Contents

1. Introduction 5
2. Locally compact spaces 18
3. Specific second dual algebras 33
4. The topological structure of Ω 42
5. Locally compact groups 59
6. Formulae for products 74
7. The recovery of G from \widetilde{G} 80
8. The compact space G 86
9. Topological centres 104
10. Open problems 109
References 110
Index of terms 116
Index of symbols 119

Abstract

Let G be a locally compact group. We shall study the Banach algebras which are the group algebra $L^{1}(G)$ and the measure algebra $M(G)$ on G, concentrating on their second dual algebras. As a preliminary we shall study the second dual $C_{0}(\Omega)^{\prime \prime}$ of the C^{*}-algebra $C_{0}(\Omega)$ for a locally compact space Ω, recognizing this space as $C(\widetilde{\Omega})$, where $\widetilde{\Omega}$ is the hyper-Stonean envelope of Ω.

We shall study the C^{*}-algebra $B^{b}(\Omega)$ of bounded Borel functions on Ω, and we shall determine the exact cardinality of a variety of subsets of $\widetilde{\Omega}$ that are associated with $B^{b}(\Omega)$.

We shall identify the second duals of the measure algebra $(M(G), \star)$ and the group algebra $\left(L^{1}(G), \star\right)$ as the Banach algebras $(M(\widetilde{G}), \square)$ and $(M(\Phi), \square)$, respectively, where \square denotes the first Arens product and \widetilde{G} and Φ are certain compact spaces, and we shall then describe many of the properties of these two algebras. In particular, we shall show that the hyper-Stonean envelope \widetilde{G} determines the locally compact group G. We shall also show that ($\widetilde{G}, \square)$ is a semigroup if and only if G is discrete, and we shall discuss in considerable detail the product of point masses in $M(\widetilde{G})$. Some important special cases will be considered.

We shall show that the spectrum of the C^{*}-algebra $L^{\infty}(G)$ is determining for the left topological centre of $L^{1}(G)^{\prime \prime}$, and we shall discuss the topological centre of the algebra $\left(M(G)^{\prime \prime}, \square\right)$.

2010 Mathematics Subject Classification: Primary 43A10, 43A20; Secondary 46J10. Key words and phrases: Banach algebra, Lau algebra, Arens products, Arens regular, strongly Arens irregular, topological centre, second dual, introverted subspaces, almost periodic, weakly almost periodic, extremely disconnected, Stonean space, hyper-Stonean space, hyperStonean envelope, continuous functions, Borel sets, bounded Borel functions, Cantor cube, C^{*}-algebra, Stone-Čech compactification, measure, measure algebra, group algebra, Boolean algebra, ultrafilter, Stone space, topological semigroup, topological group, locally compact group, structure semigroup, left-invariant mean.

Received 25.12.2009; revised version 26.7.2011.

1. Introduction

Our aim in this memoir is to study the Banach algebras which are the second dual algebras $\left(M(G)^{\prime \prime}, \square\right)$ and $\left(L^{1}(G)^{\prime \prime}, \square\right)$ of the measure algebra $(M(G), \star)$ and the group algebra $\left(L^{1}(G), \star\right)$, respectively, of a locally compact group G. Here \square denotes the (first) Arens product on the second dual space $A^{\prime \prime}$ of a Banach algebra A. We are particularly interested in the case where the group G is not discrete; the discrete case was studied in our earlier memoir [17]. Thus we must discuss in some depth a compact space \widetilde{G} which we call the hyper-Stonean envelope of a locally compact group G, and also the subspace Φ of \widetilde{G}, where Φ is the character space, or spectrum, of the C^{*}-algebra $L^{\infty}(G)$. The space \widetilde{G} is analogous to the semigroup $(\beta S, \square)$ which is the Stone-Čech compactification of a semigroup S (see [17), and we shall discuss the 'semigroup-like' properties of ($\widetilde{G}, \square)$; however, we shall prove that (\widetilde{G}, \square) is actually only a semigroup in the special case where G is discrete.

As a preliminary to our discussion of \widetilde{G} we shall develop the theory of the hyperStonean envelope $\widetilde{\Omega}$ of a locally compact space Ω; in our approach, $\widetilde{\Omega}$ is the character space of the second dual $C_{0}(\Omega)^{\prime \prime}$ of $C_{0}(\Omega)$. Many of these results are known, and indeed they go back to the seminal paper of Dixmier [24] of 1951. However we cast the material in a different context, and prove some new results that we shall require later.

The present chapter contains a review of some notation that we shall use and background material involving Banach spaces, Banach algebras, and their second duals. A summary of our results and some acknowledgements are given at the end of this chapter.

Basic notation. We shall use the following notation.
The rational, real, and complex fields are \mathbb{Q}, \mathbb{R}, and \mathbb{C}, respectively. We denote the set of integers by \mathbb{Z}, and set $\mathbb{Z}^{+}=\{n \in \mathbb{Z}: n \geq 0\}$ and $\mathbb{N}=\{n \in \mathbb{Z}: n>0\}$; for $n \in \mathbb{N}$, we set $\mathbb{Z}_{n}^{+}=\{0, \ldots, n\}$ and $\mathbb{N}_{n}=\{1, \ldots, n\}$. Further,

$$
\mathbb{T}=\{z \in \mathbb{C}:|z|=1\} \quad \text { and } \quad \mathbb{I}=[0,1] \subset \mathbb{R} .
$$

However, for $p \in \mathbb{N}$, we set

$$
\mathbb{Z}_{p}=\{0,1, \ldots, p-1\} ;
$$

this set is a group with respect to addition modulo p. Further, we set

$$
D_{p}=\mathbb{Z}_{p}^{\aleph_{0}}=\left\{\varepsilon=\left(\varepsilon_{j}: j \in \mathbb{N}\right): \varepsilon_{j} \in \mathbb{Z}_{p}(j \in \mathbb{N})\right\}
$$

The set D_{p} is a group with respect to the coordinatewise operations.
The cardinality of a set S is denoted by $|S|$; the first infinite cardinal is \aleph_{0}; the first uncountable cardinal is \aleph_{1}; the cardinality of the continuum is denoted by \mathfrak{c}, so that
$\mathfrak{c}=2^{\aleph_{0}}$, and the continuum hypothesis (CH) is the assertion that $\aleph_{1}=\mathfrak{c}$; the generalized continuum hypothesis (GCH) implies that $2^{\mathfrak{c}}=2^{\aleph_{1}}=\aleph_{2}$ and that $2^{2^{c}}=\aleph_{3}$.

The characteristic function of a subset S of a set is denoted by χ_{S}; the function constantly equal to 1 on a set S is also denoted by 1_{S} or 1 . The symmetric difference of two subsets S and T of a given set is denoted by $S \triangle T$.

Let E be a linear space (always taken to be over the complex field \mathbb{C}), and let S be a subset of E. The convex hull of S is $\langle S\rangle$, and the linear span of S is $\operatorname{lin} S$. The set of extreme points of a convex subset S of E is denoted by ex S.

Algebras and modules. Let A be an algebra, which is always taken to be linear and associative. The following notation is as in 13.

The identity of A (if it exists) is e_{A}; the algebra formed by adjoining an identity to a non-unital algebra A is denoted by $A^{\#}$, and $A^{\#}=A$ when A has an identity. The centre of A is $\mathfrak{Z}(A)$. For a subset S of A, we set

$$
S^{[2]}=\{a b: a, b \in S\} \quad \text { and } \quad S^{2}=\operatorname{lin} S^{[2]}
$$

A character on A is a homomorphism from A onto the field \mathbb{C}; the character space of A is the collection of characters on A, and it is denoted by Φ_{A}. For $a \in A$, we define

$$
L_{a}: b \mapsto a b, \quad R_{a}: b \mapsto b a, \quad A \rightarrow A
$$

Suppose that B is a subalgebra of A and that I is an ideal in A. Then the product in $B \times I$ is given by

$$
\left(b_{1}, x_{1}\right)\left(b_{2}, x_{2}\right)=\left(b_{1} b_{2}, b_{1} x_{2}+x_{1} b_{2}+x_{1} x_{2}\right) \quad\left(b_{1}, b_{2} \in B, x_{1}, x_{2} \in I\right)
$$

in this case A is a semidirect product of B and I, written $A=B \ltimes I$.
Let E be an A-bimodule, so that E is a linear space and there are bilinear maps

$$
(a, x) \mapsto a \cdot x, \quad(a, x) \mapsto x \cdot a, \quad A \times E \rightarrow E
$$

such that $a \cdot(b \cdot x)=a b \cdot x,(x \cdot b) \cdot a=x \cdot b a$, and $a \cdot(x \cdot b)=(a \cdot x) \cdot b$ for $a, b \in A$ and $x \in E$. In this case, set

$$
A \cdot E=\{a \cdot x: a \in A, x \in E\}, \quad A E=\operatorname{lin} A \cdot E
$$

and similarly for $E \cdot A$ and $E A$. Suppose that A has an identity e_{A}. Then the bimodule E is unital if $e_{A} \cdot x=x \cdot e_{A}=x(x \in E)$. In general, an A-bimodule E is neo-unital if $A \cdot E=E \cdot A=A$.

For details on bimodules, see [13, §1.4].
Banach spaces. Throughout our terminology and notations for Banach spaces and algebras will be in accord with those in [13, where further details may be found. We recall some notation.

Let E be a Banach space. The closed unit ball in E is $E_{[1]}$. The dual space and second dual space of E are denoted by E^{\prime} and $E^{\prime \prime}$, respectively; we write $\langle x, \lambda\rangle$ for the action of $\lambda \in E^{\prime}$ on $x \in E$ and $\langle\mathrm{M}, \lambda\rangle$ for the action of $\mathrm{M} \in E^{\prime \prime}$ on $\lambda \in E^{\prime}$, etc.; the weak-* topology on E^{\prime} is $\sigma\left(E^{\prime}, E\right)$, so that $\left(E_{[1]}^{\prime}, \sigma\left(E^{\prime}, E\right)\right)$ is always compact; we set

$$
\left\langle\kappa_{E}(x), \lambda\right\rangle=\langle x, \lambda\rangle \quad\left(x \in E, \lambda \in E^{\prime}\right),
$$

so defining the canonical embedding $\kappa_{E}: E \rightarrow E^{\prime \prime}$, and we set

$$
\left\langle\mathrm{M}, \kappa_{E^{\prime}}(\lambda)\right\rangle=\langle\mathrm{M}, \lambda\rangle \quad\left(\lambda \in E^{\prime}, \mathrm{M} \in E^{\prime \prime}\right),
$$

so defining the canonical embedding $\kappa_{E^{\prime}}: E^{\prime} \rightarrow E^{\prime \prime \prime}$. Of course, $\kappa_{E}\left(E_{[1]}\right)$ is $\sigma\left(E^{\prime \prime}, E^{\prime}\right)$ dense in $E_{[1]}^{\prime \prime}$ and

$$
\left\langle\kappa_{E}(x), \kappa_{E^{\prime}}(\lambda)\right\rangle=\langle x, \lambda\rangle \quad\left(x \in E, \lambda \in E^{\prime}\right) .
$$

We shall often identify E with $\kappa_{E}(E)$, and regard it as a $\|\cdot\|$-closed subspace of $E^{\prime \prime}$.
We first recall some standard results of functional analysis that will be used more than once.

Proposition 1.1. Let E be a non-zero Banach space.
(i) The space $\left(E_{[1]}^{\prime}, \sigma\left(E^{\prime}, E\right)\right)$ is metrizable if and only if $(E,\|\cdot\|)$ is separable.
(ii) The following are equivalent conditions on an element $\mathrm{M} \in E^{\prime \prime}$:
(a) $\mathrm{M} \in E$;
(b) M is continuous on $\left(E^{\prime}, \sigma\left(E^{\prime}, E\right)\right)$;
(c) M is continuous on $\left(E_{[1]}^{\prime}, \sigma\left(E^{\prime}, E\right)\right)$.
(iii) Suppose that $|E|=\kappa$. Then $\left|E^{\prime}\right| \leq 2^{\kappa}$.

Proof. For (i) and (ii), see [26, Theorems V.5.1, V.5.6], for example. For (iii), we have $\left|E^{\prime}\right| \leq\left|\mathbb{C}^{E}\right|=\mathfrak{c}^{\kappa}=2^{\kappa}$.

The elements M of $E^{\prime \prime}$ which satisfy the equivalent conditions of clause (ii) above are the normal elements of $E^{\prime \prime}$.

Let E and F be normed spaces. Then we write $\mathcal{B}(E, F)$ for the space of bounded linear operators from E to F; this space is taken with the operator norm. A map $T: E \rightarrow F$ is a linear homeomorphism if T is a bijection and if $T \in \mathcal{B}(E, F)$ and $T^{-1} \in \mathcal{B}(F, E)$. The spaces E and F are linearly homeomorphic if there is a linear homeomorphism from E to F, and E and F are isometrically isomorphic if there is a linear isometry from E onto F; in the latter case, we write $E \cong F$.

Let X be a linear subspace of a Banach space E. Then

$$
X^{\circ}=\left\{\lambda \in E^{\prime}: \lambda \mid X=0\right\}
$$

so that X^{\prime} is isometrically isomorphic to E^{\prime} / X°.

Banach algebras. Let A be a Banach algebra. We recall that all characters on A are continuous, and that Φ_{A} is a locally compact subspace of the unit ball $\left(A_{[1]}^{\prime}, \sigma\left(A^{\prime}, A\right)\right)$ of A^{\prime}. In the case where A has an identity e_{A}, we have

$$
\Phi_{A} \subset\left\{\lambda \in A^{\prime}:\left\langle e_{A}, \lambda\right\rangle=\|\lambda\|=1\right\}
$$

and Φ_{A} is compact.
A bounded approximate identity in A is a bounded net $\left(e_{\alpha}\right)$ in A such that

$$
\lim _{\alpha} a e_{\alpha}=\lim _{\alpha} e_{\alpha} a=a \quad(a \in A) .
$$

The theory of Banach A-bimodules is given in [13]. Indeed, a Banach A-bimodule is an A-bimodule E which is a Banach space and such that

$$
\max \{\|a \cdot x\|,\|x \cdot a\|\} \leq\|a\|\|x\| \quad(a \in A, x \in E)
$$

For example, A is a Banach A-bimodule over itself. Let E be a Banach A-bimodule. Then the dual space E^{\prime} is also a Banach A-bimodule for the operations defined by

$$
\langle x, a \cdot \lambda\rangle=\langle x \cdot a, \lambda\rangle, \quad\langle x, \lambda \cdot a\rangle=\langle a \cdot x, \lambda\rangle \quad\left(a \in A, x \in E, \lambda \in E^{\prime}\right)
$$

In particular, A^{\prime} is the dual module of A, and $\overline{\operatorname{lin}}\left(A \cdot A^{\prime}\right)$ is a closed submodule of A^{\prime}. Further, the second dual $A^{\prime \prime}$ is a Banach A-bimodule. A Banach A-bimodule E is essential if

$$
\overline{A E}=\overline{E A}=E .
$$

We shall use the following result, which is a version of Cohen's factorization theorem 13 , Corollary 2.9.31].

Proposition 1.2. Let A be a Banach algebra with a bounded approximate identity, and let E be an essential Banach A-bimodule. Then E is neo-unital. In particular, $A=A^{[2]}$, and $A \cdot A^{\prime} \cdot A$ is a closed submodule of A^{\prime}.

A Banach algebra A is said to be a dual Banach algebra if there is a closed A submodule E of A^{\prime} such that $E^{\prime}=A$ as a Banach space; in this case, E is a predual of A. It is easy to see that a Banach space E is a predual of A in this sense if and only if $E^{\prime}=A$ and multiplication in A is separately $\sigma(A, E)$-continuous. For example, each von Neumann algebra is a dual Banach algebra [102, Examples 4.4.2(c)]. For further details, see [16, Chapter 2] and [102, §4.4]; for recent accounts of dual Banach algebras, see [19, 20].

We shall refer briefly to the very extensive theory of amenable Banach algebras; for the general theory of these algebras, see [13, 59, 102], and for characterizations involving the algebras that we shall be concerned with, see [17.

Arens products and topological centres. Let A be a Banach algebra. Then there are two natural products on the second dual $A^{\prime \prime}$ of A; they are called the Arens products, and are denoted by \square and \diamond, respectively. They were introduced by Arens [2], and studied in [10]; for further discussions of these products, see [13, 16, 17, for example.

We recall briefly the definitions. As above, A^{\prime} and $A^{\prime \prime}$ are Banach A-bimodules. For $\lambda \in A^{\prime}$ and $\mathrm{M} \in A^{\prime \prime}$, define $\lambda \cdot \mathrm{M} \in A^{\prime}$ and $\mathrm{M} \cdot \lambda \in A^{\prime}$ by

$$
\langle a, \lambda \cdot \mathrm{M}\rangle=\langle\mathrm{M}, a \cdot \lambda\rangle, \quad\langle a, \mathrm{M} \cdot \lambda\rangle=\langle\mathrm{M}, \lambda \cdot a\rangle \quad(a \in A)
$$

For $\mathrm{M}, \mathrm{N} \in A^{\prime \prime}$, define

$$
\langle\mathrm{M} \square \mathrm{~N}, \lambda\rangle=\langle\mathrm{M}, \mathrm{~N} \cdot \lambda\rangle, \quad\langle\mathrm{M} \diamond \mathrm{~N}, \lambda\rangle=\langle\mathrm{N}, \lambda \cdot \mathrm{M}\rangle \quad\left(\lambda \in A^{\prime}\right)
$$

Theorem 1.3. Let A be a Banach algebra. Then $\left(A^{\prime \prime}, \square\right)$ and $\left(A^{\prime \prime}, \diamond\right)$ are Banach algebras containing A as a closed subalgebra.

The Arens products \square and \diamond are determined by the following formulae, where all limits are taken in the weak-* topology $\sigma\left(A^{\prime \prime}, A^{\prime}\right)$ of $A^{\prime \prime}$. Let $\mathrm{M}, \mathrm{N} \in A^{\prime \prime}$, and take nets
$\left(a_{\alpha}\right)$ and $\left(b_{\beta}\right)$ in A such that $\mathrm{M}=\lim _{\alpha} a_{\alpha}$ and $\mathrm{N}=\lim _{\beta} b_{\beta}$. Then

$$
\begin{equation*}
\mathrm{M} \square \mathrm{~N}=\lim _{\alpha} \lim _{\beta} a_{\alpha} b_{\beta}, \quad \mathrm{M} \diamond \mathrm{~N}=\lim _{\beta} \lim _{\alpha} a_{\alpha} b_{\beta} . \tag{1.1}
\end{equation*}
$$

The two maps $\mathrm{M} \mapsto \mathrm{M} \square \mathrm{N}$ and $\mathrm{M} \mapsto \mathrm{N} \diamond \mathrm{M}$ are weak-* continuous on $A^{\prime \prime}$ for each $\mathrm{N} \in A^{\prime \prime}$.

We shall use the following equation. Let A be a Banach algebra, let $a \in A$, and let $\varphi \in \Phi_{A}$. Then clearly $a \cdot \varphi=\langle a, \varphi\rangle \varphi$. Thus, taking weak-* limits, we see that

$$
\begin{equation*}
\mathrm{M} \cdot \varphi=\langle\mathrm{M}, \varphi\rangle \varphi \quad\left(\mathrm{M} \in A^{\prime \prime}, \varphi \in \Phi_{A}\right) . \tag{1.2}
\end{equation*}
$$

Proposition 1.4.

(i) Let A and B be Banach algebras, and suppose that $\theta: A \rightarrow B$ is a continuous homomorphism. Then the map $\theta^{\prime \prime}:\left(A^{\prime \prime}, \square\right) \rightarrow\left(B^{\prime \prime}, \square\right)$ is a continuous homomorphism with range contained in the $\sigma\left(B^{\prime \prime}, B^{\prime}\right)$-closure of $\theta(A)$.
(ii) Let A be a Banach algebra, and let E be a Banach A-bimodule. Then $E^{\prime \prime}$ is a Banach $\left(A^{\prime \prime}, \square\right)$-module in a natural way.
(iii) Let A be a Banach algebra, let E and F be Banach A-bimodules, and then take $T: E \rightarrow F$ to be a continuous A-bimodule homomorphism. Then $T^{\prime \prime}: E^{\prime \prime} \rightarrow F^{\prime \prime}$ is a continuous $\left(A^{\prime \prime}, \square\right)$-bimodule homomorphism.
Proof. These are contained in [13, §2.6], or follow directly from results there; in particular, see Theorem 2.6.15 and equation (2.6.26) of [13].

Let A be a dual Banach algebra with predual E, where E regarded as a subset of A^{\prime}, so that $E^{\circ}=\left\{\mathrm{M} \in A^{\prime \prime}: \mathrm{M} \mid E=0\right\}$. Then

$$
\begin{equation*}
\left(A^{\prime \prime}, \square\right)=A \ltimes E^{\circ} \tag{1.3}
\end{equation*}
$$

as a semidirect product [16, Theorem 2.15].
Definition 1.5. Let A be a Banach algebra. Then the left and right topological centres of $A^{\prime \prime}$ are

$$
\begin{aligned}
& \mathfrak{J}_{t}^{(\ell)}\left(A^{\prime \prime}\right)=\left\{\mathrm{M} \in A^{\prime \prime}: \mathrm{M} \square \mathrm{~N}=\mathrm{M} \diamond \mathrm{~N}\left(\mathrm{~N} \in A^{\prime \prime}\right)\right\}, \\
& \mathfrak{Z}_{t}^{(r)}\left(A^{\prime \prime}\right)=\left\{\mathrm{M} \in A^{\prime \prime}: \mathrm{N} \square \mathrm{M}=\mathrm{N} \diamond \mathrm{M}\left(\mathrm{~N} \in A^{\prime \prime}\right)\right\},
\end{aligned}
$$

respectively. The topological centre is $\mathfrak{Z}_{t}\left(A^{\prime \prime}\right)=\mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right) \cap \mathfrak{Z}_{t}^{(r)}\left(A^{\prime \prime}\right)$.
We also recall that

$$
\begin{aligned}
& \mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right)=\left\{\mathrm{M} \in A^{\prime \prime}: L_{\mathrm{M}}: \mathrm{N} \mapsto \mathrm{M} \square \mathrm{~N} \text { is weak-* continuous on } A^{\prime \prime}\right\}, \\
& \mathfrak{J}_{t}^{(r)}\left(A^{\prime \prime}\right)=\left\{\mathrm{M} \in A^{\prime \prime}: R_{\mathrm{M}}: \mathrm{N} \mapsto \mathrm{~N} \diamond \mathrm{M} \text { is weak-* continuous on } A^{\prime \prime}\right\} .
\end{aligned}
$$

In the case where A is commutative, we have

$$
\mathrm{M} \diamond \mathrm{~N}=\mathrm{N} \square \mathrm{M} \quad\left(\mathrm{M}, \mathrm{~N} \in A^{\prime \prime}\right)
$$

and so $\mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right)$ and $\mathfrak{Z}_{t}^{(r)}\left(A^{\prime \prime}\right)$ are each just the (algebraic) centre $\mathfrak{Z}\left(A^{\prime \prime}\right)$ of the algebra $\left(A^{\prime \prime}, \square\right)$.
Proposition 1.6. Let A be a Banach algebra. Then $A \subset \mathfrak{Z}_{t}\left(A^{\prime \prime}\right)=\mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right) \cap \mathfrak{Z}_{t}^{(r)}\left(A^{\prime \prime}\right)$.
The following definitions were given in [16]. Further, many examples showing the possibilities that can occur were given in [16, Chapter 4].

Definition 1.7. Let A be a Banach algebra. Then A is Arens regular if

$$
\left.\mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right)=\mathfrak{Z}_{t}^{(r)} A^{\prime \prime}\right)=A^{\prime \prime}
$$

left strongly Arens irregular if

$$
\mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right)=A
$$

right strongly Arens irregular if

$$
\mathfrak{Z}_{t}^{(r)}\left(A^{\prime \prime}\right)=A
$$

and strongly Arens irregular if it is both left and right strongly Arens irregular.
A closed subalgebra and a quotient algebra of an Arens regular Banach algebra are themselves Arens regular.
Definition 1.8. Let A be a left strongly Arens irregular Banach algebra. Then a subset V of $A^{\prime \prime}$ is determining for the left topological centre of $A^{\prime \prime}$ if $\mathrm{M} \in A$ whenever

$$
\mathrm{M} \square \mathrm{~N}=\mathrm{M} \diamond \mathrm{~N} \quad(\mathrm{~N} \in V)
$$

Thus $A^{\prime \prime}$ is determining for the left topological centre whenever A is left strongly Arens irregular, and possibly smaller subsets of $A^{\prime \prime}$ have this property.

The above definition was first given in [17, Definition 12.4]; care is required because this term has been used in a slightly different sense elsewhere.

Let S be a semigroup, and let $\ell^{1}(S)$ be the corresponding semigroup algebra. In [17], it is shown that, in the case where S belongs to an interesting class of semigroups which is strictly larger than the class of cancellative semigroups, certain subsets V of βS of cardinality 2 are determining for the left topological centre of $\ell^{1}(S)^{\prime \prime}$; for strong versions of this and other related results, see [7] and 31]. There are some related results for subsemigroups of the real line in [14, Chapter 9]. We shall address similar questions in Chapter 9.

Introverted subspaces. We recall the definition of introverted subspaces of the dual module A^{\prime} of a Banach algebra A. Our definition is slightly more general than the one in [16, Definition 5.1] in that now we do not require X to be closed in A^{\prime}.

Definition 1.9. Let A be a Banach algebra, and let X be a left (respectively, right) A submodule of A^{\prime}. Then X is left-introverted (respectively, right-introverted) if $\mathrm{M} \cdot \lambda \in X$ (respectively, $\lambda \cdot \mathrm{M} \in X$) whenever $\lambda \in X$ and $\mathrm{M} \in A^{\prime \prime}$; a sub-bimodule X of A^{\prime} is introverted if it is both left- and right-introverted.

Let X be a faithful, left-introverted subspace of A^{\prime}. Then \bar{X} is also a left-introverted subspace of A^{\prime}, and X° is a weak-* closed ideal in $\left(A^{\prime \prime}, \square\right)$: this is proved in 16, Theorem 5.4(ii)], but was actually given earlier in [83, Theorem 3.2]. Thus $A^{\prime \prime} / X^{\circ}$ is a quotient Banach algebra; the product in this algebra is again denoted by \square. Since $X^{\prime}=A^{\prime \prime} / X^{\circ}$ as a Banach space, we may regard $\left(X^{\prime}, \square\right)$ as a Banach algebra; the formula for the product in X^{\prime} is

$$
\langle\mathrm{M} \square \mathrm{~N}, \lambda\rangle=\langle\mathrm{M}, \mathrm{~N} \cdot \lambda\rangle \quad(\lambda \in X)
$$

Definition 1.10. Let A be a Banach algebra. For $\lambda \in A^{\prime}$, set

$$
\begin{equation*}
K(\lambda)=\left\{a \cdot \lambda: a \in A_{[1]}\right\} . \tag{1.4}
\end{equation*}
$$

The element λ is [weakly] almost periodic if the map

$$
a \mapsto a \cdot \lambda, \quad A \rightarrow A^{\prime}
$$

is [weakly] compact.
Thus $K(\lambda)$ is a convex subset of A^{\prime}. We take $\overline{K(\lambda)}$ to be the closure of $K(\lambda)$ in $\left(A^{\prime},\|\cdot\|\right)$; by Mazur's theorem, $\overline{K(\lambda)}$ is also equal to the closure of $K(\lambda)$ in $\left(A^{\prime}, \sigma\left(A^{\prime}, A^{\prime \prime}\right)\right.$). It is always true that the closure of $K(\lambda)$ in $\left(A^{\prime}, \sigma\left(A^{\prime}, A\right)\right)$ is

$$
\overline{K(\lambda)}^{\sigma\left(A^{\prime}, A\right)}=\left\{\mathrm{M} \cdot \lambda: \mathrm{M} \in A_{[1]}^{\prime \prime}\right\},
$$

and of course $\overline{K(\lambda)} \subset \overline{K(\lambda)}^{\sigma\left(A^{\prime}, A\right)}$. Thus λ is almost periodic if and only if $\overline{K(\lambda)}$ is compact in $\left(A^{\prime},\|\cdot\|\right)$, and weakly almost periodic if and only if $\overline{K(\lambda)}$ is compact in $\left(A^{\prime}, \sigma\left(A^{\prime}, A^{\prime \prime}\right)\right)$.

Definition 1.11. Let A be a Banach algebra. Then the Banach spaces of almost periodic and weakly almost periodic functionals on A are denoted by

$$
A P(A) \quad \text { and } \quad W A P(A),
$$

respectively.
Thus $A P(A) \subset W A P(A)$, and it is easily seen that both $A P(A)$ and $W A P(A)$ are Banach A-submodules of A^{\prime}. By [93] (see [16, Proposition 3.11]), $\lambda \in W A P(A)$ if and only if

$$
\langle\mathrm{M} \square \mathrm{~N}, \lambda\rangle=\langle\mathrm{M} \diamond \mathrm{~N}, \lambda\rangle \quad\left(\mathrm{M}, \mathrm{~N} \in A^{\prime \prime}\right)
$$

and so $\lambda \in W A P(A)$ if and only if

$$
\lim _{m} \lim _{n}\left\langle a_{m} b_{n}, \lambda\right\rangle=\lim _{n} \lim _{m}\left\langle a_{m} b_{n}, \lambda\right\rangle
$$

whenever $\left(a_{m}\right)$ and $\left(b_{n}\right)$ are bounded sequences in A and both iterated limits exist.
The following result, from [93], is also contained in [16, Theorem 3.14, Proposition 5.7].

Proposition 1.12. Let A be a Banach algebra. Then A is Arens regular if and only if $W A P(A)=A^{\prime}$.

We consider the relation between the space $W A P(A)$ and the two sets $A^{\prime} \cdot A$ and $A \cdot A^{\prime}$.

First, as in [16, Example 4.9(i)], let A be a non-zero Banach algebra with $A^{2}=\{0\}$. Then A is Arens regular, and so $W A P(A)=A^{\prime}$, but $A^{\prime} \cdot A=A \cdot A^{\prime}=\{0\}$, and so $\overline{A^{\prime} A} \subsetneq W A P(A)$. Second, let $A=\ell^{1}(G)$ for an infinite group G, as described below. Then we shall see that $W A P(A)=W A P(G)$, the space of weakly almost periodic functions on G, whereas, in this case, $A^{\prime} \cdot A=A^{\prime}=\ell^{\infty}(G)$, and so $W A P(A) \subsetneq A^{\prime} \cdot A$.

Now suppose that A has a bounded approximate identity. Clause (i) of the following result is contained in [16, Propositions 2.20 and 3.12], following [71, Proposition 3.3]; clause (ii) is part of 80, Theorem 3.6].

Proposition 1.13. Let A be a Banach algebra with a bounded approximate identity. Then:
(i) $A P(A)$ and $W A P(A)$ are neo-unital Banach A-bimodules, with

$$
A P(A) \subset W A P(A) \subset\left(A^{\prime} \cdot A\right) \cup\left(A \cdot A^{\prime}\right)
$$

(ii) $W A P(A)=A^{\prime} \cdot A$ if and only if $A \cdot A^{\prime \prime} \subset \mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right)$.

For a further discussion of $A P(A)$ and $W A P(A)$, see 16, 25, 83.
We shall also use the following propositions. The first is exactly [75] Lemma 1.2]; clause (ii) was given earlier in [83, Theorem 3.1].

Proposition 1.14. Let A be a Banach algebra, and let X be a left A-submodule of A^{\prime}. Then X is left-introverted if and only if

$$
\overline{K(\lambda)}^{\sigma\left(A^{\prime}, A\right)} \subset X
$$

for each $\lambda \in X$. Further, suppose that X is an A-submodule of A^{\prime}. Then:
(i) X is introverted whenever X is weak-* closed;
(ii) X is introverted whenever $X \subset W A P(A)$.

In particular, in the case where A is Arens regular, each $\|\cdot\|$-closed, A-submodule of A^{\prime} is introverted, and so $\left(X^{\prime}, \square\right)$ is a Banach algebra.

Proposition 1.15. Let A be a Banach algebra, and let X be a left-introverted subspace of A^{\prime}. Then the following are equivalent conditions on X :
(a) $X \subset A P(A)$;
(b) the product

$$
(\mathrm{M}, \mathrm{~N}) \mapsto \mathrm{M} \square \mathrm{~N}, \quad X_{[1]}^{\prime} \times X_{[1]}^{\prime} \rightarrow X_{[1]}^{\prime}
$$

is jointly continuous with respect to the weak-* topology $\sigma\left(X^{\prime}, X\right)$ on X^{\prime}.
Proof. (a) $\Rightarrow(\mathrm{b})$. Let $\left(\mathrm{M}_{\alpha}\right)$ and $\left(\mathrm{N}_{\beta}\right)$ be nets in $X_{[1]}^{\prime}$ converging in the weak-* topology to M and N in $X_{[1]}^{\prime}$, respectively. By taking norm-preserving extensions, we may suppose that all these elements belong to $A_{[1]}^{\prime \prime}$.

Let $\lambda \in X$, so that $\lambda \in A P(A)$ by (a), and hence the set $K(\lambda)$ is relatively compact in the Banach space $\left(A^{\prime},\|\cdot\|\right)$. The identity map

$$
(\overline{K(\lambda)},\|\cdot\|) \rightarrow\left(\overline{K(\lambda)}, \sigma\left(A^{\prime}, A\right)\right)
$$

is a continuous map from a compact space onto a Hausdorff space, and so the topologies $\sigma\left(A^{\prime}, A\right)$ and $\|\cdot\|$ agree on $\overline{K(\lambda)}$ and

$$
\overline{K(\lambda)}=\left\{\mathrm{M} \cdot \lambda: \mathrm{M} \in X_{[1]}^{\prime}\right\} .
$$

The net $\left(\mathrm{N}_{\beta} \cdot \lambda\right)$ converges to $\mathrm{N} \cdot \lambda$ in $\left(A^{\prime}, \sigma\left(A^{\prime}, A\right)\right)$, and so $\left(\mathrm{N}_{\beta} \cdot \lambda\right)$ converges to $\mathrm{N} \cdot \lambda$ in $\left(A^{\prime},\|\cdot\|\right)$. Hence

$$
\begin{aligned}
\mid\left\langle\mathrm{M}_{\alpha} \square \mathrm{N}_{\beta}, \lambda\right\rangle- & \langle\mathrm{M} \square \mathrm{~N}, \lambda\rangle \mid \\
& \leq\left|\left\langle\mathrm{M}_{\alpha} \square \mathrm{N}_{\beta}, \lambda\right\rangle-\left\langle\mathrm{M}_{\alpha} \square \mathrm{N}, \lambda\right\rangle\right|+\left|\left\langle\mathrm{M}_{\alpha} \square \mathrm{N}, \lambda\right\rangle-\langle\mathrm{M} \square \mathrm{~N}, \lambda\rangle\right| \\
& \leq\left\|\mathrm{N}_{\beta} \cdot \lambda-\mathrm{N} \cdot \lambda\right\|+\left|\left\langle\mathrm{M}_{\alpha}, \mathrm{N} \cdot \lambda\right\rangle-\langle\mathrm{M}, \mathrm{~N} \cdot \lambda\rangle\right|,
\end{aligned}
$$

and so

$$
\lim _{(\alpha, \beta)}\left\langle\mathrm{M}_{\alpha} \square \mathrm{N}_{\beta}, \lambda\right\rangle=\langle\mathrm{M} \square \mathrm{~N}, \lambda\rangle,
$$

where the limit is taken over the product directed set. This holds for each $\lambda \in X$, and so (b) follows.
(b) \Rightarrow (a). Let $\lambda \in X_{[1]}$, and consider the map

$$
\rho_{\lambda}: \mathrm{M} \rightarrow \mathrm{M} \cdot \lambda, \quad\left(X_{[1]}^{\prime}, \sigma\left(X^{\prime}, X\right)\right) \mapsto\left(X_{[1]}, \sigma\left(X, X^{\prime}\right)\right) .
$$

We claim that ρ_{λ} is continuous. Indeed, let $\left(\mathrm{M}_{\alpha}\right)$ converge to M in $\left(X_{[1]}^{\prime}, \sigma\left(X^{\prime}, X\right)\right)$, and take $\mathrm{N} \in X^{\prime}$. Then $\left\langle\mathrm{N}, \rho_{\lambda}\left(\mathrm{M}_{\alpha}\right)\right\rangle=\left\langle\mathrm{N} \square \mathrm{M}_{\alpha}, \lambda\right\rangle \rightarrow\langle\mathrm{N} \square \mathrm{M}, \lambda\rangle=\left\langle\mathrm{N}, \rho_{\lambda}(\mathrm{M})\right\rangle$, giving the claim. (At this point, we are using only the separate continuity of the product.) It follows that $\rho_{\lambda}\left(X_{[1]}^{\prime}\right)$, the weak-* closure of $K(\lambda)$, is weakly compact in the space X, and hence in A^{\prime}.

Let $\left(\mathrm{M}_{\alpha}\right)$ be a net in $X_{[1]}^{\prime}$. Then $\left(\mathrm{M}_{\alpha} \cdot \lambda\right)$ is a net in $\overline{K(\lambda)}$; by passing to a subnet, we may suppose that $\mathrm{M}_{\alpha} \rightarrow \mathrm{M}$ in $\left(X^{\prime}, \sigma\left(X^{\prime}, X\right)\right)$ for some $\mathrm{M} \in X_{[1]}^{\prime}$ and that $\mathrm{M}_{\alpha} \cdot \lambda \rightarrow \mathrm{M} \cdot \lambda$ in $\left(A, \sigma\left(A, A^{\prime}\right)\right)$.

We next claim that $\mathrm{M}_{\alpha} \cdot \lambda \rightarrow \mathrm{M} \cdot \lambda$ in $(A,\|\cdot\|)$. Assume towards a contradiction that this is not the case. Then, by passing to a subnet, we may suppose that there exists $\varepsilon>0$ such that $\left\|\mathrm{M}_{\alpha} \cdot \lambda-\mathrm{M} \cdot \lambda\right\|>\varepsilon$ for each α. For each α, choose $\mathrm{N}_{\alpha} \in X_{[1]}^{\prime}$ such that

$$
\left|\left\langle\mathrm{M}_{\alpha} \cdot \lambda-\mathrm{M} \cdot \lambda, \mathrm{~N}_{\alpha}\right\rangle\right|>\varepsilon .
$$

Again by passing to a subnet, if necessary, we may suppose that the net $\left(\mathrm{N}_{\alpha}\right)$ converges to N in $\left(X^{\prime}, \sigma\left(X^{\prime}, X\right)\right)$. Now we have

$$
\begin{aligned}
\varepsilon & <\left|\left\langle\mathrm{M}_{\alpha} \cdot \lambda-\mathrm{M} \cdot \lambda, \mathrm{~N}_{\alpha}\right\rangle\right| \\
& \leq\left|\left\langle\mathrm{N}_{\alpha} \square \mathrm{M}_{\alpha}, \lambda\right\rangle-\langle\mathrm{N} \square \mathrm{M}, \lambda\rangle\right|+\left|\langle\mathrm{N} \square \mathrm{M}, \lambda\rangle-\left\langle\mathrm{N}_{\alpha} \square \mathrm{M}, \lambda\right\rangle\right| .
\end{aligned}
$$

But the limit of both terms on the right-hand side is 0 by (b), and so we obtain the required contradiction. Thus the claim holds.

The claim implies that $\overline{K(\lambda)}$ is compact in $(A,\|\cdot\|)$, and hence that $\lambda \in A P(A)$, giving (a).

Let I be a closed ideal in a Banach algebra A, with the embedding $\iota: I \rightarrow A$. Then $\iota^{\prime}: A^{\prime} \rightarrow I^{\prime}$ is a continuous surjection which is an A-bimodule homomorphism. Let X be a $\|\cdot\|$-closed A-submodule of A^{\prime}. Then $Y:=\overline{\iota^{\prime}(X)}$ is a Banach A-submodule of I^{\prime}. We use the above notation in the following proposition.

Proposition 1.16. Suppose that X is introverted in A^{\prime}. Then Y is introverted in I^{\prime}, and there is a continuous A-bimodule monomorphism

$$
\tau: Y^{\prime}=I^{\prime \prime} / Y^{\circ} \rightarrow X^{\prime}=A^{\prime \prime} / X^{\circ}
$$

Further, $\tau:\left(Y^{\prime}, \square\right) \rightarrow\left(X^{\prime}, \square\right)$ is a continuous embedding identifying Y^{\prime} as a closed ideal in X^{\prime}.

Suppose that $\iota^{\prime}: X \rightarrow Y$ is an injection. Then $\tau: Y^{\prime} \rightarrow X^{\prime}$ is a surjection, and so Y is introverted in I^{\prime} if and only if X is introverted in A^{\prime}.
Proof. To show that Y is left-introverted in I^{\prime}, we apply Proposition 1.14
Let $\lambda \in \iota^{\prime}(X)$, and let K_{λ} be the closure of $\left\{a \cdot \lambda: a \in I_{[1]}\right\}$ in the topology $\sigma\left(I^{\prime}, I\right)$. Let $\left(a_{\alpha}\right)$ be a net in $I_{[1]}$ such that $a_{\alpha} \cdot \lambda \rightarrow \mu$ in $\left(I^{\prime}, \sigma\left(I^{\prime}, I\right)\right)$. Then there exist $\widetilde{\lambda} \in X$ and $\widetilde{\mu} \in A^{\prime}$ such that $\iota^{\prime}(\widetilde{\lambda})=\lambda$ and $\iota^{\prime}(\widetilde{\mu})=\mu$. By passing to a subnet, we may suppose
that $a_{\alpha} \cdot \widetilde{\lambda} \rightarrow \widetilde{\mu}$ in $\left(A^{\prime}, \sigma\left(A^{\prime}, A\right)\right)$. Since $\widetilde{\lambda} \in X$ and X is left-introverted in A^{\prime}, it follows from Proposition 1.14 that $\widetilde{\mu} \in X$, and so $\mu \in \iota^{\prime}(X)$. Thus $K_{\lambda} \subset Y$, and so $\iota^{\prime}(X)$ is left-introverted in I^{\prime}, again by Proposition 1.14 Hence Y is left-introverted in I^{\prime}.

Similarly, Y is right-introverted in I^{\prime}, and so Y is introverted in I^{\prime}.
The existence of the specified map τ is clear. By Proposition 1.4, the map

$$
\iota^{\prime \prime}:\left(I^{\prime \prime}, \square\right) \rightarrow\left(A^{\prime \prime}, \square\right)
$$

is a continuous injection, and it follows easily that $\tau:\left(Y^{\prime}, \square\right) \rightarrow\left(X^{\prime}, \square\right)$ is a continuous embedding.

Certainly $\left(I^{\prime \prime}, \square\right)$ is a closed ideal in $\left(A^{\prime \prime}, \square\right)$, and so $\left(Y^{\prime}, \square\right)$ is a closed ideal in $\left(X^{\prime}, \square\right)$. It is also clear that X is introverted in A^{\prime} whenever Y is introverted in I^{\prime} in the case where $\tau: Y^{\prime} \rightarrow X^{\prime}$ is a surjection.

We recall the standard result that every C^{*}-algebra A is Arens regular, and that its second dual $\left(A^{\prime \prime}, \square\right)$ is also a C^{*}-algebra; for an identification of ($A^{\prime \prime}, \square$) using universal representations, see [13, Theorem 3.2.36]. In the present work, we wish to avoid using the representation theory of C^{*}-algebras, and to give direct proofs.

We have obtained the following result, using Proposition 1.14 (ii).
Proposition 1.17. Let A be a C^{*}-algebra, and let X be a Banach A-submodule of A^{\prime}. Then X is introverted, X° is a weak-* closed ideal in the C^{*}-algebra $\left(A^{\prime \prime}, \square\right)$, and (X^{\prime}, \square) is a C^{*}-algebra.

Lau algebras. It will be seen that the main examples that we shall consider later are examples of 'Lau algebras'; we introduce these algebras here in an abstract manner.

Definition 1.18. A Lau algebra is a pair (A, M), where:
(i) A is a Banach algebra and M is a C^{*}-algebra which is isometrically isomorphic to A^{\prime} as a Banach space;
(ii) the identity of M is a character on A.

In this case, M is a von Neumann algebra; every von Neumann algebra has an identity. It is a standard fact [112, Corollary III.3.9] that there is a unique (as a Banach space, up to isometric isomorphism) predual M_{*} of each von Neumann algebra M; thus $A=M_{*}$ as a Banach space. Further, the product in M is separately continuous when M has the $\sigma(M, A)$-topology (see [104, Theorem 1.7.8]). Thus M is a dual Banach algebra, and A is a Banach M-submodule of $A^{\prime \prime}$. For $\mu \in M$, define continuous linear operators $L_{\mu}, R_{\mu}: A \rightarrow A$ by

$$
\begin{equation*}
\left\langle L_{\mu} a, \nu\right\rangle=\langle a, \mu \cdot \nu\rangle, \quad\left\langle R_{\mu} a, \nu\right\rangle=\langle a, \nu \cdot \mu\rangle \quad(a \in A, \nu \in M) . \tag{1.5}
\end{equation*}
$$

(In fact, for each $a \in A$, the elements $L_{\mu} a$ and $R_{\mu} a$ are defined as members of $A^{\prime \prime}$, but they are continuous on ($M, \sigma(M, A)$) because the product in M is separately $\sigma(M, A)$ continuous, and so they belong to A by Proposition 1.1(ii).)

We shall usually write A^{\prime} for M and regard A itself as a Lau algebra; we shall denote the identity of A^{\prime} by e. The class of Lau algebras was introduced in [70, where they were called ' F-algebras'; they were renamed as 'Lau algebras' in 92 .

Examples of Lau algebras include the group algebra and the measure algebra of a locally compact group G (see Chapter 6), the Fourier algebra $A(G)$ and the FourierStieltjes algebra $B(G)$ of a locally compact group G (see [30]), the measure algebra $M(S)$ of a locally compact semitopological semigroup S (see [39]), the convolution measure algebras studied by Taylor [114, the ' L-algebras' considered by McKilligan and White [83], the predual of a Hopf-von Neumann algebra [111], and the algebras $L^{1}(K)$ (in the case where K has a 'left Haar measure') and $M(K)$ of a locally compact hypergroup K [27, 100, 107] or of semi-convos [57].
Definition 1.19. Let A be a Lau algebra. A closed subspace X of A^{\prime} is a left- (respectively, right-) introverted C^{*}-subalgebra of A^{\prime} if:
(i) X is a C^{*}-subalgebra of A^{\prime};
(ii) X is a left-introverted (respectively, right-introverted) A-submodule of A^{\prime}.

The space X is an introverted C^{*}-subalgebra if it is both left- and right-introverted.
In particular, A^{\prime} itself is an introverted C^{*}-subalgebra.
Let A be a Lau algebra, so that A^{\prime} is a C^{*}-algebra. We denote by $\mathcal{P}(A)$ the cone of elements of A which act as positive linear functionals on A^{\prime}. The set of elements $p \in \mathcal{P}(A)$ with $\langle p, e\rangle=1$ is denoted by $\mathcal{P}_{1}(A)$. It is shown in [70 and 92 that $\mathcal{P}_{1}(A)$ is a subsemigroup of (A, \cdot). Note that $\left(A^{\prime \prime}, \square\right)$ is also a Lau algebra.

Definition 1.20. Let A be a Lau algebra. Let X be a left-introverted C^{*}-subalgebra of A^{\prime}. A topological left-invariant mean on X is an element $m \in \mathcal{P}_{1}\left(A^{\prime \prime}\right)$ such that

$$
\langle m, x \cdot p\rangle=\langle m, x\rangle \quad\left(x \in X, p \in \mathcal{P}_{1}(A)\right) .
$$

Let X be an introverted C^{*}-subalgebra of A^{\prime}. Then a topological invariant mean on X is an element $m \in \mathcal{P}_{1}\left(A^{\prime \prime}\right)$ such that

$$
\langle m, x \cdot p\rangle=\langle m, p \cdot x\rangle=\langle m, x\rangle \quad\left(x \in X, p \in \mathcal{P}_{1}(A)\right) .
$$

The algebra A is left-amenable if, for each Banach A-bimodule E such that

$$
a \cdot x=\langle a, e\rangle x \quad(a \in A, x \in E),
$$

every bounded derivation from A into E^{\prime} is inner.
The following result is [70, Theorem 4.1] and 92, Propsition 3.5].
Proposition 1.21. Let A be a Lau algebra. Then A is left-amenable if and only if A^{\prime} has a topological left-invariant mean.

There is a similar definition of a right-amenable Lau algebra A and a topological rightinvariant mean. Now suppose that M_{1} and M_{2} are topological left- and right-invariant means, respectively. Then $\mathrm{M}_{1} \square \mathrm{M}_{2}$ is both a topological left- and right-invariant mean on A^{\prime}.

Let S be a semigroup. Then the semigroup algebra $\ell^{1}(S)$ has been intensively studied recently; see [17, 18], for example. Clearly $\ell^{1}(S)$ is a Lau algebra (where $\ell^{1}(S)^{\prime}=\ell^{\infty}(S)$, with the pointwise product). It is shown in [70, Corollary 4.2] that $\ell^{1}(S)$ is left-amenable if and only if S is left-amenable as a semigroup. However $\ell^{1}(S)$ need not be amenable even when S is abelian. For example, a necessary condition for this is that $S^{2}=S$: this
follows from [13, Theorem 2.8.63] because $\ell^{1}(S)$ is not essential whenever $S^{2} \subsetneq S$, in the terminology of the reference. In particular, $\left(\ell^{1}(\mathbb{N}), \star\right)$ is not weakly amenable.

For further studies of Lau algebras, see [71, 81, 84, 92 .

Summary. In Chapter 2, we shall give further background involving topological spaces, continuous functions, and measures. In particular, we shall define in Definition 2.6 the class of hyper-Stonean spaces, and we shall characterize these spaces in Theorem 2.9 and Proposition 2.17

In Chapter 3, we shall first discuss the second dual algebra of the commutative C^{*} algebra $C_{0}(\Omega)$, which is the algebra of all continuous functions that vanish at infinity on a locally compact space Ω. This second dual space has the form $C(\widetilde{\Omega})$ for a certain hyperStonean space $\widetilde{\Omega}$, called the hyper-Stonean envelope of Ω in Definition 3.2. The second dual space of $M(\Omega)$, the Banach space of all complex-valued, regular Borel measures on Ω, is identified with $M(\widetilde{\Omega})$. We shall also discuss $B^{b}(\Omega)$, the C^{*}-algebra of all bounded Borel functions on Ω; we shall regard $B^{b}(\Omega)$ as a C^{*}-subalgebra of $C(\widetilde{\Omega})$.

Let Ω be a non-empty, locally compact space. In Chapter 4, we shall discuss subspaces of $M(\Omega)$ which are modules over the algebra $C_{0}(\Omega)$. We shall also discuss further the hyper-Stonean space $\widetilde{\Omega}$, and explain that we cannot, in general, recover Ω from $\widetilde{\Omega}$.

A particularly important case for us is that in which Ω is an uncountable, compact, and metrizable space (such as $\Omega=\mathbb{I}$). Indeed, it will be shown in Theorem 4.16 that there is a unique hyper-Stonean space X which is the hyper-Stonean envelope of each such space; we shall give a topological characterization of this space X. We shall calculate the cardinalities of various subsets of X in this case. We shall also discuss the character space Φ_{b} of $B^{b}(\Omega)$, and we shall calculate the cardinalities of various subsets of $\widetilde{\Omega}$ which are defined in terms of the algebra $B^{b}(\Omega)$.

In Chapter 5, we shall recall the definitions and some basic properties of the measure algebra $M(G)$ and the group algebra $L^{1}(G)$ of a locally compact group G, and develop the properties of the hyper-Stonean envelope \widetilde{G} of G. We shall also consider some introverted subspaces of dual spaces; these will include $L U C(G)$ and the spaces $A P(G)$ and $W A P(G)$ of almost periodic and weakly almost periodic functions on G; we shall discuss the relation of these spaces to the more mysterious C^{*}-algebras $A P(M(G))$ and $W A P(M(G))$. We shall also discuss Taylor's structure semigroup of a locally compact abelian group and the more abstract notion of the structure semigroup of the Lau algebras that were introduced in Chapter 1.

We shall continue in Chapter 6 with the proofs of some formulae that will be required later for products in the Banach algebra $(M(\widetilde{G}), \square)$. Our proofs will frequently use the fact that points of \widetilde{G} can be identified with certain ultrafilters.

The main theorem of Chapter 7 is Theorem 7.9, which shows that we can recover a locally compact group G from knowledge of the hyper-Stonean envelope \widetilde{G}; this answers a question raised in [34. The special case where G is compact was resolved earlier by Ghahramani and McClure in 35.

Let G be a locally compact group. In Chapter 8 , we shall investigate whether or not (\widetilde{G}, \square) is a semigroup. Indeed, we shall prove in Theorem 8.16 that (\widetilde{G}, \square) is a semigroup
only in the special case where G is discrete. In the case where G is not discrete, we shall study in considerable detail the products of two point masses in $(M(\widetilde{G}), \square)$, showing that this product must be a point mass in certain cases and that there are always two points in \widetilde{G} such that their product is a continuous measure. In many groups G, including the circle group ($\mathbb{T}, \cdot)$, the space \widetilde{G} contains two point masses whose product is neither discrete nor continuous. As important special groups we shall consider \mathbb{T} and the groups D_{p}.

In the final chapter, Chapter 9, we shall consider the topological centres of $L^{1}(G)^{\prime \prime}$ and $M(G)^{\prime \prime}$ in the case where G is a non-discrete, locally compact group, concentrating on the case where G is compact. We shall essentially show in Corollary 9.5 that the spectrum Φ of $L^{\infty}(G)$ is determining for the left topological centre of $L^{1}(G)^{\prime \prime}$; this gives a strong form of the known result that $L^{1}(G)$ is always strongly Arens irregular. We do not know which subsets of Φ are determining for the left topological centre of $L^{1}(G)^{\prime \prime}$.

In Chapter 9, we shall also attack the question of whether or not the measure algebra $M(G)$ is always strongly Arens irregular; this question was raised by Lau in 72 and Ghahramani and Lau in [34. Unfortunately we are not able to resolve this point, but we do give some partial results. [Added in proof: an announcement in May, 2009, by V. Losert, M. Neufang, J. Pachl, and J. Steprāns states that $M(G)$ is strongly Arens irregular for each locally compact group; see [82.]

Our memoir concludes with a list of problems that we believe to be both open and interesting.

Acknowledgements. The work was commenced when all three authors were together at the Banff International Research Station, BIRS, in Banff, Alberta, during the week 9-16 September, 2006.

The work was continued whilst the first author was on leave at the University of California at Berkeley from September to December, 2006; he is grateful to the Department at Berkeley, and especially to William Bade and Marc Rieffel, for very generous hospitality.

The first author was very pleased to be a Pacific Institute of Mathematical Sciences Distinguished Visiting Professor at the University of Alberta at Edmonton in December 2007 and March 2008, when this work was further continued.

Our manuscript was completed during a further week at BIRS, 17-24 May, 2009, with some revisions at BIRS 4-10 July, 2010. We are very grateful to BIRS for providing these opportunities for us to work together in such a lovely environment.

We acknowledge with thanks the financial support of NSERC grant MS100 awarded to A. T.-M. Lau and of the London Mathematical Society, who gave two travel grants to D. Strauss to join our 'Research in Teams' at BIRS.

We are very grateful to Fred Dashiell, Colin Graham, Matthias Neufang, Thomas Schlumprecht, George Willis and the referee for some valuable mathematical comments.

2. Locally compact spaces, continuous functions, and measures

Locally compact spaces. Let (X, τ) be a topological space. The interior, closure, and frontier (or boundary) of a subset S of X are denoted by int S, by \bar{S} or \bar{S}^{τ}, and by ∂S or $\partial_{X} S$, respectively; the family of open neighbourhoods of a point $x \in X$ is denoted by \mathcal{N}_{x}. A G_{δ}-set is a countable intersection of open sets. The space X with the discrete topology is denoted by X_{d}. A subset S of X is meagre if $S=\bigcup S_{n}$, where int $\overline{S_{n}}=\emptyset(n \in \mathbb{N})$. A Hausdorff topological space X is extremely disconnected if the closure of every open set is itself open; this is equivalent to requiring that $\bar{U} \cap \bar{V}=\emptyset$ for every pair $\{U, V\}$ of open sets with $U \cap V=\emptyset$. A topological space is second countable if its topology has a countable base. A locally compact, second countable topological space is metrizable. The weight, $w(X)$, of X is the minimum cardinal of a base for the topology. Clearly $|X| \leq 2^{w(X)}$ whenever X is Hausdorff.

Let (Ω, τ) be a non-empty, locally compact space. (Our convention is that each locally compact space is Hausdorff, and that a hypothesised compact space is non-empty.) The one-point compactification of Ω is $\Omega_{\infty}=\Omega \cup\{\infty\}$ (and $\Omega_{\infty}=\Omega$ when Ω is compact). Further, $\beta \Omega$ is the Stone-Čech compactification of Ω and $\Omega^{*}=\beta \Omega \backslash \Omega$ is the growth of Ω [17, 37, 52, 117. In particular, $\mathbb{N}^{*}=\beta \mathbb{N} \backslash \mathbb{N}$. Compact, extremely disconnected topological spaces are also called Stonean spaces. In particular, each non-empty, open subset of a Stonean space contains a non-empty, clopen subset.

For example, a compact space X is Stonean if and only if it is a retract of a space βD for some discrete space D. We shall use Gleason's theorem [38] (see [3, Theorems 7.4, 7.14], [106, Theorem 25.5.1], or [117, §10.51]) that a compact space X is extremely disconnected if and only if it is projective, in the sense that it is projective in the category of compact spaces. We shall also use the following standard fact: for each dense subspace U of a Stonean space Ω, each bounded, continuous function on U can be extended to a continuous function on Ω, and so $\beta U=\Omega$ (see [24] and [112, Corollary III.1.8]).

For substantial accounts of Stone-Čech and other compactifications of topological spaces and semigroups, see [52, 117].

A topological space is an F-space if, for each real-valued, continuous function f on X, the sets $\{x \in X: f(x)>0\}$ and $\{x \in X: f(x)<0\}$ have disjoint closures. Thus every extremely disconnected space is an F-space. For characterizations of F-spaces, see 13 , Proposition 4.2.18(ii)] and [37, §14.25]. By [37, $14 \mathrm{~N}(5)$], every infinite, compact F-space contains a homeomorphic copy of $\beta \mathbb{N}$.

For the following basic result, see [52, Theorem 3.58] and [117, Proposition 3.21].

Proposition 2.1. Let D be an infinite, discrete space with $|D|=\kappa$. Then $|\beta D|=2^{2^{\kappa}}$. In particular, $|\Omega| \geq|\beta \mathbb{N}|=\left|\mathbb{N}^{*}\right|=2^{\mathfrak{c}}$ for each infinite Stonean space Ω. Further, we have $w(\beta \mathbb{N})=w\left(\mathbb{N}^{*}\right)=\mathfrak{c}$.

Let X be a topological space. Then \mathfrak{I}_{X} denotes the family of subsets of X which are both compact and open, so that \mathfrak{I}_{X} is a family of subsets of X which is closed under finite unions and intersections; in the case where Ω is a compact space, \Im_{Ω} is the family of clopen sets. A compact space Ω satisfies CCC, the countable chain condition, if each pairwise disjoint family of non-empty, open subsets in \Im_{Ω} is countable.

We now recall the definition of certain specific compact topological spaces that will be used later.

Let $p \in \mathbb{N}$ with $p \geq 2$. We recall that $\mathbb{Z}_{p}=\{0, \ldots, p-1\}$, taken with the discrete topology. Let κ be an infinite cardinal. Then the Cantor cube of weight κ is the product space \mathbb{Z}_{p}^{κ} (with the product topology). The space \mathbb{Z}_{p}^{κ} is compact, totally disconnected, and perfect. In particular, we set

$$
D_{p}=\mathbb{Z}_{p}^{\aleph_{0}},
$$

so that D_{p} is a metrizable space with $\left|D_{p}\right|=\mathfrak{c}$. Every compact, totally disconnected, perfect, metrizable space is homeomorphic to D_{2}. For each $k \in \mathbb{N}$, take $\tau_{1}, \ldots, \tau_{k}<\kappa$ with $\tau_{1}<\tau_{2}<\cdots<\tau_{k}$, and then set $F=\left\{\tau_{1}, \ldots, \tau_{k}\right\}$, so that $|F|=k$. Now take $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{Z}_{p}^{k}$, and define

$$
\begin{equation*}
U_{F, \alpha}=\left\{\left(\varepsilon_{\tau}\right) \in \mathbb{Z}_{p}^{\kappa}: \varepsilon_{\tau_{i}}=\alpha_{i}\left(i \in \mathbb{N}_{k}\right)\right\}, \tag{2.1}
\end{equation*}
$$

so that $U_{F, \alpha}$ is a clopen subset of \mathbb{Z}_{p}^{κ}; the sets $U_{F, \alpha}$ are called the basic clopen subsets of \mathbb{Z}_{p}^{κ}. These sets form a base of cardinality κ for the topology of \mathbb{Z}_{p}^{κ}, and so $w\left(\mathbb{Z}_{p}^{\kappa}\right)=\kappa$; also each clopen set is a finite, pairwise disjoint union of these basic clopen sets. Thus we have

$$
\begin{equation*}
\left|\mathbb{Z}_{p}^{\kappa}\right|=2^{\kappa}, \quad\left|\Im_{\mathbb{Z}_{p}^{\kappa}}\right|=w\left(\mathbb{Z}_{p}^{\kappa}\right)=\kappa . \tag{2.2}
\end{equation*}
$$

Each $x \in \mathbb{I}$ has a ternary expansion as

$$
x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{3^{n}},
$$

where $\varepsilon_{n}(x) \in \mathbb{Z}_{3}^{+}$. (We agree to resolve ambiguity by requiring that no expansion is equal to 2 eventually; since the points with an ambiguous expansion form a countable set, and we shall be considering continuous measures on \mathbb{I} when this expansion is relevant, the ambiguous points will, in any case, have measure 0 .) The space D_{2} is homeomorphic to the Cantor subset K of \mathbb{R} by the map

$$
\begin{equation*}
\left(\varepsilon_{n}\right) \mapsto 2 \sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{3^{n}}, \quad D_{2} \rightarrow K \tag{2.3}
\end{equation*}
$$

Borel sets. The σ-algebra generated by a family \mathcal{S}_{0} of subsets of a set S is denoted by $\sigma\left(\mathcal{S}_{0}\right)$; it can be represented as

$$
\bigcup\left\{\mathcal{S}_{\alpha}: \alpha<\omega_{1}\right\}
$$

where \mathcal{S}_{1} consists of the complements of the sets in \mathcal{S}_{0} and \mathcal{S}_{α} consists of all countable unions of sets in $\bigcup\left\{\mathcal{S}_{\beta}: \beta<\alpha\right\}$ for odd ordinals $\alpha>1$ and of all countable intersections of sets in this family for even ordinals $\alpha>0$. Hence $\left|\sigma\left(\mathcal{S}_{0}\right)\right| \leq 2^{\left|\mathcal{S}_{0}\right|}$; in the case where $\left|\mathcal{S}_{0}\right| \geq \mathfrak{c}$, we have $\left|\sigma\left(\mathcal{S}_{0}\right)\right|=\left|\mathcal{S}_{0}\right|$.

Let (X, τ) be a Hausdorff topological space. Then \mathfrak{B}_{X} is the family of all Borel subsets of X, so that \mathfrak{B}_{X} is the σ-algebra generated by τ. Certainly $\mathfrak{I}_{X} \subset \mathfrak{B}_{X}$. We record the following well-known facts about the σ-algebra \mathfrak{B}_{X}.

Let X_{2} be a subspace (with the relative topology) of a Hausdorff space X_{1}. Then, by [11, Lemma 7.2.2], we have

$$
\mathfrak{B}_{X_{2}}=\left\{B \cap X_{2}: B \in \mathfrak{B}_{X_{1}}\right\} .
$$

Let X_{1} and X_{2} be Hausdorff topological spaces. A map $\eta: X_{1} \rightarrow X_{2}$ is a Borel map if

$$
\eta^{-1}(U) \in \mathfrak{B}_{X_{1}} \quad\left(U \in \mathfrak{B}_{X_{2}}\right)
$$

Let B_{1} and B_{2} be Borel subsets of X_{1} and X_{2}, respectively. Then a Borel isomorphism from B_{1} to B_{2} is a bijection $\eta: B_{1} \rightarrow B_{2}$ such that both η and η^{-1} are Borel maps; B_{1} and B_{2} are Borel isomorphic if there exists such a Borel isomorphism. By [11, Lemma 7.2.1], each continuous map $\eta: X_{1} \rightarrow X_{2}$ is a Borel map.

Proposition 2.2.

(i) Let Ω be an uncountable, compact, metrizable space. Then, for each uncountable set $B \in \mathfrak{B}_{\Omega}$, we have $w(\Omega)=\aleph_{0}$, and $|\Omega|=|B|=\mathfrak{c}$.
(ii) Let B_{1} and B_{2} be Borel subsets of two compact, metrizable spaces with $\left|B_{1}\right|=\left|B_{2}\right|$. Then B_{1} and B_{2} are Borel isomorphic.
(iii) Let B be an uncountable Borel subset of a compact, metrizable space. Then B contains \mathfrak{c} pairwise disjoint sets, each homeomorphic to D_{2}. In particular, B contains an uncountable, compact space.
(iv) Let Ω be an uncountable, compact, metrizable space. Then $\left|\mathfrak{B}_{\Omega}\right|=\mathbf{c}$.

Proof. (i) \& (ii) Each compact, metrizable space is complete [29, Theorem 4.3.28] and separable [29, Theorem 4.1.18], and so is a Polish space. A metrizable space has a countable base (i.e., is second countable) if and only if it is separable [29, Theorem 4.1.16]. Clauses (i) and (ii) now follow from [11, Theorem 8.3.6].
(iii) By [11, Corollary 8.2.14], B contains a subset that is homeomorphic to the set D_{2}, and so it suffices to prove the result for the space D_{2} itself. Clearly there is a continuous bijection $\theta: D_{2} \rightarrow D_{2} \times D_{2}$. For each $\alpha \in D_{2}$, we set $F_{\alpha}=\theta^{-1}\left(\{\alpha\} \times D_{2}\right)$, so that F_{α} is a compact subset of D_{2} homeomorphic to D_{2}. The family $\left\{F_{\alpha}: \alpha \in D_{2}\right\}$ is pairwise disjoint, and so has the required properties.
(iv) By (iii), $\left|\mathfrak{B}_{\Omega}\right| \geq \mathfrak{c}$. By (i), $w(\Omega)=\aleph_{0}$. Since each open set is a countable union of basic open sets, \mathfrak{B}_{Ω} is the σ-algebra generated by the basic open sets, and hence $\left|\mathfrak{B}_{\Omega}\right| \leq 2^{\aleph_{0}}=\mathfrak{c}$. Hence $\left|\mathfrak{B}_{\Omega}\right|=\mathfrak{c}$.

Clause (ii), above, is a form of the Borel isomorphism theorem. For example, it follows from (ii) that D_{2} and \mathbb{T} are Borel isomorphic.

Continuous functions. Let Ω be a non-empty, locally compact space. Then $C^{b}(\Omega)$ denotes the space of bounded, continuous, complex-valued functions on Ω, and $C_{0}(\Omega)$ denotes the subspace of all functions in $C^{b}(\Omega)$ which vanish at infinity, so that $C^{b}(\Omega)$ and $C_{0}(\Omega)$ are commutative C^{*}-algebras for the pointwise product of functions and the uniform norm $|\cdot|_{\Omega}$ on Ω; the latter norm is defined by

$$
|f|_{\Omega}=\sup \{|f(x)|: x \in \Omega\} \quad\left(f \in C^{b}(\Omega)\right)
$$

(see [13, 17] for details).
Of course, $C^{b}(\Omega)$ is isometrically isomorphic as a C^{*}-algebra to $C(\beta \Omega)$ (see [37), and we shall identify these spaces. In particular,

$$
\ell^{\infty}(\Omega) \cong C\left(\beta \Omega_{d}\right)
$$

We shall often set $E=C_{0}(\Omega)$. The space of real-valued functions in E is $E_{\mathbb{R}}=C_{0}(\Omega)_{\mathbb{R}}$. We shall use the natural ordering on $E_{\mathbb{R}}$: for $\lambda \in E_{\mathbb{R}}$, we have

$$
\lambda \geq 0 \quad \text { if } \quad \lambda(x) \geq 0 \quad(x \in \Omega)
$$

the positive cone of E is denoted by $E^{+}=C_{0}(\Omega)^{+}$. Then $\left(E_{\mathbb{R}}, \leq\right)$ is a Banach lattice in a standard sense. Further, E itself is a (complex) Banach lattice. We recall that a Banach lattice such as $\left(E_{\mathbb{R}}, \leq\right)$ is Dedekind complete if every subset which is bounded above has a supremum.

For early discussions of the Banach space $C_{0}(\Omega)$, see [3, 106]; for background on Banach lattices, with particular reference to the Banach lattice $C_{0}(\Omega)_{\mathbb{R}}$, see [60, §3.4] and [65]. The Banach algebra $C_{0}(\Omega)$ is discussed at some length in [13, §4.2].

Proposition 2.3. Let Ω be a compact space.
(i) The space $\left(C(\Omega),|\cdot|_{\Omega}\right)$ is separable if and only if Ω is metrizable.
(ii) Suppose that Ω is metrizable and infinite. Then $|C(\Omega)|=\mathfrak{c}$.

Proof. (i) is [1, Theorem 4.1.3], for example. For (ii), the space Ω is separable, and so $|C(\Omega)|=\mathfrak{c}^{\aleph_{0}}=\mathfrak{c}$.

In the case where Ω is compact, 1_{Ω} is the identity of $C(\Omega)$; in the general locally compact case, $C_{0}(\Omega)$ has a bounded approximate identity. The idempotents of $C_{0}(\Omega)$ are the characteristic functions of the sets in \Im_{Ω}, and we regard \Im_{Ω} as a subset of $C_{0}(\Omega)$.

Let Ω be a non-empty, locally compact space. The evaluation functional on $E=C_{0}(\Omega)$ at a point $x \in \Omega$ is

$$
\varepsilon_{x}: \lambda \mapsto \lambda(x), \quad E \rightarrow \mathbb{C}
$$

so that $\varepsilon_{x} \in E^{\prime}$; we also identify ε_{∞} with the zero linear functional on E. We can regard Ω_{∞} as a subset of E^{\prime} by identifying $x \in \Omega_{\infty}$ with $\varepsilon_{x} \in E^{\prime}$.

We now recall some well-known and standard facts about continuous mappings between compact spaces and algebras of continuous functions.

Let Ω_{1} and Ω_{2} be two compact spaces. First, let $\eta: \Omega_{1} \rightarrow \Omega_{2}$ be a continuous map, and define

$$
\begin{equation*}
\eta^{\circ}: \lambda \mapsto \lambda \circ \eta, \quad C\left(\Omega_{2}\right) \rightarrow C\left(\Omega_{1}\right) \tag{2.4}
\end{equation*}
$$

Then η° is a continuous $*$-homomorphism with $\left\|\eta^{\circ}\right\|=1$. Further, η° is an injection/a surjection if and only if η is a surjection/an injection, respectively.

Conversely, let $\theta: C\left(\Omega_{2}\right) \rightarrow C\left(\Omega_{1}\right)$ be a $*$-homomorphism. Then θ is continuous with $\|\theta\|=1$, and there exists a continuous map $\eta: \Omega_{1} \rightarrow \Omega_{2}$ with $\theta=\eta^{\circ}$; indeed, we have $\eta=\theta^{\prime} \mid \Omega_{1}$.

We shall use the standard Banach-Stone theorem; see [1, Theorem 4.1.5] and [12, Theorem VI.2.1], for example. For clause (ii) below, see also [60, Corollary 3.4.8].

Theorem 2.4. Let Ω_{1} and Ω_{2} be two compact spaces.
(i) Suppose that $T: C\left(\Omega_{1}\right) \rightarrow C\left(\Omega_{2}\right)$ is an isometric linear isomorphism. Then there are a homeomorphism $\eta: \Omega_{2} \rightarrow \Omega_{1}$ and $\theta \in C\left(\Omega_{2}\right)$ such that $|\theta(y)|=1\left(y \in \Omega_{2}\right)$ and

$$
(T \lambda)(y)=\theta(y)(\lambda \circ \eta)(y) \quad\left(y \in \Omega_{2}, \lambda \in C\left(\Omega_{1}\right)\right)
$$

(ii) Suppose that $T: C\left(\Omega_{1}\right) \rightarrow C\left(\Omega_{2}\right)$ is an isometric linear isomorphism such that $T(1)=1$. Then T is an isomorphism of C^{*}-algebras.
(iii) The commutative C^{*}-algebras $C\left(\Omega_{1}\right)$ and $C\left(\Omega_{2}\right)$ are isomorphic as C^{*}-algebras if and only if Ω_{1} and Ω_{2} are homeomorphic as topological spaces.
Let Ω be a compact space, and let A be a uniformly closed subalgebra of $C(\Omega)$ such that A contains the constant function 1_{Ω} and such that, for each $x \in \Omega$, there exists $\lambda \in A$ with $\lambda(x) \neq 0$. We say that A separates the points of Ω if, for each $x, y \in \Omega$ with $x \neq y$, there exists $\lambda \in A$ with $\lambda(x) \neq \lambda(y)$. For $x, y \in \Omega$, set $x \sim_{A} y$ or $x \sim y$ if $\lambda(x)=\lambda(y)(\lambda \in A)$, so that \sim_{A} is an equivalence relation on Ω, and set

$$
[x]=\left\{y \in \Omega: y \sim_{A} x\right\} \quad(x \in \Omega)
$$

Then $\{[x]: x \in \Omega\}$ is a partition of Ω into closed subsets; we may identify the character space of A with the compact space Ω / \sim_{A} which is the quotient space of Ω by the relation \sim_{A}, and then identify A with $C\left(\Omega / \sim_{A}\right)$.

Let F be a closed subspace of Ω. Then we remark that

$$
[F]:=\bigcup\{[x]: x \in \Omega\}
$$

is closed in Ω. For let $\left(x_{\alpha}\right)$ be a net in $[F]$ such that $x_{\alpha} \rightarrow x_{0}$ in Ω. For each α, there exists $y_{\alpha} \in F$ with $y_{\alpha} \sim_{A} x_{\alpha}$. By passing to a subnet, we may suppose that $\left(y_{\alpha}\right)$ converges to y_{0} in F. Clearly $x_{0} \sim_{A} y_{0}$, and so $x_{0} \in[F]$. Thus $[F]$ is closed.

There are many statements that are equivalent to the fact that a compact space is extremely disconnected; we collect some of these in the following theorem.

Theorem 2.5. Let Ω be a compact space. Then the following statements about Ω are equivalent:
(a) Ω is extremely disconnected, and so Ω is Stonean;
(b) Ω is projective in the category of compact spaces;
(c) the Banach lattice $C(\Omega)_{\mathbb{R}}$ is Dedekind complete;
(d) $C(\Omega)$ is injective in the category of commutative C^{*}-algebras and continuous $*$-homomorphisms;
(e) $C(\Omega)$ is injective in the category of Banach spaces and contractive linear maps.

Proof. The equivalence of (a) and (b) is Gleason's theorem [38, and the equivalence with (d) is also in [38. The equivalence of (a) and (c) is given in [13, Proposition 4.2.29] and [112, Proposition III.1.7]), and the equivalence of (a), (c), and (e) is given in [1, §4.3].

For a short and attractive direct exposition of all these equivalences, see 43, Theorem 2.4].

Definition 2.6. Let Ω be a compact space. Then Ω is hyper-Stonean if $C(\Omega)$ is isometrically isomorphic to the dual space of another Banach space.

Thus Ω is hyper-Stonean if $C(\Omega)$ is a von Neumann algebra [13, Definition 3.2.35]. A Banach space F such that $F^{\prime}=C(\Omega)$ is a predual of $C(\Omega)$. In this case, the predual of $C(\Omega)$ is unique and is denoted by $C(\Omega)_{*}$; this space defines the canonical weak-* topology $\sigma\left(C(\Omega), C(\Omega)_{*}\right)$ on $C(\Omega)$. We shall identify this predual shortly.

By [13, Proposition 4.2.29(ii)], a hyper-Stonean space is Stonean. The seminal work on hyper-Stonean spaces is the classical paper of Dixmier [24].

For example, $C(\beta \mathbb{N})=\ell^{\infty}$ is isometrically the dual of ℓ^{1}, and so $\beta \mathbb{N}$ is a hyper-Stonean space. Note that the closed subspace \mathbb{N}^{*} of $\beta \mathbb{N}$ is not extremely disconnected [37, Exercise $6 \mathrm{~W}]$, and so the compact space \mathbb{N}^{*} is not Stonean.

Measures. Let Ω be a non-empty, locally compact space. We shall consider 'measures' on Ω; these are the complex-valued, regular Borel measures defined on the σ-algebra \mathfrak{B}_{Ω}, and they form the Banach space $M(\Omega)$ in a standard way, so that

$$
\|\mu\|=|\mu|(\Omega) \quad(\mu \in M(\Omega))
$$

The sets of real-valued and positive measures in $M(\Omega)$ are denoted by $M(\Omega)_{\mathbb{R}}$ and $M(\Omega)^{+}$, respectively. A measure μ in $M(\Omega)^{+}$with $\|\mu\|=1$ is a probability measure; the collection of probability measures on Ω is denoted by $P(\Omega)$, so that $P(\Omega)$ is the state space of the C^{*}-algebra $C_{0}(\Omega)$.

The support of a measure μ on Ω is denoted by $\operatorname{supp} \mu$.
Let Ω be a non-empty, locally compact space, and let $\mu, \nu \in M(\Omega)$. Then we write $\mu \ll \nu$ if μ is absolutely continuous with respect to $|\nu|$, and $\mu \perp \nu$ if μ and ν are mutually singular. We recall that $\mu \perp \nu$ if and only if

$$
\begin{equation*}
\|\mu+\nu\|=\|\mu-\nu\|=\|\mu\|+\|\nu\| . \tag{2.5}
\end{equation*}
$$

The dual space of $E=C_{0}(\Omega)$ is E^{\prime}, and this space is identified with $M(\Omega)$; the duality is

$$
\langle\lambda, \mu\rangle=\int_{\Omega} \lambda \mathrm{d} \mu \quad\left(\lambda \in C_{0}(\Omega), \mu \in M(\Omega)\right) .
$$

Certainly $M(\Omega)$ is a Banach E-module. The dual module action $\lambda \cdot \mu$ of $\lambda \in E$ on $\mu \in E^{\prime}$ is just the usual product $\lambda \mu$; in particular, when Ω is compact, $1_{\Omega} \cdot \mu=\mu$. The space $M(\Omega)_{\mathbb{R}}$ is again a Banach lattice in an obvious way; it is the dual lattice to $\left(E_{\mathbb{R}}, \leq\right)$. Again we regard $M(\Omega)$ as a (complex) Banach lattice.

The subspaces of $M(\Omega)$ consisting of the discrete and continuous measures are $M_{d}(\Omega)$ and $M_{c}(\Omega)$, respectively. Let $\mu \in M(\Omega)$. Then the discrete and continuous parts of μ are denoted by μ_{d} and μ_{c}, respectively; we have $\mu=\mu_{d}+\mu_{c}$ with $\|\mu\|=\left\|\mu_{d}\right\|+\left\|\mu_{c}\right\|$, and
thus we have a decomposition of Banach spaces

$$
E^{\prime}=M(\Omega)=M_{d}(\Omega) \oplus_{1} M_{c}(\Omega)
$$

We shall identify $M_{d}(\Omega)$ with $\ell^{1}(\Omega)$. In the case where Ω is an uncountable, compact, metrizable space, $M_{c}(\Omega) \neq\{0\}$. (In fact, we have $M(\Omega)=M_{d}(\Omega)$ if and only if the topological space Ω is scattered, in the sense that each non-empty subset A of Ω contains a point that is isolated in A [76.)

We have

$$
E^{\prime \prime}=M(\Omega)^{\prime} \cong C\left(\beta \Omega_{d}\right) \oplus_{1} M_{c}(\Omega)^{\prime}
$$

In particular, there is an embedding

$$
\begin{equation*}
j_{d}: \ell^{\infty}(\Omega) \rightarrow C\left(\beta \Omega_{d}\right)=M\left(\Omega_{d}\right)^{\prime} \tag{2.6}
\end{equation*}
$$

Particular measures in $P(\Omega) \cap M_{d}(\Omega)$ are the point masses δ_{x}, defined for $x \in \Omega$; we shall sometimes regard Ω as a subset of $P(\Omega)$ by identifying $x \in \Omega$ with δ_{x}. In the above identification of E^{\prime} with $M(\Omega)$, we are identifying ε_{x} with δ_{x} for each $x \in \Omega$. It is easy to see that the extreme points of the unit ball $M(\Omega)_{[1]}$ are those measures of the form $\zeta \delta_{x}$, where $\zeta \in \mathbb{T}$ and $x \in \Omega$, and so we can identify Ω with $\operatorname{ex} P(\Omega)$.

Let Ω be a non-empty, locally compact space, and let $\mu \in M(\Omega)$ and $B \in \mathfrak{B}_{\Omega}$. Then

$$
(\mu \mid B)(C)=\mu(B \cap C) \quad\left(C \in \mathfrak{B}_{\Omega}\right)
$$

so that $\mu \mid B \in M(\Omega)$; if $\mu \in M(\Omega)^{+}$and $\mu(B) \neq 0$, then we set

$$
\begin{equation*}
\mu_{B}=\frac{\mu \mid B}{\mu(B)} \tag{2.7}
\end{equation*}
$$

so that $\mu_{B} \in M(\Omega)_{[1]}$.
We shall require the following well-known lemma.
Lemma 2.7. Let Ω be a locally compact space, let Q be a countable, dense subset of Ω, and let $\mu \in M_{c}(\Omega)^{+}$. Then Ω contains a dense G_{δ}-subset D such that $Q \subset D$ and $\mu(D)=0$.

Proof. Set $Q=\left\{x_{n}: n \in \mathbb{N}\right\}$. Since μ is continuous, it follows that, for each $k, n \in \mathbb{N}$, there is an open neighbourhood $U_{k, n}$ of x_{n} such that $\mu\left(U_{k, n}\right)<1 / 2^{n} k$. Set

$$
U_{k}=\bigcup\left\{U_{k, n}: n \in \mathbb{N}\right\} \quad(k \in \mathbb{N})
$$

Then each U_{k} is an open subset of Ω with $\mu\left(U_{k}\right)<1 / k$. The set $D:=\bigcap U_{k}$ is a G_{δ}-subset of Ω; it is dense because it contains $\left\{x_{n}: n \in \mathbb{N}\right\}$, and clearly $\mu(D)=0$.

The following concept originates in [24]; see also [3] and [112, Definition III.1.10], for example.

Definition 2.8. Let Ω be a non-empty, locally compact space. A measure $\mu \in M(\Omega)$ is normal if μ is order-continuous, in the sense that $\left\langle f_{\alpha}, \mu\right\rangle \rightarrow 0$ for each decreasing net $\left(f_{\alpha}: \alpha \in A\right)$ in $\left(C(\Omega)_{\mathbb{R}}, \leq\right)$ such that the infimum (in $\left.C(\Omega)_{\mathbb{R}}\right)$ of the family $\left\{f_{\alpha}: \alpha \in A\right\}$ is 0 .

The set of normal measures on Ω is denoted by $N(\Omega)$; it is easy to see that a measure $\mu \in M(\Omega)$ is normal if and only if $|\mu|$ is normal [3, Lemma 8.3] and that $N(\Omega)$ is a closed
linear subspace of $M(\Omega)$ 3, Theorem 8.8]. In the case where Ω is Stonean, the support of a normal measure is a clopen subspace of Ω [3, Theorem 8.6].

We now record the following theorem, taken from [3, Theorem 8.19], [24, and [112, Definition III.1.14 and Theorem III.1.18]; it shows that several different definitions of 'hyper-Stonean' in the literature are equivalent.

Theorem 2.9. Let Ω be a Stonean space. Then the following are equivalent:
(a) Ω is hyper-Stonean;
(b) for each $\lambda \in C(\Omega)^{+}$with $\lambda \neq 0$, there exists $\mu \in N(\Omega)^{+}$with $\langle\lambda, \mu\rangle \neq 0$;
(c) the union of the supports of the normal measures is dense in Ω;
(d) there is a locally compact space Γ and a positive measure ν on Γ such that $C(\Omega)$ is C^{*}-isomorphic to $L^{\infty}(\Gamma, \nu)$.

It is clear from the above that a clopen subspace of a hyper-Stonean space is hyperStonean.

We now characterize normal measures on Ω.
Definition 2.10. Let Ω be a non-empty, locally compact space. Then \mathcal{K}_{Ω} denotes the family of compact subsets K of Ω for which int $K=\emptyset$.

The next result was essentially proved by Dixmier in the seminal paper [24, Proposition 1, §2]. The equivalence of (a) and (b) is [112, Proposition III.1.11].

Theorem 2.11. Let Ω be a Stonean space, and let $\mu \in M(\Omega)^{+}$. Then the following conditions on μ are equivalent:
(a) μ is a normal measure on Ω;
(b) $\mu(K)=0\left(K \in \mathcal{K}_{\Omega}\right)$.

In the case where Ω is hyper-Stonean, the conditions are also equivalent to:
(c) $\mu \in C(\Omega)_{*}$.

Thus the unique predual $C(\Omega)_{*}$ of $C(\Omega)$ is $N(\Omega)$. It follows that a measure $\mu \in M_{\mathbb{R}}(\Omega)$ is order-continuous on $C_{\mathbb{R}}(\Omega)$ if and only if it is weak-* continuous.

Note that our theorem implies that the restriction of a measure in $N(\Omega)^{+}$to a Borel subset of Ω also belongs to $N(\Omega)^{+}$.

In fact, a more general result is well-known. Indeed, by [60, Definition 7.1.11], a state μ on a von Neumann algebra R is normal if it is order-continuous, in the sense that $\mu\left(a_{\alpha}\right) \rightarrow \mu(a)$ for each increasing net $\left(a_{\alpha}\right)$ in R with least upper bound a; by [60, Theorem 7.1.12], a state on R is normal if and only if it is weak-operator continuous on $R_{[1]}$ (and several other equivalences are given in this reference); by [60, Theorem 7.4.2], the weak-* topology on $R_{[1]}$ coincides with the weak-operator topology on $R_{[1]}$, and the predual R_{*} of R is just the space of normal states. Thus clauses (a) and (c) in the above theorem are equivalent in a wider context.

Definition 2.12. Let \mathcal{F} be a family of positive measures on a non-empty, locally compact space Ω. Then \mathcal{F} is singular if any two distinct measures in \mathcal{F} are mutually singular.

The collection of such singular families on Ω is ordered by inclusion. It is clear from Zorn's lemma that the collection has a maximal member that contains any specific singular family; this is a maximal singular family. We may suppose that such a maximal singular family contains all the measures that are point masses and that all other members are continuous measures, so that, in the case where Ω is discrete, a maximal singular family consists just of the point masses. We shall also refer to a maximal singular family of continuous measures in an obvious sense.

We shall see in Proposition 4.10, below, that any two such maximal singular families of continuous measures have the same cardinality.

Proposition 2.13. Let Ω be an uncountable, compact, metrizable space. Then

$$
|M(\Omega)|=\mathfrak{c}
$$

Further, there is a maximal singular family of measures in $M(\Omega)^{+}$that consists of exactly c point masses and \mathfrak{c} continuous measures.
Proof. By Proposition 2.2 (i), the topology of Ω has a countable base, say \mathcal{B}; we may suppose that this base is closed under finite unions. Each open set in Ω is a countable, increasing union of members of \mathcal{B}, and so each $\mu \in M(\Omega)$ is determined by its values on \mathcal{B}. Hence $|M(\Omega)| \leq \mathfrak{c}$.

Let $\left\{F_{\alpha}: \alpha \in D_{2}\right\}$ be a family of pairwise disjoint subsets of Ω, with each set F_{α} homeomorphic to D_{2}; such a family is constructed in Proposition 2.2(iii). For each α, there is a continuous measure μ_{α} with $\operatorname{supp} \mu_{\alpha}=F_{\alpha}$. Let \mathcal{F}_{0} be the family consisting of all the point masses and all the measures μ_{α}, so that \mathcal{F}_{0} is a singular family of measures, and let \mathcal{F} be a maximal singular family containing \mathcal{F}_{0}. By Proposition $2.2(\mathrm{i}),|\Omega|=\mathfrak{c}$, and so \mathcal{F} contains exactly \mathfrak{c} point masses. Since \mathcal{F} contains each measure $\mu_{\alpha}, \mathcal{F}$ contains at least \mathfrak{c} continuous measures, and so $|M(\Omega)| \geq \mathfrak{c}$. Since $|M(\Omega)| \leq \mathfrak{c}$, the family \mathcal{F} contains at most \mathfrak{c} continuous measures.

Again let Ω be a non-empty, locally compact space, and let μ be a fixed continuous positive measure on Ω (so that it is not necessarily the case that $\mu \in M(\Omega)$ because we allow the possibility that $\mu(\Omega)=\infty)$. Then $M_{a c}(\Omega, \mu)$ and $M_{s}(\Omega, \mu)$ denote the subspaces of $M(\Omega)$ consisting of measures which are absolutely continuous and singular (and nondiscrete) with respect to μ, respectively, and we have an ℓ^{1}-Banach space decomposition

$$
M(\Omega)=\ell^{1}(\Omega) \oplus_{1} M_{a c}(\Omega, \mu) \oplus_{1} M_{s}(\Omega, \mu)
$$

In the case where the measure μ is σ-finite or is the left Haar measure on a locally compact group, we may identify $M_{a c}(\Omega, \mu)$ with $L^{1}(\Omega, \mu)$ via the Radon-Nikodým theorem, and so, in the case where μ is continuous, we have

$$
\begin{equation*}
M(\Omega)=\ell^{1}(\Omega) \oplus_{1} L^{1}(\Omega, \mu) \oplus_{1} M_{s}(\Omega, \mu) . \tag{2.8}
\end{equation*}
$$

Let $\mu \in M(\Omega)$. Then, in the above cases, the dual of the Banach space $L^{1}(\Omega, \mu)$ is the space $L^{\infty}(\Omega, \mu)$. This space is a commutative, unital C^{*}-algebra with respect to the pointwise operations, and thus its character space is a compact space.
Definition 2.14. Let Ω be a non-empty, locally compact space, and let μ be a positive measure on Ω. Then the character space of $L^{\infty}(\Omega, \mu)$ is denoted by Φ_{μ}.

Thus $L^{\infty}(\Omega, \mu)$ is isometrically $*$-isomorphic to $C\left(\Phi_{\mu}\right)$; the map that implements this isomorphism is the Gel'fand transform

$$
\mathcal{G}_{\mu}: L^{\infty}(\Omega, \mu) \rightarrow C\left(\Phi_{\mu}\right) .
$$

The space Φ_{μ} is hyper-Stonean. Clearly, the second dual $L^{1}(\Omega, \mu)^{\prime \prime}$ of $L^{1}(\Omega, \mu)$ is the dual space $C\left(\Phi_{\mu}\right)^{\prime}=M\left(\Phi_{\mu}\right)$.

Let $\mathcal{F}=\left\{\nu_{i}: i \in I\right\}$ be a maximal singular family of positive measures on Ω. In the case where $\nu_{i} \in M(\Omega)$, we may suppose that $\left\|\nu_{i}\right\|=1$ for each $i \in I$; the character space of $L^{\infty}\left(\Omega, \nu_{i}\right)$ is denoted by Φ_{i}. Clearly, each measure $\nu \in M(\Omega)$ can be written in the form

$$
\nu=\sum_{i \in I} f_{i} \nu_{i}
$$

where $f_{i} \in L^{1}\left(\Omega, \nu_{i}\right)(i \in I)$ and $\|\nu\|=\sum_{i \in I}\left\|f_{i}\right\|_{1}$, and so

$$
M(\Omega)=\bigoplus_{1}\left\{L^{1}\left(\Omega, \nu_{i}\right): i \in I\right\}
$$

Thus

$$
\begin{equation*}
M(\Omega)^{\prime}=\bigoplus_{\infty}\left\{L^{\infty}\left(\Omega, \nu_{i}\right): i \in I\right\}=\bigoplus_{\infty}\left\{C\left(\Phi_{i}\right): i \in I\right\} \tag{2.9}
\end{equation*}
$$

Boolean algebras. We recall some basic facts about Boolean algebras. For background, see 33.

Let B be a Boolean algebra. Then B is complete if every non-empty subset S of B has a supremum, denoted by $\bigvee S$, and an infimum, denoted by ΛS. For example, the family of all clopen subsets of a topological space X is a Boolean algebra with respect to the Boolean operations \cup and \cap; this Boolean algebra is complete if and only if X is extremely disconnected.

Let B be a Boolean algebra. An ultrafilter p on B is a subset of B which is maximal with respect to the property that $b_{1} \wedge \cdots \wedge b_{n} \neq 0$ whenever $b_{1}, \ldots, b_{n} \in p$. The family of ultrafilters on B is the Stone space of B, denoted by $S(B)$; a topology on $S(B)$ is defined by taking the sets

$$
\{p \in S(B): b \in p\}
$$

for $b \in B$ as a base of the open sets of $S(B)$. In this way $S(B)$ is a totally disconnected compact space; it is extremely disconnected if and only if B is complete as a Boolean algebra, and in this case it is a Stonean space. Conversely, let Ω be a totally disconnected compact space. Then Ω is the Stone space of the Boolean algebra \Im_{Ω}.

Let Ω be a non-empty, locally compact space, and let μ be a positive measure on Ω. Then \mathfrak{N}_{μ} is the family of sets $B \in \mathfrak{B}_{\Omega}$ with $\mu(B)=0$, and we define

$$
\mathfrak{B}_{\mu}=\mathfrak{B}_{\Omega} / \mathfrak{N}_{\mu} ;
$$

clearly, \mathfrak{B}_{μ} is a complete Boolean algebra, and so its Stone space $S\left(\mathfrak{B}_{\mu}\right)$ is extremely disconnected.

Let $B \in \mathfrak{B}_{\Omega}$. Then χ_{B} (or, more precisely, the equivalence class $\left[\chi_{B}\right]$) is an idempotent in $L^{\infty}(\Omega, \mu)$, and so $\mathcal{G}_{\mu}\left(\chi_{B}\right)$ is an idempotent in $C\left(\Phi_{\mu}\right)$; we set

$$
\begin{equation*}
K_{B} \cap \Phi_{\mu}=\left\{\varphi \in \Phi_{\mu}: \mathcal{G}_{\mu}\left(\chi_{B}\right)(\varphi)=1\right\}, \tag{2.10}
\end{equation*}
$$

so that

$$
\left\{K_{B} \cap \Phi_{\mu}: B \in \mathfrak{B}_{\Omega}\right\}=\mathfrak{I}_{\Phi_{\mu}}
$$

In particular, suppose that $B \in \mathfrak{B}_{\Omega}$ and $\mu(B)=0$. Then $K_{B} \cap \Phi_{\mu}=\emptyset$.
Clearly, $S\left(\mathfrak{B}_{\mu}\right)$ is homeomorphic to the space Φ_{μ}. Indeed, first let p be an ultrafilter in \mathfrak{B}_{μ}. Then

$$
\bigcap\left\{K_{B} \cap \Phi_{\mu}: B \in p\right\}
$$

is a singleton in Φ_{μ}, and so we can regard p as a point of Φ_{μ}. Conversely, each element $\varphi \in \Phi_{\mu}$ defines the ultrafilter in \mathfrak{B}_{Ω} which is the equivalence class corresponding to the family

$$
\left\{B \in \mathfrak{B}_{\Omega}: \varphi\left(\chi_{B}\right)=1\right\} .
$$

This family is directed by reverse inclusion, and so defines a net; we write ' $\lim _{B \rightarrow \varphi}$ ' for convergence along this net. Thus we see that the corresponding net

$$
\left\{\mu_{B}=\frac{\mu \mid B}{\mu(B)}: B \rightarrow \varphi\right\}
$$

in $L^{\infty}(\Omega, \mu)_{[1]}$ converges weak-* to δ_{φ} in $M\left(\Phi_{\mu}\right)$; this net is called the canonical net that converges to δ_{φ}. Specifically, for each $\lambda \in L^{\infty}(\Omega, \mu)$, we have

$$
\begin{equation*}
\lim _{B \rightarrow \varphi}\left\langle\lambda, \mu_{B}\right\rangle=\lim _{B \rightarrow \varphi} \frac{1}{\mu(B)} \int_{B} \lambda \mathrm{~d} \mu=\mathcal{G}_{\mu}(\lambda)(\varphi) . \tag{2.11}
\end{equation*}
$$

It is clear that, for each $x \in \Omega_{\infty}$ such that $\mu(U)>0$ for each $U \in \mathcal{N}_{x}$, there exists $\varphi \in \Phi_{\mu}$ such that $\mathcal{N}_{x} \subset \varphi$. In particular, for each $x \in \operatorname{supp} \mu$, there exists $\varphi \in \Phi_{\mu}$ with $\mathcal{N}_{x} \subset \varphi$. It is also clear that, for each $\varphi \in \Phi_{\mu}$, there exists a unique point $x \in \operatorname{supp} \mu \cup\{\infty\}$ with $\mathcal{N}_{x} \subset \varphi$. Thus we can define a map

$$
\begin{equation*}
\pi_{\mu}: \varphi \mapsto x, \quad \Phi_{\mu} \rightarrow \Omega_{\infty} \tag{2.12}
\end{equation*}
$$

and so $\left|\Phi_{\mu}\right| \geq|\operatorname{supp} \mu|$. We see from the definition of the topology on the Stone space Φ_{μ} that π_{μ} is continuous.

Proposition 2.15. Let Ω be a non-empty, locally compact space, and let μ be a positive measure on Ω such that $\operatorname{supp} \mu=\Omega$ and $\left|\mathfrak{B}_{\mu}\right|=\kappa$ for an infinite cardinal κ.
(i) Each non-empty, clopen subset of Φ_{μ} has the form $K_{B} \cap \Phi_{\mu}$ for some $B \in \mathfrak{B}_{\Omega} \backslash \mathfrak{N}_{\mu}$, and the family

$$
\left\{K_{B} \cap \Phi_{\mu}: B \in \mathfrak{B}_{\Omega} \backslash \mathfrak{N}_{\mu}\right\}
$$

is a base for the topology of Φ_{μ}.
(ii) $w\left(\Phi_{\mu}\right)=\kappa$ and $|\Omega| \leq\left|\Phi_{\mu}\right|=2^{\kappa}$.
(iii) Φ_{μ} satisfies CCC.
(iv) Φ_{μ} has no isolated points if and only if μ is continuous.

Proof. (i) \& (ii) These are clear from our earlier remarks.
(iii) Let $\left\{U_{i}: i \in I\right\}$ be a pairwise disjoint family of non-empty, open subsets of Φ_{μ}. For each $i \in I$, choose a non-empty, clopen set $K_{i} \subset U_{i}$. Then there exists $B_{i} \in \mathfrak{B}_{\Omega} \backslash \mathfrak{N}_{\mu}$ with $K_{B_{i}} \cap \Phi_{\mu}=K_{i}$. The family $\left\{B_{i}: i \in I\right\} \subset \mathfrak{B}_{\Omega}$ is pairwise disjoint, and $\mu\left(B_{i}\right)>0(i \in I)$. Thus I is countable.
(iv) Suppose that μ is not continuous, so that there exists $x \in \Omega$ with $\mu(\{x\})>0$. Then $\varphi:=\left\{B \in \mathfrak{B}_{\Omega}: x \in B\right\}$ is an ultrafilter in $S\left(\mathfrak{B}_{\mu}\right)$, and clearly φ is an isolated point of Φ_{μ}.

Suppose that φ is an isolated point of Φ_{μ}. Then there exists $B \in \mathfrak{B}_{\Omega}$ with $\mu(B)>0$ such that $\left\{\psi \in \Phi_{\mu}: B \in \psi\right\}=\{\varphi\}$. Since μ is regular, we may suppose that B is compact. Thus there is a unique point $x \in B$ such that $\mu(U \cap B)=\mu(B)\left(U \in \mathcal{N}_{x}\right)$. Clearly $\mu(\{x\})=\mu(B)>0$, and so μ is not continuous.

Example 2.16. Take $p \geq 2$, and let $\Omega=\mathbb{Z}_{p}^{\kappa}$ be the Cantor cube of weight κ described above, where κ is an infinite cardinal. Let m_{p} be the measure that gives the value $1 / p$ to each point of \mathbb{Z}_{p}, and let m be the corresponding product measure on \mathbb{Z}_{p}^{κ}. Then $m \in M_{c}(\Omega)^{+},\|m\|=1$, and $\operatorname{supp} m=\Omega$.

By $(2.2),|\Omega|=2^{\kappa}$ and $w(\Omega)=\left|\mathfrak{I}_{\Omega}\right|=\kappa$, and so $\left|\mathfrak{B}_{m}\right| \geq \kappa$.
Now suppose that $\kappa \geq \mathfrak{c}$. Since $\left|\Im_{\Omega}\right| \geq \mathfrak{c}$, we have $\left|\sigma\left(\mathfrak{I}_{\Omega}\right)\right|=\kappa$. Let $B \in \mathfrak{B}_{\Omega}$. The space Ω is totally disconnected and m is regular, and so, for each $\varepsilon>0$, there exists $C_{\varepsilon} \in \Im_{\Omega}$ such that $m\left(B \triangle C_{\varepsilon}\right)<\varepsilon$. It follows that there exists $C \in \sigma\left(\Im_{\Omega}\right)$ with $m(B \triangle C)=0$, and hence $m(B)=m(C)$. Thus $\left|\mathfrak{B}_{m}\right| \leq \kappa$, and so $\left|\mathfrak{B}_{m}\right|=\kappa$.

By Proposition 2.15(ii), $w\left(\Phi_{m}\right)=\kappa$ and so $\left|\Phi_{m}\right|=2^{\kappa}$. (That $\left|\Phi_{m}\right| \leq 2^{\kappa}$ also follows because each character on $L^{\infty}(\Omega, \mu)$ is determined by its values on the characteristic functions of Borel sets of Ω.)

The following result characterizes the sets Φ_{μ} of Definition 2.14 ,
Proposition 2.17. Let X be a hyper-Stonean space. Then the following conditions on X are equivalent:
(a) X satisfies CCC;
(b) X is homeomorphic to a space Φ_{μ} for some positive measure μ on a non-empty, locally compact space;
(c) there exists $\mu \in N(X)$ with $\|\mu\|=1$ and $\operatorname{supp} \mu=X$ such that X is homeomorphic to Φ_{μ}.

Proof. Trivially $(\mathrm{c}) \Rightarrow(\mathrm{b})$; we have shown that $(\mathrm{b}) \Rightarrow(\mathrm{a})$.
(a) \Rightarrow (c). We have remarked that each normal measure on X has clopen support.

Take \mathcal{N} to be a family of normal measures in $P(X)$ such that \mathcal{N} is maximal subject to the condition that the supports of the measures in the family are pairwise disjoint; certainly such a maximal family exists. By hypothesis, \mathcal{N} is countable, and so can be enumerated as $\left(\mu_{n}\right)$. Define $\mu=\sum_{n=1}^{\infty} \mu_{n} / 2^{n}$. Then μ is a normal measure with $\|\mu\|=1$ and $\operatorname{supp} \mu=X$.

We shall show that Φ_{μ} is homeomorphic to X. To see this, let θ be the canonical map from \mathfrak{B}_{X} onto \mathfrak{B}_{μ}, so that θ is a Boolean epimorphism. We claim that

$$
\theta \mid \mathfrak{I}_{X}: \mathfrak{I}_{X} \rightarrow \mathfrak{B}_{\mu}
$$

is an isomorphism of Boolean algebras. Clearly $\theta \mid \mathfrak{I}_{X}$ is a Boolean monomorphism. Now take $B \in \mathfrak{B}_{X}$. Then there is a sequence $\left(K_{n}\right)$ of compact subsets of B with $\mu(B)=\mu(U)$, where $U=\bigcup\left\{K_{n}: n \in \mathbb{N}\right\}$, an open set in X. We have $\bar{U} \in \mathfrak{I}_{X}$. For each $n \in \mathbb{N}$, we have $\mu\left(K_{n}\right)=\mu\left(\overline{\operatorname{int} K_{n}}\right)$, and so we may suppose that $K_{n}=\overline{\operatorname{int} K_{n}}$, and thus that $K_{n} \in \mathfrak{I}_{X}$.

Further, $\bar{U} \backslash U \in \mathcal{K}_{X}$, and so $\mu(\bar{U} \backslash U)=0$ by Theorem 2.11. Thus $\mu(\bar{U})=\mu(B)$. This shows that $\theta \mid \mathfrak{I}_{X}$ is a surjection onto \mathfrak{B}_{μ}.

We have shown that \mathfrak{I}_{X} and \mathfrak{B}_{μ} are isomorphic Boolean algebras, and so their respective Stone spaces are homeomorphic; these Stone spaces are X and Φ_{μ}, respectively.

Let Ω be a non-empty, locally compact space, and let μ be a positive measure on Ω. Then the pair $\left(\mathfrak{B}_{\mu}, \mu\right)$ is termed a measure algebra by Halmos in [45, p. 167]; however, we shall call it a measure Boolean algebra to avoid possible confusion with a later usage of the term 'measure algebra'. The special case in which $\Omega=\mathbb{I}$ and μ is the Lebesgue measure on \mathbb{I} is called the measure Boolean algebra of the unit interval; the corresponding space Φ_{μ} is called the hyper-Stonean space of the unit interval in [32, A 7 H].

Definition 2.18. The hyper-Stonean space of the unit interval is denoted by \mathbb{H}.
Thus \mathbb{H} is the character space of the C^{*}-algebra $L^{\infty}(\mathbb{I}, m)$.
Let Ω_{1} and Ω_{1} be two non-empty, locally compact spaces, and let μ_{1} and μ_{2} be positive measures on Ω_{1} and Ω_{2}, respectively. An isomorphism between the measure Boolean algebras $\left(\mathfrak{B}_{\mu_{1}}, \mu_{1}\right)$ and $\left(\mathfrak{B}_{\mu_{2}}, \mu_{2}\right)$ is a map $\eta: \mathfrak{B}_{\mu_{1}} \rightarrow \mathfrak{B}_{\mu_{2}}$ which is a Boolean algebra isomorphism and $\mu_{2}(\eta(B))=\mu_{1}(B)$ for each $B \in \mathfrak{B}_{\Omega_{1}}$; the two measure Boolean algebras $\left(\mathfrak{B}_{\mu_{1}}, \mu_{1}\right)$ and $\left(\mathfrak{B}_{\mu_{2}}, \mu_{2}\right)$ are isomorphic if there is such an isomorphism between them. In this latter case, the spaces $L^{1}\left(\Omega_{1}, \mu_{1}\right)$ and $L^{1}\left(\Omega_{2}, \mu_{2}\right)$ are isomorphic as Banach lattices.

A measure ring $\left(\mathfrak{B}_{\mu}, \mu\right)$ is separable in the sense of [45, p. 168] if the space $\left(\mathfrak{B}_{\Omega}, \rho\right)$ is a separable metric space for the metric ρ, defined by setting

$$
\rho(B, C)=\mu(B \triangle C)=\left\|\chi_{B}-\chi_{C}\right\|_{1} \quad\left(B, C \in \mathfrak{B}_{\Omega}\right) .
$$

This is the case if and only if the Banach space $\left(L^{1}(\Omega, \mu),\|\cdot\|_{1}\right)$ is separable. The measure Boolean algebra of a compact, metrizable space Ω is separable because $w(\Omega)=\aleph_{0}$.

We shall require a famous isomorphism theorem; a proof involving just measures is given in 45, §41, Theorem C], and a proof involving von Neumann algebras is given in [112, Theorem III.1.22].

Theorem 2.19. Let Ω be a non-empty, locally compact space, and let $\mu \in M_{c}(\Omega)^{+}$be such that $\|\mu\|=1$ and such that the Banach space $\left(L^{1}(\Omega, \mu),\|\cdot\|_{1}\right)$ is separable. Then the measure Boolean algebra $\left(\mathfrak{B}_{\mu}, \mu\right)$ is isomorphic to the measure Boolean algebra of the unit interval, and the Banach spaces $L^{1}(\Omega, \mu)$ and $L^{1}(\mathbb{I}, m)$ are isometrically isomorphic as Banach lattices.

In particular, in the case where Ω is uncountable, locally compact, and second countable, there exists a measure $\mu \in M_{c}(\Omega)^{+}$such that the spaces $L^{1}(\Omega, \mu)$ and $L^{1}(\mathbb{I}, m)$ are isometrically isomorphic as Banach lattices.

Corollary 2.20. Let Ω_{1} and Ω_{2} be two locally compact and second countable spaces, and suppose that $\mu_{1} \in M_{c}\left(\Omega_{1}\right)^{+}$and $\mu_{2} \in M_{c}\left(\Omega_{2}\right)^{+}$, with $\mu_{1}, \mu_{2} \neq 0$. Then the compact spaces $\Phi_{\mu_{1}}$ and $\Phi_{\mu_{2}}$ are homeomorphic.

Corollary 2.21. Let Ω be an uncountable, compact, metrizable space. Let $\mu \in M_{c}(\Omega)^{+}$ with $\mu \neq 0$. Then $\left|\Phi_{\mu}\right|=2^{\mathfrak{c}}$ and $w\left(\Phi_{\mu}\right)=\mathfrak{c}$. In particular,

$$
|\mathbb{H}|=2^{\mathfrak{c}} \quad \text { and } \quad w(\mathbb{H})=\mathfrak{c} .
$$

Proof. By Proposition 2.2 (iv), $\left|\mathfrak{B}_{\Omega}\right|=\mathfrak{c}$, and so $\left|\mathfrak{B}_{\mu}\right| \leq \mathfrak{c}$. By Proposition 2.15 (ii), we have $\left|\Phi_{\mu}\right| \leq 2^{\mathfrak{c}}$ and $w\left(\Phi_{\mu}\right) \leq \mathfrak{c}$.

Since Φ_{μ} is Stonean and infinite, it contains a copy of $\beta \mathbb{N}$, and so $w\left(\Phi_{\mu}\right) \geq w(\beta \mathbb{N})=\mathfrak{c}$ by Proposition 2.1. Thus $\left|\Phi_{\mu}\right|=2^{\mathfrak{c}}$ and $w\left(\Phi_{\mu}\right)=\mathfrak{c}$.

We give a direct proof of the fact that $\left|\Phi_{\mu}\right| \geq 2^{\mathfrak{c}}$. By Corollary 2.20 , it suffices to suppose that $\Omega=\mathbb{I}$ and that μ is Lebesgue measure on \mathbb{I}. For $n \in \mathbb{N}$, set $F_{n}=\left[t_{2 n+1}, t_{2 n}\right]$, where $\left(t_{n}\right)$ is a sequence in \mathbb{I} such that $t_{n} \searrow 0$. For each $S \subset \mathbb{N}$, set $B_{S}=\bigcup\left\{F_{n}: n \in S\right\}$, and, for each $p \in \mathbb{N}^{*}$, set

$$
C_{p}=\bigcap\left\{K_{B_{S}}: S \in p\right\}
$$

Then C_{p} is a non-empty, closed subset of Φ_{μ}, and $C_{p} \cap C_{q}=\emptyset$ whenever p and q are distinct points of \mathbb{N}^{*}. By Proposition $2.1,\left|\mathbb{N}^{*}\right|=2^{\text {c }}$, and so it follows that $\left|\Phi_{\mu}\right| \geq 2^{\text {c }}$.

Thus, with GCH, we have $|\mathbb{H}|=\aleph_{2}$ and $w(\mathbb{H})=\aleph_{1}$.
Corollary 2.22. The space \mathbb{H} is a topological space X with the following properties:
(i) X is a hyper-Stonean space;
(ii) X has no isolated points;
(iii) X satisfies CCC;
(iv) the space $\left(C(X)_{[1]}, \sigma(C(X), N(X))\right)$ is metrizable.

Conversely, each topological space X satisfying (i)-(iv) is homeomorphic to \mathbb{H}. Further, $|X|=2^{\mathfrak{c}}$ and $w(X)=\mathfrak{c}$ for each such space X.
Proof. We have seen that \mathbb{H} satisfies clauses (i)-(iii). The space \mathbb{H} satisfies (iv) because the Banach space $F:=\left(L^{1}(\mathbb{I}, m),\|\cdot\|_{1}\right)$ is separable (where m is Lebesgue measure on \mathbb{I}), and so $\left(F_{[1]}^{\prime}, \sigma\left(F^{\prime}, F\right)\right)$ is metrizable by Proposition $1.1(\mathrm{i})$; here, $F^{\prime}=L^{\infty}(\mathbb{I}, m) \cong C(\mathbb{H})$.

Conversely, suppose that X is a topological space satisfying clauses (i)-(iv). By Proposition 2.17. X is homeomorphic to a space Φ_{μ} for some $\mu \in N(X)$ with $\|\mu\|=1$ and $\operatorname{supp} \mu=X$. By (ii) and Proposition 2.15, μ is a continuous measure. By (iv) and Proposition 1.1(i), $\left(L^{1}(\Omega, \mu),\|\cdot\|_{1}\right)$ is separable, and so, by Theorem 2.19, $L^{1}(\Omega, \mu)$ is isomorphic as a Banach lattice to $L^{1}(\mathbb{I}, m)$. Thus $C(X)$ and $C(\mathbb{H})$ are isomorphic as Banach lattices, and hence as C^{*}-algebras, whence X and \mathbb{H} are homeomorphic.

We note that clause (iv) of the above characterization of \mathbb{H} is necessary: there is a compact space Ω and $\mu \in M_{c}(\Omega)^{+}$such that $X=\Phi_{\mu}$ is a hyper-Stonean space with no isolated points, X satisfies CCC, $|X|=2^{\mathfrak{c}}$ and $w(X)=\mathfrak{c}$, but (iv) fails. Indeed, set $\Omega=\mathbb{Z}_{2}^{\mathfrak{c}}$, the Cantor cube of weight \mathfrak{c}, let m be the corresponding product measure described above, and set $X=\Phi_{m}$. Since m is continuous, Φ_{m} has no isolated points and Φ_{m} satisfies CCC. As in Example 2.16, we have

$$
w\left(\Phi_{m}\right)=\left|\mathfrak{B}_{m}\right|=\mathfrak{c} \quad \text { and } \quad\left|\Phi_{m}\right|=2^{\mathfrak{c}}
$$

However, for each $\tau<\mathfrak{c}$, set $B_{\tau}=\left\{\varepsilon \in \Omega: \varepsilon_{\tau}=1\right\}$, so that $B_{\tau} \in \Im_{\Omega}$. Clearly we have $m\left(B_{\tau_{1}} \triangle B_{\tau_{2}}\right)=1 / 2$ whenever $\tau_{1}, \tau_{2}<\mathfrak{c}$ with $\tau_{1} \neq \tau_{2}$, and so the measure Boolean
algebra $\left(\mathfrak{B}_{m}, m\right)$ is not separable; equivalently, the space $\left(C(X)_{[1]}, \sigma(C(X), N(X))\right)$ is not metrizable.

We can give a condition that is apparently weaker than clause (iv) of the above corollary, but is actually equivalent to it.

Proposition 2.23. Let X be a topological space that satisfies clauses (i)-(iii) above. Then X satisfies (iv) if and only if each subspace of $C(X)_{[1]}$ which is discrete in the weak-* topology is countable.
Proof. Suppose that X satisfies (iv). Then certainly each weak-* discrete subset of $C(X)_{[1]}$ is countable.

For the converse, suppose that each weak-* discrete subset of $C(X)_{[1]}$ is countable.
By Proposition 2.17, there are a compact space Ω and a positive measure $\mu \in M(\Omega)^{+}$ such that $X=\Phi_{\mu}$. Assume towards a contradiction that there is an uncountable family $\left(B_{\alpha}\right)$ in $\mathfrak{B}_{\Omega} \backslash \mathfrak{N}_{\mu}$ and $\delta>0$ such that $\rho\left(B_{\alpha}, B_{\beta}\right)>\delta$ whenever $\alpha \neq \beta$. The characteristic function of B_{α} is χ_{α}.

We claim that, for each α, it is not the case that χ_{α} is in the $\|\cdot\|_{1}$-closed convex hull of $\left\{\chi_{\beta}: \beta \neq \alpha\right\}$. Indeed, let $n \in \mathbb{N}$ and $t_{1}, \ldots, t_{n} \in \mathbb{I}$ with $\sum_{i=1}^{n} t_{i}=1$, and set $\lambda=\sum_{i=1}^{n} t_{i} \chi_{\beta_{i}}$, where $\beta_{i} \neq \alpha\left(i \in \mathbb{N}_{n}\right)$. We have

$$
\chi_{\alpha}-\lambda=\sum_{i=1}^{n} t_{i}\left(\chi_{\alpha}-\chi_{\beta_{i}}\right)=\sum_{i=1}^{n} t_{i}\left(\chi_{\alpha \backslash \beta_{i}}-\chi_{\beta_{i} \backslash \alpha}\right),
$$

and so

$$
\left\|\chi_{\alpha}-\lambda\right\|_{1}=\sum_{i=1}^{n} t_{i}\left(\mu\left(B_{\alpha} \backslash B_{\beta_{i}}\right)+\mu\left(B_{\beta_{i}} \backslash B_{\alpha}\right)\right)=\sum_{i=1}^{n} t_{i}\left\|\chi_{\alpha}-\chi_{\beta_{i}}\right\|_{1}>\delta
$$

where $\|\cdot\|_{1}$ is the norm in $L^{1}(\Omega, \mu)$. The claim follows.
Now regard the family $\left(\chi_{\alpha}\right)$ as a subspace of $L^{\infty}(\Omega, \mu)=C\left(\Phi_{\mu}\right)$. For each α, there is a linear functional M on $L^{\infty}(\Omega, \mu)$ such that M is continuous with respect to the seminorm $\|\cdot\|_{1}$ on $L^{\infty}(\Omega, \mu)$ and such that

$$
\left\langle\chi_{\alpha}, \mathrm{M}\right\rangle<\inf \left\{\left\langle\chi_{\beta}, \mathrm{M}\right\rangle: \beta \neq \alpha\right\} .
$$

The linear functional $\lambda \mapsto\langle\lambda, \mu\rangle$ is order-continuous on $C\left(\Phi_{\mu}\right)_{\mathbb{R}}$, and so M is ordercontinuous on $C\left(\Phi_{\mu}\right)_{\mathbb{R}}$. Thus M is a normal measure on Φ_{μ}; by Theorem 2.11, M is weak-* continuous on $C\left(\Phi_{\mu}\right)$, and so χ_{α} does not belong to the weak-* closure of $\left\{\chi_{\beta}: \beta \neq \alpha\right\}$.

It follows that $\left(\chi_{\alpha}\right)$ is an uncountable weak-* discrete subset of $C(X)_{[1]}$. This is a contradiction, and so the measure Boolean algebra $\left(\mathfrak{B}_{\mu}, \mu\right)$ is separable. Thus X satisfies (iv).

3. Specific second dual algebras

In this chapter, we shall begin our study of the second duals of the Banach algebras $C_{0}(\Omega)$ and $M(\Omega)$ for a locally compact space Ω. We shall also introduce $B^{b}(\Omega)$, the C^{*}-algebra of bounded Borel functions on Ω.

Second duals of algebras of continuous functions. Let Ω be a non-empty, locally compact space, and again set $E=C_{0}(\Omega)$. Since E is a commutative C^{*}-algebra, E is Arens regular, and $E^{\prime \prime}$ is also a commutative C^{*}-algebra, with just one Arens product, which we denote by juxtaposition. Thus

$$
\langle\lambda, \Lambda \cdot \mu\rangle=\langle\Lambda, \mu \cdot \lambda\rangle \quad\left(\lambda \in E, \mu \in E^{\prime}, \Lambda \in E^{\prime \prime}\right)
$$

and

$$
\left\langle\Lambda_{1} \Lambda_{2}, \mu\right\rangle=\left\langle\Lambda_{1}, \Lambda_{2} \cdot \mu\right\rangle \quad\left(\Lambda_{1}, \Lambda_{2} \in E^{\prime \prime}, \mu \in E^{\prime}\right)
$$

Since E has a bounded approximate identity, $E^{\prime \prime}$ (with this Arens product) has an identity, and so $E^{\prime \prime}$ is isometrically isomorphic to $C(\widetilde{\Omega})$ for a certain compact space $\widetilde{\Omega}$. As in [112, III.2.3], $C(\widetilde{\Omega})$ is the enveloping von Neumann algebra of E.

Definition 3.1. Let Ω be a non-empty, locally compact space. Then the character space of the commutative C^{*}-algebra $C_{0}(\Omega)^{\prime \prime}$ is denoted by $\widetilde{\Omega}$.

The general proof that a C^{*}-algebra is Arens regular and that its second dual is also a C^{*}-algebra involves a considerable theory of C^{*}-algebras; we note that a direct proof that $C_{0}(\Omega)^{\prime \prime}$ is isometrically isomorphic to $C(\widetilde{\Omega})$ for a compact space $\widetilde{\Omega}$ is given in [105, §4].

We regard $C_{0}(\Omega)$ as a closed subalgebra of $C(\widetilde{\Omega})$ via the map κ_{E}; when Ω is not compact, we identify $C\left(\Omega_{\infty}\right)$ with the closed subalgebra

$$
\left\{z 1+\lambda: z \in \mathbb{C}, \lambda \in C_{0}(\Omega)\right\}
$$

of $C(\widetilde{\Omega})$. Clearly $\left(E^{\prime \prime}\right)_{\mathbb{R}}$ is a Banach lattice and $\kappa_{E}: E_{\mathbb{R}} \rightarrow\left(E^{\prime \prime}\right)_{\mathbb{R}}$ is isotonic.
The topology on the space $\widetilde{\Omega}$ is called σ, so that σ is the weak-* topology $\sigma\left(E^{\prime \prime \prime}, E^{\prime \prime}\right)$ restricted to $\widetilde{\Omega}$. Since $E^{\prime \prime}$ is certainly a dual space, $(\widetilde{\Omega}, \sigma)$ is hyper-Stonean.

Definition 3.2. Let Ω be a non-empty, locally compact space. Then the corresponding space $\widetilde{\Omega}$ is the hyper-Stonean envelope of Ω.

The term 'hyper-Stonean cover' is used for our 'hyper-Stonean envelope' in [125], where some references to earlier works are given. In [125], there is a characterization of $\widetilde{\Omega}$ in terms of certain 'Kelley ideals'.

Let $\varphi \in \widetilde{\Omega}$. Then $\varepsilon_{\varphi} \in E^{\prime \prime \prime}$, and $\varepsilon_{\varphi} \mid C_{0}(\Omega)$ is a character on E or 0 , say $\pi\left(\varepsilon_{\varphi}\right)=\varepsilon_{\pi(\varphi)}$ for a point $\pi(\varphi) \in \Omega_{\infty}$. The map

$$
\pi:(\widetilde{\Omega}, \sigma) \rightarrow\left(\Omega_{\infty}, \tau\right)
$$

is a continuous surjection.
We remark that a cover of a compact space Ω is a pair (X, f), where X is a compact space and $f: X \rightarrow \Omega$ is a continuous surjection. Thus $(\widetilde{\Omega}, \pi)$ is a cover of Ω. The cover (X, f) is said to be essential [43, Definition 2.10] if, for each compact space Y and each continuous function $h: Y \rightarrow X$ with $f(h(Y))=\Omega$, necessarily $h(Y)=X$, and the cover (X, f) is projective if it is essential and X is a projective (equivalently, extremely disconnected) space. As in [43, Theorem 2.16], we see that each closed subset X of $\widetilde{\Omega}$ that is minimal with respect to the property that $\pi(X)=\Omega$ is a projective cover of Ω; such a cover is unique up to a homeomorphism that commutes with the covering map π. In this case, $C(X)$ is the so-called injective envelope of $C(\Omega)$.

Definition 3.3. Let Ω be a non-empty, locally compact space, and let $x \in \Omega_{\infty}$. Then

$$
\Omega_{\{x\}}=\pi^{-1}(\{x\})
$$

is the fibre of Ω at x.
Each fibre $\Omega_{\{x\}}$ is a closed subspace of $(\widetilde{\Omega}, \sigma)$, and clearly we have

$$
\widetilde{\Omega}=\bigcup\left\{\Omega_{\{x\}}: x \in \Omega_{\infty}\right\} .
$$

We shall see in Example 3.16 below that a fibre $\Omega_{\{x\}}$ is not necessarily open.
Let $\Lambda \in E^{\prime \prime}$ and $\mu \in E^{\prime}$. Then we claim that

$$
\begin{equation*}
\operatorname{supp}(\Lambda \cdot \mu) \subset \operatorname{supp} \mu \tag{3.1}
\end{equation*}
$$

Indeed, let $\lambda \in C_{0}(\Omega)$ with $\operatorname{supp} \lambda \subset \Omega \backslash \operatorname{supp} \mu$. Then clearly $\lambda \mu=0$, and so we have $\langle\lambda, \Lambda \cdot \mu\rangle=\langle\Lambda, \lambda \mu\rangle=0$. Thus the claim follows.

There is a natural embedding ι of Ω into $\widetilde{\Omega}$. Indeed, let $x \in \Omega$. Then

$$
\varepsilon_{x}^{\prime \prime}: \Lambda \mapsto\left\langle\Lambda, \varepsilon_{x}\right\rangle, \quad E^{\prime \prime} \rightarrow \mathbb{C}
$$

is a character on $E^{\prime \prime}$ extending ε_{x}; the second dual $\varepsilon_{x}^{\prime \prime}$ is given by a point of $\widetilde{\Omega}$, say by $\iota(x)$. Clearly $\iota: \Omega \rightarrow \widetilde{\Omega}$ is an injection and $\pi \circ \iota$ is the identity on Ω. The map $\iota^{-1}: \iota(\Omega) \rightarrow \Omega$ is continuous, and so $\tau \subset \sigma \mid \Omega$. We now identify x with $\iota(x)$, and regard Ω as a subset (but not a topological subspace) of $\widetilde{\Omega}$. For $x \in \Omega$, we identify ε_{x} with $\delta_{x} \in M(\Omega)$. For a subset U of Ω, we denote by \bar{U} the closure of U in $(\widetilde{\Omega}, \sigma)$, and we set $U^{*}=\bar{U} \backslash U$. In particular, $\bar{\Omega}$ is the closure of Ω in $(\widetilde{\Omega}, \sigma)$.

Let $x \in \Omega$. Then the map

$$
\Lambda_{x}: \mu \mapsto \mu(\{x\}), \quad M(\Omega) \rightarrow \mathbb{C}
$$

belongs to $M(\Omega)^{\prime}=E^{\prime \prime}=C(\widetilde{\Omega})$. For $y \in \Omega$, we have

$$
\varepsilon_{y}^{\prime \prime}\left(\Lambda_{x}\right)=\left\langle\Lambda_{x}, \varepsilon_{y}\right\rangle=\left\langle\Lambda_{x}, \delta_{y}\right\rangle
$$

and so $\Lambda \mid \Omega=\chi_{\{x\}}$. This shows that (Ω, σ) is a discrete space. We shall see below that Ω is open in the hyper-Stonean envelope $(\widetilde{\Omega}, \sigma)$.

Let $x \in \Omega$. In the case where x is isolated in Ω, set $Y=\Omega \backslash\{x\}$. Then $E=C_{0}(Y) \oplus \mathbb{C} \delta_{x}$, and so $E^{\prime \prime}=C(\widetilde{Y}) \oplus \mathbb{C} \delta_{x}$. Clearly $\pi(\widetilde{Y})=Y$, and so $\Omega_{\{x\}}=\{x\}$.

Proposition 3.4. Let Ω be a non-empty, locally compact space. Then $\kappa_{E}\left(C_{0}(\Omega)\right)$ consists of the functions $\Lambda \in C(\widetilde{\Omega}, \sigma)$ such that $\Lambda \mid \Omega_{\{x\}}$ is constant for each $x \in \Omega_{\infty}$ and $\Lambda \mid \Omega_{\{\infty\}}=0$.

Proof. Take $\lambda \in E=C_{0}(\Omega)$. For each $x \in \Omega_{\infty}$, we see that $\kappa_{E}(\lambda) \mid \Omega_{\{x\}}$ takes the constant value $\lambda(x)$ and that $\kappa_{E}(\lambda) \mid \Omega_{\{\infty\}}=0$.

Now suppose that $\Lambda \in C(\widetilde{\Omega})$ and that Λ is constant on each set $\Omega_{\{x\}}$. We claim that $\lambda:=\Lambda \mid \Omega \in C(\Omega, \tau)$. For let $\left(x_{\alpha}\right)$ be a net in Ω with limit $x_{0} \in \Omega$ with respect to the topology τ. Since $(\widetilde{\Omega}, \sigma)$ is compact, we may suppose by passing to a subnet that there exists $\varphi_{0} \in \widetilde{\Omega}$ such that $x_{\alpha} \rightarrow \varphi_{0}$ in $(\widetilde{\Omega}, \sigma)$. Since $\pi:(\widetilde{\Omega}, \sigma) \rightarrow(\Omega, \tau)$ is continuous, $x_{\alpha} \rightarrow \pi\left(\varphi_{0}\right)$ in (Ω, τ), and so $\pi\left(\varphi_{0}\right)=x_{0}$. Thus $\lambda\left(x_{\alpha}\right)=\Lambda\left(x_{\alpha}\right) \rightarrow \Lambda\left(\varphi_{0}\right)=\lambda\left(x_{0}\right)$. It follows that $\lambda \in C(\Omega)$. By the same argument, $\lambda \in C_{0}(\Omega)$ in the case where $\Lambda \mid \Omega_{\{\infty\}}=0$. Clearly $\kappa_{E}(\lambda)=\Lambda$, and so the result follows.

Corollary 3.5. Let Ω be a non-empty, locally compact space. Then $\pi^{-1}(\Omega)$ is a dense, open subspace of $\widetilde{\Omega}$.

We shall see in Example 3.16 below that, in general, there is no continuous projection of $C(\widetilde{\Omega})$ onto $C(\Omega)$.

The following result is a slightly more general version of [56, Lemma 2.3]. We say that an element $\lambda \in L^{\infty}(\Omega)$ is continuous at $x \in \Omega$ if the equivalence class of λ contains a function which is continuous at x.

Proposition 3.6. Let Ω be a non-empty, locally compact space, and take μ to be a positive measure on Ω. Suppose that there exists $V \in \mathcal{N}_{x}$ such that $\mu(U)>0$ for each non-empty, open subset U of Ω with $U \subset V$. Let $\lambda \in L^{\infty}(\Omega, \mu)$, and suppose that $\mathcal{G}_{\mu}(\lambda)$ is constant on $\Phi_{\mu} \cap \Omega_{\{x\}}$. Then λ is continuous at x.

Proof. We note that the set $\Phi_{\mu} \cap \Omega_{\{x\}}$ is not empty because it contains each weak-* accumulation point of the net $\left\{\mu_{B}: B \in \mathcal{N}_{x}\right\}$.

We may suppose that λ is real-valued. Assume towards a contradiction that λ is not continuous at x. Then there exist $\alpha, \beta \in \mathbb{R}$ with $\alpha<\beta$ such that, setting

$$
A=\{x \in V: \lambda(x)<\alpha\}, \quad B=\{x \in V: \lambda(x)>\beta\}
$$

we have $A \cap B=\emptyset$ and both A and B meet each neighbourhood of x in a non-empty, open set; by hypothesis, each such intersection has strictly positive μ-measure, and so $\{A\} \cup \mathcal{N}_{x}$ and $\{B\} \cup \mathcal{N}_{x}$ are contained in ultrafilters $\varphi, \psi \in \Phi_{\mu} \cap \Omega_{\{x\}}$, respectively, with $\varphi \neq \psi$. We have $\mathcal{G}_{\mu}(\lambda)(\varphi) \leq \alpha$ and $\mathcal{G}_{\mu}(\lambda)(\psi) \geq \beta$, a contradiction of the fact that $\mathcal{G}_{\mu}(\lambda)$ is constant on $\Phi_{\mu} \cap \Omega_{\{x\}}$.

Thus λ is continuous at x.

Second duals of spaces of measures. Let Ω be a non-empty, locally compact space, and again set $E=C_{0}(\Omega)$. The dual space of $E^{\prime \prime}=C(\widetilde{\Omega})$ is $E^{\prime \prime \prime}=M(\widetilde{\Omega})$. We denote by $\kappa=\kappa_{E^{\prime}}$ the canonical mapping of E^{\prime} into $E^{\prime \prime \prime}$, and sometimes identify $\mu \in M(\Omega)$ with
$\kappa(\mu) \in M(\widetilde{\Omega})$. Thus we have

$$
\begin{equation*}
\langle\Lambda, \mu\rangle=\int_{\widetilde{\Omega}} \Lambda \mathrm{d} \mu \quad(\Lambda \in C(\widetilde{\Omega}), \mu \in M(\Omega)) \tag{3.2}
\end{equation*}
$$

There is a continuous projection $\pi: E^{\prime \prime \prime} \rightarrow E^{\prime}$ which is the dual of the injection $\kappa_{E}: E \rightarrow E^{\prime \prime}$, and which is defined by

$$
\langle\lambda, \pi(\mathrm{M})\rangle=\left\langle\kappa_{E}(\lambda), \mathrm{M}\right\rangle \quad\left(\lambda \in E, \mathrm{M} \in E^{\prime \prime \prime}\right)
$$

and so we also have a map

$$
\begin{equation*}
\pi=\kappa_{E}^{\prime}: M(\widetilde{\Omega}) \rightarrow M(\Omega) \tag{3.3}
\end{equation*}
$$

The map $\pi \mid \widetilde{\Omega}: \widetilde{\Omega} \rightarrow \Omega$ coincides with the previously-defined map π. Further,

$$
M(\widetilde{\Omega})=M(\Omega) \oplus_{1} E^{\circ}
$$

where

$$
E^{\circ}=\left\{\mathrm{M} \in M(\widetilde{\Omega}): \mathrm{M} \mid \kappa_{E}(E)=0\right\}=\operatorname{ker} \pi
$$

For a compact subset K of Ω, we write $K \prec \lambda$ whenever $\lambda \in C_{0}(\Omega)$ with $\lambda(\Omega) \subset \mathbb{I}$ and $\lambda \mid K=1$. In the case where $\mathrm{M} \in M(\widetilde{\Omega})^{+}$and K is a compact subset of Ω, we have

$$
\begin{aligned}
\pi(\mathrm{M})(K) & =\inf \left\{\int_{\Omega} \lambda \mathrm{d}(\pi(\mathrm{M})): K \prec \lambda\right\} \\
& =\inf \left\{\int_{\widetilde{\Omega}} \kappa_{E}(\lambda) \mathrm{dM}: K \prec \lambda\right\} \\
& =\inf \left\{\int_{\widetilde{\Omega}} \Lambda \mathrm{dM}: \pi^{-1}(K) \prec \Lambda\right\}=\mathrm{M}\left(\pi^{-1}(K)\right),
\end{aligned}
$$

and so

$$
\begin{equation*}
\pi(\mathrm{M})(B)=\mathrm{M}\left(\pi^{-1}(B)\right) \quad\left(\mathrm{M} \in M(\widetilde{\Omega}), B \in \mathfrak{B}_{\Omega}\right) \tag{3.4}
\end{equation*}
$$

It follows that E° is the weak-* closed linear span of measures of the form $\delta_{\varphi}-\delta_{\psi}$, where φ, ψ are two points of $\widetilde{\Omega}$ in the same fibre. It also follows that

$$
\begin{equation*}
\|\mathrm{M}\|=\mathrm{M}(\widetilde{\Omega})=\pi(\mathrm{M})(\Omega)=\|\pi(\mathrm{M})\| \quad\left(\mathrm{M} \in \mathrm{M}(\widetilde{\Omega})^{+}\right) \tag{3.5}
\end{equation*}
$$

We shall use the following theorem.
Theorem 3.7. Let Ω_{1} and Ω_{2} be two compact spaces, and suppose that there is a Banach lattice isomorphism $T: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)$. Then the dual map

$$
T^{\prime}: C\left(\widetilde{\Omega}_{2}\right) \rightarrow C\left(\widetilde{\Omega}_{1}\right)
$$

is a Banach lattice isomorphism and a unital $*$-isomorphism, and $\widetilde{\Omega}_{1}$ and $\widetilde{\Omega}_{2}$ are homeomorphic.
Proof. Certainly $T^{\prime}: C\left(\widetilde{\Omega}_{2}\right) \rightarrow C\left(\widetilde{\Omega}_{1}\right)$ is a Banach lattice isomorphism such that T^{\prime} maps the identity function on $\widetilde{\Omega}_{2}$ to the identity function on $\widetilde{\Omega}_{1}$. By Theorem 2.4 (ii), T^{\prime} is a unital *-isomorphism. The map $T^{\prime \prime} \mid \widetilde{\Omega}_{2}: \widetilde{\Omega}_{2} \rightarrow \widetilde{\Omega}_{1}$ is a homeomorphism.

Let Ω be a non-empty, locally compact space. Then of course the predual $C(\widetilde{\Omega})_{*}$ of $C(\widetilde{\Omega})$ is $\kappa(M(\Omega))$, and so we may extend Theorem 2.11 to obtain the following characterization of $\kappa(M(\Omega))$.

Theorem 3.8. Let Ω be a non-empty, locally compact space, and let $\mathrm{M} \in M(\widetilde{\Omega})^{+}$. Then the following conditions on M are equivalent:
(a) $\mathrm{M} \in \kappa(M(\Omega))$;
(b) M is weak-* continuous as a linear functional on $C(\widetilde{\Omega})$;
(c) M is a normal measure;
(d) $\mathrm{M}(K)=0\left(K \in \mathcal{K}_{\widetilde{\Omega}}\right)$.

Bounded Borel functions. We now define a further important C^{*}-algebra.
Definition 3.9. Let Ω be a non-empty, locally compact space. Then $B^{b}(\Omega)$ denotes the space of bounded Borel functions on Ω.

Clearly $\left(B^{b}(\Omega),|\cdot|_{\Omega}\right)$ is a unital C^{*}-subalgebra of $\left(\ell^{\infty}(\Omega),|\cdot|_{\Omega}\right)$ with $C^{b}(\Omega) \subset B^{b}(\Omega)$. It is also clear that the space

$$
\operatorname{lin}\left\{\chi_{B}: B \in \mathfrak{B}_{\Omega}\right\}
$$

is a $|\cdot|_{\Omega}$-dense linear subspace of $B^{b}(\Omega)$.
Indeed, $B^{b}(\Omega)$ is a well-known Banach algebra. This algebra is closely related to the algebra of Baire functions, which can be defined by a transfinite recursion through the Baire classes. The Baire functions of order 0 are the functions in $C^{b}(\Omega)$. Given a definition of the Baire class of order β for each $\beta<\alpha$, the class of order α is the space of bounded functions on Ω which are pointwise limits of sequences of functions in the union of the earlier classes; the construction terminates at $\alpha=\omega_{1}$. The Baire functions on Ω are the members of this final class. Each Baire class is itself a Banach algebra which is a closed subalgebra of $B^{b}(\Omega)$. In the case where the space Ω is (locally compact and) second countable, the algebra of Baire functions is equal to $B^{b}(\Omega)$ [50, (11.46)]; in particular, this is true for $\Omega=\mathbb{R}$ with the usual topology.
Definition 3.10. The character space of the unital C^{*}-algebra $\left(B^{b}(\Omega),|\cdot|_{\Omega}\right)$ is denoted by Φ_{b}.

Proposition 3.11. Let Ω be an infinite, compact metrizable space. Then $\left|B^{b}(\Omega)\right|=\mathfrak{c}$ and $\left|\Phi_{b}\right|=2^{\text {c }}$.

Proof. By Proposition 2.3(ii), $|C(\Omega)|=\mathfrak{c}$. Thus each Baire class of order less than ω_{1} has cardinality \mathfrak{c}, and so the algebra of Baire functions on Ω has cardinality \mathfrak{c}. Since the latter algebra is equal to $B^{b}(\Omega)$, we have $\left|B^{b}(\Omega)\right|=\mathfrak{c}$.

We have $\left|\Phi_{b}\right| \leq\left|B^{b}(\Omega)^{\prime}\right|=2^{c}$. Let D be a countable subset of Ω. Then $\ell^{\infty}(D)$ is a closed C^{*}-subalgebra of $B^{b}(\Omega)$ and the character space of $\ell^{\infty}(D)$ is βD, which, by Proposition 2.1, has cardinality $2^{\text {c }}$. Thus $\left|\Phi_{b}\right| \geq 2^{\text {c }}$. Hence $\left|\Phi_{b}\right|=2^{\text {c }}$.

Definition 3.12. Let Ω be a non-empty, locally compact space. For $\lambda \in B^{b}(\Omega)$, define $\kappa_{E}(\lambda)$ on $E^{\prime}=M(\Omega)$ by

$$
\begin{equation*}
\left\langle\kappa_{E}(\lambda), \mu\right\rangle=\int_{\Omega} \lambda \mathrm{d} \mu \quad(\mu \in M(\Omega)) . \tag{3.6}
\end{equation*}
$$

We see immediately that $\kappa_{E}(\lambda) \in M(\Omega)^{\prime}=C(\widetilde{\Omega})$ and that we have $\kappa_{E}(\lambda) \mid \Omega=\lambda$ for $\lambda \in B^{b}(\Omega)$.

Let $\lambda \in B^{b}(\Omega)$ and $\mu \in M(\Omega)$. Then $\kappa_{E}(\lambda) \cdot \mu$ is the measure $\lambda \mu$.
Now take $\lambda_{1}, \lambda_{2} \in B^{b}(\Omega)$ and $\mu \in M(\Omega)$. Then

$$
\begin{aligned}
\left\langle\kappa_{E}\left(\lambda_{1}\right) \kappa_{E}\left(\lambda_{2}\right), \mu\right\rangle & =\left\langle\kappa_{E}\left(\lambda_{1}\right), \kappa_{E}\left(\lambda_{2}\right) \cdot \mu\right\rangle=\left\langle\kappa_{E}\left(\lambda_{1}\right), \lambda_{2} \mu\right\rangle \\
& =\int_{\Omega} \lambda_{1} \lambda_{2} \mathrm{~d} \mu=\left\langle\kappa_{E}\left(\lambda_{1} \lambda_{2}\right), \mu\right\rangle,
\end{aligned}
$$

and so $\kappa_{E}\left(\lambda_{1} \lambda_{2}\right)=\kappa_{E}\left(\lambda_{1}\right) \kappa_{E}\left(\lambda_{2}\right)$. It follows from Corollary 3.5 that $\kappa_{E}\left(1_{\Omega}\right)=1_{\tilde{\Omega}}$, and so the map

$$
\kappa_{E}: B^{b}(\Omega) \rightarrow C(\widetilde{\Omega})
$$

is a unital, isometric $*$-isomorphism identifying $B^{b}(\Omega)$ as a closed, self-adjoint subalgebra of $C(\widetilde{\Omega})$ containing the identity function, and it extends the previously defined map κ_{E}.

The algebra $\kappa_{E}\left(B^{b}(\Omega)\right)$ is a uniformly closed C^{*}-subalgebra of $C(\widetilde{\Omega})$. In the case where there is a non-Borel set in Ω, it cannot be that $\kappa_{E}\left(B^{b}(\Omega)\right)$ separates the points of $\widetilde{\Omega}$. For, if this were so, we would have $\kappa_{E}\left(B^{b}(\Omega)\right)=C(\widetilde{\Omega})$ by the Stone-Weierstrass theorem. However $B^{b}(\Omega)_{\mathbb{R}}$ is not a complete lattice (the family of characteristic functions of finite subsets of a non-Borel subset of Ω, ordered by inclusion, is an increasing net in $B^{b}(\Omega)$ that does not have a supremum), but $C(\widetilde{\Omega})_{\mathbb{R}}$ is a complete lattice.

The character space Φ_{b} is the compact space $\widetilde{\Omega} / \sim$, where

$$
\varphi \sim \psi \quad \text { if } \quad \kappa_{E}(\lambda)(\varphi)=\kappa_{E}(\lambda)(\psi) \quad\left(\lambda \in B^{b}(\Omega)\right)
$$

Since $\operatorname{lin}\left\{\chi_{B}: B \in \mathfrak{B}_{\Omega}\right\}$ is dense in $B^{b}(\Omega)$, it follows that

$$
\varphi \sim \psi \quad \text { if and only if } \quad \kappa_{E}\left(\chi_{B}\right)(\varphi)=\kappa_{E}\left(\chi_{B}\right)(\psi) \quad\left(B \in \mathfrak{B}_{\Omega}\right)
$$

Definition 3.13. Let Ω be a non-empty, locally compact space, and take $\varphi, \psi \in \widetilde{\Omega}$. Then φ and ψ are Borel equivalent if $\varphi \sim \psi$.

The equivalence class under the relation \sim that contains φ is denoted by $[\varphi]$. Clearly we have $[\varphi] \subset \Omega_{\{x\}}$ for $\varphi \in \widetilde{\Omega}$, where $x=\pi(\varphi)$. Since $C\left(\Phi_{b}\right)_{\mathbb{R}}$ is not a complete lattice, Φ_{b} is not a Stonean space. We shall make further remarks about the equivalence classes $[\varphi]$ and the space Φ_{b} in Chapter 4.

For each $B \in \mathfrak{B}_{\Omega}$, the function $\kappa_{E}\left(\chi_{B}\right)$ is an idempotent in $C(\widetilde{\Omega})$, and so $\kappa_{E}\left(\chi_{B}\right)$ is the characteristic function of a clopen subset, say K_{B}, of $\widetilde{\Omega}$.
Definition 3.14. Let Ω be a non-empty, locally compact space, and let $B \in \mathfrak{B}_{\Omega}$. Then

$$
K_{B}=\left\{\varphi \in \widetilde{\Omega}: \kappa_{E}\left(\chi_{B}\right)(\varphi)=1\right\} .
$$

Thus

$$
\begin{equation*}
\kappa_{E}\left(\chi_{B}\right)=\chi_{K_{B}} \quad\left(B \in \mathfrak{B}_{\Omega}\right) . \tag{3.7}
\end{equation*}
$$

Clearly $\kappa_{E}\left(\chi_{B}\right) \mid \Omega=\chi_{B}$, and so $K_{B} \cap \Omega=B$, whence $\bar{B} \subset K_{B}$. Let $B, C \in \mathfrak{B}_{\Omega}$. Then

$$
\chi_{B \cap C}=\chi_{B} \cdot \chi_{C} \quad \text { and } \quad \chi_{B \cup C}=\chi_{B}+\chi_{C}-\chi_{B} \cdot \chi_{C}
$$

and so

$$
K_{B} \cap K_{C}=K_{B \cap C} \quad \text { and } \quad K_{B} \cup K_{C}=K_{B \cup C} .
$$

In particular, if $B \cap C=\emptyset$, then $\bar{B} \cap \bar{C}=\emptyset$. Suppose that $B \in \mathfrak{B}_{\Omega}$ and that $x \in \Omega$. Then $\left\langle\kappa_{E}\left(\chi_{B}\right), \delta_{x}\right\rangle$ is 1 or 0 according as $x \in B$ or $x \notin B$. Thus the map $B \mapsto K_{B}$ is an injection. We shall use the following immediate proposition later.

Proposition 3.15. Let Ω be a non-empty, locally compact space, and let $\varphi, \psi \in \widetilde{\Omega}$. Then $\varphi \sim \psi$ if and only if

$$
\varphi \in K_{B} \Leftrightarrow \psi \in K_{B}
$$

for each $B \in \mathfrak{B}_{\Omega}$.
Note that the family $\left\{K_{B}: B \in \mathfrak{B}_{\Omega}\right\}$ is not a base for the topology of $\widetilde{\Omega}$.
Let $B \in \mathfrak{B}_{\Omega}$ and $\mu \in M(\Omega)$. Then $\kappa(\mu) \in M(\widetilde{\Omega})$, and

$$
\begin{equation*}
\kappa(\mu)\left(K_{B}\right)=\left\langle\chi_{K_{B}}, \kappa(\mu)\right\rangle=\left\langle\chi_{B}, \mu\right\rangle=\mu(B) . \tag{3.8}
\end{equation*}
$$

Let $\left\{B_{n}: n \in \mathbb{N}\right\}$ be a family in \mathfrak{B}_{Ω}, and set $B=\bigcup_{n \in \mathbb{N}} B_{n}$, so that $B \in \mathfrak{B}_{\Omega}$. The following example shows that, in general, it is not true that $K_{B}=\bigcup_{n \in \mathbb{N}} K_{B_{n}}$.
EXAMPLE 3.16. In the special case where $\Omega=S$ is a discrete space, we have $E=c_{0}(S)$ and $\widetilde{\Omega}=\beta S$, the Stone-Čech compactification of S, and hence $E^{\prime \prime}=C(\beta S)$. Further,

$$
B^{b}(S)=\ell^{\infty}(S)=E^{\prime \prime}
$$

The above map π takes S^{*} to the point ∞ of Ω_{∞}. The fibre $S_{\{\infty\}}$ is not open in βS.
Let $S=\mathbb{N}$. Then we see that, for each $n \in \mathbb{N}$, we have $K_{\{n\}}=\{n\}$ and $K_{\mathbb{N}}=\beta \mathbb{N}$, whereas $\bigcup_{n \in \mathbb{N}} K_{\{n\}}=\mathbb{N}$. Note that, by Phillips' Lemma [1. §2.5], there is no continuous projection of $C(\beta \mathbb{N})=\ell^{\infty}$ onto c_{0}.
Proposition 3.17. Let Ω be a non-empty, locally compact space, and let $\left\{B_{n}: n \in \mathbb{N}\right\}$ be a family in \mathfrak{B}_{Ω}. Set $B=\bigcup_{n \in \mathbb{N}} B_{n}$. Then

$$
\begin{equation*}
K_{B} \backslash \bigcup\left\{K_{B_{n}}: n \in \mathbb{N}\right\} \in \mathcal{K}_{\Omega} \tag{3.9}
\end{equation*}
$$

and so $K_{B}=\overline{\bigcup\left\{K_{B_{n}}: n \in \mathbb{N}\right\}}$.
Proof. Set $K=K_{B} \backslash \bigcup_{n \in \mathbb{N}} K_{B_{n}}$.
Each set $K_{B_{n}}$ is clopen, and so K is a closed subset of $\widetilde{\Omega}$. Hence K is compact in $\widetilde{\Omega}$.
To show that int $K=\emptyset$, we may suppose that $B_{n} \subset B_{n+1}(n \in \mathbb{N})$. For each measure $\mu \in M(\Omega)^{+}$, we have $\mu\left(B_{n}\right) \rightarrow \mu(B)$ by the monotone convergence theorem, and so, by (3.8), $\kappa(\mu)\left(K_{B_{n}}\right) \rightarrow \kappa(\mu)\left(K_{B}\right)$ as $n \rightarrow \infty$.

Assume towards a contradiction that $\operatorname{int} K \neq \emptyset$. Since the space $\widetilde{\Omega}$ is extremely disconnected, there is a non-empty, clopen subset W of $\widetilde{\Omega}$ with $W \subset K$; we have $\chi_{W} \in E^{\prime \prime}$. It follows that $W \subset K_{B} \backslash K_{B_{n}}(n \in \mathbb{N})$, and so, for each $\mu \in M(\Omega)^{+}$, we have

$$
0 \leq \kappa(\mu)(W) \leq \kappa(\mu)\left(K_{B} \backslash K_{B_{n}}\right)=\kappa(\mu)\left(K_{B}\right)-\kappa(\mu)\left(K_{B_{n}}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Thus

$$
\left\langle\chi_{W}, \mu\right\rangle=\left\langle\chi_{W}, \kappa(\mu)\right\rangle=\kappa(\mu)(W)=0 .
$$

This holds for each $\mu \in M(\Omega)^{+}$, and hence for each $\mu \in M(\Omega)$, and so $\chi_{W}=0$ in $E^{\prime \prime}=C(\widetilde{\Omega})$. Hence $W=\emptyset$, and this is the required contradiction.

Let $x \in \Omega$. What is the set $K_{\{x\}}$? It is easy to see that

$$
\{x\} \subset K_{\{x\}} \subset \Omega_{\{x\}} .
$$

We claim that $K_{\{x\}} \cap \bar{\Omega}=\{x\}$. For this, we may suppose that x is not isolated in Ω, for otherwise the claim follows trivially. Now take $\varphi \in \bar{\Omega} \backslash\{x\}$. There is a net $\left(x_{\alpha}: \alpha \in A\right)$ in
Ω with $x_{\alpha} \rightarrow \varphi$ in $(\widetilde{\Omega}, \sigma)$. The set $\left\{\alpha \in A: x_{\alpha}=x\right\}$ cannot be cofinal in the directed set A (or otherwise $\varphi=x$), and so we may suppose that $\left(x_{\alpha}\right) \subset \Omega \backslash\{x\}$. Since $\kappa_{E}\left(\chi_{\{x\}}\right) \in C(\widetilde{\Omega})$ and $\kappa_{E}\left(\chi_{\{x\}}\right)\left(x_{\alpha}\right)=0$ for each α, we have $\kappa_{E}\left(\chi_{\{x\}}\right)(\varphi)=0$. Thus $\varphi \notin K_{\{x\}}$. This shows that $K_{\{x\}} \cap \bar{\Omega}=\{x\}$, as claimed. We shall see later that $K_{\{x\}}=\{x\}$.
Proposition 3.18. Let Ω be a non-empty, locally compact space. Then

$$
\pi\left(K_{B}\right)=\bar{B}^{\tau} \quad \text { and } \quad K_{B} \supset \pi^{-1}(\operatorname{int} B)
$$

for each $B \in \mathfrak{B}$.
Proof. Clearly $B \subset \pi\left(K_{B}\right)$, and so $\bar{B}^{\tau} \subset \pi\left(K_{B}\right)$.
For the converse, suppose that $x \in \Omega \backslash \bar{B}^{\tau}$. Then there exists $\lambda \in C_{0}(\Omega)_{\mathbb{R}}$ with $\lambda \mid B=1$ and $\lambda(x)=0$. We have $\chi_{B} \leq \lambda$ in $E_{\mathbb{R}}$, and so $\kappa_{E}\left(\chi_{B}\right) \leq \kappa_{E}(\lambda)$ in $\left(E^{\prime \prime}\right)_{\mathbb{R}}$. The function $\kappa_{E}(\lambda)$ takes the constant value 0 on the fibre $\Omega_{\{x\}}$, and so $K_{B} \cap \Omega_{\{x\}}=\emptyset$. Thus $x \notin \pi\left(K_{B}\right)$. This shows that $\pi\left(K_{B}\right)=\bar{B}^{\tau}$.

Set $U=\operatorname{int} B$, and take $x \in U$. Then there exists $\lambda \in C_{0}(\Omega)_{\mathbb{R}}$ such that $\lambda(x)=1$ and $\lambda \leq \chi_{U}$ in $E_{\mathbb{R}}$, and so $\kappa_{E}(\lambda) \leq \kappa_{E}\left(\chi_{U}\right)$ in $\left(E^{\prime \prime}\right)_{\mathbb{R}}$. The function $\kappa_{E}(\lambda)$ takes the constant value 1 on the fibre $\Omega_{\{x\}}$, and so $K_{B} \supset \Omega_{\{x\}}$.

A bounded linear operator. Let Ω_{1} and Ω_{2} be two compact spaces, and suppose that $\eta: \Omega_{1} \rightarrow \Omega_{2}$ is a continuous map. Then we have defined a continuous $*$-homomorphism

$$
\theta=\eta^{\circ}: C\left(\Omega_{2}\right) \rightarrow C\left(\Omega_{1}\right)
$$

We now have the dual map

$$
\theta^{\prime}: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)
$$

the map θ^{\prime} is a homomorphism of Banach lattices, and it is an isometric isomorphism whenever η is a homeomorphism. More generally, let Ω_{1} and Ω_{2} be two non-empty, locally compact spaces, and let $\eta: \Omega_{1} \rightarrow \Omega_{2}$ be a continuous map. Then (cf. (2.4)) the continuous *-homomorphism

$$
\begin{equation*}
\eta^{\circ}: \lambda \mapsto \lambda \circ \eta, \quad C_{0}\left(\Omega_{2}\right) \rightarrow C^{b}\left(\Omega_{1}\right), \tag{3.10}
\end{equation*}
$$

may not have its range contained in $C_{0}\left(\Omega_{1}\right)$. However, suppose that $\eta: \Omega_{1} \rightarrow \Omega_{2}$ is a Borel map, so that $\lambda \circ \eta \in B^{b}\left(\Omega_{1}\right)$, and, for each $\mu \in M\left(\Omega_{1}\right)$, set

$$
\nu(\lambda)=\int_{\Omega_{1}}(\lambda \circ \eta) \mathrm{d} \mu \quad\left(\lambda \in C_{0}\left(\Omega_{2}\right)\right)
$$

It is clear that ν is a bounded linear functional on $C_{0}\left(\Omega_{2}\right)$, and so we may regard ν as a measure on Ω_{2}; we set

$$
\bar{\eta}(\mu)=\nu \quad\left(\mu \in M\left(\Omega_{1}\right)\right)
$$

so that $\bar{\eta}: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)$ is a bounded linear operator with $\|\bar{\eta}\|=1$ such that

$$
\begin{equation*}
\int_{\Omega_{2}} \lambda \mathrm{~d} \bar{\eta}(\mu)=\int_{\Omega_{1}}(\lambda \circ \eta) \mathrm{d} \mu \quad\left(\lambda \in C_{0}\left(\Omega_{2}\right), \mu \in M\left(\Omega_{1}\right)\right) . \tag{3.11}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\bar{\eta}(\mu)(B)=\mu\left(\eta^{-1}(B)\right) \quad\left(B \in \mathfrak{B}_{\Omega_{2}}, \mu \in M\left(\Omega_{1}\right)\right) \tag{3.12}
\end{equation*}
$$

In particular, $\bar{\eta}\left(\delta_{x}\right)=\delta_{\eta(x)}\left(x \in \Omega_{1}\right)$, so that $\bar{\eta} \mid \Omega_{1}=\eta$.

Suppose that $\mu_{1}, \mu_{2} \in M\left(\Omega_{1}\right)^{+}$with $\mu_{1} \ll \mu_{2}$. Then $\bar{\eta}\left(\mu_{1}\right), \bar{\eta}\left(\mu_{2}\right) \in M\left(\Omega_{2}\right)^{+}$, and it is clear from 3.12 that we have $\bar{\eta}\left(\mu_{1}\right) \ll \bar{\eta}\left(\mu_{2}\right)$. It follows that

$$
\begin{equation*}
\bar{\eta}\left(L^{1}\left(\Omega_{1}, \mu\right)\right) \subset L^{1}\left(\Omega_{2}, \bar{\eta}(\mu)\right) . \tag{3.13}
\end{equation*}
$$

We shall make further remarks about the maps $\bar{\eta}$ and $\bar{\eta}^{\prime}$ in the next chapter.
Conversely, suppose that $T: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)$ is an isometric Banach lattice isomorphism. Then $T \mid$ ex $P\left(\Omega_{1}\right)$ is a bijection from Ω_{1} to Ω_{2}, and so $\left|\Omega_{1}\right|=\left|\Omega_{2}\right|$.

Proposition 3.19. Let Ω_{1} and Ω_{2} be two non-empty, locally compact spaces, and let $\eta: \Omega_{1} \rightarrow \Omega_{2}$ be a Borel map. Suppose that η is an injection. Then

$$
\|\bar{\eta}(\mu)\|=\|\mu\| \quad\left(\mu \in M\left(\Omega_{1}\right)\right) .
$$

In particular, $\bar{\eta}: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)$ is an injection.
Proof. Take $\mu \in M\left(\Omega_{1}\right)$ with $\|\mu\|=1$, say $\mu=\mu_{1}-\mu_{2}+\mathrm{i}\left(\mu_{3}-\mu_{4}\right)$, where $\mu_{j} \in M\left(\Omega_{1}\right)^{+}$ for $j=1,2,3,4$. Set $\nu_{j}=\bar{\eta}\left(\mu_{j}\right) \in M\left(\Omega_{2}\right)^{+}$for $j=1,2,3,4$, and set

$$
\nu=\bar{\eta}(\mu)=\nu_{1}-\nu_{2}+\mathrm{i}\left(\nu_{3}-\nu_{4}\right) .
$$

Take $\varepsilon>0$. For $j=1,2,3,4$, there exist Borel sets B_{j} in Ω_{2} such that $\nu_{j}(B) \geq 0$ for each Borel subset B of B_{j} and

$$
\sum_{j=1}^{4} \nu_{j}\left(B_{j}\right)>\|\nu\|-\varepsilon
$$

Set $C_{j}=\eta^{-1}\left(B_{j}\right)$, a Borel set in Ω_{1}, so that $\mu_{j}\left(C_{j}\right)=\nu_{j}\left(B_{j}\right)$.
Since η is an injection, the sets $C_{1}, C_{2}, C_{3}, C_{4}$ are pairwise disjoint, and so

$$
\|\mu\| \geq \sum_{j=1}^{4} \mu_{j}\left(C_{j}\right)=\sum_{j=1}^{4} \nu_{j}\left(B_{j}\right)>\|\nu\|-\varepsilon
$$

This holds for each $\varepsilon>0$, and so $\|\mu\|=\|\nu\|$.
Corollary 3.20. Let Ω_{1} and Ω_{2} be two uncountable, compact, metrizable spaces. Then the spaces $M\left(\Omega_{1}\right)$ and $M\left(\Omega_{2}\right)$ are isometrically isomorphic as Banach spaces and lattices.

Proof. By Proposition 2.2 (ii), there is a map $\eta: \Omega_{1} \rightarrow \Omega_{2}$ which is a Borel isomorphism. As above, we define $\bar{\eta}: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)$. By Proposition 3.19 $\bar{\eta}$ is an isometric isomorphism of Banach spaces. Clearly $\bar{\eta}$ preserves the lattice operations.

However $\bar{\eta}$ is not necessarily a surjection even when η is a continuous surjection: for a counter-example, let $\Omega_{1}=\mathbb{I}_{d}$ and $\Omega_{2}=\mathbb{I}$, and take η to be the identity map. We shall give an example for which $\bar{\eta}$ is a surjection in Proposition 5.2 (i). In the case where Ω_{1} is compact and η is a surjection, $\bar{\eta}$ is obviously a surjection.

4. The topological structure of $\widetilde{\Omega}$

Submodules of $M(\Omega)$ and clopen subspaces of $\widetilde{\Omega}$. Let Ω be a non-empty, locally compact space, and again set $E=C_{0}(\Omega)$. We are identifying $M(\Omega)$ as the dual module E^{\prime} of E.

Let X be a Banach E-submodule of $M(\Omega)$, and let $j_{X}: X \rightarrow M(\Omega)$ denote the injection. By Proposition 1.17, X° is a weak-* closed ideal in $C(\widetilde{\Omega})$, and so the hull of X° is a closed subset, say L, of $\widetilde{\Omega}$. The ideal X° has a bounded approximate identity, say $\left(\Lambda_{\alpha}\right)$, in $X_{[1]}^{\circ}$; since $C(\widetilde{\Omega})_{[1]}$ is weak-* compact and X° is weak-* closed, $\left(\Lambda_{\alpha}\right)$ has a limit, say Λ, in $X_{[1]}^{\circ}$. Certainly $\Lambda(\varphi)=1(\varphi \in L)$, and so $\Lambda=\chi_{L}$. This shows that L is a clopen subset of $\widetilde{\Omega}$. Set $\widetilde{\Omega}_{X}=\widetilde{\Omega} \backslash L$, so that $\widetilde{\Omega}_{X}$ is also a clopen subset of $\widetilde{\Omega}$. Clearly we can identify X^{\prime} with the commutative C^{*}-algebra $C\left(\widetilde{\Omega}_{X}\right)$, and so $\widetilde{\Omega}_{X}$ is the character space of X^{\prime}. In this way, j_{X}^{\prime} is just the restriction map from $C(\widetilde{\Omega})$ to $C\left(\widetilde{\Omega}_{X}\right)$; in particular, $j_{X}^{\prime}\left(1_{\widetilde{\Omega}}\right)$ is the characteristic function of $\widetilde{\Omega}_{X}$.

Conversely, let L be a clopen subset of $\widetilde{\Omega}$, so that $\chi_{L} \in C(\widetilde{\Omega})$, and define

$$
X_{L}=\left\{\chi_{L} \cdot \mu: \mu \in M(\Omega)\right\}
$$

Then X_{L} is a $\|\cdot\|$-closed E-submodule of $M(\Omega)$, and clearly $\widetilde{\Omega}_{X_{L}}=L$. We have established the following result; it is essentially a special case of [112, Theorem III.2.7]. The collections of $\|\cdot\|$-closed submodules of $M(\Omega)$ and of clopen subsets of $\widetilde{\Omega}$ are both ordered by inclusion.
Proposition 4.1. Let Ω be a non-empty, locally compact space. Then the above correspondence is an isotonic bijection between the collections of $\|\cdot\|$-closed submodules of $M(\Omega)$ and of clopen subsets of the hyper-Stonean envelope $\widetilde{\Omega}$.

Further, for each Banach submodule X of $M(\Omega)$, there is a unique Banach submodule Y of $M(\Omega)$ such that $M(\Omega)=X \oplus Y$.
Corollary 4.2. Let $\widetilde{\Omega}$ be a non-empty, locally compact space, and let $\varphi \in \widetilde{\Omega}$. Then φ is an isolated point of $\widetilde{\Omega}$ if and only if $\varphi \in \Omega$.
Proof. Let $x \in \Omega$. Then $X=\mathbb{C} \delta_{x}$ is a one-dimensional submodule of $M(\Omega)$, and so $\widetilde{\Omega}_{X}$ is a singleton. Since $\varepsilon_{x} \in X^{\prime}$, we have $\widetilde{\Omega}_{X}=\{x\}$, and so x is an isolated point in $\widetilde{\Omega}$.

Conversely, suppose that φ is an isolated point in $\widetilde{\Omega}$, and let X be the submodule of $M(\Omega)$ corresponding to the clopen subset $\{\varphi\}$ of $\widetilde{\Omega}$. Then the space $X^{\prime}=C(\{\varphi\})$ is one-dimensional, and so X is one-dimensional. Let $\mu \in X \backslash\{0\}$. Assume towards a contradiction that $\operatorname{supp} \mu$ contains two distinct points x and y, and take $\lambda \in C(\Omega)$ with $\lambda(x)=1$ and $\lambda(y)=0$. Then $\lambda \mu \in X$, but $\lambda \mu \notin \mathbb{C} \mu$, a contradiction. Thus supp $\mu=\{x\}$ for some $x \in \Omega$, and hence $\mu=\delta_{x}$ and $\varphi=x$.

Recovery of Ω from $\widetilde{\Omega}$. Let Ω be a non-empty, locally compact space. Corollary 4.2 shows that we can recover the set Ω from the hyper-Stonean envelope $\widetilde{\Omega}$; indeed, Ω was identified with the set of isolated points of $\widetilde{\Omega}$. Thus, if Ω_{1} and Ω_{2} are locally compact spaces such that $\widetilde{\Omega}_{1}$ and $\widetilde{\Omega}_{2}$ are homeomorphic, then necessarily we have $\left|\Omega_{1}\right|=\left|\Omega_{2}\right|$. However, we shall now show that we cannot recover the topology τ on a compact space Ω from its hyper-Stonean envelope; indeed, we cannot even recover $C(\Omega)$ as a Banach space, even when we restrict ourselves to countable, compact spaces.

For example, set $\Omega=\mathbb{N}$. Then $\widetilde{\Omega}$ is the space $\beta \mathbb{N}$, and so $\widetilde{\Omega}$ is homeomorphic to $\beta \mathbb{N}$.
Now let (Ω, τ) be any countable, locally compact space, and take $x \in \Omega$. Since $\iota(x)$ is an isolated point in $\widetilde{\Omega}$, we may say that $\delta_{x} \in C(\widetilde{\Omega})$; further $\delta_{x} \cdot \delta_{y}=0$ whenever $x, y \in \Omega$ with $x \neq y$, and $\delta_{x} \cdot \delta_{x}=\delta_{x}$ whenever $x \in \Omega$. Set $L=\operatorname{lin}\left\{\delta_{x}: x \in \Omega\right\} \subset C(\widetilde{\Omega})$. Then the product of two elements of L is determined independently of the topology τ. We claim that L is weak-* dense in $C(\widetilde{\Omega})$. Indeed, assume towards a contradiction that L is not weak-* dense in $C(\widetilde{\Omega})$. Then there exists a non-zero, weak-* continuous element $\mu \in M(\widetilde{\Omega})$ such that $\mu \mid L=0$. By Proposition 1.1 (ii), it follows that $\mu \in M(\Omega)$. But $M(\Omega)=\ell^{1}(\Omega)$ because Ω is countable, and $\left\langle\delta_{x}, \mu\right\rangle=0(x \in \Omega)$, whence $\mu=0$, the required contradiction. Hence L is weak-* dense in $C(\widetilde{\Omega})$, and so the structure of $C(\widetilde{\Omega})$ is determined as a Banach algebra independently of the topology τ. We have established the following result.

Theorem 4.3. Let (Ω, τ) be a countable, locally compact space. Then $\widetilde{\Omega}$ is homeomorphic to $\beta \mathbb{N}$ with its usual topology.

It is certainly not the case that any two countable, compact spaces are homeomorphic. For example, consider the compact spaces $\omega+1,2 \cdot \omega+1$, and $\omega^{\omega}+1$, where ω is the first infinite ordinal, and the spaces are taken with the order topology; these three spaces are countable and compact, but no two of them are mutually homeomorphic. In particular, there are three distinct topologies on each infinite, countable set rendering it a compact space. (In fact, there are at least \aleph_{1} such topologies.) The two Banach spaces $C(\omega+1)$ and $C(2 \cdot \omega+1)$ are linearly homeomorphic, but the Banach spaces $C(\omega+1)$ and $C\left(\omega^{\omega}+1\right)$ are not linearly homeomorphic. For these remarks on Banach spaces, see [106, Notes 2.5.14], for example.

Partitions of $\widetilde{\Omega}$. Let Ω be a non-empty, locally compact space.
We denote by

$$
j_{d}: M_{d}(\Omega) \rightarrow M(\Omega) \quad \text { and } \quad j_{c}: M_{c}(\Omega) \rightarrow M(\Omega)
$$

the natural injections. Clearly $M_{d}(\Omega)$ and $M_{c}(\Omega)$ are both closed E-submodules of $M(\Omega)$, and j_{d} and j_{c} are E-module homomorphisms. We recall that $M_{d}(\Omega)$ is $\sigma\left(E^{\prime}, E\right)$-dense in $M(\Omega)$. Thus, by Propositions 1.17 and 4.1, $C(\widetilde{\Omega})$ is the direct sum of two closed ideals,

$$
j_{d}^{\prime}(C(\widetilde{\Omega}))=M_{d}(\Omega)^{\prime}=\ell^{\infty}(\Omega) \quad \text { and } \quad j_{c}^{\prime}(C(\widetilde{\Omega}))=M_{c}(\Omega)^{\prime}
$$

The character spaces of these two ideals are denoted by $\widetilde{\Omega}_{d}$ and $\widetilde{\Omega}_{c}$, respectively, so that $\left\{\widetilde{\Omega}_{d}, \widetilde{\Omega}_{c}\right\}$ is partition of $\widetilde{\Omega}$ into clopen sets. We have $\Omega \subset \widetilde{\Omega}_{d}$. Take $\Lambda \in C(\widetilde{\Omega})$ with $\Lambda \mid \Omega=0$. Then $\Lambda \mid M_{d}(\Omega)=0$, and so $\varphi(\Lambda)=0\left(\varphi \in \widetilde{\Omega}_{d}\right)$. Thus Ω is dense in $\widetilde{\Omega}_{d}$, and
hence $\bar{\Omega}=\widetilde{\Omega}_{d}$. Clearly $\widetilde{\Omega}_{d}$ can be identified with $\beta \Omega_{d}$, the Stone-Čech compactification of Ω with the discrete topology. We now say that

$$
\left\{\bar{\Omega}, \widetilde{\Omega}_{c}\right\}=\left\{\beta \Omega_{d}, \widetilde{\Omega}_{c}\right\}
$$

is a partition of $\widetilde{\Omega}$ into clopen sets.
Let $\lambda \in B^{b}(\Omega)$ and $\mu \in M(\Omega)$. It is clear that

$$
\left\langle\kappa_{E}(\lambda) \mid \widetilde{\Omega}_{d}, \mu\right\rangle=\left\langle\kappa_{E}(\lambda), \mu_{d}\right\rangle, \quad\left\langle\kappa_{E}(\lambda) \mid \widetilde{\Omega}_{c}, \mu\right\rangle=\left\langle\kappa_{E}(\lambda), \mu_{c}\right\rangle
$$

Thus $\kappa_{E}(\lambda) \mid \widetilde{\Omega}_{d}=j_{d}(\lambda)$; we caution that $\kappa_{E}(\lambda)=j_{d}(\lambda)$ for each $\lambda \in B^{b}(\Omega)$ only if Ω is discrete.

For each $x \in \Omega$, we have $\left\langle\kappa_{E}\left(\chi_{\{x\}}\right), \mu_{c}\right\rangle=0$, and so $\kappa_{E}\left(\chi_{\{x\}}\right)=\kappa_{E}\left(\chi_{\{x\}}\right) \mid \widetilde{\Omega}_{d}$ and $K_{\{x\}} \subset \bar{\Omega}$. Hence we can now see that $K_{\{x\}}=\{x\}$; this again shows that the set $\{x\}$ is open in $(\widetilde{\Omega}, \sigma)$ for each $x \in \Omega$, and so Ω is open in $\widetilde{\Omega}$. In particular, $\kappa_{E}\left(\chi_{\{x\}}\right)=\chi_{\{x\}}$, and so the equivalence class $[x]$ is just the singleton $\{x\}$.

Let μ be a continuous positive measure on Ω such that μ is either σ-finite or the left Haar measure on a locally compact group. Then, as in 2.8),

$$
M(\Omega)=\ell^{1}(\Omega) \oplus_{1} L^{1}(\Omega, \mu) \oplus_{1} \overline{M_{s}(\Omega, \mu)}
$$

Each of the three spaces $M_{d}(\Omega, \mu), M_{a c}(\Omega, \mu)$, and $M_{s}(\Omega, \mu)$ is a closed, complemented E-submodule of $M(\Omega)$, and so is an introverted space; we obtain a further partition of $\widetilde{\Omega}$ into three corresponding clopen subsets. In this case, we have

$$
M(\Omega)^{\prime}=\ell^{\infty}(\Omega) \oplus_{1} L^{\infty}(\Omega, \mu) \oplus_{1} M_{s}(\Omega, \mu)^{\prime}
$$

The character space of the C^{*}-algebra $L^{\infty}(\Omega, \mu)$ has already been called Φ_{μ}; the character space of $M_{s}(\Omega, \mu)^{\prime}$ is denoted by $\Phi_{s, \mu}$, and so we have a partition

$$
\left\{\beta \Omega_{d}, \Phi_{\mu}, \Phi_{s, \mu}\right\}
$$

of $\widetilde{\Omega}$ into clopen subsets; thus

$$
C(\widetilde{\Omega})=C\left(\beta \Omega_{d}\right) \oplus_{\infty} C\left(\Phi_{\mu}\right) \oplus_{\infty} C\left(\Phi_{s, \mu}\right)
$$

Let Ω be a non-empty, locally compact space, and let μ be a positive measure on Ω. We recall that the map $\pi_{\mu}: \Phi_{\mu} \rightarrow \operatorname{supp} \mu \cup\{\infty\}$ was defined in equation 2.12.
Proposition 4.4. Let Ω be a non-empty, locally compact space, and let μ be a positive measure on Ω. Then:
(i) $\pi \mid \Phi_{\mu}=\pi_{\mu}$;
(ii) $\operatorname{supp} \mu \subset \pi\left(\Phi_{\mu}\right) \subset(\operatorname{supp} \mu) \cup\{\infty\}$.

Proof. (i) Take $\varphi \in \Phi_{\mu}$, and set $\pi(\varphi)=x \in \Omega_{\infty}$. For each $U \in \mathcal{N}_{x}$, there is an element $\lambda \in C_{0}(\Omega)^{\#}$ and $V \in \mathcal{N}_{x}$ with $\lambda(y)=1(y \in V)$ and $0 \leq \lambda \leq \chi_{U}$. It follows that

$$
\varphi\left(\kappa_{E}\left(\chi_{U}\right)\right) \geq \varphi\left(\kappa_{E}(\lambda)\right)=\mathcal{G}_{\mu}(\lambda)(\varphi)=\lim _{B \rightarrow \varphi} \frac{1}{\mu(B)} \int_{B} \lambda \mathrm{~d} \mu
$$

by 2.11). In the above limit, we may suppose that $B \subset V$, and so $\varphi\left(\kappa_{E}\left(\chi_{U}\right)\right) \geq 1=\varepsilon_{x}(\lambda)$. This shows that $U \in \varphi$, and hence we have $\mathcal{N}_{x} \subset \varphi$. By the definition of x, we have $\pi_{\mu}(\varphi)=x$, and so $\pi_{\mu}(\varphi)=\pi(\varphi)$.
(ii) We know that $\pi\left(\Phi_{\mu}\right) \subset(\operatorname{supp} \mu) \cup\{\infty\}$.

Now set $U=\Omega \backslash \operatorname{supp} \mu$; we may suppose that $U \neq \emptyset$. By Proposition 3.18, we have $K_{U} \supset \pi^{-1}(U)$. Also $\mu(U)=0$, and so $K_{U} \cap \Phi_{\mu}=\emptyset$. Thus $\pi^{-1}(U) \cap \Phi_{\mu}=\emptyset$, and so $\pi\left(\Phi_{\mu}\right) \cap U=\emptyset$. This shows that $\operatorname{supp} \mu \subset \pi\left(\Phi_{\mu}\right)$.

Again let μ be a positive measure on Ω. Take $\Lambda \in C(\widetilde{\Omega})=M(\Omega)^{\prime}$, and set

$$
\Lambda_{\mu}=\Lambda \mid L^{1}(\Omega, \mu) \in L^{\infty}(\Omega, \mu)
$$

Then, following our identifications, we have

$$
\begin{equation*}
\mathcal{G}_{\mu}\left(\Lambda_{\mu}\right)=\Lambda \mid \Phi_{\mu} . \tag{4.1}
\end{equation*}
$$

It follows that the notation $K_{B} \cap \Phi_{\mu}$ for $B \in \mathfrak{B}_{\Omega}$ is consistent with that used earlier in (2.10.

We identify $L^{1}(\Omega, \mu)^{\prime \prime}$ with $M\left(\Phi_{\mu}\right)$. It follows from Theorem 3.8 that the canonical image of $L^{1}(\Omega, \mu)$ in $M\left(\Phi_{\mu}\right)$ is given by

$$
\begin{equation*}
L^{1}(\Omega, \mu)=\left\{\mathrm{M} \in M\left(\Phi_{\mu}\right): \mathrm{M}(K)=0\left(K \in \mathcal{K}_{\Phi_{\mu}}\right)\right\} \tag{4.2}
\end{equation*}
$$

Let $\mu, \nu \in M(\Omega)^{+}$. Then it is clear that $\Phi_{\mu} \subset \Phi_{\nu}$ if and only if $\mu \ll \nu$, that $\Phi_{\mu} \cap \Phi_{\nu}=\emptyset$ if and only if $\mu \perp \nu$, that $\Phi_{\mu+\nu}=\Phi_{\mu} \cup \Phi_{\nu}$, and that $\Phi_{\mu \wedge \nu}=\Phi_{\mu} \cap \Phi_{\nu}$. These remarks are also contained in [40, §4]. Let $\left(\mu_{n}\right)$ be a sequence of measures in $M(\Omega)^{+}$, and set $\mu=\sum_{n=1}^{\infty} \mu_{n} / 2^{n}$. Then $\mu \in M(\Omega)^{+}$, and

$$
\begin{equation*}
\Phi_{\mu}=\overline{\bigcup\left\{\Phi_{\mu_{n}}: n \in \mathbb{N}\right\}} \tag{4.3}
\end{equation*}
$$

As in Definition 3.9, we have an embedding $\kappa_{E}: B^{b}(\Omega) \rightarrow C(\widetilde{\Omega})$. Let μ be a positive measure on Ω. Then we have a restriction map

$$
\rho_{\mu}: C(\widetilde{\Omega}) \rightarrow C\left(\Phi_{\mu}\right)
$$

On the other hand, there is a quotient map

$$
q_{\mu}: B^{b}(\Omega) \rightarrow L^{\infty}(\Omega, \mu),
$$

formed by identifying $\lambda \in B^{b}(\Omega)$ with its equivalence class in $L^{\infty}(\Omega, \mu)$. (In fact, every equivalence class in $L^{\infty}(\Omega, \mu)$ contains a representative in the second Baire class; see [65, (4.1.3)].) We have

$$
\left\langle q_{\mu}(\lambda), f\right\rangle=\int_{\Omega} f \lambda \mathrm{~d} \mu=\left\langle\kappa_{E}(\lambda), f \mu\right\rangle \quad\left(f \in L^{1}(\Omega, \mu)\right) .
$$

Hence, by (4.1), we have

$$
\mathcal{G}_{\mu}\left(q_{\mu}(\lambda)\right)=\rho_{\mu}\left(\kappa_{E}(\lambda)\right) \quad\left(\lambda \in B^{b}(\Omega)\right)
$$

whence $\mathcal{G}_{\mu} \circ q_{\mu}=\rho_{\mu} \circ \kappa_{E}$; this shows that the diagram

is commutative, and that $\kappa_{E}\left(B^{b}(\Omega)\right) \mid \Phi_{\mu}=C\left(\Phi_{\mu}\right)$.

Definition 4.5. Let Ω be a non-empty, locally compact space. Then

$$
U_{\Omega}=\bigcup\left\{\Phi_{\mu}: \mu \in M(\Omega)^{+}\right\} .
$$

Clearly a point $\varphi \in U_{\Omega}$ belongs to Φ_{μ} if and only if $\varphi(\lambda)=0$ for each $\lambda \in B^{b}(\Omega)$ such that

$$
\int_{\Omega}|\lambda| \mathrm{d} \mu=0 .
$$

In the case where Ω is discrete, the corresponding set U_{Ω} is the set of ultrafilters on Ω that contain a countable set; for example, $U_{\mathbb{N}}=\beta \mathbb{N}$.

Proposition 4.6. Let Ω be a non-empty, locally compact space. Then U_{Ω} is a dense, open subset of $\widetilde{\Omega}$ and $\beta U_{\Omega}=\widetilde{\Omega}$. Further, the space $\kappa_{E}\left(B^{b}(\Omega)\right)$ separates the points of U_{Ω}.

Proof. Clearly U_{Ω} is an open subset of $\widetilde{\Omega}$.
To show that U_{Ω} is dense in $\widetilde{\Omega}$, let $\Lambda \in C(\widetilde{\Omega})$ be such that $\Lambda \mid U_{\Omega}=0$. Then, for each $\mu \in M(\Omega)^{+}$, we see that $\Lambda \mid \Phi_{\mu}$, regarded as a linear functional on $L^{1}(\Omega, \mu)$, is zero, and so $\Lambda=0$. This implies that U_{Ω} is dense in $\widetilde{\Omega}$. Thus $\beta U_{\Omega}=\widetilde{\Omega}$.

Now take $\varphi, \psi \in U_{\Omega}$ with $\varphi \neq \psi$. Since $\Phi_{\mu+\nu}=\Phi_{\mu} \cup \Phi_{\nu}\left(\mu, \nu \in M(\Omega)^{+}\right)$, we may suppose that there exists $\mu \in M(\Omega)^{+}$such that $\varphi, \psi \in \Phi_{\mu}$. Further, since the map $\rho_{\mu} \circ \kappa_{E}: B^{b}(\Omega) \rightarrow C\left(\Phi_{\mu}\right)$ is an epimorphism, $\kappa_{E}\left(B^{b}(\Omega)\right)$ separates φ and ψ.

Corollary 4.7. Let Ω be a non-empty, locally compact space, let $x \in \Omega$, and let $N \in \mathcal{N}_{x}$. Then each $\psi \in \pi^{-1}(N)$ is in the weak $k *$ closure of the set

$$
\left\{\mu_{C}: \mu \in M(\Omega)^{+}, C \in \mathfrak{B}_{\mu}, C \subset N\right\} .
$$

Proof. Let $\psi \in \Omega_{\{x\}}$. By Proposition 4.6. it suffices to suppose that $\psi \in \pi^{-1}(N) \cap U_{\Omega}$, and hence that $\psi \in \Phi_{\mu}$ for some $\mu \in M(\Omega)^{+}$. Thus the result now follows from equation 2.11.

Suppose that Ω is not scattered. Then it is not true that the family $\left\{K_{B} \cap U_{\Omega}: B \in \mathfrak{B}\right\}$ forms a base for the topology of U_{Ω}. For take $\mu \in M(\Omega)^{+}$such that $\Phi_{\mu} \cap \Omega=\emptyset$. It cannot be that Φ_{μ} contains a set of the form $K_{B} \cap U_{\Omega}$ because $K_{B} \cap U_{\Omega} \cap \Omega=K_{B} \cap \Omega=B$ for any non-empty $B \in \mathfrak{B}$.

Let $\mathcal{F}=\left\{\nu_{i}: i \in I\right\}$ be a maximal singular family of positive measures on Ω, as in Chapter 2. The corresponding clopen subsets of $\widetilde{\Omega}$ are then called Φ_{i}. It follows from (2.9) that

$$
C(\widetilde{\Omega})=M(\Omega)^{\prime}=\bigoplus_{\infty}\left\{C\left(\Phi_{i}\right): i \in I\right\}
$$

Proposition 4.8. Let Ω be a non-empty, locally compact space, and let $\mathcal{F}=\left\{\nu_{i}: i \in I\right\}$ be a maximal singular family of positive measures on Ω. Then the family $\left\{\Phi_{i}: i \in I\right\}$ is pairwise disjoint, and $U_{\mathcal{F}}:=\bigcup\left\{\Omega_{i}: i \in I\right\}$ is a dense, open subset of $\widetilde{\Omega}$ with $\beta U_{\mathcal{F}}=\widetilde{\Omega}$.

Proof. This is essentially the same as the proof of Proposition 4.6.
In the case where Ω is discrete, so that \mathcal{F} is the collection of point masses, we have $U_{\mathcal{F}}=\Omega \subset \beta \Omega$.

Proposition 4.9. Let Ω be a non-empty, locally compact space.
(i) Let $\varphi \in \widetilde{\Omega}$. Then $\varphi \in U_{\Omega}$ if and only if φ has a basis of clopen neighbourhoods such that each set in the basis satisfies CCC on clopen subsets.
(ii) Let L be a clopen subset of $\widetilde{\Omega}$ that satisfies CCC on clopen subsets. Then there is a measure $\mu \in M(\Omega)^{+}$such that $L=\Phi_{\mu}$.

Proof. Let $\mathcal{F}=\left\{\nu_{i}: i \in I\right\}$ be a maximal singular family of measures in $M(\Omega)^{+}$, and let Φ_{i} be as above for $i \in I$; we may suppose that $\left\|\nu_{i}\right\|=1(i \in I)$.
(i) Suppose that $\varphi \in \Phi_{\mu}$, where $\mu \in M(\Omega)^{+}$. Then φ has a neighbourhood basis of clopen sets, and each set in this basis satisfies CCC on clopen subsets by Proposition 2.15 (iii).

Suppose that $\varphi \notin U_{\Omega}$, and let V be a clopen neighbourhood of φ. By equation 4.3), the set $\left\{i \in I: V \cap \Phi_{i} \neq \emptyset\right\}$ is not countable, and so V does not satisfy CCC on clopen subsets.
(ii) Clearly $\left\{\Phi_{i} \cap L: i \in I\right\}$ is a pairwise disjoint family of clopen subsets, and so, by hypothesis, there is a countable subset J of I such that $\Phi_{i} \cap L \neq \emptyset$ if and only if $i \in J$. Set

$$
V=\bigcup\left\{\Phi_{i} \cap L: i \in J\right\} \quad \text { and } \quad F=\bar{V} .
$$

Then V is open in L, and F is a clopen subset of L because L is a Stonean space. The set $L \backslash F$ is a clopen subset of $\widetilde{\Omega}$ such that $(L \backslash F) \cap \Phi_{i}=\emptyset(i \in I)$. By Proposition 4.8, $\bigcup\left\{\Phi_{i}: i \in I\right\}$ is dense in $\widetilde{\Omega}$, and so $L \backslash F=\emptyset$. By 4.3), there exists $\mu \in M(\Omega)^{+}$such that $L=\Phi_{\mu}$.

Proposition 4.10. Let Ω be a non-empty, locally compact space, and let \mathcal{F}_{c} and \mathcal{G}_{c} be two maximal singular families of positive, continuous measures on Ω. Then $\left|\mathcal{F}_{c}\right|=\left|\mathcal{G}_{c}\right|$.
Proof. Suppose that $\mathcal{F}_{c}=\left\{\mu_{i}: i \in I\right\}$ and $\mathcal{G}_{c}=\left\{\nu_{j}: j \in J\right\}$, where $\mu_{i}, \nu_{j} \in M_{c}(\Omega)^{+}$. We claim that $|I|=|J|$.

We may suppose that I and J are infinite.
Assume towards a contradiction that $|I|<|J|$. For each $i \in I$, consider the set

$$
H_{i}=\left\{j \in J: \Phi_{\nu_{j}} \cap \Phi_{\mu_{i}} \neq \emptyset\right\} .
$$

By Proposition 2.15 (iii), $\Phi_{\mu_{i}}$ satisfies CCC, and so it follows that $\left|H_{i}\right| \leq \aleph_{0}$. Also we have $\bigcup\left\{H_{i}: i \in I\right\}=J$ because \mathcal{F}_{c} is a maximal family. Thus $|J| \leq \aleph_{0} \cdot|I|=|I|$, a contradiction.

We conclude that $|I|=|J|$.
A homomorphism. Let Ω_{1} and Ω_{2} be two non-empty, locally compact spaces, and then take $\eta: \Omega_{1} \rightarrow \Omega_{2}$ to be a continuous map; we have defined in (3.11) the bounded linear operator $\bar{\eta}^{\prime \prime}: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)$ by the formula

$$
\begin{equation*}
\int_{\Omega_{2}} \lambda \mathrm{~d} \bar{\eta}(\mu)=\int_{\Omega_{1}}(\lambda \circ \eta) \mathrm{d} \mu \quad\left(\lambda \in C_{0}\left(\Omega_{2}\right), \mu \in M\left(\Omega_{1}\right)\right) . \tag{4.4}
\end{equation*}
$$

We now have bounded linear operators

$$
\bar{\eta}^{\prime}: C\left(\widetilde{\Omega}_{2}\right) \rightarrow C\left(\widetilde{\Omega}_{1}\right) \quad \text { and } \quad \bar{\eta}^{\prime \prime}: M\left(\widetilde{\Omega}_{1}\right) \rightarrow M\left(\widetilde{\Omega}_{2}\right) .
$$

In the case where Ω_{1} and Ω_{2} are compact spaces, we have $\bar{\eta}^{\prime}=\theta^{\prime \prime}$, where $\theta=\eta^{\circ}$, and so $\bar{\eta}^{\prime}: C\left(\widetilde{\Omega}_{2}\right) \rightarrow C\left(\widetilde{\Omega}_{1}\right)$ is a continuous $*$-homomorphism. It does not seem to be immediate
that $\bar{\eta}^{\prime}$ is a homomorphism in the general case; we shall now prove this. We are grateful to Colin Graham for an active discussion on this result.

Equation 4.4 holds for $\lambda \in C_{0}\left(\Omega_{2}\right)$; we first note that it also holds for $\lambda \in B^{b}\left(\Omega_{2}\right)$. Note that $\lambda \circ \eta \in B^{b}\left(\Omega_{1}\right)$, regarded as a subset of $C\left(\widetilde{\Omega}_{1}\right)$, whenever $\lambda \in B^{b}\left(\Omega_{2}\right)$, and so $\langle\lambda \circ \eta, \mu\rangle$ and $(\lambda \circ \eta) \cdot \mu$ are defined.

Let $\mu \in M\left(\Omega_{1}\right)$, and set $\nu=\bar{\eta}(\mu)$. Consider $\lambda \in B^{b}\left(\Omega_{2}\right)$. There is a sequence $\left(\lambda_{k}\right)$ in $C_{0}\left(\Omega_{2}\right)$ such that $\left|\lambda_{k}\right|_{\Omega_{2}} \leq|\lambda|_{\Omega_{2}}(k \in \mathbb{N})$ and such that $\lambda_{k} \rightarrow \lambda$ (p.p. $\left.\nu\right)$ on Ω_{2}. Thus

$$
\left|\lambda_{k} \circ \eta\right|_{\Omega_{1}} \leq|\lambda|_{\Omega_{2}} \quad(k \in \mathbb{N})
$$

and $\lambda_{k} \circ \eta \rightarrow \lambda \circ \eta$ (p.p. μ) on Ω_{1}. (If the first convergence fails on the set B, where $\nu(B)=0$, then the second convergence holds off the set $\eta^{-1}(B)$, and $\mu\left(\eta^{-1}(B)\right)=0$ by (3.12).) Equation (4.4) holds whenever λ is replaced by λ_{k}; it follows from the dominated convergence theorem that 4.4 holds for our $\lambda \in B^{b}\left(\Omega_{2}\right)$.

ThEOREM 4.11. Let Ω_{1} and Ω_{2} be two non-empty, locally compact spaces, and consider a continuous map $\eta: \Omega_{1} \rightarrow \Omega_{2}$. Then the map $\bar{\eta}^{\prime}: C\left(\widetilde{\Omega}_{2}\right) \rightarrow C\left(\widetilde{\Omega}_{1}\right)$ is a continuous *-homomorphism. Further, $\bar{\eta}^{\prime}\left(C\left(\Phi_{\bar{\eta}(\mu)}\right)\right) \subset C\left(\Phi_{\mu}\right)$ for each $\mu \in M\left(\Omega_{1}\right)^{+}$.
Proof. Take $\mu \in M\left(\Omega_{1}\right)$. Clearly

$$
\left\langle\bar{\eta}^{\prime}(\lambda), \mu\right\rangle=\langle\lambda, \bar{\eta}(\mu)\rangle=\langle\lambda \circ \eta, \mu\rangle \quad\left(\mu \in M\left(\Omega_{1}\right), \lambda \in C_{0}\left(\Omega_{2}\right)\right)
$$

by the above remark, and so $\bar{\eta}^{\prime}(\lambda)=\lambda \circ \eta \in C\left(\widetilde{\Omega}_{1}\right)$ for all $\lambda \in C_{0}\left(\Omega_{2}\right)$.
Let $\lambda \in B^{b}\left(\Omega_{2}\right)$ and $\mu \in M\left(\Omega_{1}\right)$. We first claim that

$$
\begin{equation*}
\bar{\eta}\left(\bar{\eta}^{\prime}(\lambda) \cdot \mu\right)=\bar{\eta}((\lambda \circ \eta) \cdot \mu)=\lambda \cdot \bar{\eta}(\mu) . \tag{4.5}
\end{equation*}
$$

Indeed, for all $\lambda_{1} \in C_{0}\left(\Omega_{2}\right)$, we have

$$
\begin{aligned}
\left\langle\lambda_{1}, \bar{\eta}((\lambda \circ \eta) \cdot \mu)\right\rangle & =\int_{\Omega_{2}}\left(\lambda_{1} \circ \eta\right)(\lambda \circ \eta) \mathrm{d} \mu=\int_{\Omega_{2}}\left(\lambda_{1} \lambda \circ \eta\right) \mathrm{d} \mu \\
& =\left\langle\lambda_{1} \lambda, \bar{\eta}(\mu)\right\rangle=\left\langle\lambda_{1}, \lambda \cdot \bar{\eta}(\mu)\right\rangle,
\end{aligned}
$$

giving 4.5).
We recall that we write Λ_{ν} for $\Lambda \mid L^{1}\left(\Omega_{2}, \nu\right)$ when $\Lambda \in C\left(\widetilde{\Omega}_{2}\right)$, so that Λ_{ν} is regarded as an element of $B^{b}\left(\Omega_{2}\right)$; we shall write $\Lambda_{1, \nu}$ for $\left(\Lambda_{1}\right)_{\nu}$, etc.

Now take $\mu \in M\left(\Omega_{1}\right)^{+}$, and set $\nu=\bar{\eta}(\mu)$. Let $\Lambda_{1}, \Lambda_{2} \in C\left(\widetilde{\Omega}_{2}\right)$. Then we have

$$
\begin{aligned}
\left\langle\bar{\eta}^{\prime}\left(\Lambda_{1} \Lambda_{2}\right), \mu\right\rangle & =\left\langle\Lambda_{1} \Lambda_{2}, \nu\right\rangle=\left\langle\left(\Lambda_{1} \Lambda_{2}\right)_{\nu}, \nu\right\rangle=\left\langle\Lambda_{1, \nu} \Lambda_{2, \nu}, \nu\right\rangle \\
& =\left\langle\Lambda_{1, \nu}, \Lambda_{2, \nu} \cdot \nu\right\rangle=\left\langle\Lambda_{1, \nu}, \bar{\eta}\left(\bar{\eta}^{\prime}\left(\Lambda_{2, \nu}\right) \cdot \mu\right)\right\rangle
\end{aligned}
$$

by (4.5). Also, we have

$$
\left\langle\bar{\eta}^{\prime}\left(\Lambda_{1}\right) \bar{\eta}^{\prime}\left(\Lambda_{2}\right), \mu\right\rangle=\left\langle\bar{\eta}^{\prime}\left(\Lambda_{1}\right), \bar{\eta}^{\prime}\left(\Lambda_{2}\right) \cdot \mu\right\rangle=\left\langle\Lambda_{1}, \bar{\eta}\left(\bar{\eta}^{\prime}\left(\Lambda_{2}\right) \cdot \mu\right)\right\rangle .
$$

Since $L^{1}\left(\Omega_{1}, \mu\right)$ is an introverted subspace of $M\left(\Omega_{1}\right)$, we know that $\bar{\eta}^{\prime}\left(\Lambda_{2}\right) \cdot \mu \in L^{1}\left(\Omega_{1}, \mu\right)$; it now follows from (3.13) that $\bar{\eta}\left(\bar{\eta}^{\prime}\left(\Lambda_{2}\right) \cdot \mu\right)$ belongs to $L^{1}\left(\Omega_{2}, \nu\right)$, and so

$$
\left\langle\Lambda_{1}, \bar{\eta}\left(\bar{\eta}^{\prime}\left(\Lambda_{2}\right) \cdot \mu\right)\right\rangle=\left\langle\Lambda_{1, \nu}, \bar{\eta}\left(\bar{\eta}^{\prime}\left(\Lambda_{2}\right) \cdot \mu\right)\right\rangle .
$$

Since $\bar{\eta}^{\prime}\left(\Lambda_{1}\right) \bar{\eta}^{\prime}\left(\Lambda_{2}\right)=\bar{\eta}^{\prime}\left(\Lambda_{2}\right) \bar{\eta}^{\prime}\left(\Lambda_{1}\right)$, we obtain

$$
\left\langle\bar{\eta}^{\prime}\left(\Lambda_{1}\right) \bar{\eta}^{\prime}\left(\Lambda_{2}\right), \mu\right\rangle=\left\langle\Lambda_{1, \nu}, \bar{\eta}\left(\bar{\eta}^{\prime}\left(\Lambda_{2, \nu}\right) \cdot \mu\right)\right\rangle .
$$

Thus $\left\langle\bar{\eta}^{\prime}\left(\Lambda_{1} \Lambda_{2}\right), \mu\right\rangle=\left\langle\bar{\eta}^{\prime}\left(\Lambda_{1}\right) \bar{\eta}^{\prime}\left(\Lambda_{2}\right), \mu\right\rangle$. The above equality holds for all $\mu \in M\left(\Omega_{1}\right)$, and so we conclude that

$$
\bar{\eta}^{\prime}\left(\Lambda_{1} \Lambda_{2}\right)=\bar{\eta}^{\prime}\left(\Lambda_{1}\right) \bar{\eta}^{\prime}\left(\Lambda_{2}\right) \quad\left(\Lambda_{1}, \Lambda_{2} \in C\left(\widetilde{\Omega}_{2}\right)\right)
$$

and hence that $\bar{\eta}^{\prime}$ is a homomorphism; clearly it is $*$-homomorphism.
It is clear from 3.13 that $\bar{\eta}^{\prime}\left(C\left(\Phi_{\bar{\eta}(\mu)}\right)\right) \subset C\left(\Phi_{\mu}\right)$ for each $\mu \in M\left(\Omega_{1}\right)^{+}$.
Corollary 4.12. Let Ω_{1} and Ω_{2} be two non-empty, locally compact spaces, and let $\eta: \Omega_{1} \rightarrow \Omega_{2}$ be a continuous map. Then $\bar{\eta}^{\prime \prime}\left(\widetilde{\Omega}_{1}\right) \subset \widetilde{\Omega}_{2}$ and the map

$$
\begin{equation*}
\widetilde{\eta}:=\bar{\eta}^{\prime \prime} \mid \widetilde{\Omega}_{1}: \widetilde{\Omega}_{1} \rightarrow \widetilde{\Omega}_{2} \tag{4.6}
\end{equation*}
$$

is a continuous map with $\bar{\eta}^{\prime}=(\widetilde{\eta})^{\circ}$ such that $\widetilde{\eta}$ extends η and such that $\widetilde{\eta}\left(\Phi_{\mu}\right) \subset \Phi_{\bar{\eta}(\mu)}$ for each $\mu \in M\left(\Omega_{1}\right)^{+}$.

Further:
(i) the map $\widetilde{\eta}$ is injective whenever $\eta: \Omega_{1} \rightarrow \Omega_{2}$ is injective, and in this case we have $\bar{\eta}^{\prime \prime}\left(M\left(\widetilde{\Omega}_{1}\right)\right) \subset M\left(\widetilde{\eta}\left(\widetilde{\Omega}_{1}\right)\right)$ and $\bar{\eta}^{\prime \prime}\left(M_{c}\left(\widetilde{\Omega}_{1}\right)\right) \subset M_{c}\left(\widetilde{\eta}\left(\widetilde{\Omega}_{1}\right)\right)$;
(ii) the map $\widetilde{\eta}$ is surjective whenever $\bar{\eta}: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)$ is surjective, and in this case $\left(\bar{\eta}^{\prime \prime}\right)^{-1}\left(M_{c}\left(\widetilde{\Omega}_{2}\right)\right) \subset M_{c}\left(\widetilde{\eta}\left(\widetilde{\Omega}_{1}\right)\right)$ and $\widetilde{\eta}\left(\Phi_{\mu}\right)=\Phi_{\bar{\eta}(\mu)}$ for each $\mu \in M\left(\Omega_{1}\right)^{+}$.
Proof. It is immediate from the theorem that $\widetilde{\eta}: \widetilde{\Omega}_{1} \rightarrow \widetilde{\Omega}_{2}$ has the specified properties. Further, we see that the map $\widetilde{\eta}$ is injective/surjective if and only if $\bar{\eta}^{\prime \prime}$ is injective/surjective if and only if $\bar{\eta}$ is injective/surjective.
(i) By Proposition 3.19, $\bar{\eta}$ is injective whenever η is injective, and this implies that $\bar{\eta}^{\prime \prime}$ is injective, and hence $\widetilde{\eta}$ is injective.
(ii) Since $\bar{\eta}: M\left(\Omega_{1}\right) \rightarrow M\left(\Omega_{2}\right)$ is surjective, the C^{*}-homomorphism

$$
\bar{\eta}^{\prime}: C\left(\widetilde{\Omega}_{2}\right) \rightarrow C\left(\widetilde{\Omega}_{1}\right)
$$

is injective, and so we may regard $C\left(\widetilde{\Omega}_{2}\right)$ as a closed C^{*}-subalgebra of $C\left(\widetilde{\Omega}_{1}\right)$. Thus points of $\widetilde{\Omega}_{2}$ correspond to closed subsets of $\widetilde{\Omega}_{1}$, and so each such point is the image of a point in $\widetilde{\Omega}_{1}$.

The space Φ_{b}. Let Ω be an infinite, locally compact space.
The character space Φ_{b} of $B^{b}(\Omega)$ is the Stone space of the Boolean algebra \mathfrak{B}_{Ω}, and so is totally disconnected. In fact \mathfrak{B}_{Ω} is σ-complete, and so Φ_{b} is basically disconnected, in the sense that every cozero set in Φ_{b} has an open closure [37, Exercise 1H]. It follows from Proposition 2.1 that $\left|\Phi_{b}\right| \geq 2^{c}$.

Let $B(\Omega)$ be the quotient of $B^{b}(\Omega)$ by the closed linear subspace consisting of the functions which are zero outside a meagre subspace of Ω. Then $B(\Omega)$ is a commutative C^{*}-algebra, and so has the form $C(T)$ for a certain Stonean space T, formed by identifying points of the character space of $B^{b}(\Omega)$; since $B(\Omega)$ is a complete Boolean algebra, T is extremely disconnected [112, Theorem III.1.25]. We remark that $B(\Omega)$ is called the Dixmier algebra of Ω. It is proved in [24] that every Stonean space arises as the character space of such an algebra; in the case where Ω is compact, the character space of $B(\Omega)$ is homeomorphic to the projective cover of Ω, and so $B(\Omega)$ is (isometrically isomorphic to) the injective envelope of $C(\Omega)$.

Since $B^{b}(\Omega)$ is a C^{*}-subalgebra of $\ell^{\infty}(\Omega)$, we can identify Φ_{b} as a quotient of $\beta \Omega_{d}$. For $\varphi \in \widetilde{\Omega}$, let $[\varphi]$ be the closed subset of $\widetilde{\Omega}$ defined above. The following obvious remark will be strengthened later.

Proposition 4.13. Let Ω be a non-empty, locally compact space, and let $\varphi \in \widetilde{\Omega}$. Then $[\varphi] \cap \beta \Omega_{d}$ is a non-empty, closed subset of $\beta \Omega_{d}$, and these sets partition $\beta \Omega_{d}$. Indeed, for $\varphi=x \in \Omega$, we have $[x]=\{x\}$, and for $\varphi \notin \Omega$, the set $[\varphi] \cap \beta \Omega_{d}$ is a non-empty, closed subset of $\Omega_{d}^{*}=\beta \Omega_{d} \backslash \Omega$.

It follows that Ω is dense in Φ_{b}. By Proposition 4.6, the sets $[\varphi]$ and $[\psi]$ are disjoint whenever $\varphi, \psi \in U_{\Omega}$ with $\varphi \neq \psi$. Thus we have described a continuous surjection

$$
\begin{equation*}
\eta: \varphi \mapsto[\varphi] \cap \beta \Omega_{d}, \quad \widetilde{\Omega} \rightarrow \Phi_{b} ; \tag{4.7}
\end{equation*}
$$

the map $\eta \mid U_{\Omega}$ is an injection of U_{Ω} onto a dense subset of Φ_{b}.
The restriction map $\eta \mid \beta \Omega_{d}: \beta \Omega_{d} \rightarrow \Phi_{b}$ is also a continuous surjection.
Proposition 4.14. Let Ω be a non-empty, locally compact space.
(i) There is a C^{*}-monomorphism $\kappa_{E}: \ell^{\infty}(\Omega) \rightarrow C(\widetilde{\Omega})$ that extends the above embedding $\kappa_{E}: B^{b}(\Omega) \rightarrow C(\widetilde{\Omega})$.
(ii) There is a retraction from $\widetilde{\Omega}$ onto $\beta \Omega_{d}$.

Proof. (i) Since $\widetilde{\Omega}$ is Stonean, it follows from Theorem 2.5 that $C(\widetilde{\Omega})$ is injective in the category of commutative C^{*}-algebras and continuous $*$-homomorphisms, and so there is a C^{*}-homomorphism

$$
\theta: \ell^{\infty}(\Omega) \rightarrow C(\widetilde{\Omega})
$$

that extends $\kappa_{E}: B^{b}(\Omega) \rightarrow C(\widetilde{\Omega})$.
Let $I=\operatorname{ker} \theta$, a closed ideal in $C\left(\beta \Omega_{d}\right)$. There is a closed subspace F of $\beta \Omega_{d}$ such that $I=\left\{\lambda \in C\left(\beta \Omega_{d}\right): \lambda \mid F=0\right\}$. It cannot be that there exists $x \in \Omega \backslash F$, for otherwise $\theta\left(\delta_{x}\right)=\kappa_{E}\left(\delta_{x}\right)=0$, which is not the case. Thus $\Omega \subset F$, and so $F=\beta \Omega_{d}$ and $I=\{0\}$, showing that θ is a monomorphism.
(ii) The $\operatorname{map} \theta^{\prime}: \widetilde{\Omega} \rightarrow \beta \Omega_{d}$ is a continuous map. Let $x \in \Omega$, and set $y=\theta^{\prime}(x) \in \beta \Omega_{d}$. Then

$$
\varepsilon_{y}\left(\delta_{x}\right)=\left(\varepsilon_{x} \circ \theta\right)\left(\delta_{x}\right)=\left(\varepsilon_{x} \circ \kappa_{E}\right)\left(\delta_{x}\right)=1,
$$

and so $y=x$. Thus θ^{\prime} is the identity map on Ω, and hence is the identity map on $\beta \Omega_{d}$. This shows that $\theta^{\prime}: \widetilde{\Omega} \rightarrow \beta \Omega_{d}$ is a retraction.

We note that the map $\kappa_{E}: \ell^{\infty}(\Omega) \rightarrow C(\widetilde{\Omega})$ is not a unique extension of the map $\kappa_{E}: B^{b}(\Omega) \rightarrow C(\widetilde{\Omega})$, although $\kappa_{E}(\lambda) \mid \widetilde{\Omega}_{d}$ is uniquely specified for each $\lambda \in \ell^{\infty}(\Omega)$.

The image $\kappa_{E}\left(\ell^{\infty}(\Omega)\right)$ is a closed subalgebra of $C(\widetilde{\Omega})$, and so it separates at least as many pairs of points of $\widetilde{\Omega}$ as $B^{b}(\Omega)$ does. For example, $\kappa_{E}\left(\ell^{\infty}(\Omega)\right)$ separates all pairs of points in the space $\beta \Omega_{d}$. We wonder whether, given two points $\varphi, \psi \in \widetilde{\Omega}$, there is such an embedding κ_{E} such that $\kappa_{E}\left(\ell^{\infty}(\Omega)\right)$ separates φ and ψ.

Metrizable spaces. We now consider an uncountable, compact, metrizable space Ω, and summarize our results in this setting.

Note that each uncountable, second countable, locally compact space (such as \mathbb{R}) has a one-point compactification that is metrizable, and so the results of this section apply to such spaces, with very slight changes of wording.

Proposition 4.15. Let Ω_{1} and Ω_{2} be two uncountable, compact, metrizable spaces. Then the Banach spaces $M\left(\Omega_{1}\right)$ and $M\left(\Omega_{2}\right)$ are isometrically isomorphic.

Proof. This follows easily from Proposition 2.2, which states that Ω_{1} and Ω_{2} are Borel isomorphic.

Let Ω be an uncountable, compact, metrizable space. Then there is a maximal singular family $\mathcal{F}_{c}=\left\{\mu_{i}: i \in I\right\}$ of continuous measures in $M_{c}(\Omega)^{+}$such that $\left|\mathcal{F}_{c}\right|=\mathfrak{c}$; such a family is exhibited in Proposition 2.13. Then $\widetilde{\Omega}$ contains the following clopen subsets: $\beta \Omega_{d}$ and the sets Φ_{i} for $i \in I$, and all these sets are pairwise disjoint. It follows from Proposition 2.15 (iii) that the sets Φ_{i} all satisfy CCC on clopen subsets, and from Proposition 4.8 that $\beta U=\widetilde{\Omega}$, where $U=\Omega \cup \bigcup\left\{\Phi_{i}: i \in I\right\}$ is a dense, open subset of $\widetilde{\Omega}$.

Theorem 4.16. Let Ω be an uncountable, compact, metrizable space. Then the hyperStonean envelope $X=\widetilde{\Omega}$ has the following properties:
(i) X is a hyper-Stonean space;
(ii) the set S of isolated points of X has cardinality \mathfrak{c}, the closure Y of S in X is a clopen subspace of X, and Y is homeomorphic to βS_{d};
(iii) $X \backslash Y$ contains a pairwise disjoint family \mathcal{F} of \mathfrak{c} clopen subspaces, each homeomorphic to \mathbb{H};
(iv) the union $U_{\mathcal{F}}$ of the sets of \mathcal{F} is dense in $X \backslash Y$ and is such that $\beta U_{\mathcal{F}}=X \backslash Y$.

Further, any two spaces X_{1} and X_{2} satisfying the clauses (i)-(iv) are mutually homeomorphic.

Proof. We have shown that $X=\widetilde{\Omega}$ satisfies clauses (i)-(iv).
Let X_{1} and X_{2} be two spaces satisfying clauses (i)-(iv). The sets of isolated points of X_{1} and X_{2} are S_{1} and S_{2}, respectively. Since $\left|S_{1}\right|=\left|S_{2}\right|$, there is a bijection from S_{1} to S_{2}, and this extends to a homeomorphism from βS_{1} to βS_{2}, and so the respective closures Y_{1} and Y_{2} of S_{1} and S_{2} in X_{1} and X_{2} are clopen subsets of X_{1} and X_{2}, respectively, such that Y_{1} and Y_{2} are homeomorphic.

Let the families specified in (iii) corresponding to X_{1} and X_{2} be \mathcal{F}_{1} and \mathcal{F}_{2}, respectively, listed as $\left(H_{1, \tau}: \tau<\mathfrak{c}\right)$ and $\left(H_{2, \tau}: \tau<\mathfrak{c}\right)$. For each $\tau<\mathfrak{c}$, there is a homeomorphism from $H_{1, \tau}$ onto $H_{2, \tau}$, and hence there is a homeomorphism from $U_{\mathcal{F}_{1}}$ onto $U_{\mathcal{F}_{2}}$. Since $\beta U_{\mathcal{F}_{i}}=X_{i} \backslash Y_{i}$ for $i=1,2$, this homeomorphism extends to a homeomorphism of $X_{1} \backslash Y_{1}$ onto $X_{2} \backslash Y_{2}$.

Thus there is a unique space X that is the hyper-Stonean envelope of all uncountable, compact, metrizable spaces. We shall obtain some further properties of this space involving the calculations of some cardinalities.

Theorem 4.17. Let Ω be an uncountable, compact, metrizable space, and set $X=\widetilde{\Omega}$. Then:
(i) $|C(X)|=2^{\mathfrak{c}}$ and $|X|=2^{2^{c}}$;
(ii) $\left|U_{\Omega}\right|=2^{\mathfrak{c}}$ and $w\left(U_{\Omega}\right)=\mathfrak{c}$;
(iii) $\left|\widetilde{\Omega}_{c} \backslash U_{\Omega}\right|=2^{2^{c}}$.

Proof. (i) Certainly, we have $|X| \geq\left|\beta \Omega_{d}\right|$. By Proposition 2.2 (i), we have $|\Omega|=\mathfrak{c}$, and so $\left|\beta \Omega_{d}\right|=2^{2^{\mathfrak{c}}}$ by Proposition 2.1. By Proposition 2.13, $|M(\Omega)|=\mathfrak{c}$, and so, by Proposition 1.1 (iii), we have $|C(X)| \leq 2^{\mathfrak{c}}$ and $|X| \leq\left|C(X)^{\prime}\right| \leq 2^{2^{c}}$. Finally, $|C(X)| \geq\left|\ell^{\infty}\left(\Omega_{d}\right)\right|=2^{c}$. We obtain (i) by combining the above inequalities.
(ii) For each $\mu \in M_{c}(\Omega)^{+}$such that $\mu \neq 0$, we have $\left|\Phi_{\mu}\right|=2^{\mathfrak{c}}$ and $w\left(\Phi_{\mu}\right)=\mathfrak{c}$ by Corollary 2.21 For each $\mu \in M_{d}(\Omega)^{+}$, we also have $\left|\Phi_{\mu}\right| \leq|\beta \mathbb{N}|=2^{\mathfrak{c}}$ and hence $w\left(\Phi_{\mu}\right) \leq w(\beta \mathbb{N})=\mathfrak{c}$. For general $\mu \in M(\Omega)^{+}$, we have $\Phi_{\mu}=\Phi_{\mu_{c}} \cup \Phi_{\mu_{d}}$, and so $\left|\Phi_{\mu}\right| \leq 2^{\mathfrak{c}}$ and $w\left(\Phi_{\mu}\right) \leq w(\beta \mathbb{N}) \leq \mathfrak{c}$. By Proposition 2.13 , we have $|M(\Omega)|=\mathfrak{c}$, and so it follows that $\left|U_{\Omega}\right|=2^{\mathfrak{c}}$ and $w\left(\Phi_{\mu}\right)=\mathfrak{c}$.
(iii) Consider a maximal singular family \mathcal{F}_{c} of continuous measures, as in Proposition 4.8, so that $\left\{\Phi_{i}: i \in I\right\}$ is a pairwise disjoint family, now of cardinality \mathbf{c}.

Let A be the algebra of all functions on $U_{\mathcal{F}}:=\bigcup\left\{\Omega_{i}: i \in I\right\}$ that are constant on each set Φ_{i}. Each function in A has a continuous extension to $\widetilde{\Omega}_{c}$, and so we may regard A as a closed subalgebra of $C\left(\widetilde{\Omega}_{c}\right)$. The character space Φ_{A} of A is a quotient of $\widetilde{\Omega}_{c}$. However it is clear that we can identify Φ_{A} with βI. By Proposition $2.1,|\beta I|=2^{2^{c}}$, and so $\left|\widetilde{\Omega}_{c}\right| \geq 2^{2^{c}}$. Since $|X|=2^{2^{c}}$, we have $\left|\widetilde{\Omega}_{c}\right|=2^{2^{c}}$. Since $\left|U_{\Omega}\right|=2^{c}$, we have $\left|\widetilde{\Omega}_{c} \backslash U_{\Omega}\right|=2^{2^{c}}$.

Thus, with GCH, we have $|X|=\aleph_{3}$, but $\left|U_{\Omega}\right|=\aleph_{2}$.
We know that the set $U_{\Omega}=\bigcup\left\{\Phi_{\mu}: \mu \in M(\Omega)^{+}\right\}$is a proper subset of $\widetilde{\Omega}$. However, for each $\mu \in M(\Omega)^{+}$, set

$$
\left[\Phi_{\mu}\right]:=\bigcup\left\{[\varphi]: \varphi \in \Phi_{\mu}\right\} .
$$

By an earlier remark on p. $22,\left[\Phi_{\mu}\right]$ is a closed subset of $\widetilde{\Omega}$. It seemed possible that the subset $\bigcup\left\{\left[\Phi_{\mu}\right]: \mu \in M(\Omega)^{+}\right\}$would be equal to the whole of $\widetilde{\Omega}$. However Theorems 4.19 and 4.24 below show that this is far from the case whenever Ω is an uncountable, compact, metrizable space.

We shall also need the following definitions from [52, Definitions 3.13 and 3.60].
Let D be a set, and let κ be an infinite cardinal. Then a κ-uniform ultrafilter on D is an ultrafilter \mathcal{U} on D such that each set in \mathcal{U} has cardinality at least κ. Let \mathcal{A} be a family of subsets of D. Then \mathcal{A} has the κ-uniform finite intersection property if each finite subfamily of \mathcal{A} has an intersection of cardinality at least κ. Theorem 3.62 of [52] is the following.

Theorem 4.18. Let D be an infinite set of cardinality κ, and let \mathcal{A} be a family of at most κ subsets of D such that \mathcal{A} has the κ-uniform finite intersection property. Then there are at least $2^{2^{\kappa}} \kappa$-uniform ultrafilters on D that contain \mathcal{A}.

Theorem 4.19. Let Ω be an uncountable, compact, metrizable space. Then

$$
\left|\beta \Omega_{d} \backslash\left[U_{\Omega}\right]\right|=2^{2^{c}}
$$

Proof. First, choose a countable, dense subset of Ω, say

$$
Q=\left\{q_{m}: m \in \mathbb{N}\right\}
$$

Consider the family of G_{δ}-subsets B of Ω such that $B \supset Q$; each such B is a Borel set. It follows from the Baire category theorem that B is uncountable, and so $|B|=\mathfrak{c}$ by Proposition 2.2 (i). The family \mathcal{F} of all such sets B is a filter of Borel subsets of Ω and also $|\mathcal{F}|=\mathfrak{c}$, and so, by Theorem 4.18 , there are $2^{2^{\mathfrak{c}}} \mathfrak{c}$-uniform ultrafilters \mathcal{U} on Ω with $\mathcal{F} \subset \mathcal{U}$. We identify these ultrafilters with points ψ of $\beta \Omega_{d}$.

Let ψ be such an ultrafilter. We claim that, for each $\mu \in M(\Omega)^{+}$, there exists $B \in \mathfrak{B}_{\Omega}$ with $B \in \psi$ and such that $\mu(B)=0$.

First, suppose that $\mu \in M_{d}(\Omega)^{+}$, and set

$$
C=\operatorname{supp} \mu \quad \text { and } \quad B=\Omega \backslash C .
$$

Since C is countable and ψ is a \mathfrak{c}-uniform ultrafilter, it is not true that $C \in \psi$. Thus B is a Borel set, $B \in \psi$, and $\mu(B)=0$.

Second, suppose that $\mu \in M_{c}(\Omega)^{+}$. By Lemma 2.7, there is a G_{δ}-subset B of Ω containing Q, and so again $B \in \mathcal{F} \subset \psi$ with $\mu(B)=0$.

Now let $\mu \in M(\Omega)^{+}$. There exist $\mu_{1} \in M_{d}(\Omega)^{+}$and $\mu_{2} \in M_{c}(\Omega)^{+}$with $\mu=\mu_{1}+\mu_{2}$. Take subsets $B_{1}, B_{2} \in \mathfrak{B}_{\Omega}$ such that $B_{1}, B_{2} \in \psi$ and $\mu_{1}\left(B_{1}\right)=\mu_{2}\left(B_{2}\right)=0$, and set $B=B_{1} \cap B_{2}$, so that $B \in \mathfrak{B}_{\Omega}$ with $B \in \psi$ and $\mu(B)=0$.

For each $\varphi \in \Phi_{\mu}$, we have $\kappa_{E}\left(\chi_{B}\right)(\varphi)=0$, whereas $\kappa_{E}\left(\chi_{B}\right)(\psi)=1$ because $B \in \psi$. This shows that $\psi \notin\left[\Phi_{\mu}\right]$.

Thus $\left|\beta \Omega_{d} \backslash\left[U_{\Omega}\right]\right|=2^{2^{c}}$.
We now seek to make some calculations of the cardinality of the sets $[\varphi]$ for $\varphi \in \widetilde{\Omega}$. We shall first associate with each such φ a certain filter of Borel sets.
Definition 4.20. Let Ω be a non-empty, locally compact space, and take $\varphi \in \widetilde{\Omega}$. Then

$$
\mathcal{G}_{\varphi}=\left\{B \in \mathfrak{B}_{\Omega}: \varphi \in K_{B}\right\} .
$$

Clearly \mathcal{G}_{φ} is a subset of \mathfrak{B}_{Ω} that is closed under finite intersections. In the case where Ω is compact and metrizable, $\left|\mathcal{G}_{\varphi}\right| \leq \mathfrak{c}$.

Recall from Proposition 2.2 (i) that, for each $B \in \mathfrak{B}_{\Omega}$, either B is countable or $|B|=\mathfrak{c}$.
We begin with a preliminary lemma and corollary.
Let Ω be an uncountable, compact, metrizable space. As above, we take

$$
\mathcal{F}_{c}=\left\{\mu_{i} \in M_{c}(\Omega)^{+}: i \in I\right\}
$$

to be a maximal singular family of continuous measures in $M_{c}(\Omega)^{+}$, so that, by Proposition 2.13, $\left|\mathcal{F}_{c}\right|=\mathfrak{c}$. For each $B \in \mathfrak{B}_{\Omega}$, we set

$$
J_{B}=\left\{i \in I: K_{B} \cap \Phi_{i} \neq \emptyset\right\}
$$

LEMMA 4.21. Let Ω be an uncountable, compact, metrizable space, and let $B \in \mathfrak{B}_{\Omega}$ with B uncountable. Then:
(i) $\left|J_{B}\right|=\mathfrak{c}$;
(ii) $K_{B} \cap\left(\widetilde{\Omega}_{c} \backslash U_{\Omega}\right) \neq \emptyset$.

Proof. (i) By Proposition 2.2 (iii), the set B contains an uncountable, compact subset, say C. We claim that the family

$$
\left\{\mu_{i} \mid C: i \in J_{B}\right\}
$$

is a maximal singular family of continuous measures in $M_{c}(C)^{+}$. Indeed, all pairs of distinct elements of this family are mutually singular. Suppose that $\nu \in M_{c}(C)^{+}$is such that $\nu \perp\left(\mu_{i} \mid C\right)$ for each $i \in J_{B}$. Then $\nu \perp \mu_{i}$ for each $i \in I$, and so $\nu=0$. This gives the claim.

By Proposition 4.10, $\left|J_{B}\right|=\mathfrak{c}$.
(ii) Assume towards a contradiction that $K_{B} \cap \widetilde{\Omega}_{c} \subset U_{\Omega}$. Then

$$
K_{B} \subset \bigcup\left\{\Phi_{\mu}: \mu \in M_{c}(\Omega)^{+}\right\} .
$$

Since K_{B} is compact, since each Φ_{μ} is open, and since $\left\{\Phi_{\mu}: \mu \in M_{c}(\Omega)^{+}\right\}$is closed under finite unions, there exists $\mu \in M_{c}(\Omega)^{+}$such that $K_{B} \subset \Phi_{\mu}$. By (i), $\left\{i \in I: \Phi_{\mu} \cap \Phi_{i} \neq \emptyset\right\}$ is uncountable. But this contradicts the fact that Φ_{μ} satisfies CCC. Thus $K_{B} \cap \widetilde{\Omega}_{c} \not \subset U_{\Omega}$.

Corollary 4.22. Let Ω be an uncountable, compact, metrizable space, and take

$$
\varphi \in \widetilde{\Omega}_{c} \cup\left(\beta \Omega_{d} \backslash U_{\Omega}\right)
$$

Then there exists $\psi \in \widetilde{\Omega}_{c} \backslash U_{\Omega}$ such that $\psi \sim \varphi$.
Proof. Since $\varphi \in \widetilde{\Omega}_{c} \cup\left(\beta \Omega_{d} \backslash U_{\Omega}\right)$, each $B \in \mathcal{G}_{\varphi}$ is uncountable. The set $K_{B} \cap\left(\widetilde{\Omega}_{c} \backslash U_{\Omega}\right)$ is closed in the compact space $\widetilde{\Omega}_{c} \cap U_{\Omega}$, and so, by Lemma 4.21, this set is not empty. Thus

$$
\bigcap\left\{K_{B} \cap\left(\widetilde{\Omega}_{c} \backslash U_{\Omega}\right): B \in \mathcal{G}_{\varphi}\right\} \neq \emptyset
$$

choose ψ in the set on the left. Then $\psi \in \widetilde{\Omega}_{c} \backslash U_{\Omega}$ and $\psi \in K_{B}$ whenever $\varphi \in K_{B}$, and so $\psi \sim \varphi$.
ThEOREM 4.23. Let Ω be an uncountable, compact, metrizable space, and let $\varphi \in \widetilde{\Omega}$.
(i) Suppose that there exists $B \in \mathcal{G}_{\varphi}$ such that B is countable. Then $[\varphi]=\{\varphi\}$, and so $|[\varphi]|=1$.
(ii) Suppose that each $B \in \mathcal{G}_{\varphi}$ is uncountable. Then

$$
\left|[\varphi] \cap \beta \Omega_{d}\right|=2^{2^{\mathrm{c}}}
$$

(iii) Suppose that $\varphi \in \widetilde{\Omega}_{c}$. Then

$$
\left|[\varphi] \cap \widetilde{\Omega}_{c}\right|=2^{2^{c}}
$$

Proof. (i) Suppose that $\psi \in[\varphi]$. Since $\chi_{B} \in B^{b}(\Omega)$ and $\varphi \in K_{\chi_{D}}=\beta D \subset \beta \Omega_{d}$, necessarily $\psi \in \beta D$. Since $\ell^{\infty}(B) \subset B^{b}(\Omega)$ and the functions in $\ell^{\infty}(B)$ separate the points of βB, it follows that $\psi=\varphi$.
(ii) We first note that $\left|\mathcal{G}_{\varphi}\right| \leq \mathfrak{c}$ and that each member of \mathcal{G}_{φ} has cardinality \mathfrak{c}. Since \mathcal{G}_{φ} is closed under finite intersections, it is clear that $\left|\mathcal{G}_{\varphi}\right|$ has the \mathfrak{c}-uniform finite intersection property. By Theorem 4.18, we have

$$
\left|\left\{\psi \in \beta \Omega_{d}: \psi \supset \mathcal{G}_{\varphi}\right\}\right|=2^{2^{c}}
$$

However, for each $\psi \supset \mathcal{G}_{\varphi}$ and each $B \in \mathcal{G}_{\varphi}$, we have $\psi \in K_{B}$, and so $\psi \sim \varphi$. It follows that $\left|[\varphi] \cap \beta \Omega_{d}\right|=2^{2^{c}}$.
(iii) First, we consider the case where $\varphi \in \widetilde{\Omega}_{c} \backslash U_{\Omega}$. Again consider the above family \mathcal{F}_{c}, so that $\left\{\Phi_{i}: i \in I\right\}$ is a pairwise disjoint family of cardinality \mathfrak{c} of subsets of $\widetilde{\Omega}$.

For each $B \in \mathcal{G}_{\varphi}$, define J_{B} as above. By Lemma 4.21 (i), $\left|J_{B}\right|=\mathbf{c}$. Certainly

$$
\left|\left\{J_{B}: B \in \mathcal{G}_{\varphi}\right\}\right| \leq\left|\mathfrak{B}_{\Omega}\right|=\mathfrak{c}
$$

by Proposition 2.2 (iv). Thus, by Theorem 4.18, there are $2^{2^{\text {c }}}$ ultrafilters \mathcal{U} on I each containing $\left\{J_{B}: B \in \mathcal{G}_{\varphi}\right\}$.

For each such ultrafilter \mathcal{U} and each $B \in \mathcal{G}_{\varphi}$, define

$$
C(\mathcal{U}, B)=\bigcap_{U \in \mathcal{U}}\left\{\overline{\bigcup_{i \in U} K_{B} \cap \Phi_{i}}\right\} \quad \text { and } \quad C(\mathcal{U})=\bigcap\left\{C(\mathcal{U}, B): B \in \mathcal{G}_{\varphi}\right\} .
$$

Since each set $\overline{\bigcup_{i \in U} K_{B} \cap \Phi_{i}}$ is a non-empty, closed subset of the compact space $\widetilde{\Omega}_{c}$, it follows that $C(\mathcal{U}) \neq \emptyset$ for each such \mathcal{U}. Suppose that \mathcal{U}_{1} and \mathcal{U}_{2} are distinct ultrafilters on I containing $\left\{J_{B}: B \in \mathcal{G}_{\varphi}\right\}$ and that $B_{1}, B_{2} \in \mathcal{G}_{\varphi}$. Then $C\left(\mathcal{U}_{1}, B_{1}\right) \cap C\left(\mathcal{U}_{2}, B_{2}\right)=\emptyset$, and so $C\left(\mathcal{U}_{1}\right) \cap C\left(\mathcal{U}_{2}\right)=\emptyset$. Thus there are $2^{2^{c}}$ sets of the form $C(\mathcal{U})$ and the family of these sets is pairwise disjoint.

Let \mathcal{U} be an ultrafilter on I containing $\left\{J_{B}: B \in \mathcal{G}_{\varphi}\right\}$, and let $\psi \in C(\mathcal{U})$. For each $B \in \mathcal{G}_{\varphi}$, we have $\psi \in C(\mathcal{U}, B) \subset K_{B}$, and so $\psi \sim \varphi$.

We have shown that $\left|[\varphi] \cap \widetilde{\Omega}_{c}\right|=2^{2^{c}}$ for this element φ.
Second, we consider the case where $\varphi \in \widetilde{\Omega}_{c} \cap U_{\Omega}$. By Corollary 4.22, there exists $\psi \in \widetilde{\Omega}_{c} \backslash U_{\Omega}$ such that $\psi \sim \varphi$. Thus, we have

$$
\left|[\varphi] \cap \tilde{\Omega}_{c}\right|=\left|[\psi] \cap \tilde{\Omega}_{c}\right|=2^{2^{c}},
$$

as required.
Theorem 4.24. Let Ω be an uncountable, compact, metrizable space. Then

$$
\left|\left[U_{\Omega}\right]\right|=\left|\left[U_{\Omega}\right] \cap \widetilde{\Omega}_{c}\right|=\left|\widetilde{\Omega}_{c} \backslash\left[U_{\Omega}\right]\right|=2^{2^{c}}
$$

Proof. Take $\varphi \in \widetilde{\Omega}_{c} \cap U_{\Omega}$. By Theorem 4.23 (ii), $|[\varphi]|=2^{2^{c}}$. Since $[\varphi] \subset\left[U_{\Omega}\right]$, we have $\left|\left[U_{\Omega}\right]\right|=2^{2^{c}}$. Similarly, the fact that $\left|\left[U_{\Omega}\right] \cap \Omega_{c}\right|=2^{2^{c}}$ follows from Theorem 4.23(iii).

By Theorem 4.19, there exists $\varphi \in \beta \Omega_{d} \backslash\left[U_{\Omega}\right]$. By Corollary 4.22, there exists an element $\psi \in \widetilde{\Omega}_{c} \backslash U_{\Omega}$ such that $\psi \sim \varphi$. Since $\varphi \notin\left[U_{\Omega}\right]$, we have $[\psi] \cap U_{\Omega}=\emptyset$. By Theorem 4.20. $|[\psi]|=2^{2^{c}}$. Thus $\left|\widetilde{\Omega}_{c} \backslash\left[U_{\Omega}\right]\right|=2^{2^{c}}$.

Thus, with GCH, we have $|\widetilde{\Omega}|=\left|\left[U_{\Omega}\right]\right|=\aleph_{3}$, but $\left|U_{\Omega}\right|=\aleph_{2}$.
Of course, it is not the case that any two uncountable, compact, metrizable spaces Ω_{1} and Ω_{2} are homeomorphic. However, by Milyutin's theorem [1, Theorem 4.4.8], $C\left(\Omega_{1}\right)$ and $C\left(\Omega_{2}\right)$ are isomorphic as Banach spaces. Thus it seems possible that $C\left(\Omega_{1}\right)$ and $C\left(\Omega_{2}\right)$ are isomorphic as Banach spaces whenever the hyper-Stonean envelope of each of Ω_{1} and Ω_{2} is the above space X. However, this is not the case, as the following example shows.

EXAMPLE 4.25. There is a compact, uncountable, non-metrizable space Ω such that the hyper-Stonean envelope $\widetilde{\Omega}$ is homeomorphic to $\widetilde{\mathbb{I}}$.

Let $\Omega=\mathbb{I} \times\{0,1\}$ as a set, and identify \mathbb{I} with the subset $\mathbb{I} \times\{0\}$ of Ω. Let Ω be ordered lexicographically, and then assign the interval topology to Ω, so that a base of open sets for the topology on Ω is formed by sets of the form

$$
U=((a, i),(b, j))
$$

where $a, b \in \mathbb{I}$ and $i, j \in\{0,1\}$ and where either $a<b$ or $a=b, i=0$, and $j=1$; the relative topology from Ω on \mathbb{I} coincides with the Sorgenfrey topology [29, Example 1.2.2], which is generated by intervals of the form $(a, b]$. The space Ω is compact, but it is not metrizable because the Sorgenfrey topology on \mathbb{I} is not metrizable.

Clearly \mathbb{I} and Ω have the same cardinality, so the spaces $M_{d}(\mathbb{I})$ and $M_{d}(\Omega)$ of discrete measures can be identified. Hence the topological spaces $\beta \mathbb{I}_{d}$ and $\beta \Omega_{d}$ are homeomorphic.

We claim that it is also true that the spaces $M_{c}(\mathbb{I})$ and $M_{c}(\Omega)$ of continuous measures can be identified. To see this, first consider an open interval U in Ω of the above form, and set $V=(a, b) \times\{0,1\} \subset \Omega$ (with $V=\emptyset$ when $a \geq b$). We note that $V \supset U$ and that $|V \backslash U| \leq 2$, so that the symmetric difference $U \triangle V$ is always finite. Now consider the family \mathcal{F} of subsets E of Ω which have the property that $E \triangle(B \times\{0,1\})$ is countable for some Borel subset B of \mathbb{I}. The family \mathcal{F} is a σ-algebra, and \mathcal{F} contains all open intervals in Ω. It is easy to see that each open subset of Ω is a countable union of open intervals, and so \mathcal{F} contains all open sets in Ω. Hence \mathcal{F} contains all Borel subsets of Ω, so that, in fact, $\mathcal{F}=\mathfrak{B}_{\Omega}$. Let $\mu \in M_{c}(\Omega)$, and define $T \mu \in M_{c}(\mathbb{I})$ by

$$
(T \mu)(B)=\mu(B \times\{0,1\}) \quad\left(B \in \mathfrak{B}_{\mathbb{I}}\right)
$$

so that $T: M_{c}(\Omega) \rightarrow M_{c}(\mathbb{I})$ is a linear isometry. For each $\nu \in M_{c}(\mathbb{I})$, define

$$
\mu(E)=\nu(B) \quad\left(E \in \mathfrak{B}_{\Omega}\right)
$$

where $B \in \mathfrak{B}_{\mathbb{I}}$ is such that $E \Delta(B \times\{0,1\})$ is countable. Then $\mu(E)$ is well-defined, $\mu \in M_{c}(\Omega)$, and $T \mu=\nu$. Thus T is a surjection. It follows that the spaces Φ_{μ}, which is a clopen subspace of $\widetilde{\Omega}$, and $\Phi_{T \mu}$, which is a clopen subspace of $\widetilde{\mathbb{I}}$, are homeomorphic.

A maximal singular family of positive measures on Ω consists of \mathfrak{c} discrete measures and \mathfrak{c} continuous measures, and so it follows from our basic construction that $\widetilde{\Omega}$ and $\widetilde{\mathbb{I}}$ are homeomorphic.

It cannot be that $C(\Omega)$ is linearly homeomorphic to $C(\mathbb{I})$, or else $C(\Omega)$ would be separable and Ω would be metrizable by a remark on page 21 .

The above example gives rise to an interesting phenomenon, which we now describe.
Example 4.26. Our Example 4.25 leads to examples of two compact, uncountable spaces, Ω_{1} and Ω_{2}, with Ω_{1} metrizable and Ω_{2} non-metrizable, such that the two Banach spaces defined to be $E_{1}:=C\left(\Omega_{1}\right)$ and $E_{2}:=C\left(\Omega_{2}\right)$ have the property that E_{1}^{\prime} and E_{2}^{\prime} are isometrically isomorphic, but are such that E_{1} is separable, but E_{2} is non-separable.

Indeed, we take Ω_{1} to be the closed unit interval \mathbb{I} and Ω_{2} to be the space constructed in Example 4.25. Then $C\left(\Omega_{1}\right)^{\prime}$ and $C\left(\Omega_{2}\right)^{\prime}$ are each isometrically isomorphic to $N(\widetilde{\mathbb{I}})$. For a non-empty, compact space Y, the Banach space $C(Y)$ is separable if and only if the space Y is metrizable. Thus $C\left(\Omega_{1}\right)$ is separable, but $C\left(\Omega_{2}\right)$ is not separable.

A stronger example is given in [99, Proposition 5.5]: there is a non-separable compact space K such that $C(K)^{\prime}$ is isometrically isomorphic to $C(\mathbb{I})^{\prime}$.
$C(X)$ as a bidual space. Let X be a hyper-Stonean space. It is natural to ask when X is the hyper-Stonean envelope of some compact space Ω. Our conjecture is the following.

Suppose that $C(X)$ is isometrically the second dual space of a Banach space. Then there is a locally compact space Ω such that $X=\widetilde{\Omega}$.

We note that it does not follow from the fact that F is a Banach space such that $F^{\prime \prime}=C(X)$ for a compact space X that F has the form $C_{0}(\Omega)$ for some locally compact space Ω. For example, it is shown in 4 that there is a Banach space F such that F^{\prime} is isometrically linearly isomorphic to ℓ^{1}, so that $F^{\prime \prime} \cong C(\beta \mathbb{N})$, but such that F is not isomorphic to any complemented subspace of a space of the form $C(K)$; the space F is not isomorphic to any Banach lattice. However this does not give a counter-example to our conjecture. For further study of preduals of $\ell^{1}(\mathbb{Z})$, see [23].

The following result proves a special case of this conjecture.
Proposition 4.27. Let X be a hyper-Stonean space. Suppose that there is a Banach lattice F such that $F^{\prime \prime}$ is isometrically isomorphic to $C(X)$ as a Banach lattice. Then there is a compact space Ω such that $X=\widetilde{\Omega}$.

Proof. The dual of F is the Banach lattice $N(X)$ of normal measures on X, and this is an L-space. By [106, Theorem 27.1.1], F is an M-space. By a theorem of Kakutani (61], [106, $\S 13.3])$, an M-space is equal to $C_{0}(\Omega)$ as a Banach lattice for some locally compact space Ω. Since $F^{\prime \prime}$ is Banach lattice isomorphic to $C(X)$, there is an isometric isomorphism from $C(\widetilde{\Omega})$ onto $C(X)$. By the Banach-Stone Theorem $2.4(\mathrm{i}), X$ is homeomorphic to $\widetilde{\Omega}$.

A further special case of the conjecture, that in which $C(X)$ is isometrically the second dual space of a separable Banach space, has been resolved by Lacey in a striking manner: indeed, the two cases that we are considering are the only two cases.

First, let X be an infinite compact space for which $C(X)$ is isometrically the second dual space of a Banach space. Then the space $N(X)$ of normal measures on X is itself the dual of a Banach space, say $N(X)=F^{\prime}$. Since $N(X)$ has the form $L^{1}(\mu)$ for a measure μ, this says that ' F is a L_{1}-predual space', in the terminology of [67, §22]. We denote by ex X the set of extreme points of the closed unit ball $N(X)_{[1]}$. It is easy to see that points of ex X are exactly the point masses at the isolated points of X, and so we can identify ex X with this set of isolated points. It follows from the Krein-Milman theorem that ex X is infinite. (In the case where $C(X)=C_{0}(\Omega)^{\prime \prime}$ for a locally compact space Ω, we can, by Corollary 4.2, identify Ω as a set with the isolated points of X, and hence with ex $N(X)_{[1]}$.)

EXAMPLE 4.28. The compact space $X:=\widetilde{\mathbb{I}} \backslash \beta \mathbb{I}_{d}$ has no isolated points, and so X is a hyper-Stonean space such that $C(X)$ is not the second dual of any Banach space.

The following theorem is an immediate consequence of a theorem of Lacey 67, §22, Theorem 5]; it was first proved in [66], and a slightly stronger theorem of Hess is proved by a shorter proof in [46. We are indebted to Frederick Dashiell and Thomas Schlumprecht for a discussion of the literature on this question.

Theorem 4.29. Let X be an infinite compact space for which $C(X)$ is isometrically the second dual space of a separable Banach space. Then ex X is infinite. Further, there are only two possibilities for the space X (up to homeomorphism): either
(i) ex X is countable, $X=\beta \mathbb{N}$, and $C(X)=c_{0}^{\prime \prime}$; or
(ii) ex X is uncountable, $X=\widetilde{\mathbb{I}}$, and $C(X)=C(\mathbb{I})^{\prime \prime}$.

The analogous question in the isomorphic (not isometric) theory of Banach spaces was resolved in a similar way by Stegall [110]; for related work, see 44].

A historical remark. Let Ω be a compact space. Then in fact the hyper-Stonean envelope $\widetilde{\Omega}$ was already constructed in the PhD thesis of the third author, written more than 50 years ago [89] (see also [90, 91)! Let L be an Archimedean vector lattice, and choose a family $\left(e_{i}\right)$ in L^{+}that is maximal with respect to the property that $e_{i} \wedge e_{j}=0$ whenever $i \neq j$. For each i, there is a space U_{i} of 'ultrafilters' such that

$$
\left\{x \in L:|x|=\bigvee\left\{|x| \wedge n e_{i}: n \in \mathbb{N}\right\}\right\}
$$

can be represented by a space of continuous functions on U_{i} with values in $\mathbb{R} \cup\{-\infty, \infty\}$, each function taking values in \mathbb{R} save on a nowhere dense subset of U_{i}. The space U_{i} is Stonean for each i if and only if L is complete. Form the disjoint union U of the sets U_{i}, giving U the topology such that each U_{i} is clopen in U, and set $X=\beta U$. Then there is a representation of L as a space of functions on X. In the special case where $L=M(\Omega)$, we obtain a representation of this form, with $X=\widetilde{\Omega}$ such that a measure $\mu \in M(\Omega)_{\mathbb{R}}$ is represented by a continuous function $\widehat{\mu}: X \rightarrow\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$. Further, for each $\lambda \in B^{b}(\Omega)$ and $\mu \in M(\Omega)$, we have

$$
\int_{\Omega} \lambda \mathrm{d} \mu=\kappa_{E}(\lambda) \cdot \widehat{\mu} .
$$

Essentially the same representation of $C(\widetilde{\Omega})=M(\Omega)^{\prime}$ as ours is given by Gordon in [40, §6] and by Wong in [123], extending a theorem of Šreĭder [109]. We now recover these results from our remarks above.

Let Ω be a non-empty, locally compact space, and form the hyper-Stonean envelope $\widetilde{\Omega}$. We adopt the above notation involving \mathcal{F}; further, we write \mathcal{G}_{i} for the Gel'fand transform $\mathcal{G}_{\nu_{i}}$ for each $i \in I$. We take $\Lambda \in C(\widetilde{\Omega})=M(\Omega)^{\prime}$. For each $i \in I$, we set $\Lambda_{i}=\Lambda \mid L^{1}\left(\Omega, \nu_{i}\right)$, so that, by (4.1), we have $\mathcal{G}_{i}\left(\Lambda_{i}\right)=\Lambda \mid \Phi_{i}$. The family $\left(\Lambda_{i}: i \in I\right)$, which represents Λ, is a generalized function in the sense of [123].

We now consider the famous memoir [114] of J. L. Taylor. In [114, §2.4], the compact spaces $\widetilde{\Omega}$ and Φ_{μ} (for $\mu \in M(\Omega)^{+}$) are termed the 'standard domains' of the L-spaces $M(\Omega)$ and $L^{1}(\Omega, \mu)$. The canonical embedding $\kappa: M(\Omega) \rightarrow M(\widetilde{\Omega})$ is the 'standard representation' of $M(\Omega)$; for each $\mu \in M(\Omega)^{+}$, the map

$$
f \mapsto \kappa(f) \mid \Phi_{\mu}, \quad L^{1}(\Omega, \mu) \rightarrow M\left(\Phi_{\mu}\right),
$$

is the 'standard representation' of $L^{1}(\Omega, \mu)$.
The second dual space of $C_{0}(\Omega)$ has been widely studied. For example, see [106, §27.2]. An early paper of Kaplan is [63], which mainly studies $E_{\mathbb{R}}=C_{0}(\Omega)_{\mathbb{R}},\left(E^{\prime}\right)_{\mathbb{R}}$, and $\left(E^{\prime \prime}\right)_{\mathbb{R}}$ as Banach lattices. The study is continued in [64] and further papers of Kaplan; for a comprehensive account of this work, see 65].

Now here are some remarks of Gordon from [40, §5]. Our space U_{Ω} is called Y in [40, §5]. The family of all subsets of U_{Ω} of the form Φ_{μ} forms a basis of open sets for a topology, called the δ-topology in [40]; clearly this topology agrees with the relative topology from $(\widetilde{\Omega}, \sigma)$ on each Φ_{μ}. A subset K of U_{Ω} has the form Φ_{μ} for some $\mu \in M(\Omega)^{+}$ if and only if K is open and compact in the δ-topology of U_{Ω}.

5. Locally compact groups

Topological semigroups. Before beginning this chapter, we wish to recall quickly some basic facts about topological semigroups that we shall use.

Let S be a semigroup, with the product of two elements denoted by juxtaposition. For $t \in S$, we set

$$
L_{t}: s \mapsto t s, \quad R_{t}: s \mapsto s t, \quad S \rightarrow S
$$

For subsets A and B of S, set $A B=\{s t: s \in A, t \in B\}$. A non-empty subset I of S is a left ideal in S if $S I \subset I$ and a right ideal if $I S \subset I ; I$ is an ideal if it is both a left and a right ideal in S. A minimum ideal in S is an ideal which is minimum in the family of all ideals in S when this family is ordered by inclusion. A minimum ideal of S is unique if it exists; it is denoted by $K(S)$, and is often called the kernel of S.

A semigroup S which is also a topological space is a right topological semigroup if the map R_{t} is continuous on S for each $t \in S$, and a semitopological semigroup (respectively, a topological semigroup) if the product map

$$
(s, t) \mapsto s t, \quad S \times S \rightarrow S,
$$

is separately continuous (respectively, continuous). A group G is a topological group if it is a topological semigroup and the map

$$
s \mapsto s^{-1}, \quad S \rightarrow S,
$$

is continuous. In the case where S is (locally) compact as a topological space, we say that S is a (locally) compact, right topological semigroup or a (locally) compact topological semigroup, or a (locally) compact group, respectively. For an extensive account of topological semigroups, see [52]; see also [5] and [17] Definition 3.24].

For example, let T be a semigroup. Then, for each $s \in T$, the map L_{s} has an extension to a continuous map $L_{s}: \beta T \rightarrow \beta T$. For each $u \in \beta T$, define $s \square u=L_{s}(u)$. Next, the map $R_{u}: s \mapsto s \square u, T \rightarrow \beta T$, has an extension to a continuous map $R_{u}: \beta T \rightarrow \beta T$ for $u \in \beta T$. Define

$$
u \square v=R_{v}(u) \quad(u, v \in \beta T) .
$$

Then $S=(\beta T, \square)$ is a compact, right topological semigroup.
There is a major structure theorem for compact, right topological semigroups (and for more general semigroups); see [17, Theorem 3.25] and [52]. We state the (small) part of this theorem that we shall use.

Theorem 5.1. Let S be a compact, right topological semigroup. Then the minimum ideal $K(S)$ exists. Further, the families of minimal left ideals and of minimal right ideals of S form partitions of $K(S)$; in particular, $L \cap K(S) \neq \emptyset$ for each left ideal L of S.

The measure algebra of a locally compact group. Our next step is to take G to be a locally compact group, with left Haar measure denoted by m or m_{G}. We apply the theory of earlier chapters, with G replacing Ω. The topology on G is again denoted by τ; the identity of G is e or e_{G}, and we again set $E=C_{0}(G)$.

For example, we have introduced the Cantor cube \mathbb{Z}_{p}^{κ} of weight κ; here $p \geq 2$ and κ is an infinite cardinal. The space \mathbb{Z}_{p}^{κ} is a totally disconnected, perfect compact space. The set \mathbb{Z}_{p} is a finite group with respect to addition modulo p, and \mathbb{Z}_{p}^{κ} is a group with respect to the coordinatewise operations, denoted by + . Clearly $\left(\mathbb{Z}_{p}^{\kappa},+\right)$ is a compact group. In Example 2.16, we described a measure m on Z_{p}^{κ}; this is easily seen to be the Haar measure on \mathbb{Z}_{p}^{κ}.

We now define the group algebra $\left(L^{1}(G), \star\right)$ and the measure algebra $M=(M(G), \star)$ of a locally compact group G; for details, see [48, [49, and [13, §3.3]. Indeed, for measures $\mu, \nu \in M(G)$, we set

$$
(\mu \star \nu)(B)=\int_{G} \mu\left(B s^{-1}\right) \mathrm{d} \nu(s) \quad\left(B \in \mathfrak{B}_{G}\right)
$$

so that $\mu \star \nu \in M(G)$; the measure $\mu \star \nu$ is also defined as an element of $C_{0}(G)^{\prime}$ by the formula

$$
\langle\lambda, \mu \star \nu\rangle=\int_{G} \int_{G} \lambda(s t) \mathrm{d} \mu(s) \mathrm{d} \nu(t) \quad\left(\lambda \in C_{0}(G)\right) .
$$

Then $(M(G), \star,\|\cdot\|)$ is a Banach algebra, called the measure algebra of G. This algebra has an identity $\delta_{e_{G}}$; the algebra is commutative if and only if G is abelian.

Let $\mu, \nu \in M(G)^{+}$. Then $\mu \star \nu \in M(G)^{+}$, and $\|\mu \star \nu\|=\|\mu\|\|\nu\|$.
For $f, g \in L^{1}(G)$, identified with the measures $f \mathrm{~d} m$ and $g \mathrm{~d} m$, respectively, we have

$$
(f \star g)(t)=\int_{G} f(s) g\left(s^{-1} t\right) \mathrm{d} m(s) \quad(t \in G) .
$$

The measure algebra $(M(G), \star)$ is always semisimple [13, Theorem 3.3.36]. The subspaces $M_{c}(G)$ and $L^{1}(G)$, identified with $M_{a c}(G)$, are closed ideals in $M(G)$, and $\ell^{1}(G)$ is a closed subalgebra of $M(G)$, so that

$$
M(G)=\ell^{1}(G) \ltimes M_{c}(G)=\ell^{1}(G) \oplus_{1} L^{1}(G) \oplus_{1} M_{s}(G) .
$$

In the case where G is compact, $m_{G} \in M(G)^{+}$; in this case, we normalize m_{G} so that $m_{G}(G)=1$.

The group algebra $L^{1}(G)$ will often be denoted just by A; by Wendel's theorem, the multiplier algebra of A is the measure algebra $M=(M(G), \star)$ [13, Theorem 3.3.40], and we regard A as a closed ideal in M. The point masses in M have the form δ_{s} for $s \in G$. The Banach algebra A has a bounded approximate identity, for example, the net $\left\{\chi_{U} / m(U): u \in \mathcal{U}\right\}$, where \mathcal{U} is the family of compact neighbourhoods of e_{G}, directed by reverse inclusion, is a bounded approximate identity.

For a function f on G, we set $\check{f}(s)=f\left(s^{-1}\right)(s \in G)$. The module operations in the space $L^{\infty}(G)=L^{1}(G)^{\prime}=A^{\prime}$ are given by

$$
f \cdot \lambda=(\check{f} / \Delta) \star \lambda, \quad \lambda \cdot f=\lambda \star \check{f} \quad\left(f \in A, \lambda \in A^{\prime}\right),
$$

where Δ is the modular function of G.
Let H be a closed subgroup of G, so that H is also a locally compact group, with left Haar measure m_{H}. We regard m_{H} as a measure on G by setting

$$
m_{H}(B)=m_{H}(B \cap H) \quad\left(B \in \mathfrak{B}_{G}\right)
$$

Let G be a locally compact group. The map

$$
\mu \mapsto \mu(G)=\langle\mu, 1\rangle, \quad M(G) \rightarrow \mathbb{C}
$$

is a character on $M(G)$, called the augmentation character. (This may be the only character on $M(G)$.) In the case where G is compact, we clearly have $m_{G} \in M(G)^{+}$and

$$
\begin{equation*}
\mu \star m_{G}=m_{G} \star \mu=\langle\mu, 1\rangle m_{G} \quad(\mu \in M(G)) . \tag{5.1}
\end{equation*}
$$

In particular, $m_{G} \star m_{G}=m_{G}$. Further, each $\nu \in M(G)$ such that

$$
\mu \star \nu=\nu \star \mu=\langle\mu, 1\rangle \nu \quad(\mu \in M(G))
$$

is a left-invariant measure on G, and so has the form ζm_{G} for some $\zeta \in \mathbb{C}$ (using the argument in [13, Proposition 3.3.53]).

Let G be a locally compact group, and let N be a closed, normal subgroup of G. Then $H:=G / N$ is a locally compact group for the quotient topology, and the quotient map $\eta: G \rightarrow H$ is a continuous, open map which is a group epimorphism; see [48, §5] and [95, §3.1]. The induced map

$$
\bar{\eta}: M(G) \rightarrow M(H)
$$

was defined in equation 3.12, and $\widetilde{\eta}=\bar{\eta}^{\prime \prime} \mid G: G \rightarrow H$ was defined in 4.6). Here we write Φ_{G} and Φ_{H} for the character spaces of $L^{\infty}\left(G, m_{G}\right)$ and $L^{\infty}\left(H, m_{H}\right)$, respectively.

Proposition 5.2.
(i) Let G and H be locally compact groups, and let $\eta: G \rightarrow H$ be a continuous, open epimorphism. Then the induced map $\bar{\eta}:(M(G), \star) \rightarrow(M(H), \star)$ is a continuous epimorphism.
(ii) Let G and H be compact groups, and let $\eta: G \rightarrow H$ be a continuous epimorphism. Then

$$
\bar{\eta}\left(m_{G}\right)=m_{H}, \quad \widetilde{\eta}(\widetilde{G})=\widetilde{H}, \quad \text { and } \quad \widetilde{\eta}\left(\Phi_{G}\right)=\Phi_{H}
$$

Proof. (i) Let $N=\eta^{-1}\left(\left\{e_{H}\right\}\right)$, the kernel of η. By [48, (5.27)], we have $H=G / N$ as a locally compact group. It follows from (3.11) that $\bar{\eta}$ is exactly the map described in 95 , (8.2.12)]. Thus the result is [95, Proposition 8.2.8].
(ii) By 5.1 and (i),

$$
\delta_{x} \star \bar{\eta}\left(m_{G}\right)=\bar{\eta}\left(m_{G}\right) \star \delta_{x}=\bar{\eta}\left(m_{G}\right) \quad(x \in H)
$$

and so $\bar{\eta}\left(m_{G}\right)=m_{H}$. By Corollary 4.12 (ii), $\widetilde{\eta}(\widetilde{G})=\widetilde{H}$ and hence $\widetilde{\eta}\left(\Phi_{m_{G}}\right)=\Phi_{\bar{\eta}\left(m_{G}\right)}$. Thus $\widetilde{\eta}\left(\Phi_{G}\right)=\Phi_{H}$.

We state the following closely related result; it is immediate from Proposition 3.19, A similar result is given as [55, Proposition 2.1(i)], where it is stated for abelian groups. For a general theory of the embeddings of group algebras, culminating in Cohen's idempotent theorem, see [101, Chapter 4].

Proposition 5.3. Let G and H be locally compact groups, and let $\eta: G \rightarrow H$ be a Borel monomorphism. Then the induced map $\bar{\eta}:(M(G), \star) \rightarrow(M(H), \star)$ is an isometric injection.

The hyper-Stonean envelope of G. Let G be a locally compact group. Then the hyper-Stonean envelope of the space G is denoted by \widetilde{G}. As before, the canonical projection is $\pi: \widetilde{G} \rightarrow G_{\infty}$, the dual space of $M(G)$ is $C_{0}(G)^{\prime \prime}=C(\widetilde{G})$, and the second dual space is $M(\widetilde{G})=M(G)^{\prime \prime}$. Here $M(G)^{\prime}$ is a commutative C^{*}-algebra, and its identity, the constant function 1, when regarded as a functional on $M(G)$, is just the augmentation character. Thus $M(G)$ is a Lau algebra in the sense of Chapter 1 . We have noted that the dual space $L^{\infty}(G)$ of the group algebra $L^{1}(G)$ is a C^{*}-algebra, and again the constant function 1, when regarded as a functional on $L^{1}(G)$ is just the augmentation character restricted to $L^{1}(G)$, and so $L^{1}(G)$ is also a Lau algebra. Here \square and \diamond are the Arens products from page 8.
DEFINITION 5.4. Let G be a locally compact group. Then $(M(\widetilde{G}), \square)$ and $(M(\widetilde{G}), \diamond)$ are the unital Banach algebras formed by identifying $M(\widetilde{G})$ with the Banach algebras $\left(M(G)^{\prime \prime}, \square\right)$ and $\left(M(G)^{\prime \prime}, \diamond\right)$.

The space $E=C_{0}(G)$ is a $\|\cdot\|$-closed subspace of $M(G)^{\prime}=C(\widetilde{G})$. For $\mu \in M(G)$ and $\lambda \in C_{0}(G)$, we have

$$
(\lambda \cdot \mu)(t)=\int_{G} \lambda(t s) \mathrm{d} \mu(s), \quad(\mu \cdot \lambda)(t)=\int_{G} \lambda(s t) \mathrm{d} \mu(s) \quad(t \in G)
$$

and so $C_{0}(G)$ is a submodule of $M(G)^{\prime}$. Thus $M(G)$ is a dual Banach algebra [102, Exercise 4.4.1], and hence

$$
\begin{equation*}
M(\widetilde{G})=M(G)^{\prime \prime}=M(G) \ltimes E^{\circ} \tag{5.2}
\end{equation*}
$$

where we are identifying $M(G)$ with $\kappa(M(G))$. In particular, the map

$$
\begin{equation*}
\pi=\kappa_{E}^{\prime}:(M(\widetilde{G}), \square) \rightarrow(M(G), \star) \tag{5.3}
\end{equation*}
$$

is a continuous epimorphism, as in 56, Theorem 3.3].
Take $\mathrm{M}, \mathrm{N} \in M(\widetilde{G})^{+}$. Then $\mathrm{M} \square \mathrm{N} \in M(\widetilde{G})^{+}$, and

$$
\begin{aligned}
\|\mathrm{M} \square \mathrm{~N}\| & =(\mathrm{M} \square \mathrm{~N})(\widetilde{G})=\pi(\mathrm{M} \square \mathrm{~N})(G)=(\pi(\mathrm{M}) \star \pi(\mathrm{N}))(G) \\
& =\pi(\mathrm{M})(G) \pi(\mathrm{N})(G)=\mathrm{M}(\widetilde{G}) \mathrm{N}(\widetilde{G})=\|\mathrm{M}\|\|\mathrm{N}\|
\end{aligned}
$$

by 3.5. In particular, let $\varphi, \psi \in \widetilde{G}$. Then $\delta_{\varphi} \square \delta_{\psi} \in M(\widetilde{G})^{+}$, and $\left\|\delta_{\varphi} \square \delta_{\psi}\right\|=1$, where we write $\delta_{\varphi} \square \delta_{\psi}$ for $\delta_{\varphi} \square \delta_{\psi}$.

Proposition 5.5. Let G be a locally compact group. Then the following conditions on $\mathrm{M} \in M(\widetilde{G})$ are equivalent:
(a) M is invertible in $(M(\widetilde{G}), \square)$ with $\|\mathrm{M}\|=\left\|\mathrm{M}^{-1}\right\|=1$;
(b) there exists $s \in G$ and $\zeta \in \mathbb{T}$ such that $\mathrm{M}=\zeta \delta_{s}$.

Proof. This is [34, Theorem 3.5].
Let B be a Borel subset of G. Then we have defined the subset K_{B} of \widetilde{G} in Chapter 1 . It is clear that

$$
\delta_{s} \square \chi_{K_{B}}=\chi_{K_{B s}-1} \quad(s \in G) .
$$

For example, let G be a discrete group. Then $M(G)=\ell^{1}(G)$ and \widetilde{G} is identified with βG. For a general locally compact group G, we have $\beta G_{d}=\bar{G}$ and $\left(\beta G_{d}, \square\right)$ is a compact, right topological semigroup which is a subsemigroup of $\left(M\left(\beta G_{d}\right), \square\right)$.

Let G be a compact group. Then it follows immediately from (5.1) by taking weak-* limits that

$$
\begin{equation*}
\mathrm{M} \square m_{G}=m_{G} \square \mathrm{M}=\langle\mathrm{M}, 1\rangle m_{G} \quad(\mathrm{M} \in M(\widetilde{G})) . \tag{5.4}
\end{equation*}
$$

Proposition 5.6. Let G be a compact group. Suppose that $\mathrm{N} \in M(\widetilde{G})$ satisfies the equations

$$
\begin{equation*}
\mathrm{M} \square \mathrm{~N}=\mathrm{N} \square \mathrm{M}=\langle\mathrm{M}, 1\rangle \mathrm{N} \quad(\mathrm{M} \in M(\widetilde{G})) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{N} \square \mathrm{~N}=\mathrm{N} . \tag{5.6}
\end{equation*}
$$

Then $\mathrm{N}=m_{G}$ or $\mathrm{N}=0$.
Proof. Since N satisfies (5.5), necessarily

$$
m_{G} \square \mathrm{~N}=\mathrm{N} \square m_{G}=\mathrm{N} .
$$

By (5.4), we have $\mathrm{N} \square m_{G}=\langle\mathrm{N}, 1\rangle m_{G}$, and so $\mathrm{N}=\zeta m_{G}$, where $\zeta=\langle\mathrm{N}, 1\rangle$. By (5.6), $\zeta^{2}=\zeta$, and so $\zeta=0$ or $\zeta=1$, giving the result.

We now apply the theory of Chapters 3 and 4 , with G for Ω and m as left Haar measure on G.

Proposition 5.7. Let G be a locally compact group, let X be a Banach $C_{0}(G)$-submodule of $M(G)$, and denote the character space of the commutative C^{*}-algebra X^{\prime} by Φ_{X}. Then Φ_{X} is a clopen subset of \widetilde{G}.

Suppose further that X is a subalgebra (respectively, ideal) of the Banach algebra ($M(G), \star)$. Then

$$
\left(X^{\prime \prime}, \square\right)=\left(M\left(\Phi_{X}\right), \square\right)
$$

is a closed subalgebra (respectively, ideal) of $(M(\widetilde{G}), \square)$.
Proof. Since X is a Banach E-submodule of $M(G)$, it follows from Proposition 1.17 that $\left(X^{\prime}, \square\right)$ is a commutative C^{*}-algebra. By Proposition 4.1. Φ_{X} is a clopen subset of \widetilde{G} and we can identify X^{\prime} with $C\left(\Phi_{X}\right)$. Hence we can identify $X^{\prime \prime}$ as a Banach space with $M\left(\Phi_{X}\right)$.

If X is a subalgebra or ideal of $(M(G), \star)$, the Banach algebra ($\left.X^{\prime \prime}, \square\right)$ is a closed subalgebra or ideal, respectively, of $(M(\widetilde{G}), \square)$.
Definition 5.8. Let G be a locally compact group. Then Φ, \widetilde{G}_{c}, and \widetilde{G}_{d} are the character spaces of $L^{\infty}(G), M_{c}(G)^{\prime}$, and $\ell^{\infty}(G)$, respectively.

Thus Φ, \widetilde{G}_{c}, and $\widetilde{G}_{d}=\bar{G}$ are clopen subsets of \widetilde{G}.
Corollary 5.9. Let G be a locally compact group. Then

$$
\left(L^{\infty}(G)^{\prime}, \square\right)=(M(\Phi), \square) \quad \text { and } \quad\left(M_{c}(G)^{\prime \prime}, \square\right)=\left(M\left(\widetilde{G}_{c}\right), \square\right)
$$

are closed ideals and $\left(\ell^{\infty}(G)^{\prime}, \square\right)=(M(\bar{G}), \square)$ is a closed subalgebra of $(M(\widetilde{G}), \square)$.
We note that, in the special case where G is compact, $L^{1}(G)$ is an ideal in $(M(\Phi), \square)$ [118] and hence in $(M(\widetilde{G}), \square)$ [35, Lemma 4].

Introverted subspaces. Let G be a locally compact group. Since $L^{1}(G)$ and $M(G)$ are Lau algebras, we have definitions of introverted C^{*}-subalgebras X of $L^{\infty}(G)$ and of $M(G)^{\prime}$, and also of topologically invariant means on X. For example, a closed subspace X of $L^{\infty}(G)$ is an introverted C^{*}-subalgebra if X is a C^{*}-subalgebra of $L^{\infty}(G)$ and X is an introverted $L^{1}(G)$-submodule of $L^{\infty}(G)$. A topologically invariant mean on X is an element $m \in L^{\infty}(G)^{\prime}$ such that $\|m\|=\langle 1, m\rangle=1$ and

$$
\langle m, \lambda \cdot \mu\rangle=\langle m, \mu \cdot \lambda\rangle=\langle m, \lambda\rangle \quad\left(\lambda \in X, \mu \in \mathcal{P}\left(L^{1}(G)\right)\right) .
$$

The following result is given in [71, Corollary 4.3]; it also uses Johnson's famous theorem [59, [13, Theorem 5.6.42] on the amenability of $L^{1}(G)$.

THEOREM 5.10. Let G be a locally compact group. Then the following are equivalent:
(a) G is amenable;
(b) $L^{1}(G)$ is amenable;
(c) $L^{1}(G)$ is left-amenable;
(d) $M(G)$ is left-amenable.

We also record the following theorem of Dales, Ghahramani, and Helemskii [15.
Theorem 5.11. Let G be a locally compact group. Then $M(G)$ is amenable if and only if G is discrete and amenable.

In the present case, an introverted C^{*}-subalgebra X of $L^{\infty}(G)$ or of $M(G)^{\prime}$ is commutative. The character space of such a commutative C^{*}-algebra X is denoted by Φ_{X}; it is formed by identifying points of Φ, the character space of $L^{\infty}(G)$. As in Chapter 1, $\left(X^{\prime}, \square\right)$ is a Banach algebra; it is identified with $\left(M\left(\Phi_{X}\right), \square\right)$. The quotient map

$$
R_{X}: \Lambda \mapsto \Lambda \mid C_{0}(G), \quad\left(X^{\prime}, \square\right) \rightarrow(M(G), \star),
$$

is a continuous epimorphism.
In the case where $X \subset C^{b}(G)$, define $\theta \mu \in X^{\prime}$ for $\mu \in M(G)$ by

$$
\langle\theta \mu, \lambda\rangle=\int_{G} \lambda(s) \mathrm{d} \mu(s) \quad(\lambda \in X)
$$

Then $\theta:(M(G), \star) \rightarrow\left(M\left(\Phi_{X}\right), \square\right)$ is an isometric embedding and

$$
M\left(\Phi_{X}\right)=\theta(M(G)) \ltimes C_{0}(G)^{\circ} ;
$$

we regard $M(G)$ as a closed subalgebra of $M\left(\Phi_{X}\right)$. We also regard Φ_{X} as a compact subset of $M\left(\Phi_{X}\right)$, and so we see that $\left(\Phi_{X}, \square\right)$ is a compact, right topological semigroup
[52, Theorem 21.43]. Thus we have quotient maps

$$
\begin{equation*}
q_{G}:(M(\widetilde{G}), \square) \rightarrow\left(M\left(\Phi_{X}\right), \square\right) \quad \text { and } \quad q_{G}: \widetilde{G} \rightarrow \Phi_{X} \tag{5.7}
\end{equation*}
$$

both of the maps $q_{G}: \widetilde{G} \rightarrow \Phi_{X}$ and $q_{G}: \Phi \rightarrow \Phi_{X}$ are continuous epimorphisms. There is a natural embedding of G in Φ_{X}, and so we can regard G as a dense, open subspace of Φ_{X}.

For a discussion of the above objects, see [5, §4.4], [17, Chapter 5], [52, Chapter 21], and 75].

The space $L U C(G)$. Let G be a locally compact group. Then $L U C(G)$ denotes the closed subspace of $C^{b}(G)$ consisting of the left uniformly continuous functions on G : these are the functions $\lambda \in C^{b}(G)$ such that the map

$$
t \mapsto \lambda \cdot t, \quad G \rightarrow C^{b}(G)
$$

is continuous, where $(\lambda \cdot t)(s)=\lambda(t s)(s, t \in G)$. We set

$$
Z=L U C(G),
$$

so that $1 \in Z \subset C^{b}(G)$. The canonical embedding $\kappa_{E}: Z \rightarrow C(\widetilde{G})$ identifies Z as a unital C^{*}-subalgebra of $C(\widetilde{G})$. [In [48], Z is the space of right uniformly continuous functions on G.]

Let $\lambda \in L^{\infty}(G)$. Then λ is in the equivalence class of a function in $\operatorname{LUC}(G)$ if and only if the map

$$
t \mapsto \lambda \cdot t, \quad G \rightarrow L^{\infty}(G)
$$

is continuous, and so the space Z is a left-introverted C^{*}-subalgebra of $L^{\infty}(G)=C(\Phi)$; for these results, see [123, Lemma 6.2] and [16, Proposition 7.15]. Since the map $\Lambda \mapsto \Lambda \mid \Phi$ from $\kappa_{E}(Z)$ onto $\kappa_{E}(Z) \mid \Phi$ is an injection, the space Z is clearly also a left-introverted C^{*}-subalgebra of $M(G)^{\prime}=C(\widetilde{G})$. We note that Z is also a left-introverted C^{*}-subalgebra of $\ell^{\infty}(G)=L^{1}\left(G_{d}\right)$, and the two respective products on Z coincide [16, Proposition 7.20].

The character space Φ_{Z} of Z is formed by identifying points of \widetilde{G} that are not separated by $\kappa_{E}(Z)$. (For $x \in G$, the equivalence classes in \widetilde{G} are just the fibres $G_{\{x\}}$.) The space Φ_{Z} is denoted by $\gamma_{u}(G)=\mathcal{L} \mathcal{U} \mathcal{C}(G)$ in [52, Example 21.5.6] and by $G^{\mathcal{L C}}$ in [5].

We shall use the following theorem; it is [52, Exercise 21.5.3].
Theorem 5.12. Let G be a locally compact group, and let A and B be subsets of G such that $A \cap U B=\emptyset$ for some $U \in \mathcal{N}_{e_{G}}$. Then $\bar{A} \cap \bar{B}=\emptyset$ in Φ_{Z}.

The spaces $A P(G)$ and $W A P(G)$. Let G be a locally compact group. For $\lambda \in L^{\infty}(G)$, set

$$
L O(\lambda)=\left\{\lambda \cdot \delta_{t}: t \in G\right\}, \quad R O(\lambda)=\left\{\delta_{t} \cdot \lambda: t \in G\right\}
$$

so that $L O(\lambda)$ and $R O(\lambda)$ are the left-orbit and right-orbit of λ, respectively. Then λ is almost periodic if the set $L O(\lambda)$ (equivalently, $R O(\lambda)$) is relatively compact in the $\|\cdot\|$ topology on $L^{\infty}(G)$ and weakly almost periodic if the set $L O(\lambda)$ (equivalently, $R O(\lambda)$) is relatively compact in the weak topology on $L^{\infty}(G)$; the spaces of almost periodic and weakly almost periodic functions on G are denoted by $A P(G)$ and $W A P(G)$, respectively. For the equivalence of the 'left' and 'right' versions of these definitions, see [5, pp. 130, 139].

The spaces $A P(G)$ and $W A P(G)$ are introverted C^{*}-subalgebras of $L^{\infty}(G)$. Further, by [5, p. 138], $C_{0}(G) \subset A P(G)$ if and only if G is compact.

Recall that $A P(A)$ and $W A P(A)$ for a Banach algebra A were defined in Definition 1.11. We have

$$
A P(G)=A P\left(L^{1}(G)\right) \quad \text { and } \quad W A P(G)=W A P\left(L^{1}(G)\right)
$$

The first proof of this is due to Wong, in the sense that it is an immediate consequence of [122, Lemma 6.3]; see also [69, Corollary 4.2(b)] and [28, 115]. It also follows from [122, Lemma 6.3] that $W A P(G) \subset L U C(G)$, and so

$$
A P(G) \subset W A P(G) \subset L U C(G) \subset C^{b}(G) \subset L^{\infty}(G)
$$

and $C_{0}(G) \subset W A P(G)$.
It follows from Proposition 1.14 that $A P(M(G))$ and $\operatorname{WAP}(M(G))$ are introverted subspaces of $M(G)^{\prime}$, and hence of $L^{\infty}(G)$. However it was not clear that $A P(M(G))$ and $W A P(M(G))$ are C^{*}-algebras; in fact, this has been proved recently by Daws in a striking paper [21]. For further related work, see [22] and [103].

Theorem 5.13. Let G be a locally compact abelian group. Then both $A P(M(G))$ and WAP $(M(G))$ are introverted C^{*}-subalgebras of $M(G)^{\prime}$.

We also have the following result, which is surely well-known.
Theorem 5.14. Let G be a locally compact group. Then:
(i) $W A P(G) \subset W A P(M(G))$;
(ii) $A P(G) \subset A P(M(G))$;
(iii) the space $W A P(G)$ is an introverted C^{*}-subalgebra of $M(G)^{\prime}$.

Proof. Set $M=M(G)$ and $\sigma=\sigma\left(M^{\prime}, M^{\prime \prime}\right)$.
(i) Let $\lambda_{0} \in W A P(G)$, so that $\lambda_{0} \in C^{b}(G) \subset M^{\prime}$. The set $R O\left(\lambda_{0}\right)$ is relatively compact in $\sigma(C(\Phi), M(\Phi))$, and hence in σ. Let K be the σ-closed convex hull of $R O\left(\lambda_{0}\right)$. By the Krein-Šmulian theorem [13, Theorem A.3.29], K is compact in $(C(\widetilde{G}), \sigma)$.

Let p be the product topology on \mathbb{C}^{G}. Then (K, p) is Hausdorff and (K, σ) is compact. But $p \leq \sigma$, and so p and σ agree on K.

Let $\mu \in M(G)_{[1]}$. We regard μ as an element of $C^{b}(G)^{\prime}$, and then take a normpreserving extension of μ to be an element of the Banach space $\ell^{\infty}(G)=C\left(\beta G_{d}\right)$. The unit ball $\ell^{1}(G)_{[1]}$ is weak-* dense in $C\left(\beta G_{d}\right)_{[1]}$, and so there is a net $\left(\mu_{\alpha}\right)$ in $M_{d}(G)_{[1]}$ such that $\left\langle\mu_{\alpha}, \lambda\right\rangle \rightarrow\left\langle\mu_{\alpha}, \lambda\right\rangle$ for each $\lambda \in C^{b}(G)$. Hence

$$
\left(\mu_{\alpha} \cdot \lambda\right)(t)=\left\langle\mu_{\alpha}, \lambda \cdot \delta_{t}\right\rangle \rightarrow\left\langle\mu, \lambda \cdot \delta_{t}\right\rangle=(\mu \cdot \lambda)(t) \quad(t \in G)
$$

This shows that $\mu_{\alpha} \cdot \lambda \rightarrow \mu \cdot \lambda$ in (K, p), and hence in (K, σ). Since $R O\left(\lambda_{0}\right) \subset K$ and (K, σ) is compact, it follows that $\left\{\mu \cdot \lambda: \mu \in M(G)_{[1]}\right\} \subset K$. This implies that $K(\lambda)$, as defined in (1.4), is compact in $\left(M^{\prime}, \sigma\right)$, showing that $\lambda_{0} \in W A P(M(G))$.
(ii) This is similar.
(iii) The argument in (i) shows that $\mu \cdot \lambda \in W A P(G)$ whenever $\lambda \in W A P(G)$ and $\mu \in M(G)$, and so $W A P(G)$ is a Banach left $M(G)$-submodule of the dual module $M(G)^{\prime}$. Similarly, $W A P(G)$ is a Banach right $M(G)$-submodule of $M(G)^{\prime}$, and clearly WAP (G)
is a Banach $M(G)$-sub-bimodule of $M(G)^{\prime}$. By (i), we have

$$
W A P(G) \subset W A P(M(G))
$$

and so, by Proposition 1.14 (ii), $W A P(G)$ is introverted in $M(G)^{\prime}$. Certainly $W A P(G)$ is a C^{*}-subalgebra of $M(G)^{\prime}$ with $C_{0}(G) \subset W A P(G)$, and so $W A P(G)$ is an introverted C^{*}-subalgebra of $M(G)^{\prime}$.

Proposition 5.15. Let G be a locally compact group, and take $\lambda \in \ell^{\infty}(G)$. Then we have $\kappa_{E}(\lambda) \mid \widetilde{\Omega}_{d} \in W A P(M(G))$ if and only if $\lambda \in W A P\left(G_{d}\right)$.
Proof. For $\lambda \in \ell^{\infty}(G)$, set $T \lambda=\kappa_{E}(\lambda) \mid \widetilde{G}_{d}$ (so that $T \lambda$ is uniquely defined in $\left.C(\widetilde{G})\right)$.
Let $\lambda \in \ell^{\infty}(G)$. For $\mu, \nu \in M(G)$, we have
$\langle\nu, \mu \cdot T \lambda\rangle=\left\langle\mu \star \nu, j_{d}^{\prime}\left(\kappa_{E}(\lambda)\right)\right\rangle=\left\langle(\mu \star \nu)_{d}, j_{d}^{\prime}\left(\kappa_{E}(\lambda)\right)\right\rangle=\left\langle\mu_{d} \star \nu_{d}, j_{d}^{\prime}\left(\kappa_{E}(\lambda)\right)\right\rangle=\left\langle\nu_{d}, \mu_{d} \cdot \lambda\right\rangle$,
where the last two dualities are $\ell^{1}-\ell^{\infty}$-dualities. Thus $\overline{K(T \lambda)}$ in $C(\widetilde{G})$ is equal to $\overline{K(\lambda)}$ in $\ell^{\infty}(G)$, and so these two sets are weakly compact in the appropriate space if and only if the other has the same property.

The result follows.
Since $W A P(M(G))$ contains $W A P\left(G_{d}\right)$, which includes $C_{0}\left(G_{d}\right)$ as a subspace, we see that $W A P(G)=W A P(M(G))$ if and only if G is discrete. It seems that the spaces $A P(M(G))$ and $W A P(M(G))$ are not well understood in the case where G is not discrete.

Let G be a locally compact group. It is interesting to ask when $W A P(M(G))$ has a topological invariant mean; we have the following partial result.

Proposition 5.16. Let G be a locally compact group. Suppose that G is discrete or amenable. Then WAP $(M(G))$ has a topological invariant mean.

Proof. This is immediate in the case where G is discrete.
Now suppose that G is amenable. Then, by Proposition 5.10, $M(G)$ is a left-amenable Banach algebra, and so, by Proposition 1.21, $M(G)^{\prime}$ has a topological left-invariant mean. Similarly, $M(G)^{\prime}$ has a topological right-invariant mean, and hence a $M(G)^{\prime}$ has a topological invariant mean. The restriction of this mean to $W A P(M(G))$ is a topological invariant mean on $\operatorname{WAP}(M(G))$.

The structure semigroup of G. The structure semigroup of a locally compact abelian group G was introduced by J. L. Taylor in [113] and discussed in some detail by Taylor in [114, Chapters 3, 4]; the work is also described in the text [41, §5.1] of Graham and McGehee. This structure semigroup has been used by Brown 6 and by Chow and White [9; an important early paper of Hewitt and Kakutani is 47].

We shall present what appears to be a somewhat more direct and abstract approach to the definition and the results. The definition is also applicable to non-abelian groups, but the semigroup may be trivial in the non-abelian case.

Definition 5.17. Let G be a locally compact group. The character space of the Banach algebra $M(G)$ is $\Phi_{M(G)}=\Phi_{M}$.

Let $\Lambda \in \Phi_{M}$. Then Λ is an element of $M(G)^{\prime}=C(\widetilde{G})$ with $|\Lambda|_{\widetilde{G}}=1$, and so Φ_{M} is a subset of $C(\widetilde{G})_{[1]}$; in particular, Φ_{M} inherits a product from $C(\widetilde{G})_{[1]}$. A key fact is that
Φ_{M} is closed under complex conjugation and this product, so that Φ_{M} is a $*$-semigroup. This follows from results in [109]; an explicit, simple proof is given in [94]; a result that applies when the group G is replaced by an arbitrary locally compact abelian semigroup with separately continuous product is given in [9] and 96, Theorem (4.1)].

The constant function 1 on \widetilde{G}, regarded as a continuous linear functional on $M(G)$, is exactly the augmentation character on $M(G)$, and so we may say that $1 \in \Phi_{M}$.

Suppose that the locally compact group G is abelian. Then the set of elements Λ of $C(\widetilde{G})_{[1]}$ with the property that $|\Lambda(\varphi)|=1(\varphi \in \widetilde{G})$ is just the canonical image of $\Gamma:=\widehat{G}$, the dual group of G [114, Corollary p. 36]. Let $\varphi, \psi \in \widetilde{G}$ with $\varphi \neq \psi$. There exists $\mathrm{M} \in C_{\mathbb{R}}(\widetilde{G})$ with $\mathrm{M}(\varphi)=0$ and $\mathrm{M}(\psi)=1$, and then $\exp (\mathrm{iM}) \in \Gamma$ and also $\exp (\mathrm{iM})(\varphi) \neq \exp (\mathrm{iM})(\psi)$. Thus Γ separates the points of \widetilde{G}. By the Stone-Weierstrass theorem, $\operatorname{lin} \Gamma$ is $|\cdot|_{\widetilde{G}}$-dense in $C(\widetilde{G})$.
Definition 5.18. Let G be a locally compact group. Then X_{G} is the $|\cdot|_{\tilde{G}^{\text {-closure }}}$ of $\operatorname{lin} \Phi_{M}$ in $C(\widetilde{G})$.

Thus X_{G} is a unital C^{*}-subalgebra of $C(\widetilde{G})$.
Let $\mu \in M(G)$ and $\gamma \in \Phi_{M}$. Then

$$
(\mu \cdot \gamma)(\nu)=\gamma(\mu \star \nu)=\gamma(\mu) \gamma(\nu) \quad(\nu \in M(G))
$$

and so $\mu \cdot \gamma=\gamma(\mu) \gamma$. It follows that X_{G} is an $M(G)$-submodule of $M(G)^{\prime}$. In fact, each element of $\operatorname{lin} \Phi_{M}$ has finite-dimensional range as an operator on $M(G)^{\prime}$, and so

$$
X_{G} \subset A P(G) \subset A P(M(G)) \subset W A P(M(G)) \subset M(G)^{\prime}=C(\widetilde{G})
$$

In the case where the group G is compact, we have

$$
A P(G)=W A P(G)=C(G)
$$

see 101.
Proposition 5.19. Let G be a locally compact group. Then X_{G} is an introverted subspace of $M(G)^{\prime}$, and $\left(X_{G}^{\prime}, \square\right)=\left(X_{G}^{\prime}, \diamond\right)$ is a Banach algebra.
Proof. This follows immediately from Proposition 1.14 (ii).
The following definition was first given by Taylor; see [113, 114.
Definition 5.20. Let G be a non-discrete, locally compact group. Then the character space of X_{G} is denoted by $S(G)$ and called the structure semigroup of $M(G)$.

Suppose that G is a (discrete) abelian group. Then $S(G)$ is the Bohr compactification of G; the space $(S(G), \square)$ is a compact group.

The justification for the term 'semigroup' will come in Proposition 5.21 below. Set $X=X_{G}$. We see that $S(G) \subset X_{[1]}^{\prime}$; as usual, $S(G)$ is given the relative $\sigma\left(X^{\prime}, X\right)$-topology. The quotient map

$$
q_{G}:(M(\widetilde{G}), \square) \rightarrow\left(X^{\prime}, \square\right)
$$

is a continuous homomorphism that induces a continuous homeomorphism of \widetilde{G} onto $S(G)$. The space $S(G)$ inherits the multiplication \square from $\left(X_{[1]}^{\prime}, \square\right)$.

The following result is a theorem of Rennison [96, Theorem (5.2)]; we shall obtain it in a more general context in the next section.

Proposition 5.21. Let G be a locally compact abelian group. Then $(S(G), \square)$ is a compact, abelian topological semigroup.

In [96, Theorem (5.4)], the semi-characters on $S(G)$ are identified with the Gel'fand transforms of elements of $\Phi_{M(G)}$, and in [96, Theorem (6.5)] it is shown that the semigroup $(S(G), \square)$ is exactly the structure semigroup of $M(G)$ which was defined by Taylor 114 in a more complicated manner. In 83, Theorem 5.2], McKilligan and White consider the situation where $M(G)$ is replaced by a general ' L-algebra' $\mathfrak{A} ; \mathfrak{A}^{\prime}$ is again a commutative C^{*}-algebra, and X_{G} is replaced by a general introverted subspace X of \mathfrak{A}^{\prime} such that $1 \in X \subset W A P(\mathfrak{A})$; they give a necessary and sufficient condition for the character space of X to be a subsemigroup of $X_{[1]}^{\prime}$ with respect to the relative Arens product \square.

For further study of the structure semigroup, see [114, [41, §5.1], and §4, Chapitre IV, of the substantial text 53 .

The structure semigroup for Lau algebras. The notion of a Lau algebra was recalled in Chapter 1.

Let A be a commutative Lau algebra, with character space Φ_{A}, so that $\Phi_{A} \subset A^{\prime}$, where $\left(A^{\prime}, \cdot\right)$ is a C^{*}-algebra (not necessarily commutative); the identity of A^{\prime} is e. Recall from equation 1.5 the definitions of $L_{\mu} a, R_{\mu} a \in A$ for $a \in A$ and $\mu \in A^{\prime}$.

Further suppose that T is a subset of A^{\prime} such that T is a subsemigroup of $\left(A^{\prime}, \cdot\right)$, and let T have the relative $\sigma\left(A^{\prime}, A\right)$-topology from A^{\prime}. Then T is a semitopological semigroup because the product in A^{\prime} is separately $\sigma\left(A^{\prime}, A\right)$-continuous. For each $a \in A$, define

$$
\widehat{a}: \varphi \mapsto \varphi(a), \quad T \rightarrow \mathbb{C}
$$

and set

$$
B(T)=\{\widehat{a}: a \in A\} .
$$

Then $B(T)$ is a subalgebra of $C^{b}(T)$. Clearly the map $a \mapsto \widehat{a}, A \rightarrow B(T)$, is a homomorphism, and it is an injection if and only if $\operatorname{lin} T$ is $\sigma\left(A^{\prime}, A\right)$-dense in A^{\prime}.

Now let $\lambda \in A^{\prime}$ and $f \in B(T)$. Define

$$
\left(\ell_{\varphi} f\right)(\psi)=f(\varphi \cdot \psi) \quad(\varphi, \psi \in T)
$$

so that

$$
\widehat{L_{\varphi} a}(\psi)=\langle a, \varphi \cdot \psi\rangle=\left(\ell_{\varphi} f\right)(\psi) \quad(\psi \in T),
$$

and hence $\widehat{L_{\varphi} a}=\ell_{\varphi} f$ whenever $f=\widehat{a}$. We now suppose throughout that $\operatorname{lin} T$ is $\sigma\left(A^{\prime}, A\right)$ dense in A^{\prime}, so that, for each $f \in B(T)$, there is a unique $a \in A$ with $f=\widehat{a}$. In the case where A has an identity u, we have $L_{\varphi} u=u(\varphi \in T)$. Define

$$
\lambda_{\ell}(f)(\varphi)=\left\langle L_{\varphi} a, \lambda\right\rangle=\langle a, \varphi \cdot \lambda\rangle=\left\langle R_{\lambda} a, \varphi\right\rangle \quad(\varphi \in T),
$$

so that $\lambda_{\ell}(f) \in C^{b}(T)$. Indeed, $\lambda_{\ell} f=\widehat{R_{\lambda} a} \in B(T)$.
Let $a, b \in A$ and $\varphi, \psi \in T$, so that $\varphi \cdot \psi \in T \subset \Phi_{A} \cup\{0\}$. Then

$$
\begin{aligned}
\left\langle R_{\varphi}(a b), \psi\right\rangle & =\langle a b, \varphi \cdot \psi\rangle=\langle a, \varphi \cdot \psi\rangle\langle b, \varphi \cdot \psi\rangle \\
& =\left\langle R_{\varphi} a, \psi\right\rangle\left\langle R_{\varphi} b, \psi\right\rangle=\left\langle\left(R_{\varphi} a\right)\left(R_{\varphi} b\right), \psi\right\rangle
\end{aligned}
$$

and so

$$
\begin{equation*}
R_{\varphi}(a b)=\left(R_{\varphi} a\right)\left(R_{\varphi} b\right) \in A \tag{5.8}
\end{equation*}
$$

Proposition 5.22. Let A be a commutative Lau algebra, and let T be a subsemigroup of $\Phi_{A} \cup\{0\}$ such that $e \in T$ and $\operatorname{lin} T$ is $\sigma\left(A^{\prime}, A\right)$-dense in A^{\prime}. Let $\lambda \in A^{\prime}$. Then L_{λ} is an automorphism on $A=B(T)$ if and only if $\lambda \in \Phi_{A} \cup\{0\}$.

Proof. Suppose that $\lambda \in \Phi_{A} \cup\{0\}$. We have noted that L_{λ} is a bounded linear operator on A. Let $a, b \in A$. For each $\varphi \in T$, we have

$$
\begin{aligned}
\left\langle L_{\lambda}(a b), \varphi\right\rangle & =\left\langle R_{\varphi}(a b), \lambda\right\rangle & & \text { by } 1.5 \\
& =\left\langle\left(R_{\varphi} a\right)\left(R_{\varphi} b\right), \lambda\right\rangle & & \text { by } 5.8 \\
& =\left\langle R_{\varphi} a, \lambda\right\rangle\left\langle R_{\varphi} b, \lambda\right\rangle & & \text { because } \lambda \in \Phi_{A} \cup\{0\} \\
& =\left\langle L_{\lambda} a, \varphi\right\rangle\left\langle L_{\lambda} b, \varphi\right\rangle & & \\
& =\left\langle\left(L_{\lambda} a\right)\left(L_{\lambda} b\right), \varphi\right\rangle & & \text { because } \varphi \in \Phi_{A} \cup\{0\} .
\end{aligned}
$$

Thus $L_{\lambda}(a b)=\left(L_{\lambda} a\right)\left(L_{\lambda} b\right)$, and so L_{λ} is an automorphism on A.
Conversely, suppose that L_{λ} is an automorphism on A. We have

$$
\langle a b, \lambda\rangle=\left\langle L_{\lambda}(a b), e\right\rangle=\left\langle L_{\lambda} a, e\right\rangle\left\langle L_{\lambda} b, e\right\rangle=\langle a, \lambda\rangle\langle b, \lambda\rangle,
$$

and so $\lambda \in \Phi_{A} \cup\{0\}$.
A subsemigroup of $\left(A^{\prime}, \cdot\right)$ is a $*$-semigroup if it is closed under the involution on A^{\prime}.
Proposition 5.23. Let A be a commutative Lau algebra. Then the following are equivalent:
(a) A is semisimple and $\Phi_{A} \cup\{0\}$ is a *-semigroup with respect to the product and involution on A^{\prime};
(b) there is $a *$-subsemigroup T of A^{\prime} with $e \in T \subset \Phi_{A} \cup\{0\}$ such that $\operatorname{lin} T$ is $\sigma\left(A^{\prime}, A\right)$ dense in A^{\prime}.

Proof. (a) \Rightarrow (b) Set $T=\Phi_{A} \cup\{0\}$. Clearly $e \in T$ and T is a $*$-subsemigroup T of A^{\prime}. Assume towards a contradiction that there exists $\lambda \in A^{\prime}$ with λ not in the $\sigma\left(A^{\prime}, A\right)$ closure of $\operatorname{lin} T$. Then there exists $a \in A$ such that $\langle a, \lambda\rangle=1$ and $\langle a, \varphi\rangle=0\left(\varphi \in \Phi_{A}\right)$, so that $\widehat{a}=0$. Since A is semisimple, $a=0$, a contradiction. Thus $\operatorname{lin} T$ is $\sigma\left(A^{\prime}, A\right)$-dense in A^{\prime}.
(b) \Rightarrow (a) Suppose that $a \in A$ with $\widehat{a}=0$. Since $T \subset \Phi_{A} \cup\{0\}$ and $\operatorname{lin} T$ is $\sigma\left(A^{\prime}, A\right)$ dense in A^{\prime}, it follows that $\langle a, \lambda\rangle=0\left(\lambda \in A^{\prime}\right)$, and so $a=0$. Thus A is semisimple.

Let $\varphi, \psi \in \Phi_{A} \cup\{0\}$. For each $a, b \in A$, we have

$$
\begin{aligned}
\langle a b, \varphi \cdot \psi\rangle & =\left\langle L_{\varphi}(a b), \psi\right\rangle=\left\langle\left(L_{\varphi} a\right)\left(L_{\varphi} b\right), \psi\right\rangle \quad \text { by Proposition } 5.22 \\
& =\left\langle L_{\varphi} a, \psi\right\rangle\left\langle L_{\varphi} b, \psi\right\rangle=\langle a, \varphi \cdot \psi\rangle\langle b, \varphi \cdot \psi\rangle
\end{aligned}
$$

and so $\varphi \cdot \psi \in \Phi_{A} \cup\{0\}$. It follows that $\Phi_{A} \cup\{0\}$ is a semigroup in A^{\prime}; clearly $\Phi_{A} \cup\{0\}$ is a $*$-semigroup.

An example given in [74, Corollary 3.8] exhibits a commutative, semisimple Lau algebra such that $\Phi_{A} \cup\{0\}$ is a $*$-semigroup, but Φ_{A} itself is not a semigroup.

Definition 5.24. Let A be a commutative Lau algebra such that $\left(A^{\prime}, \cdot\right)$ is commutative. Then X_{A} is the $\|\cdot\|$-closure of $\operatorname{lin} \Phi_{A}$ in A^{\prime}.

Thus X_{A} is a commutative, unital C^{*}-subalgebra of A^{\prime}. As before, X_{A} is an introverted subspace of A^{\prime}, and so $\left(X_{A}^{\prime}, \square\right)$ is a Banach algebra for the product \square inherited from $\left(A^{\prime}, \square\right)$. Also as before, we have $X_{A} \subset A P(A) \subset W A P(A)$.

In general, $A P(A)$ and $W A P(A)$ need not be subalgebras of the C^{*}-algebra A^{\prime}. For example, let K be a hypergroup with a left Haar measure (see [57, 100). Then the hypergroup algebra $A=L^{1}(K)$ is a Lau algebra. Since A has a bounded approximate identity [57, 100, it follows from Proposition 1.2 that $A \cdot A^{\prime} \cdot A=A \cdot A^{\prime}$ is a closed linear subspace of A^{\prime}, and hence $W A P(A) \subset A \cdot A^{\prime} \subset C^{b}(K)$ [107, Lemma 2]. Let $A P(K)$ and $W A P(K)$ denote the spaces of elements $\lambda \in C^{b}(K)$ such that $\left\{\ell_{x} \lambda: x \in K\right\}$ is relatively compact in the norm and weak topologies, respectively, of $C^{b}(K)$. Then, by [108, Remark 2.4(i)], we have $A P(K)=A P(A)$ and $W A P(K)=W A P(A)$. However there is an example in 68 of a hypergroup K such that $A P(K)$ is not a subalgebra of $C^{b}(K)$, and in 121 there is an example of a hypergroup K such that neither $A P(K)$ nor $W A P(K)$ is an algebra. Thus it follows that, in general, neither $A P(A)$ nor $W A P(A)$ is a subalgebra of A^{\prime}.

As we have remarked, Daws [21] has proved that $A P(M(G))$ and $W A P(M(G))$ are C^{*}-algebras when G is a locally compact group. It remains an interesting open question whether $A P(A)$ and $W A P(A)$ are necessarily C^{*}-subalgebras of A^{\prime} when A^{\prime} is a Hopfvon Neumann algebra, not necessarily commutative. This problem has been studied by Chou when A is the Fourier algebra $A(G)$ of a locally compact group [8]; see also [103].

Definition 5.25. Let A be a commutative Lau algebra such that $\left(A^{\prime}, \cdot\right)$ is commutative. Then the character space of X_{A} is denoted by $S(A)$; it is the structure semigroup of A.

Thus the definition of $S(A)$ generalizes that of $S(G)$ in the case where G is a locally compact abelian group, in which case $A=M(G)$ is a commutative Lau algebra and $A^{\prime}=C(\widetilde{G})$ is a commutative von Neumann algebra.

Theorem 5.26. Let A be a commutative Lau algebra such that $\left(A^{\prime}, \cdot\right)$ is commutative. Suppose that there is a *-subsemigroup T of A^{\prime} with $e \in T \subset \Phi_{A} \cup\{0\}$ such that $\operatorname{lin} T$ is $\sigma\left(A^{\prime}, A\right)$-dense in A^{\prime}. Then $(S(A), \square)$ is a compact, abelian topological semigroup.

Proof. The space $S(A)$ is compact because X_{A} is a unital, commutative C^{*}-algebra.
By (1.2), $\mathrm{M} \cdot \varphi=\langle\mathrm{M}, \varphi\rangle \varphi\left(\mathrm{M} \in A^{\prime \prime}, \varphi \in \Phi_{A}\right)$. Thus

$$
\langle s \square t, \varphi\rangle=\langle s, t \cdot \varphi\rangle=\langle s, \varphi\rangle\langle t, \varphi\rangle \quad\left(s, t \in S(A), \varphi \in \Phi_{A}\right) .
$$

Let $\varphi, \psi \in \Phi_{M}$. Then $\varphi \cdot \psi \in \Phi_{A} \cup\{0\}$ by Proposition 5.23, and so

$$
\langle s \square t, \varphi \cdot \psi\rangle=\langle s, \varphi \cdot \psi\rangle\langle t, \varphi \cdot \psi\rangle=\langle s, \varphi\rangle\langle s, \psi\rangle\langle t, \varphi\rangle\langle t, \psi\rangle=\langle s \square t, \varphi\rangle\langle s \square t, \psi\rangle .
$$

Thus $s \square t \in S(A)$ because $\operatorname{lin} \Phi_{A}$ is dense in X_{A}, and so $(S(G), \square)$ is a semigroup.
That $(S(A), \square)$ is a compact, topological semigroup follows from Proposition 1.15 .
Corollary 5.27. Let G be a locally compact abelian group. Then $(S(G), \square)$ is a compact, abelian topological semigroup.

Proof. Let $A=M(G)$ and $T=\Gamma$, the dual group of G. Then A and T satisfy the conditions in the above theorem.

Submodules of $M(G)^{\prime \prime}$. Let G be a locally compact group. A closed subspace F of $M(\widetilde{G})$ is translation-invariant if

$$
s \cdot \Lambda \cdot t \in F \quad(s, t \in G, \Lambda \in F)
$$

Again set $E=C_{0}(G)$ and $A=L^{1}\left(G, m_{G}\right)$. Let

$$
D=\ell^{1}(G)
$$

denote the subspace of M consisting of the discrete measures, so that D is a closed subalgebra of M, and let $M_{s}=M_{s}(G)$ denote the space of (non-discrete) singular measures on G, so that M_{s} is a closed linear subspace of M. It was first shown by Hewitt and Zuckerman 51 that, for every non-discrete, locally compact abelian group, there is a probability measure $\mu \in M_{s}(G)$ such that $\mu \star \mu \in L^{1}(G)$, and so $M_{s}(G)$ is not a subalgebra of $(M(G), \star)$. As in 2.8 , we have

$$
M=A \oplus_{1} D \oplus_{1} M_{s}=D \ltimes M_{c}
$$

as a direct ℓ^{1}-sum of Banach spaces; each of A, D, M_{c}, and M_{s} is a translation-invariant E-submodule of M. It follows that

$$
M^{\prime \prime}=A^{\prime \prime} \oplus D^{\prime \prime} \oplus M_{s}^{\prime \prime}=D^{\prime \prime} \ltimes M_{c}^{\prime \prime},
$$

where each of $A^{\prime \prime}, D^{\prime \prime}$, and $M_{s}^{\prime \prime}$ is a translation-invariant E-submodule of $M^{\prime \prime}$. Further, $A^{\prime \prime}$ and $M_{c}^{\prime \prime}$ are closed ideals in $\left(M^{\prime \prime}, \square\right)$ and $D^{\prime \prime}$ is a closed subalgebra ($\left.M^{\prime \prime}, \square\right)$. We note that the weak-* topologies on the spaces $A^{\prime \prime}, D^{\prime \prime}$, and $M_{s}^{\prime \prime}$ are just the appropriate relative weak-* topology from $M^{\prime \prime}$. The canonical embedding is now

$$
\kappa=\kappa_{M}: M \rightarrow M^{\prime \prime}=M(\widetilde{G})
$$

Set $\mathfrak{A}=A \oplus D$. Then \mathfrak{A} is a closed subalgebra of (M, \star) and

$$
\mathfrak{A}=D \ltimes A=\ell^{1}(G) \ltimes L^{1}(G) \quad \text { and } \quad \mathfrak{A}^{\prime \prime}=D^{\prime \prime} \ltimes A^{\prime \prime} .
$$

For details of the remarks concerning the Banach algebra $M(G)$, see [13, §3.3] and [48, (19.20) and (19.26)].

As we have stated, $L^{1}\left(G, m_{G}\right)$ is a closed ideal of $M(G)$. Now take $\mu \in M(\Omega)^{+}$. In general, $L^{1}(G, \mu)$ is not a subalgebra of $M(G)$, but there may be singular measures μ for which this is true; for example, this is the case if $\mu=m_{H}$ is the left Haar measure on a closed, non-open subgroup H of G.

Recall that the character space of $L^{\infty}(G)=L^{\infty}\left(G, m_{G}\right)=A^{\prime}$ is denoted just by Φ. Of course, Φ is a clopen subset of \widetilde{G}, and $\pi(\Phi)=G$. Thus we may suppose that the family $\left\{\Omega_{i}: i \in I\right\}$ of subsets of \widetilde{G} described in Proposition 4.8 contains the singletons $\{x\}$ for $x \in G$ and the compact space Φ. The space Φ is the topic of the paper [78], where it is called the spectrum of $L^{\infty}(G)$. For $x \in G$, we set

$$
\Phi_{\{x\}}=\widetilde{G}_{\{x\}} \cap \Phi=\{\varphi \in \Phi: \pi(\varphi)=x\} .
$$

Let $\mu \in M(G)^{+}$and $x \in G$, and set $\nu=\delta_{x} \star \mu$. Then it is clear that

$$
\Phi_{\nu}=\delta_{x} \star \Phi_{\mu}:=\left\{\delta_{x} \star \delta_{\psi}: \psi \in \Phi_{\mu}\right\} .
$$

Proposition 5.28. Let G be a locally compact group, and suppose that $\mu \in M_{s}(G)^{+}$. Then $\Phi_{\mu} \cap\left(\delta_{x} \star \Phi_{\mu}\right)=\emptyset$ for almost all $x \in\left(G, m_{G}\right)$.

Proof. By 41, Corollary 8.3.3], $\left\{x \in G: \delta_{x} \star \mu \not \perp \mu\right\}$ is a Borel set, say B, such that $m_{G}(B)=0$. (The result in [41] is stated for abelian groups, but the proof of this result applies also to general, non-abelian groups.) Thus, for $x \in G \backslash B$, we have $\delta_{x} \star \mu \perp \mu$, and so $\Phi_{\mu} \cap\left(\delta_{x} \star \Phi_{\mu}\right)=\emptyset$.

In the case where G is compact, infinite, and metrizable, the space Φ is homeomorphic to \mathbb{H}, the hyper-Stonean space of the unit interval.

We have noted in Corollary 5.9 that $(M(\Phi), \square)$ is a closed ideal in $(M(\widetilde{G}), \square)$. In particular, for each $\varphi \in \Phi$, we have the map

$$
\begin{equation*}
L_{\varphi}: \mathrm{M} \mapsto \delta_{\varphi} \square \mathrm{M}, \quad M(\widetilde{G}) \rightarrow M(\Phi) \tag{5.9}
\end{equation*}
$$

The compact spaces corresponding to A, D, M_{s}, and M are denoted by $\Phi, \Phi_{D}=\beta G_{d}$, Φ_{s}, and \widetilde{G}, respectively. (In fact they are the character spaces of the C^{*}-algebras A^{\prime}, $D^{\prime}=\ell^{\infty}(G), M_{s}^{\prime}$, and M^{\prime}, respectively.) We have shown that

$$
\left\{\Phi, \beta G_{d}, \Phi_{s}\right\}
$$

is a partition of \widetilde{G} into clopen subsets and that $\bar{G}=\beta G_{d}$. It follows from our remarks that

$$
M(G)^{\prime \prime}=M(\widetilde{G})=M(\Phi) \oplus_{1} M\left(\beta G_{d}\right) \oplus_{1} M\left(\Phi_{s}\right)
$$

as a Banach space, that $M(\Phi)$ is a closed ideal in $(M(\widetilde{G}), \square)$, and that $M\left(\beta G_{d}\right)$ and $\mathfrak{A}^{\prime \prime}$ are closed subalgebras in $(M(\widetilde{G}), \square)$.
Proposition 5.29. Let G be a locally compact group. Then $\mathfrak{A}=\ell^{1}(G) \ltimes L^{1}(G)$ is strongly Arens irregular.

Proof. This follows from [17, Proposition 2.25].

6. Formulae for products

In this chapter, we shall establish some formulae for products in the algebra ($M(\widetilde{G}), \square)$ that we shall require. Our method is based on the use of ultrafilters.

Let G be a locally compact group. We shall use the following notation. First, take a positive measure $\mu \in M(G)^{+}$and $B \in \mathfrak{B}_{G}$ with $\mu(B) \neq 0$. We recall that we are setting $\mu_{B}=(\mu \mid B) / \mu(B)$. Fix $L \in \mathfrak{B}_{G}$. Then we now make the following definition of a function $\lambda_{\mu, B}:$

$$
\begin{equation*}
\lambda_{\mu, B}(t):=\frac{\mu\left(B \cap L t^{-1}\right)}{\mu(B)}=\mu_{B}\left(L t^{-1}\right) \quad(t \in G) \tag{6.1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lambda_{\mu, B}(t)=\int_{B} \chi_{L t^{-1}}(s) \mathrm{d} \mu_{B}(s) \quad(t \in G) \tag{6.2}
\end{equation*}
$$

Then $\lambda_{\mu, B}$ is a function on G that belongs to $B^{b}(G)$.
We also recall that $U_{G}=\bigcup\left\{\Phi_{\mu}: \mu \in M(G)^{+}\right\}$, as in Definition 4.5 .

Proposition 6.1. Let G be a locally compact group.

(i) Let $\mu, \nu \in M(G)$. Then

$$
\begin{equation*}
\left\langle\kappa_{E}(\lambda), \mu \star \nu\right\rangle=\int_{G} \int_{G} \lambda(s t) \mathrm{d} \mu(s) \mathrm{d} \nu(t) \quad\left(\lambda \in B^{b}(G)\right) . \tag{6.3}
\end{equation*}
$$

(ii) Let $\varphi, \psi \in \widetilde{G}$ with $\varphi \in \Phi_{\mu}$ and $\psi \in \Phi_{\nu}$, where $\mu, \nu \in M(G)^{+}$. Then

$$
\begin{equation*}
\left\langle\kappa_{E}(\lambda), \delta_{\varphi} \square \delta_{\psi}\right\rangle=\lim _{B \rightarrow \varphi} \lim _{C \rightarrow \psi} \int_{B} \int_{C} \lambda(s t) \mathrm{d} \mu_{B}(s) \mathrm{d} \nu_{C}(t) \tag{6.4}
\end{equation*}
$$

for each $\lambda \in B^{b}(G)$.
(iii) Let $\varphi \in \Phi_{\mu}$, where $\mu \in M(G)^{+}$, and let $L \in \mathfrak{B}_{G}$. Suppose that $\psi \in \bar{G}$ has the form $\psi=\lim _{\alpha} s_{\alpha}$, where $\left(s_{\alpha}\right)$ is a net in G. Then

$$
\begin{equation*}
\left\langle\chi_{K_{L}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle=\lim _{B \rightarrow \varphi} \lim _{\alpha}\left(\mu_{B} \star \delta_{s_{\alpha}}\right)(L) . \tag{6.5}
\end{equation*}
$$

(iv) For each $\varphi \in U_{G}$, each $\nu \in M(G)^{+}$, each $L \in \mathfrak{B}_{G}$, and each $B \in \mathfrak{B}_{G}$ with $\nu(B)>0$, we have

$$
\begin{equation*}
\left(\nu_{B} \square \delta_{\varphi}\right)\left(K_{L}\right)=\left\langle\kappa_{E}\left(\lambda_{\nu, B}\right), \delta_{\varphi}\right\rangle . \tag{6.6}
\end{equation*}
$$

Proof. (i) Let $\lambda \in B^{b}(\Omega)$. By (3.6), we have

$$
\left\langle\kappa_{E}(\lambda), \mu \star \nu\right\rangle=\int_{G} \lambda \mathrm{~d}(\mu \star \nu)
$$

By a standard theorem [48, Theorem (19.10)],

$$
\int_{G} \lambda \mathrm{~d}(\mu \star \nu)=\int_{G} \int_{G} \lambda(s t) \mathrm{d} \mu(s) \mathrm{d} \nu(t) ;
$$

this theorem applies because $\lambda \in L^{1}(G,|\mu| \star|\nu|)$. The result follows.
(ii) For each $\Lambda \in C(\widetilde{G})$, we have

$$
\left\langle\Lambda, \delta_{\varphi} \square \delta_{\psi}\right\rangle=\lim _{B \rightarrow \varphi} \lim _{C \rightarrow \psi}\left\langle\Lambda, \mu_{B} \star \mu_{C}\right\rangle
$$

by 1.1. In particular,

$$
\left\langle\kappa_{E}(\lambda), \delta_{\varphi} \square \delta_{\psi}\right\rangle=\lim _{B \rightarrow \varphi} \lim _{C \rightarrow \psi}\left\langle\kappa_{E}(\lambda), \mu_{B} \star \mu_{C}\right\rangle \quad\left(\lambda \in B^{b}(G)\right) .
$$

The result now follows from (i).
(iii) It follows from (i) that

$$
\left\langle\kappa_{E}(\lambda), \delta_{\varphi} \square \delta_{\psi}\right\rangle=\lim _{B \rightarrow \varphi} \lim _{\alpha} \int_{B} \lambda\left(s s_{\alpha}\right) \mathrm{d} \mu_{B}(s) \quad\left(\lambda \in B^{b}(G)\right) .
$$

Apply this with $\lambda=\chi_{L} \in B^{b}(G)$, so that $\kappa_{E}(\lambda)=\chi_{K_{L}}$ in $C(\widetilde{G})$. We also have

$$
\int_{L} \chi_{L}\left(s s_{\alpha}\right) \mathrm{d} \mu_{B}(s)=\int_{B} \chi_{L s_{\alpha}^{-1}}(s) \mathrm{d} \mu_{B}(s)=\lambda_{\mu, B}\left(s_{\alpha}\right)
$$

by 6.1), and so 6.5 follows.
(iv) Take $\mu \in M(G)^{+}$and $C \in \mathfrak{B}_{G}$ with $\mu(C)>0$. Then we have

$$
\begin{aligned}
\left(\nu_{B} \star \mu_{C}\right)(L) & =\int_{G} \int_{G} \chi_{L}(s t) \chi_{B}(s) \chi_{C}(t) \mathrm{d} \nu_{B}(s) \mathrm{d} \mu_{C}(t) \\
& =\int_{G} \lambda_{\nu, B}(t) \chi_{C}(t) \mathrm{d} \mu_{C}(t)=\left\langle\kappa_{E}\left(\lambda_{\nu, B}\right), \mu_{C}\right\rangle .
\end{aligned}
$$

By Corollary 4.7, we can take the limits $\lim _{C \rightarrow \psi}$ to see that 6.6 holds.
The following result extends a theorem of Işik, Pym, and Ülger [56, Theorem 3.2] (with a different proof); see also Corollary 6.4. We recall that $\pi:(M(\widetilde{G}), \square) \rightarrow(M(G), \star)$, defined in (3.3) is a continuous epimorphism; cf. 5.3); we shall often write $\varphi \square \psi$ and $\varphi \diamond \psi$ for $\delta_{\varphi} \square \delta_{\psi}$ and $\delta_{\varphi} \diamond \delta_{\psi}$, respectively.

Proposition 6.2. Let G be a locally compact group. Then:
(i) $\varphi \square \psi=\varphi \in \Phi \subset \widetilde{G}$ and $\psi \diamond \varphi=\varphi \in \Phi \subset \widetilde{G}$ for each $\varphi \in \Phi$ and $\psi \in \widetilde{G}_{\{e\}}$;
(ii) in the case where the group G is compact,

$$
\mathrm{M} \square \mathrm{~N}=\mathrm{M} \square \pi(\mathrm{~N}), \quad \mathrm{N} \diamond \mathrm{M}=\pi(\mathrm{N}) \diamond \mathrm{M} \quad(\mathrm{M} \in M(\Phi), \mathrm{N} \in M(\widetilde{G}))
$$

Proof. (i) First, we fix $\psi \in \widetilde{G}_{\{e\}}$ and a set $B \in \mathfrak{B}_{G}$ such that $0<m(B)<\infty$, where $m=m_{G}$.

For each $\varepsilon>0$ and each $A \in \mathfrak{B}_{G}$ with $m(A)<\infty$, there exists $N \in \mathcal{N}_{e}$ such that

$$
m\left(A t^{-1} \backslash A\right)<\varepsilon m(B) \quad(t \in N)
$$

For each $\mu \in M(G)^{+}$and $C \in \mathfrak{B}_{G}$ with $\mu(C)>0$, we have

$$
\begin{aligned}
\int_{B} \int_{C} \chi_{A}(s t) \mathrm{d} m_{B}(s) \mathrm{d} \mu_{C}(t) & =\int_{B} \int_{C} \chi_{A t^{-1}}(s) \mathrm{d} m_{B}(s) \mathrm{d} \mu_{C}(t) \\
& \leq \int_{B} \chi_{A}(s) \mathrm{d} m_{B}(s)+\int_{C} \frac{m\left(A t^{-1} \backslash A\right)}{m(B)} \mathrm{d} \mu_{C}(t)
\end{aligned}
$$

Thus, in the case where $C \subset N$, it follows from 6.3) that

$$
\begin{equation*}
\left\langle\chi_{A}, m_{B} \star \mu_{C}\right\rangle \leq\left\langle\chi_{A}, m_{B}\right\rangle+\varepsilon \tag{6.7}
\end{equation*}
$$

By Corollary 4.7, we can take the limits $\lim _{C \rightarrow \psi}$ to see that

$$
\left\langle\kappa_{E}\left(\chi_{A}\right), m_{B} \square \delta_{\psi}\right\rangle \leq\left\langle\kappa_{E}\left(\chi_{A}\right), m_{B}\right\rangle+\varepsilon .
$$

This holds for each $\varepsilon>0$, and so

$$
\left\langle\kappa_{E}\left(\chi_{A}\right), m_{B} \square \delta_{\psi}\right\rangle \leq\left\langle\kappa_{E}\left(\chi_{A}\right), m_{B}\right\rangle .
$$

However, this inequality also holds if A be replaced by $G \backslash A$, and so

$$
\left\langle\kappa_{E}\left(\chi_{A}\right), m_{B} \square \delta_{\psi}\right\rangle=\left\langle\kappa_{E}\left(\chi_{A}\right), m_{B}\right\rangle .
$$

It follows that

$$
\left\langle\kappa_{E}(\lambda), m_{B} \square \delta_{\psi}\right\rangle=\left\langle\kappa_{E}(\lambda), m_{B}\right\rangle \quad\left(\lambda \in B^{b}(\Omega)\right) .
$$

Since $m_{B} \in M(\Phi)$ and $\kappa_{E}\left(B^{b}(G)\right) \mid \Phi=C(\Phi)$, we have $m_{B} \square \delta_{\psi}=m_{B}$. Finally, we take the limits $\lim _{B \rightarrow \varphi}$ to see that $\varphi \square \psi=\varphi \in \Phi \subset \widetilde{G}$.

Similarly, $\delta_{\psi} \diamond \delta_{\varphi}=\delta_{\varphi}$.
(ii) We return to the above formula $m_{B} \square \delta_{\psi}=m_{B}$, which holds for each $\psi \in \widetilde{G}_{\{e\}}$ and $B \in \mathfrak{B}_{G}$ with $m(B)>0$.

Now suppose that $\psi \in \widetilde{G}$. Since G is compact, there exists $s \in G$ with $\pi(\psi)=s$. Then $\psi \square s^{-1} \in \widetilde{G}_{\{e\}}$, and so $m_{B} \square \delta_{\psi} \square s^{-1}=m_{B}$, whence

$$
m_{B} \square \psi=m_{B} \star s=m_{B} \star \pi(\psi) .
$$

This formula extends to give $m_{B} \square \mathrm{~N}=m_{B} \square \pi(\mathrm{~N})$ for each N which is a linear combination of point masses in $M(\widetilde{G})$, and then, by taking weak-* limits, for each $\mathrm{N} \in M(\widetilde{G})$.

We now take limits $\lim _{B \rightarrow \varphi}$ to establish that $\varphi \square \mathrm{N}=\varphi \square \pi(\mathrm{N})$ for each $\varphi \in \Phi$ and $\mathrm{N} \in M(\widetilde{G})$, and then take linear combinations of point masses in Φ and further weak-* limits to see that

$$
\mathrm{M} \square \mathrm{~N}=\mathrm{M} \square \pi(\mathrm{~N}) \quad(\mathrm{M} \in M(\Phi), \mathrm{N} \in M(\widetilde{G}))
$$

this last step is valid because the map R_{N} is weak-* continuous on $(M(\widetilde{G}), \square)$.
Similarly, $\mathrm{N} \diamond \mathrm{M}=\pi(\mathrm{N}) \diamond \mathrm{M}(\mathrm{M} \in M(\Phi), \mathrm{N} \in M(\widetilde{G}))$.
It follows in particular that $\varphi \square \psi=\varphi\left(\varphi, \psi \in \Phi_{\{e\}}\right)$, and so $\left(\Phi_{\{e\}}, \square\right)$ is a left-zero semigroup, as in [56, Theorem 3.2].
Corollary 6.3. Let G be a locally compact group, let $\mathrm{M} \in M(\Phi)$, and let $\psi \in \widetilde{G}_{\{e\}}$. Then $\mathrm{M} \square \delta_{\psi}=\delta_{\psi} \diamond \mathrm{M}=\mathrm{M}$.

The above result in the case where $\psi \in \Phi_{\{e\}}$ says that the element δ_{ψ} is a mixed identity for $M(\Phi)=L^{1}(G)^{\prime \prime}$ in the sense of [13, Definition 2.6.21].

Corollary 6.4. Let G be a locally compact group, and let $\varphi \in \widetilde{G}$. Then the following are equivalent:
(a) $\varphi \in \widetilde{G}_{\{e\}}$;
(b) $\psi \square \varphi=\psi(\psi \in \Phi)$;
(c) $\psi_{0} \square \varphi=\psi_{0}$ for some $\psi_{0} \in \Phi_{\{e\}}$.

Proof. That $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is part of Corollary 6.3 and $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is trivial. Suppose that (c) holds. Then, by 5.3), $\pi\left(\psi_{0}\right) \star \pi(\varphi)=\pi\left(\psi_{0}\right)$ in $M(G)$. But $\pi\left(\psi_{0}\right)=\delta_{e}$, and so $\pi(\varphi)=\delta_{e}$, giving (a).

The following result, which characterizes $M(\Phi)$ as a subset of $M(\widetilde{G})$, will be important later.
ThEOREM 6.5. Let G be a locally compact group, and suppose that $\mathrm{M} \in M(\widetilde{G})$. Then the following conditions on M are equivalent:
(a) $\mathrm{M} \in M(\Phi)$;
(b) $\mathrm{M} \square \delta_{\varphi}=\mathrm{M}$ for all $\varphi \in \widetilde{G}_{\{e\}}$;
(c) there exists $\varphi \in \Phi_{\{e\}}$ such that $\mathrm{M} \square \delta_{\varphi}=\mathrm{M}$.

Proof. That $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is part of Corollary 6.3, and the proof of $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is trivial. Since $M(\Phi)$ is an ideal in $(M(\widetilde{G}), \square)$, we have $(\mathrm{c}) \Rightarrow(\mathrm{a})$.
Definition 6.6. Let G be a locally compact group. For an element $\mu \in M(G)^{+}$, set

$$
\mathfrak{A}_{\mu}=\left\{A \in \mathfrak{B}_{G}: \mu(\partial A)=0\right\} .
$$

Lemma 6.7. Let G be a locally compact group, let $\mu \in M(G)^{+}$, let $A \in \mathfrak{A}_{\mu}$, and let $\varepsilon>0$.
(i) There exists $N \in \mathcal{N}_{e}$ with $\mu\left(A t^{-1} \backslash A\right)<\varepsilon$ and $\mu\left(t^{-1} A \backslash A\right)<\varepsilon$ for each $t \in N$.
(ii) Let $B \in \mathfrak{B}_{G}$ with $\mu(B)>0$ and $\nu \in M(G)^{+} \backslash\{0\}$. Then there exists $N \in \mathcal{N}_{e}$ such that

$$
\begin{equation*}
\left|\left\langle\chi_{A}, \mu_{B} \star \nu_{C}\right\rangle-\left\langle\chi_{A}, \mu_{B}\right\rangle\right|<\varepsilon \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\langle\chi_{A}, \nu_{C} \star \mu_{B}\right\rangle-\left\langle\chi_{A}, \mu_{B}\right\rangle\right|<\varepsilon \tag{6.9}
\end{equation*}
$$

whenever $C \in \mathfrak{B}_{G}$ with $C \subset N$ and $\nu(C)>0$.
Proof. (i) Since $\mu(\partial A)=0$, there is an open set U with $\partial A \subset U$ and $\mu(U)<\varepsilon$. Set $V=U \cup \operatorname{int} A$, so that V is an open set in G. We have $V \supset \partial A \cup \operatorname{int} A=\bar{A}$, and so there is a symmetric set $N \in \mathcal{N}_{e}$ such that $A N \cup N A \subset V$. In this case

$$
(A N \cup N A) \backslash A \subset V \backslash A \subset V \backslash \operatorname{int} A \subset U,
$$

and so $\mu((A N \cup N A) \backslash A)<\varepsilon$. The result follows.
(ii) Essentially as in the proof of 6.7), but using the estimate on μ from clause (i), we see that $\left\langle\chi_{A}, \mu_{B} \star \nu_{C}\right\rangle \leq\left\langle\chi_{A}, \mu_{B}\right\rangle+\varepsilon$ whenever $C \in \mathfrak{B}_{G}$ with $C \subset N$ and $\nu(C)>0$. Again this leads to 6.8). Similarly, we see that (6.9) holds.
Lemma 6.8. Let G be a locally compact group, let $\mu \in M(G)^{+}$, and let $A \in \mathfrak{A}_{\mu}$. Then

$$
\begin{equation*}
\left\langle\chi_{K_{A}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle=\left\langle\chi_{K_{A}}, \delta_{\psi} \diamond \delta_{\varphi}\right\rangle=\left\langle\chi_{K_{A}}, \delta_{\varphi}\right\rangle \tag{6.10}
\end{equation*}
$$

for each $\varphi \in \Phi_{\mu}$ and $\psi \in \widetilde{G}_{\{e\}}$.

Proof. We consider (6.8 and 6.9), and first take the limit $\lim _{C \rightarrow \psi}$ and then the limit $\lim _{B \rightarrow \varphi}$ to see that

$$
\left|\left\langle\chi_{K_{A}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle-\left\langle\chi_{K_{A}}, \delta_{\varphi}\right\rangle\right| \leq \varepsilon \quad \text { and } \quad\left|\left\langle\chi_{K_{A}}, \delta_{\psi} \diamond \delta_{\varphi}\right\rangle-\left\langle\chi_{K_{A}}, \delta_{\varphi}\right\rangle\right| \leq \varepsilon .
$$

However these two inequalities hold for each $\varepsilon>0$, and so the result follows.
Theorem 6.9. Let G be a locally compact group, and let $A \in \mathfrak{B}_{G}$.
(i) Let $\mathrm{M} \in M\left(K_{A} \backslash K_{\partial A}\right)$ and $\psi \in \widetilde{G}_{\{e\}}$. Then

$$
\begin{equation*}
\left\langle\chi_{K_{A}}, \mathrm{M} \square \delta_{\psi}\right\rangle=\left\langle\chi_{K_{A}}, \mathrm{M}\right\rangle . \tag{6.11}
\end{equation*}
$$

(ii) Let $\mathrm{M} \in M\left(\widetilde{G}_{\{e\}}\right)$ with $\langle\mathrm{M}, 1\rangle=1$, and let $\varphi \in \widetilde{G}_{\{e\}} \backslash K_{\partial A}$. Then

$$
\begin{equation*}
\left\langle\chi_{K_{A}}, \mathrm{M} \diamond \delta_{\varphi}\right\rangle=\left\langle\chi_{K_{A}}, \delta_{\varphi}\right\rangle . \tag{6.12}
\end{equation*}
$$

Proof. (i) First take $\mathrm{M}=\delta_{\varphi}$, where $\varphi \in K_{A} \backslash K_{\partial A}$.
Let $\left(\varphi_{\alpha}\right)$ be a net in U_{G} with $\lim _{\alpha} \varphi_{\alpha}=\varphi$. Since $\varphi \notin K_{\partial A}$, we may suppose that $\varphi_{\alpha} \notin K_{\partial A}$, and hence that $\partial A \notin \varphi_{\alpha}$ and $G \backslash \partial A \in \varphi_{\alpha}$, for each α. Fix α, and choose $\mu_{\alpha} \in M(\Omega)^{+}$such that $\varphi_{\alpha} \in \Phi_{\mu_{\alpha}}$; we may suppose that $\mu_{\alpha}(\partial A)=0$ because $\varphi_{\alpha} \in \Phi_{\nu_{\alpha}}$, where $\nu_{\alpha}=\mu_{\alpha} \mid(G \backslash \partial A)$, and we can replace μ_{α} by ν_{α}, if necessary.

For each α, we apply Lemma 6.8, with φ replaced by φ_{α}, to see that

$$
\left\langle\chi_{K_{A}}, \delta_{\varphi_{\alpha}} \square \delta_{\psi}\right\rangle=\left\langle\chi_{K_{A}}, \delta_{\varphi_{\alpha}}\right\rangle .
$$

By taking limits in α, it follows that

$$
\left\langle\chi_{K_{A}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle=\left\langle\chi_{K_{A}}, \delta_{\varphi}\right\rangle .
$$

Thus the result holds in this special case.
Now, by taking linear combinations of point masses of the form δ_{φ} and then weak-* limits, we see that equation (6.11) holds for each $\mathrm{M} \in M\left(K_{A} \backslash K_{\partial A}\right)$.
(ii) For each $\psi \in \widetilde{G}_{\{e\}}$ and each $\mu \in M(G)^{+}$such that $A \in \mathfrak{A}_{\mu}$, it follows from 6.9) and Corollary 4.7 that

$$
\left|\left\langle\chi_{K_{A}}, \delta_{\psi} \diamond \mu_{B}\right\rangle-\left\langle\chi_{K_{A}}, \mu_{B}\right\rangle\right| \leq \varepsilon .
$$

This inequality holds for each $\varepsilon>0$, and so

$$
\left\langle\chi_{K_{A}}, \delta_{\psi} \diamond \mu_{B}\right\rangle=\left\langle\chi_{K_{A}}, \mu_{B}\right\rangle .
$$

Since $\mathrm{M} \in M\left(\widetilde{G}_{\{e\}}\right)$ and $\langle\mathrm{M}, 1\rangle=1$, we see that M is the weak-* limit of linear combinations of measures of the form $\sum_{j} \alpha_{j} \delta_{\psi_{j}}$ such that each $\psi_{j} \in \widetilde{G}_{\{e\}}$ and $\sum_{j} \alpha_{j}=1$. It follows that

$$
\left\langle\chi_{K_{A}}, \mathrm{M} \diamond \mu_{B}\right\rangle=\lim \sum_{j} \alpha_{j}\left\langle\chi_{K_{A}}, \delta_{\psi_{j}} \diamond \mu_{B}\right\rangle=\left\langle\chi_{K_{A}}, \mu_{B}\right\rangle .
$$

Now let $\left(\varphi_{\alpha}\right)$ be a net in U_{G} with $\lim _{\alpha} \varphi_{\alpha}=\varphi$. Since $\varphi \notin K_{\partial A}$, we may suppose that $G \backslash \partial A \in \varphi_{\alpha}$ for each α. Fix α, and choose $\mu_{\alpha} \in M(\Omega)^{+}$such that $\varphi_{\alpha} \in \Phi_{\mu_{\alpha}}$; we may suppose that $\mu_{\alpha}(\partial A)=0$. Thus δ_{φ} is in the closure of the set $\left\{\mu_{C}: A \in \mathfrak{A}_{\mu}, C \in \mathfrak{B}_{\mu}\right\}$, and so 6.12 follows.

Let $\varphi, \psi \in \widetilde{G}$. We recall that $\varphi \sim \psi$ if $\kappa_{E}(\lambda)(\varphi)=\kappa_{E}(\lambda)(\psi)$ for each $\left.\lambda \in B^{b}(\Omega)\right)$. We now slightly extend this notation.

Definition 6.10. Let G be a locally compact group, and take elements $\mathrm{M}, \mathrm{N} \in M(\widetilde{G})$. Then

$$
\mathrm{M} \sim \mathrm{~N} \quad \text { if } \quad\left\langle\kappa_{E}(\lambda), \mathrm{M}\right\rangle=\left\langle\kappa_{E}(\lambda), \mathrm{N}\right\rangle \quad\left(\lambda \in B^{b}(\Omega)\right) .
$$

We say that M and N are Borel equivalent if $\mathrm{M} \sim \mathrm{N}$.
Theorem 6.11. Let G be a locally compact group, and let $\varphi, \psi \in \widetilde{G}$ be such that $\varphi \sim \psi$. Then $\mathrm{M} \square \varphi \sim \mathrm{M} \square \psi$ and $\varphi \diamond \mathrm{M} \sim \psi \diamond \mathrm{M}$ for each $\mathrm{M} \in M(\widetilde{G})$.
Proof. First suppose that $\varphi, \psi \in U_{G}$. For each $\nu \in M(G)^{+}$, each $L \in \mathfrak{B}_{G}$, and each $B \in \mathfrak{B}_{G}$, we have

$$
\left(\nu_{B} \square \delta_{\varphi}\right)\left(K_{L}\right)=\left\langle\kappa_{E}\left(\lambda_{\nu, B}\right), \delta_{\varphi}\right\rangle \quad \text { and } \quad\left(\nu_{B} \square \delta_{\psi}\right)\left(K_{L}\right)=\left\langle\kappa_{E}\left(\lambda_{\nu, B}\right), \delta_{\psi}\right\rangle
$$

by 6.6. By taking suitable limits, we see that these equations also hold when $\varphi, \psi \in \widetilde{G}$.
Since $\varphi \sim \psi$, we see that $\left\langle\kappa_{E}\left(\lambda_{\nu, B}\right), \delta_{\varphi}\right\rangle=\left\langle\kappa_{E}\left(\lambda_{\nu, B}\right), \delta_{\psi}\right\rangle$, and so

$$
\left(\nu_{B} \square \delta_{\varphi}\right)\left(K_{L}\right)=\left(\nu_{B} \square \delta_{\psi}\right)\left(K_{L}\right) .
$$

Again by taking limits over a canonical net, we see that

$$
\left(\delta_{\theta} \square \delta_{\varphi}\right)\left(K_{L}\right)=\left(\delta_{\theta} \square \delta_{\psi}\right)\left(K_{L}\right) \quad(\theta \in \widetilde{G}) .
$$

Finally, taking linear combinations of the point masses δ_{θ} and further weak-* limits, we see that

$$
\left(\mathrm{M} \square \delta_{\varphi}\right)\left(K_{L}\right)=\left(\mathrm{M} \square \delta_{\psi}\right)\left(K_{L}\right) \quad(\mathrm{M} \in M(\widetilde{G}))
$$

Thus

$$
\left\langle\kappa_{E}\left(\chi_{L}\right), \mathrm{M}\right\rangle=\left\langle\kappa_{E}\left(\chi_{L}\right), \mathrm{N}\right\rangle .
$$

The above equation holds for each $L \in \mathfrak{B}_{G}$, and this is sufficient to imply that $\mathrm{M} \square \varphi \sim \mathrm{M} \square \psi$.

Similarly $\varphi \diamond \mathrm{M} \sim \psi \diamond \mathrm{M}$ for each $\mathrm{M} \in M(\widetilde{G})$.
In Example 8.20, below, we shall see that there exist $\varphi, \psi \in \widetilde{G}$ with $\varphi \sim \psi$ and $\theta \in \widetilde{G}$ such that $\varphi \square \theta \nsim \psi \square \theta$.

7. The recovery of G from \widetilde{G}

Introduction. Let G and H be locally compact groups, and consider the compact spaces \widetilde{G} and \widetilde{H} and the Banach spaces $M(\widetilde{G})$ and $M(\widetilde{H})$. Then we have seen in Chapter 3 that we cannot recover the locally compact spaces G and H from the information that we are given. Indeed, by Theorem 4.3 the space $\widetilde{\Omega}$ is homeomorphic to $\beta \mathbb{N}$ whenever (Ω, τ) is a countable, locally compact space, and, by Theorem 4.16, there is a unique (up to homeomorphism) hyper-Stonean envelope for all uncountable, compact, metrizable spaces.

We now ask whether the fact that Banach algebras $(M(\widetilde{G}), \square)$ and $(M(\widetilde{H}), \square)$ are the 'same' entails that $G \sim H$, in the sense that there is a homeomorphic group isomorphism from G onto H.

We first note that we must interpret the word 'same' in the previous paragraph to mean that there is an isometric isomorphism from $(M(\widetilde{G}), \square)$ onto $(M(\widetilde{H}), \square)$. For let G be the dihedral group of order eight and let H be the quaternion group. Then $(M(\widetilde{G}), \square)=\left(\ell^{1}(G), \star\right)$ is isomorphic to $(M(\widetilde{H}), \square)=\left(\ell^{1}(H), \star\right)$, but it is not true that $G \sim H$ [88, §1.9.1].

The character spaces of the C^{*}-algebras $L^{\infty}(G)$ and $L^{\infty}(H)$ are denoted by Φ_{G} and Φ_{H}, respectively, in this chapter.

History. We recall some brief history of these questions. Let G and H be locally compact groups. The first result is Wendel's theorem ([119], [88, §1.9.13]), which we state explicitly.

Theorem 7.1. Let G and H be locally compact groups. Then there is an isometric isomorphism from $L^{1}(G)$ onto $L^{1}(H)$ if and only if $G \sim H$.

In fact, by a theorem of Kalton and Wood 62], we have $G \sim H$ whenever there is an isomorphism from $L^{1}(G)$ onto $L^{1}(H)$ with norm less than $\sqrt{2}$.

It was proved by Johnson 58 that $G \sim H$ if and only if there is an isometric isomorphism from $M(G)$ onto $M(H)$; see also Rigelhof 98 .

It was further proved in [77] that $G \sim H$ whenever there is an isometric isomorphism θ from $\left(L U C(G)^{\prime}, \square\right)$ onto $\left(L U C(H)^{\prime}, \square\right)$; in this case, θ maps $M(G)$ onto $M(H)$ and $L^{1}(G)$ onto $L^{1}(H)$ [36]. We state a related result from [36, Theorem 3.1(c)] that we shall require. (Earlier partial results are listed in 36.)
Theorem 7.2. Let G and H be locally compact groups, and let

$$
\theta:\left(L^{1}(G)^{\prime \prime}, \square\right) \rightarrow\left(L^{1}(H)^{\prime \prime}, \square\right)
$$

be an isometric isomorphism. Then θ maps $L^{1}(G)$ onto $L^{1}(H)$, and so $G \sim H$.

The question whether $G \sim H$ when there is an isometric isomorphism from $(M(\widetilde{G}), \square)$ onto $(M(\widetilde{H}), \square)$ was specifically raised by Ghahramani and Lau in [34, Problem 2, p. 184]. Our aim in the present chapter is to resolve this question affirmatively. We think that some of the results obtained en route to this are of independent interest.

The result in the case where G and H are both abelian and have non-measurable cardinal was given by Neufang in [87, Corollary 3.7]. [Added in proof: By [82, the condition on cardinality is not required.]

An isomorphism. We shall first note that the groups G and H are isomorphic when $(M(\widetilde{G}), \square)$ and $(M(\widetilde{H}), \square)$ are isometrically isomorphic as Banach algebras; the difficulty is to show that this isomorphism from G to H is also a homeomorphism. The following result is [34, Corollary 3.6].

Proposition 7.3. Let G and H be locally compact groups, and let

$$
\theta:(M(\widetilde{G}), \square) \rightarrow(M(\widetilde{H}), \square)
$$

be an isometric isomorphism. Then, for each $\varphi \in \widetilde{G}$, there exists $\theta(\varphi) \in \widetilde{H}$ and $\zeta_{\varphi} \in \mathbb{T}$ such that $\theta\left(\delta_{\varphi}\right)=\zeta_{\varphi} \delta_{\theta(\varphi)}$. Further, for each $s \in G$, we have $\theta(s) \in H$, and $\theta: G \rightarrow H$ is an isomorphism.
Proof. For each $\varphi \in \widetilde{G}$, the element δ_{φ} is an extreme point of $M(\widetilde{G})_{[1]}$, and so, since θ is isometric, $\theta\left(\delta_{\varphi}\right)$ is an extreme point of $M(\widetilde{H})_{[1]}$. Hence $\theta\left(\delta_{\varphi}\right)$ has the form $\zeta_{\varphi} \delta_{\theta(\varphi)}$ for some $\theta(\varphi) \in \widetilde{H}$ and $\zeta_{\varphi} \in \mathbb{T}$. We thus obtain a map

$$
\theta: \varphi \mapsto \theta(\varphi), \quad \widetilde{G} \rightarrow \widetilde{H}
$$

since θ is a bijection, we see that this new map is also a bijection.
Take $s \in G$. Then δ_{s} has inverse $\delta_{s^{-1}}$ in $(M(\widetilde{G}), \square)$, and so $\theta\left(\delta_{s}\right)$ has inverse $\theta\left(\delta_{s^{-1}}\right)$ in $(M(\widetilde{H}), \square)$; further, $\left\|\theta\left(\delta_{s}\right)\right\|=\left\|\theta\left(\delta_{s^{-1}}\right)\right\|=1$. By Proposition 5.5, $\theta\left(\delta_{s}\right) \in H$. It follows that $\theta(G)=H$ and hence that $\theta: G \rightarrow H$ is an isomorphism (as is the map $\left.s \mapsto \zeta_{s}, G \rightarrow \mathbb{T}\right)$.

The case of compact groups. The following partial answer to our question was first proved by Ghahramani and McClure in [35]; our proof is similar to, but perhaps a little shorter than, their proof.

Theorem 7.4. Let G and H be compact groups. Suppose that there is an isometric isomorphism from $(M(\widetilde{G}), \square)$ onto $(M(\widetilde{H}), \square)$. Then $G \sim H$.

Proof. The normalized Haar measures on G and H are m_{G} and m_{H}, respectively.
First, let $\theta:(M(\widetilde{G}), \square) \rightarrow(M(\widetilde{H}), \square)$ be an isomorphism, and set

$$
\mathrm{N}=\theta\left(m_{G}\right) \in M(\widetilde{H})
$$

It follows from (5.4) that N satisfies (5.5) and (5.6) (with respect to the group H), and so, by Proposition 5.6, $\mathrm{N}=m_{H}$ or $\mathrm{N}=0$. Since θ is an injection, $\mathrm{N} \neq 0$. We conclude that $\theta\left(m_{G}\right)=m_{H}$. We now identify elements of $L^{1}(G)$ and $L^{1}(H)$ with the corresponding elements in $M(\widetilde{G})$ and $M(\widetilde{H})$, respectively, so that we can say that $\theta\left(1_{G}\right)=1_{H}$.

It follows from 2.5 that a linear isometry θ from $M(\widetilde{G})$ to $M(\widetilde{H})$ has the property that $\theta\left(\mathrm{M}_{1}\right) \perp \theta\left(\mathrm{M}_{2}\right)$ in $M(\widetilde{H})$ whenever $\mathrm{M}_{1} \perp \mathrm{M}_{2}$ in $M(\widetilde{G})$.

Now let $\theta:(M(\widetilde{G}), \square) \rightarrow(M(\widetilde{H}), \square)$ be an isometric isomorphism. Take $B \in \mathfrak{B}_{G}$, and set $C=G \backslash B$. Then $1_{G}=\chi_{B}+\chi_{C}$, with $\chi_{B} \perp \chi_{C}$, and so $1_{H}=\theta\left(\chi_{B}\right)+\theta\left(\chi_{C}\right)$, with $\theta\left(\chi_{B}\right) \perp \theta\left(\chi_{C}\right)$. Hence $\theta\left(\chi_{B}\right)$ and $\theta\left(\chi_{C}\right)$, as elements of $M(\widetilde{H})$, must be the restrictions of $\kappa\left(m_{H}\right)=1_{H}=\chi_{\Phi_{H}}$ to two disjoint Borel subsets of \widetilde{H}. Thus $\theta\left(\chi_{B}\right)$ and $\theta\left(\chi_{C}\right)$ are positive, normal measures on \widetilde{H}, and so we may regard them as elements of $M(H)$. We now see that $\theta\left(\chi_{B}\right)$ and $\theta\left(\chi_{C}\right)$ are the restrictions of 1_{H} to two disjoint Borel subsets of H. In particular, $\theta\left(\chi_{B}\right) \in L^{1}(H)$.

It follows that $\theta(f) \in L^{1}(H)$ for each $f \in L^{1}(G)$.
Since $\theta:(M(\widetilde{G}), \square) \rightarrow(M(\widetilde{H}), \square)$ is an isometric isomorphism, it follows that the map $\theta:\left(L^{1}(G), \star\right) \rightarrow\left(L^{1}(H), \star\right)$ is an isometric isomorphism. By Wendel's theorem, Theorem 7.1, $G \sim H$.

We can easily extend Theorem 7.4 slightly at this stage at the cost of borrowing a result of Neufang from our Chapter 9.

Proposition 7.5. Let G be a compact group, and let H be a locally compact group with non-measurable cardinal. Suppose that there is an isometric isomorphism from the Banach algebra $(M(\widetilde{G}), \square)$ onto $(M(\widetilde{H}), \square)$. Then $G \sim H$.

Proof. We shall obtain a contradiction from the assumption that H is non-compact; by Theorem 7.4, this is sufficient for the result.

We have $m_{G} \in M(G) \subset M(\widetilde{G})$; set $\mathrm{M}=\theta\left(m_{G}\right) \in M(\widetilde{H})$, so that $\|\mathrm{M}\|=1$. We see that $\mathrm{M} \square \mathrm{N}=\mathrm{N} \square \mathrm{M}(\mathrm{N} \in M(\widetilde{H}))$, and so, by Proposition 1.7. $\mathrm{M} \in \mathfrak{Z}_{t}^{(\ell)}(M(\widetilde{H}))$. Since H is non-compact with non-measurable cardinal, it follows from a theorem of Neufang which is our Theorem 9.6 that $\mathrm{M} \in M(H)$, say $\mathrm{M}=\mu$.

Take $t \in H$. By Proposition 7.3 there exist $s \in G$ and $\zeta \in \mathbb{T}$ with $\zeta \theta\left(\delta_{s}\right)=\delta_{t}$. Since $m_{G} \star \delta_{s}=m_{G}$, we have

$$
\begin{equation*}
\mu \star \delta_{t}=\zeta \mu \tag{7.1}
\end{equation*}
$$

Let K be a compact subset of H. Since H is not compact, there is a sequence $\left(t_{n}\right)$ in H such that the sets $K t_{n}$ for $n \in \mathbb{N}$ are pairwise disjoint. It follows from (7.1) that $|\mu|\left(K t_{k}\right)=|\mu|(K)$ for each $k \in \mathbb{N}$, and so

$$
n|\mu|(K)=\sum_{k=1}^{n}|\mu|\left(K t_{n}\right)=|\mu|\left(\bigcup\left\{K t_{k}: k \in \mathbb{N}_{n}\right\}\right) \leq|\mu|(H)=\|\mu\| \quad(n \in \mathbb{N})
$$

Thus $|\mu|(K)=0$. This holds for each compact subset K of H, and so $|\mu|=0$, a contradiction of the fact that $\|\mu\|=1$.

Thus H is compact, as required.
Suppose that G and H are locally compact, abelian groups with non-measurable cardinal, and that there is an isometric isomorphism from $(M(\widetilde{G}), \square)$ onto $(M(\widetilde{H}), \square)$. Then it also follows from Neufang's theorem, as remarked in [34], that $G \sim H$. [Added in proof: By [82], the condition on cardinality in Proposition 7.5 and this remark is not required.]

The general case. We now turn to the general case, in which it may be that neither G nor H is compact.

Let H be a locally compact group. Recall from Chapter 5 that $Z=L U C(H)$ is the left-introverted C^{*}-subalgebra of $M(H)^{\prime}=C(\widetilde{H})$ consisting of the left uniformly continuous functions on H, so that $\left(Z^{\prime}, \square\right)$ is a Banach algebra and $\left(\Phi_{Z}, \square\right)$ is a compact, right topological semigroup containing H as a dense open subspace. As in 5.7), we have a continuous surjection $q_{H}: \widetilde{H} \rightarrow \Phi_{Z}$.

Let G and H be locally compact groups, and let $\theta:(M(\widetilde{G}), \square) \rightarrow(M(\widetilde{H}), \square)$ be an isometric isomorphism. We adopt the notation given in Proposition 7.3 and again set $Z=L U C(H)$. Take $\varphi \in \widetilde{G}_{\left\{e_{G}\right\}}$. Then $\theta(\varphi) \in \widetilde{H}$ and $q_{H}(\theta(\varphi)) \in \Phi_{Z}$; we define

$$
u=q_{H}(\theta(\varphi)) .
$$

Let $\mathrm{M} \in M\left(\Phi_{G}\right)$. Then it follows from Theorem 6.5 that $\mathrm{M} \square \delta_{\varphi}=\mathrm{M}$, and so

$$
\begin{equation*}
q_{H}(\theta(\mathrm{M})) \square u=q_{H}(\theta(\mathrm{M})) \quad\left(\mathrm{M} \in M\left(\Phi_{G}\right)\right) . \tag{7.2}
\end{equation*}
$$

The following result is crucial for our proof.
Lemma 7.6. We have $u=e_{H}$, and $\theta(\varphi) \in \widetilde{H}_{\left\{e_{H}\right\}}$.
Proof. This result is trivial if H is compact, and so we may suppose that H is not compact.

We shall first consider the special case in which $\varphi \in \Phi_{G}$; our immediate aim is to prove that $u \in H$ in this case.

We assume towards a contradiction that $u \in \Phi_{Z} \backslash H$. Let κ be the smallest cardinal such that u is in the closure in Φ_{Z} of the union of κ compact subsets of H (so that $\kappa \geq \omega$), and choose a sequence ($K_{\alpha}: \alpha<\kappa$) of compact subsets of H such that

$$
u \in \overline{\bigcup\left\{K_{\alpha}: \alpha<\kappa\right\}} .
$$

We also choose a symmetric, compact neighbourhood U of e_{H}.
Clearly there is a strictly increasing sequence ($C_{\alpha}: \alpha<\kappa$) of symmetric subsets of H such that the following properties hold:
(i) $U \subset C_{0}$ and $K_{\alpha} \subset C_{\alpha}(\alpha<\kappa)$;
(ii) the set C_{α} is compact when $\alpha<\omega$, and C_{α} is the union of at most $|\alpha|$ compact subsets of H when $\omega \leq \alpha<\kappa$;
(iii) $C_{\alpha}^{2} \subset C_{\alpha+1}(\alpha<\kappa)$;
(iv) $C_{\alpha} \supsetneq \bigcup\left\{C_{\beta}: \beta<\alpha\right\}(\alpha<\kappa)$.

It follows from (ii) and the fact that κ is the smallest cardinal with certain properties that $u \notin \bar{C}_{\alpha}$ for any $\alpha<\kappa$.

We now set $H_{0}=\bigcup\left\{C_{\alpha}: \alpha<\kappa\right\}$. Since each C_{α} is symmetric and $C_{\alpha} C_{\beta} \subset C_{(\alpha \vee \beta)+1}$, we see that H_{0} is a subgroup of H. The closure of H_{0} in Φ_{Z} is denoted by \bar{H}_{0}, so that $u \in \bar{H}_{0}$ and \bar{H}_{0} is a subsemigroup of $\left(\Phi_{Z}, \square\right)$. It follows that \bar{H}_{0} is itself a compact, right topological semigroup. (In fact, we can identify \bar{H}_{0} with the character space of $L U C\left(H_{0}\right)$.)

By Corollary 5.9, $M\left(\Phi_{G}\right)$ is a closed ideal in $(M(\widetilde{G}), \square)$, and so $\theta\left(M\left(\Phi_{G}\right)\right)$ is a closed ideal in $(M(\widetilde{H}), \square)$. We define

$$
J=q_{H}\left(\theta\left(M\left(\Phi_{G}\right)\right)\right) \subset \Phi_{Z} .
$$

We claim that $J \cap \bar{H}_{0}$ is an ideal in the semigroup $\left(\bar{H}_{0}, \square\right)$. First note that $u \in J$ because $\varphi \in \Phi_{G}$, and so $J \cap \bar{H}_{0} \neq \emptyset$. Now take $x \in J \cap \bar{H}_{0}$ and $y \in \bar{H}_{0}$, say $x=q_{H}(\theta(\mathrm{M}))$ for some $\mathrm{M} \in M\left(\Phi_{G}\right)$ and $y=q_{H}(\psi)$ for some $\psi \in \widetilde{H}$. By Proposition 7.3 there exists $\varphi \in \widetilde{G}$ and $\zeta \in \mathbb{T}$ such that $\psi=\zeta \theta(\varphi)$. But now

$$
x \square y=q_{H}(\theta(\mathrm{M})) \square q_{H}\left(\zeta \delta_{\theta(\varphi)}\right)=q_{H}\left(\zeta \theta(\mathrm{M}) \square \delta_{\theta(\varphi)}\right) \in J,
$$

and also $x \square y \in \bar{H}_{0}$, and so $x \square y \in J \cap \bar{H}_{0}$. Similarly, $y \square x \in J \cap \bar{H}_{0}$, and so $J \cap \bar{H}_{0}$ is an ideal in \bar{H}_{0}, as claimed.

Since $\left(\bar{H}_{0}, \square\right)$ is a compact, right topological semigroup, it follows from Theorem 5.1 that \bar{H}_{0} has a minimum ideal, $K\left(\bar{H}_{0}\right)$. Clearly $K\left(\bar{H}_{0}\right) \subset J \cap \bar{H}_{0}$. Now 7.2 yields

$$
\begin{equation*}
x \square u=x \quad\left(x \in K\left(\bar{H}_{0}\right) \subset J\right) . \tag{7.3}
\end{equation*}
$$

For each $s \in H_{0}$, define

$$
f(s)=\min \left\{\alpha<\kappa: s \in C_{\alpha}\right\} .
$$

Suppose that $s, t \in H_{0}$ are such that $f(s)<f(t)$. Then $f(s t) \in\{f(t), f(t)+1\}$ whenever $f(t)$ is a limit ordinal or 0 and $f(s t) \in\{f(t)-1, f(t), f(t)+1\}$ otherwise.

Each ordinal α has the form $\alpha=\lambda(\alpha)+n(\alpha)$, where $\lambda(\alpha)$ is a limit ordinal or 0 , and $n(\alpha) \in \mathbb{N}$.

For $k \in \mathbb{Z}_{8}$, we define

$$
D_{k}=\left\{s \in H_{0}: n(f(s)) \equiv k(\bmod 8)\right\}
$$

so that $\left\{D_{1}, \ldots, D_{8}\right\}$ is a partition of H_{0} and $\bar{D}_{1} \cup \cdots \cup \bar{D}_{8}=\bar{H}_{0}$. For each $k \in \mathbb{Z}_{8}$ and each $\alpha<\kappa$, the set $D_{k} \backslash C_{\alpha}$ is infinite by (iv) above. Thus, for each $k \in \mathbb{Z}_{8}$, the family

$$
\left\{\overline{\left(D_{k} \backslash C_{\alpha}\right)}: \alpha<\kappa\right\}
$$

of closed subsets of the compact space \bar{H}_{0} has the finite intersection property, and so we may choose

$$
y_{k} \in \bigcap\left\{\overline{\left(D_{k} \backslash C_{\alpha}\right)}: \alpha<\kappa\right\} .
$$

For $k \in \mathbb{Z}_{8}$, we further define

$$
F_{k}=\left\{s t \in H_{0}: t \in D_{k}, s \in H_{0} \text { with } f(s)<f(t)\right\}
$$

Then, for each $k \in \mathbb{Z}_{8}$, we have

$$
F_{k} \subset D_{k-1} \cup D_{k} \cup D_{k+1} \quad \text { and } \quad U F_{k} \subset D_{k-2} \cup D_{k-1} \cup D_{k} \cup D_{k+1} \cup D_{k+2}
$$

where the subscripts are calculated in \mathbb{Z}_{8}. It follows that $F_{k} \cap U F_{\ell}=\emptyset$ whenever $k=\ell+4$, and so, by Theorem 5.12, we have

$$
\begin{equation*}
\bar{F}_{k} \cap \bar{F}_{\ell}=\emptyset \quad \text { whenever } \quad \ell=k+4 \text { in } \mathbb{Z}_{8} \tag{7.4}
\end{equation*}
$$

For each $x \in \bar{H}_{0}$ and $k \in \mathbb{Z}_{8}$, we can write

$$
x \square y_{k}=\lim _{s \rightarrow x} \lim _{t \rightarrow y_{k}}\left\{s t: s \in H_{0}, t \in D_{k} \backslash C_{f(s)}\right\} .
$$

Since $f(t)>f(s)$ for $t \in H \backslash C_{f(s)}$ and since $R_{y_{k}}$ is continuous on \bar{H}_{0}, it follows that

$$
\bar{H}_{0} \square y_{k} \subset \bar{F}_{k} .
$$

By Theorem 5.1, the left ideal $\bar{H}_{0} \square y_{k}$ of \bar{H}_{0} has a non-empty intersection with the minimum ideal $K\left(\bar{H}_{0}\right)$ of \bar{H}_{0}, and so there exists an element $x_{k} \in \bar{F}_{k} \cap K\left(\bar{H}_{0}\right)$.

There exists $k_{0} \in \mathbb{Z}_{8}$ such that $u \in \bar{D}_{k_{0}}$. For each $x \in K\left(\bar{H}_{0}\right)$, we can write

$$
x \square u=\lim _{s \rightarrow x} \lim _{t \rightarrow u}\left\{s t: s \in H_{0}, t \in D_{k} \backslash C_{f(s)}\right\} ;
$$

this holds because $u \notin \bar{C}_{\alpha}$ for any $\alpha<\kappa$. It follows that

$$
\begin{equation*}
x=x \square u \in \bar{F}_{k_{0}} \quad\left(x \in K\left(\bar{H}_{0}\right)\right), \tag{7.5}
\end{equation*}
$$

where we are using (7.3).
We take $\ell_{0}=k_{0}+4$ (in $\left.\mathbb{Z}_{8}\right)$, so that $x_{\ell_{0}} \in \bar{F}_{\ell_{0}} \cap K\left(\bar{H}_{0}\right)$. But $x_{\ell_{0}} \in \bar{F}_{k_{0}}$ by 7.5). This is a contradiction of 7.4 .

We conclude that $u \in H$ in the special case in which $\varphi \in \Phi_{G}$.
Now consider the more general case in which $\varphi \in \widetilde{G}_{\left\{e_{G}\right\}}$. We choose $\psi \in\left(\Phi_{G}\right)_{\left\{e_{G}\right\}}$, so that $\psi \square \varphi=\psi$ in \widetilde{G}. Set $v=q_{H}(\theta(\psi)) \in \Phi_{Z}$. By the special case that we have just proved, $v \in H$. But $v \square u=v$ in $\left(\Phi_{Z}, \square\right)$, and so, acting on the left with v^{-1}, we see that $u=e_{H}$, as required. It follows that $\theta(\varphi) \in \widetilde{H}_{\left\{e_{H}\right\}}$.

Let G and H be locally compact groups, as in the theorem, but now suppose further that H is σ-compact and non-compact. Then the above proof can be considerably simplified. Indeed, in this case, the sequence $\left(C_{n}: n<\omega\right)$ is any strictly increasing sequence of compact subspaces of H such that $U \subset C_{0}$ and $\bigcup_{n<\omega} C_{n}=H$, and we can take $H_{0}=H$. Thus the argument used in the above proof shows the following; it would be interesting to know if the result is still true when H is not necessarily σ-compact.

Proposition 7.7. Let H be a locally compact group which is σ-compact and non-compact. Then, for each $u \in \Phi_{Z} \backslash H$, there is a left ideal L of $\left(\Phi_{Z}, \square\right)$ such that $\left(\Phi_{Z} \square u\right) \cap L=\emptyset$.

We obtain the following consequence of the above lemma.
Proposition 7.8. Let G and H be locally compact groups, and let

$$
\theta:(M(\widetilde{G}), \square) \rightarrow(M(\widetilde{H}), \square)
$$

be an isometric isomorphism. Then θ induces a bijection $\theta: \widetilde{G}_{\left\{e_{G}\right\}} \rightarrow \widetilde{H}_{\left\{e_{H}\right\}}$ and an isometric isomorphism $\theta:\left(M\left(\Phi_{G}\right), \square\right) \rightarrow\left(M\left(\Phi_{H}\right), \square\right)$.
Proof. It is clear from Lemma 7.6 that $\theta: \widetilde{G}_{\left\{e_{G}\right\}} \rightarrow \widetilde{H}_{\left\{e_{H}\right\}}$ is a bijection.
Take $\mathrm{M} \in M\left(\Phi_{G}\right)$, and set $\mathrm{N}=\theta(\mathrm{M}) \in M(\widetilde{H})$. Choose an element $\varphi \in\left(\Phi_{H}\right)_{\left\{e_{H}\right\}}$. Then there exists $\psi \in \widetilde{G}_{\left\{e_{G}\right\}}$ such that $\theta(\psi)=\varphi$. By Theorem 6.5. (a) $\Rightarrow(\mathrm{b}), \mathrm{M} \square \delta_{\psi}=\mathrm{M}$ in $(M(\widetilde{G}), \square)$, and so we see that $\mathrm{N} \square \delta_{\varphi}=\mathrm{N}$ in $(M(\widetilde{H}), \square)$. By Theorem 6.5. (c) \Rightarrow (a), we have $\mathrm{N} \in M\left(\Phi_{H}\right)$. Thus $\theta\left(M\left(\Phi_{G}\right)\right) \subset M\left(\Phi_{H}\right)$. We conclude that θ is an isometric isomorphism from $\left(M\left(\Phi_{G}\right), \square\right)$ onto $\left(M\left(\Phi_{H}\right), \square\right)$.

Theorem 7.9. Let G and H be locally compact groups, and suppose that there is an isometric isomorphism from $(M(\widetilde{G}), \square)$ onto $(M(\widetilde{H}), \square)$. Then $G \sim H$.
Proof. By Proposition 7.8, there is an isometric isomorphism from $\left(M\left(\Phi_{G}\right), \square\right)$ onto $\left(M\left(\Phi_{H}\right), \square\right)$. By Theorem 7.2, $G \sim H$.

8. The compact space \widetilde{G}

Introduction. Let G be a locally compact group. We now enquire whether or not ($\widetilde{G}, \square)$ is a semigroup. Specifically, we take $\varphi, \psi \in \widetilde{G}$, so that $\delta_{\varphi} \square \delta_{\psi}$ is a measure on \widetilde{G}; we say that $\varphi \square \psi \in \widetilde{G}$ if $\delta_{\varphi} \square \delta_{\psi}$ is a point mass in \widetilde{G}; in the contrary case, we say that $\varphi \square \psi \notin \widetilde{G}$.
Definition 8.1. Let G be a locally compact group. Then a subset S of \widetilde{G} is a semigroup if $\varphi \square \psi \in S$ whenever $\varphi, \psi \in S$.

In particular, we shall consider whether or not \widetilde{G} itself is a semigroup. More generally, let S and T be subsets of \widetilde{G}. We shall consider, first, whether or not $\varphi \square \psi \in \widetilde{G}$ for each $\varphi \in S$ and $\psi \in T$, and, second, if so, the subset of \widetilde{G} to which $\varphi \square \psi$ belongs. Indeed, we shall say that

$$
S \square T \subset U
$$

if $\varphi \square \psi$ is point mass in U for each $\varphi \in S$ and $\psi \in T$.
For example, recall that, in the case where the group G is discrete, so that $\widetilde{G}=\beta G$, it is certainly the case that $(\beta G, \square)$ is a semigroup; indeed, it is a compact, right topological semigroup. This semigroup has been extensively discussed [17, 52. Thus, for a general locally compact group G, the subset $\bar{G}=\beta G_{d}$ of (\widetilde{G}, \square) is always a semigroup. Also, the following result follows easily from Proposition 6.2 (ii); recall that Φ is the character space of $L^{\infty}(G)$.
Proposition 8.2. Let G be a compact group. Then $\Phi \square \widetilde{G} \subset \Phi$, and, in particular, (Φ, \square) is a semigroup.

Indeed, we have noted in Corollary 6.3 that $\left(\Phi_{\{e\}}, \square\right)$ is a left-zero semigroup.
The above proposition does not extend to all locally compact groups G. Indeed, it is shown in [78, Corollary 4.4] that (Φ, \square) is a semigroup if and only if G is either compact or discrete; we state this result in the following form.

Proposition 8.3. Let G be a non-discrete, locally compact group that is not compact. Then (\widetilde{G}, \square) is not a semigroup.

One of our aims is to prove that (\widetilde{G}, \square) is not a semigroup for each non-discrete, locally compact group. The above proposition shows that it would be sufficient to restrict considerations to infinite, compact groups G. However we shall prove the result for general non-discrete, locally compact groups without appealing to Proposition 8.3 one reason for this is that we shall find different elements $\varphi, \psi \in \widetilde{G}$ such that $\varphi \square \psi \notin \widetilde{G}$ from those that arise in Proposition 8.3

Here is another obvious remark. As before, we set $E=C_{0}(G)$.

Proposition 8.4. Let G be a locally compact group. Then

$$
\bar{G} \square \widetilde{G} \subset \widetilde{G} \quad \text { and } \quad \widetilde{G} \square G \subset \widetilde{G} .
$$

Proof. Let $s \in G$. First take $\lambda \in E$. Then we recall that $\lambda \cdot s \in E$ is defined by the equation $(\lambda \cdot s)(t)=\lambda(s t)(t \in G)$. For $\lambda_{1}, \lambda_{2} \in E$, we have $\lambda_{1} \lambda_{2} \cdot s=\left(\lambda_{1} \cdot s\right)\left(\lambda_{2} \cdot s\right)$, and so

$$
\left\langle\lambda_{1} \lambda_{2}, s \star \varphi\right\rangle=\left\langle\lambda_{1}, s \star \varphi\right\rangle\left\langle\lambda_{2}, s \star \varphi\right\rangle \quad(\varphi \in \widetilde{G}) .
$$

Now take $\Lambda_{1}, \Lambda_{2} \in C(\widetilde{G})$. Taking weak-* limits, we see that

$$
\left\langle\Lambda_{1} \Lambda_{2}, s \star \varphi\right\rangle=\left\langle\Lambda_{1}, s \star \varphi\right\rangle\left\langle\Lambda_{2}, s \star \varphi\right\rangle \quad(\varphi \in \widetilde{G}),
$$

and so $\Lambda_{1} \Lambda_{2} \cdot s=\left(\Lambda_{1} \cdot s\right)\left(\Lambda_{2} \cdot s\right)$. Thus

$$
\left\langle\Lambda_{1} \Lambda_{2}, s \cdot \varphi\right\rangle=\left\langle\Lambda_{1} \Lambda_{2} \cdot s, \varphi\right\rangle=\left\langle\Lambda_{1} \cdot s, \varphi\right\rangle\left\langle\Lambda_{2} \cdot s, \varphi\right\rangle \quad\left(\Lambda_{1}, \Lambda_{2} \in C(\widetilde{G}), \varphi \in \widetilde{G}\right),
$$

and so $s \cdot \varphi \in \widetilde{G}$. Similarly, $\varphi \cdot s \in \widetilde{G}$. We have shown that $G \square \widetilde{G} \subset \widetilde{G}$ and $\widetilde{G} \square G \subset \widetilde{G}$.
Since multiplication on the right is continuous on ($M(\widetilde{G}), \square)$, it also follows that $\bar{G} \square \widetilde{G} \subset \widetilde{G}$.

However multiplication on the left is not continuous on $(M(\widetilde{G}), \square)$, and so we cannot say that $\widetilde{G} \square \bar{G} \subset \widetilde{G}$. Indeed, this is not true in general, as we shall see below.

In fact, since D^{\prime}, A^{\prime}, and M_{s}^{\prime} are translation-invariant subspaces of the space M^{\prime}, we see that $\bar{G} \square \bar{G} \subset \bar{G}$, that $\bar{G} \square \Phi \subset \Phi$, and that $\bar{G} \square \Phi_{s} \subset \Phi_{s}$.

Proposition 8.5. Let G be a compact group, and let

$$
\mathfrak{A}=\ell^{1}(G) \ltimes L^{1}(G) .
$$

Then $\left(\mathfrak{A}^{\prime \prime}, \square\right)=\left(M\left(\beta G_{d} \cup \Phi\right), \square\right)$, and $\left(\beta G_{d} \cup \Phi, \square\right)$ is a subsemigroup of $\left(M\left(\beta G_{d} \cup \Phi\right), \square\right)$.
Proof. Set $S=\beta G_{d} \cup \Phi$. By the standard result, ($\beta G_{d}, \square$) is a semigroup, and so we have $\beta G_{d} \square \beta G_{d} \subset \beta G_{d}$; by Proposition 8.2, $\Phi \square S \subset \Phi$; by Proposition 8.4, $\beta G_{d} \square \Phi \subset \Phi$. Thus $S \square S \subset S$.

Relation between groups. As a preliminary to our main investigations, we consider the relation between the statements that (\widetilde{G}, \square) and (\widetilde{H}, \square) are semigroups when G and H are related groups.

Let G and H be locally compact groups, and let $\eta: G \rightarrow H$ be a continuous map that is also a group homomorphism; as in Chapter 2, we can define a continuous linear operator $\bar{\eta}: M(G) \rightarrow M(H)$ with $\|\bar{\eta}\|=1$ and $\bar{\eta}\left(\delta_{s}\right)=\delta_{\eta(s)}(s \in G)$. Let $\mu, \nu \in M(G)$. For each $\lambda \in C_{0}(H)$, we have

$$
\begin{aligned}
\langle\lambda, \bar{\eta}(\mu \star \nu)\rangle & =\int_{G} \int_{G}(\lambda \circ \eta)(s t) \mathrm{d} \mu(s) \mathrm{d} \nu(t) \\
& =\int_{G} \int_{G} \lambda(\eta(s) \eta(t)) \mathrm{d} \mu(s) \mathrm{d} \nu(t) \\
& =\int_{H} \int_{H} \lambda(u v) \mathrm{d} \bar{\eta}(\mu)(u) \mathrm{d} \bar{\eta}(\nu)(v)=\langle\lambda, \bar{\eta}(\mu) \star \bar{\eta}(\nu)\rangle .
\end{aligned}
$$

It follows that $\bar{\eta}(\mu \star \nu)=\bar{\eta}(\mu) \star \bar{\eta}(\nu)$, and so the map $\bar{\eta}:(M(G), \star) \rightarrow(M(H), \star)$ is a continuous homomorphism. Hence

$$
\bar{\eta}^{\prime \prime}:(M(\widetilde{G}), \square) \rightarrow(M(\widetilde{H}), \square)
$$

is a continuous homomorphism with $\left\|\bar{\eta}^{\prime \prime}\right\|=1$. Further, as in equation 4.6) of Corollary 4.12 , we can define a continuous map $\widetilde{\eta}: \widetilde{G} \rightarrow \widetilde{H}$.

Proposition 8.6. Let G and H be locally compact groups, and let $\eta: G \rightarrow H$ be a continuous homomorphism.
(i) Suppose that η is an injection and that (\widetilde{G}, \square) is not a semigroup. Then (\widetilde{H}, \square) is not a semigroup.
(ii) Suppose that η is an open surjection and that (\widetilde{H}, \square) is not a semigroup. Then (\widetilde{G}, \square) is not a semigroup.
Proof. (i) By Corollary 4.12 (i), $\widetilde{\eta}: \widetilde{G} \rightarrow \widetilde{H}$ is an injection.
There exist $\varphi, \psi \in \widetilde{G}$ such that $\delta_{\varphi} \square \delta_{\psi} \in M(\widetilde{G}) \backslash \widetilde{G}$. We have $\widetilde{\eta}(\varphi), \widetilde{\eta}(\psi) \in \widetilde{H}$, and

$$
\delta_{\tilde{\eta}(\varphi)} \square \delta_{\tilde{\eta}(\psi)}=\bar{\eta}^{\prime \prime}\left(\delta_{\varphi} \square \delta_{\psi}\right) \in M(\widetilde{H}) .
$$

Further, $\left\|\delta_{\varphi} \square \delta_{\psi}\right\|=1$, and so $\bar{\eta}^{\prime \prime}\left(\delta_{\varphi} \square \delta_{\psi}\right) \neq 0$ because $\bar{\eta}^{\prime \prime}$ is an injection.
Assume towards a contradiction that $\bar{\eta}^{\prime \prime}(\varphi \square \psi) \in \widetilde{H}$. Then $\bar{\eta}^{\prime \prime}(\varphi \square \psi) \in \widetilde{\eta}(\widetilde{G})$, for otherwise $\widetilde{\eta}(\varphi \square \psi)=0$, and so $\varphi \square \psi \in \widetilde{G}$ because $\widetilde{\eta}$ is an injection, a contradiction.

Thus it follows that $\bar{\eta}^{\prime \prime}(\varphi \square \psi) \notin \widetilde{H}$, and so (\widetilde{H}, \square) is not a semigroup.
(ii) Since η is an open surjection, Proposition $5.2(\mathrm{i})$ shows that $\bar{\eta}: M(G) \rightarrow M(H)$ is a surjection. By Corollary 4.12 (ii), the map $\widetilde{\eta}: G \rightarrow \widetilde{H}$ is a surjection. It follows that there exist $\varphi, \psi \in \widetilde{G}$ such that $\widetilde{\eta}(\varphi) \square \widetilde{\eta}(\psi) \notin \widetilde{H}$.

Assume towards a contradiction that $\varphi \square \psi \in \widetilde{G}$. Then $\widetilde{\eta}(\varphi \square \psi)=\widetilde{\eta}(\varphi) \square \widetilde{\eta}(\psi) \in \widetilde{H}$, a contradiction. This shows that (\widetilde{G}, \square) is not a semigroup.

Specific compact groups. We shall now show that the inclusion $\widetilde{G} \square \bar{G} \subset \widetilde{G}$ often fails; we shall establish a strong form of this result in the special cases where G is the circle group \mathbb{T} or a compact, totally disconnected group, and then generalize the result to arbitrary locally compact groups.

We shall first introduce some preliminary notation.
We shall identify \mathbb{T} with \mathbb{R} / \mathbb{Z}, and use numbers θ in the interval $[0,1)$ to represent the point $\exp (2 \pi \mathrm{i} \theta)$ in \mathbb{T}. Haar measure $m_{\mathbb{T}}$ on \mathbb{T} gives the measure m on $[0,1)$. The fibre in $\widetilde{\mathbb{T}}$ above the identity element of the group \mathbb{T} is $\widetilde{\mathbb{T}}_{\{0\}}$. As before, D_{p} is the compact group $\mathbb{Z}_{p}^{\aleph_{0}}$. We regard D_{2} as a closed subset of D_{p} for each $p \geq 2$; however note that D_{2} is not a subgroup of D_{p} whenever $p \geq 3$. We also regard D_{2} as a subset of \mathbb{T}, as follows.
Definition 8.7. For $\varepsilon=\left(\varepsilon_{j}\right) \in D_{2}$, define

$$
\zeta(\varepsilon)=\sum_{j=1}^{\infty} \frac{\varepsilon_{j}}{3^{j}} \in \mathbb{T},
$$

and set $L=\zeta\left(D_{2}\right)$.
Thus L is the set of numbers whose ternary expansion contains only 0 's and 1 's; it is a Cantor set with $\{0,1 / 2\} \subset L \subset[0,1 / 2] \subset \mathbb{T}$. The map $\zeta: D_{2} \rightarrow L$ is a homeomorphism.

Let $\mu \in M(\mathbb{I})$ be defined by

$$
\begin{equation*}
\mu(B)=m_{D_{2}}(B \cap L) \quad\left(B \in \mathfrak{B}_{\mathbb{I}}\right), \tag{8.1}
\end{equation*}
$$

where now $m_{D_{2}}$ is Haar measure on D_{2}, identified with L, so that μ is a fixed, positive singular measure on \mathbb{I} with $\operatorname{supp} \mu=L$.

For $X \in \mathfrak{B}_{L}, r \in \mathbb{N}$, and $j \in\{0,1\}$, set

$$
\pi_{r, j}(X)=\left\{x \in X: \varepsilon_{r}(x)=j\right\} .
$$

Then we note that $\left(\pi_{r, 0}(X)-3^{-r}\right) \cap L=\emptyset$, so that $\mu\left(\pi_{r, 0}(X)-3^{-r}\right)=0$, and then that $\mu\left(\pi_{r, 1}(X)-3^{-r}\right)=\mu\left(\pi_{r, 1}(X)\right)$ because the map $x \mapsto x-3^{-r}$ applied to $\pi_{r, 1}(X)$ just corresponds to a translation in D_{2}.

Let $X, Y \in \mathfrak{B}_{L}$ and $r \in \mathbb{N}$. Then we have

$$
\left(X-3^{-r}\right) \triangle\left(Y-3^{-r}\right)=(X \triangle Y)-3^{-r}
$$

and so

$$
\mu\left(\left(X-3^{-r}\right) \triangle\left(Y-3^{-r}\right)\right)=\mu\left(\pi_{r, 1}(X \triangle Y)-3^{-r}\right)=\mu\left(\pi_{r, 1}(X \triangle Y)\right) .
$$

It follows that

$$
\begin{equation*}
\mu\left(\left(X-3^{-r}\right) \triangle\left(Y-3^{-r}\right)\right) \leq \mu(X \triangle Y) \tag{8.2}
\end{equation*}
$$

We shall also consider the groups of p-adic integers, where p is a prime (and $p \geq 2$); this group is described in [48, §10]. Following [48, we denote the group by Δ_{p}, and regard an element of Δ_{p} as a sequence in $\mathbb{Z}_{p}^{\aleph_{0}}$; for $r \in \mathbb{Z}^{+}$, the element $\left(\delta_{r, n}: n \in \mathbb{Z}^{+}\right)$is denoted by u_{r}. We note that Δ_{p} is monothetic, with generator u_{1}.

Theorem 8.8. Let G be either the circle group \mathbb{T} or $(\mathbb{R},+)$ or the compact group D_{p} or the group Δ_{p} of p-adic integers, where p is a prime. Then there exist $\mu \in M_{s}(G)^{+}$and $\psi \in G_{d}^{*}$ such that:
(i) $\varphi \square \psi \notin \widetilde{G}$ for each $\varphi \in \Phi_{\mu}$;
(ii) $\left|\left(\mathrm{M} \square \delta_{\psi}\right)\left(\Phi_{\mu}\right)\right| \leq 1 / 2$ for each $\mathrm{M} \in M\left(\Phi_{\mu}\right)_{[1]}$.

Proof. (i) We give the proof first in the case where $G=\mathbb{T}$ or $G=\mathbb{R}$.
We have defined $\mu \in M_{s}(\mathbb{I})^{+}$in (8.1), and we can regard μ as an element of $M_{s}(G)^{+}$.
For $r \in \mathbb{N}$, the element $3^{-r} \in L$. Now take $x=\sum_{j=1}^{\infty} \varepsilon_{j} / 3^{j} \in L$. For each $r \geq 2$, we have $x+3^{-r} \in L$ if and only if $\varepsilon_{r}=0$.

Fix $\varepsilon>0$. Then we claim that, for each $B \in \mathfrak{B}_{L}$ with $\mu(B)>0$, there exists $r_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\mu\left(B \cap\left(L-3^{-r}\right)\right)-\frac{1}{2} \mu(B)\right|<\varepsilon \mu(B) \quad\left(r>r_{\varepsilon}\right) . \tag{8.3}
\end{equation*}
$$

To see this, first suppose that $B \subset L$ is a basic clopen subset of the form $U_{F, \alpha}$, as in (2.1) above. Then

$$
B \cap\left(L-3^{-r}\right)=\left\{\varepsilon \in U_{F, \alpha}: \varepsilon_{r}=0\right\},
$$

and so, for each $r>\max F$, we have

$$
\mu\left(B \cap\left(L-3^{-r}\right)\right)=\frac{1}{2^{k+1}}=\frac{1}{2} \mu(B),
$$

giving 8.3 in this case. Since each clopen subset of L is a finite union of pairwise disjoint, basic clopen sets, our claim holds for each non-empty, clopen set $B \in \mathfrak{B}_{L}$.

For an arbitrary $B \in \mathfrak{B}_{L}$ with $\mu(B)>0$, there is an open and closed subset V of L such that $\mu(B \triangle V)<\varepsilon \mu(B)$. It follows from (8.2) that

$$
\mu\left(\left(B-3^{-r}\right) \triangle\left(V-3^{-r}\right)\right)<\varepsilon \mu(B)
$$

and so our claim holds for this set B. This establishes the general claim.
It follows from (8.3) that

$$
\lim _{r \rightarrow \infty}\left(\mu_{B} \star \delta_{3^{-r}}\right)(L)=\lim _{r \rightarrow \infty} \frac{\mu\left(B \cap\left(L-3^{-r}\right)\right)}{\mu(B)}=\frac{1}{2}
$$

for each $B \in \mathfrak{B}_{G}$ with $\mu(B)>0$.
Now take $\varphi \in \Phi_{\mu}$ and $\psi \in G_{d}^{*}$ to be any accumulation point of the set $\left\{3^{-r}: r \in \mathbb{N}\right\}$. By equation (6.5) in Proposition 6.1(iii), we have $\left\langle\chi_{K_{L}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle=1 / 2$, and so $\delta_{\varphi} \square \delta_{\psi}$ is not a point mass, whence $\varphi \square \psi \notin G$.

The case where G is either D_{p} or Δ_{p} for some $p \geq 3$ is essentially the same: we embed D_{2} in Δ_{p}, as before, and note that the sum of two elements of D_{2} in Δ_{p} is just the same as their sum in D_{p}.

Suppose that $G=D_{2}$, and again set $L=\zeta\left(D_{2}\right) \subset \mathbb{I}$ and take μ to be Haar measure on D_{2}, as in 8.1, with μ transferred to L. For each $n \in \mathbb{N}$, set

$$
A_{n}=\left\{\left(\varepsilon_{r}\right) \in L+u_{2 n+1}: \varepsilon_{2 n}=0\right\} \quad \text { and } \quad s_{n}=u_{2 n}+u_{2 n+1},
$$

and set $A=\bigcup\left\{A_{n}: n \in \mathbb{N}\right\}$. Then we see that

$$
L \cap\left(A-s_{n}\right)=\left\{\left(\varepsilon_{r}\right) \in L: \varepsilon_{2 n}=1\right\} \quad(n \in \mathbb{N})
$$

For each clopen subset B of L, we have

$$
\mu\left(B \cap\left(A-s_{n}\right)\right)=\frac{1}{2} \mu(B)
$$

for each sufficiently large $n \in \mathbb{N}$. Now let $\varphi \in \Phi_{\mu}$, and take ψ to be any accumulation point of the set $\left\{s_{n}: n \in \mathbb{N}\right\}$. It follows essentially as before that $\left\langle\chi_{K_{L}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle=1 / 2$, and so $\delta_{\varphi} \square \delta_{\psi}$ is not a point mass.

The final case in which $G=\Delta_{2}$ is essentially the same.
(ii) Clearly $\Phi_{\mu} \subset K_{L}$, and so

$$
0 \leq\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(\Phi_{\mu}\right) \leq \frac{1}{2} \quad\left(\varphi \in \Phi_{\mu}\right) .
$$

Since $M\left(\Phi_{\mu}\right)_{[1]}$ is the weak-* closure of the convex hull of the measures δ_{φ} for $\varphi \in \Phi_{\mu}$, we have $\left|\left(\mathrm{M} \square \delta_{\psi}\right)\left(\Phi_{\mu}\right)\right\rangle \mid \leq 1 / 2$ for each $\mathrm{M} \in M\left(\Phi_{\mu}\right)_{[1]}$, as required.
Corollary 8.9. Let $G=\mathbb{T}$. Then $\Phi_{s} \square \bar{G} \not \subset \widetilde{G}$, and (\widetilde{G}, \square) is not a semigroup.
We shall now show that $\Phi_{s} \square \Phi \not \subset \widetilde{G}$ and that $\Phi_{s} \square \Phi_{s} \not \subset \widetilde{G}$; we shall first work with the key group \mathbb{T}. We again require some preliminary notation. We recall that we are writing \mathbb{Z}_{n} for the set $\{0,1,2, \ldots, n-1\}$.

We fix a sequence $\left(r_{n}\right)$ in \mathbb{N} such that $4 \leq r_{n}<r_{n+1}(n \in \mathbb{N})$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{r_{n}}<\infty \tag{8.4}
\end{equation*}
$$

Next we define a new sequence ($d_{n}: n \in \mathbb{Z}^{+}$) by requiring that $d_{0}=1$ and that $d_{n}=r_{n} d_{n-1}(n \in \mathbb{N})$. Each $x \in[0,1)$ has a expression in the form

$$
x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}(x)}{d_{n}}, \quad \text { where } \quad \varepsilon_{n}(x) \in \mathbb{Z}_{r_{n}}(n \in \mathbb{N})
$$

where we note that

$$
\sum_{n=1}^{\infty} \frac{r_{n}-1}{d_{n}}=1
$$

(The expression for x is unique provided that we exclude the case where $\varepsilon_{n}(x)=r_{n}-1$ eventually; this ambiguity involves only countably many points of $[0,1)$.)

Let $x, y \in[0,1)$ and $n \in \mathbb{N}$. Then we see that

$$
\varepsilon_{n}(x+y)=\varepsilon_{n}(x)+\varepsilon_{n}(y)
$$

provided that $\varepsilon_{n}(x)+\varepsilon_{n}(y)<r_{n}-1$, for, in this case, there is no 'carrying of decimals'.
We now define three subsets L_{0}, L_{1}, L_{2} of $[0,1)$.
The set L_{0} consists of those elements $x \in[0,1)$ such that

$$
\varepsilon_{n}(x) \in\{0,1\} \quad(n \in \mathbb{N})
$$

Thus L_{0} is a Borel subset of $[0,1)$ with $m\left(L_{0}\right)=0$. We can identify L_{0} as a topological space with a dense subset of D_{2}, and we again denote by μ the positive measure on $[0,1)$ that corresponds to the Haar measure on D_{2}, as in 8.1, so that $\mu\left(L_{0}\right)=1$ and μ is singular with respect to m. We fix φ to be any element of Φ_{μ}, so that $\varphi \in \Phi_{s}$.

The set L_{1} consists of those elements $x \in[0,1)$ such that

$$
\varepsilon_{n}(x) \notin\left\{2, r_{n}-1\right\} \quad(n \in \mathbb{N}) .
$$

Thus L_{1} is a compact subset of $[0,1)$ with

$$
m\left(L_{1}\right)=\prod_{n=1}^{\infty}\left(1-\frac{2}{r_{n}}\right)
$$

and so $m\left(L_{1}\right)>0$ by 8.4).
The set L_{2} consists of those elements $x \in[0,1)$ such that

$$
\varepsilon_{n}(x) \notin\left\{2, r_{n}-2, r_{n}-1\right\} \quad(n \in \mathbb{N})
$$

and $\varepsilon_{n}(x)=1$ for exactly one value of $n \in \mathbb{N}$, say for $n=n_{x}$. Thus $L_{0} \subset L_{2} \subset L_{1}$ and L_{2} is a countable union of Borel subsets of $[0,1$), and hence is a Borel subset of \mathbb{T}. We observe that $m\left(L_{2} \cap U\right)>0$ for each neighbourhood U of 0 in $[0,1)$, and so there is a point $\psi \in \Phi \cap \widetilde{\mathbb{T}}_{\{0\}}$ such that L_{2} belongs to the ultrafilter ψ.

The key step in our construction is contained in the following lemma, which uses the above notation.

Lemma 8.10. We have $\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(K_{L_{1}}\right)=1 / 2$.
Proof. We first consider a basic clopen subset B of L_{0} of the form

$$
B=\left\{x \in L_{0}: \varepsilon_{i}(x)=u_{i} \quad\left(i \in \mathbb{N}_{k}\right)\right\}
$$

where $k \in \mathbb{N}$ and $u_{1}, \ldots, u_{k} \in \mathbb{Z}_{2}$. We then choose a Borel subset C of L_{2} such that, for each $t \in C$, we have $\varepsilon_{i}(t)=0\left(i \in \mathbb{N}_{k}\right)$.

We first fix $t \in C$, and consider $\mu\left(\left(L_{1}-t\right) \cap B\right)$. Indeed, take $x \in L_{1}$, and set $\alpha_{i}=\varepsilon_{i}(x)$ and $\beta_{i}=\varepsilon_{i}(t)$ for $i \in \mathbb{N}$. We claim that $x-t \in B$ if and only if the following two conditions hold:
(1) $\alpha_{i}=u_{i}\left(i \in \mathbb{N}_{k}\right)$;
(2) $\alpha_{i}-\beta_{i} \in\{0,1\}(i \in \mathbb{N})$.

To see this, first suppose that (1) and (2) hold, and set

$$
y=\sum_{i=1}^{\infty} \frac{\alpha_{i}-\beta_{i}}{d_{i}} .
$$

Then $y \in B$ because $\beta_{i}=0\left(i \in \mathbb{N}_{k}\right)$, and $x=y+t$ because

$$
\alpha_{i}=\left(\alpha_{i}-\beta_{i}\right)+\beta_{i}<r_{i}-1 \quad(i \in \mathbb{N})
$$

Thus $x-t \in B$. Conversely, suppose that $y:=x-t \in B$. Then (1) holds. Since $t \in L_{1}$, we have $\beta_{i}+\varepsilon_{i}(y) \leq r_{i}-1(i \in \mathbb{N})$, and so $\alpha_{i}=\beta_{i}+\varepsilon_{i}(y)(i \in \mathbb{N})$, and this implies that $\alpha_{i}-\beta_{i} \in\{0,1\}(i \in \mathbb{N})$, giving (2). This establishes the claim.

Next set $n=n_{t}$, so that $n>k$ and $\beta_{n}=1$. Suppose that $x-t \in B$. Then $\alpha_{n} \in\{1,2\}$ by (2). But we know that $\alpha_{n} \neq 2$ because $x \in L_{1}$, and so $\alpha_{n}=1$. For each $i \in \mathbb{N}$ with $i>k$ and with $i \neq n$, we can choose $x \in L_{1}$ with $\varepsilon_{i}(x)=\beta_{i}$, and we can also choose $y \in L_{1}$ with $\varepsilon_{i}(y)=1+\beta_{i}$; we can make these choices independently of any of the other coordinates of x or y, respectively. Thus we see that

$$
\left(L_{1}-t\right) \cap B=\left\{z \in B: \varepsilon_{n}(z)=0\right\} .
$$

This implies that

$$
\begin{equation*}
\mu\left(\left(L_{1}-t\right) \cap B\right)=\frac{1}{2} \mu(B) \quad(t \in C) . \tag{8.5}
\end{equation*}
$$

Since each clopen subset is the union of a finite, pairwise disjoint family of basic open sets, equation 8.5 easily extends to arbitrary clopen subsets B of L_{0}.

Essentially as before, we see that, given $\varepsilon>0$, there is a neighbourhood U of 0 in $[0,1)$ such that

$$
\left|\mu\left(\left(L_{1}-t\right) \cap B\right)-\frac{1}{2} \mu(B)\right|<\varepsilon \mu(B) \quad(t \in C)
$$

for each $C \in \psi$ such that $C \subset L_{2} \cap U$.
Recall that

$$
\left(\mu_{B} \star m_{C}\right)\left(L_{1}\right)=\frac{1}{\mu(B) m(C)} \int_{C} \mu\left(\left(L_{1}-t\right) \cap B\right) \mathrm{d} m(t)
$$

whenever B, C are Borel sets with $\mu(B), m(C)>0$. Thus

$$
\left|\left(\mu_{B} \star m_{C}\right)\left(L_{1}\right)-\frac{1}{2}\right|<\varepsilon
$$

for each $C \in \psi$ such that $C \subset L_{2} \cap U$.
We again take limits along the ultrafilters, first letting $C \rightarrow \psi$, and then letting $B \rightarrow \varphi$, to see that $\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(K_{L_{1}}\right)=1 / 2$, as required.

We now give an analogous result for compact, totally disconnected groups.
We first describe a class of sequential pro-finite groups; our groups are certain projective limits of finite groups. Indeed, each such group has the following form. For each
$n \in \mathbb{N}$, let G_{n} be a finite group of cardinality $\left|G_{n}\right|$, with identity denoted by e_{n}. Suppose that there are group homomorphisms $\theta_{n, m}: G_{n} \rightarrow G_{m}$, defined whenever $m, n \in \mathbb{N}$ and $m \leq n$, such that $\theta_{m, m}$ is the identity on G_{m} for each $m \in \mathbb{N}$, and such that $\theta_{p, n} \circ \theta_{n, m}=\theta_{p, m}$ whenever $m \leq n \leq p$. Then the group G is the projective limit of this system. Thus, as a group,

$$
G=\left\{\left(x_{n}\right) \in \prod_{n=1}^{\infty} G_{n}: \theta_{n, m}\left(x_{n}\right)=x_{m}(m \leq n)\right\},
$$

and G has the relative product topology from $\prod_{n=1}^{\infty} G_{n}$. These groups are examples of pro-finite groups; general pro-finite groups replace the set \mathbb{N} by more general directed sets. These groups are discussed in [88, §12.3] and [120]. A pro-finite group G is sequential if and only if e_{G} is a countable intersection of open, normal subgroups 120, Proposition 4.1.3]. Let G be a compact, totally disconnected group. Then it follows from [48, §8] that G has a quotient that is a sequential pro-finite group.

Let G be an infinite, sequential pro-finite group, with the above representation. The Haar measure on G is denoted by m. We set

$$
K_{n}=\operatorname{ker} \theta_{n, n-1} \quad(n \geq 2)
$$

By relabelling the groups, we may suppose that

$$
\left|G_{n+1}\right|>2^{2 n}\left|G_{n}\right| \quad(n \in \mathbb{N}),
$$

so that $\left|K_{n}\right|>2^{2(n-1)}(n \geq 2)$.
We begin by defining a continuous homomorphism from the group D_{2} into G. Indeed, we shall first define by induction on $n \in \mathbb{N}$ an element $\zeta(\varepsilon)$ in the group G_{n} for each $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathbb{Z}_{2}^{n}$ with $\varepsilon_{1}=0$. In the case where $n=1$ and ε is the singleton 0 , we set $\zeta(\varepsilon)=e_{1} \in G_{1}$. Now suppose that $n \geq 2$, and assume that $\zeta(\varepsilon)=a_{\varepsilon}$ has been defined in G_{m} for each $\varepsilon \in \mathbb{Z}_{2}^{m}$ whenever $m<n$. For each $\varepsilon \in \mathbb{Z}_{2}^{n-1}$, choose distinct elements $a_{\varepsilon} \frown 0$ and $a_{\varepsilon} \frown 1$ in G_{n} such that

$$
\theta_{n, n-1}\left(a_{\varepsilon-0}\right)=\theta_{n, n-1}\left(a_{\varepsilon-1}\right)=a_{\varepsilon}
$$

Further, in the case where $\varepsilon=(0, \ldots, 0) \in \mathbb{Z}_{2}^{n}$, we insist that $a_{\varepsilon \sim 0}=e_{n}$; this is compatible with the previous instruction. This completes the inductive definition. Next, for $\varepsilon \in D_{2}$, we define $\zeta(\varepsilon)$ to be the unique sequence a_{ε} in G such that

$$
\left(a_{\varepsilon}\right) \upharpoonright n=\zeta(\varepsilon \upharpoonright n) \quad(n \in \mathbb{N}) .
$$

It is clear that $\zeta: D_{2} \rightarrow G$ is a well-defined, continuous embedding.
The set L_{0} is defined to be the image $\zeta\left(D_{2}\right)$ of D_{2} in G, so that L_{0} is a compact subset of G. The measure on L_{0} that corresponds to Haar measure on D_{2} is again denoted by μ, so that $\mu\left(L_{0}\right)=1$ and μ is singular with respect to m. We fix φ to be any element of Φ_{μ}, so that $\varphi \in \Phi_{s}$.

For each $n \in \mathbb{N}$, we define

$$
A_{n}=\left\{a_{\varepsilon}: \varepsilon \in \mathbb{Z}_{2}^{n}, \varepsilon_{1}=0\right\}, \quad B_{n}=\left\{a_{\varepsilon}: \varepsilon \in \mathbb{Z}_{2}^{n}, \varepsilon_{1}=\varepsilon_{n}=0\right\}
$$

so that $B_{n} \subset A_{n} \subset L_{0}$, and then, for $n \geq 2$, choose $c_{n} \in K_{n} \backslash A_{n}^{-1} A_{n}$; the latter is
possible because $\left|A_{n}\right|=2^{n-1}$ and $\left|K_{n}\right|>2^{2(n-1)}$ for each $n \geq 2$. We note in particular that $c_{n} \neq e_{n}$.

We next define

$$
L_{1}=\left\{\left(x_{n}\right) \in G: x_{n} \notin B_{n} c_{n}(n \geq 2)\right\}
$$

Clearly L_{1} is a Borel subset of G.
Further, for each $m \geq 2$, we define

$$
L_{2, m}=\left\{x=\left(x_{n}\right) \in G: x_{m}=c_{m}\right\} .
$$

We observe that, for each $\left(x_{n}\right) \in L_{2, m}$ and each $r \in \mathbb{N}$ with $r \neq m$, necessarily $x_{r} \neq c_{r}$; this holds because $\theta_{m, r}\left(x_{m}\right)=e_{r}(r<m)$ and $\theta_{r, m}\left(c_{r}\right)=e_{m} \neq c_{m}(r>m)$. Thus m is the unique element $n \in \mathbb{N}$ such that $x_{n}=c_{n}$, say $m=n_{x}$.

Finally, we define

$$
L_{2}=\bigcup\left\{L_{2, m}: m \in \mathbb{N}\right\}
$$

so that L_{2} is a Borel subset of G. We observe that $m\left(L_{2} \cap U\right)>0$ for each neighbourhood U of 0 in G, and so there is a point $\psi \in \Phi_{\{e\}}$ such that L_{2} belongs to the ultrafilter ψ.

The following lemma is essentially the same as Lemma 8.10
Lemma 8.11. We have $\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(K_{L_{1}}\right)=1 / 2$.
Proof. Let B be a basic clopen subset of L_{0} consisting of the elements $\left(x_{n}\right) \in L_{0}$ such that $x_{i}=u_{i}\left(i \in \mathbb{N}_{k}\right)$ for some $k \in \mathbb{N}$ and $u_{1}, \ldots, u_{k} \in \mathbb{Z}_{2}$, and let C be the subset of L_{2} consisting of the elements $\left(x_{n}\right) \in L_{2}$ with $x_{i}=e_{i}\left(i \in \mathbb{N}_{k}\right)$.

Fix $t=\left(t_{n}\right) \in C$, and let $x \in L_{1}$. We claim that $x t^{-1} \in B$ if and only if the following two conditions hold: (1) $x_{i}=u_{i}\left(i \in \mathbb{N}_{k}\right) ;(2) x_{i} c_{i}^{-1} \in A_{i} \backslash B_{i}(i \in \mathbb{N})$. This is a slight variation of the earlier argument.

Thus we see that

$$
L_{1} t^{-1} \cap B=\left\{\left(b_{n}\right) \in B: b_{n_{t}} \notin B_{n_{t}}\right\}
$$

which implies that

$$
\mu\left(L_{1} t^{-1} \cap B\right)=\frac{1}{2} \mu(B) \quad(t \in C)
$$

again this equation easily extends to arbitrary clopen subsets B of L_{0}.
The remainder of the proof is as before.
We have established the following theorem.
Theorem 8.12. Let G be \mathbb{T} or a sequential pro-finite group. Then there exist $\mu \in M_{s}(G)^{+}$ and $\psi \in \Phi$ such that $\varphi \square \psi \notin \widetilde{G}$ for each $\varphi \in \Phi_{\mu}$.

An inspection of the above proofs shows that the only property of the measure m that was used is that $m\left(L_{2} \cap U\right)>0$ for each neighbourhood U of 0 in $[0,1)$; there are many singular measures $\nu \in M_{s}(G)^{+}$such that $\nu\left(L_{2} \cap U\right)>0$ for each such neighbourhood U. Thus we also obtain the following theorem.

Theorem 8.13. Let G be \mathbb{T} or a sequential pro-finite group. Then there exist $\mu \in M_{s}(G)^{+}$ and $\psi \in \Phi_{\text {s }}$ such that $\varphi \square \psi \notin \widetilde{G}$ for each $\varphi \in \Phi_{\mu}$.

We shall discuss below a version of the above results for more general groups.
The following table summarizes the inclusions that we have established at least for the compact groups specified in the above theorems. Let R, S, and T be subsets of \widetilde{G}, with R in the left-hand column and S in the top row. The conclusion ' $\subset T$ ' implies that, for each $\varphi \in R$ and $\psi \in S$, it follows that $\varphi \square \psi \in \widetilde{G}$, and, further, that $\varphi \square \psi \in T$. The conclusion ' $\not \subset \widetilde{G}$ ' implies that there exist $\varphi \in R$ and $\psi \in S$ such that $\varphi \square \psi \notin \widetilde{G}$.

\square	βG_{d}	Φ	Φ_{s}
βG_{d}	$\subset \beta G_{d}$	$\subset \Phi$	$\subset \Phi_{s}$
Φ	$\subset \Phi$	$\subset \Phi$	$\subset \Phi$
Φ_{s}	$\not \subset \widetilde{G}$	$\not \subset \widetilde{G}$	$\not \subset \widetilde{G}$

General groups. Let \mathcal{C} be the class of all non-discrete, locally compact groups G such that (\widetilde{G}, \square) is not a semigroup. Our aim is to show that \mathcal{C} is the class of all non-discrete, locally compact groups. (We recall that it is already known for all non-discrete, locally compact groups which are not compact that (\widetilde{G}, \square) is not a semigroup, but we shall not use this result.)

We first reduce to the case of non-discrete, locally compact abelian groups. The following result may be well known; we are indebted to George Willis for some of the references in the proof.

Theorem 8.14. Every non-discrete, locally compact group has a closed subgroup which is a non-discrete, locally compact abelian subgroup.

Proof. Let G be a non-discrete, locally compact group, and let the component of the identity of G be G_{0}.

Suppose first that $G_{0}=\left\{e_{G}\right\}$, the identity of G. By [48, Theorems (7.3) and (7.7)], G is totally disconnected and contains an infinite, compact subgroup. By a very deep theorem of Zelmanov [126], each infinite compact group contains an infinite (and hence non-discrete), compact abelian subgroup.

Next suppose that $G_{0} \neq\left\{e_{G}\right\}$. Then G_{0} has a compact normal subgroup, say K, such that G_{0} / K is a Lie group [85, §4.6].

If K is infinite, then again K contains an infinite, compact abelian subgroup.
If K is finite, then G_{0} itself is a Lie group, and so G_{0} contains a 1-parameter subgroup (isomorphic to \mathbb{R} or \mathbb{T}) 85, §4.2].

Thus in each case G contains a closed subgroup which is a non-discrete, locally compact abelian subgroup.

We now call in aid a structure theorem for non-discrete, locally compact abelian groups; the theorem is implied by [41, Theorem 6.8.4], which is called a 'standard theorem'. For a prime number p, the group Δ_{p} is the group of p-adic integers, as is explained on [41, p. 191], and $D_{p}=\left(Z_{p}\right)^{\infty}$ in the notation of 41].

Theorem 8.15. Let \mathcal{B} be the class of all locally compact abelian groups G such that:
(i) $\mathbb{R}, \mathbb{T} \in \mathcal{B}$;
(ii) $\Delta_{p}, D_{p} \in \mathcal{B}$ for all prime numbers p;
(iii) $G \in \mathcal{B}$ whenever G is a locally compact abelian group such that G contains as a subgroup a member of \mathcal{B};
(iv) $G \in \mathcal{B}$ whenever G is a locally compact abelian group such that G has a quotient that is a member of \mathcal{B}.

Then \mathcal{B} contains all non-discrete, locally compact abelian groups.
Thus we can conclude with the following theorem.
Theorem 8.16. Let G be a non-discrete, locally compact group. Then (\widetilde{G}, \square) is not a semigroup.

Proof. By Theorem 8.14 and Proposition 8.6, it suffices to prove that (\widetilde{G}, \square) is not a semigroup for each non-discrete, locally compact abelian group G.

Let \mathcal{B} be the class of all non-discrete, locally compact abelian groups G such that (\widetilde{G}, \square) is not a semigroup. Then we see that the class \mathcal{B} satisfies all the clauses of Theorem 8.15 indeed we have shown in Theorem 8.8 that \mathcal{B} satisfies clauses (i) and (ii), and in Proposition 8.6 that \mathcal{B} satisfies clauses (iii) and (iv) of Theorem 8.15. Thus \mathcal{B} is the class of all non-discrete, locally compact abelian groups.

This completes the proof of the theorem.
A similar extension of Theorem 8.12 can be given.
Theorem 8.17. Let G be a compact group. Suppose that there is a continuous epimorphism from G onto either \mathbb{T} or a sequential pro-finite group. Then there exist $\varphi \in \widetilde{G}$ and $\psi \in \Phi$ such that $\varphi \square \psi \notin \widetilde{G}$.

Proof. Let H be either \mathbb{T} or a sequential pro-finite group. Then, by Theorem 8.12, there exist elements $\varphi_{1} \in \widetilde{H}$ and $\psi_{1} \in \Phi_{H}$ such that $\varphi_{1} \square \psi_{1} \notin \widetilde{H}$. By Proposition 5.2 (ii), $\widetilde{\eta}(\widetilde{G})=\widetilde{H}$, and $\widetilde{\eta}\left(\Phi_{G}\right)=\Phi_{H}$, and so there exist elements $\varphi \in \widetilde{G}$ and $\psi \in \Phi_{G}$ such that $\widetilde{\eta}(\varphi)=\varphi_{1}$ and $\widetilde{\eta}(\psi)=\psi_{1}$. Since $\widetilde{\eta}\left(\delta_{\varphi} \square \delta_{\psi}\right)=\delta_{\varphi_{1}} \square \delta_{\psi_{1}}$, we have $\varphi \square \psi \notin \widetilde{G}$.

In particular, the above theorem applies to each group of the form $G \times H$, where G is an infinite, compact, totally disconnected group, and to each non-trivial, connected, solvable group.

Further calculations on products. Within the proof of Theorem 8.8, we showed that there are a measure $\mu \in M_{s}(\mathbb{T})^{+}$and elements $\psi \in \mathbb{T}_{d}^{*}$ such that, for each $\varphi \in \Phi_{\mu}$, the measure $\delta_{\varphi} \square \delta_{\psi} \in M(\widetilde{\mathbb{T}})$ satisfies $\left\langle\chi_{K_{L}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle=1 / 2$, and hence is not a point mass. We now gain further information about measures similar to $\delta_{\varphi} \square \delta_{\psi}$. (We restrict attention to the group \mathbb{T}; similar remarks apply to other groups.)

In the next theorem, μ and ψ are fixed as above; the measure $\mu \in M_{s}(\mathbb{T})^{+}$was defined in 8.1).

Theorem 8.18. For each $\varphi \in \Phi_{\mu}$, there is a non-zero, continuous measure $\mathrm{M} \in M_{c}(\widetilde{T})^{+}$ such that

$$
\delta_{\varphi} \square \delta_{\psi}=\frac{1}{2} \delta_{\varphi}+\mathrm{M} .
$$

In particular, the measure $\delta_{\varphi} \square \delta_{\psi}$ is neither continuous nor discrete.
Proof. This proof comes in two parts, which together establish the theorem, and in fact give slightly more information. The space L was specified in Definition 8.7.
(1) We shall show first that the restriction of $\delta_{\varphi} \square \delta_{\psi}$ to the set K_{L} is $\delta_{\varphi} / 2$.

Recall from 2.1) that the basic clopen subsets of L have the form

$$
U_{F, \alpha}=\left\{\left(\varepsilon_{n}\right) \in L: \varepsilon_{n_{i}}=\alpha_{i}\left(i \in \mathbb{N}_{k}\right)\right\}
$$

for fixed $F=\left\{n_{1}, \ldots, n_{k}\right\}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{Z}_{2}^{k}$, and that each clopen set is a finite union of pairwise disjoint, basic, clopen subsets of L.

We first make the following claim. Let U and V be clopen subsets of L with $U \subset V$. Then there exists $r_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\mu\left(U \cap\left(V-3^{-r}\right)\right)=\frac{1}{2} \mu(U) \quad\left(r>r_{0}\right) . \tag{8.6}
\end{equation*}
$$

First suppose that U and V are basic clopen subsets, say $U=U_{G, \beta}$ and $V=U_{F, \alpha}$, where $F \subset G, \alpha \in \mathbb{Z}_{2}^{|F|}, \beta \in \mathbb{Z}_{2}^{|G|}$, and $\beta \mid F=\alpha$, so that it is indeed true that $U \subset V$. Take $r>\max G$, and define γ on $G \cup\{r\}$ by requiring that $\gamma \mid G=\beta$ and $\gamma_{r}=0$. Then $U \cap\left(V-3^{-r}\right)=U_{G \cup\{r\}, \gamma}$. Thus

$$
\begin{equation*}
\mu\left(U \cap\left(V-3^{-r}\right)\right)=\mu\left(U_{G \cup\{r\}, \gamma}\right)=\left(\frac{1}{2}\right)^{|G|+1}=\frac{1}{2} \mu(U) . \tag{8.7}
\end{equation*}
$$

For the general case, take clopen sets $U, V \subset L$ with $U \subset V$. Then there exist a finite subset F of \mathbb{N} and elements $\alpha^{1}, \ldots, \alpha^{m}, \beta^{1}, \ldots, \beta^{n}$ in $\mathbb{Z}_{2}^{|F|}$ such that $\alpha^{1}, \ldots, \alpha^{m}$ are distinct and $\beta^{1}, \ldots, \beta^{n}$ are distinct and

$$
U=\bigcup_{i=1}^{m} U\left(F, \alpha^{i}\right) \quad \text { and } \quad V=\bigcup_{j=1}^{n} U\left(F, \beta^{j}\right)
$$

(and each union is composed of pairwise disjoint sets). By 8.7), there exists $r_{0} \in \mathbb{N}$ such that $r_{0}>\max F$ and

$$
\mu\left(U_{\alpha^{i}} \cap U_{\beta^{j}} \cap\left(U_{\beta^{j}}-3^{-r}\right)\right)=\frac{1}{2} \mu\left(U_{\alpha^{i}} \cap U_{\beta^{j}}\right) \quad\left(r>r_{0}, i \in \mathbb{N}_{m}, j \in \mathbb{N}_{n}\right)
$$

where we are writing $U_{\alpha^{i}}$ for $U\left(F, \alpha^{i}\right)$, etc. Now

$$
V \cap\left(V-3^{-r}\right)=\bigcup_{j=1}^{n} U_{\beta^{j}} \cap\left(U_{\beta^{j}}-3^{-r}\right) \quad\left(r>r_{0}\right)
$$

because $U_{\beta^{i}} \cap\left(U_{\beta^{j}}-3^{-r}\right)=\emptyset$ whenever $r>r_{0}$ and $i, j \in \mathbb{N}_{n}$ with $i \neq j$, and so

$$
\mu\left(U \cap V \cap\left(V-3^{-r}\right)\right)=\frac{1}{2} \mu(U \cap V) \quad\left(r>r_{0}\right) .
$$

Since $U \cap V=U$, our first claim 8.6 holds.

Our second claim is the following. Let $B, C \in \mathfrak{B}_{L}$ with $B \subset C$ and $\mu(B)>0$. Then, for each $\varepsilon>0$, there exists $r_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\mu\left(B \cap\left(C-3^{-r}\right)\right)-\frac{1}{2} \mu(B)\right|<\varepsilon \mu(B) \quad\left(r>r_{\varepsilon}\right) . \tag{8.8}
\end{equation*}
$$

To see that this holds, first take clopen subsets U and V in L such that

$$
\mu(B \triangle U)<\frac{1}{2} \varepsilon \mu(B) \quad \text { and } \quad \mu(C \triangle V)<\frac{1}{2} \varepsilon \mu(B) .
$$

Set $W=U \cap V$. Then

$$
\mu(B \triangle W)<\varepsilon \mu(B)
$$

because $B \triangle W \subset(B \triangle U) \cup(C \backslash V) \subset(B \triangle U) \cup(C \triangle V)$, and so

$$
\begin{equation*}
|\mu(W)-\mu(B)|<\varepsilon \mu(B) \tag{8.9}
\end{equation*}
$$

It follows from our first claim that there exists $r_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\mu\left(W \cap\left(V-3^{-r}\right)\right)=\frac{1}{2} \mu(W) \quad\left(r>r_{\varepsilon}\right) . \tag{8.10}
\end{equation*}
$$

Now fix $r>r_{\varepsilon}$. As in the proof of Theorem 8.8, we have

$$
\begin{equation*}
\mu\left(\left(C-3^{-r}\right) \triangle\left(V-3^{-r}\right)\right)<\frac{1}{2} \varepsilon \mu(B) \quad\left(r>r_{\varepsilon}\right) \tag{8.11}
\end{equation*}
$$

It follows from (8.9) and 8.10 that

$$
\left|\mu\left(B \cap\left(V-3^{-r}\right)\right)-\frac{1}{2} \mu(B)\right|<\frac{1}{2} \varepsilon \mu(B) \quad\left(r>r_{\varepsilon}\right),
$$

and then from 8.11) it follows that our second claim, 8.8, holds.
Now suppose that $C \in \varphi$. For each $B \in \varphi$ such that $B \subset C$ and $\mu(B)>0$ and for each $\varepsilon>0$, we have seen that there exists $r_{\varepsilon} \in \mathbb{N}$ such that

$$
\left|\left(\mu_{B} \star \delta_{3-r}\right)(C)-\frac{1}{2}\right|=\left|\frac{\mu\left(B \cap\left(C-3^{-r}\right)\right)}{\mu(B)}-\frac{1}{2}\right|<\varepsilon \quad\left(r>r_{\varepsilon}\right) .
$$

We take limits as a subnet of the point masses δ_{3-r} converges to δ_{ψ}, and then take limits $\lim _{B \rightarrow \varphi}$; by 6.5), we have

$$
\left\langle\chi_{K_{C}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle=\frac{1}{2} .
$$

Thus $\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(K_{C}\right)=1 / 2$. We already know that $\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(K_{L}\right)=1 / 2$, and so

$$
\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(K_{L \backslash C}\right)=0 \quad(C \in \varphi) .
$$

Thus the restriction of $\delta_{\varphi} \square \delta_{\psi}$ to the set K_{L} is $\delta_{\varphi} / 2$, and so part (1) is proved.
(2) We shall show now that the restriction of $\delta_{\varphi} \square \delta_{\psi}$ to the set $\widetilde{\mathbb{T}} \backslash K_{L}=K_{\mathbb{T} \backslash L}$ is a continuous measure (it is positive and has mass $1 / 2$).

First, recall that each $x \in \mathbb{I}$ has a ternary expansion of the form $x=\sum_{n=1}^{\infty} \varepsilon_{n}(x) / 3^{n}$, where $\varepsilon_{n}(x) \in \mathbb{Z}_{3}^{+}$. For each $n \in \mathbb{N}$, set

$$
C_{n}=\left\{x \in \mathbb{I}: \varepsilon_{n}(x)=2, \varepsilon_{r}(x) \in\{0,1\}(r \in \mathbb{N} \backslash\{n\})\right\},
$$

so that each C_{n} is a closed subset of \mathbb{I} with $C_{n} \cap L=\emptyset$ and the sets C_{n} are pairwise disjoint, and then set

$$
C=\bigcup_{n=1}^{\infty} C_{n}
$$

so that $C \in \mathfrak{B}_{\mathbb{T}}$ and $C \cap L=\emptyset$.

We first claim that $\operatorname{supp}\left(\delta_{\varphi} \square \delta_{\psi}\right) \subset K_{L \cup C}$. Indeed, suppose that $x \in \mathbb{T} \backslash(L \cup C)$. Then it is easily checked that $x-3^{-r} \in \mathbb{T} \backslash L$ for each $r \in \mathbb{N}$, and so

$$
\left(\mu_{B} \star \delta_{3-r}\right)(L \cup C)=0
$$

for each $B \in \mathfrak{B}_{L}$ with $\mu(B)>0$. Thus

$$
\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(\widetilde{\mathbb{T}} \backslash K_{L \cup C}\right)=\lim _{B \rightarrow \varphi} \lim _{r \rightarrow \infty}\left(\mu_{B} \star \delta_{3-r}\right)(L \cup C)=0,
$$

giving the claim.
For each $A \in \mathfrak{B}_{C}$, we have

$$
\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(K_{A}\right)=\left\langle\chi_{K_{A}}, \delta_{\varphi} \square \delta_{\psi}\right\rangle=\lim _{B \rightarrow \varphi} \lim _{n \rightarrow \infty} \mu_{B}\left(\left(A \cap C_{n}\right)-3^{-n}\right) .
$$

Fix $k \in \mathbb{N}$, and enumerate the set \mathbb{Z}_{2}^{k} as $\left\{\alpha^{1}, \ldots, \alpha^{2^{k}}\right\}$. For each $i \in \mathbb{N}_{2^{k}}$ and each $n \in \mathbb{N}$, define

$$
A_{i, n}=\left\{x \in C_{n}: \varepsilon_{m+n}=\alpha_{m}^{i}\left(m \in \mathbb{N}_{k}\right)\right\}
$$

so that $A_{i, n}$ is a closed subset of C_{n} and $\left\{A_{1, n}, \ldots, A_{2^{k}, n}\right\}$ is a partition of C_{n}. Now, for each $i \in \mathbb{N}_{2^{k}}$, define

$$
A_{i}=\bigcup_{n=1}^{\infty} A_{i, n}
$$

so that each $A_{i} \in \mathfrak{B}_{C}$ and $\left\{A_{1}, \ldots, A_{2^{k}}\right\}$ is a partition of C. We shall show that

$$
\begin{equation*}
\left(\delta_{\varphi} \square \delta_{\psi}\right)\left(K_{A_{i}}\right)=\frac{1}{2^{k+1}} \quad\left(i \in \mathbb{N}_{2^{k}}\right) \tag{8.12}
\end{equation*}
$$

from this we see that each singleton in $K_{\mathbb{T} \backslash L}$ has mass at most $1 / 2^{k}$ with respect to the measure $\delta_{\varphi} \square \delta_{\psi}$. Since this is true for each $k \in \mathbb{N}$, it will follow that $\left(\delta_{\varphi} \square \delta_{\psi}\right) \mid K_{\mathbb{T} \backslash L}$ is a continuous measure, as required.

Fix $i \in \mathbb{N}_{2^{k}}$. We first observe that, for every basic open subset U of L, there exists $r_{0} \in \mathbb{N}$ such that

$$
\mu\left(U \cap\left(\left(A_{i} \cap C_{r}\right)-3^{-r}\right)\right)=\frac{1}{2^{k+1}} \mu(U) \quad\left(r>r_{0}\right)
$$

This statement extends to all clopen subsets U of L because each such set is the union of a pairwise disjoint family of basic open sets. Now take $\varepsilon>0$. For each $B \in \mathfrak{B}_{L}$ with $\mu(B)>0$, there is a clopen subset U of L with $\mu(B \triangle U)<\varepsilon \mu(B)$, and then, as before,

$$
\left|\mu\left(U \cap\left(\left(A_{i} \cap C_{r}\right)-3^{-r}\right)\right)-\mu\left(B \cap\left(\left(A_{i} \cap C_{r}\right)-3^{-r}\right)\right)\right|<\varepsilon \mu(B)
$$

for each $r \in \mathbb{N}$. Thus

$$
\frac{1}{2^{k+1}}(1-\varepsilon)<\mu_{B}\left(\left(A_{i} \cap C_{r}\right)-3^{-r}\right)<\frac{1}{2^{k+1}}(1+\varepsilon) \quad\left(r>r_{0}\right) .
$$

By taking limits in the usual way, we see that 8.12 follows.
This completes the proof.
In comparison, we note that, for each $\varphi \in \mathbb{T}$ and $\psi \in \overline{\mathbb{T}}$, the measure $\delta_{\varphi} \diamond \delta_{\psi}=\delta_{\psi} \square \delta_{\varphi}$ is a point mass, and so $\varphi \diamond \psi \in \widetilde{\mathbb{T}}$; this is a consequence of Proposition 8.4
Corollary 8.19. Let μ be as above. Then $\delta_{\varphi} \notin \mathfrak{Z}_{t}^{(\ell)}(M(\widetilde{\mathbb{T}}))$ for each $\varphi \in \Phi_{\mu}$.
A stronger result than the above will be proved in Theorem 9.8 .

Example 8.20. We give an example to show that there is a compact group G and elements $\varphi, \psi, \theta \in \widetilde{G}$ with $\varphi \sim \psi$, but such that

$$
\varphi \square \theta \nsim \psi \square \theta ;
$$

this contrasts with Theorem 6.11.
We take $G=\mathbb{T}$. As in Theorem 8.18, there exist $\varphi \in \Phi, \theta \in \widetilde{\mathbb{T}}$, and $L \in \mathfrak{B}_{\mathbb{T}}$ such that $\left(\delta_{\varphi} \square \delta_{\theta}\right)\left(K_{L}\right)=1 / 2$. By Proposition 4.13. there exists $\psi \in \beta \mathbb{T}_{d}$ such that $\psi \sim \varphi$. Now $\psi \square \theta \in \widetilde{\mathbb{T}}$, and so $\delta_{\psi} \square \delta_{\theta}$ is point mass. Thus $\left(\delta_{\psi} \square \delta_{\theta}\right)\left(K_{L}\right) \in\{0,1\}$. Hence $\delta_{\psi} \square \delta_{\theta} \nsim \delta_{\varphi} \square \delta_{\theta}$.

We shall now show that the product of two point masses in $M(\widetilde{\mathbb{T}})$ might be a continuous measure on $\widetilde{\mathbb{T}}$.

Let G be a locally compact group. For $n \in \mathbb{N}$ and $\mathrm{M} \in M(\widetilde{G})$, we write $\mathrm{M}^{\square n}$ for the $n^{\text {th }}$ power of M in the algebra $(M(\widetilde{G}), \square)$. For ψ in the semigroup (\bar{G}, \square), the $n^{\text {th }}$ power of ψ in the semigroup is $\psi^{\square n}$, so that $\delta_{\psi}^{\square n}$ is the point mass at $\psi^{\square n}$. The set $\left\{\psi^{\square n}: n \in \mathbb{N}\right\}$ of points in \bar{G} has an accumulation point, say ξ, and then δ_{ξ} is a weak-* accumulation point of the set $\left\{\delta_{\psi}^{\square n}: n \in \mathbb{N}\right\}$ in $M(\widetilde{G})_{[1]}$.

We let L, μ, φ, and ψ have the same meaning as above.
Theorem 8.21. Let $\mu \in M_{s}(\mathbb{T})^{+}$be as specified. Then there is an element $\xi \in \overline{\mathbb{T}}$ such that, for each $\varphi \in \Phi_{\mu}$, the measure $\delta_{\varphi} \square \delta_{\xi}$ belongs to $M_{c}(\widetilde{\mathbb{T}})^{+}$.
Proof. The element $\xi \in \overline{\mathbb{T}}$ is taken to be any accumulation point of the set $\left\{\psi^{\square n}: n \in \mathbb{N}\right\}$, which was specified above.

Let $\varphi \in \Phi_{\mu}$. The proof that $\delta_{\varphi} \square \delta_{\xi}$ is a continuous measure on $\widetilde{\mathbb{T}}$ is similar to that of Theorem 8.18 it comes in three parts.
(1) We shall show first that the restriction of $\delta_{\varphi} \square \delta_{\xi}$ to the set K_{L} is 0 .

We claim the following. Let $B, C \in \mathfrak{B}_{L}$ with $B \subset C$ and $\mu(B)>0$. Then, for each $\varepsilon>0$, there exists $r_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\mu\left(B \cap\left(C-\left(3^{-r_{1}}+\cdots+3^{-r_{n}}\right)\right)\right)-\frac{1}{2^{n}} \mu(B)\right|<\varepsilon \mu(B) \tag{8.13}
\end{equation*}
$$

whenever $r_{n}>\cdots>r_{2}>r_{1}>r_{\varepsilon}$. This is proved by a slight variation of the proof of the corresponding claim in Theorem 8.18.

Let $B \in \varphi$ with $B \subset L$ and $\mu(B)>0$, and take $\varepsilon>0$. For each $n \in \mathbb{N}$, we have seen that there exists $r_{\varepsilon} \in \mathbb{N}$ such that

$$
\left|\left(\mu_{B} \star \delta_{3-r_{1}} \star \cdots \star \delta_{3-r_{n}}\right)(L)-\frac{1}{2^{n}}\right|<\varepsilon
$$

whenever $r_{n}>\cdots>r_{1}>r_{\varepsilon}$. We take limits successively over r_{n}, \ldots, r_{1} as subnets of the point masses δ_{3-r} converge to δ_{ψ} to see that

$$
\left|\left(\mu_{B} \square \delta_{\psi}\right)^{\square n}\left(K_{L}-\frac{1}{2^{n}}\right)\right| \leq \varepsilon,
$$

using (3.8). We next take limits over a subnet of ($\psi^{\square n}$) to see that

$$
\left\langle\chi_{K_{L}}, \mu_{B} \square \delta_{\xi}\right\rangle=\left(\mu_{B} \square \delta_{\xi}\right)\left(K_{L}\right) \leq \varepsilon .
$$

Finally, we take limits $\lim _{B \rightarrow \varphi}$ to see that $\left(\delta_{\varphi} \square \delta_{\xi}\right)\left(K_{L}\right) \leq \varepsilon$. Since this holds for each $\varepsilon>0$, we have $\left(\delta_{\varphi} \square \delta_{\xi}\right)\left(K_{L}\right)=0$, as required.
(2) There is a Borel subset C of \mathbb{T} such that $\left(\delta_{\varphi} \square \delta_{\psi}\right) \mid K_{\mathbb{T} \backslash(L \cup C)}=0$.

Let \mathcal{F} denote the family of non-empty, finite subsets of the set $\left\{r_{n}: n \in \mathbb{N}\right\}$ that was specified above. For each $F \in \mathcal{F}$, we take m_{F} to be the maximum of F in \mathbb{N}, we set

$$
x_{F}=\sum\left\{3^{-r}: r \in F\right\} \in \mathbb{T},
$$

and we define

$$
C_{F}:=\left\{x \in \mathbb{T}: \varepsilon_{r}(x)=2 \text { if and only if } r \in F\right\} \subset \mathbb{T},
$$

so that C_{F} is a closed subset of \mathbb{T} and the sets C_{F} are pairwise disjoint. Now set

$$
X=\left\{x_{F}: F \in \mathcal{F}\right\} \quad \text { and } \quad C=\bigcup\left\{C_{F}: F \in \mathcal{F}\right\} .
$$

Since \mathcal{F} is countable, $C \in \mathfrak{B}_{\mathbb{T}}$. Further, for each $t \in \mathbb{T}$ and $x \in X$ such that $t-x \in L$, we see easily that $\varepsilon_{r}(t-x)=\varepsilon_{r}(t)$ for each $r \in \mathbb{N} \backslash F$, and so $t \in L \cup C$. It follows that, for each $B \in \mathfrak{B}_{\mathbb{T}}$ with $\mu(B)>0$ and each $x \in X$, we have

$$
\left(\mu_{B} \star \delta_{x}\right)(\mathbb{T} \backslash(L \cup C))=0
$$

Thus $\left(\delta_{\varphi} \square \delta_{\xi}\right) \mid K_{\mathbb{T} \backslash(L \cup C)}=0$, establishing (2).
(3) The restriction of $\delta_{\varphi} \square \delta_{\psi}$ to K_{C} is continuous.

We fix $k \in \mathbb{N}$. Let B be a non-empty, clopen subset of L. Then there exists $m \geq 2$ such that B is specified by the first m coordinates in the ternary expansion of a point of \mathbb{T}.

Let $\alpha \in \mathbb{Z}_{3}^{k}$. For each $F \in \mathcal{F}$, define

$$
A_{\alpha, F}=\left\{t \in C_{F}: \varepsilon_{m_{F}+m}(t)=\alpha_{m}\left(m \in \mathbb{N}_{k}\right)\right\}
$$

so that $A_{\alpha, F}$ is a closed subset of C_{F} and $\left\{A_{\alpha, F}: \alpha \in \mathbb{Z}_{3}^{k}\right\}$ is a partition of C_{F}. Next define

$$
A_{\alpha}=\bigcup\left\{A_{\alpha, F}: F \in \mathcal{F}\right\}
$$

so that each $A_{\alpha} \in \mathfrak{B}_{\mathbb{T}}$ and $\left\{A_{\alpha}: \alpha \in \mathbb{Z}_{3}^{k}\right\}$ is a partition of C into 3^{k} subsets.
Now suppose that $G \in \mathcal{F}$ and that G is such that $\min G>r_{m} \geq m$. Let $F \in \mathcal{F}$. For each $t \in C_{F}$, the point $t-x_{G}$ can only be in L if $F \subset G$. This shows that $L \cap\left(C_{F}-x_{G}\right)=\emptyset$ whenever $F \in \mathcal{F}$ with $F \not \subset G$. Now suppose that $F \subset G$, so that

$$
r_{n} \geq \min F \geq \min G>r_{m},
$$

where $n \in \mathbb{N}$ is such that $m_{F}=r_{n}$. Thus $n>m$. The set

$$
\left\{3^{-r_{1}}+\cdots+3^{-r_{n+1}}: r_{n+1}-r_{n}>k\right\}
$$

belongs to $\psi^{\square n}$, and so we may suppose that $r_{n+1}-r_{n}>k$. This implies that

$$
\begin{equation*}
G \cap\left\{r_{n}+1, \ldots, r_{n}+k\right\}=\emptyset, \tag{8.14}
\end{equation*}
$$

and so, for each $\alpha \in \mathbb{Z}_{3}^{k}$, we have

$$
L \cap\left(\left(A_{\alpha} \cap C_{F}\right)-x_{G}\right) \subset A_{\alpha, F}
$$

In addition, for each $t \in C_{F}$, the element $t-x_{G}$ is in L only if we have $\varepsilon_{r}(t)=1(r \in G \backslash F)$, and then $\varepsilon_{r}\left(t-x_{G}\right)=1(r \in F)$ and $\varepsilon_{r}\left(t-x_{G}\right)=0(r \in G \backslash F)$. It follows that, for each
$t \in A_{\alpha} \cap C_{F}$, the element $t-x_{G}$ is in L only if $\varepsilon_{r}(t)$ takes specified values on G and on the set $\left\{r_{n}+1, \ldots, r_{n}+k\right\}$; now (8.14) implies that

$$
\mu\left(B \cap\left(\left(A_{\alpha} \cap C_{F}\right)-x_{G}\right) \leq 2^{-k} 2^{-|G|} \mu(B)\right.
$$

Since the number of subsets F of G is $2^{|G|}$, it follows that

$$
\mu\left(B \cap\left(A_{\alpha}-x_{G}\right)\right)=\mu\left(B \cap\left(\left(A_{\alpha} \cap C\right)-x_{G}\right)\right) \leq 2^{-k} \mu(B)
$$

We have shown that, for each $k \in \mathbb{N}$, for each non-empty, clopen set $B \in \mathfrak{B}_{L}$, for each $x \in X$, and each $\alpha \in \mathbb{Z}_{3}^{k}$, we have $\left(\mu_{B} \star \delta_{x}\right)\left(A_{\alpha}\right) \leq 2^{k}$. As in the proof of Theorem 8.18, we now see that, for each $k \in \mathbb{N}$, for each $B \in \mathfrak{B}_{\mathbb{T}}$ with $\mu(B)>0$, each $\varepsilon>0$, and each $\alpha \in \mathbb{Z}_{3}^{k}$, there exists $m \in \mathbb{N}$ such that

$$
\left(\mu_{B} \star \delta_{x}\right)\left(A_{\alpha}\right) \leq 2^{-k}+\varepsilon
$$

whenever $x=x_{G}$ for some $G \in \mathcal{F}$ for which $\min G>m$. As in part (1), we can take limits as $x \rightarrow \xi$ through a suitable net, and then take the limit $\lim _{B \rightarrow \varphi}$ to see that, for each A of the form A_{α}, we have

$$
\left(\delta_{\varphi} \square \delta_{\xi}\right)\left(K_{A}\right) \leq 2^{-k}+\varepsilon
$$

for each $k \in \mathbb{N}$ and each $\varepsilon>0$. Since $\left\{A_{\alpha}: \alpha \in \mathbb{Z}_{3}^{k}\right\}$ is a partition of C, it follows that each point in C has measure at most $2^{-k}+\varepsilon$. This is true for each $k \in \mathbb{N}$ and $\varepsilon>0$, and so each point in C has measure 0 . Thus $\left(\delta_{\varphi} \square \delta_{\xi}\right) \mid K_{C}$ is a continuous measure.

It follows from (1), (2), and (3) that $\delta_{\varphi} \square \delta_{\xi}$ is a continuous measure on $\widetilde{\mathbb{T}}$.
We now obtain information about groups other than \mathbb{T}. The same proof implies that any locally compact group G which contains a copy of \mathbb{T} as a subgroup or which can be mapped onto \mathbb{T} by a continuous, open epimorphism has the property that \widetilde{G} contains two point masses whose box product is a continuous measure on \widetilde{G}.

The arguments given above also apply to the groups \mathbb{R}, Δ_{p}, and D_{p} for each prime p; with the aid of the details given in Proposition 8.6, we can prove the following theorem by essentially the arguments used to establish Theorem 8.16.
Theorem 8.22. Let G be a non-discrete, locally compact group. Then there exist $\varphi, \xi \in \widetilde{G}$ such that $\delta_{\varphi} \square \delta_{\xi}$ is a continuous measure on \widetilde{G}.

We do not know whether or not the product of two point masses can be a finite sum of point masses, without being a point mass.

We conclude this chapter with a weaker result than Theorem 8.16; however in this case the proof is considerably shorter.

It may be that there is a topology τ on G such that $\tau_{G} \leq \tau \leq d$, such that $\tau \neq \tau_{G}$ and $\tau \neq d$, where d is the discrete topology, and such that (G, τ) is a locally compact group. In this case, we denote the character space of the commutative C^{*}-algebra $L^{\infty}(G, \tau)$ by $\Phi(\tau)$. Such a phenomenon does not happen when $G=\mathbb{T}$, for example; see 97. However, in the case where $G=G_{1} \times G_{2}$, where G_{1} and G_{2} are compact, infinite groups, the topology formed by taking the product of the given topology on G_{1} and the discrete topology on G_{2} has the specified properties. This question is related to that of the 'spine' of the algebra $M(G)$; see [54, 55].

Proposition 8.23. Let $\left(G, \tau_{G}\right)$ be a locally compact group, and suppose that τ is a topology on G such that $\tau \supset \tau_{G}$ and (G, τ) is a locally compact group. Then:
(i) $L^{1}(G, \tau)$ embeds isometrically in $M(G)$ as a closed subalgebra;
(ii) there is a continuous $C_{0}(G)$-module epimorphism

$$
P: M(G) \rightarrow L^{1}(G, \tau)
$$

which is the identity on $L^{1}(G, \tau)$;
(iii) the map $P^{\prime \prime}:(M(\widetilde{G}), \square) \rightarrow(M(\Omega(\tau)), \square)$ is a continuous $E^{\prime \prime}$-module epimorphism which is the identity on $M(\Omega(\tau))$.
Proof. (i) This is immediate from Proposition 3.19 .
(ii) Let m_{τ} denote left Haar measure on (G, τ). We denote by \mathcal{C} the family of τ compact subsets K of G such that $m_{\tau}(K)>0$. For $K \in \mathcal{C}$, set

$$
V_{K}=\{\mu \in M(G):|\mu|(K)=0\} .
$$

Next, set

$$
M_{\mathcal{C}, \tau}=\bigcap\left\{V_{K}: K \in \mathcal{C}\right\}
$$

Let $K \in \mathcal{C}$ and $t \in G$. Then the set $K t^{-1}$ is τ-compact and

$$
m_{\tau}\left(K t^{-1}\right)=m_{\tau}(K) \Delta\left(t^{-1}\right)>0
$$

where Δ is the modular function on G, and so $K t^{-1} \in \mathcal{C}$. Similarly, $t^{-1} K \in \mathcal{C}$.
We claim that $M_{\mathcal{C}, \tau}$ is a closed ideal in $M(G)$. Indeed, take $\mu \in M_{\mathcal{C}, \tau}$ and $\nu \in M(G)$; we shall show that $\mu \star \nu, \nu \star \mu \in M_{\mathcal{C}, \tau}$. Clearly we may suppose that $\mu, \nu \geq 0$. Then, for each $K \in \mathcal{C}$, we have

$$
(\mu \star \nu)(K)=\int_{G} \mu\left(K t^{-1}\right) \mathrm{d} \nu(t)=0
$$

because $\mu\left(K t^{-1}\right)=0$, and so $\mu \star \nu \in M_{\mathcal{C}, \tau}$. Similarly, $\nu \star \mu \in M_{\mathcal{C}, \tau}$.
Let $\mu \in M(G)$. By the Lebesgue decomposition theorem, there exist $\mu_{a} \in L^{1}(G, \tau)$ and $\mu_{s} \in M(G)$ with $\mu_{s} \perp m_{\tau}$ such that $\mu=\mu_{a}+\mu_{s}$. Clearly $\mu_{s} \in M_{\mathcal{C}, \tau}$, and so we have $M(G)=L^{1}(G, \tau) \ltimes M_{\mathcal{C}, \tau}$; this implies that (ii) holds.
(iii) This follows from (ii) and Proposition 1.4 (iii).

The following result is a special case of Theorem 8.16.
Theorem 8.24. Let $\left(G, \tau_{G}\right)$ be a locally compact group, and suppose that τ is a nondiscrete topology on G such that $\tau \supsetneq \tau_{G}$ and (G, τ) is a locally compact group. Then (\widetilde{G}, \square) is not a semigroup.
Proof. The topological space (G, τ) is neither compact nor discrete, and so, by [78], $(\Phi(\tau), \square)$ is not a semigroup. It follows from Proposition 8.23 that (\widetilde{G}, \square) is not a semigroup.
Corollary 8.25. Let G_{1} and G_{2} be infinite, compact groups, and set $G=G_{1} \times G_{2}$. Then (\widetilde{G}, \square) is not a semigroup.

9. Topological centres

In this chapter we shall seek to determine the topological centres of the Banach algebras $\left(L^{1}(G)^{\prime \prime}, \square\right)$ and $\left(M(G)^{\prime \prime}, \square\right)$, and also which subsets of the spaces $L^{1}(G)^{\prime \prime}$ and $M(G)^{\prime \prime}$ are determining for the left topological centres, where G is a locally compact group.

The character space of $L^{\infty}(G)$. Let G be a locally compact group, and again set $A=L^{1}(G)$. We have denoted by Φ the character space of $L^{\infty}(G)$. It was first proved by Young in 124 that A is not Arens regular, the case where G is abelian having been settled by Civin and Yood in [10]; see also [115, 116] and [13, Theorems 2.9.39, 3.3.28]. It was proved by Işık, Pym, and Ülger in [56] that, in the case where G is compact, (Φ, \square) is a semigroup and that A is strongly Arens irregular. It also follows from 56, Theorem 3.4] that each element of the semigroup (Φ, \square) is right cancellable. The main result was eventually established when Lau and Losert proved in 73] that A is strongly Arens irregular for each locally compact group G. Finally Neufang [86] gave a shorter proof of a stronger (see below) version of the result.

We shall now prove that certain subsets of $A^{\prime \prime}$ are determining for the left topological centre of $A^{\prime \prime}$; after giving the statement of our result in Corollary 9.5, we shall compare our result with earlier theorems.

We shall use the following proposition.
The character space Φ_{Z} of the C^{*}-algebra $Z=L U C(G)$ was described in Chapter 5; as before, we regard G as a subset of Φ_{Z}. Recall that we have a continuous surjection $q_{G}: \Phi \rightarrow \Phi_{Z}$. For a subset T of G, we temporarily denote by T^{*} the growth of T in Φ_{Z}, so that $T^{*}=\bar{T} \backslash G \subset \Phi_{Z}$.

Proposition 9.1. Let G be a locally compact, non-compact group, and set $Z=L U C(G)$. Take $U \in \mathcal{N}_{e}$. Then there exist an infinite cardinal κ, a sequence $\left(t_{\alpha}: \alpha<\kappa\right)$ in G such that the family

$$
\left\{U t_{\alpha}: \alpha<\kappa\right\}
$$

of subsets of G is pairwise disjoint, and elements $a, b \in T^{*}$ (where $\left.T=\left\{t_{\alpha}: \alpha<\kappa\right\}\right)$ with the following property: each $\mathrm{M} \in M\left(\Phi_{Z}\right)$ such that $L_{\mathrm{M}} \mid \bar{T}: \bar{T} \rightarrow M\left(\Phi_{Z}\right)$ is continuous at both a and b belongs to $M(G)$.

Proof. This is a result that is shown within the proof of [17, Theorem 12.22] (but is not stated explicitly there).

We fix the objects constructed in the above proposition.

Since the family $\left\{U t_{\alpha}: \alpha<\kappa\right\}$ is pairwise disjoint, we can identify \bar{T} with βT. For each $\alpha<\kappa$, choose $\varphi_{\alpha} \in \Phi$ such that $q_{G}\left(\varphi_{\alpha}\right)=\pi\left(\varphi_{\alpha}\right)=t_{\alpha}$, and define

$$
\rho: t_{\alpha} \mapsto \varphi_{\alpha}, \quad T \rightarrow \Phi
$$

Then ρ has a continuous extension $\rho: \bar{T} \rightarrow \Phi$; we set $K=\rho(\bar{T}) \subset \Phi$. Clearly, $\left(q_{G} \mid K\right) \circ \rho$ is the identity map on \bar{T}. Now we choose elements $\varphi_{a}, \varphi_{b} \in K$ such that $q_{G}\left(\varphi_{a}\right)=a$ and $q_{G}\left(\varphi_{b}\right)=b$.

Proposition 9.2. Let G be a locally compact, non-compact group, and let $\mathrm{M} \in M(\Phi)$ be such that $L_{\mathrm{M}}: \Phi \mapsto M(\Phi)$ is continuous at the two points φ_{a} and φ_{b}. Then $\pi(\mathrm{M}) \in M(G)$.

Proof. Let $\left(s_{i}\right)$ be a net in T such that $s_{i} \rightarrow a$ in Φ_{Z}. Then we have $\rho\left(s_{i}\right) \rightarrow \varphi_{a}$ in Φ, and so $\mathrm{M} \square \rho\left(s_{i}\right) \rightarrow \mathrm{M} \square \varphi_{a}$ in $M(\Phi)$ because the map L_{M} is continuous at a. Hence $\pi(\mathrm{M}) \square s_{i} \rightarrow \pi(\mathrm{M}) \square a$ in Φ_{Z}. This shows that $L_{\pi(\mathrm{M})}$ is continuous at a. Similarly, $L_{\pi(\mathrm{M})}$ is continuous at b. It follows from Proposition 9.1 that $\pi(\mathrm{M}) \in M(G)$.

Proposition 9.3. Let G be a locally compact group. Let $\nu \in M(G)$ be such that

$$
\lambda \cdot \nu \in C(G)
$$

for each $\lambda \in L^{\infty}(G)$. Then $\nu \in L^{1}(G)$.
Proof. This is a slight modification of [49, Theorem (35.13)], which gives the result in the case where G is compact.

We continue to set $A=L^{1}(G), A^{\prime \prime}=M(\Phi)$, and $Z=L U C(G)$.
Theorem 9.4. Let G be a locally compact group. Let $\mathrm{M} \in M(\Phi)$ be such that

$$
\mathrm{M} \square \delta_{\varphi}=\mathrm{M} \diamond \delta_{\varphi} \quad\left(\varphi \in \Phi_{\{e\}}\right),
$$

and, in the case where G is not compact, $\mathrm{M} \square \delta_{\varphi}=\mathrm{M} \diamond \delta_{\varphi}$ for $\varphi \in\left\{\varphi_{a}, \varphi_{b}\right\}$. Then $\mathrm{M} \in L^{1}(G)$.
Proof. In the case where G is not compact, we have $\pi(\mathrm{M}) \in M(G)$ by Proposition 9.2 . In the case where G is compact, we have $Z=C(G)$, and $\pi(\mathrm{M}) \in Z^{\prime}=M(G)$.

Take $\lambda \in A^{\prime}=L^{\infty}(G)$. For each $g \in A$, we have

$$
\langle\pi(\mathrm{M}) \cdot \lambda, g\rangle=\langle\lambda, g \star \pi(\mathrm{M})\rangle=\langle\lambda \cdot g, \pi(\mathrm{M})\rangle=\langle\lambda \cdot g, \mathrm{M}\rangle
$$

because $\lambda \cdot g \in Z$. However $\langle\lambda \cdot g, \mathrm{M}\rangle=\langle\mathrm{M} \cdot \lambda, g\rangle$ by definition, and so $\pi(\mathrm{M}) \cdot \lambda=\mathrm{M} \cdot \lambda$ in A^{\prime}.

Let $\varphi \in \Phi_{\{e\}}$. Since δ_{φ} is a mixed identity for $M(\Phi)$, we have $\mathrm{M} \square \delta_{\varphi}=\delta_{\varphi} \diamond \mathrm{M}=\mathrm{M}$. Since $\mathrm{M} \square \delta_{\varphi}=\mathrm{M} \diamond \delta_{\varphi}$, we have $\mathrm{M} \diamond \delta_{\varphi}=\mathrm{M}$. Thus, for each $\lambda \in A^{\prime}$, we have

$$
\left\langle\lambda \cdot \pi(\mathrm{M}), \delta_{\varphi}\right\rangle=\left\langle\lambda \cdot \mathrm{M}, \delta_{\varphi}\right\rangle=\left\langle\lambda, \mathrm{M} \diamond \delta_{\varphi}\right\rangle=\langle\lambda, \mathrm{M}\rangle .
$$

This shows that the function $\lambda \cdot \pi(\mathrm{M})$ is constant on the fibre $\Phi_{\{e\}}$. By Proposition 3.6 , $\lambda \cdot \pi(\mathrm{M})$ is continuous at e. Similarly, $\lambda \cdot \pi(\mathrm{M})$ is continuous at each point of G. By Proposition 9.3, $\pi(\mathrm{M}) \in L^{1}(G)$, say $\pi(\mathrm{M})=f \in L^{1}(G)$. It follows that $\mathrm{M} \cdot \lambda=f \cdot \lambda$, and so

$$
\langle\lambda, \mathrm{M}\rangle=\left\langle\lambda, \delta_{\varphi} \square \mathrm{M}\right\rangle=\left\langle\mathrm{M} \cdot \lambda, \delta_{\varphi}\right\rangle=\left\langle f \cdot \lambda, \delta_{\varphi}\right\rangle=\langle\lambda, f\rangle .
$$

This holds for each $\lambda \in A^{\prime}$, and so $\mathrm{M}=f \in L^{1}(G)$.

Corollary 9.5.

(i) Let G be a compact group. Then $\Phi_{\{e\}}$ is determining for the left topological centre of $L^{1}(G)^{\prime \prime}$.
(ii) Let G be a locally compact, non-compact group. Then there exist $\varphi_{a}, \varphi_{b} \in \Phi$ such that

$$
\Phi_{\{e\}} \cup\left\{\varphi_{a}, \varphi_{b}\right\}
$$

is determining for the left topological centre of $L^{1}(G)^{\prime \prime}$.
We now compare our result to some earlier theorems.
First suppose that G is compact. Then the proof in [56] that, in this case, $L^{1}(G)$ is strongly Arens irregular actually shows that the family of right identities in $(M(\Phi), \square)$ is determining for the left topological centre of $L^{1}(G)^{\prime \prime}$. In fact, by Corollary 6.3, the element δ_{φ} is a right identity in the algebra $(M(\Phi), \square)$ for each $\varphi \in \Phi_{\{e\}}$, and so our result is slightly stronger.

Second, suppose that G is a locally compact, non-compact group. Then a set which is determining for the left topological centre of $L^{1}(G)^{\prime \prime}$ is specified in [86, Theorem 1.1]: one can choose any subset S of Φ such that $q_{G}(S)=\Phi_{Z}$. Such a set S is neither smaller nor larger than our set $\Phi_{\{e\}} \cup\left\{\varphi_{a}, \varphi_{b}\right\}$. A further paper of Filali and Salmi 31] establishes in an attractive way that $L^{1}(G)$ is strongly Arens irregular, and unifies this result with several related results.

After the above was written, we received (in May, 2009) the very impressive paper [7] of Budak, Işik, and Pym that proves a much stronger result in the non-compact case in their Theorem 1.2(iii), namely that, for a locally compact, non-compact group G, there are just two points $\varphi_{a}, \varphi_{b} \in \Phi$ with the property that $\left\{\varphi_{a}, \varphi_{b}\right\}$ is determining for the left topological centre of $\left(L^{1}(G)^{\prime \prime}, \square\right)$. This result does not apply to compact groups, such as \mathbb{T}.

Let G be a compact group (such as \mathbb{T}). Could it be that a smaller set than $\Phi_{\{e\}}$ is sufficient to determine the topological centre of $L^{1}(G)$? In fact, at least in the case where G has a basis of \mathfrak{c} open sets, there are at most \mathfrak{c} clopen subsets of the fibre $\Phi_{\{e\}}$. Choose a point in the fibre for each such set, thus obtaining a dense subset of the fibre. The continuity argument in Proposition 3.6 still works by using just these points, so we only need \mathfrak{c} points in the fibre for the above result, whereas the fibre has cardinality at least $2^{\mathfrak{c}}$. The main question is: Is there always a finite or countable set S of points in $\Phi_{\{e\}}$ such that S is determining for the left topological centre of $L^{1}(G)$? We are not able to decide this.

The topological centre of the measure algebra. We now turn to the topological centre question for $M(G)$.

The question whether or not $M(G)$ is strongly Arens irregular was raised by Lau in [72, Problem 11, p. 89] and Ghahramani and Lau in [34, Problem 1, p. 184]. The question was solved in the case where G is non-compact and with non-measurable cardinal by Neufang in [87, Theorem 3.5]. In fact the following theorem is proved (but not explicitly stated in our form) in [87, Theorem 3.5].

Theorem 9.6 (Neufang). Let G be a locally compact, non-compact group with nonmeasurable cardinal. Suppose that $\mathrm{M} \in M(\widetilde{G})$ is such that $\mathrm{M} \square \delta_{\varphi}=\mathrm{M} \diamond \delta_{\varphi}$ for each $\varphi \in \beta G_{d}$. Then $\mathrm{M} \in M(G)$. In particular, $M(G)$ is strongly Arens irregular.

Thus we can concentrate on the case where G is a compact group; our investigations have focused to no avail on the special case in which G is the unit circle \mathbb{T}. We shall obtain a partial result.

We shall require the following preliminary result.
Proposition 9.7. Let G be a compact, infinite, metrizable group. Then there exist an element $\mu \in M(G)^{+}$and four sets $A_{1}, A_{2}, A_{3}, A_{4}$ in \mathfrak{A}_{μ} with $\mu(A \cap N)>0$ for each $N \in \mathcal{N}_{e}$ and $A \in\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, such that

$$
\begin{equation*}
\bigcup\left\{K_{A_{j}} \backslash K_{\partial A_{j}}: j=1,2,3,4\right\} \supset \widetilde{G}_{\{e\}} \backslash\{e\}, \tag{9.1}
\end{equation*}
$$

and such that

$$
\begin{equation*}
K_{A_{1}} \cap K_{A_{3}}=K_{A_{2}} \cap K_{A_{4}}=\{e\} . \tag{9.2}
\end{equation*}
$$

Proof. Choose $\mu \in M_{c}(G)^{+}$with the property that $\mu(N)>0$ for each $N \in \mathcal{N}_{e}$ (for example, Haar measure m has this property).

The metric on G is denoted by d; for each $r \in \mathbb{R}^{+}$, we set

$$
S_{r}=\{s \in G: d(s, e)=r\} \quad \text { and } \quad B_{r}=\{s \in G: d(s, e)<r\},
$$

so that S_{r} and B_{r} are the sphere and open ball, respectively, in G of radius r around e.
Since $\left\{r \in \mathbb{R}^{+}: \mu\left(S_{r}\right)>0\right\}$ is a countable set, there is a sequence $\left(r_{n}\right)$ in \mathbb{R}^{+}with $r_{n} \searrow 0$ such that $\mu\left(S_{r_{n}}\right)=0$ and $\mu\left(B_{r_{n+1}}\right)<\mu\left(B_{r_{n}}\right)$ for each $n \in \mathbb{N}$. We note that

$$
\begin{equation*}
\overline{\bigcup\left\{S_{r_{2 n}}: n \in \mathbb{N}\right\}} \cap \overline{\bigcup\left\{S_{r_{2 n-1}}: n \in \mathbb{N}\right\}}=\{e\} \tag{9.3}
\end{equation*}
$$

For $n \in \mathbb{N}$, set $U_{n}=B_{r_{n}} \backslash B_{r_{n+1}}$, so that each U_{n} belongs to \mathfrak{A}_{μ} and $\mu\left(U_{n}\right)>0$, and then set

$$
A_{j}=\bigcup\left\{U_{4 n+j}: n \in \mathbb{Z}^{+}\right\} \quad(j=1,2,3,4)
$$

so that each A_{j} belongs to \mathfrak{A}_{μ} and is such that $\mu\left(A_{j} \cap N\right)>0$ for each $N \in \mathcal{N}_{e}$. It follows from (9.3) that $\bigcap\left\{\partial A_{j}: j=1,2,3,4\right\}=\{e\}$, and so we have

$$
\bigcup_{j=1,2,3,4}\left(A_{j} \backslash \partial A_{j}\right)=\bigcup_{n \in \mathbb{N}} U_{n} \backslash \bigcap_{j=1,2,3,4} \partial A_{j}=B_{r_{1}} \backslash\{e\},
$$

which gives 9.1. Clearly $\overline{A_{1}} \cap \overline{A_{3}}=\overline{A_{2}} \cap \overline{A_{4}}=\{e\}$, and this gives 9.2.
Theorem 9.8. Let G be a compact, infinite, metrizable group. Then there exist four points $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4} \in \widetilde{G}_{\{e\}}$ with the property that the only measures $\mathrm{M} \in M\left(\widetilde{G}_{\{e\}}\right)^{+}$ such that

$$
\begin{equation*}
\mathrm{M} \square \delta_{\psi_{j}}=\mathrm{M} \diamond \delta_{\psi_{j}} \quad(j=1,2,3,4) \tag{9.4}
\end{equation*}
$$

have the form $\mathrm{M}=\zeta \delta_{e}$ for some $\zeta \in \mathbb{C}$.
Proof. We shall actually suppose further that $\mathrm{M} \in M\left(\widetilde{G}_{\{e\}}\right)^{+}$is such that $\mathrm{M}(\{e\})=0$, and shall show that $\mathrm{M}=0$; this is sufficient for the result.

Let $\mu \in M(G)^{+}$, and take the four sets $A_{1}, A_{2}, A_{3}, A_{4}$ to be as specified in Proposition 9.7. For $j=1,2,3,4$, we have $\mu\left(A_{j} \cap N\right)>0$ for each $N \in \mathcal{N}_{e}$, and so there exists $\psi_{j} \in G_{\{e\}} \cap \Phi_{\mu}$ such that $A_{j} \in \psi_{j}$.

By (9.1), it suffices to prove that $\mathrm{M}\left(K_{A} \backslash K_{\partial A}\right)=0$ for each $A \in\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$; we fix such a set A, and replace the measure M by the restriction $\mathrm{M} \mid\left(K_{A} \backslash K_{\partial A}\right)$. By (9.2), there exists $B \in\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ with $K_{A} \cap K_{B}=\emptyset$; the element of $\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\}$ corresponding to B is ψ.

To obtain a contradiction, we may suppose that we have $\mathrm{M}\left(K_{A}\right) \neq 0$, and hence that $\langle\mathrm{M}, 1\rangle>0$; by replacing M by $\mathrm{M} /\langle\mathrm{M}, 1\rangle$, we may suppose that $\langle\mathrm{M}, 1\rangle=1$. It follows from 6.11 in Theorem 6.9 that

$$
\left\langle\chi_{K_{A}}, \mathrm{M} \square \delta_{\psi}\right\rangle=\left\langle\chi_{K_{A}}, \mathrm{M}\right\rangle=\mathrm{M}\left(K_{A}\right) .
$$

Since $\psi \in \widetilde{G}_{\{e\}} \backslash K_{A}$ and $\langle\mathrm{M}, 1\rangle=1$, it follows from 6.12 that

$$
\left\langle\chi_{K_{A}}, \mathrm{M} \diamond \delta_{\psi}\right\rangle=\left\langle\chi_{K_{A}}, \overline{\left.\delta_{\psi}\right\rangle},\right.
$$

and so $\left\langle\chi_{K_{A}}, \mathrm{M} \diamond \delta_{\psi}\right\rangle=0$ because $\psi \notin K_{A}$.
Since $\mathrm{M} \diamond \delta_{\psi}=\mathrm{M} \square \delta_{\psi}$, we have $\mathrm{M}\left(K_{A}\right)=0$.
We note that, in the special case where the group G is totally disconnected, two points ψ_{1}, ψ_{2} suffice for the above argument to apply.

We now consider the case where G might not be metrizable.
Theorem 9.9. Let G be a compact, infinite group. Then the only measure $\mathrm{M} \in M\left(\widetilde{G}_{\{e\}}\right)^{+}$ such that $\mathrm{M} \square \delta_{\psi}=\mathrm{M} \diamond \delta_{\psi}$ for each $\psi \in \widetilde{G}_{\{e\}}$ has the form $\mathrm{M}=\zeta \delta_{e}$ for some $\zeta \in \mathbb{C}$.
Proof. For each $U \in \mathcal{N}_{e}$, there is a closed, normal subgroup N of G such that $N \subset U$ and $H:=G / N$ is a compact, infinite, metrizable group [48, Theorem (8.7)]. The quotient map is $\eta: G \rightarrow H$, and there is an induced continuous homomorphism $\bar{\eta}: M(G) \rightarrow M(H)$. We have $\bar{\eta}(\mathrm{M}) \square \delta_{\psi}=\bar{\eta}(\mathrm{M}) \diamond \delta_{\psi}$ for each $\psi \in \widetilde{H}_{\{e\}}$, and so, by Theorem $9.8 \bar{\eta}(\mathrm{M}) \in \mathbb{C} \delta_{e_{H}}$. It follows that supp $\mathrm{M} \subset U$.

However this holds for each $U \in \mathcal{N}_{e}$, and so supp $\mathrm{M}=\left\{e_{G}\right\}$, as required.
Clearly the above results are unsatisfactory, in that they leave open the question that motivated our work.

In fact, the question of the strong Arens irregularity of $M(G)$ has been resolved by V. Losert, M. Neufang, J. Pachl, and J. Steprāns with their exciting proof [82] of the following result.

Theorem 9.10. Let G be a locally compact group. Then $M(G)$ is strongly Arens irregular.

10. Open problems

We list here some problems that we believe are open.

1. Let X be a compact space such that $C(X)$ is isometrically isomorphic to the second dual space of a Banach space. Is it necessarily true that there is a locally compact space Ω such that $X=\widetilde{\Omega}$? Which hyper-Stonean spaces X are such that $C(X)=F^{\prime \prime}$ for some Banach space F ? For some partial results, see Proposition 4.27 and Theorem 4.29
2. Let A be a commutative Lau algebra such that A^{\prime} is a commutative von Neumann algebra. We have

$$
X_{A} \subset A P(A) \subset W A P(A) \subset A^{\prime}
$$

When are $A P(A)$ and $W A P(A) C^{*}$-subalgebras of A^{\prime} ? When does $X_{A}=A P(A)$? In particular, let G be a locally compact group, so that

$$
X_{G} \subset A P(G) \subset A P(M(G)) \subset W A P(M(G)) \subset M(G)^{\prime}=C(\widetilde{G})
$$

Now $A P(M(G))$ and $\operatorname{WAP}(M(G))$ are C^{*}-subalgebras of the space $M(G)^{\prime}$ 21. When is it true that $A P(G)=A P(M(G))$? Does this imply that G is discrete? It is shown in 103 that the method of Daws in [21 does not extend directly to all such cases.
3. Let G be a locally compact group. Do $W A P(M(G))$ or $A P(M(G))$ always have a topological invariant mean. If so, is it unique?
4. Suppose that G and H are locally compact groups and that $\left(W A P(M(G))^{\prime}, \square\right)$ and $\left(W A P(M(H))^{\prime}, \square\right)$ are isometrically isomorphic. Are G and H then isomorphic?
5. Let G be a locally compact group. Can we find two points φ and ψ in \widetilde{G} such that $\delta_{\varphi} \square \delta_{\psi}$ is not a point mass, but such that it is a finite sum of point masses in $M(\widetilde{G})$?
6. Let G be a compact group. We have shown in Corollary 9.5 (i) that $\Phi_{\{e\}}$ is determining for the left topological centre of $\left(L^{1}(G)^{\prime \prime}, \square\right)$. Is there a finite or countable subset V of $\Phi_{\{e\}}$ such that V is so determining?
7. Let G be a compact group. Is \widetilde{G} determining for the left topological centre of $M(G)^{\prime \prime}$? If so, is there a 'small' subset of \widetilde{G} that is so determining?
8. Let G be a locally compact, non-compact group. Is there a 'small' subset of \widetilde{G} that is determining for the left topological centre of $M(G)^{\prime \prime}$?

References

[1] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math. 233, Springer, New York, 2006.
[2] R. Arens, The adjoint of a bilinear operator, Proc. Amer. Math. Soc. 2 (1951), 839-848.
[3] W. G. Bade, The Banach Space $C(S)$, Lecture Note Ser. 26, Matematisk Institut, Aarhus Universitet, 1971.
[4] Y. Benyamini and J. Lindenstrauss, A predual of ℓ_{1} which is not isomorphic to a $C(K)$ space, Israel J. Math. 13 (1972), 246-254.
[5] J. F. Berglund, H. D. Junghenn, and P. Milnes, Analysis on Semigroups; Function Spaces, Compactifications, Representations, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1989.
[6] G. Brown, On convolution measure algebras, Proc. London Math. Soc. (3) 20 (1990), 229-253.
[7] T. Budak, N. Işik, and J. Pym, Minimal determinants of topological centres for some algebras associated with locally compact groups, Bull. London Math. Soc. 43 (2011), 495506.
[8] C. Chou, Almost periodic operations in $V N(G)$, Trans. Amer. Math. Soc. 317 (1973), 331-348.
[9] P. S. Chow and A. J. White, The structure semigroup of some convolution measure algebras, Quart. J. Math. Oxford (2) 22 (1971), 221-229.
[10] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 221-229.
[11] D. L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
[12] J. B. Conway, A Course in Functional Analysis, 2nd ed., Grad. Texts in Math. 96, Springer, New York, 1990.
[13] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. 24, Clarendon Press, Oxford, 2000.
[14] H. G. Dales and H. V. Dedania, Weighted convolution algebras on subsemigroups of the real line, Dissertationes Math. 459 (2009), 60 pp.
[15] H. G. Dales, F. Ghahramani, and A. Ya. Helemskii, The amenability of measure algebras, J. London Math. Soc. (2) 66 (2002), 213-226.
[16] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), 191 pp.
[17] H. G. Dales, A. T.-M. Lau, and D. Strauss, Banach algebras on semigroups and on their compactification, Mem. Amer. Math. Soc. 205 (2010), pp. 165.
[18] H. G. Dales and R. J. Loy, Approximate amenability of semigroup algebras and Segal algebras, Dissertationes Math. 474 (2010), 58 pp.
[19] M. Daws, Dual Banach algebras: representation and injectivity, Studia Math. 178 (2007), 231-275.
[20] M. Daws, Multipliers, self-induced and dual Banach algebras, Dissertationes Math. 470 (2009), 62 pp .
[21] -, Weakly almost periodic functionals on the measure algebra, Math. Z. 265 (2010), 285-296.
[22] -, Characterising weakly almost periodic functionals on the measure algebra, Studia Math. 204 (2011), 213-234.
[23] M. Daws, R. Haydon, T. Schlumprecht, and S. White, Shift invariant preduals of $\ell_{1}(\mathbb{Z})$ Israel J. Math., to appear.
[24] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), 151-182.
[25] J. Duncan and A. Ülger, Almost periodic functionals on Banach algebras, Rocky Mountain J. Math. 22 (1992), 837-848.
[26] N. Dunford and J. T. Schwartz, Linear Operators Part I: General Theory, Interscience, New York, 1958.
[27] C. F. Dunkl and D. E. Ramirez, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331-348.
[28] C. F. Dunkl and D. E. Ramirez, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc. 185 (1973), 501-514.
[29] R. Engelking, General Topology, Monografie Mat. 60, Polish Sci. Publ., Warszawa, 1977.
[30] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
[31] M. Filali and P. Salmi, Slowly oscillating functions in semigroup compactifications and convolution algebras, J. Funct. Anal. 250 (2007), 144-166.
[32] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Tracts in Math. 84, Cambridge Univ. Press, 1984.
[33] -, Measure algebras, Chapter 22 of: Handbook of Boolean Algebras, Volume 3, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989, 877-980.
[34] F. Ghahramani and A. T.-M. Lau, Multipliers and ideals in second conjugate algebras related to locally compact groups, J. Funct. Anal. 132 (1995), 170-191.
[35] F. Ghahramani and J. P. McClure, The second dual of the measure algebra of a compact group, Bull. London Math. Soc. 29 (1997), 223-226.
[36] F. Ghahramani, A. T.-M. Lau, and V. Losert, Isometric isomorphisms between Banach algebras related to locally compact groups, Trans. Amer. Math. Soc. 321 (1990), 273-283.
[37] L. Gillman and M. Jerison, Rings of Continuous Functions, van Nostrand Reinhold, New York, 1960.
[38] A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
[39] I. Glicksberg, Weak compactness and separate continuity, Pacific J. Math. 11 (1961), 205-214.
[40] H. Gordon, The maximal ideal space of a ring of measurable functions, Amer. J. Math. 88 (1966), 827-843.
[41] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979.
[42] E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra $B(G)$ and of the measure algebra $M(G)$, Rocky Mountain J. Math. 11 (1981), 459-472.
[43] D. Hadwin and V. I. Paulsen, Injectivity and projectivity in analysis and topology, Sci. China Math. 2011, to appear.
[44] J. Hagler, Complemented isometric copies of L_{1} in dual Banach spaces, Proc. Amer. Math. Soc. 130 (2002), 3313-3324.
[45] P. R. Halmos, Measure Theory, D. van Nostrand, Princeton, 1950.
[46] H.-E. Hess, Some remarks on linear transformations between certain Banach spaces, Arch. Math. (Basel) 36 (1981), 342-347.
[47] E. Hewitt and S. Kakutani, Some multiplicative linear functionals on $M(G)$, Ann. of Math. (2) 79 (1964), 489-505.
[48] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, 2nd ed., Springer, Berlin, 1979.
[49] —, 一, Abstract Harmonic Analysis, Vol. II, Springer, Heidelberg, 1970.
[50] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York, 1975.
[51] E. Hewitt and H. S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc. 62 (1966), 399-420; corrigendum, ibid. 63 (1967), 367-368.
[52] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification. Theory and Applications, de Gruyter, Berlin and New York, 1998; 2nd ed., 2012.
[53] B. Host, J.-F. Méla, and F. Parreau, Analyse harmonique des mesures, Astérisque 135/136 (1986), 261 pp.
[54] M. Ilie and N. Spronk, The spine of a Fourier-Stieltjes algebra, Proc. London Math. Soc. (3) 94 (2007), 273-301.
[55] J. Inoue, Some closed subalgebras of measure algebras and a generalization of P. J. Cohen's theorem, J. Math. Soc. Japan 23 (1971), 278-294.
[56] N. Işık, J. Pym, and A. Ülger, The second dual of the group algebra of a compact group, J. London Math. Soc. (2) 35 (1987), 135-158.
[57] R. J. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1-101.
[58] B. E. Johnson, Isometric isomorphisms of measure algebras, Proc. Amer. Math. Soc. 15 (1964), 186-188.
[59] -, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
[60] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Volume 1, Elementary Theory and Volume 2, Advanced Theory, Academic Press, New York, 1983 and 1986.
[61] S. Kakutani, Concrete representations of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math. 42 (1941), 523-537.
[62] N. J. Kalton and G. V. Wood, Homomorphisms of group algebras with norm less than $\sqrt{2}$, Pacific J. Math. 62 (1970), 439-460.
[63] S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70-90.
[64] -, On the second dual of the space of continuous functions, II, ibid. 93 (1959), 329-350.
[65] -, The Bidual of $C(X), I$, North-Holland Math. Stud. 101, North-Holland, Amsterdam, 1985.
[66] H. E. Lacey, A note concerning $A^{*}=L_{1}(\mu)$, Proc. Amer. Math. Soc. 29 (1971), 525-528.
[67] -, The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974.
[68] R. Lasser, Almost periodic functions on hypergroups, Math. Ann. 252 (1980), 183-196.
[69] A. T.-M. Lau, Closed convex invariant subsets of $L^{p}(G)$, Trans. Amer. Math. Soc. 232 (1977), 131-142.
[70] -, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161-175.
[71] A. T.-M. Lau, Uniformly continuous functionals on Banach algebras, Colloq. Math. 51 (1987), 195-205.
[72] -, Fourier and Fourier-Stieltjes algebras of a locally compact group, in: Topological Vector Spaces, Algebras and Related Areas, A. T.-M. Lau and I. Tweddle (eds.), Pitman Res. Notes in Math. 316, Longman, New York, 1994, 79-92.
[73] A. T.-M. Lau and V. Losert, On the second conjugate algebra of $L_{1}(G)$ of a locally compact group, J. London Math. Soc. (2) 37 (1988), 464-470.
[74] -, 一, The C^{*}-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), 1-30.
[75] A. T.-M. Lau and R. J. Loy, Weak amenability of Banach algebras on locally compact groups, ibid. 145 (1997), 175-204.
[76] A. T.-M. Lau and P. Mah, Normal structure in dual Banach spaces associated with locally compact group, Trans. Amer. Math. Soc. 310 (1988), 341-353.
[77] A. T.-M. Lau and K. McKennon, Isomorphims of locally compact groups and Banach algebras, Proc. Amer. Math. Soc. 79 (1980), 55-58.
[78] A. T.-M. Lau, A. R. Medghalchi, and J. S. Pym, On the spectrum of $L^{\infty}(G)$, J. London Math. Soc. (2) 48 (1993), 152-166.
[79] A. T.-M. Lau and J. S. Pym, Concerning the second dual of the group algebra of a locally compact group, ibid. (2) 41 (1990), 445-460.
[80] A. T.-M. Lau and A. Ülger, Topological centers of Banach algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
[81] A. T.-M. Lau and J. C. S. Wong, Invariant subspaces for linear operators and amenable locally compact groups, Proc. Amer. Math. Soc. 102 (1988), 581-586.
[82] V. Losert, M. Neufang, J. Pachl, and J. Steprāns, Proof of the Ghahramani-Lau conjecture, preprint.
[83] S. A. McKilligan and A. J. White, Representations of L-algebras, Proc. London Math. Soc. (3) 25 (1972), 655-674.
[84] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), 277-294.
[85] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, New York and London, 1955.
[86] M. Neufang, A unified approach to the topological centre problem for certain Banach algebras arising in harmonic analysis, Arch. Math. (Basel) 82 (2004), 164-171.
[87] -, On a conjecture by Ghahramani-Lau and related problems concerning topological centres, J. Funct. Anal. 224 (2005), 217-229.
[88] T. W. Palmer, Banach Algebras and the General Theory of *-algebras, Vol. I, II, Cambridge Univ. Press, 1994 and 2001.
[89] D. Papert, Lattices of functions, measures and open sets, Thesis, Univ. of Cambridge, 1958.
[90] -, A representation theory for lattice-groups, Proc. London Math. Soc. (3) 12 (1962), 100-120.
[91] -, A note on vector lattices and integration theory, J. London Math. Soc. 38 (1963), 477-485.
[92] J. P. Pier, Amenable Banach algebras, Pitman Res. Notes in Math. 172, Wiley, New York, 1988.
[93] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. (3) 15 (1965), 84-104.
[94] D. E. Ramirez, The measure algebra as an operator algebra, Canad. J. Math. 20 (1968), 1391-1396.
[95] H. Reiter and J. D. Stegman, Classical Harmonic Analysis and Locally Compact Groups, London Math. Soc. Monogr. 22, Clarendon Press, Oxford, 2000.
[96] J. F. Rennison, Arens products and measure algebras, J. London Math. Soc. 44 (1969), 369-377.
[97] N. W. Rickert, Locally compact topologies on groups, Trans. Amer. Math. Soc. 2 (1967), 225-235.
[98] R. P. Rigelhof, A characterisation of $M(G)$, ibid. 136 (1969), 373-379.
[99] H. P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures, Acta Math. 124 (1970), 205-248.
[100] K. A. Ross, Hypergroups and centers of measure algebras, in: Symposia Math., Vol. XXII, Academic Press, London, 1977, 189-203.
[101] W. Rudin, Fourier Analysis on Groups, Wiley-Interscience, New York, 1962.
[102] V. Runde, Lectures on Amenability, Lecture Notes in Math. 1774, Springer, Berlin, 2002.
[103] -, Co-representations of Hopf-von Neumann algebras on operator spaces other than column Hilbert spaces, Bull. Austral. Math. Soc. 82 (2010), 205-210.
[104] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer, New York, 1971.
[105] G. L. Seever, Algebras of continuous functions on hyperstonian spaces, Arch. Math. (Basel) 24 (1973), 648-660.
[106] Z. Semadeni, Banach Spaces of Continuous Functions, Vol. I, Monografie Mat. 55, Polish Sci. Publ., Warszawa, 1971.
[107] M. Skantharajah, Amenable hypergroups, Illinois J. Math. 36 (1992), 15-46.
[108] -, Weakly almost periodic functions and the second conjugate of the Banach algebra $L^{1}(K)$, unpublished manuscript.
[109] Yu. A. Šreı̆der, The structure of maximal ideals in rings of measures with convolution, Mat. Sbornik 27 (1950), 297-318 (in Russian); English transl.: Amer. Math. Soc. Transl. 81 (1953), 365-391.
[110] C. Stegall, Banach spaces whose duals contain $\ell_{1}(\Gamma)$ with applications to the study of dual $L_{1}(\mu)$ spaces, Trans. Amer. Math. Soc. 176 (1973), 463-477.
[111] M. Takesaki, Duality and von Neumann algebras, in: Lectures on Operator Algebras, Lecture Notes in Math. 247, Springer, 1971, 666-779.
[112] -, Theory of Operator Algebras I, Springer, New York, 1979.
[113] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150-166.
[114] -, Measure Algebras, CBMS Reg. Conf. Ser. Math. 16, Amer. Math. Soc., 1973.
[115] A. Ülger, Continuity of weakly almost periodic functionals on $L^{1}(G)$, Quart. J. Math. Oxford 37 (1986), 495-497.
[116] - , Arens regularity of weakly sequentially complete Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 3221-3227.
[117] R. C. Walker, The Stone-Čech Compactification, Springer, Berlin, 1974.
[118] S. Watanabe, A Banach algebra which is an ideal in the second dual space, Sci. Rep. Niigata Univ. Ser. A 11 (1974), 95-101.
[119] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261.
[120] J. S. Wilson, Profinite Groups, London Math. Soc. Monogr. 19, Clarendon Press, Oxford, 1998.
[121] S. Wolfenstetter, Weakly almost periodic functions on hypergroups, Monatsh. Math. 96 (1983), 67-79.
[122] J. C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351-363.
[123] - Abstract harmonic analysis of generalised functions on locally compact semigroups with applications to invariant means, J. Austral. Math. Soc. Ser. A 23 (1977), 84-94.
[124] N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. Oxford 24 (1973), 59-62.
[125] V. K. Zaharov, Hyper-Stonean cover and second dual extension, Acta Math. Hungar. 51 (1988), 125-149.
[126] E. Zelmanov, On periodic compact groups, Israel J. Math. 77 (1992), 83-95.

Index of terms

algebra, 6
Banach, 7
Boolean, 27
$C^{*}-, 14$
commutative, 21
introverted, 15, 67
convolution measure, 15
Dixmier, 49
dual Banach, 8
Fourier, 15
Fourier-Stieltjes, 15
group, 15, 60
Hopf-von Neumann, 15, 71
L-, 15, 69
Lau, 15, 16, 62, 69, 70, 109
measure, 5, 15, 60, 106
measure Boolean, 30 of the unit interval, 30
multiplier, 60
semigroup, 16
von Neumann, 14, 23, 25
normal, 25
enveloping, 33
almost periodic, 11, 65
Arens products, 8, 62
Arens regular, 10, 14, 33, 104
augmentation character, 61
Baire class, 37, 45
Baire function, 37
Banach A-bimodule, 8
essential, 8
Banach algebra, 7
amenable, 8,64
dual, $8,14,62$
neo-unital, 6
unital, 6
Banach lattice, 57
basically disconnected, 49
bidual space, 56
Boolean algebra, 27
complete, 27
Borel
equivalent, 38, 79
function, bounded, 37
isomorphic, 20
isomorphism, 20
map, 20, 41, 63
measure, 23
sets, 19
bounded approximate identity, 7
canonical net, 28
Cantor cube, 19, 21, 29, 31, 60
Cantor set, 88
cardinal, non-measurable, 81
cardinality, 5
centre, 6, 9
topological, 9, 104
character, 6
augmentation, 61
character space, 6
clopen subset, basic, 19
compactification
Bohr, 68
one-point, 18
Stone-Čech, 5, 18, 39, 44
continuous functions, 21
continuum hypothesis, 6
convex hull, 6
convolution measure algebra, 15
countable chain condition, 19
cover, 34
essential, 34
projective, 34, 49
Dedekind complete, 22
determining for the left topological centre, 10, 106, 109
Dixmier algebra, 49
dual Banach algebra, 8, 14, 62
dual module, 8
evaluation functional, 21
extreme point, $6,24,57$
extremely disconnected, 18, 22
fibre, 34
finite intersection property, κ-uniform, 52
Fourier algebra, 15, 71
Fourier-Stieltjes algebra, 15
F-space, 18
Gel'fand transform, 27, 58
generalized function, 58
group algebra, 15, 60
amenable, 64
growth, 18, 104
Haar measure, 26, 60
Hopf-von Neumann algebra, 15, 71
hyper-Stonean
envelope, 34, 42, 51, 56, 58, 62, 80
space, $23,25,27,56,57,109$
of the unit interval, 30,73
hypergroup, 15, 71
ideal, 59
left, right, 59
minimum, 59
injective envelope, 34, 49
introverted, 10, 64
C^{*}-subalgebra, 64,65
left-, right-, 15, 65, 83
left, right, 10
isometrically isomorphic, 7
kernel, 59
Lau algebra, 14, 62, 69, 109
left-amenable, 15
left uniformly continuous functions, 65
linearly homeomorphic, 7
locally compact group, $5,59,62,73,87$, 105
locally compact space, 18
L-algebras, 15, 69
maximal singular family, 26,47
of continuous measures, 26
meagre, 18
measure, 23
measure algebra, 15, 30, 60
measure Boolean algebra, 30
of the unit interval, 30
isomorphic, 30
measure ring, separable, 30
measure
absolutely continuous, 26
continuous, 23
discrete, 23,72
normal, 24, 37
probability, 23
singular, 25, 72, 89
singular family, 26
maximal, 26
support, 23
metrizable space, 51
mixed identity, 76
modular function, 61
multiplier algebra, 60
normal, 7
normal state, 25
normal subgroup, 61
predual, $8,23,25$
pro-finite group, 93
sequential, 92, 94
projective, 18,34
p-adic integers, 89, 95
scattered, 24
semi-convos, 15
semidirect product, 6
semitopological semigroup, 59
semigroup, 86
*-, 68, 70
left-zero, 76,86
topological, 59
semigroup algebra, 15
separates the points, 22
singular family, 25
Sorgenfrey topology, 56
spectrum, 72
state space, 23
Stone space, 27, 49
Stonean space, 18, 27
strongly Arens irregular, 10, 73, 104, 108
left, right, 10
structure semigroup, 67, 68, 71
submodule, 42
theorem
Baire category, 53
Banach-Stone, 22
Borel isomorphism, 20
Budak, Işik, and Pym, 106
Civin and Yood, 104
Cohen's factorization, 8
Dales, Ghahramani, Helemskii, 64
Daws, 66, 109
Dixmier, 25
dominated convergence, 48
Filali and Salmi, 106
Ghahramani and McClure, 81
Gleason, 18, 23
Hess, 57
Hewitt and Zuckerman, 72
Işik, Pym, and Ülger, 104
Johnson, 80
Kakutani, 57
Kalton and Wood, 80
Krein-Milman, 57
Lacey 57
Lau and Losert, 104

Losert, Neufang, Pachl, and Steprāns, 108
Mazur, 11
Milyutin, 55
Neufang, 81, 104, 106
Radon-Nikodým, 26
Rennison, 68
Šreĭder, 58
Stegall, 58
Stone-Weierstrass, 38
structure, 59
von Neumann isomorphism, 30
Wendel, 60, 80
Wong, 66
Young, 104
Zelmanov, 95
topological centre, 9, 104, 106
left, right, 9, 104, 106, 109
topological group, 59
topological invariant mean, $15,64,67$
topological left-invariant mean, 15
topological semigroup, 59
compact, right, 59, 64, 86
right, 59
translation-invariant, 72
ultrafilter, 27, 74
κ-uniform, 52
uniform norm, 21
von Neumann algebra, 14, 23
enveloping, 33
weakly almost periodic, 11,65
weight, 18

Index of symbols

$\left(A^{\prime \prime}, \square\right),\left(A^{\prime \prime}, \diamond\right), 8$	$\triangle, 6,61$
$A \cdot E, A E, 6$	$\Delta_{p}, 90,96,102$
$A^{\#}, 6$	$\delta_{x}, 24$
$A(G), 15,71$	$\delta_{\varphi} \square \delta_{\psi}, 62$
$A P(A), 11,12,109$	
$A P(G), 66$	$E^{\prime}, E^{\prime \prime}, 6$
$A P(M(G)), 66,109$	$E_{[1]}, 6$
$\underline{\mathfrak{A}_{\mu}}, 77,107$	$E \cong F, 7$
$\left.\varlimsup \sim \ldots A^{\prime}\right), 8$	$\operatorname{ex} P(\Omega), 24$
a, 69	$\varepsilon_{x}, 21$
$B^{b}(G), 74$	$\eta, 50,87$
$B(G), 15$	$\eta^{\circ}, 22,40$
$B(T), 70$	$\bar{\eta}, 40,41,48,61,87$
$B(\Omega), 49$	$\bar{\eta}^{\prime}, \bar{\eta}^{\prime \prime}, 47,88$
$B \ltimes I, 6$	$\widetilde{\eta}, 49,61,88$
$B^{b}(\Omega), 37$	
$\beta \mathbb{N}, 18,23,43$	[F], 22
$\beta \Omega, 18$	$\check{f}, 61$
$\mathcal{B}(E, F), 7$	[Φ_{μ}], 52
$\mathfrak{B}_{X}, 20$	$\varphi \square \psi, \varphi \diamond \psi, 75$
$\mathfrak{B}_{\Omega}, 24,27$	$\varphi \sim \psi, 38,79$
$\mathfrak{B}_{\mu}, 27$	[φ], 38
$\mathfrak{B}_{G}, 74$	$\Phi, 64,73,86,104$
$C^{b}(\Omega), C_{0}(\Omega), 21$	$\Phi_{A}, 6$
$C_{0}(\Omega)_{\mathbb{R}}, 22$	$\Phi_{G}, 80$
$C(\widetilde{\Omega})_{*}, 23$	$\Phi_{M}, 67$
$C(\widetilde{\Omega}), 33$	$\Phi_{X}, 63,64$
$C(\widetilde{\Omega})_{*}, 36$	$\Phi_{Z}, 65,104$
$C(\widetilde{G}), 62$	$\Phi_{\mu}, 27,29,44$
CCC, 19, 28, 29, 47	$\Phi_{b}, 37,49$
c, 5	$\Phi_{s, \mu}, 44$
	$\Phi_{D}, \Phi_{s} 73$
$D_{p}, 5,19,88,95,102$	$\Phi_{\{x\}}, 72$

$\widetilde{G}, 62$
$\widetilde{G}_{c}, \widetilde{G}_{d}, 63$
$\mathcal{G}_{\mu}, 27,45$
$\mathcal{G}_{\varphi}, 53$
$G \sim H, 80$
$\mathbb{H}, 31,51,73$
II, 5
$\mathfrak{I}_{X}, 19$
$\mathfrak{I}_{\Omega}, 27$
$J_{B}, 53$
$j_{d}, j_{c}, 43$
$K \prec \lambda, 36$
$K(S), 60$
$K(\lambda), 10$
$K_{B}, 27,38,63$
$\mathcal{K}_{\Omega}, 25$
$\kappa_{E}, 7,38,46$
L, 88
$L O(\lambda), 65$
$\operatorname{LUC}(G), 65,104$
$L^{1}(\Omega, \mu), 27$
$L^{1}(G), \ell^{1}(G), 60$
$L^{\infty}(\Omega, \mu), 27$
$\ell^{\infty}(\Omega), 50$
$\ell^{1}(S), 10$
$L_{a}, 6$
$L_{t}, R_{t}, 59$
$L_{\mu}, 14$
$\ell_{\varphi} f, 69$
$\lambda \cdot t, 65$
$\lambda_{\mu, B}, 74$
$\lim _{B \rightarrow \varphi}, 28$
$\operatorname{lin} S, 6$

$$
M(S), 15
$$

$M(\Omega), M(\Omega)_{\mathbb{R}}, M(\Omega)^{+}, 23$
$M_{d}(\Omega), M_{c}(\Omega), 23$
$M_{a c}(\Omega, \mu), M_{s}(\Omega, \mu), 26$
$M(\widetilde{\Omega}), 35$
$M(G), M_{c}(G), M_{s}(G), M_{a c}(G), 60$
$M\left(\Phi_{\mu}\right), 27$
$(M(\widetilde{G}), \square), 62,81$
$\left(M\left(\Phi_{X}\right), \square\right), 63$
$m_{G}, 61$
$\mu_{d}, \mu_{c}, 23$
$\mu \ll \nu, \mu \perp \nu, 23$
$\mu \star \nu, 61,74$
$\mu_{B}, 24,74$
$\mathrm{M} \sim \mathrm{N}, 79$
$N(\Omega), 24$
$\mathbb{N}, \mathbb{N}_{n}, 5$
$\mathbb{N}^{*}, 23$
$\mathcal{N}_{x}, 18$
$\mathfrak{N}_{\mu}, 27$
$\Omega_{\infty}, \beta \Omega, \Omega^{*}, 18$
$\Omega_{\{x\}}, 34$
$\widetilde{\Omega}, 33,34,42$
$\widetilde{\Omega}_{d}, \widetilde{\Omega}_{c}, 43$
$P(\Omega), 23$
$\mathcal{P}(A), \mathcal{P}_{1}(A), 15$
$\pi, 34,36,62,75$
$q_{G}, 65,68,104$
$R O(\lambda), 65$
$R_{a}, 6$
$R_{\mu}, 14$
$\rho_{\mu}, q_{\mu}, 45$
$S(A), 71$
$S(B), 27$
$S(G), 69$
$S\left(\mathfrak{B}_{\mu}\right), 27$
$S \square T \subset U, 86$
$s \square u, u \square v, 59$
$S^{[2]}, 6$
$\langle S\rangle, 6$
ex $S, 6$
$\bar{S}, \operatorname{int} S, \partial S, 18$
$\sigma\left(E^{\prime}, E\right), 6$
$\operatorname{supp} \mu, 23$
$T^{*}, 104$
$\mathbb{T}, 5$

```
UG},7
U\Omega, 46, 52,55
U\mathcal{F},46
WAP(A), 11, 12, 109
WAP(G),65
WAP(M(G)), 66, 109
w(X),18
X',}
XA,71
XG},6
XL,42
x ~}\mp@subsup{A}{A}{}y,[x],2
\chiS
Z},\mp@subsup{\mathbb{Z}}{}{+},\mp@subsup{\mathbb{Z}}{n}{+},\mp@subsup{\mathbb{Z}}{p}{},
\mathbb{Z}}\mp@subsup{}{~}{\kappa},19,6
Z (A), }
```


