ν∈Nd
0 ,m∈A

Ω
ν

2ν·rq|λν m|qχν m(x)
)p/qp1 ∣∣∣Lp1

∥∥∥

= c‖λ | sr,Ωpq f‖p/p1 .
The second estimate in (4.12) is similar.
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After these preparations we are ready to present the main result of this section. Recall

that the spaces Srp,qA(Ω) were defined by (3.1) and (3.2).

Theorem 4.6. Let rj , pj , qj for j = 1, 2 be given by (4.4). Let 0 < θ < 1 and define r, p

and q by (4.5). Also suppose that min(q1, q2) <∞.

(i) Then

[sr1,Ωp1,q1b, s
r2,Ω
p2,q2b]θ = sr,Ωp,q b. (4.13)

(ii) Furthermore, if pj <∞, j = 1, 2, then

[sr1,Ωp1,q1f, s
r2,Ω
p2,q2f ]θ = sr,Ωp,q f. (4.14)

Proof. This follows immediately from Theorems 4.4 and 4.5.

4.3. Interpolation properties of entropy numbers. Now we shall discuss the con-

nection between the complex interpolation method developed above with entropy num-

bers. We use Theorem 1.3.2 from [10]. We recall that for t > 0, an interpolation couple

(B0, B1) and b ∈ B0 +B1, Peetre’s K-functional is given by

K(t, b, B0, B1) = inf{‖b0 |B0‖+ t‖b1 |B1‖ : b = b0 + b1, b0 ∈ B0, b1 ∈ B1}.
Theorem 4.7. (i) Let A be a quasi-Banach space and let (B0, B1) be an interpolation

couple of p-Banach spaces. Let 0 < θ < 1 and let Bθ be a quasi-Banach space such that

B0 ∩B1 ⊂ Bθ ⊂ B0 +B1 and

‖b |Bθ‖ ≤ ‖b |B0‖1−θ · ‖b |B1‖θ for all b ∈ B0 ∩B1.

Let T ∈ L(A,B0 ∩B1). Then for all k0, k1 ∈ N,

ek0+k1−1(T : A→ Bθ) ≤ 21/pe1−θk0
(T : A→ B0)e

θ
k1(T : A→ B1).

(ii) Let (A0, A1) be an interpolation couple of quasi-Banach spaces and let B be a p-

Banach space. Let 0 < θ < 1 and let A be a quasi-Banach space such that A ⊂ A0 + A1

and

t−θK(t, a, A0, A1) ≤ ‖a |A‖ for all a ∈ A and all t > 0.

Let T : A0+A1 → B be linear and such that its restrictions to A0 and A1 are continuous.

Then its restriction to A is also continuous and for all k0, k1 ∈ N,

ek0+k1−1(T : A→ B) ≤ 21/pe1−θk0
(T : A0 → B)eθk1(T : A1 → B).

So, we only have to verify that the complex interpolation satisfies the assumptions of

this theorem.

Theorem 4.8. Let B0, B1 be an interpolation couple of A-convex quasi-Banach spaces

and let 0 < θ < 1. Then

(i) ‖b | [B0, B1]θ‖ ≤ ‖b |B0‖1−θ · ‖b |B1‖θ for all b ∈ B0 ∩B1.

(ii) Let the functionals in B′i separate the points of Bi, i = 0, 1. Then

t−θK(t, b, B0, B1) ≤ ‖b | [B0, B1]θ‖ for all b ∈ [B0, B1]θ and all t > 0.

Proof. Step 1. Fix b ∈ B0 ∩ B1, set Mj = ‖b |Bj‖, j = 0, 1, and define g(z) =

Mz−1
0 M−z1 b. Then ‖g | F‖ = 1 and
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‖Mθ−1
0 M−θ1 b | [B0, B1]θ‖ ≤ ‖g(θ) | [B0, B1]θ‖ ≤ 1.

This proves (i).

Step 2. We follow [31, 1.10.3]. There one may find a proof dealing with the classical

complex interpolation method and Banach spaces. Nevertheless, the proof works also

for the generalised method, as described above, and quasi-Banach sequence spaces. In

particular, the Hahn–Banach theorem needed there still holds for all sequence spaces

which come into play.

4.4. Filling the gaps. Now we use the complex interpolation and its relation to entropy

numbers to close the gap mentioned at the beginning of Section 4. Namely, we are

interested in those combinations of “input” parameters which satisfy

V1(p1, q1, p2, q2) :=
1

min(p1, p2, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)

≥ r1 − r2 −
(

1

p1
− 1

p2

)

+

> 0. (4.15)

Our main result on the sequence space level is

Theorem 4.9. Let rj = (rj , . . . , rj) ∈ R
d, 0 < pj , qj ≤ ∞, j = 1, 2, with

r1 − r2 −
(

1

p1
− 1

p2

)

+

> 0. (4.16)

Furthermore, let pj <∞ in the f -case.

(i) If r1 − r2 − 1/q1 + 1/q2 > 0 then

ek(id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a) ≈ kr2−r1(log k)(d−1)(r1−r2−1/q1+1/q2), k ≥ 2.

(ii) If r1 − r2 − 1/q1 + 1/q2 ≤ 0 and ε > 0 then there are constants c and Cε such that

ckr2−r1 ≤ ek(id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a) ≤ Cεkr2−r1(log k)ε, k ≥ 2.

Remark 4.10. Unlike Theorems 3.18 and 3.19, this theorem deals only with embeddings

which stay either in the b-scale or in the f -scale. We also see that this theorem closes

the gap mentioned above up to a (log k)ε term. Furthermore, the estimate from below

is covered by Theorem 3.18. In the proof we will therefore concentrate on the estimates

from above.

Proof. We shall distinguish several cases. First of all, we suppose that p1 ≤ p2.
I. p1 ≤ q1, q2 ≤ p2. In this case the condition (4.15) is empty and the result is covered

by Theorem 3.19.

II. q1 ≤ p1 ≤ p2 ≤ q2. We start with the subcase

IIa. r1 − r2 − 1/q1 + 1/q2 > 0. In this case we have

r1 − r2 −
1

p1
+

1

p2
>

1

q1
− 1

p1
+

1

p2
− 1

q2
= V1(p1, q1, p2, q2)

and the result is again provided by Theorem 3.19.
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IIb. r1 − r2 − 1/q1 + 1/q2 ≤ 0. This subcase introduces the logε-gap. We fix ε > 0 and

use the embedding

sr1,Ωp1,q1a →֒ sr1,Ωp1,q a →֒ sr2,Ωp2,q′
a →֒ sr2,Ωp2,q2a. (4.17)

The indices q, q′ are supposed to satisfy

0 < q1 ≤ q ≤ p1 ≤ p2 ≤ q′ ≤ q2 ≤ ∞,
1

p1
− 1

p2
<

1

q
− 1

q′
< r1 − r2 <

1

q
− 1

q′
+ ε.

(4.18)

The existence of such indices follows from (4.16) and condition IIb. Hence we may apply

step IIa to the middle embedding in (4.17). All the other embeddings are bounded, which

gives finally

ek(id) ≤ ckr2−r1(log k)ε.
III. q1 < p1, q2 < p2. We make the same splitting as in case II:

IIIa. r1 − r2 − 1/q1 + 1/q2 > 0. If
q1
q2
≤ p1
p2

we use the interpolation scheme

sr,Ωp,q a

ր
sr1,Ωp1,q1a→ sr2,Ωp2,q2a (4.19)

ց
sr1,Ωp1,q1a

with the corresponding equations for r, p and q:

r2 = (1− θ)r + θr1, (4.20)

1

p2
=

1− θ
p

+
θ

p1
, (4.21)

1

q2
=

1− θ
q

+
θ

q1
. (4.22)

We choose θ such that

0 <

1
q2
− 1

p2
1
q1
− 1

p1

≤ θ ≤ q1
q2
≤ p1
p2
≤ 1.

By this choice we ensure that the equations (4.21) and (4.22) have solutions p, q ∈ (0,∞]

and that p < q. Finally, it is easy to verify that

r1 − r −
1

p1
+

1

p
> V1(p1, q1, p, q) (4.23)

and

r1 − r −
1

q1
+

1

q
> 0. (4.24)

(One makes use of the trivial calculation

(1− θ)
(
1

q
− 1

q1

)
=

1

q2
− 1

q1
(4.25)
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which follows directly from (4.22) and its analogues for p’s and r’s.) This allows us to use

Theorem 3.19 for the upper embedding in (4.19). Moreover, we may use the first part of

Theorem 4.7. Its assumption is easy to verify (and was done in detail in the first step of

the proof of Theorem 4.5). This leads to

ek(id) ≤ c(kr−r1(log k)r1−r−1/q1+1/q)1−θ = ckr2−r1(log k)r1−r2−1/q1+1/q2 .

If
p1
p2

<
q1
q2

we use a different interpolation scheme:

sr,Ωp,q a

ց
sr1,Ωp1,q1a→ sr2,Ωp2,q2a (4.26)

ր
sr2,Ωp2,q2a

with the corresponding equations for r, p and q:

r1 = (1− θ)r + θr2, (4.27)

1

p1
=

1− θ
p

+
θ

p2
, (4.28)

1

q1
=

1− θ
q

+
θ

q2
. (4.29)

We choose 0 < θ < 1 such that

0 <

1
q1
− 1

p1
1
q2
− 1

p2

≤ θ ≤ q2
q1
<
p2
p1
≤ 1.

This choice ensures that there are p, q ∈ (0,∞] satisfying (4.28) and (4.29) and p ≤ q.

Finally, it is easy to verify that

r − r2 −
1

p
+

1

p2
> V1(p, q, p2, q2) (4.30)

and

r − r2 −
1

q
+

1

q2
> 0. (4.31)

and we may apply Theorem 3.19 to the upper embedding in (4.26). To apply the second

part of Theorem 4.7, we use Theorems 4.8 and 4.6 (recall that q2 <∞ in case III). This

leads to

ek(id) ≤ c(kr2−r(log k)r−r2−1/q+1/q2)1−θ = ckr2−r1(log k)r1−r2−1/q1+1/q2 .

IIIb. r1 − r2 − 1/q1 + 1/q2 ≤ 0. We use the chain of embeddings (4.17) with (4.18) and

q1 ≤ q ≤ p1, q′ = q2.

Applying now step IIIa to the middle embedding we get the same result as in case IIb.

IV. p1 < q1, p2 < q2. We start again with the case of a positive power of the logarithm.
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IVa. r1 − r2 − 1/q1 + 1/q2 > 0. If
p1
p2
≤ q1
q2

we use again the scheme (4.19) with (4.20)–(4.22) and choose 0 < θ < 1 such that

0 <

1
p2
− 1

q2
1
p1
− 1

q1

≤ θ ≤ p1
p2
≤ 1.

This choice ensures that equations (4.21) and (4.22) supply some p, q ∈ (0,∞] with p > q.

Again, one can easily verify (4.23) and (4.24). Finally, we apply again Theorem 3.19 to

the upper embedding in (4.19) and the first part of Theorem 4.7, which leads to the same

result as above.

If
q1
q2
<
p1
p2

we use the interpolation scheme (4.26) with (4.27)–(4.29). Now we choose θ such that

max

(
0, 1−

1
p1
− 1

q1
1
p2
− 1

q2

, 1− q2
q1

)
< 1− θ < min

(
r1 − r2 − 1

p1
+ 1

p2
1
p2
− 1

q2

, 1

)
.

As each expression appearing in the argument on the left-hand side is smaller than both

quantities on the right-hand side, this is always possible.

By this choice we ensure that (4.22) has a solution q ∈ (0,∞] and that p < q. Finally,

it is easy to verify that (4.30) and (4.31) hold.

So, we may apply Theorem 3.19 to the upper embedding in (4.26). Together with

Theorems 4.6 and 4.8 this leads again to

ek(id) ≤ c(kr2−r(log k)r−r2−1/q+1/q2)1−θ = ckr2−r1(log k)r1−r2−1/q1+1/q2 .

This finishes the discussion of case IVa as long as min(q, q2) < ∞, which is equivalent

to min(q1, q2) < ∞. If q1 = q2 = ∞ then we have to modify the argument. In this case

there is in general no hope to identify the interpolation space [sr1,Ωp1,∞a, s
r2,Ω
p2,∞a]θ with the

corresponding Calderón product sr,Ωp,∞a. But, according to [16, IV.1.11], one embedding

still holds, namely

[sr1,Ωp1,∞a, s
r2,Ω
p2,∞a]θ → sr,Ωp,∞a.

So we may use the following interpolation scheme:

sr,Ωp,∞a

ր
sr1,Ωp1,∞a→ [sr,Ωp,∞a, s

r1,Ω
p1,∞a]θ → sr2,Ωp2,∞a

ց
sr1,Ωp1,∞a

where p and r are given by (4.21) and (4.20). Then the choice of 0 < θ < 1 with

max(1− p1(r1 − r2), 0) < θ <
p1
p2
≤ 1

ensures that we may proceed as in Step IIIa and get the same result.
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IVb. r1 − r2 − 1/q1 + 1/q2 ≤ 0. Then q1 ≤ q2. We use the chain of embeddings (4.17)

with (4.18) and

q1 = q, p2 ≤ q′ ≤ q2.
Applying now step IVa to the middle embedding we get the same result as in case IIb.

In the case p1 > p2 we use the chain of embeddings

sr1,Ωp1,q1a →֒ sr1,Ωp2,q1a →֒ sr2,Ωp2,q2a.

The first embedding is then continuous (as p1 > p2 and Ω is bounded), the second is

covered by the previous steps. Altogether, this finishes the proof.

4.5. Entropy numbers—conclusion. In the second chapter we have developed a

strong tool connecting the function spaces Srp,qA(R
d) with sequence spaces srp,qa. In the

third and fourth chapters we have studied the entropy numbers of embeddings of these

sequence spaces. Finally, we combine these two concepts and obtain estimates for entropy

numbers of embeddings of function spaces.

We recall that the function spaces on domains were defined by (3.1) and (3.2). Our

main result reads

Theorem 4.11. Let Ω be a bounded domain in R
d with d ≥ 2. Let 0 < p1, q1, p2, q2 ≤ ∞

with p1, p2 <∞ in the F -case. Let ri = (ri, . . . , ri) ∈ R
d, i = 1, 2.

(i) The embedding

id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω) (4.32)

is compact if and only if

r1 − r2 −
(

1

p1
− 1

p2

)

+

> 0. (4.33)

(ii) In that case

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≥ ckr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1)+ , k ≥ 2,

(4.34)

with c independent of k.

(iii) If A = A† = B or A = A† = F and r1 − r2 − 1/q1 + 1/q2 > 0 then

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≤ ckr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1), k ≥ 2,

(4.35)

with c independent of k.

(iv) If A = A† = B or A = A† = F and r1 − r2 − 1/q1 + 1/q2 ≤ 0 then for every ε > 0

there is a constant cε > 0 such that

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≤ cεkr2−r1(log k)ε, k ≥ 2. (4.36)

(v) For general A,A† and

r1 − r2 −
(

1

p1
− 1

p2

)

+

> V1(min(p1, p2), q1, p2, q2)

we get finally

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≤ ckr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1), k ≥ 2.
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Proof. Step 1. First we give some notation. If f ∈ Sr1p1,q1A(Ω) then according to Defi-

nition 3.1 there is a function g ∈ Sr1p1,q1A(Rd) such that

‖g |Sr1p1,q1A(Rd)‖ ≤ 2‖f |Sr1p1,q1A(Ω)‖
with g|Ω = f . We denote this function g = ext f . Hence ext is a (nonlinear) bounded

operator

ext : Sr1p1,q1A(Ω)→ Sr1p1,q1A(R
d).

On the other hand, the natural restriction of g ∈ Sr1p1,q1A(R
d) to D′(Ω) is a bounded

linear operator

trΩ : Sr1p1,q1A(R
d)→ Sr1p1,q1A(Ω).

Step 2. To prove the first statement we introduce two diagrams which will also be of

use later on. In the first one, we start with f ∈ Sr1p1,q1A(Ω) and extend it to g = ext f ∈
Sr1p1,q1A(R

d). Then we apply the wavelet decomposition to g as described in 2.12. This

allows us to represent g in the form

g =
∑

ν∈Nd
0 ,m∈Z

d

λν mΨν m. (4.37)

In this way, we obtain a sequence λ = {λν m : ν ∈ N
d
0, m ∈ Z

d} ∈ sr1p1,q1a. According to

Theorem 2.12, the mapping which assigns to a given function g its wavelet coefficients λ

(and which will be denoted by W) is bounded,

W : Sr1p1,q1A(R
d)→ sr1p1,q1a.

As the distribution g need not have a bounded support, we restrict the sum in (4.37) to

those m ∈ Z
d such that suppΨν m ∩Ω 6= ∅. Furthermore, we may always find a domain

Ω′ such that

{m ∈ Z
d : suppΨν m ∩Ω 6= ∅} ⊂ AΩ

′

ν , ν ∈ N
d
0.

This natural restriction will be formally realised by the the operator

id′ : sr1p1,q1a→ sr1,Ω
′

p1,q1 a.

Finally, given a sequence λ ∈ sr2,Ω′

p2,q2 a
†, we denote by S(λ) the distribution which arises

as a wavelet sum with coefficients λν m,

S(λ) =
∑

ν∈Nd
0 ,m∈A

Ω′
ν

λν mΨν m.

Using all this information we obtain the commutative diagram

Sr1p1,q1A(Ω)
ext
−−−→ Sr1p1,q1A(R

d)
W
−−−→ sr1p1,q1a

id′

−−−→ sr1,Ω
′

p1,q1 a

id1

y id2

y (4.38)

Sr2p2,q2A
†(Ω)

trΩ
←−−−−−−− Sr2p2,q2A

†(Rd)
S

←−−−−−−− sr2,Ω
′

p2,q2 a
†

All the operators involved are bounded, under hypothesis (4.33) the embedding id2 is even

compact. This proves that the condition (4.33) is sufficient for compactness of (4.32).

To prove that this condition is also necessary, we follow the reasoning in the proof of

Theorem 3.17. Suppose, that (4.33) is not satisfied. We shall construct a sequence {fµ}
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bounded in Sr1p1,q1A(Ω) such that any two different members of it have mutual distance

measured in Sr2p2,q2A
†(Ω) greater than some constant c > 0.

If p1 ≤ p2, then for every µ ≥ µ′ there are νµ andmµ with |νµ| = µ and CQνµ,mµ
⊂ Ω.

We set

fµ = 2−µ(r1−1/p1)Ψνµmµ
, µ ≥ µ′.

If p1 > p2, we choose for every µ ≥ µ′′ some νµ with |νµ| = µ and such that

#{m ∈ Z
d : CQνµm ⊂ Ω} ≈ 2µ. Then we set

fµ = 2−µr1
∑

m :CQνµ m⊂Ω

Ψνµm, µ ≥ µ′′.

Step 3. Till now we have used (4.38) only to prove the compactness of (4.32). But one

may use it also for the estimates of entropy numbers of (4.32). This gives

ek(id1) ≤ cek(id2), k ∈ N,

where the constant c covers all the bounded operators ext,W, id′, S and trΩ . This allows

us to carry over the estimate from above obtained on the sequence space level to the

function space level.

Step 4. Now we prove the estimate from below, namely (4.34). To this end we consider

the sets

BΩν = {m ∈ Z
d : CQν m ⊂ Ω}, ν ∈ N

d
0.

They form a certain counterpart to AΩν . There are, however, some important differences.

We cannot hope for a straightforward equivalence of (3.7). Instead, there are constants

µ0, c1 and c2 such that for every µ > µ0 the cardinality of the set

{ν : |ν| = µ, c12
µ ≤ #(BΩν ) ≤ c22µ}

is equivalent to µd−1. This means that (3.7) does not hold for all ν ∈ N
d
0 but only for

almost all ν with |ν| large enough.

Following the proof of Theorem 3.18 we have to choose two kinds of building blocks.

In the first case, we use the sequence spaces given by the quasinorm

‖λ | (sr,Ωp,q b)′µ‖ =
( ∑

|ν|=µ

2ν·(r−1/p)q
( ∑

m∈BΩ
ν

|λν m|p
)q/p)1/q

and

‖λ | (sr,Ωp,q f)′µ‖ =
∥∥∥
( ∑

|ν|=µ

∑

m∈BΩ
ν

|2ν·rλν mχν m(·)|q
)1/q ∣∣∣Lp(Rd)

∥∥∥∥.

To estimate the entropy numbers of

ek(id : (sr1,Ωp1,q1a)
′
µ → (sr2,Ωp2,q2a

†)′µ)

for µ ≥ µ0 large enough one may use the same arguments (and get the same results) as

in Lemma 3.13.



68 J. Vybiral

Hence for µ ≥ µ0 we use the diagram (with k = µd−12µ)

(sr1,Ωp1,q1a)
′
µ

S−−−−→ Sr1p1,q1A(Ω)

id1

y id2

y

(sr2,Ωp2,q2a
†)′µ

W←−−−− Sr2p2,q2A
†(Ω)

(4.39)

to get

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≥ c kr2−r1(log k)(d−1)(r1−r2+1/q2−1/q1), k ≥ 2.

On the other hand, the diagram (and the choice k = 2µ)

2µ(r1−1/p1)ℓ
Bµ
p1

S−−−−→ Sr1p1,q1A(Ω)

id1

y id2

y

2µ(r2−1/p2)ℓ
Bµ
p2

W←−−−− Sr2p2,q2A
†(Ω)

(4.40)

gives

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≥ ckr2−r1 , k ≥ 2.

Here Bµ = #(BΩν ) for some ν with |ν| = µ is chosen such that Bµ ≈ µd−12µ, µ ≥ µ0.

Step 5. The proof of (v) involves the same arguments as given in the previous steps and

in Theorem 3.19.

Remark 4.12. Theorem 4.11 describes in detail the entropy numbers of

id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)

if A = A†. In this case it gives (up to the (log k)ε-gap) the final answer. Let us look a

bit more closely on the situation where A = B and A† = F . The estimate from below is

covered by (4.34). If q1 ≤ p1 we may use the embeddings

Sr1p1,q1B(Ω) →֒ Sr1p1,q1F (Ω) →֒ Sr2p2,q2F (Ω) (4.41)

to carry over the results obtained for F →֒ F also to B →֒ F . If q2 ≤ p2, we replace

(4.41) by

Sr1p1,q1B(Ω) →֒ Sr2p2,q2B(Ω) →֒ Sr2p2,q2F (Ω). (4.42)

But if p1 < q1 and p2 < q2 (and, for simplicity, p1 ≤ p2), no trivial embedding would

help. In that case we get (4.35) only for

r1 − r2 −
(

1

p1
− 1

p2

)
>

1

p2
− 1

q2
.

In the case of A = F and A† = B the situation is similar. We may get (4.35) whenever

(4.41) is compact and p1 ≤ q1 or p2 ≤ q2. If q1 < p1, q2 < p2 and p1 ≤ p2, we get the

same result only for

r1 − r2 −
(

1

p1
− 1

p2

)
>

1

q1
− 1

p1
.

4.6. Comparison with known results. As the function spaces with dominating mixed

smoothness have been studied systematically by many authors, there are also many im-

portant results on the estimates of the decay of entropy numbers available in the liter-
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ature. Here, we compare our results supplied by decomposition techniques with those

obtained by Belinsky [4], Temlyakov [30] and Dinh Dung [8].

Unfortunately, the classes of functions studied by them differ slightly from the scales

Srp,qB(Ω) and Srp,qF (Ω). Let us sketch briefly their setting. They consider 1-periodic

functions of d real variables. Hence, their domain Ω is fixed, Ω = [0, 1)d. Belinsky

considers four main scales of spaces with dominating mixed smoothness, W r
p , H

r
p on the

one hand and Lp, B
0
∞,1 on the other hand.

For 1 < p <∞, the space Lp of periodic functions is a direct counterpart of S0
p,2F (Ω).

Similarly, B0
∞,1 is S0

∞,1B(Ω) in our terminology. The spaces W r
p defined by Belinsky by

means of Weyl derivatives represent for 1 < p < ∞ the Sobolev spaces of dominating

mixed smoothness Srp,2F (Ω) and, finally, the spaces Hr
p are sometimes called Nikol’skĭı

spaces and have their counterpart in Srp,∞B(Ω). To simplify the comparison of our results

with Belinsky’s, we denote the spaces W r
p , H

r
p , Lp and B0

∞,1 by S̃rp,2F, S̃
r
p,∞B, S̃

0
p,2F and

S̃0
∞,1B. We now quote four results of Belinsky and compare them with their analogues

obtained by our method. We set the smoothness involved to be (as in our case) r =

(r, . . . , r) ∈ R
d although the results in [4] are presented in a bit greater generality.

Theorem 4.13. (i) Let r > 1/p− 1/q and 1 < p ≤ q <∞. Then

ek(id : S̃rp,2F → S̃0
q,2F ) ≈

(
logd−1 k

k

)r
. (4.43)

(ii) Let r > 1/p− 1/q and 1 < p ≤ q <∞. Then

ek(id : S̃rp,∞B → S̃0
q,2F ) ≈

(
logd−1 k

k

)r
log(d−1)/2 k. (4.44)

(iii) Let r > 1/2. Then

ek(id : S̃r2,2F → S̃0
∞,1B) ≈

(
logd−1 k

k

)r
log(d−1)/2 k. (4.45)

(iv) Let r > 1/2. Then

ek(id : S̃r2,∞B → S̃0
∞,1B) ≈

(
logd−1 k

k

)r
logd−1 k. (4.46)

Remark 4.14. We point out that according to Theorem 3.17, all the bounds for r in

Theorem 4.13 are optimal. Due to Theorem 4.11, we achieved the same results as in (i),

(iii) and (iv). The embedding appearing in (4.44) corresponds to

id : Srp,∞B(Ω)→ S0
q,2F (Ω)

in our setting. In this case, for

r −
(
1

p
− 1

q

)
> V1(p,∞, q, 2) =

1

q
− 1

max(q, 2)

by Theorem 4.11 we get

ek(id) ≤ ck−r(log k)(d−1)(r+1/2), k ≥ 2.

So, for q ≥ 2, our result is optimal for all possible r, but for q < 2 we get the optimal

result only for r > 1/p− 1/2 > 1/p− 1/q.
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In [30], Temlyakov obtained other important results on entropy numbers of embed-

dings of spaces with dominating mixed smoothness. Using our notation, they may be

summarised as follows.

Theorem 4.15. (i) Let r > 1. Then

ek(id : Sr1,∞B → S0
∞,2B) ≤ ck−r(log k)(d−1)(r+1/2). (4.47)

(ii) Let r > 0. Then

ek(id : Sr∞,∞B → L1) ≥ ck−r(log k)(d−1)(r+1/2). (4.48)

(iii) Let r > 1 and 1 < p, q <∞. Then

ek(id : Srq,2F → S0
p,2F ) ≤ ck−r(log k)(d−1)r. (4.49)

(iv) Let r > 0 and 1 < q <∞. Then

ek(id : Srq,2F → L1) ≥ ck−r(log k)(d−1)r. (4.50)

Remark 4.16. We discuss these results briefly. We point out that the bound for r is

always optimal apart from case (iii). Namely, the embedding in (4.49) is compact if and

only if r > (1/q − 1/p)+. The inequalities (4.47) and (4.49) are completely covered by

Theorem 4.11.

But (4.48) and (4.50) are of a different nature. Namely, they deal with the space

L1(Ω), which does not fit into our scales Srp,qA(Ω). All the known decomposition tech-

niques fail to give some decomposition of this space and, therefore, no reduction to the

sequence space level is possible. The same holds for embeddings to other spaces of this

kind, especially L∞(Ω).

Finally, we discuss the results obtained by Dinh Dung in [8].

Theorem 4.17. Let 1 < p1, p2 <∞, 0 < q ≤ ∞ and r > 0. Then we have

(i) for either r > 1/p1 and q ≥ p1, or r > (1/p1 − 1/p2)+ and q ≥ min(p2, 2),

ek(id : Srp1,qB → S0
p2,2F ) ≈ k−r(log k)(d−1)(r+1/2−1/q), (4.51)

(ii) for r > (1/p1 − 1/p2)+,

ek(id : Srp1,2F → S0
p2,2F ) ≈ k−r(log k)(d−1)r. (4.52)

The embedding (4.52) is (for p1 ≤ p2) covered by (4.43) and for general p1 and p2
by (4.34) and (4.35). We therefore concentrate on (4.51). In [9], Dinh Dung comments

that the conditions on r and q in Theorem 4.17 ensure the positivity of the power of the

logarithm in (4.51). In view of our general estimate (4.34), this should really be so. But

unfortunately, the conditions given in Theorem 4.17 do not ensure that r+1/2−1/q > 0.

To see that, set p1 = p2 < q < 2 and 0 < r < 1/q − 1/2. A closer inspection of the proof

of Theorem 2 in [8] shows that in the case r > (1/p1 − 1/p2)+ and q ≥ min(p2, 2) Dinh

Dung proves actually a slightly weaker result, namely

ek(id : Srp1,qB → S0
p2,2F ) ≤ c k−r(log k)(d−1)(r+1/min(p2,2)−1/q), k ≥ 2. (4.53)

In this result, the power of the logarithm is always positive and, therefore, no contradic-

tion with (4.34) occurs. We point out that our result covers and improves (4.53) as far

as the set of parameters is concerned.
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We start with p1 ≤ p2. By Remark 4.12, we get (4.51) for all r > 1/p1 − 1/p2 with

r > 1/q − 1/2 if q ≤ p1 or 2 ≤ p2. Moreover, for r ≤ 1/q − 1/2 we get (4.34) and an

analogue of (4.36). Finally, if r > 1/p1 − 1/2 we get (4.51) even if q > p1 and 2 > p2.

A similar discussion may be done for p1 > p2.

Next we present some special cases of Theorem 4.11 which have not been discussed

separately yet, but which may be of some independent interest.

Theorem 4.18. Let r = (r, . . . , r) ∈ R
d.

(i) The embedding

id : Sr1,1B(Ω)→ S0
∞,∞B(Ω)

is compact if and only if r > 1 and in that case

ek(id) ≈ k−r(log k)(d−1)(r−1), k ≥ 2.

(ii) The embedding

id : Sr∞,1B(Ω)→ S0
∞,∞B(Ω)

is compact if and only if r > 0. If r > 1 then

ek(id) ≈ k−r(log k)(d−1)(r−1), k ≥ 2,

and for 0 < r ≤ 1 and every ε > 0 there are constants c and cε such that

ck−r ≤ ek(id) ≤ cεk−r(log k)ε, k ≥ 2.

(iii) Let 0 < p ≤ q <∞. The embedding

id : Srp,2F (Ω)→ S0
q,∞B(Ω)

is compact if and only if r > 1/p− 1/q. If in this case r > 1/2 then

ek(id) ≈ k−r(log k)(d−1)(r−
1
2 ), k ≥ 2,

and for 1/p− 1/q < r ≤ 1/2 and every ε > 0 there are constants c and cε such that

c k−r ≤ ek(id) ≤ cεk−r(log k)ε, k ≥ 2.

Proof. The assertion follows from Theorem 4.11 and Remark 4.12.
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[33] —, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
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