
Introduction

One of the main results of last decades in algebraic geometry was the foundation of the
Minimal Model Program, or MMP, and its proof in dimension three. Minimal Model
Theory shed a new light on what is nowadays called higher dimensional geometry. In
mathematics high numbers are really a matter of circumstances and here we mean greater
than or equal to 3. The impact of MMP has been felt in almost all areas of algebraic
geometry. In particular the philosophy and some of the main new objects like extremal
rays, Fano–Mori contractions or spaces and log varieties started to play around and give
fruitful answer to different problems.

The aim of the Minimal Model Program is to choose, inside a birational class of
varieties, “simple” objects. The first main breakthrough of the theory is the definition of
these objects: minimal models and Mori spaces. This is related to numerical properties
of the intersection of the canonical class of a variety with effective cycles. After this, old
objects, like the Kleiman cone of effective curves and rational curves on varieties, acquire a
new significance. New ones, like Fano–Mori contractions, start to play an important role.
And the tools developed to tackle these problems allow the study of formerly untouchable
varieties.

Riemann surfaces were classified, in the XIXth century, according to the curvature of
a holomorphic metric. Or, in other words, according to the Kodaira dimension. Surfaces
needed a harder amount of work. For the first time birational modifications played an
important role. The theory of (−1)-curves studied by the Italian school of Castelnuovo,
Enriques and Severi, at the beginning of XXth century, allowed one to define minimal
surfaces. Then the first rough classification of the latter, again by Kodaira dimension, was
obtained. The Minimal Model Program is now a tool to start investigating this question
in dimension 3 or higher.

In these notes we want to present our point of view on this area of research. We are
not trying to give a treatment of the whole subject. Very nice books appeared recently
for this purpose, and we often refer to them in the paper. We would like to present, in a
sufficiently self-contained way, our contributions and interests in this field of mathematics.
We will study Fano–Mori spaces both from the biregular and birational point of view.
For the former we will recall and develop Kawamata’s base point free technique and some
of Mori’s deformation arguments. For the latter we lean on the Sarkisov and #-Minimal
Model Programs.

The content of the consecutive parts is the following. In Part 1 we collect the main
definitions and theorems we are going to use afterwards.
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Part 2 gets the reader acquainted with the base point Free technique, BPF. For this
purpose we give, or sketch, proofs of Kawamata’s base point free theorem, trying to hide
the technicalities.

In Part 3 we introduce the main actor of the book, Fano–Mori contractions and more
generally Fano–Mori spaces. Using BPF we then describe the main properties that will
allow us to study them.

Part 4 contains applications of all the above to smooth varieties. Namely we give a
biregular classification of Fano–Mori spaces of dimension less than or equal to four and
Mukai manifolds.

In Part 5 we present the other side of the moon, the birational world. Here a beautiful
old theorem of Castelnuovo and Noether is proved in a modern language. Philosophy and
applications of the Minimal Model Program for 3-folds are outlined.

These notes collect some topics we presented in three mini-courses which were held in
Wykno (Pl) (1999), Recife (Br) (2000) and Ferrara (It) (2000), respectively. We discussed
this subject with many people and we are grateful to them all. But we would like to
distinguish Jarosław Wiśniewski and thank him deeply.

Part 1. Preliminaries

In this part we collect all definitions which are more or less standard in the algebraic
geometry realm in which we live.

1.1. The Kleiman–Mori cone of a projective variety. First we fix a good category
of objects (real differentiable varieties are not the good ones to extend the Riemann and
Poincaré approach). Let X be a normal variety over an algebraically closed field k of
dimension n, that is, an integral separated scheme which is of finite type over k. We
actually also assume that char(k) = 0; nevertheless many results at the beginning of the
theory also hold in the case of positive characteristic.

We have to introduce some basic objects on X.
Let Div(X) be the group of Cartier divisors on X and Pic(X) be the group of line

bundles on X. Let also Z1(X) be the group of Weil divisors and Z1(X) be the group of
1-cycles on X, i.e. the free abelian group generated, respectively, by prime divisors and
reduced irreducible curves.

We will often use Q-Cartier divisors, that is, linear combinations with rational coef-
ficients of Cartier divisors. For these objects it is useful to introduce the following nota-
tions. Let D =

∑
diDi ∈ Div(X) ⊗ Q be a Q-Cartier divisor. Then bDc :=

∑bdicDi,
dDe := −b−Dc and 〈D〉 := D − bDc, where bdic is the integral part of di.

Then there is a pairing
Pic(X)× Z1(X)→ Z

defined, for an irreducible reduced curve C ⊂ X, by (L,C) → L · C := degC(L|C), and
extended by linearity.
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Two invertible sheaves L1, L2 ∈ Pic(X) are numerically equivalent, denoted by L1 ≡
L2, if L1 ·C = L2 ·C for every curve C ⊂ X. Similarly, two 1-cycles C1, C2 are numerically
equivalent, C1 ≡ C2, if L · C1 = L · C2 for every L ∈ Pic(X). Define

N1X = (Pic(X)/≡)⊗ R and N1X = (Z1(X)/≡)⊗ R;

obviously, by definition, N1(X) and N1(X) are dual R-vector spaces and ≡ is the smallest
equivalence relation for which this holds.

In particular for any divisor H ∈ Pic(X) we can view the class of H in N 1(X) as a
linear form on N1(X). We will use the following notation:

H≥0 := {x ∈ N1(X) : H · x ≥ 0} and similarly for > 0,≤ 0, < 0

and
H⊥ := {x ∈ N1(X) : H · x = 0}.

The fact that % := dimRN1(X) is finite is the Néron–Severi theorem [GH, p. 461]. The
natural number % is called the Picard number of the variety X. (Note that for a variety
defined over C the finite dimensionality of N1(X) can be read off from the fact that
N1(X) is a subspace of H2(X,R).)

More generally, if f : X → Y is a projective morphism and A,B ∈ Div(X)⊗Q, then
A is f -numerically equivalent to B (A ≡f B) if A ·C = B ·C for any curve C contracted
by f ; and A is f -linearly equivalent to B (A ∼f B) if A−B ∼ f∗M for some line bundle
M ∈ Pic(Y ). We will suppress the subscript when no confusion is likely to arise.

Note that if X is a surface then N 1(X) = N1(X); using M. Reid’s words (see [Re4]):
“Although very simple, this is one of the key ideas of Mori theory, and came as a surprise
to anyone who knew the theory of surfaces before 1980: the quadratic intersection form
of the curves on a nonsingular surface can for most purposes be replaced by the bilinear
pairing between N1 and N1, and in this form generalizes to singular varieties and to
higher dimension.”

We also notice that algebraic equivalence (see [GH, p. 461]) of 1-cycles implies nu-
merical equivalence. Moreover, if X is a variety over C then, in terms of Hodge theory,
N1(X) = (H2(X,Z)/(Tors) ∩H1,1(X))⊗ R.

We denote by NE(X) ⊂ N1(X) the cone of effective 1-cycles, that is

NE(X) =
{
C ∈ N1(X) : C =

∑
riCi where ri ∈ R, ri ≥ 0

}
,

where Ci are irreducible curves. Let NE(X) be the closure of NE(X) in the real topology
of N1(X). This is called the Kleiman–Mori cone.

We also use the following notation:

NE(X)H≥0 := NE(X) ∩H≥0 and similarly for > 0,≤ 0, < 0.

One effect of taking the closure is the following trivial observation, which has many
important applications: if H ∈ N1(X) is positive on NE(X)\0 then the section (H·z=1)
∩ NE(X) is compact. Indeed, the projectivisation of the closed cone NE(X) is a closed
subset of P%−1 = P (N1(X)), and therefore compact, and the section (H · z = 1) projects
homeomorphically to it. The same holds for any face or closed subcone of NE(X).
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An element H ∈ N1(X) is called numerically eventually free or numerically effective,
for short nef, if H · C ≥ 0 for every curve C ⊂ X (in other words if H ≥ 0 on NE(X)).

The relation between nef and ample divisors is the content of the following Kleiman
criterion that is a cornerstone of Mori theory.

Theorem 1.1.1 ([Kle]). For H ∈ Pic(X), view the class of H in N 1(X) as a linear form
on N1(X). Then

H is ample ⇔ HC > 0 for all C ∈ NE(X) \ {0}.
In other words the theorem says that the cone of ample divisors is the interior of the

nef cone in N1(X), that is, the cone spanned by all nef divisors.
Note that it is not true that HC > 0 for every curve C ⊂ X implies that H is ample

(see for instance [CKM, Example 4.6.1]). The condition in the theorem is stronger.
This is only a weak form of Kleiman’s criterion, since X is a priori assumed to

be projective. The full strength of Kleiman’s criterion gives a necessary and sufficient
condition for ampleness in terms of the geometry of NE(X).

Assume that X is smooth and denote by KX the canonical divisor of X, that is, an
element of Div(X) such that OX(KX) = ΩnX , where ΩX is the sheaf of one-forms on X.

The first main theorem of Mori theory is the following description of the negative
part, with respect to KX , of the Kleiman–Mori cone. We recall that, by definition, a
rational curve is an irreducible, reduced curve defined over k whose normalization is P1.

Theorem 1.1.2 ([Mo3], cone theorem). Let X be a non-singular projective variety.

(1) There are countably many rational curves Ci ⊂ X such that 0 < −CiKX ≤
dimX + 1 and

NE(X) = NE(X)KX≥0 +
∑

R≥0[Ci].

(2) For any ε > 0 and ample divisor H,

NE(X) = NE(X)KX+εH≥0 +
∑

finite

R≥0[Ci].

In simple words the theorem says the following. Consider the linear form on N1(X)
defined by KX ; the part of the Kleiman–Mori cone NE(X) which sits in the negative
semi-space defined by KX (if not empty) is locally polyhedral and it is spanned by a
countable number of extremal rays, R≥0[Ci]. Moreover each extremal ray is spanned in
N1(X) by a rational curve with bounded intersection with the linear form −KX , and if
we move an ε away from the hyperplane KX = 0 (in the negative direction) the number
of extremal rays becomes finite.

There are essentially two ways of proving this theorem; the original one, which is
due to Mori, is very geometric and valid in any characteristic. It is presented in [Mo3]
and in many other places, for example in [KM2] and [De]. It is based on the study of
deformations of a rational curve on an algebraic variety, and makes use of the theory of
Hilbert schemes and of theorems like for instance 4.3.13.

Another proof was provided by Y. Kawamata ([Ka0]); it gives the cone theorem as a
consequence of the following rationality theorem.
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Theorem 1.1.3 ([KMM, 4.1.1], rationality theorem). Let X be an n-dimensional variety
defined over C which is smooth or , more generally with LT singularities (see Defini-
tion 2.2.1), for which KX is not nef. Let L be an ample line bundle on X and define the
nef value (or nef threshold) of the pair (X,L) by

r = inf{t ∈ R : KX + tL is nef }.
Then the nef value is a rational number. Moreover if a := min{e ∈ N : eKX is Cartier},
and ar := v/u with (v, u) = 1, then v ≤ a(n+ 1).

The proof uses the base point free theorem which we will introduce in the next
section. In particular it makes use of vanishing theorems and it is therefore valid only in
characteristic zero.

It was noticed by M. Reid and Y. Kawamata that the rationality theorem and the
base point free theorem imply immediately Mori’s cone theorem, in the more general case
of varieties with LT singularities.

A very nice presentation of the above theorems (Kleiman–Mori–Kawamata), together
with complete proofs, in the case of surfaces is in [Re4, Chapter D]. This material can be
presented in a few hours (3–4) to an audience with a limited knowledge of basic algebraic
geometry and it can provide a good insight in the field; this is our experience at the
Ferrara course.

The surface case is a perfect tutorial case in order to understand the Minimal Model
Program. This was first pointed out by S. Mori who worked out a complete description
of extremal rays in the case of a smooth surface (see [Mo3, Chapter 2] and also [KM2,
pp. 21–23, §1.4]). Moreover he also showed how it is possible to associate to each extremal
ray a morphism from the surface. When the ray is spanned by a rational curve with self-
intersection −1, this is a celebrated theorem of Castelnuovo. Castelnuovo’s proof is also
very enlightening and it can be found in [Be, Theorem II.17], or in [Ha, Theorem V. 5.7].

1.2. Fujita ∆-genus. A classical approach to the classification of projective varieties,
which dates back to the Italian school, consists of the following: (a) take a hyperplane
section, (b) characterise it by induction, (c) describe the original variety by ascending the
properties of the hyperplane section. To stress its classical flavor T. Fujita called it the
Apollonius method ; we will now introduce some definitions and techniques as presented
in the work of T. Fujita ([Fu2]); see also Section 4.3.2.

Definition 1.2.1. Let F be a variety of dimension d and let L be an ample line bundle
on F . The pair (F,L) is called a polarized variety. We will denote by

χ(F, tL) =
∑

χj
t(t+ 1) . . . (t+ j − 1)

j!

the Hilbert polynomial of (F,L). The χj ’s are integers and δ(F,L) := χn = Ld > 0 is
called the degree of (F,L), while g(F,L) := 1 − χn−1 is called the sectional genus. The
∆-genus of (F,L) is defined by the formula

∆(F,L) = d+ δ − h0(F,L).
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Definition 1.2.2. Let (F,L) be a polarized variety. Let D be a member of |L| and
suppose that D, as a subscheme of F , is irreducible and reduced. In such a case D is
called a rung of (F,L). Let r : H0(F,L) → H0(D,LD) be the restriction map. If r is
surjective the rung is said to be regular.

A sequence F = Fd ⊃ Fd−1 ⊃ . . . ⊃ F1 of subvarieties of F such that Fi is a rung
(resp. a regular rung) of (Fi+1, Li+1) is called a ladder (resp. a regular ladder).

Remark 1.2.3. If D is a rung then the pair (D,LD) is a polarized variety of dimension
d − 1. The structure of (F,L) is reflected in that of (D,LD). One can study (F,L)
via (D,LD) using induction on d. This is the main idea of the Apollonius method. In
particular, χ(D, tLD) = χ(F, tL)−χ(F, (t−1)L), g(D,LD) = g(F,L), δ(D,LD) = δ(F,L)
and ∆(F,L)−∆(D,LD) = dim Coker(r). If the rung is regular the two ∆-genera are the
same.

In classical geometry the number dim Coker(r) was called the deficiency.

Assume that L is very ample and let ϕL be the map associated to the elements of the
complete linear system |L|. Then it is a classical result that∆(F,L) ≥ 0 and equality holds
for the so called “Varieties of Minimal Degree” [GH, p. 173]. These varieties are classified
as projective spaces, hyperquadrics, scrolls over rational normal curves or generalised
cones over them.

In the case of surfaces a precise statement is the following:

Proposition 1.2.4. Let (S,L) be a pair with S a surface and L an ample line bundle
on S. If ∆(S,L) = 0 then the pair is one of the following :

(1) (P2,O(e)) with e = 1, 2,
(2) (Fr, C0 + kf) with k ≥ r + 1, r ≥ 0,
(3) (Sr,OSr (1)) with r ≥ 2.

Here Fr is a Hirzebruch surface, i.e. a P1-bundle P(O(r)⊕O) over the projective line P1

with a unique section C0 ⊂ Fr (isomorphic to P1) such that C2
0 = −r ≤ 0 and a fiber of

the projection Fr → P1 which we will denote by f . While Sr is a (normal) cone defined
by contracting C0 ⊂ Fr to a normal point ; in terms of projective geometry Sr is a cone
over P1 ↪→ Pr embedded via the Veronese map (r-uple embedding). The restriction of the
hyperplane section line bundle from Pr+1 to Sr will be denoted by OSr (1).

Exercise 1.2.5. Prove the classification of surfaces of minimal degree. The first step
consists in showing that if a line meets a surface of minimal degree in three or more
points then it lies on the surface (see for instance [GH, p. 525]).

A modern approach to this classification which extends to the case when L is merely
ample is due to T. Fujita [Fu2].

Proposition 1.2.6. Let (F,L) be a polarized variety and assume that there exists a lad-
der for this pair. Then ∆(F,L) ≥ 0 (this is actually always true, without the assumption
of the existence of a ladder). If moreover the ladder is regular and for a divisor D1 ∈ |L|F1 |
the map H0(F1, L|F1) → H0(D1, L|D1) = Cδ is surjective (we will call this a complete
regular ladder) then ∆(F,L) = 0 and the pair (F,L) is a variety of minimal degree; in
particular F is normal , g(F,L) = 0 and L is very ample.
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Proof. The proof follows immediately from the above observations plus the fact that the
surjectivity of H0(F1, L1) → H0(D1, LD1) = Cδ implies that D1 is a rational normal
curve.

Exercise 1.2.7. Let F1 be a curve and L a line bundle on F1. Assume that D ∈ |L| is
an effective divisor such that H0(F1, L)→ H0(D,LD) = Cδ is surjective. Prove that F1

is a rational normal curve, when embedded by |L|.

Part 2. Base point free technique

In this part we introduce the base point free technique (for short BPF). This theory has
been mainly developed by Kawamata, Reid, Shokurov in a series of papers (see [KMM],
[Ko2] and [Ka3]). The aim of BPF is to show that an adjoint linear system, under some
conditions, is free from fixed points. In the first section we will try to spare the reader a
too technical approach, giving the main ideas and results, without too many definitions
and details. The latter are left for the interested reader, together with examples and
exercises.

2.1. Base point freeness. We start with the easy case of a curve: let C be a compact
Riemann surface of genus g and let KC be the canonical bundle of C. To give a morphism
C → PN is equivalent to giving a line bundle H without base points. For this we have
the well known

Theorem 2.1.1. If degH ≥ 2g then H has no base point.

Proof. Let L := H − KC and let x ∈ C be a point on C. Note that by assumption
degL ≥ 2 and thus

H1(C,KC + L− x) = H0(C, x− L) = 0,(2.1.1)

the first equality coming from Serre duality.
Then we consider the exact sequence

0→ OC(KC + L− x)→ OC(KC + L)→ Ox(KC + L)→ 0,

which comes by tensoring the structure sequence of x on C,

0→ Ix → OC → Ox → 0,

by the line bundle KC + L.
The sequence gives rise to a long exact sequence in cohomology whose first terms are

(keep in mind equation (2.1.1))

0→ H0(C,KC + L− x)→ H0(C,KC + L)→ H0(x,KC + L)→ 0.

In particular we have the surjective map

H0(C,H) α→ H0(x,H)→ 0.

Furthermore x is a closed point and therefore

H0(x,H) = C 6= 0.(2.1.2)
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The surjectivity of α translates into the existence of a section of O(H) which is not
vanishing at x. That is the pull back via α of 1.

What we have done can be summarized in the following slogan, which is somehow
the manifesto of the base point free technique.

Construct a section of an adjoint line bundle proving a vanishing statement, (2.1.1),
and a non-vanishing statement on a smaller dimensional variety, (2.1.2).

What happens if we try to generalise this to higher dimensional varieties and which
problems shall we encounter?

Simple observation: the point x ∈ C is a smooth Cartier divisor, that is why with an
abuse of language we wrote H i(C,KC + L − x). This is no more true for a point on a
variety X of higher dimension.

Let x ∈ X be a point of a smooth projective variety X of dimension n. If we just
want to mimic the above arguments, then in (2.1.1) we are concerned with cohomology
groups of non-locally free sheaves which are difficult to interpret. Note that there is a
way to make a divisor out of a point: blow it up! Do it and get a morphism π : Y → X

with exceptional divisor E and

π∗KX = KY − (n− 1)E.

Assume now that we want to prove that x is not a base point of a divisor of the type
H := KX + L; we pull back the divisors on Y and we have an exact sequence, coming
from the structure sequence associated to E, of the type

H0(Y, π∗(KX + L))→ H0(E, π∗(KX + L))→ H1(Y, π∗(KX + L)− E).

Since H0(Y, π∗(KX+L)) = H0(X,KX+L) (Hartogs theorem) and H0(E, π∗(KX+L)) =
C, we have to prove “only” the vanishing of

H1(Y, π∗(KX + L)− E) = H1(Y,KY + π∗L− nE).

This is of course in general not true and one has to choose carefully good assumptions
on L to have a vanishing theorem of this type; let us state the best available version
of it (without generalising it to a relative or to a singular situation) which is due to
Kawamata–Viehweg (they worked on previous versions of Enriques, Kodaira, Ramanu-
jan, . . . )

Theorem 2.1.2 (Vanishing theorem, see [KMM] or [EV]). Let X be a smooth variety
and let D =

∑
aiDi be a Q-Cartier divisor satisfying the following conditions :

(i) D is nef and big , that is D, is nef and Dn > 0, where n := dimX.
(ii) 〈D〉 (notation of Section 1.1) has support with only normal crossings (that is ,

each Di is smooth and they intersect everywhere transversally).

Then
Hj(X,KX + dDe) = 0 for j > 0.

Let us show how to use this vanishing theorem under a very special hypothesis.

Assume that L is ample (or nef and big) and that we can find a divisor D1 ∈ |L| such
that

π∗(D1) = D̃1 + aE
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with c := n/a < 1 and D̃1 smooth. For instance assume that the only singularity of D1

is an ordinary (n+ 1)-uple point at x. Then x is not a base point of KX + L.

Proof. Note that, π∗(L)− δE := A is ample for every 0 < δ � 1. Then we can write

π∗(KX + L)− E ≡ KY + cD̃1 + caE − nE + (1− c)A+ (1− c)δE,
equivalently

π∗(KX + L)− E − (1− c)δE − cD̃1 −KY

is an ample Q-divisor on Y .
We can apply the vanishing theorem on Y and conclude that

H1(Y, π∗(KX + L)− E) = 0

since d−(1− c)δE − c(D̃1)e = 0. Thus

H0(Y, π∗(KX + L))→ H0(E, π∗(KX + L)) ' C
is surjective and x 6∈ Bsl(KX + L).

Unfortunately it is very unlikely that our special hypothesis is satisfied. Now comes
the moment to give a precise general statement and to outline its proof.

Theorem 2.1.3 (Base point freeness, [Sh1], [Ka0] or [KMM]). Let X be a variety of di-
mension n, with “good singularities” (i.e. smooth or LT singularities , see Definition 2.2.1)
and H a Cartier divisor. Assume that H is nef and aH −KX =: L is ample for some
a ∈ N. Then for m � 0 the line bundle mH is generated by global sections , i.e. there
exists an integer m0 and a regular map ϕ : X →W given by elements in H0(X,mH) for
any m ≥ m0.

Remark 2.1.4. The above theorem was proved by Y. Kawamata and V. V. Shokurov (see
[Ka0] and [Sh1]) by a method which builds up from the classical methods of the Italians
and which was developed in the case of surfaces by Kodaira–Ramanujan–Bombieri.

A very significant step in the understanding and spreading out of the technique was
given in a beautiful paper of M. Reid (see [Re1]) which we strongly recommend to the
reader.

This type of results are fundamental in algebraic geometry and they are constantly
under improvement; recently important steps were achieved by Kawamata, Shokurov,
Kollár, Ein-Lazarsfeld and others.

A big drawback is that the method, as it stands, is not effective, i.e. it does not give
a good bound for m (in contrast to the case of curves and surfaces). Some bound can
however be achieved, namely one can show that m0 ≤ 2(n + 2)!(a + n) (effective base
point freeness: see [Ko4]). We will only outline the proof and we refer to [KMM] for many
technical, and often very relevant, parts which we now state and briefly comment.

First we observe that the “perfect” assumptions we have given above are difficult
to achieve in general. So more than one blow up is required and for this we need the
following.

Definition 2.1.5. For a pair (X,H) of a variety X and a Q-divisor H, a log resolution
is a proper birational morphism f : Y → X from a smooth variety Y such that the union
of the support of f−1

∗ H and of the exceptional locus is a normal crossing divisor.
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Theorem 2.1.6. Let X be a variety with LT singularities , B an effective and nef Q-
divisor and L an ample divisor on X. Then there exists a log resolution f : Y → X such
that

KY = f∗KX +
∑

eiEi, f∗(B) = B′ +
∑

biEi, f∗(L) = A+
∑

piEi,

where all relevant divisors in Y are smooth and normal crossing , all Ei are exceptional ,
A is an f -ample Q-divisor , 0 ≤ pi � 1 and ei > −1.

The theorem follows essentially from the work of Hironaka on resolution of singular-
ities. The statement on the ei is the definition of LT singularities (see Definition 2.2.1)
while the ampleness of A is usually called Kodaira’s lemma; for a proof see [KMM,
Corollary 0.3.6].

Using a log resolution instead of the blow-up we will achieve our assumption but we
will very likely loose the non-vanishing part (namely H0(E, π∗(KX + L)) = C). For this
we need the next important result, due to V. V. Shokurov.

Theorem 2.1.7 (Non-vanishing theorem). Let X be a non-singular projective variety ; let
N be a Cartier divisor and A a Q-divisor on X such that :

(i) N is nef.
(ii) dAe ≥ 0 and 〈A〉 has support with only normal crossings.

(iii) dN +A−KX = M where M is nef and big , for some positive d ∈ N .

Then H0(X,mN + dAe) 6= ∅ for all m� 0.

A proof of this theorem can be found in [KMM, 2.1.1]. It is a combination of the
Riemann–Roch formula and the vanishing theorem 2.1.2.

Sketch of the proof of 2.1.3. By the non-vanishing theorem there exists an effective
divisor B ∈ |mH| for all m ≥ m0 � 0.

Noetherian argument : Let B(γ) denote the reduced base locus of |γH|. Clearly B(γs)
⊆ B(γt) for any positive integers s > t. Noetherian induction implies that the sequence
B(γi) stabilises and we call the limit Bγ . So either Bγ is non-empty for some γ or Bγ
and Bγ′ are empty for two relatively prime integers γ and γ ′. In the latter case, take
s, t such that B(γs) and B((γ′)t) are empty and use the fact that every sufficiently large
integer is a linear combination of γs and (γ′)t with non-negative coefficients to conclude
that |mH| is base point free for all m� 0.

So we must show that the assumption that some Bγ is non-empty leads to a contra-
diction. Let m = γs be such that Bγ = B(m) and assume that this is not empty.

With L as in the statement of the theorem and B as at the beginning of the proof,
let ei, bi, pi be as in Theorem 2.1.6 and define

c := min
{
ei + 1− pi

bi

}
.

By taking m large enough we can assume that there exists a divisor B ∈ |mH| with arbi-
trarily high multiplicity along Bγ , in other words 0 < c < 1. By changing the coefficients
pi a little we can assume that the minimum is achieved for exactly one index. Denote the
corresponding divisor by E0 and let Z = f(E0).



Morphisms of projective varieties 15

By the Bertini theorem we can assume that Z is contained in the base locus of mH,
i.e. in Bγ . Then

KY +A+ cB′+
∑

(cbi− ei + pi)Ei + f∗(m− cm)H ≡ f∗(KX +L+mH) = f∗(m+a)H

and ∑
(cbi − ei + pi)Ei = E0 −D + Fr

where E0, D are effective divisors without common irreducible components and Fr is the
fractional divisor with rational coefficients between 0 and 1, defined by Fr =

∑{cbi −
ei + pi}Ei, where {r} is the fractional part of the rational number r. Thus

f∗((m+ a)H) +D − E0 − Fr − cB′ −KY ≡ A+ f∗(m− cm)H

is ample. Write N(m) := f∗((m + a)H) + D for brevity; by the vanishing theorem we
then have

Hi(Y,N(m)− E0) = 0 for i > 0

(incidentally observe that also the following vanishing is true: H i(E0, N(m)) = 0 for
i > 0).

By the first vanishing the restriction map

H0(Y,N(m))→ H0(E0, N(m)|E0)

is surjective.
By the non-vanishing theorem for any m1 � m0 there exists a non-zero section s of

N(m1)|E0 . By surjectivity this extends to a non-zero section of N(m1) on Y , which is
not identically zero along E0. Moreover H0(Y,N(m1)) = H0(X, (m1 + a)H) since D is
f -exceptional. The section s descends to a section of (m1 + a)H which does not vanish
along f(E0) = Z ⊂ Bc, which is a contradiction.

2.2. Singularities and log singularities. In the previous sections we did not introduce
any technical definitions of singularities or of singular pairs. Let us do it now for the
interested reader.

Definition 2.2.1. Let X be a normal variety and D =
∑

i diDi be an effective Q-divisor
such that KX +D is Q-Cartier. If µ : Y → X is a log resolution of the pair (X,D), then
we can write

KY + µ−1
∗ D = µ∗(KX +D) + F

with F =
∑

jdisc(X,Ej , D)Ej for the exceptional divisors Ej . We call ej := disc(X,Ej , D)
∈ Q the discrepancy coefficient for Ej , and regard −di as the discrepancy coefficient
for Di.

The variety X is said to have terminal (respectively canonical , log terminal (LT))
singularities if ej > 0 (resp. ej ≥ 0, ej > −1) for any j.

The pair (X,D) is said to have log canonical (LC) (respectively Kawamata log ter-
minal (KLT)) singularities if di ≤ 1 (resp. di < 1) and ej ≥ −1 (resp. ej > −1) for any
i, j of a log resolution µ : Y → X.

The log canonical threshold of a pair (X,D) is lct(X,D) := sup{t ∈ Q : (X, tD) is
LC}.
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Definition 2.2.2 ([Ka3]). Let X be a normal variety and D =
∑
diDi an effective

Q-divisor such that KX + D is Q-Cartier. A subvariety W of X is said to be a center
of log canonical singularities for the pair (X,D) if there is a birational morphism from a
normal variety µ : Y → X and a prime divisor E on Y , not necessarily µ-exceptional, with
discrepancy coefficient e ≤ −1 and such that µ(E) = W . For another such µ′ : Y ′ → X,
if the strict transform E ′ of E exists on Y ′, then we have the same discrepancy coefficient
for E′. The divisor E′ is considered to be equivalent to E, and the equivalence class of
these prime divisors is called a place of log canonical singularities for (X,D). The set
of all centers (respectively places) of LC singularities is denoted by CLC(X,D) (resp.
PLC(X,D)), the locus of all centers of LC singularities is denoted by LLC(X,D).

The study of these objects has been developed by Kawamata and we can summarise
the main results in the following theorem.

Theorem 2.2.3 ([Ka3], [Ka4]). Let X be a normal variety and D an effective Q-Cartier
divisor such that KX +D is Q-Cartier. Assume that X is LT and (X,D) is LC.

(i) If W1,W2 ∈ CLC(X,D) and W is an irreducible component of W1 ∩W2, then
W ∈ CLC(X,D). In particular , there exist minimal elements in CLC(X,D) with respect
to inclusion.

(ii) If W ∈ CLC(X,D) is a minimal center then W is normal.
(iii) (subadjunction formula). Let H be an ample Cartier divisor and ε a positive

rational number. If W is a minimal center for CLC(X,D) then there exists an effective
Q-divisor DW on W such that (KX +D + εH)|W ≡ KW +DW and (W,DW ) is KLT.

Remark 2.2.4. The first two statements are, essentially, a consequence of Shokurov’s
connectedness lemma, which is itself a direct consequence of the vanishing theorem 2.1.2.
The subadjunction formula is quite of a different flavor and is related to semipositivity
results for the relative dualising sheaf of a morphism.

In particular 2.2.3 tells us that the minimal center W is not too bad and there is
some hope to be able to work on it.

Exercise 2.2.5. It is in fact not so difficult to work out all possible minimal centers
W ∈ CLC(X,D), where X is a smooth surface and D any divisor (i.e. a curve). The same,
a little harder, if X is a smooth 3-fold; one should keep in mind that KLT singularities
are rational singularities.

Let (X,D) be a log variety and assume that (X,D) is LC and W ∈ CLC(X,D) is a
minimal center. The Weil divisor D is usually called the boundary of the log pair. Then
we have a log resolution µ : Y → X with

KY = µ∗(KX +D) +
∑

eiEi;

this time we put also the strict transform of the boundary on the right hand side. Since
(X,D) is LC and W ∈ CLC(X,D), we have ei ≥ −1 and there is at least one ej = −1
such that µ(Ej) = W .

A first problem is that to apply Kawamata’s BPF method we need to have a unique
exceptional divisor with discrepancy −1 and center W . To fulfill this requirement we need
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Perturbation argument: Choose a generic very ample M such that W ⊂ Supp(M) and
no other Z ∈ CLC(X,D)\{W} is contained in Supp(M); this is always possible since W
is minimal in a dimensional sense. We then perturb D to a divisor D1 := (1−ε1)D+ε2M ,
with 0 < εi � 1 in such a way that

• (X,D1) is LC,
• CLC(X,D1) = W ,
• µ∗ε2M =

∑
miEi + P with P ample; this is possible by the Kodaira lemma.

After this perturbation the log resolution looks like

KY +
∑

j=0

Ej +∆−A = µ∗(KX +D1)− P,

where the Ej ’s are integral irreducible divisors and µ(Ej) = W , A is a µ-exceptional
integral divisor and b∆c = 0. It is now enough to use the ampleness of P to choose just
one of the Ej . Indeed for small enough δj > 0, P ′ := P −∑j=1 δjEj is still ample and
therefore we produce the desired resolution

KY + E0 +∆′ −A = µ∗(KX +D′)− P ′;(2.2.1)

where P ′ +∆′ is effective, fractional, and P ′ is ample.
If instead of an ample M we choose a nef and big divisor, we can repeat the above

argument with the Kodaira lemma, but this time we cannot choose the center µ(E0) as
before, and in particular we cannot assume that at the end we are on a minimal center
for (X,D).

2.2.1. How to use singularities and the CLC locus to prove base point free-type theo-
rems. Assume now that X is a variety with log terminal and Gorenstein singularities
and let L be an ample line bundle on X.

Let D be an effective Q-Cartier divisor such that D ≡ tL for a rational number t < 1.
Let W ∈ CLC(X,D) be a minimal center. Perturb D using the very ample line bundle
M := mL for m � 0. So we can assume that there exists only one exceptional divisor
in any log resolution of (X,D) with discrepancy −1 and W as center. Thus taking an
embedded log resolution of the pair (X,D), µ : Y → X, we have

KY + E + F = µ∗(KX +D)

where E is a reduced divisor such that µ(E) = W and F =
∑
fiFi with fi < 1. Then

KY + (1− t)µ∗L ≡ µ∗(KX + L)− E − F
and thus

H1(Y, µ∗(KX + L)− E + d−F e) = 0

and we obtain a surjection

H0(Y, µ∗(KX + L) + d−F e)→ H0(E, µ∗(KX + L) + d−F e).
The divisor d−F e is effective and any irreducible component of dF e is µ-exceptional;
therefore H0(Y, µ∗(KX + L)) = H0(Y, µ∗(KX + L) + d−F e) and we also have

H0(Y, µ∗(KX + L))→ H0(E, µ∗(KX + L) + d−F e)→ 0.
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Thus to find a section of KX + L not vanishing on W it is sufficient to find a non-zero
section in H0(E, µ∗(KX + L) + d−F e).

The ideal case happens when W = x is one point; in fact then H0(E, µ∗(KX + L)
+ d−F e) = C and therefore K + L is base point free at x.

2.3. Exercises and examples. The solution of the next exercise can be found in the
book [BS], even under the milder hypothesis that L is ample and spanned. We propose
it here because we think that the above methods are convenient to be applied to these
problems and because we believe they should prove the conjecture stated in item (d) (we
do not know how and therefore we adopt the trick to put it as an exercise).

Exercise 2.3.1. Let L be a very ample line bundle on a smooth projective variety X of
dimension n. Prove the following:

(a) KX + (n+ 1)L is spanned by global sections at each point.
(b) The same is true for KX + nL unless X = Pn and L = O(1).
(c) If n ≥ 2 the same is true for KX + (n − 1)L unless X = Pn and L = O(1) or

X = P2 and L = O(2) or X = Qn and L = OPn+1(1)Qn or (X,L) is a scroll over a curve.
(d) Conjecture: If n ≥ 3 the same is true for KX + (n− 2)L as soon as it is nef and

Ln > 27.

Hints: For (a), let x ∈ X and take n-sections of L meeting transversally in x.
For (b) use an “induction procedure”; namely take a smooth section D ∈ |L| passing

through x (this is the Bertini theorem) and use the exact sequence

H0(X,KX + nL)→ H0(D,KD + L)→ 0.

One goes down until the dimension of D is 1, i.e. a curve, and in this case KD + L is
spanned if and only if degL ≥ 2. The only problem is when D is a line and therefore
X = Pn and L = O(1).

For (c), as in the previous step, one can reduce the problem to the surface case;
namely X = S is a smooth surface and one has to prove the spannedness of K + L. In
this case there are even stronger theorems (Reider type theorems).

Some comments to the conjecture stated in (d): by the inductive procedure it is
enough to prove the statement for n = 3. Note that the bound Ln > 27 is necessary since
there exists a del Pezzo 3-fold X with −KX = 2H, H3 = 1 and H with one base point
(take L = 3H).

The above exercise is extremely hard when one assumes only ampleness (and not very
ampleness!) of L. In fact we have:

Conjecture 2.3.2 (Fujita conjecture). Let L be an ample line bundle on a smooth
projective variety of dimension n. Then KX +mL is base point free if m ≥ n+ 1 and it
is very ample if m ≥ n+ 2.

Remark 2.3.3. Some important results toward a proof of the conjecture have been found
in recent time. In particular, using an analytic approach, Demailly, Angern-Siu and Tsuji
proved that if m ≥

(
n+1

2

)
then KX + mL is base point free and if m ≥

(
n+2

2

)
then the

global sections of KX +mL separate points.
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The base point free part of the conjecture is true in the case n = 1, 2, 3, 4 by results
of Reider, Ein-Lazarsfeld, Helmke, Kawamata and Fujita (see [Rei] and [Ka3]).

Part 3. Fano–Mori or extremal contractions

In this part we first define and give examples of Fano–Mori spaces. These are exactly
the morphisms constructed in Part 2, and they play a central role in the Minimal Model
Program. To study those objects we want to apply an inductive method as in Section 1.2.
A fundamental step is therefore to ensure that we have base point free linear systems
to slice the fibers. This is the content of Theorem 3.3.1, whose proof occupies the last
section.

3.1. Contractions associated to a ray of the Kleiman–Mori cone. A key step in
Mori theory, after the description of the structure of NE(X) outlined in a previous section,
is the fact that extremal rays (and in general extremal faces) give rise to morphisms of
the variety. This is explained in this section.

Proposition 3.1.1. Let R be an extremal ray of the Kleiman–Mori cone NE(X) such
that R ·KX < 0. Then there exists a nef Cartier divisor HR such that HR · z = 0 if and
only if z ∈ R.

This proposition is proved for instance in [Ko3, III.1.4.1]. The proof makes use of the
cone theorem and some easy properties of closed cones.

Then to a divisor as in the proposition we can associate a morphism via the following
theorem.

Theorem 3.1.2 (Contraction theorem). Let X be a variety with log terminal singularities
and let H be a nef Cartier divisor on X. Assume that F := H⊥∩NE(X)\{0} is contained
in {C ∈ N1(X) : KX ·C < 0}. Then there exists a projective morphism ϕ : X →W onto
a normal projective variety W which is characterised by the following properties :

(i) For any irreducible curve C ⊂ X, ϕ(C) is a point if and only if H · C = 0.
(ii) ϕ has connected fibers.
(iii) H = ϕ∗(A) for some ample Cartier divisor on W .

Proof. The proof follows immediately from Theorem 2.1.3 and Zariski’s main theorem
once we note that by our assumption and Kleiman’s criterion for ampleness there exists
a natural number a such that aH −KX is ample.

Definition 3.1.3. A contraction is a surjective morphism f : Y → T , with connected
fibers, between normal varieties.

For a contraction f : Y → T the set

E = {y ∈ Y : f is not an isomorphism at y}
is the exceptional locus of f . Let δ = dimE where dim denotes as usual the maximum
dimension of irreducible components. The contraction is called of fiber type if δ = dim Y ,
and birational otherwise.
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If f is birational and δ = dim Y − 1 then it is also called a divisorial contraction; if
it is birational and δ ≤ dim Y − 2 then it is called a small contraction.

Given a contraction f : Y → T , a Cartier divisor H such that H = ϕ∗(A) for some
ample Cartier divisor A on T is called a supporting divisor for the contraction (if H = HR

as in the above proposition then it is also called a supporting divisor for the ray R).

Definition 3.1.4. A contraction f : X → W as in the above Theorem 3.1.2 is called
Fano–Mori (F-M) or extremal. A birational contraction f : X → W is called crepant if
KX = f∗KW .

Remark 3.1.5. Putting together Theorem 3.1.2 and Proposition 3.1.1 we obtain the
following. Given an extremal ray of the Kleiman–Mori cone R ⊂ NE(X) such that
R ·KX < 0, there exists a projective morphism with connected fibers contR : X → W

onto a normal projective variety W , which contracts all (and only) the curves in the
ray. Such a map is also called the contraction of the extremal ray R, or an elementary
Fano–Mori contraction.

We stress that Theorem 3.1.2 is proved only in characteristic zero. The existence of
this map in positive characteristic is an open problem.

Remark 3.1.6. It is straightforward to prove that conversely the contraction theorem
implies Theorem 2.1.3.

Note also that any supporting divisor H for a F-M contraction ϕ is of the typeKX+rL
with r a rational number and L an ample Cartier divisor. In fact let H be a Cartier divisor
which is the pull back of a sufficiently ample line bundle on W . Then mH −KX := L is
an ample Cartier divisor for some rational number m and thus H = KX + (1/m)L.

Remark 3.1.7. To construct a divisor as in 3.1.2, and therefore an associated morphism,
one can also use the rationality theorem 1.1.3 as follows. Let X be a variety with at most
log terminal singularities and let L be a Cartier divisor with nef value r. Then, by the
rationality theorem, if H ′ := K + rL there exists an integer m such that H := mH ′ is a
Cartier divisor. By definition H satisfies the assumption in 3.1.2.

The following is an important technical result whose proof may be considered an
interesting exercise.

Exercise 3.1.8 ([KMM, Proposition 5.1.6]). Let f : X → W be a divisorial elementary
Fano–Mori contraction with X smooth or with at most terminal Q-factorial singularities.
Prove that the exceptional locus of f is a unique prime divisor and W has at most
terminal Q-factorial singularities.

Hint: Assume by contradiction that there are at least two components. Show that a
generic curve in one component cannot be numerically equivalent to a generic curve in
the other.

3.1.1. Local contraction. In studying F-M contractions it makes sense to fix a fiber and
understand the contraction locally, i.e. restricting to an affine neighborhood of the fixed
fiber. More general complete F-M contractions can then be obtained by gluing different
local descriptions.



Morphisms of projective varieties 21

For this we use the local set-up developed by Andreatta–Wísniewski (see [AW1]),
which depends on some definitions.

Definition 3.1.9. Let f : Y → T a contraction supported by KY + rL, with r rational
and L ample and Cartier (i.e. a F-M contraction). Fix a fiber F of f and take an open
affine S ⊂ T such that f(F ) ∈ S and dim f−1(s) ≤ dimF , for s ∈ S. Let X = f−1S

then f : X → S will be called a local contraction around F . If there is no need to specify
fixed fibers then we will simply say that f : X → S is a local contraction. In particular
S = Spec(H0(X,OX)).

Definition 3.1.10. Let f : X → S be a local F-M contraction around F . Let r =
inf{t ∈ Q : KY + tH ≡f 0 for some ample Cartier divisor H ∈ Pic(X)}. Assume that
KX + rL ≡f OX , that is, f is supported by m(KX + rL) for some m ≥ 1. The Cartier
divisor L will be called the fundamental divisor of f .

Let G be a generic non-trivial fiber of f . The dual index of f is

d(f) := dimG− r,
the character of f is

γ(f) :=
{

1 if dimX > dimS,
0 if dimX = dimS,

and the difficulty of f is
Φ(f) = dimF − r.

We will say that (d(f), γ(f), Φ(f)) is the type of f .

3.2. Examples. A large class of examples of F-M contractions is worked out in Section 3
of the paper [AW3]; we report some of them here, referring the reader for more details to
that paper. We focus on the case where X is smooth, with the purpose of showing later
some classifications of F-M contractions on a smooth variety.

Example 3.2.1. Fano varieties (with the constant map X → {pt}), scrolls (i.e. X =
P(E) → Y where E is a vector bundle on a smooth manifold Y ) and conic bundles are
F-M contractions of fiber type.

Example 3.2.2. Any blow-up of a smooth smooth variety Y along a smooth subvariety
Z, X := BlSZ → Z, is a birational F-M contraction.

Example 3.2.3. Blow-up a smooth surface in a 4-fold with an ordinary double point; i.e.

S := {x = z = w = 0} ⊂ Z := {xy − zt+ w2}, ϕ : X := BlSZ → Z.

A direct computation shows that X is smooth and that ϕ−1(0) = P2.

Let L1, L2, L3 be three general planes in P3 and let P2 be the base of the net L =∑
tiLi. Consider the incidence variety

X := {(p, L) : p ∈ L} ⊂ P3 × P2.

Then the projection ϕ : X → P3 is a F-M contraction which is a P1-bundle generically
and has a fiber = P2 over the point intersection of the Li.
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If we blow up a smooth surface S in X meeting the general fiber in one point we
obtain a smooth conic bundle Y → P3 with a 2-dimensional reducible fiber and with
discriminant locus ∆ = ϕ(S).

In coordinates: assume P3 = [z0, z1, z2, z3], P2 = [t1, t2, t3], Li = zi, i = 1, 2, 3. Then
X = {t1z1 + t2z2 + t3z3 = 0} ⊂ P2 × P3 and let, for instance, S = {t1 = z1 = 0}. The
special 2-dimensional fiber on Y will be F1 ∪ P2.

On Y there are two F-M contractions, both of birational type; besides the blow-up
of X along S we can contract a divisor on Y consisting of the P2 component of the
2-dimensional fiber and of all the components of the reducible conics not contracted to
X. This is a contraction as the one described in the first part of the example (if this is
not immediate now, it will be later when we give a classification of F-M contractions on
smooth 4-folds).

Example 3.2.4. We now introduce a large class of examples via a standard construction;
for more details see Section 3 of [AW3]. Let E be a vector bundle over a smooth variety
F and let V(E) := Spec(S(E)) be the total space of the dual E∗. If Sk(E) is generated by
global sections for some k > 0 let

ϕ : V(E)→ Z = Spec
(⊕

k≥0

H0(F, Sk(E))
)

be the map associated to the evaluation of Sk(E). Then ϕ is a contraction which gives
the collapsing of the zero section of the total space V(E), F0 := F , to the vertex z of the
cone Z.

It is straightforward to check the following properties:

(i) The normal bundle of F0 in V(E) is E∗.
(ii) If −KY − det E is ample then ϕ is a Fano–Mori contraction. The map ϕ is

birational if the top Segre class of E is positive (if rank E = 2 then c2
1 − c2 > 0).

(iii) P(O ⊕ E) := Proj(S(E ⊕ OY )) is the projective closure of V(E). The map ϕ is
the restriction of the map given by the tautological bundle ξ on Proj(S(E ⊕ OY )); ϕ is
birational if ξ is big.

(iv) (Grauert criterion) E is ample if and only if ϕ is an isomorphism outside F0.

(v) The fiber F0 of ϕ has the fiber structure (i.e. IF0 = ϕ(−1)mzOX) if and only if
E is spanned by global sections.

Let us work out in detail the example with F = P2; it is possible to do the same for
a 2-dimensional quadric, see [AW3], or for smooth del Pezzo surfaces. Let E be a rank-2
vector bundle over P2 such that E is spanned by global sections and 0 ≤ c1(E) ≤ 2.
These bundles were completely classified in [SW], and they are each isomorphic to one
of the bundles in the following table. Performing the above construction with them we
obtain eight Fano–Mori contractions with fiber P2; in the second column we describe
these contractions. In [AW3] it is explained how to obtain these descriptions; one has to
use the results 4.5.1, 4.5.3, 4.5.2 in the next section.
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Description of E Description of ϕ and Sing(Z)

E = O ⊕O a scroll, Z is smooth
E = O ⊕O(1) a smooth blow-up of a smooth curve, Z is smooth
E = TP2(−1) a generalised scroll, i.e. a fiber type map, general

fiber isomorphic to a line and a 2-dimensional fiber,
Z is smooth

E = O ⊕O(2) the blow-up of a smooth curve C, Z is singular along C
E = O(1)⊕O(1) a small contraction, Z is singular and the flip exists
0→ O → TP2(−1)⊕O(1)→ E → 0 the blow-up of a smooth surface passing from a

quadric singularity of Z
0→ O(−1)⊕2 → O⊕4 → E → 0 the blow-up of a cone over a twisted cubic in a

smooth Z

0→ O(−2)→ O⊕3 → E → 0 a conic bundle with a 2-dimensional fiber, Z is smooth

Example 3.2.5. The existence of F-M birational contractions with exceptional set of
codimension greater than 1 (small contraction) was proved by P. Francia with a famous
example: it is a F-M contraction on a 3-fold with terminal singularities and with excep-
tional locus E ∼= P1. The example is worked out in many books, for instance in [CKM,
pp. 33–34]. This is the main difficulty in the MMP over cone by S. Mori, with a tremen-
dous work, in dimension 3 (see [Mo4]).

3.3. Relative base point freeness on Fano–Mori contractions. A F-M contraction
has a supporting divisor of the type KX +rL with L an ample Cartier divisor, as noticed
in 3.1.6.

This feature, which we can also call the adjoint contraction morphism, allows us
to apply an inductive method which is typical of this theory. It is a sort of relative
“Apollonius method” (see 1.2) and in [AW1] it is called a horizontal slicing argument
(sometimes it is called simply slicing but we will need to distinguish it from vertical
slicing). It can be briefly summarised as follows.

Consider a general divisor X ′ from the linear system |L| (a hyperplane section of X
if L is very ample) and assume that it is a “good” variety, i.e. has the same singularities
as X, of dimension n − 1. By adjunction, KX′ = (KX + L)|X′ and, by the vanishing
theorem 2.1.2, if r > 1, the linear system |m(KX′ + (r − 1)L)| is just the restriction
of |m(KX + rL)|, so that the adjoint contraction morphism of X ′ can be related to
the one of X. Moreover, fibers of the adjoint morphism of X ′ will usually be of smaller
dimension and an inductive argument can be applied. The method will be further outlined
in Section 4.3.2.

The horizontal slicing argument requires therefore the existence of a “good” divisor
X ′ in the linear system |L| (a rung in the language of [Fu2], see Section 1.2). The system,
however, for an ample (but not very ample) L may a priori be even empty. To overcome
this difficulty we use the local set-up, described in the previous section, in which the base
of the contraction morphism will be affine. We also benefit from this situation because
we may choose effective divisors which are rationally trivial.

Then the next point is to ensure that the divisor X ′ does not contain the whole
fiber in question and has good singularities. This is the case for instance, via the Bertini
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theorem, if we ensure that the base locus of |L| (L may be changed by adding a divisor
trivial on fibers of ϕ) is empty. This is what may be called a “relative good divisor”.
(Now we can explain why we use the word “horizontal”: we are used to thinking about
the map ϕ : X → Z as going vertically; then every divisor from an ample linear system
intersects every “vertical” fiber of ϕ of dimension ≥ 1, so it lies “horizontally”.)

The above point of view was first exploited in [AW1] where the first part of the
following theorem was proved. The proof used the base point free theorem method
(BPF-method) of Y. Kawamata, actually a slightly improved version of it by J. Kollár
(see [Ko2]) introduced in the previous section. The further refinement of the method by
Y. Kawamata in [Ka3] and [Ka4] allowed an improvement of the theorem in [AW1]; this
is the second part of the following theorem and it was proved in [Me3].

Theorem 3.3.1. Let f : X → S be a local F-M space around F supported by KX+rL and
let (d(f), γ(f), Φ(f)) be the type of f (see 3.1.9 and 3.1.10). Let also ε be a sufficiently
small positive rational number. Assume one of the following two conditions is satisfied :

• dimF < r + 1 or , if f is birational , dimF ≤ r + 1; equivalently the type of f is
(∗, ∗, Φ(f)), with Φ(f) ≤ 1− εγ(f) (see [AW1]),
• the type of f is (d, 1, 1), with d ≤ 0 or with d = 1 and F is reducible (see [Me3]).

Then L, the fundamental divisor of the contraction, is relatively spanned , i.e. Bsl|L|
:= Supp(Coker(f∗f∗L→ L)) does not meet F .

In the rest of the section we are going to prove this theorem. Let us first roughly
summarise the general principles of the proof. The idea is to proceed by contradiction,
we assume therefore that there is a non-empty base locus V . Then we produce a log
variety non-KLT on V (with respect to a divisor in δL). Finally we use the method
developed in Part 2 to produce sections of an adjoint line bundle non-vanishing along the
non-KLT part of the log variety.

To apply this strategy we have a priori the main problem: namely BPF produces
sections of KX + mL for m � 0, while we need sections of L itself. But in the category
of local F-M contractions we have L ≡f KX + (r + 1)L. An immediate consequence is
the following.

Crucial observation 3.3.2. In our set-up of F-M contractions, we will work with log
pairs (X,D) such that D ≡f δL and KX ≡f −rL. In particular, by the subadjunction
formula (see Theorem 2.2.3(iii)),

KW +DW ≡f (δ − r + ε)L.

So if W is contained in a fiber and δ < r then KW +DW is antiample.

Definition 3.3.3. A log-Fano variety is a KLT pair (X,∆) such that for some positive
integer m, −m(KX +∆) is an ample Cartier divisor. The index of a log-Fano variety is
i(X,∆) := sup{t ∈ Q : −(KX +∆) ≡ tH for some ample Cartier divisor H}, and the H
satisfying −(KX +∆) ≡ i(X,∆)H is called the fundamental divisor.

From our point of view these varieties are extremely important because we have a
simple effective non-vanishing, directly coming from the Hilbert polynomial.
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Proposition 3.3.4 ([Al], [Am]). Let (X,∆) be a log-Fano n-fold of index i(X), H the
fundamental divisor in X. If i(X) > n− 3 then h0(X,H) > 0; moreover if i(X) ≥ n− 2
then h0(X,H) > 1.

Proof. For simplicity assume that ∆ = 0 and i(X) ≥ n − 2; the other cases are treated
similarly with some more effort. Let p(t) := χ(X, tH) =

∑
hjt

j be the Hilbert polynomial
of H and d = Hn (see Section 1.2). In particular

hn = d/n! and hn−1 =
−KX ·Hn−1

2(n− 1)!
=

i(X)d
2(n− 1)!

.

By the vanishing Theorem 2.1.2,

Hi(X, tH) = Hi(X,KX + (tH −KX)) = Hi(X,KX + (i(X) + t)H) = 0

for i > 0 and t > −i(X). On the other hand, H is an ample divisor and therefore

H0(X, tH) = 0 for any t < 0.

Combining the two we deduce that p(t) = 0 for −i(X) < t < 0, and p(1) = 1. Plug this
informations into p(t) to get

p(t) =
d

n!
(t+ 1)(t+ 2) . . . (t+ n− 2)

(
t2 + at+

n(n− 1)
d

)

=
d

n!
tn +

d

n!

(
a+

(n− 2)(n− 1)
2

)
tn−1 + . . .

To determine a use
hn−1 =

i(X)d
2(n− 1)!

so that
a =

ni(X)− (n− 2)(n− 1)
2

.

This yields h0(X,H) = p(1) > d/n+ (n− 1) > 1.

The next lemma translates Proposition 3.3.4 into the non-vanishing theorem we need.

Lemma 3.3.5. Let f : X → S be a local contraction supported by KX +rL around F . Fix
a subvariety Z ⊂ F , and a Q-divisor D, with D ≡f γL. Assume that X is LT , (X,D) is
LC along Z, and W ∈ CLC(X,D) is a minimal center contained in Z. Assume that one
of the following conditions is satisfied :

(i) r − γ > max{0, dimW − 3},
(ii) dimW ≤ 1 and r − γ > −1.

Then there exists a section of |L| not vanishing identically on W .

Proof. Since D is LC along W we can assume, up to perturbation, that there exists a
log resolution µ : Y → X of (X,D) with

KY −A+ E +∆+B = µ∗(KX +D)− P,
where:

• E is an irreducible integral divisor,
• A and B are integral divisors,
• ∆ and P are Q-divisors.
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Furthermore these divisors have the following properties:

• µ(E) = W ,
• A is µ-exceptional,
• b∆c = 0,
• Z ∩ µ(B) = ∅,
• P is (f ◦ µ)-ample.

Let

N(t) := µ∗tL+A−∆− E −B −KY ≡f◦µ µ∗(t+ r − γ)L+ P.(3.3.1)

Then N(t) is (f ◦µ)-ample whenever t+ r−γ ≥ 0. In particular if conditions (i) or (ii) of
the lemma are satisfied, by the vanishing theorem 2.1.2, we have the following surjection:

H0(Y, µ∗L+ A−B)→ H0(E, (µ∗L+A)|E).

Since A does not contain E and is effective, we have

H0(W,L|W ) ↪→ H0(E, (µ∗L+A)|E).

In particular any section of H0(W,L|W ) gives rise to a section in H0(X,L) not vanishing
identically on W . Therefore to conclude the proof it is enough to produce a section in
H0(W,L|W ). By the subadjunction formula of Theorem 2.2.3 there exists a Q-divisor DW

such that

KW +DW ≡ (KX +D + εL)|W ≡ −(r − γ − ε)L|W(3.3.2)

for any 0 < ε� 1.
In case (i) since r − γ > 0, by (3.3.2) for sufficiently small ε, (W,DW ) is a log

Fano variety of index i(W,DW ) = r − γ − δ > dimW − 3. Therefore we can apply
Proposition 3.3.4.

If dimW = 1 then W is smooth. Since r − γ − ε > −1, by (3.3.2) we have

0 < L ·W ≥ 2g(W )− 2

and thus h0(W,L|W ) > 0 by the R-R formula.

We have to give the last preliminary to the proof of Theorem 3.3.1. Till now we have
always worked with LC pairs. Along the proof we use pairs (X,D) which are not LC. To
be able to treat this situation let us introduce the following definition and make some
useful remarks.

Definition 3.3.6. The log canonical threshold related to a scheme V ⊂ X of a pair
(X,D) is lct(X,V,D) := inf{t ∈ Q : V ∩ LLC(X, tD) 6= ∅}. We will say that (X,D) is
LC along a scheme V if lct(X,V,D) ≥ 1.

Remark 3.3.7. Let Z ∈ CLC(X, lct(X,V,D)D) be a center and assume that Z intersects
V , then (X, lct(X,V,D)D) is LC on the generic point of Z.

If (X,D) is not LC then Theorem 2.2.3 is in general false. On the other hand the first
assertion stays true, also under the weaker hypothesis that (X,D) is LC on the generic
point of W1 ∩W2. In fact the discrepancy is a concept related to a valuation ν, therefore
we can always substitute the variety X by an affine neighborhood of the generic point of
the center of ν.
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Proof of Theorem 3.3.1. Let V = Bsl|L| ∩ F ; remember that we are in a relative
situation, therefore we always need to consider objects contained in a fixed fiber to fully
enjoy the geometrical consequences of the ample anticanonical class.

Our aim is to derive a contradiction producing a section of L which is not identically
vanishing along V . Consider the set D = {D} of Q-divisors D such that:

• D ≡f δL,
• there exists a minimal center WD ∈ CLC(X,D) such that WD ⊂ F and WD∩V 6= ∅,
• dimWD ≤ r + 1− δ,
• lct(X,WD, D) = 1.

First observe that D is non-empty. Consider D0 = f∗
∑

I li(gi) for gi generic functions
on S vanishing at f(F ). Then D0 ≡f 0 and one can choose 0 < li � 1 such that
lct(X,V,D0) = 1.

Claim 1. There exists a D ∈ D such that WD ⊂ V . Furthermore if D ≡f (r + 1)L one
can choose D so that D = D0 +

∑r+1
i=1 Hi with Hi ∈ |L| generic.

Proof of the claim. Consider the above D0 and let H ∈ |L| be a generic section. Let

c = inf{t ∈ Q≥0 : LLC(D0 + tH) ∩ V ∩WD0 6= ∅}.
Since H is a Cartier divisor vanishing on V , we have c ≤ 1. Let Dc = D0 + cH.

If c < 1 we assert that there exists a minimal center WDc ∈ CLC(X,Dc) with
W ′ ⊂ V . Let us spend a few words on this. Fix a resolution g : Y → X of the singularities
of X. Let g∗H = HY +G. Then by the Bertini theorem HY is smooth outside Bsl |HY |.
Furthermore for any g-exceptional divisor A such that g(A) 6⊂ Bsl |L| we can choose an
H ∈ |L| such that Supp(H) 6⊃ g(A). There are finitely many g-exceptional divisors in
Y , therefore g(G) ⊂ Bsl |L|. Let now h : Z → Y be a log resolution of (Y,HY ), so that
f := g ◦ h is a log resolution of (X,H). Let f ∗H = HZ +∆. Then h(∆) ⊂ Bsl |HY | ∪G.
Hence f(∆) = g(h(∆)) ⊂ Bsl |L|. As a consequence LLC(X,Dc) ⊂ Bsl |L| ∪LLC(X,D0).
Furthermore for any ε > 0, (X,Dc+ εH) is not LC along V ∩WD0 , therefore there exists
a center W ′ ∈ CLC(X,Dc) with W ′ ∩ (V ∩WD0) 6= ∅ and W ′ ∩ F ⊂ V .

To conclude consider a minimal center WDc contained in W ′∩WD0 ⊂ V ; keep in mind
Remark 3.3.7. If c = 1 then both WD0 and H are in CLC(X,D1), and their intersection is
not empty because WD0 ∩ V 6= ∅. Therefore by Remark 3.3.7 any irreducible component
Z ⊂ WD0 ∩H is a center. Furthermore dimZ = dimWD0 − 1. This means that D1 ∈ D
and dimWD1 < dimWD0 . Iterating this procedure we eventually produce Dr+1 with
WDr+1 a point in V . Observe that in this case Dr+1 = D0 +

∑r+1
i=1 Hi.

Let D be as in the claim, thus (X,D) is LC along WD. If r − δ > −1 then we can
apply Lemma 3.3.5 to produce a section of L not vanishing along WD and obtain a
contradiction.

If r − δ = −1 then WD is a point in V . Moreover, according to Claim 1, in this case
the divisor D is of the type

D = D0 +
r+1∑

i=1

Hi

with Hi ∈ |L| generic.
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Let Xj = X ∩ ⋂ji=1Hi. Then Xj is LT in a neighborhood of Fj := F ∩ Xj for any
j ≤ r+ 1. The proof of this assertion is left to the reader as an exercise. (Hint: the main
point to check is normality. To do it one has to use the fact that terminal singularities
are smooth in codimension 2.)

By the vanishing theorem 2.1.2 we have the surjection

H0(X,L)→ H0(Xj , L|Xj )

for any j ≤ r.
If the type of f is not (1, 1, 1) then fr : Xr → S is birational. In particular, by

standard vanishing, Zr ' P1 so that L|Zr is spanned. The idea is to extend a section of
L|Zr not vanishing on Zr+1 to a section of L|Xr . For details on this extension and about
the case of type (1, 1, 1) we refer to [Me3].

We conclude this section with an exercise which follows easily from the main Theo-
rem 3.3.1 and the method used in the proof of 3.3.4 (a proof can be found for instance
in [Ko3, p. 245]).

Exercise 3.3.8. Let X be a Fano manifold of index i(X). Then i(X) ≤ dimX + 1;
moreover i(X) = dimX + 1 if and only if X ' PdimX while i(X) ≥ dimX if and only if
either X ' PdimX or X ' QdimX .

Part 4. Biregular geometry

Fano–Mori contractions are fundamental tools of the Minimal Model Program; more
generally they are important in problems of classification of projective varieties.

This part is devoted to the problem of describing F-M contractions. Except for a few
results at the very beginning we will restrict ourselves to the smooth case, that is, we
consider F-M contractions of smooth manifolds.

The singular case is very difficult and at the moment very little is known only in
dimension 3 (essentially the complete classification of small extremal contractions on
3-folds with at most terminal singularities in the fundamental papers of Mori [Mo4] and
of Kollár–Mori [KM1]).

We will give a complete classification of F-M contractions of smooth manifolds of
dimension ≤ 4; we present this classification in a sequence of theorems in the first section.

We are interested in a local description of the contraction, in a neighborhood of a
given fiber; in particular we consider a local contraction around F , ϕ : X → Z, as defined
in 3.1.9.

We present many steps of the proof of the classification; each step is important by
itself and together they represent a sort of program for classifying the F-M contractions.
In short they are the following:

1) Classify all possible fibers of the F-M contractions; we will succeed if their dimen-
sion is two or less.

2) When the fiber has good singularities (locally complete intersections) classify the
possible normal bundles of these fibers.
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3) Describe a formal neighborhood of the possible fibers in X, i.e. the local contraction
around F .

4) Find a commutative diagram of morphisms, preferably blow-ups and blow-downs,
which includes ϕ and which can help understand ϕ (a sort of factorization of ϕ, for
example the flip in the small contraction case).

The results contained in this part are classical for the case n = dimX = 2, and they
are due to the Italian school of geometry of the beginning of the previous century.

In the case n = 3 they were proved by S. Mori in the famous paper [Mo3], which gave
rise to the so called Mori theory.

The case n = 4 was later considered by M. Andreatta and J. A. Wísniewski [AW3].
[AW2] is a survey of these results on which this part is strongly based.

In Section 4.2 we present two theorems which characterise some F-M contractions of
a smooth projective variety in higher dimension.

In the last section we outline the biregular classification of Fano manifolds of high
index. These are the building blocks of F-M contractions and their knowledge is the
starting point of any further investigation. Also in this case we will provide the known
general techniques to approach the problem via adjunction methods, without any at-
tempt to be exhaustive in the classification. In particular we will not present neither the
Fano–Iskovskikh approach based on double projections, [Is], nor the Mukai vector bundle
technique, [Mu], nor the Ciliberto–Lopez–Miranda deformation ideas, [CLM].

4.1. Fano–Mori contractions on a smooth n-fold with n ≤ 4. Here we describe
all F-M contractions on smooth n-folds with n ≤ 4. The case of dimension 4 is the most
elaborate. Proofs are given in the next sections.

Theorem 4.1.1. Let X be a smooth projective surface and R ⊂ NE(X) an extremal
ray , that is , R.KX < 0 and R is an edge of the cone. Then the associated contraction
morphism contR : X → Z is one of the following :

(1) Z is a smooth surface and X is obtained from Z by blowing up a point ; %(Z) =
%(X)− 1.

(2) Z is a smooth curve and X is a minimal ruled surface over Z; %(X) = 2.
(3) Z is a point , %(X) = 1 and −KX is ample; in fact X ∼= P2.

Theorem 4.1.2. Let X be a smooth projective 3-fold and R ⊂ NE(X) an extremal ray.
Then the associated contraction morphism contR : X → Z is one of the following :

(B) (Birational contractions) dimZ = 3, contR is a divisorial contraction and there
are five types of local behavior near the exceptional divisor E:

• B1: contR is the (inverse of the) blow-up of a smooth curve in the smooth
3-fold Z.
• B2: contR contracts a smooth P2 with normal bundle O(−1); contR is the

(inverse of the) blow-up of a smooth point in the smooth 3-fold Z.
• B3: contR contracts a smooth 2-dimensional quadric, F0, with normal bundle
O(−1); contR is the (inverse of the) blow-up of an ordinary double point in Z
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(locally analytically , an ordinary double point is given by the equation x2 +
y2 + z2 + w2 = 0).
• B4: contR contracts an irreducible singular 2-dimensional quadric, S2, with

normal bundle O(−1); contR is the (inverse of the) blow-up of a point in Z

which is locally analytically given by the equation x2 + y2 + z2 + w3 = 0.
• B5: contR contracts a smooth P2 with normal bundle O(−2); contR is the

(inverse of the) blow-up of a point in Z which is locally analytically given as
the quotient of C3 by the involution (x, y, z) 7→ (−x,−y,−z).

(C) (Conic bundle) dimZ = 2 and contR is a fibration whose fibers are plane conics
(general fibers are of course smooth).

(D) (del Pezzo fibration) dimZ = 1 and contR is a fibration whose general fiber is a
del Pezzo surface.

(F) (Fano 3-folds) dimZ = 0, −KX is ample, thus X is a Fano 3-fold , and %(X) = 1.

As mentioned in the introduction to this chapter, the first theorem is due to G. Castel-
nuovo and F. Enriques, and the second to S. Mori. Note that actually they are true over
any algebraically closed fields; the surface case follows from the fact that the Castelnuovo
contraction theorem is true in any characteristic, and the 3-fold case was proved by Kollár
in [Ko1], extending Mori’s ideas.

The next theorem aims to give the same result for the case n = 4; here the situation
is much more intricate and it will take some space describe it.

The result comes from many contributions, the main ones are from Y. Kawamata
[Ka2] and M. Andreatta and J. A. Wísniewski [AW3], [AW4]; in the fiber case, Y. Kachi
obtained independently of [AW3] a similar classification of special 2-dimensional fibers of
a conic fibration, while in the case of birational contractions contracting a divisor to a
curve (part 3) Takagi obtained the same results as in Section 4 of [AW4].

Theorem 4.1.3. Let X be a smooth projective 4-fold and R ⊂ NE(X) an extremal ray.
Let ϕ := contR : X → Z be the associated contraction morphism. Let F = ϕ−1(z) be a
(geometric) fiber of ϕ; we will eventually shrink the morphism ϕ around F (see 3.1.9).
Let E be the exceptional locus ; in case ϕ is of fiber type we mean E = X.

We divide the classification of these contractions depending on the couple of numbers
(dimE, dimϕ(E)) which we will call the signature of the contraction; note that the pair
(4, b) will be assigned to a fiber type contraction with dimZ = b and the pairs (a, b) with
b ≥ a cannot happen.

Note also that if dimE = 3 then E is irreducible (see 3.1.8) and so is ϕ(E), therefore
they are both of pure dimension.

For the notation adopted to describe some special 2-dimensional fibers see 1.2.4.

Part 0. There is no F-M contraction of a 4-fold of signature (a, b) with a ≤ 1 and with
a = 2 and b = 1.

Part 1: Small contractions, see [Ka2]. Let ϕ be a F-M contraction of a 4-fold of sig-
nature (2, 0). Then E = F ' P2 and its normal bundle is NF/X = O(−1) ⊕ O(−1).
The contraction is completely determined in an analytic neighborhood by this data (see
4.5.2 and also 4.5.1), and locally it is analytically isomorphic to the contraction given by
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(see 3.2.4)

ϕ : V(E)→ Z = Spec
(⊕

k≥0

H0(F, Sk(E))
)

where E = O(1)⊕O(1) and the map is associated to the evaluation of Sk(E).
In this situation the flip of ϕ exists and it is obtained by blowing up E and then

contracting the exceptional divisor in the other direction.

Part 2: Birational; divisor to point. Let ϕ be a F-M contraction of a 4-fold of signature
(3, 0). Then either E is P3, with normal bundle O(−a) and 1 ≤ a ≤ 3, or a (possibly
singular) 3-dimensional quadric, with normal bundle O(−a) and 1 ≤ a ≤ 2, or otherwise
(E;−E|E) is a del Pezzo 3-fold , that is , E has Gorenstein singularities , −E|E is ample
and KE = 2EE (these varieties have been classified by T. Fujita, see [Fu2] and [Fu4]).

Part 3: Birational; divisor to curve. Let ϕ be a F-M contraction of a 4-fold of signature
(3, 1). Then

(a) C := ϕ(E) is a smooth curve and ϕ : X → Z is the blow-up of Z along C.
(b) g := ϕ|E : E → C is either a P2-bundle or a quadric bundle.
(c1) If E is a P2-bundle then the normal bundle of each fiber in X is either O(−1)⊕O

or O(−2)⊕O; in particular all fibers of ϕ are reduced and with no embedded components.
In the first case Z is smooth and ϕ is the smooth blow-up; in the second C = SingZ and Z
is locally isomorphic to S2×C where S2 is the germ of singularity obtained by contracting
the zero section in the total space of the bundle O(2) over P2.

(c2) If E is a quadric bundle then the general fiber is irreducible and isomorphic to
a 2-dimensional , possibly singular , quadric. Isolated special fibers can occur and they are
isomorphic either to a singular quadric or to a reduced but reducible quadric (i.e. union
of two P2 intersecting along a line); in particular there are no special fibers which are
isomorphic to a double plane. The normal bundle of each fiber is O(−1)⊕O. Locally Z
can be described as a hypersurface of C5; in the following table we give a list of possibilities
for Z = V (g) ⊂ C5 according to the described combinations of general and special fibers.
We choose coordinates (z1, z2, z3, z4, z5) such that C = {z1 = z2 = z3 = z4 = 0} ⊂ C5.

No. Special fiber General fiber g = analytic equation of Z

(1) F0 F0 z2
1 + z2

2 + z2
3 + z2

4

(2) S2 F0 z2
1 + z2

2 + z2
3 + zm5 z

2
4 , m ≥ 1

(3) S2 S2 z2
1 + z2

2 + z2
3 + z3

4

(4) P2 ∪ P2 S2 z2
1 + z2

2 + z3
3 + z3

4 + z2
3z
m
5 , m ≥ 1

(5) P2 ∪ P2 F0 z2
1 + z2

2 + z3
3 + z3

4 + z2
3z
m
5 + z3z4f(z5)

+z2
4g(z5) with zmg(z) 6= f(z)2/4

Part 4: Birational; divisor to surface. Let ϕ be a F-M contraction of a 4-fold of signature
(3, 2). Generically the map is described by part (1) of Theorem 4.2.1; in particular Z as
well as S := ϕ(E) are in general smooth and ϕ is a simple blow-down of the divisor E to
the surface S ⊂ Z.
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However there can be some special 2-dimensional fibers F . If this is the case then the
scheme-theoretic fiber structure over F is trivial , that is , the ideal IF of F is equal to the
inverse image of the maximal ideal of z, that is , IF = ϕ−1(mz) · OX .

Moreover the fiber F and its conormal bundle IF /I2
F as well as the singularity of Z

and S at z can be described as follows :

F N∗F/X SingZ SingS

P2 T (−1)⊕O(1)/O cone over Q3 smooth

P2 O⊕4/O(−1)⊕2 smooth cone over a twisted cubic
Quadric spinor bundle from Q4 smooth non-normal

The quadric fiber can be singular , even reducible, and in the subsequent table we
present a refined description of its conormal bundle. The last entry in the table provides
information about the ideal of a suitable surface S; a complete description of these ideals
can be found in [AW4].

Quadric Conormal bundle I(S) in C[[x, y, z, t]]

P1 × P1 O(1, 0)⊕O(0, 1) (xz, xt, yz, yt)
quadric cone 0→ O → N∗ → Jline → 0 generated by 5 cubics
P2 ∪ P2 TP2(−1) ∪ (O ⊕O(1)) generated by 6 quartics

Part 5: Conic bundle fibration with possibly special 2-dimensional fiber. Let ϕ be a F-M
contraction of a 4-fold of signature (4, 3). Then ϕ is a fibration whose general fibers are
plane conics ; generically the map is described by part (2) of Theorem 4.2.1. In particular
Z is in general smooth.

However there can be some special isolated 2-dimensional fibers F ; the possibilities
for F are the following :

• F ' P2 and N∗F/X ' O3/O(−2) or TP2(−1). The scheme fiber structure F̃ is
reduced and Z is smooth at z = ϕ(F ).
• F is an irreducible quadric and N ∗F/X is the pullback of TP2(−1) via some double

covering of P2. The scheme fiber structure F̃ is reduced and Z is smooth at z = ϕ(F ).
• The following other possibilities for F can occur :

S3,F1,P2 ∪ P2,P2 ∪ F0,P2 ∪C0 F1,P2 ∪ S2,P2 ∪ P2 ∪ P2,P2 ∪f (F0) ∪C0 P2,

where any two components intersect along a line (explicitly indicated by a subscript , when
needed), and the exceptional case of P2 • P2 when the two components intersect at an
isolated point.

Part 6: del Pezzo and Mukai fibration and Fano 4-folds. Let ϕ be a F-M contraction of
a 4-fold of signature (4, d), with d ≤ 2. Then ϕ is an equidimensional fibration over Z. If
d = 2 the general fiber is a del Pezzo surface, if d = 1 then the general fiber is a Mukai
variety , while if d = 0, then −KX is ample, thus X is a Fano 4-fold , and %(X) = 1.

Let us add some remarks to this long theorem.
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Remark 4.1.4. The case (3, 0) is not complete, in fact it contains many non-existing
cases. More precisely let E be a del Pezzo 3-fold, i.e. −KE = 2L with L ample.

If E is smooth then one can easily construct a F-M contraction of a smooth 4-fold of
signature (3, 0) and exceptional divisor E by taking (see 3.2.4)

ϕ : V(L)→ Z = Spec
(⊕

k≥0

H0(F,Lk)
)

where L = −E|E and the map is associated to the evaluation of Lk.
However it is a conjecture that there is no F-M contraction of a smooth 4-fold with a

non-normal exceptional divisor E; in Section 3 of [Fu4] this case is discussed deeply and
a lot of limitations on E are given (see 4.3.11 and the following discussion).

If E is singular but with normal singularities then a list of possible E was given in
[Be] but this list contains many redundant cases.

The case (4, 3) is also not complete. In particular we have examples of appropriate
2-dimensional fibers except for the cases P2 ∪ S2, P2 ∪ P2 ∪ P2 and P2 ∪f (F0)∪C0 P2; we
believe these cases cannot occur.

4.2. Fano–Mori contractions on a smooth n-fold with fibers of small dimen-
sion. In this section we present two theorems which characterise some F-M contractions
of a smooth projective variety in higher dimension.

The first is due to T. Ando and it deals with F-M contractions with 1-dimensional
fibers.

Theorem 4.2.1 ([An]). Let ϕ : X → Z be a (local) Fano–Mori contraction of a smooth
variety X of dimension n around a fixed fiber F = ϕ−1(z) such that dimF = 1.

(1) If ϕ is birational then F is irreducible, F ' P1, −KX · F = 1 and its normal
bundle is NF/X = O(−1) ⊕ O(n−2). The target Z is smooth and ϕ is a blow-up of a
smooth codimension 2 subvariety of Z.

(2) If ϕ is of fiber type then Z is smooth and ϕ is a flat conic bundle. In particular
one of the following is true:

(i) F is a smooth P1 and −KX · F = 2, NF/X ' O(n−1);
(ii) F = C1 ∪ C2 is a union of two smooth rational curves meeting at one point

and −KX · Ci = 1, (NF/X)|Ci ' O(n−1), NCi/X ' O(n−2) ⊕ O(−1) for
i = 1, 2;

(iii) F is a smooth P1, −KX · F = 1 and the fiber structure F̃ on F is of multi-
plicity 2 (a non-reduced conic); the normal bundle of F̃ is trivial while NF/X
is either O(1)⊕O(−1)(2)⊕O(n−4) or O(1)⊕O(−2)⊕O(n−3) depending on
whether the discriminant locus of the conic bundle is smooth at z or not.

The above theorem was generalised to the case of a varietyX with terminal Gorenstein
singularities by Mori and Kollár (see [KM1, 4.9 and 4.10.1]) for n ≥ 3.

The case of an extremal contraction of a 3-fold X with terminal non-Gorenstein
singularities is much more difficult; this was discussed in the celebrated paper of Mori
[Mo4] and in [KM1].
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The next theorem is a generalisation of the above theorem of Ando in the framework
of adjunction theory of projective varieties, a very classical theory (see [CE]), which was
revitalized and improved in modern times by A. J. Sommese and his school (see [BS]).

One of the goals of this theory is to describe varieties X polarised by an ample line
bundle L by means of the Fano–Mori contraction supported by KX + rL where r is the
nef value of the pair (X,L). If X is smooth and r ≥ n− 2 then this goal is achieved and
we refer the reader to the book [BS] for an overview of the theory; see [And1], [And2]
and [Me1] for the singular case.

The next theorem, proved in [AW1], shows that the goal is also achieved when the
nef value is large with respect to the dimension of fibers of ϕ.

Theorem 4.2.2 ([AW1]). Let ϕ : X → Z be a (local) Fano–Mori contraction of a smooth
variety X and let F = ϕ−1(z) be a fiber. Assume that ϕ is supported by KX + rL, with
L a ϕ-ample line bundle on X.

(1) If dimF ≤ r − 1 then Z is smooth at z and ϕ is a projective bundle in a
neighborhood of F .

(2) If dimF = r then, after possibly shrinking Z and restricting ϕ to a neighborhood
of F , Z is smooth and

(i) if ϕ is birational then ϕ blows a smooth divisor E ⊃ X to a smooth codi-
mension r − 1 subvariety S ⊃ Z,

(ii) if ϕ is of fiber type and dimZ = dimX − r then ϕ is a quadric bundle,
(iii) if it is of fiber type and dimZ = dimX − r + 1 then r ≤ dimX/2, F = Pr

and the general fiber is P(r−1).

The basic steps of the proofs of these theorems are worked out in the next sections,
together with the proofs of the results in the previous section.

4.3. The fibers of a Fano–Mori contraction. In this section we will try to give more
information on the possible fibers of the F-M contractions. In particular we will classify
all possible fibers of dimension less than or equal to two.

4.3.1. Using the vanishing theorem. We want to show how the vanishing theorem implies
vanishing results on the fiber. Subsequently we show how these results, via the computa-
tion of the Hilbert polynomial of the (normalization) of the fiber, imply a bound on the
dimension of the fiber.

The proof of the following proposition can be found in [Mo3, 3.20, 3.25.1], [Fu2, 11.3],
[An] and [AW3, 1.2.1].

Proposition 4.3.1 (Vanishing of the highest cohomology). Let ϕ : X → Z be a local
F-M contraction around F supported by KX + rL (see 3.1.9). Let F ′ be a subscheme of
X whose support is contained in the fiber F of ϕ, so that ϕ(F ′) = z. If either t > −r or
t = −r and dimF > dimX − dimZ then

HdimF (F ′, tL|F ′) = 0.
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Proposition 4.3.2. Under the assumptions of the above proposition let also X ′ ∈ |L| be
the zero locus of a non-trivial section of L. Then

Hdim(F∩X′)(F ′ ∩X ′, tL|F ′∩X′) = 0

if either t > −r + 1 or t = −r + 1 and dim(F ∩X ′) ≥ dimX − dimZ.

Proof. We give the proof of the second assertion, the proof of the first is similar. Note
that Hi(X, tL) = 0 for i > 0 and t > −r by theorem 2.1.2; moreover, H i(X, tL) = 0
for t = −r and i > dimX − dimZ, for the so called Grauert–Riemenschneider–Kollár
vanishing theorem (see [KMM, Theorems 1.2.4 and 1.2.7]). Thus from the exact sequence

0→ −L→ OX → OX′ → 0

tensorised by tL we also have H i(X ′, tLX′) = 0 for i > 0 and t > −r + 1 or t = −r + 1
and i > dimX − dimZ.

Now let IF ′∩X′ be the ideal of F ′ ∩X ′ in X ′ and consider the sequence

0→ IF ′∩X′ ⊗ tL→ OX′ ⊗ tL→ OF ′∩X′ ⊗ tL→ 0.

Take the associated long exact sequence. Since H i(X ′, IF ′∩X′ ⊗ tL)z = 0 for i > q :=
dimF ∩ X ′, the map Hq(tLX′) → Hq(F ′ ∩ X ′, tLF ′) is surjective and the statement
follows from what we have observed at the beginning.

The following result is a direct consequence of the above proposition; it was proved
by T. Fujita [Fu1], following arguments of S. Mori and T. Ando.

Theorem 4.3.3. Let ϕ : X → Z be a local F-M contraction around F supported by
KX + rL. Then dimF ≥ r − 1, and if dimF > dimX − dimZ then dimF ≥ brc.

Proof. Let S be a component of a fiber F of dimension s and let g : W → S its desin-
gularisation. By Proposition 4.3.1 and the Leray spectral sequence for g, exactly as in
Lemma 2.4 of [Fu1], we get

Hs(W, g∗(tL)) = 0

if t > −r or t = −r and dimF > dimX − dimW .
On the other hand, since g∗(L) is nef and big on W , by the Kawamata–Viehweg

vanishing theorem we have H i(W, g∗(tL)) = 0 for t ≥ −r and 0 < i < s. Moreover, since
L is ample, we also have H0(W, g∗(tL)) = 0 for t < 0.

Consider now the Hilbert polynomial χ(t) := χ(W, g∗(tL)); it is a polynomial in t of
degree equal to dimW = dimS. By what was proved above χ is zero for all integers t
such that 0 > t > −r; if dimF > dimX − dimZ and r is an integer then χ is zero also
for t = −r. The inequalities follow then immediately since degχ ≥ number of its zeros.

4.3.1.1. Exercises and examples

Exercise 4.3.4 (see [Fu1]). Let (X,L) be a polarized variety; KX + nL is nef except
when (X,L) = (Pn,O(1)). Also, if then n ≥ 3, then KX + (n− 1)L is nef unless (X,L) is
one of the following: (Pn,O(1)), X is the quadric in Pn and L is a hyperplane section, X
is the projectivisation of a rank n vector bundle over a smooth curve A and L = O(1).
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This result was proved in [Fu1] with the use of the above theorems; a completely
different proof, which makes use of the deformation of rational curves and which works
in any characteristic, has recently been given in [Ka-Ko].

4.3.2. Existence of a ladder for a fiber of a F-M contraction; horizontal slicing. Here we
will develop in more detail the method outlined in the introduction of Section 3.3. With
the use of Theorem 3.3.1 we will study the fibers of a F-M contraction inductively. More
precisely if F is a fiber of a Fano–Mori contraction of sufficiently high dimension (i.e.
with “small” difficulty) then we can construct a ladder for the pair (F,LF ) and prove
that ∆(F,L) = 0.

In order to do this we first start with a Bertini type theorem.

Proposition–Definition 4.3.5 ([AW1, Lemma 2.6], [Me3, Lemma 1.3]; Horizontal slic-
ing). Let ϕ : X → S be a local contraction around {F} supported by KX + rL. Let
Hi ∈ |L| be generic divisors and Xk =

⋂k
i=1Hi, a scheme-theoretic intersection; as-

sume that dimXk = n − k (> 0) and that r − k ≥ 0; note that since Xk is a complete
intersection it is Q-Gorenstein, i.e. KXk is Q-Cartier.

(i) Let ϕ|Xk = g◦ϕk be the Stein factorisation of ϕ|Xk : Xk → S. Then ϕk : Xk → Sk

is a morphism with connected fiber , around {F∩⋂ki=1Hi}, supported by KXk+(r−k)L|Xk
and Sk is affine. In particular if Xk is normal then ϕk is a local contraction.

Assume that X has LT singularities and , if ε is a sufficiently small positive rational
number , that r ≥ εγ(ϕ) and k ≤ r + 1− εγ(ϕ).

(ii) Outside Bsl |L|, Xk has singularities which are of the same type as the ones of X
and any section of L on Xk extends to a section of L on X.

Proof. See [Me3]. (i) is just the Stein factorisation (see [Ha, III.11.5]) and the adjunction
formula, once we notice that f|Xk(Xk) = Spec(H0(H,OXk)) and that there is a morphism
Sk → S induced by the ring morphism H0(X,OX)→ H0(Xk,OXk).

For (ii) the first statement is just the Bertini theorem, while for the latter consider
the exact sequences

0→ OXi(−L)→ OXi → OXi+1 → 0, 0→ OXi → OXi(L)→ OXi+1(L)→ 0.

Thus to prove the assertion it is enough to prove that H1(Xi,OXi) = 0 for i ≤ r −
ε(dimX − dimS). But this is equivalent, using inductively the first sequence tensored,
to H1(X,−iL) = 0 for i ≤ r − ε(dimX − dimS), which follows from the vanishing
theorem 2.1.2.

Theorem 4.3.6. Let ϕ : X → Z be a local F-M contraction around F supported by
KX + rL of type (d(ϕ), γ(ϕ), Φ(ϕ)). Let S be any component of Fred and ε a sufficiently
small positive rational number. If Φ(ϕ) ≤ 1 − εγ(ϕ) or the type of ϕ is (d, 1, 1) with
d ≤ 0, then ∆(S,LS) = 0. If Φ(ϕ) ≤ −εγ(ϕ) or if the type of ϕ is (−1, 1, 0), then Fred is
irreducible and isomorphic to PdimF .

Proof. We present the proof from [Me3, Theorem 2.17]; this is a slight generalisation of
the proof in [AW3, Proposition 4.2.1] and [AW2, Theorem 1.10].
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To prove the first assertion let S be an irreducible component of Fred of dimension s

and let δ := Ls ·S. We have to prove that h0(S,LS) ≥ δ+ r+ 1. This follows obviously if
we prove that there are at least δ+ r+ 1 independent sections of H0(X,L) not vanishing
identically on S.

By Propositions 4.3.5 and 3.3.1 we reduce to the case of a contraction ϕ : X → T

with 1-dimensional fiber F . Then, by assumption, we can use again 4.3.5 and 3.3.1 and
go one step further with a section H ∈ |L|; ϕ|H : H → T is finite and by 4.3.5 all sections
of |L|H | extend to sections of |L| proving the assertion.

Finally assume that Φ(ϕ) ≤ −εγ(ϕ) and assume, by contradiction, that the fiber
has (at least) two irreducible components intersecting in a subvariety of dimension t ≤
r − 1. By the base point freeness of L, we can choose t + 1 sections of L intersecting
transversally in a variety with log terminal singularities and meeting the two irreducible
components not in their intersection. By construction the map ϕ restricted to this variety
has disconnected fibers, contrary to 4.3.5. Similarly one can prove that Lr ·F = 1 (we can
slice to points and still have the connectedness, but then we must have only one point
. . . ) and thus that F = PdimF .

An immediate corollary in the case of 2-dimensional fiber is the following.

Corollary 4.3.7. Let F be a 2-dimensional fiber of a F-M contraction ϕ : X → Z

of a Gorenstein variety X and let F ′ be any component. Assume that ϕ is birational
or that the general non-trivial fiber has dimension 1. Then F ′ is normal and the pair
(F ′, L|F ′) has sectional (and thus Fujita ∆) genus 0 and therefore (see 1.2.4) it is among
the following :

(1) (P2,O(e)) with e = 1, 2,
(2) (Fr, C0 + kf) with k ≥ r + 1, r ≥ 0,
(3) (Sr,OSr (1)) with r ≥ 2.

Moreover F is Cohen–Macaulay unless the zero locus of a general section in |LF | is
disconnected.

In the next subsection we will see however that not all the possibilities can occur if
the domain X is smooth (or has very good singularities). Another type of argument is
needed to get rid of some cases.

To conclude the section we will mention another Bertini type theorem which has to
do with the sections of the supporting divisor of the F-M contraction.

Proposition–Definition 4.3.8 (Vertical slicing, [AW1]). Let ϕ : X → S be a local
contraction supported by KX +rL with r ≥ −1+εγ(ϕ) and ε a sufficiently small positive
rational number. Assume that X has LT singularities and let h be a general function on
S. Let Xh = ϕ∗(h). Then the singularities of Xh are not worse than those of X and any
section of L on Xh extends to X.

4.3.2.1. Related topics and further results

Exercise 4.3.9 (Lifting a contraction). Let X be a smooth complex projective variety of
dimension n and L be an ample line bundle with a section D ∈ |L| with good singularities
(smooth, KLT). (More generally let E be an ample vector bundle of rank r on X such that
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there exists a section s ∈ Γ (E) whose zero locus, D = (s = 0), is a smooth submanifold
of the expected dimension dimD = dimX − r = n− r.)

A classical and natural problem is to lift the geometric properties of D to get in-
formation on the geometry of X; a very good account of this problem can be found in
[BS, Chapter 5]. In [AO1] and [AO3] the problem was considered from the point of view
of Mori theory, posing the following question: assume that D is not minimal, i.e. Z has
at least one extremal ray in the negative part of the Mori cone; does this ray (or the
associated extremal contraction) determine a ray (or a contraction) in X, and if so, does
this new ray determine the structure of X?

For instance assume that D is Ps or a scroll.

Exercise 4.3.10 (Constructing F-M contractions). Find a local Fano–Mori contraction
around F supported by KX+rL of type (d(ϕ), γ(ϕ), Φ(ϕ)) with Φ(ϕ) > 1−εγ(ϕ) and for
which F is not Cohen–Macaulay or in general not normal. Can you find such an example
with X smooth? (the examples (1.18) in [AW2] and (3.6) in [AW3]).

However there is the following

Conjecture 4.3.11. Let ϕ : X → Z be a Fano–Mori contraction of a manifold of di-
mension ≤ 4. Then all the fibers are normal, with the exception in (3.6) of [AW3].

Note that the conjecture, after Mori’s and Andreatta–Wísniewski’s work, is open only
for the case in which ϕ : X → Z is a birational Fano–Mori contraction of a manifold of
dimension 4 which contracts an irreducible divisor E to a point. Moreover, by [Fu4], E,
which is a del Pezzo 3-fold, is (possibly) non-normal only if (−KE)3 = 7, Sing(E) ∼= P2,
the normalization of E is P(OP1(1) ⊕ OP1(1) ⊕ OP1(5)) and some other conditions are
satisifed.

4.3.3. Rational curves on the fiber of F-M contractions. In this subsection we use another
fundamental feature of a Fano–Mori contraction in order to complete the classification
of possible 2-dimensional fibers: namely the existence of rational curves in its fibers.

4.3.3.1. General facts. We have in fact the following existence theorem due to Mori
[Mo2], [Mo3] in the smooth case and extended by Kawamata to the log terminal case in
[Ka0]. We recall that a rational curve is a curve whose normalization is P1. (Although
we work over C, we note that if X is smooth then the existence theorem is also true in
positive characteristic; this concerns also the subsequent results obtained via deformation
methods.)

Theorem 4.3.12 (Existence of rational curves). Let ϕ : X → Z be a Fano–Mori con-
traction of a variety with log terminal singularities. Then the exceptional locus of ϕ is
covered by rational curves contracted by ϕ.

In this section we study deformations of rational curves following ideas started with
the paper of Mori [Mo2]. We discuss only some of the results, concentrating on the case of
smooth X. We refer the reader to the book of Kollár [Ko3] for general results concerning
deformation of curves. The following result is from [Ko3, II.1.14].
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Theorem 4.3.13. Let C be a (possibly reducible) connected curve such that H1(C,OC)=0
and assume that C is smoothable (see [Ko3, II.1.10] for the definition; an example of
smoothable curve is a tree of smooth rational curves , i.e. C =

⋃
iRi where: (i) any Ri is

a smooth rational curve, (ii) Ri intersects
∑i−1
j=1Rj in a single point which is an ordinary

node of C, see [Ko3, II.1.12]). Suppose that f : C → X is an immersion of C into
a smooth variety X. Then any component of the Hilbert scheme containing f(C) has
dimension at least −KX · C + (n− 3).

The above result has several different versions. For example, Mori [Mo2] proved a
version of it for maps of rational curves with fixed points. An important part of Mori’s
proof of the existence of rational curves is a technique of deforming rational curves with
a fixed 0-dimensional subscheme (“bending” these curves) in order to produce rational
curves of lower degree with respect to a fixed ample divisor (to “break” them). In short:
if a rational curve can be deformed inside X with two points fixed then it has to break.

Mori’s bend-and-break technique was used by Ionescu and Wísniewski (see [Io, 0.4]
and [Wi, 1.1]) to prove a bound on the dimension of the fiber. The reader can compare
this bound with the one obtained in Theorem 4.3.3.

Theorem 4.3.14. Let ϕ : X → Z be a Fano–Mori contraction of an extremal ray R of a
smooth variety X. Let E be the exceptional locus of ϕ (if ϕ is of fiber type then E := X)
and let S be an irreducible component of a (non-trivial) fiber F . Let l = min{−KX · C:
C is a rational curve in S}. Then dimS + dimE ≥ dimX + l − 1.

Corollary 4.3.15. Let ϕ : X → Z be a Fano–Mori contraction of a smooth variety X
supported by KX + rL. Let E be the exceptional locus of ϕ and let S be an irreducible
component of a (non-trivial) fiber F . Then dimS + dimE ≥ dimX + r − 1.

Proposition 4.3.16 ([ABW, Lemma (1.1)]). Under the hypotheses of the above corollary ,
if equality holds for an irreducible component then the normalisation of S is Ps.

Thus one can propose the following conjecture (it was actually posed in [AW2]):

Conjecture 4.3.17. Under the hypotheses of Theorem 4.3.14, if equality holds for an
irreducible component S then its normalisation is isomorphic to Ps.

A step toward the conjecture was given by the following theorem proved in [AO2].

Theorem 4.3.18. If the contraction ϕ : X → Z is divisorial then the conjecture is true
and ϕ is actually a smooth blow-up (i.e. of a smooth submanifold of Z which is also
smooth).

The following result, which was a long-lasting conjecture, has been proved recently;
it is not difficult to show that this proves a part of the above conjecture.

Theorem 4.3.19 ([CMS], [Keb]). If X is a smooth projective variety of dimension n

such that KX · C ≤ −n− 1 for any complete curve C ⊂ X then X ' Pn.

In Cho–Miyaoka–Shepherd Barron’s paper a more general version is stated; in par-
ticular the variety X can have normal singularities. This version should imply the above
conjecture.
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Let us notice that the last theorem is a very nice generalisation of the famous theorem
of S. Mori, i.e. the proof of the Hartshorne–Frenkel conjecture.

Theorem 4.3.20 ([Mo2]). If X is a smooth variety with ample tangent bundle then
X ' Pn.

In a slightly different direction, also the following generalisation of Mori’s theorem
has recently been proved.

Theorem 4.3.21 ([AW5]). If X is a smooth variety which has an ample locally free
subsheaf of the tangent bundle then X ' Pn.

4.3.3.2. Rational curves on fibers of a F-M contraction of dimension ≤ 2. Now we work
out a complete classification of fibers F of dimension ≤ 2 of a F-M contraction of a
smooth variety X.

Lemma 4.3.22. If a fiber F of a Fano–Mori contraction of a smooth n-fold X contains a
component of dimension 1 then F is of pure dimension 1 and −KX ·F ≤ 2. In particular
F is a line or a conic (with respect to the relative very ample line bundle −KX), the last
possibly reducible or non-reduced. If the contraction is birational then F is a line.

Proof. Let F ′ be a 1-dimensional component of F (F ′ is a rational curve because of 4.3.6).
Then, by 4.3.13,

dim[F ′] Hilb(X) ≥ −KX · F ′ + (n− 3)

and therefore small deformation of F ′ sweeps out at least a divisor. More precisely: taking
a small analytic neighborhood of [F ′] in Hilb and the incidence variety of curves we can
produce an analytic subvariety E ⊂ X which is proper over Z such that F ∩E = F ′ and
dimE ≥ n− 1. This implies that all components of F meeting F ′ are of dimension 1 and
by connectedness of F we see that F is of pure dimension 1. The bound on the degree can
be obtained similarly (note that because of the base point free theorem −KX is ϕ-very
ample so that one can apply 4.3.13 to a curve consisting of two components).

Suppose now that ϕ : X → Z is a local Fano–Mori contraction of a smooth variety
and F is an isolated fiber of ϕ of dimension ≥ 2; isolated means that all the neighboring
fibers are of dimension ≤ 1. That is, because Z is affine, we can assume that all the fibers
of ϕ except F are of dimension ≤ 1.

Note that by the base point freeness theorem L := −KX is ϕ-very ample (see 3.3.1;
the theorem states only the relative base point freeness of L, but as noticed in [AW3,
Proposition 1.3.4], after possibly shrinking the affine variety Z, the same proof yields the
relative very ampleness of L).

By Lemma 4.3.22 all 1-dimensional fibers of ϕ are of degree 1 (lines), or ≤ 2 (conics),
with respect to −KX , if ϕ is birational or of fiber type, respectively.

Let now C ⊂ F be a rational curve or an immersed image of a smoothable curve of
genus 0. If the degree of C with respect to −KX is greater than that of 1-dimensional
fibers of ϕ, then deformations of C in X must remain inside F , which, in view of 4.3.13,
provides us with the following useful observation:
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Lemma 4.3.23. In the above situation

dim[C] Hilb(F ) ≥ −KX · C + (n− 3).

Let us explain why this simple observation is useful for the understanding of the
structure of the fiber F . Lemma 4.3.23 can in fact be used to rule out many redundant
cases in the list 4.3.7 of possible components of F . We note that the very ampleness of
L = −KX as well as the precise description of the components of the fiber in 4.3.7 allow
us to choose properly the curve which satisfies the assumptions in 4.3.23.

We will give just an example which explains our argument. All possible cases are
discussed in detail in [AW3, Section 4].

Suppose that S is a component of F and S ' Sr where r ≥ 3. Then for the curve C we
take the union of general r+1 lines passing through the vertex of Sr (the lines are general
so that none of them is contained in any other component of F ). Then Lemma 4.3.23
implies that Sr cannot be a component of F , for r ≥ 3 if ϕ is birational and for r ≥ 4 if
ϕ is of fiber type.

Also this way, using 4.3.23, for a reducible fiber F we can limit the possible com-
binations of irreducible components of F . To show how, let us consider the following
situation.

Lemma 4.3.24. Let F be an isolated fiber of dimension ≥ 2 of a birational contraction
ϕ : X → Z of a smooth n-fold X. Suppose that the exceptional locus of ϕ is covered
by rational curves which are lines with respect to −KX . If there exists a non-trivial
decomposition F = F1 ∪ F2 then F1 ∩ F2 does not contain 0-dimensional components.

Proof. Let x ∈ F1 ∩ F2 be an isolated point of the intersection. Since X is smooth,
dimx F1 + dimx F2 ≤ n. For i = 1, 2 let Ci ⊂ Fi be a line containing x. The variety
parametrising deformations of Ci inside Fi with x fixed is of dimension ≤dimx Fi−1. In-
deed, take a point y ∈ Fi; then by the bend-and-break argument of Mori (see Section II.5
of [Ko3]) there is only one curve of the family passing through both x and y (i.e. through
two distinct points passes only one line, with respect to any ample line bundle).

Take C = C1 ∪ C2. Then

dim[C] Hilb(F ) ≤ dimx F1 + dimx F2 − 2 ≤ n− 2

and because −KX · C = 2 we arrive at a contradiction with 4.3.23.

Remark 4.3.25. Let us note that the above conclusion of 4.3.24 is no longer true if we
do not assume that ϕ is birational (see [AW2, Example (2.11.2)]).

With a combination of the above arguments, all based on Lemma 4.3.23, and through
a long list of cases, in Section 4 of [AW3], the following has been proved.

Proposition 4.3.26 ([AW3, Sect. 4]). Let ϕ : X → Z be a Fano–Mori contraction of
a smooth n-fold X with an isolated 2-dimensional fiber F , and let L = −KX . If ϕ is
birational we have the following possibilities for the pair (F,LF ):
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n ≥ 5 n = 4 n = 3

(P2,O(1)) (P2,O(1)) (P2,O(1))
(n ≤ 6) (F0, C0 + f) (P2,O(2))

(S2,OS2(1)) (S2,OS2(1))

(P2 ∪ P2,O(1)) (F0, C0 + f)
(F1, C0 + 2f)
P2 ∪C0 F2, with L|P2 = O(1), L|F2

= C0 + 3f

If ϕ is of fiber type and L is ϕ-spanned then we have the following possibilities for
the pair (F,LF ):

n ≥ 5 n = 4, irreducible n = 4, reducible n = 3

(P2,O(1)) (P2,O(1)) P2 ∪ P2 (F0, C0 + 2f)
(n ≤ 7) (P2,O(2)) P2 • P2 F0 ∪ F1,
(F0, C0 + f) (S2,O(1)) P2 ∪ F0 LF0 = C0 + f

(n = 5) (S3,O(1)) P2 ∪C0 F1 LF1 = C0 + 2f
(P2 ∪ P2,O(1)) (F1, C0 + 2f) P2 ∪ S2
(n = 5) (F0, C0 + f) P2 ∪ P2 ∪ P2

P2 ∪C0 F0 ∪f P2

In the above list the components of reducible fibers have a common line (in some cases we
point out which line it is) with the unique exception of two P2’s which meet at a point—we
denote this union by •. (We suppress the description of L whenever it is clear.)

Remark 4.3.27. Let us say again that for almost all the above possibilities we can con-
struct examples with appropriate isolated 2-dimensional fiber (see Section 3 of [AW3]).
However, there are some exceptions for which we have been unable to construct examples
and we do not expect that all of them exist. This concerns only fiber type contractions
and reducible fibers: P2 ∪ P2 for n = 5 and P2 ∪ S2, P2 ∪ P2 ∪ P2 and P2 ∪ F0 ∪ P2 for
n = 4.

4.4. The description of the normal bundle of a fiber of a F-M contraction. In
order to describe a contraction locally, after having determined the fiber, one has to find
the possible normal bundles of these fibers; of course when this is possible, that is, when
the fiber is a local complete intersection in X.

This can be considered as a second order type problem and it is very hard compared
to the determination of the fiber. If the fiber is 1-dimensional it was considered by S. Mori
in the case of 3-folds and by T. Ando in general. The case of 2-dimensional fiber is one
of the main achievements of [AW3].

If the fiber is a divisor in X its normal bundle is already given by the adjunction
formula (since we know KX |F ); in general this gives only the first Chern class of the
normal bundle.

Let us start with an easy lemma, which however gives a broader picture of what we
are actually going to prove, namely the base point freeness of the normal bundle.
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Lemma 4.4.1 ([AW3, Proposition (3.5)]). Let ϕ : X → Z be a Fano–Mori or crepant
contraction of a smooth variety with a fiber F = ϕ−1(z). Assume that F is a locally
complete intersection and that the blow-up β : X̂ → X of X along F has log terminal
singularities. Denote by F̂ the exceptional divisor of the blow-up. Then the following
properties are equivalent :

(a) The bundle N∗F/X is generated by global sections on F .

(b) The invertible sheaf O
X̂

(−F̂ ) is generated by global sections at any point of F̂ .
(c) ϕ−1mz · OX = IF or , equivalently , the scheme-theoretic fiber structure of F is

reduced , i.e. F̃ = F .
(d) There exists a Fano–Mori contraction ϕ̂ : X̂ → Ẑ = ProjZ(

⊕
km

k
z) onto a

blow-up of Z at the maximal ideal of z, and ϕ∗(O
Ẑ

(1)) = O
X̂

(1).

4.4.1. The normal bundle of a 1-dimensional fiber. The case in which F is a fiber of
dimension 1 was mainly studied, after S. Mori, by T. Ando [An]; we will report some of
his results and we will introduce an alternative proof, as done in [AW3].

Let C be an irreducible component of F . As we saw in Lemma 4.3.22, C is a rational
curve and it can be either a line or a conic with respect to −KX . In the latter case ϕ is
of fiber type.

Let I be the ideal of C ⊂ X (with the reduced structure) and consider the exact
sequence

0→ I/I2 → OX/I2 → OX/I → 0.

In the associated long cohomology sequence the map of global sections H0(OX/I2) →
H0(OX/I) is surjective. Moreover, by 4.3.1, we have the vanishing H1(OX/I2) = 0.
Therefore H1(I/I2) = 0, which gives a bound on N∗C/X = I/I2. Namely if NC/X =⊕O(ai) then ai < 2. On the other hand, by adjunction, det(NC/X) =

∑
ai = O(−2 −

KX · C) and thus the list of possible values of (a1, . . . , an−1) is finite.
If ϕ is a good birational contraction then we even have a better bound because,

similarly to the above and using 4.3.1, we actually get H1(N∗C/X ⊗ O(KX · C)) = 0.

Therefore, since KX ·C = 1, there is only one possibility, namely NC/X = O(−1)⊕O(n−2).
If ϕ is of fiber type then the estimate coming from this technique is not sufficient and

one has to use other arguments. More precisely, one has to deal with a scheme associated
to a double structure on C (see [An]).

It is also convenient to use arguments coming from deformation theory. Namely, the
possibilities which can occur from the above vanishing, if n = 3, are the following:

O ⊕O, O ⊕O(−1), O(1)⊕O(−2), O(1)⊕O(−1).

We will show that the last possibility does not occur using an argument related to the
deformation technique. It can also be used to deal with 2-dimensional fibers.

Lemma 4.4.2. The normal bundle NC/X cannot be O(1)⊕O(−1).

Proof. Assume the contrary and let ψ : X̂ → X be the blow-up of X along C. Let
E := P(O(1) ⊕ O(−1)) be the exceptional divisor. Let C0 be the curve contained in E

which is the section of the ruled surface E → C corresponding to the surjective map
O(1)⊕O(−1)→ O(−1). We see immediately that E ·C0 = 1 and that ψC0 is a 1-1 map
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from C0 to C. Therefore K
X̂
·C0 = KX ·C +E ·C0 = −1. In particular this implies that

C0 moves at least in a 1-dimensional family on X̂ (see 4.3.13). Since it does not move
on E it means that it goes out of E. Since C0 is contracted by ϕ ◦ ψ this implies that
E · C0 = 0, a contradiction since E · C0 = 1.

4.4.2. The normal bundle of a 2-dimensional fiber. The case where F is a fiber of di-
mension 2 was studied by M. Andreatta and J. A. Wísniewski [AW3]. We will report here
the main results contained in Section 5.7 of [AW3], referring to it for proofs and more
details.

Let us present in general the point of view of [AW3]. To understand higher dimensional
fibers of Fano–Mori contractions we will slice them down. Thus we will need some kind
of “ascending property”.

Suppose that ϕ : X → Z is a Fano–Mori contraction of a smooth variety, L is an
ample line bundle on X such that −KX−L is ϕ-(nef & big); for instance if ϕ is birational
one can take L = L := −KX . Let F = ϕ−1(z) be a (geometric) fiber of ϕ. Suppose that
F is a locally complete intersection. Let X ′ ∈ |L| be a normal divisor which does not
contain any component of F . Then the restriction of ϕ to X ′, call it ϕ′, is a contraction,
either Fano–Mori or crepant (see 4.3.5). The intersection F ′ = X ′ ∩ F is then a fiber of
ϕ′. The regular sequence (g1, . . . , gr) of local generators of the ideal of the fiber F in X

descends to a regular sequence in the local ring of X ′ which defines a subscheme F ·X ′
supported on F ′ = F ∩X ′, call it F ′. Note that if the divisor X ′ has multiplicity 1 along
each of the components of F then, since a locally complete intersection has no embedded
components, we get F ′ = F ′.

Lemma 4.4.3. The scheme F ′ is a locally complete intersection in X ′ and

N∗
F ′/X′

⊗OF̄ ′ OF ′ ' (N∗F/X)|F ′ .

If moreover X ′ is smooth, L is spanned and dimF ′ = 1, then

H1(F ′, (N∗F/X)|F ′) = 0.

Proof. The first part of the lemma follows from the preceding discussion so it is enough
to prove the vanishing. Let J be the ideal of F ′ in X ′. From 4.3.1 we know that
H1(F ′,OX′/J 2) = 0 and since we have an exact sequence

0→ J /J 2 = N∗
F ′/X′

→ OX′/J2 → OX′/J = OF ′ → 0,

we will be done if we show H0(F ′,OF ′) = C. Since H1(F ′,OF ′) = 0, this is equivalent
to χ(OF ′) = 1. The equality H0(F ′,OF ′) = C is clear if F ′ is reduced. But since L
is spanned and F is a locally complete intersection, there exists a flat deformation of
F ′ to another intersection F · X ′′ which is reduced. This is what we need, because flat
deformation preserves the Euler characteristic.

Now consider the following ascending property. Take x ∈ F ′. Suppose that the ideal
of F ′, or equivalentlyN∗F ′/X′ , is generated by global functions fromX ′. That is, there exist
global functions g′1, . . . , g

′
r ∈ Γ (X ′,OX′) which define F ′ at x. Then, since H1(X,−L)

= 0, these functions extend to g1, . . . , gr ∈ Γ (X,OX) which define F . Thus passing from
the ideal I to its quotient I/I2 we get the first part of
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Lemma 4.4.4. If N∗F ′/X′ is spanned at a point x ∈ F ′ by global functions from Γ (X ′,OX′)
then N∗F/X is spanned at x by functions from Γ (X,OX). If N∗F ′/X′ is spanned by global
functions from Γ (X ′,OX′) everywhere on F ′ then N∗F/X is nef.

Proof. We only have to prove the second claim of the lemma. Since F ′ ⊂ F is an ample
section, the set where N∗F/X is not generated by global sections is finite in F . Therefore
the restriction (N∗F/X)|C is spanned generically for any curve C ⊂ F and consequently it
is nef.

If the fiber is of dimension 2 then we have a better extension property.

Lemma 4.4.5. Let ϕ : X → Z be a Fano–Mori birational contraction of a smooth variety
with a 2-dimensional fiber F which is a locally complete intersection. Let L = −KX ;
it is a ϕ-ample line bundle which can be assumed ϕ-very ample (see 3.3.1 and [AW3,
Proposition (1.3.4)]). Then the following conditions are equivalent :

(a) N∗F/X is generated by global sections at any point of F .
(b) For a generic (smooth) divisor X ′ ∈ |L| the bundle N∗F ′/X′ is generated by global

sections at a generic point of any component of F ′.

Proof. The implication (a)⇒(b) is clear. To prove the converse we assume the contrary.
Let S denote the set of points on F where N ∗F/X is not spanned. Because of the exten-
sion property 4.4.4 and the fact that for a 1-dimensional fiber of a F-M contraction the
spannedness of the normal bundle is equivalent to spannedness at a generic point (see
[AW3, Corollary 5.6.2]), the set does not contain F ′ and thus it is finite. Now we choose
another smooth section X ′1 ∈ |L| which meets F along a (reduced) curve F ′1 containing a
point of S. (We can do this because L is ϕ-very ample.) The bundle N ∗F ′1/X′1 is generated
at a generic point of F ′1 so it is generated everywhere; but this, because of the extension
property, implies that N∗F/X is generated at some point of S, a contradiction.

Lemma 4.4.6. Let ϕ : X → Z be a Fano–Mori birational contraction of a smooth 4-fold
with a 2-dimensional fiber F = ϕ−1(z). As usual , L = −KX is a ϕ-ample line bundle
which may be assumed to be ϕ-very ample. Suppose moreover that either F is irreducible
or L2 · F ≤ 2 (which is the case when F is an isolated 2-dimensional fiber). Then the
scheme fiber structure F̃ is reduced unless one of the following occurs :

(a) The fiber F is irreducible and the restriction of NF to any smooth curve C ∈ |L|F |
is isomorphic to O(−3)⊕O(1).

(b) F = P2 ∪ P2 and the restriction of NF to any line in one of the components is
isomorphic to O(−2)⊕O(1).

Proof. Consider a curve C ∈ |L|F |. Since L is ϕ-very ample we can take a smooth X ′ ∈ |L|
such that ϕ′ = ϕ|X is a crepant contraction and C = F ∩X ′ (see 4.3.5). Then, considering
the embeddings C = F ∩X ′ ⊂ F ⊂ X and C = F ∩X ′ ⊂ X ′ ⊂ X, we get

NC/X = NC/X′ ⊕ LC = (NF/X)|C ⊕ LC
and therefore NC/X′ = (NF/X)|C .

Now the normal bundles NC/X′ of the crepant contraction ϕ′ can be easily described,
in a way similar to the previous section (see [AW3, 5.6.1]). In particular it follows that if
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neither (a) nor (b) occurs then the fiber structure of the contraction ϕ′ is reduced. Thus,
using the previous lemma and the equivalence in 4.4.1, we conclude that F̃ = F .

Now, one has to discuss the possible exceptions described in the above lemma. This
is done extensively in [AW3] and the following is proved:

Theorem 4.4.7 ([AW3, Theorems 5.7.5 and 5.7.6]). Let ϕ : X → Z be a Fano–Mori
birational contraction of a smooth 4-fold with an isolated 2-dimensional fiber F = ϕ−1(z).
Then the fiber structure F̃ coincides with the geometric structure F and the conormal
bundle N∗F/X is spanned by global sections. Moreover if F = P2 then N∗F/X is either
O(1)⊕O(1), T (−1)⊕O(1)/O, or O⊕4/O(−1)⊕2. If F is a quadric (possibly singular or
even reducible) then N∗F/X is the spinor bundle S(1).

In some respects the above results about the fiber structure of a 2-dimensional fiber
are nicer than one may expect. Namely, there is no multiple fiber structure, the conormal
bundle is nef and the normal bundle of the geometric isolated fiber has no section. Thus
the situation is better than for 1-dimensional isolated fibers in dimensions 2 and 3: the
fundamental cycle of a Du Val ADE surface singularity is non-reduced and in dimension 3
one may contract an isolated P1 with normal bundle O(1)⊕O(−3). On the other hand,
using a double covering construction (see [AW2, Examples (3.5)]) in dimension 5 one
may contract a quadric fibration over a smooth 3-dimensional base with an isolated
fiber equal to P2, scheme-theoretically the fiber is a double P2. Using the sequence of
normal bundles and the deformation of lines argument, one may verify that in this case
NF ' O(1)⊕ E∗ where E is a rank 2 spanned vector bundle with c1 = 2, c2 = 4, so that
dimH1(E∗) = −χ(E∗) = 3.

Note also that if F =
⋃
Fi is a divisorial fiber of a surjective map X → Y , where X is

smooth and dimY ≥ 2 then for some k > 0 the line bundle OFi(−kFi) has a non-trivial
section and thus no multiple ofOFi(Fi) has a section. In particular, if rank(Pic(X/Y )) = 1
then OF (−F ) is ample.

One can then conjecture that if F is an isolated fiber of a (Fano–Mori) contraction
which is a locally complete intersection with “small” codimension then H0(F,NF ) = 0.

The above result on contractions of 4-folds can be generalised to adjunction mappings
of an n-fold. Namely, suppose that ϕ : X → Y is a Fano–Mori contraction of a smooth
n-fold X supported by a divisor KX+(n−3)H, where H is a ϕ-ample divisor on X. Since
we are interested in the local description of ϕ around a non-trivial fiber F = ϕ−1(z), we
may assume that the variety Z is affine.

Corollary 4.4.8. Assume that ϕ is birational and that F is an isolated fiber of dimen-
sion n− 2. If n ≥ 5 then the contraction ϕ is small and F is an isolated non-trivial fiber.
More precisely F ' Pn−2 and NF/X ' O(−1)⊕O(−1), and there exists a flip of ϕ (see
[ABW]).

Note that the preceding arguments, which led to the classification of the birational
4-dimensional case, depend on the isomorphism ϕ′∗OX′ ' OZ ' ϕ∗OX . This fails to be
true if ϕ is of fiber type. Namely, let ϕ : X → Z be a conic fibration, i.e. a Fano–Mori
contraction such that dimZ = dimX − 1. As usual, we will assume that F is an isolated
2-dimensional fiber of ϕ and L = −KX is ϕ-spanned. Then the restriction of ϕ to a
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general section X ′ ∈ |L| is a generically 2 : 1 covering of Z. A different argument is
developed for this case in [AW2], where the following theorem is proved.

Theorem 4.4.9 ([AW3, Proposition 5.9.5 and Theorem 5.9.6]). Let ϕ : X → Z be a conic
fibration of a smooth 4-fold. Suppose that F is an irreducible isolated 2-dimensional fiber
of ϕ which is either a projective plane or a quadric. Then the conormal bundle N ∗F/X is
nef.

Moreover if F ' P2 then N∗F/X ' O3/O(−2) or TP2(−1). If F is an irreducible
quadric then N∗F/X is the pullback of TP2(−1) via some double covering of P2. In both

cases the scheme fiber structure F̃ is reduced and Z is smooth at z.

4.5. When does the normal of a fiber determine locally the contraction? We
present some results which show how the normal bundle can give all the information we
want on the contraction, that is, the second order approximation actually determines
completely the formal neighborhood. This is of course not always the case.

In some situations the knowledge of the normal bundle NF/X allows to determine the
singularity of Z at z = ϕ(F ). Recall that for a local ring OZ,z with maximal ideal mz

one defines the graded C-algebra gr(OZ,z) :=
⊕

km
k
z/m

k+1
z . The knowledge of the ring

gr(OZ,z) allows one sometimes to describe the completion ring ÔZ,z . Also, we will say
that a spanned vector bundle E on a projective variety Y is p.n.-spanned (p.n. stands for
projectively normal) if for any k > 0 the natural morphism SkH0(Y, E) → H0(Y, SkE)
is surjective. As we noted while discussing the contraction to the vertex, projective nor-
mality allows us to compare gradings of rings “upstairs” and “downstairs”.

Proposition 4.5.1 ([Mo3]). Let ϕ : X → Z be a contraction as above. Suppose moreover
that N∗F/X is p.n.-spanned. Then ϕ∗(IkF ) = mk

z , ϕ−1(mk
z)·OX = IkF and there is a natural

isomorphism of graded C-algebras

gr(OZ,z) '
⊕

k

H0(F, Sk(N∗F/X)).

We omit the proof of the above result referring to Mori, [Mo3, p. 164], who proved it
in the case when F is a divisor; the generalisation is straightforward.

The next is a version of a theorem of Mori [Mo3, 3.33], which is a generalisation of a
Grauert–Hironaka–Rossi result:

Proposition 4.5.2. Suppose that F is a smooth fiber of a Fano–Mori or crepant con-
traction ϕ : X → Z and assume that its conormal bundle N ∗ = N∗F/X is nef. If
H1(F, TF ⊗ Si(N∗)) = H1(F,N ⊗ Si(N∗)) = 0 for i ≥ 1 then the formal neighbor-
hood of F in X is uniquely determined and it is the same as the formal neighborhood of
the zero section in the total space of the bundle N .

Also the following assertion is a straightforward generalisation of the celebrated
Castelnuovo contraction criterion for surfaces; its proof is similar to the one of [Ha,
V.5.7] (see also [AW2]).

Proposition 4.5.3 (Castelnuovo criterion). Let ϕ : X → Z be a projective morphism
from a smooth variety X onto a normal variety Z with connected fibers (a contraction).
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Suppose that z ∈ Z and F = ϕ−1(z) is a locally complete intersection in X with conormal
bundle N∗F/X . Assume that H1(F, Sk(N∗F/X)) = 0 for any positive integer k (note that
this assumption is satisifed if ϕ is a Fano–Mori contraction, N ∗F/X is nef and the blow-
up of X at F has log terminal singularities). If for any k ≥ 1 it is SkH0(F,N∗F/X) '
H0(F, Sk(N∗F/X)) then z is a smooth point of Z and dimZ = dimH0(F,N∗F/X).

4.6. Concluding remarks on the classification of Fano–Mori contractions on
a smooth n-fold with n ≤ 4. The proofs of the theorems announced in the first two
sections of this part can be given by applying the numerous results we have given up to
now (very often not in a unique way). This may not be trivial, so in this section we give
some possible schemes of proof.

A good starting point is to use the Ionescu–Wísniewski inequality of 4.3.14; this gives
the possibilities for the dimension of the fibers and of the exceptional locus. In particular
it says that there are no small contractions (i.e. contractions whose exceptional locus has
codimension ≥ 2) on a smooth 3-fold and also it proves part 0 of Theorem 4.1.3.

Description of the F-M contractions around a fiber F of dimension 1 (general case).
This is given in 4.2.1; this covers almost all Theorem 4.1.1 and part of Theorems 4.1.2
and 4.1.3. The proof of 4.2.1 follows from 4.3.22 (which describes the possibilities for
F ), 4.4.2 and the discussion before it (which describes the possibilities for the normal
bundles; in 4.4.2 only the case n = 3 is discussed in detail) and 4.5.3.

Note that in the surface case, if ϕ = contR is a conic bundle then ϕ actually gives the
structure of a minimal ruled surface. In order to prove this we have to show that there
are no reducible or non-reduced fibers of ϕ. In fact if, by contradiction, F is such a fiber
then F =

∑
aiCi = [C] with [C] ∈ R. But since R is extremal this implies that Ci ∈ R

for every i. Thus C2
i = 0, since a general fiber of ϕ is a smooth irreducible reduced curve

in the ray, and Ci · KX < 0. By the adjunction formula this implies that Ci ' P1 and
Ci ·KX = −2. Thus

−2 = (C ·KX) =
∑

ai(Ci ·KX) = −2
∑

ai,

which gives a contradiction. Furthermore using Tsen’s theorem, one can prove that X is
the projectivisation of a rank 2 vector bundle on P1 (see [Re4, C.4.2]).

Description of the F-M contractions around a fiber F of dimension 2 (3-folds and 4-
folds). In the surface case, the contraction ϕ contracts X to a point; that is, X has
Pic = Z and −KX is ample, i.e. X is a Fano surface of Picard number 1. Then one can
prove that X = P2; see for instance [CKM, p. 21].

In the 3-fold case, either ϕ is a contraction of fiber type contracting X to a curve,
with all fibers of dimension two, or ϕ is a birational divisorial contraction which contracts
a unique prime divisor equal to F to a point: in fact, by Exercise 3.1.8, ϕ cannot be a
contraction to a surface with some isolated 2-dimensional jumping fibers and if ϕ is
birational then the exceptional divisor is prime.

In the first case, by adjunction, the general fiber is a smooth del Pezzo surface.
In the birational case we can apply 4.3.26, which gives all the possibilities (namely 3)

for the exceptional divisor F ; by adjunction we easily compute the normal bundle and



Morphisms of projective varieties 49

we prove the uniqueness of the analytic neighborhood of the contraction around F by
using 4.5.3, 4.5.1 and 4.5.2. Actually for the uniqueness in the case of a fiber isomorphic
to the singular quadric an extra argument is needed (see for this [Mo3, p. 165]). Note
also that all these cases exist and can be constructed via the basic example 3.2.4 except
the case with a fiber isomorphic to the singular quadric; in this case if we work as in
3.2.4 we construct a singular 3-fold X. Moreover the case of the smooth quadric can be
constructed via 3.2.4 but not as an elementary contraction, i.e. as a contraction of a single
ray. Two good examples were given in [Mo3, 3.44.2 and 3.44.3].

We then consider a Fano–Mori elementary contraction from a 4-fold, in a neighbor-
hood of a 2-dimensional fiber F . We start with the birational case: the fiber can be an
isolated 2-dimensional fiber or can stay in a 1-dimensional family of 2-dimensional fibers
(the other possibilities are ruled out by Exercise 3.1.8).

The first case is described in Part 4 of Theorem 4.1.3; to prove it we can first apply
Theorem 4.3.26, which gives 4 possibilities for the fiber F , namely F can be P2 or a
reduced quadric (smooth, singular or reducible).

Then we apply Theorem 4.4.7 which describes the possible normal bundles. If F is
smooth then we can prove the uniqueness of a formal neighborhood of the fiber using
4.5.2 and construct an example using 3.2.4.

If F is a singular quadric or a reducible one (union of two P2 meeting along a line)
then the situation is more complicated. In [AW4] one can find good examples for these
situations; moreover in case F is reducible there are at least two possible analytically
non-equivalent formal neighborhoods of F . That is, as one may expect, the fiber and
its normal do not always determine the analytic neighborhood. The (open) question is
whether in this case these two neighborhoods are the only possible ones (up to analytic
equivalence).

Part 3 of Theorem 4.1.3 describes the case where F stays in a 1-dimensional family of
2-dimensional fibers. The proof is substantially different from the previous one and was
given in [AW4]. Using a vertical slicing (see Proposition 4.3.8), one can prove that the
general 2-dimensional fiber of this family is either P2 or an irreducible reduced quadric. In
fact, in the notation of 4.3.8 (vertical slicing), fXh : Xh → f(Xh) is a Fano–Mori contrac-
tion from a smooth 3-fold which contracts a general fiber to a point; thus we can apply the
result on 3-folds, i.e. 4.1.2. (This is actually a bit quick: in fact fXh can be non-elementary,
i.e. the contraction of a face, not of a ray. In [AW4] this is in fact ruled out.) It is easy to
prove that if the general fiber is P2 then the same holds for the special fiber. If the general
fiber is a quadric then the special one is also a quadric, but very likely more singular. It
turns out that there are no non-reduced quadrics, that is, double P2, as special fibers;
the other possibilities all occur. We refer to [AW3] for further details and examples.

We finally pass to the case of fiber type Fano–Mori contractions with 2-dimensional
fibers. If the 2-dimensional fiber is not isolated then the contraction is to a surface, by
Exercise 3.1.8 it is equidimensional, i.e. all fibers are of dimension two, and its general
fiber is a del Pezzo surface (by the adjunction formula).

If the 2-dimensional fiber F is isolated then it is one of those described in The-
orem 4.4.7; not all the given possibilities are locally complete intersections. If F is a



50 M. Andreatta and M. Mella

smooth P2 or a smooth quadric then the normal bundle is computed in Theorem 4.4.9.
In these two cases examples can be constructed using 3.2.4; maybe one can also prove
the uniqueness of a formal neighborhood of the fiber using 4.5.2 (this can be a hard com-
putation!). Examples have been constructed for some other possible fibers but for some
of them we cannot construct an example (see the remark after Theorem 4.3.26).

Description of the F-M contractions around a fiber F of dimension 3 (4-folds). If the
contraction is birational then by Exercise 3.1.8, F is the unique prime divisor equal to
the exceptional locus. It is immediate to see, using the adjunction formula, that F is a del
Pezzo 3-fold. The problem here is to prove that F is normal and which normal non-smooth
del Pezzo 3-folds can actually occur (not all of them!) (see Part 2 of Theorem 4.1.3 and
the following remark).

If the contraction is of fiber type then, again by 3.1.8, all fibers are 3-dimensional and
the generic one is a Mukai manifold.

4.7. Classification of Fano manifolds of high index. This section is devoted to
the study of F-M contractions of a smooth manifolds with target a point, i.e. to Fano
manifolds.

We already noticed that Fano varieties with high index, with respect to the dimension,
are easier to understand. Namely for i(X) ≥ dimX the information given by the Hilbert
polynomial is already sufficient to give a complete description of all possible cases (see
Exercise 3.3.8).

It is not surprising that for lower indices the world is wilder. The best known way to
go further is, again, the following adjunction procedure.

Let X be a Fano manifold of index i(X) = r and fundamental divisor L (see Defi-
nitions 3.3.3 and also 3.1.10). Assume that |L| is not empty. Let H ∈ |L| be a generic
member. Then by the adjunction formula,

−KH = −(K + L)|H ∼ (r − 1)L|H .

In other words whenever r > 1 the section H is a Fano variety of the same dual index.
So that, if one is able to control the singularities of H, then it is possible to study X

through H. More generally we can make the following

Definition 4.7.1. Let f : X → S be a local contraction of type (d, γ, Φ), supported by
KX + rL. Then we will say that f has good divisors if, after maybe shrinking S, the
generic element H ∈ |L| has at worst the same singularities as X and f|H : H → SH is
of type (∗, ∗, Φ).

Assume that the good divisor problem has an affirmative answer for a fixed index.
Then the above observation allows one to classify all Fano manifolds of fixed dual index
in an inductive way, starting from the lower dimensional ones.

This is what Fujita did (see [Fu2]) for del Pezzo manifolds, i.e. Fano manifolds with
i(X) = dimX − 1. His results can be summarised in the following way.

Theorem 4.7.2 ([Fu2]). Let X be a del Pezzo manifold of dimension n. If n = 2 then
X is either Q2 or P2 blown up in r ≤ 8 general points. Assume n ≥ 3. Let d = Hn be
the degree of X. Then we have the following cases :
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• d = 1: X6 ⊂ P(1n−1, 2, 3), i.e. a hypersurface of degree 6 in the weighted projective
space with weights (1, . . . , 1, 2, 3);
• d = 2: X4 ⊂ P(1n, 2);
• d = 3: X3 ⊂ Pn+1;
• d = 4: X2,2 ⊂ Pn+2, i.e. a complete intersection of two quadrics ;
• d = 5: a linear section of G(1, 4) ⊂ P9;
• d = 6: X is either P1 × P1 × P1 or P2 × P2 or PP2(TP2);
• d = 7: the blow-up of P3 in one point.

A tutorial case is the surface one, which is given through the following exercise entirely
based on minimal model techniques.

Exercise 4.7.3. Let S be a del Pezzo surface of degree d; then the Kleiman–Mori cone
is spanned by extremal rays (see Theorem 1.1.2). We also have a precise description of
the contraction associated to each extremal ray (see 4.1.1).

• Assume that S has an extremal ray R whose associated contraction is birational;
that is, ϕ : S → S′ is the contraction of a (−1)-curve C. Prove that S ′ is a del Pezzo
surface of degree d+ 1.

Since going from S to S′ we decrease the Picard number by one, after finitely many
contractions we have a del Pezzo surface Sk with only fiber type extremal rays.

• Show that Sk is either Q2 or P2 (use 4.1.1).

We have thus established that any del Pezzo surface S is either Q2 or the blow up of
P2 in a finite number of points (a blow-up of Q2 is in fact a blow-up of P2).

• Show that you cannot blow up more than 8 points with the following restrictions:
no 3 are on a line and no 6 on a conic.
Hint : Evaluate the self-intersection of KS and the intersection of KS with the strict
transform of a line or conic.

We can now conclude:

• A surface obtained by blowing up r points of P2, with the above restrictions, is a
del Pezzo surface.
Hint : Study either the combinatorics of the cone of effective curves, or the linear
systems of cubics with imposed conditions.

One can improve the knowledge of these surfaces by observing that whenever d ≥ 3
then |−KS | is very ample and embeds S ⊂ Pd. For d = 2 the complete linear system
|−KS | is spanned and gives a double cover of P2 ramified along a quartic, while for d = 1
the system |−2KS | is spanned and gives a double cover of a singular quadric ramified
along a sextic and the vertex.

In higher dimensions the idea of the proof is the following. First show that the good
divisor problem has an affirmative answer, i.e. prove the following exercise.

Exercise 4.7.4. Let X be a del Pezzo manifold. Prove that X has good divisors.
Hint : Read first the proof of the following Theorem 4.7.5.
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Then all the information on del Pezzo surfaces can be extended.
The first two cases can be obtained with the machinery of graded rings [Mo1, §3]. We

would like to stress here the following property. If a variety X, of dimension at least 4,
contains a hyperplane section which is a weighted complete intersection then the variety
itself is a weighted complete intersection [Mo1, Corollary 3.8].

If degree d ≥ 3 then |−KX | is very ample. So the cases d = 3, 4 are immediate while
for d ≥ 5 the study is more subtle and we leave it to the interested reader (see [Fu2]).

The next case is the one of a Mukai manifold, i.e. a manifold with i(X) = dimX − 2.
These varieties are named after S. Mukai [Mu] who first announced their classification,
assuming the existence of good divisors.

This assumption is proved in [Me2], where the base point free technique is applied to
answer the good divisor problem for Mukai varieties.

The idea is simple. Let X be a Fano manifold and |L| the fundamental divisor of X.
Let D ≡ δL be a Q-divisor with δ < 1. By the BPF technique there is a section of |L|
non-vanishing identically on LLC(X,D). If we combine this with the Bertini theorem we
immediately see that the generic section of |L| cannot have singularities worse than LC.
We actually prove the following.

Theorem 4.7.5 ([Me2]). Let X be a Mukai variety with at worst log terminal singulari-
ties. Then X has good divisors except in the following cases :

(i) X is a singular terminal Gorenstein 3-fold which is a “special” (see [Me2]) com-
plete intersection of a quadric and a sextic in P(1, 1, 1, 1, 2, 3).

(ii) Let Y ⊂ P(1, 1, 1, 1, 1, 2) be a “special” complete intersection of a quadric cone
and a quartic; let σ be the involution on P(1, 1, 1, 1, 1, 2) given by (x0 : x1 : x2 : x3 : x4 :
x5) 7→ (x0 : x1 : x2 : −x3 : −x4 : −x5) and let π be the map to the quotient space. Then
X = π(Y ) is a terminal non-Gorenstein 3-fold.

In both exceptional cases the generic element of the fundamental divisor has canonical
singularities and Bsl |−KX | is a singular point. It has to be stressed that the generic
3-fold in (i) and (ii) has good divisors , but there are “special” complete intersections
whose quotient has a singular point in the base locus of the anticanonical class (see [Me2,
Examples 2.7, 2.8]) for details).

Proof. We prove the theorem in four steps, from the more singular to the smooth case.
As usual we argue by contradiction.

Claim 2. If X has log terminal singularities then it has good divisors.

Proof of the claim. Proposition 3.3.4 ensures that dim |L| ≥ 1. Let H ∈ |L| be a generic
section and assume that H has singularities worse than LT. Let γ = lct(X,H) and
Z ∈ CLC(X, γH) be a minimal center.

Exercise 4.7.6. γ ≤ 1 and codZ ≥ 2.
Hint : If codZ = 1 then Z is a fixed component of Bsl |L|, but dim |L| > 0 and H is ample
and therefore connected. In particular if H is reducible then there exists a codimension
two in Sing(H).
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This is enough to derive a contradiction. By the Bertini theorem Z ⊂ Bsl |L|, while
by Lemma 3.3.5 there exists a section of L non-vanishing on Z.

Claim 3. If X has canonical singularities , then it has good divisors.

Proof of the claim. By Claim 2, H has LT singularities. Let µ : Y → X be a log resolution
of (X,H), with µ∗H = H +

∑
riEi, where |H| is base point free, and KY = µ∗KX +∑

aiEi. Assume that H has non-canonical singularities; then, maybe after reordering the
indices, we have a0 < r0. Since H is generic, µ(Ei) ⊂ Bsl |L| for all i with ri > 0 (see
the proof of Claim 1 page 27). Let D = H + H1 with H1 ∈ |L| a generic section. First
observe that µ is a log resolution of (X,D) as well. Let µ∗H1 = H1 +

∑
riEi. Since H1 is

a Cartier divisor, the ri are positive integers. In particular a0 + 1 < r0 + r0, hence (X,D)
is not LC. Let γ = lct(X,D) < 1 and W a minimal center of CLC(X, γD).

Exercise 4.7.7. Prove that codW ≥ 3.
Hint : H is LT and canonical singularities are Gorenstein in codimension 2.

We can again apply Lemma 3.3.5 to derive a contradiction.

Claim 4. If X has terminal singularities then X has good divisors unless X is as in
either (i) or (ii).

Proof of the claim. If X is a terminal Mukai variety of dimension ≥ 4 then by Claim 3, H
has canonical singularities. Furthermore we can apply Claim 3 toH|H , to deduce that even
H|H has canonical singularities. Let f : Y → X be a log resolution for (X,H). Assume
that KY = f∗KX+

∑
aiEi and f∗H = HY +

∑
riEi. Then KHY = f∗KH+

∑
(ai−ri)Ei

and, with obvious notations, KH|HY = f∗KHH +
∑

(ai − 2ri). We just observed that
ai − 2ri ≥ 0, therefore ai − ri > 0 whenever ri > 0. This proves that H is terminal on
the base locus of |L| and we conclude by the Bertini theorem that H is terminal.

There remains the case of terminal 3-folds with −KX ≡ L; this goes a bit beyond the
techniques we developed and so here we only state the result (remember that terminal
surface singularities are smooth points):

Theorem 4.7.8 ([Me2]). Let X be a terminal Mukai 3-fold and assume that all the di-
visors in the linear system |L| are singular. Then X is one of the two exceptions in
Theorem 4.7.5. They actually exist.

Claim 5. If X is smooth then X has good divisors.

Proof of the claim. Assume that the generic element in |L| is not smooth. Then a 3-fold
section T ⊂ X is one of the two exceptions to Claim 4. Then by the usual vanishing
theorem,

H0(X,L)→ H0(T, L|T )→ 0,

and by Theorem 4.7.8, Bsl |L| = Bsl |L|T | is just one point, say x. Let Hi ∈ |L|, for
i = 1, . . . , n − 1, be generic elements and D = H1 + . . . + H(n−1). Then the minimal
center of CLC(X,D) is x and (X,D) is not LC at x, since 2(n− 1) > n. We, therefore,
derive a contradiction by Lemma 3.3.5.

This completes the proof of Theorem 4.7.5.
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With similar arguments one can handle the good divisor problem for other F-M
contractions (for details and related results see [Me3]); for instance we have the following.

Theorem 4.7.9 ([Me3]). Let f : X → S be a local contraction of type (1, 1, 1). Assume
that X is smooth. Then f has good divisors.

Remark 4.7.10. Could this be the starting point of a relative analogue of the Fujita
classification? The above theorem reduces this study to that of fibrations of surfaces. The
main problem to solve is a base point free statement in a neighborhood of an irreducible
non-reduced fiber. With this one could provide a structure theorem as in the absolute
case, embedding these spaces in some relative (weighted) projective space. Then one
should try to extend the Andreatta–Wísniewski theory one step further. Unfortunately
as far as we can say this is quite hard and requires a lot of unknown results on vector
bundles on del Pezzo surfaces.

Let X be a smooth Fano n-fold of index r = n− 2, i.e. a Mukai manifold. Let |H| be
the linear system of fundamental divisors. The integer

g =
1
2
Hn + 1

is called the genus of X (the reason will be clear after Proposition 4.7.11); by Riemann–
Roch

dimH0(X,H) = n+ g − 1.

By Theorem 4.7.5 the generic element S ∈ |H| is smooth. As observed above this allows
an inductive argument toward 3-dimensional Fano’s.

Part I: If rk Pic(X) = 1 we use Iskovskikh’s results [Is] on Fano 3-folds to obtain

Proposition 4.7.11. Let X be a smooth Mukai n-fold with rk Pic(X) = 1. Then |H| is
base point free and one of the following is true:

(i) |H| is very ample and embeds X in Pg+n−2. In particular X ⊂ Pg+n−2 has a
smooth curve section canonically embedded.

(ii) The morphism associated to sections of |H| is a finite morphism of degree 2 either
onto Pn (in case g = 2) or onto Qn ⊂ Pn+1 (in case g = 3).

We are therefore restricted to study projective varieties with a smooth canonical curve
section; the actual point of the classification is to understand all of them. (For a somewhat
backward approach, see also [CLM].)

Theorem 4.7.12 ([Mu]). Let X2g−2 ⊂ Pn+g−2 be as in point (i) of Proposition 4.7.11.
If g ≤ 5 then X is a complete intersection. Assume that 10 ≥ g ≥ 6. Then we have the
following picture:

g n(g) X
n(g)
2g−2 ⊂ Pg+n(g)−2

6 6 C(G(1, 4)) ∩ Q ⊂ P10

7 10 SO(10,C)/P ⊂ P15

8 8 G(1, 5) ⊂ P14

9 6 Sp(6,C)/P ⊂ P13

10 5 G2/P ⊂ P13
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where C(X) is the cone over X and n(g) is the maximal dimension for a Mukai variety of
that type (as observed before, any hyperplane section is then a Mukai variety). If g > 10
then g = 12 and n(g) = 3. Then some special X3

22 can be seen as a smooth equivariant
compactification of SO(3,C)/(icosahedral group) (see [MU]). In general it is possible to
give a description using a net of quadrics.

We remark that, as before, the case of genus ≤ 5 is easily obtained, while the study
of the remaining cases is the heart of the proof.

Part II: If rk Pic(X) > 1 then there are at least two extremal rays on X. In the following
exercise we collect all the crucial information to complete the biregular classification in
this case (see [MoMu], [Mu]).

Exercise 4.7.13. (1) Prove that the only possible F-M birational contractions are those
of a divisor to a point or to a smooth curve.

(2) Which divisors are then possible?
(3) In the case of extremal rays with associated contraction of fiber type, the base of

the contraction is smooth.

Hint : Use the classification provided by Theorem 4.1.2.

Part 5. Birational geometry

One of the main goals of algebraic geometry is to achieve a birational classification of
projective algebraic varieties. The Minimal Model Program, or Mori’s program, is an
attempt to get (part of) this classification. In the first section of this chapter we want to
introduce the general philosophy of the MMP.

The developed techniques however allow one to treat other birational aspects as well.
In this realm we would like to focus on two different settings: the #-minimal model and
Sarkisov’s program.

The former is a polarised minimal model program that enables one to study special
uniruled 3-folds and it will be described in Section 5.3.

The latter is used to investigate birational morphisms between Mori spaces (see Def-
inition 5.1.8), and its application to the projective plane is outlined in Section 5.2.

5.1. Minimal Model Program philosophy. Let us present the MMP approach toward
the birational classification of algebraic varieties.

The case of smooth curves is clearly settled by the Riemann uniformisation theorem.
The case of surfaces is more complicated and it was developed by Italian algebraic ge-
ometers at the beginning of the twentieth century. This big achievement was used as a
model for the higher dimensional case and at the end it was included in the more general
philosophy of minimal model theory as we will see in the following.

Consider a smooth projective variety X. The aim of minimal model theory is to
distinguish, inside the set of varieties which are birational to X, a special “minimal”
member X̃ so as to reduce the study of the birational geometry of X to that of X̃.
The first basic ingredient is therefore to define what it means to be minimal. This is a
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non-trivial problem and the following definition is the result of hard work of people like
Mori and Reid in the late 70’s.

Definition 5.1.1. A variety X̃ is minimal if

• X̃ has Q-factorial terminal singularities,
• K

X̃
is nef.

Let us make some observations on this definition. The second condition wants to
express the fact that the minimal variety is (semi-) negatively curved. We note in fact
that if detTX = −KX admits a metric with semi-negative curvature then KX is nef. The
converse is actually an open problem (true in the case of surfaces and in general it may
be considered as a conjecture).

The condition on the singularities is the real break-through of the definition. The
point of view should be the following: we are in principle interested in smooth varieties
but we will see that there are smooth varieties which do not admit smooth minimal mod-
els. However we can find such a model if we admit very mild singularities, the ones stated
in the definition. Note also that terminal singularities are smooth in the surface case.

It happens that in the birational class of a given variety there is not a minimal model;
think for instance of rational varieties. But the MMP hopes to make a list of those special
varieties.

Given the definition of a minimal variety we now want to show how, starting from
X, one can determine a corresponding minimal model X̃. In view of 1.1.2 and 3.1.2 (or
3.1.5) the way to do it is quite natural. Namely, if KX is not nef, then by 1.1.2 there
exists an extremal ray (on which KX is negative) and by 3.1.2 (or 3.1.5) we can construct
an elementary (Fano–Mori) contraction f : X → X ′ which contracts all curves in this
ray into a normal projective variety X ′.

A naive idea at this point would be the following. If f is of fiber type, i.e. dimX ′ <
dimX, then one hopes to recover a description of X via f . Indeed, by induction on the
dimension, one should know a description of X ′ and of the fibers of f , which are, at least
generically, Fano varieties. We will say something more on this case in the last part of
the section (see 5.1.8).

If f is birational then one would substitute X with X ′ and proceed inductively.
The problem is of course that Theorem 3.1.2 says very little about the singularities

of X ′ (now it starts to be clear that the choice of the singularities in the above definition
is crucial). It says only that it has normal singularities.

However in the surface case the situation is optimal, namely Theorem 4.1.1 first of all
says that if contR is birational then the image is again a smooth surface (see 4.1.1.1). Then
apply recursively 4.1.1(1) to conclude that after finitely many blow-downs of (−1)-curves
one reaches a smooth surface S ′ with either KS′ nef or with an extremal ray of fiber
type. Note that while performing the MMP we stay in the category of smooth surfaces. If
contR is of fiber type then, again by 4.1.1, its description is very precise. We have proved
the following.

Theorem 5.1.2 (Minimal Model Program for surfaces). Let S be a smooth surface. After
finitely many blow-downs of (−1)-curves one reaches a smooth surface S ′ satisfying one
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of the following :

(1) KS′ is nef , i.e. S′ is a minimal model ,
(2) S′ is a ruled surface,
(3) S′ ' P2.

In higher dimensions the requirement on the singularity comes into play. In particular
we note that cases B3, B4 and B5 in Theorem 4.1.2 lead to singular 3-folds; case B5 leads
to a 2-Gorenstein singularity. However all these singularities are terminal and Q-factorial.
The fact that the cone theorem 1.1.2 and the contraction theorem 3.1.2 hold in the more
general case of a variety with terminal singularities seems to give some hope.

Moreover the good property of birational contractions in the surface case ascends
in higher dimensions to the fact that if an elementary F-M contraction of a smooth (or
terminal Q-factorial) variety is divisorial then the target has at worst terminal Q-factorial
singularities (see Exercise 3.1.8).

But a very serious problem is now coming up. Namely if we consider varieties with
terminal singularities then they can have birational F-M contractions which are not di-
visorial! This was first noticed by P. Francia with a famous example (see for instance
[CKM, pp. 33–34]).

Let us see why an elementary contraction f : X → Y of a varietyX with Q-Gorenstein
singularities and with exceptional locus E such that codE ≥ 2 gives problems. Let
U = X \ E. Then fU : U → f(U) = V is an isomorphism. In particular it is clear
that KX|U ' f∗U (KV ). Let M be the extension of f∗U (KV ) to X. Then the codimension
assumption yields M ' KX . On the other hand −KX is f -ample and therefore M cannot
be the pullback of any Q-Cartier divisor on Y . In other words KY is not Q-Cartier!

In particular on such a Y even the definition of a minimal model does not make sense.
Our naive solution came abruptly to a stop and new solutions are needed. The principal
ideas are summarised in the following flip conjecture [KMM], which very roughly says
that instead of contracting the exceptional locus of the “small” rays we have to make a
codimension 2 surgery, called flip, that replaces the curve with another one which has a
different normal sheaf.

Here is a precise statement.

Conjecture 5.1.3 (Flip conjecture). Let X be a terminal Q-factorial variety and assume
that there exists an extremal ray R+[C] ⊂ NE(X) with associated elementary contraction
f : X →W ; assume also that cod(Exc(f)) ≥ 2. Then there exists a terminal Q-factorial
variety X+ and a map f+ : X+ →W such that

(1) KX+ is f+-ample,
(2) Exc(f+) has codimension at least two in X+,
(3) the following diagram is commutative:

X X+

W

f

�
�
�
�
�
�   

Φ //�������������

f+
}}�
�
�
�
�
�

That is, X is isomorphic to X+ in codimension 1. The rational map Φ is called a flip.
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The following theorem is the breakthrough of Mori theory for 3-folds which overcame
the flip problem. The proof is very intricate and it is based on a careful classification of
all possible small contractions occurring on a terminal 3-fold.

Theorem 5.1.4 ([Mo4]). The flip conjecture holds for 3-folds.

Remark 5.1.5. After Mori’s proof of the existence of flips, different proofs of flip, even
log-flip, for 3-folds were obtained mainly by Shokurov and Kollár. The best account of
them is in [KU]. Very recently still a new approach of Shokurov simplified greatly the
3-fold proof and is very promising in higher dimensions.

Then, assuming the flip conjecture, one asks if this sort of inductive procedure will
come to an end, namely we need a kind of termination for these birational modifications.

If f is a divisorial contraction then the Picard number drops by one so there cannot
be an infinite number of those. For flips there is no such straightforward criterion and so
the following termination conjecture arises.

Conjecture 5.1.6 (Termination conjecture). Let X be a terminal Q-factorial variety
which is not minimal. Then after finitely many flips there is an extremal ray whose
exceptional locus is of codimension ≤ 1.

Proposition 5.1.7 ([KMM, Theorem 5.1.15]). The termination conjecture is true for
n-folds with n ≤ 4.

So, assuming both the flip and termination conjectures, after finitely many birational
modifications we either reach a minimal model or encounter an elementary extremal
contraction of fiber type. For this we give a definition.

Definition 5.1.8. A Mori space is a terminal Q-factorial Fano–Mori contraction π : X →
S such that dimS < dimX and rk Pic(X/S) = 1.

The goal in this case is, just as for surfaces, to get a classification of Mori spaces.
In general the Mori space associated to a variety by the MMP is not uniquely deter-

mined. This problem arises when two extremal rays have non-disjoint exceptional loci. A
very simple example: Let T = E × F1, where E is a smooth curve of genus g > 0. Then
there are two extremal rays, one of divisorial type and the other of fiber type. In this
case the order in which the rays are contracted determines the F-M space. In one case it
is a P1-bundle, in the other a P2-bundle.

Let us make some observation on these spaces. We note that the generic fiber is a
variety with Q-factorial terminal singularities with anticanonical ample bundle. Thus no
multiple of the canonical bundle of X has a section, that is, the Kodaira dimension of
X is −∞. On the other hand we already noticed (see Section 4.3.3) that such an X is
covered by rational curves. There is a deep, and still not entirely understood, relation
between these two facts.

Definition 5.1.9. A variety X is uniruled if there exists a generically finite surjective
map Y × P1 → X.

Proposition 5.1.10 ([KMM, Corollary 5.1.4]). Let π : X → S be a Mori space. Then X

is a uniruled variety.
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The proposition is a consequence of the following theorem proved by means of the
theory of deformation of rational curves on smooth varieties.

Theorem 5.1.11 ([MiMo]). Let X be a projective variety. Assume that for a general
x ∈ X there is a smooth proper curve C and a morphism f : C → X such that

• x ∈ f(C),
• X is smooth along f(C),
• degC f

∗KX < 0.

Then X is uniruled.

To conclude the above discussion let us state a minimal model conjecture.

Conjecture 5.1.12. Let X be a projective variety with at most terminal Q-factorial
singularities. Then there exists a minimal model X ′ birational to X if and only if X is
not uniruled.

In dimension 3 the above conjecture is now a theorem. To prove it we still need the
following observations.

Proposition 5.1.13 ([Ko3]). Let X be a smooth uniruled variety. Then there is a dense
family of rational curves with negative intersection with the canonical class. In particular
X has negative Kodaira dimension.

Exercise 5.1.14. Let X be a 3-fold with terminal singularities covered by curves nega-
tive with respect to the canonical class. Prove that, after finitely many birational mod-
ifications, instead of reaching a minimal model one encounters an extremal ray whose
exceptional locus covers the whole variety. In other words one reaches a Mori space.

This can be proved also for n-folds as soon as one assumes the flip conjecture and the
termination conjecture.

Summing things up we get

Theorem 5.1.15. Let X be a 3-fold with terminal singularities. Then the minimal model
conjecture holds.

Let us also mention the following result.

Remark 5.1.16. The converse of Proposition 5.1.13 is a deep and challenging problem.
It is conjectured that all smooth varieties with negative Kodaira dimension are uniruled.
But an affirmative answer is only known up to dimension 3, as a byproduct of MMP
(see [Mi]).

As a consequence one can formulate the minimal model conjecture in this straightened
form, which is also true in dimension 3.

Conjecture 5.1.17. Let X be a projective variety with at most terminal singularities.
Then there is a minimal model X ′ birational to X if and only if k(X) 6= −∞.

5.2. The birational geometry of the plane. Sarkisov’s program concerns the study
of possible birational, non-biregular, maps between Mori spaces. We do not want here to
outline the complete program and its applications, for this we refer the reader to [Co1],



60 M. Andreatta and M. Mella

[Co2]. However we wish to give an idea of its techniques and possible applications in the
simpler set-up of surfaces; for this, using Sarkisov’s dictionary, we prove the following
beautiful theorem.

Theorem 5.2.1 (Noether–Castelnuovo). The group of birational transformations of the
projective plane is generated by linear transformations and the standard Cremona trans-
formation, that is ,

(x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1),

where (x0 : x1 : x2) are the coordinates of P2.

Let χ : P2 → P2 be a birational map which is not an isomorphism. To study the map
χ we start by factorising it into simpler birational maps, “elementary links”, between
Mori spaces (these maps will be either the blow-up of a point in P2, or an elementary
transformation of a rational ruled surface, see diagram (5.2.2)). Consider H = χ−1

∗ O(1),
the strict transform of lines in P2; then H is without fixed components and H ⊂ |O(n)|
for some n > 1. Our point of view is to consider the general element H ∈ H as a
twisted line. The factorisation we are aiming at should “untwist” H step by step so as
to restore the original line, hence the starting P2. Observe that the fact that χ is not
biregular is encoded in the base locus of H, therefore the untwisting is clearly related to
the singularities of the log pair (P2,H), where by the pair (P2,H) we understand the pair
(P2, H) were H ∈ H is a general element.

Theorem 5.2.2. Let H ⊂ |O(n)| be as above; then the pair (P2, (3/n)H) has non-
canonical singularities. In particular there is a point x ∈ P2 such that

multxH > n/3.(5.2.1)

Proof. Take a resolution of χ

W

P2 P2

p

~~�
�
�
�
�
�

q

�
�
�
�
�
�   χ //�������������

and pull back the divisor KP2 + (3/n)H and KP2 + (3/n)O(1) via p and q respectively.
We have

KW + (3/n)HW = p∗OP2 +
∑

i

a′iEi +
∑

h

chGh

= q∗OP2(3(1/n− 1)) +
∑

i

aiEi +
∑

j

bjFj

where Ei are p and q exceptional divisors, while Fj are q but not p exceptional divisors
and Gh are p but not q exceptional divisors. Observe that since O(1) is base point free,
the ai’s and bj ’s are positive integers.

Let l ⊂ P2 be a general line in the right hand side plane. In particular q is an
isomorphism on l and therefore Ei · q∗l = Fj · q∗l = 0 for all i and j.

The crucial point is that on the right hand side we have some negativity coming
from the non-effective divisor KP2 + (3/n)O(1) that has to be compensated by some
non-effective exceptional divisor on the other side.
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More precisely, since n > 1, on the one hand we have

(KW + (3/n)HW ) · q∗l =
(
q∗OP2(3(1/n− 1)) +

∑

i

aiEi +
∑

j

bjFj

)
· q∗l < 0,

and on the other hand,

0 > (KW + (3/n)HW ) · q∗l =
(
p∗OP2 +

∑

i

a′iEi +
∑

h

chGh

)
· q∗l.

So ch < 0 for some h, that is, (P2, (3/n)H) is not canonical.
We leave it to the reader to justify equation (5.2.1); remember that one can resolve

the base locus of H blowing up smooth points only.

The above proof can be generalised to the following set-up. Let π : X → S and
ϕ : Y → W be two Mori spaces of dimension ≤ 3. Let χ : X → Y be a birational
non-biregular map. Choose a very ample linear system HY on Y . Let H = χ−1

∗ HY . Then
by the definition of a Mori space there exists a µ ∈ Q such that KX + (1/µ)H ≡π 0.

Theorem 5.2.3 (Noether–Fano inequalities, [Co1]). In the above notation, in particu-
lar for χ non-biregular and KX + (1/µ)H ≡π 0, either (X, (1/µ)H) has non-canonical
singularities or KX + (1/µ)H is not nef.

We are now ready to start the factorisation of χ. For this let x ∈ P2 be a point such
that (P2, (3/n)H) is not canonical at x. Such a point exists by Theorem 5.2.2 and let
ν : F1 → P2 be the blow-up of x, with exceptional divisor C0. In the context of the
Sarkisov theory it is important to look at this blow-up in the following way.

Definition 5.2.4. A terminal extraction is a birational morphism with connected fibers
f : Y ⊃ E → X 3 x such that:

• X and Y are terminal varieties, Y is Q-factorial,
• the exceptional locus is an irreducible divisor E with f(E) 3 x,
• −KY is f -ample.

Exercise 5.2.5. Prove that the only terminal extraction from a smooth point of a surface
is the blow-up of the maximal ideal of a point.

Hint: For a surface, terminal is equivalent to smooth. This is just restatement of Theo-
rem 4.1.1.

Remark 5.2.6. More generally whenever a log pair (X, (1/µ)H) is not canonical then
there exists a terminal extraction (see [Co1]).

Let us return to the proof. Observe that the natural map π1 : F1 → P1 is a Mori
space structure. The map ν : F1 → P2, the blow-up of P2, is the first elementary link we
define.

Let χ′ = χ ◦ ν : F1 → P2 and H′ = (χ′)−1
∗ O(1). Let n′ = n−multxH. Then

KF1 + (2/n′)H′ ≡π1 0.

We are in a position to apply Theorem 5.2.3 to the pair (F1, (2/n′)H′). First notice that
KF1 + (2/n′)H′ is nef. In fact let f ⊂ F1 be a generic fiber of the ruled structure. Then

KF1 + (2/n′)H′ · f = 0,



62 M. Andreatta and M. Mella

by definition. On the other hand

(KF1 + (2/n′)H′) · C0 = −1 + (2/n′) multxH = −n+ 3 multxH > 0

where the last inequality comes directly from (5.2.1), that is, the existence of non-
canonical singularities for (P2, (3/n)H). Thus, by Theorem 5.2.3, KF1 + (2/n′)H′ is not
canonical and therefore the linear system H′ admits a point x′ ∈ F1 with multiplicity
greater than 2/n′.

The next step is a terminal extraction from x′. Let

ψ : Z ⊃ E → F1 3 x′,
the blow-up of x′. This time Z is not a Mori space, but the strict transform of the fiber
of F1 containing x′ is now a (−1)-curve which can then be contracted by ϕ : Z → S.

Z

F1 S

ψ

~~�
�
�
�
�
�

ϕ

�
�
�
�
�
��
//�	�	�	�
�	�	�

(5.2.2)

This modification is known as an elementary transformation of ruled surfaces.

Exercise 5.2.7. Prove that S is either a quadric, F0, or F2.
Hint : This depends on the position of the point with respect to C0.

Let x2 ⊂ S be the exceptional locus of ϕ−1 and H2 be the strict transform of H′.
Observe the following two facts:

(i) (KS + (2/n′)H2) · f = 0, where, by abuse of notation, f is the strict transform of
f ⊂ F1,

(ii) since multx′ H′ > H′ · f/2, (S, (2/n′)H2) has terminal singularities at x2.

By (i) we can apply Theorem 5.2.3 to the log pair (S, (2/n′)H2). Moreover by (ii) we have
not introduced any new canonical singularities since the point x2 is a terminal singularity
for this pair. This is very important because it proves that after finitely many elementary
transformations we reach a pair (Fk, (2/n′)Hr) with canonical singularities such that

KFk + (2/n′)Hr ≡πk 0.

Then, again by Theorem 5.2.3, the pair (Fk, (2/n′)Hr) cannot be nef.
Observe that NE(Fk) is a 2-dimensional cone. In particular it has only two rays. One

is spanned by f , a fiber of πk. Let Z be an effective irreducible curve in the other ray.
Then

(KFk + (2/n′)Hr) · Z < 0.(5.2.3)

Since Hr has non-fixed components, Fk is a del Pezzo surface and the only possibilities
are therefore k = 0, 1.

In case k = 1, what is left is to simply blow down the exceptional curve ν : F1 → P2,
and reach P2 together with a linear system ν∗H2 =: H̃ ⊂ |O(j)|. Note that in this case,
by (5.2.3),

KF1 + (2/n′)Hr = ν∗(KP2 + (2/n′)H̃) + δC0
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for some positive δ. Therefore KP2 + (2/n′)H̃ is not nef. In other terms (2/n′)j < 3, and

j <
3(n−multxH)

2
< n.

Now we iterate the above argument, i.e. we restart at the beginning of the proof but
with the pair (P2, (3/j)H̃); the above strict inequality j < n tells us that after finitely
many steps we untwist the map χ, i.e. we reach P2 with a linear system H = |O(1)|.

In case k = 0, observe that F0 ' Q2 is a Mori space for two different fibrations; let
f0 and f1 be their general fibers. Moreover by (5.2.3),

(KF0 + (2/n′)Hr) · f1 < 0.

That is, there exists an
n1 < n′(5.2.4)

such that
(KF0 + (2/n1)Hr) · f0 > 0, (KF0 + (2/n1)Hr) · f1 = 0.

Again by Theorem 5.2.3, this time applied to the fibration with fiber f1, this implies that
(F0, (2/n1)Hr) is not canonical and we iterate the procedure. As in the previous case the
strict inequality of (5.2.4) implies termination after finitely many steps.

Thus we have factorised any birational, non-biregular, self-map of P2 into a sequence
of “elementary links”, namely elementary transformations and blow-ups of P2 at a point.

The next step is to interpret a standard Cremona transformation in this new language,
i.e. in terms of the elementary links we have introduced above.

Exercise 5.2.8. Prove that a standard Cremona transformation is given by the following
links:

F1 F0 F1

P2 P2
~~�
�
�
�
�
�

//���� //����
�
�
�
�
�
�   

Conversely, any map of type

F1 Fa F1

P2 P2
~~�
�
�
�
�
�

//���� //����
�
�
�
�
�
�   

can be factorised into Cremona transformations.

Hint: A standard Cremona transformation is given by conics through 3 non-collinear
points. The link above is possible only for a = 0, 2. Links of this kind represent birational
maps given by conics with either 3 base points or 2 base points plus a tangent direction.
Try to factorise the map

(x0 : x1 : x2)→ (x1x2 : x0x2 : x1x2 + x0x2 + x2
0).

into Cremona transformations.
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Proof of Theorem 5.2.1. Let χ : P2 → P2 be a birational map and

F1 Fk . . . F1

P2 P2

ν1

~~�
�
�
�
�
�

l0 //����� l1 //���� //�����
�
�
�
�
�
�   

(5.2.5)

the factorisation into elementary links obtained above. Let us first make the following
observation. If there is a link leading to an F1 then we can break the birational map by
simply blowing down the (−1)-curve. That is, substitute χ with the following two pieces:

F1 . . . F1 F1 . . . F1

P2 P2 P2

ν1

~~�
�
�
�
�
�

l0 //���� li //����

ν2

�
�
�
�
�
�   

∼ //

ν2

~~�
�
�
�
�
�

li+1 //����� //����
�
�
�
�
�
�   

�������������
χ1 //������������� �������������

χ2 //�������������

So we can assume that

there are no links leading to F1 “inside” the factorisation.(5.2.6)

Let
d(χ) = max{k : there is an Fk in the factorisation}.

If d(χ) ≤ 2 we can factorise it by Exercise 5.2.8.
We now prove the theorem by induction on d(χ). Consider the left part of the fac-

torisation (5.2.5). Since d(χ) > 2, by assumption (5.2.6), l0 is of type F1 → F2 and l1 is
of type F2 → F3. Then we force Cremona like diagrams in it, at the cost of introducing
new singularities. Let

F1 F0 F1 F1 F0 . . . F1

P2 P2 P2

ν1

~~�
�
�
�
�
�

α //����� l0 //����

ν2

�
�
�
�
�
�   

ν2

~~�
�
�
�
�
�

α−1 //���� l1 //����� //�����
�
�
�
�
�
�   

�������������
χ′

������� //�������������

where α : F1 → F0 is an elementary transformation centered at a general point of F1,
and Exc(α−1) = {y0}. So α∗(H′) has an ordinary singularity at y0. Then l0 is exactly the
same modification but leads to an F1 and ν2 is the blow-down of the exceptional curve
of this F1. Observe that neither α0 nor ν2 are links in the Sarkisov category, in general.
Nonetheless the first part can be factorised into standard Cremona transformations. Let
χ′ = χ1 ◦ . . .◦χk be a decomposition of χ into pieces satisfying (5.2.6). Then d(χi) < d(χ)
for all i = 1, . . . , k. Therefore by the induction hypothesis also χ′ can be factorised into
Cremona transformations. Hence χ is factorised into Cremona transformations.

5.3. #-Minimal model. We already pointed out that the Minimal Model Program
allows one to attach a Mori space to a uniruled 3-fold (see 5.1.14). How can we use it to
study the birational geometry of X?

The main difficulty here is that the birational modifications occurring along the MMP
are difficult to follow and usually it is almost impossible to guess what is the output. We
want to rephrase, following [Re3], the standard Minimal Model Program for uniruled
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varieties using a polarising divisor; this is called a #-minimal model. Under strong as-
sumptions on the variety studied, we are able to govern the program and understand its
output.

Definition 5.3.1 ([Me4]). Let T be a terminal Q-factorial uniruled 3-fold and H a mov-
able linear system, i.e. dim |mH| > 0 for m � 0, with generic element H ∈ H on T .
Assume that H is nef. Then

% = %H = %(T,H) := sup{m ∈ Q : H +mKT is an effective Q-divisor}
is the threshold of the pair (T,H).

Since we are assuming that dimH ≥ 0 we have % ≥ 0. A pair (T#,H#) is called a
#-minimal model of (T,H) if:

(i) T# has a Mori fiber space structure π : T# → W and H# is a movable Weil
divisor,

(ii) there exists a birational map ψ : T → T# such that H# = ψ∗H,
(iii) if H# ∈ H# is a general member, then %(T,H)KT# +H# ≡π OT# .

To find a #-minimal model of a given pair (T,H) let us proceed in the following way.
Let (T0,H0) = (T,H), where H0 is nef by hypothesis and T0 is uniruled; therefore

to (T0, H0) there is naturally associated the nef value t0 = sup{m ∈ Q : mKT0 + H0 is
nef} and a rational map ϕ0 : T0 → T1, which is either an extremal contraction or (if the
extremal contraction is small) a flip, of an extremal ray in the face spanned by t0KT0 +H0

(see Section 3.1 and in particular 3.1.7).
Consequently, on T1 one defines a movable linear system by H1 := ϕ0∗H0. That is to

say, ϕ0∗H0 6= 0. Note that, by construction, t0KT1 +H1 is nef, thus one inductively defines
ϕi : Ti → Ti+1 and (Ti+1,Hi+1) as follows. Let δ = sup{d ∈ Q : dKTi + (ti−1KTi + Hi)
is nef} and define ti := δ + ti−1.

Exercise 5.3.2. Prove that there always exists an extremal ray [Ci] ⊂ NE(Ti) in the
face supported by tiKTi +Hi.

Thus define ϕi : Ti → Ti+1 to be the birational modification associated to the extremal
ray [Ci] ⊂ NE(Ti), and Hi+1 := ϕi∗Hi.

The inductive process is therefore composed of divisorial contractions and flips. Since
T0 is uniruled it does not have a minimal model (see Theorem 5.1.15). After finitely many
of these birational modifications, we get a Mori fiber space.

Exercise 5.3.3. Prove that the output (Tk,Hk) is a #-minimal model, that is,

%(T,H)KTk +Hk ≡π OTk .
Remark 5.3.4. Note that H# is relatively nef. Furthermore if the rational map defined
by |mH| is birational then H# is relatively ample.

The presence of a polarisation in the #-program allows us to control the steps if
we are able to impose restrictions on the threshold. Let (T,H) be as above and assume
moreover that %H < 1 and that there exists a smooth surface S ∈ H. Notice that the
latter hypothesis is not as strong as it seems (see Definition 5.3.7). Under this assumption
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it is possible to describe in detail the #-process in a neighborhood of the surface S (see
also [CF]).

Proposition 5.3.5 ([Me4]). Let ϕi : Ti → Ti+1 be a birational modification in the #-
program relative to (T,H) with %H < 1. Assume that S ∈ Hi is a smooth surface. Then
ϕi(S) = S is a smooth surface and ϕi|S : S → S is either an isomorphism or the
contraction of a disjoint union of (−1)-curves.

Sketch of proof. Since S is smooth and Ti is terminal Q-factorial, S is not in Sing(Ti). In
particular Hi is a Cartier divisor. We have the following cases.

• [ϕi contracts a divisor E onto a curve] Then Hi ≡ϕi 0 and S ∩ E is the disjoint
union of (−1)-curves.
• [ϕi is a flip] S is disjoint from the flipping curve.
• [ϕi contracts a divisor E to a point] ϕi|S is birational and is either an isomorphism

or the contraction of a (−1)-curve. Then (E,E|E) ' (P2,O(−1)) and H|E ∼ O(1).

Using the above proposition we can control the #-minimal model and its output.

Corollary 5.3.6. Let T be a terminal Q-factorial uniruled 3-fold , H a movable nef
linear system and (T#,H#) a #-minimal model of (T,H). Assume that %H < 1 and H
is base point free. Then H# ∈ Pic(T#), H# has at most base points and H# is smooth.

Proof. By the Bertini theorem H is smooth, therefore we can apply Proposition 5.3.5 in
an inductive way to reach a model (T#,H#).

We need a relative version of Corollary 5.3.6, and for this we first give a definition.

Definition 5.3.7 ([Me4]). Let T be a 3-fold and H a movable linear system with dimH
≥ 1. Assume that H = M + F , where M is a movable linear system without fixed
component and F is the fixed component. A pair (T1,H1) is called a log minimal resolution
of the pair (T,H) if there is a morphism µ : T1 → T with the following properties:

• T1 is terminal Q-factorial,
• µ−1
∗ M = H1, where H1 is a Cartier divisor, dim Bsl(H1) ≤ 0,

• a general element H1 ∈ H1 is a minimal resolution of a general element M ∈M.

Corollary 5.3.8. For any pair (T,H) with T an irreducible Q-factorial 3-fold and H a
movable linear system with dimH ≥ 1, there exists a log minimal resolution.

Remark 5.3.9. Using Corollary 5.3.8 we can study any irreducible 3-fold T equipped
with a movable linear system H with dimH ≥ 1. Indeed we consider a log minimal
resolution of (T#,H) and then a #-minimal model of it. Note that this is well defined
only up to birational equivalence.

5.4. Applications of the #-program. We now want to apply the #-theory to some
concrete situations. Although the assumptions in the previous section are quite strong,
they are geometric in nature and therefore of easy interpretation.
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5.4.1. 3-folds with a uniruled movable system

Definition 5.4.1. Let T be a terminal Q-factorial 3-fold and H a movable linear system.
We say that (T,H) is a pair with a big uniruled system if H ∈ H is nef and big and H is
a smooth surface of negative Kodaira dimension.

Exercise 5.4.2. Let (T,H) be a pair with a big uniruled system. Then T is uniruled and
%(T,H) < 1.

Using #-MMP techniques we can describe in detail the possibilities that occur under
these conditions.

Theorem 5.4.3 ([Me4]). Let (T,H) be a pair with a big uniruled system. Then (T#,H#)
is one of the following :

(i) a Q-Fano 3-fold of index 1/% > 1, with KT# ∼ −1/%H# and Φ|H#| birational ;
the complete classification is given in [CF] and [Sa]:

• (P(1, 1, 2, 3),O(6)),
• (X6 ⊂ P(1, 1, 2, 3, a), X6 ∩ {x4 = 0}) with 3 ≤ a ≤ 5,
• (X6 ⊂ P(1, 1, 2, 2, 3), X6 ∩ {x3 = 0}),
• (X6 ⊂ P(1, 1, 1, 2, 3), X6 ∩ {x0 = 0}),
• (P(1, 1, 1, 2),O(4)),
• (X4 ⊂ P(1, 1, 1, 1, 2), X4 ∩ {x0 = 0}),
• (X4 ⊂ P(1, 1, 1, 2, a), X4 ∩ {x4 = 0}) with 2 ≤ a ≤ 3,
• (P3,O(a)), with a ≤ 3, (Q3,O(b)) with b ≤ 2,
• (X3 ⊂ P(1, 1, 1, 1, 2), X3 ∩ {x4 = 0}), (X3 ⊂ P4,O(1)),
• (X2,2 ⊂ P5,O(1)),
• a linear section of the Grassmann variety parametrising lines in P4, embedded

in P9 by Plücker coordinates ,
• (P(1, 1, 1, 2),O(2)), the cone over the Veronese surface,

(ii) a bundle over a smooth curve with at most finitely many fibers (G,H#
|G) '

(S4,O(1)), and generic fiber (F,H#
|F ) ' (P2,O(2)); where S4 is the cone over the normal

quartic curve and the vertex sits over a hyper-quotient singularity of type 1/2(1,−1, 1)
with f = xy − z2 + tk for k ≥ 1 (see [YPG]),

(iii) a quadric bundle with at most cA1 singularities of type f = x2 + y2 + z2 + tk for
k ≥ 2, and H#

|F ∼ O(1),
(iv) (P(E),O(1)) where E is a rank 3 vector bundle over a smooth curve,
(v) (P(E),O(1)) where E is a rank 2 vector bundle over a surface of negative Kodaira

dimension.

Remark 5.4.4. The above theorem allows one to extend the result of [CF] to 3-folds T
which contain a smooth surface H of negative Kodaira dimension such that H is nef and
big. Ciro Ciliberto pointed out to us that the theorem completes the research suggested
by Castelnuovo [Ca, p. 187], to study linear systems of rational surfaces.

Exercise 5.4.5. Prove the following. Let T be a terminal 3-fold and H ⊂ T a smooth
surface of negative Kodaira dimension. Assume that H is nef and big. Then T is birational
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to one of the following:

• P3,
• H × P1,
• a terminal sextic in either P(1, 1, 1, 2, 3) or P(1, 1, 2, 2, 3),
• a terminal quartic in P(1, 1, 1, 1, 2),
• a terminal cubic in P4.

There exists a natural geometric interpretation of the conditions imposed in Theo-
rem 5.4.3.

Theorem 5.4.6 ([Me4]). Let Td ⊂ Pn be a degree d non-degenerate irreducible 3-fold.
Suppose that d < 2n − 4. Then any #-minimal model (T#,H#) of (Td,O(1)) is in the
list of Theorem 5.4.3.

Proof. Let ν : X → T be a resolution of singularities and H = ν∗O(1). First we prove
that (KX + H) ·H2 < 0. We argue by comparing the Castelnuovo bound on the genus
of C := H2 and the genus formula on the surface H. From the latter we obtain g(C) =
1 + d/2 + (KX + H) · C/2. For the former let m =

⌊
d−1
n−3

⌋
. Then by the Castelnuovo

inequality [GH, p. 527], we have

g(C) ≤ m(m− 1)
2

(n− 3) +m(d− 1−m(n− 3)).

It is therefore enough to require that

1 + d/2 >
m(m− 1)

2
(n− 3) +m(d− 1−m(n− 3));(5.4.1)

after a small calculation one verifies that this is true whenever d < 2n − 4. Then by
the adjunction formula, H ∈ H is a smooth surface of negative Kodaira dimension and
Theorem 5.4.3 applies.

Remark 5.4.7. This theorem can be interpreted as the 3-dimensional counterpart of the
classical result that a non-degenerate surface S ⊂ Pn of degree d ≤ n − 1 is birational
either to a rational scroll or to a projective plane [GH, p. 525]. Observe that all the listed
3-folds admit an embedding satisfying the numerical criterion.

By means of adjunction theory on terminal varieties (see [Me1]), one can prove the
following higher dimensional analog of Theorem 5.4.6.

Theorem 5.4.8 ([Me4]). Let Xd ⊂ Pn be a non-degenerate k-fold with k > 3 and only
Q-factorial terminal singularities. Assume that d < 2(n−k)−2. Then a #-minimal model
(X#, H#) of (X,O(1)) (in adjunction theory language, (X#, H#) is the first reduction)
is one of the following :

(i) a Q-Fano n-fold of Fano index 1/% > k − 2, with KT# ∼ −(1/%)H# and Φ|H#|
birational ; the complete classification is given in [Fu2] if X# is Gorenstein and in [CF]
and [Sa] in the non-Gorenstein case,

(ii) a projective bundle over a curve with fibers (F,H#
|F ) ' (Pk−1,O(1)), or a quadric

bundle with at most cA1 singularities , with H#
|F ∼ O(1),
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(iii) (P(E),O(1)) where E is a rank k − 1 ample vector bundle either on P2 or on a
ruled surface.

Remark 5.4.9. Note that since Xd has terminal singularities it follows that, assuming the
minimal model conjecture, the above is the classification of #-models of those varieties.

5.4.2. General elephants of Q-Fano 3-folds. Another direction is the study of the bira-
tional class of Q-Fano 3-folds whose generic section has worse than canonical singularities.

Conjecture 5.4.10 (Reid). Let X be a Q-Fano 3-fold and H ∈ |−KX | a generic section
of the anticanonical divisor. Then H has at worst canonical singularities.

The motivation of this conjecture is that to classify Fano varieties, as we have learned,
one uses sections of the fundamental divisor. For non-Gorenstein 3-folds with index < 1,
this invariant is quite meaningless and one tries to use directly sections of |−KX |. So,
more than a conjecture, it is a hope that things are not too bad in this corner of the world.
It has to be said that the most recent techniques to study Q-Fano 3-folds do not rely
completely on this procedure. The #-program allows one to understand the birational
nature of these strange objects.

Theorem 5.4.11 ([Me4]). Let T be a Q-Fano 3-fold. Assume that dimφ|−KT |(T ) = 3 and
the general element in | −KT | has worse than Du Val singularities. Then T is birational
to a smooth Fano 3-fold T# of index ≥ 2.

The rough idea is to take a log minimal resolution of (T, |−KT |) and control the
output. By the singularity requirement the generic element in |−KT | is a uniruled surface,
therefore we can apply all results of previous sections. For more details see [Me4].
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