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Abstract

A variety of topological groups is a class of (not necessarily Hausdorff) topological groups closed
under the operations of forming subgroups, quotient groups and arbitrary products. The variety
of topological groups generated by a class of topological groups is the smallest variety containing
the class. In this paper methods are presented to distinguish a number of significant varieties
of abelian topological groups, including the varieties generated by (i) the class of all locally
compact abelian groups; (ii) the class of all kω-groups; (iii) the class of all σ-compact groups;
and (iv) the free abelian topological group on [0, 1]. In all cases, hierarchical containments are
determined.
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1. Introduction

Varieties of groups were introduced in the 1930s by Garrett Birkhoff [6] and B. H. Neu-

mann [65]. A standard reference covering the material that existed until 1967 concerning

varieties of groups is [66]. A variety of groups is defined as the class of all groups satisfying

a certain family of “laws” or “equations”; for example, a group G is abelian if and only

if it satisfies the law w(a1, a2) = (a1)
−1(a2)

−1a1a2 = 1. Thus the variety of all abelian

groups is the class of all groups that satisfy the law (a1)
−1(a2)

−1a1a2 = 1.

An equivalent definition for varieties of groups, courtesy of Birkhoff, uses closure under

certain operations. A non-empty class of groups is a variety of groups if it is closed under

the operations of forming subgroups (S), quotient groups (Q) and arbitrary Cartesian

products (C). Birkhoff also proved that if Ω is any non-empty class of groups and V (Ω)

is the smallest variety of groups containing Ω then V (Ω) = QSC(Ω) [66]. This means

that every element of V (Ω) can be written as a quotient group of a subgroup of some

Cartesian product of members of Ω.

For a family of groups {Gi : i ∈ I}, we define the restricted direct product, denoted∏∗

i∈I Gi, to be the subgroup of
∏

i∈I Gi consisting of elements
∏

i∈I gi where gi = e for all

but a finite number of i ∈ I. We note that the free abelian group on any set is isomorphic

to
∏∗

i∈I Zi, where Zi is the additive group of integers, for some index set I. Further, every

abelian group G is a quotient group of the free abelian group on the underlying set of

G. Therefore, it is easily seen that the variety of groups generated by Z is the variety of

all abelian groups; that is, the variety of all abelian groups is singly-generated. Shortly,

when we consider varieties of topological groups, we will see the analogue of this is not

true.

In 1970, Ol’shanskĭı [67] showed that there exist exactly 2ℵ0 varieties of groups. Again,

when we turn to our discussion of varieties of topological groups, we will see that the

situation is very different.

Graham Higman [24], in 1952, suggested a definition for a variety of topological groups,

however his work was not followed up. In 1968, Ian D. Macdonald suggested to the second

author [57] the now more widely accepted definition that is similar to Birkhoff’s definition

of a variety of groups. A non-empty class V of (not necessarily Hausdorff) topological

groups is said to be a variety of topological groups [39, 57] if it is closed under the

operations of forming subgroups, (not necessarily Hausdorff) quotient topological groups

and arbitrary products (with the Tikhonov product topology). For example, the class

of all abelian topological groups forms a variety of topological groups. Another example

of a class of topological groups that forms a variety of topological groups is the class of

[5]
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all topological groups with a subgroup topology. A topological group G is said to have

a subgroup topology if a basis for the topology at the identity consists of subgroups, for

example, all discrete topological groups have a subgroup topology. However, many classes

of ‘common’ topological groups do not form varieties of topological groups. The class of

all compact abelian groups is not closed under subgroups nor is the class of all locally

compact abelian groups, nor the class of all separable topological groups. The class of

all countable topological groups is not closed under arbitrary products, nor is the class

of all discrete topological groups, nor the class of all metrizable topological groups, nor

the class of all σ-compact groups. It is therefore of interest to examine these classes of

topological groups in the context of varieties of topological groups. For this, we introduce

the concept of a variety of topological groups generated by a class of topological groups.

If Ω is a class of topological groups, then the smallest variety containing Ω is said

to be the variety generated by Ω and is denoted by V(Ω) (cf. [39] and [8]). We use

the term Banach space to refer to the abelian topological group underlying a Banach

(vector) space, or complete normed vector space. In [61] it was shown that the variety of

topological groups generated by the class of all Banach spaces is the variety of all abelian

topological groups. Contrary to what one may think, the variety of topological groups

generated by the class of all locally compact abelian topological groups is quite small. In

fact, this variety does not contain any infinite-dimensional Banach spaces.

In this paper, we present methods to distinguish a number of significant varieties of

abelian topological groups. In all cases, hierarchical containments are determined.

We investigate the variety generated by FA[0, 1], the free abelian topological group

on [0, 1], and the varieties generated by the following classes of topological groups.

• A, the class of all abelian topological groups.

• B, the class of all topological groups underlying Banach spaces.

• LA, the class of all locally compact Hausdorff abelian topological groups.

• D, the class of all discrete abelian groups.

• DR, the class of all discrete abelian groups and R, the additive topological group of all

real numbers, with the Euclidean topology.

• Kω, the class of all abelian kω-groups.

• Cσ, the class of all abelian σ-compact groups.

• Lσ, the class of all abelian locally σ-compact groups.

• S, the class of all abelian separable topological groups.

• BS , the class of all topological groups underlying separable Banach spaces.

• LS , the class of all abelian locally separable topological groups.

• Lm, the class of all abelian locally-m groups, where m is an infinite cardinal.

• Cm, the class of all abelian topological groups of cardinality less than or equal to m,

where m is an infinite cardinal.

The terminology here will be explained later in the paper.

Notation. In the following and later theorems, a variety of topological groups V appears

linked by
∣∣∣,

∖
or

/
below a variety W if and only if V is a proper subvariety of W .
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The main theorem proved in this paper is the following.

Main Theorem.

A = V(B)

∣∣∣

V(Ln) = V(Cn ∪ D), for all n > m

∣∣∣

V(Lm) = V(Cm ∪ D), m > c

∣∣∣

V(Lc) = V(Cc ∪ D)

∣∣∣

V(LS) = V(S ∪ D) = V(S ∪ Lσ)

/ ∖

V(Cσ ∪ LA) = V(Cσ ∪ D) = V(Lσ) V(S) = V(BS) = V(ℓ1)

/ ∖ /

V(DR) = V(LA) V(Cσ)

∣∣∣
∣∣∣

V(D) V(Kω) = V(FA[0, 1]) = V(FA(X)) for X not scattered.

We note that Lydia Außenhofer [3] investigated three varieties of abelian topological

groups related to nuclear spaces and nuclear groups (see [4]) and was not only able

to distinguish amongst them but to find the containment relationships. In particular,

Außenhofer showed that the (Hausdorff) variety of nuclear groups is quite small and

hence the variety of topological groups generated by the class of locally compact Hausdorff

abelian topological groups is also quite small.

A natural extension of varieties of topological groups is the concept of wide varieties

of topological groups, which includes continuous homomorphic images as well as arbitrary

products and subgroups. We will consider the wide varieties generated by the aforemen-

tioned classes of topological groups, and we will find that the situation is very different

as many of the wide varieties turn out to be the same (see Theorem E).
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Parallel to the theory of varieties of topological groups is the study of varieties of

topological vector spaces which has much in common with the theory of varieties of

topological groups. In this paper, we present aspects that are specific to varieties of

topological groups.

2. Preliminaries

For topological groups G1 and G2, we say G1 is topologically isomorphic to G2 if there

exists a map f : G1 → G2 such that f is both an isomorphism of groups and a homeo-

morphism.

Notation. For a topological group G, let |G| denote the group underlying G, that is,

the group obtained from G by “forgetting” the topology.

We will often use the symbol e to denote the identity element of a group that we are

considering.

Lemma 2.1 ([39, Lemma 2.7]). Let V be a variety of topological groups and let G ∈ V.

Then |G| with the indiscrete topology is in V.

Proof. Consider the countable product
∏∞

i=1 Gi, where Gi = G for each i ∈ N. Define the

restricted direct product (or weak direct product), denoted
∏∞∗

i=1 Gi, to be the subgroup

of
∏∞

i=1 Gi consisting of elements
∏∞

i=1 gi with gi = 1Gi
for all but a finite number of

members of I, with the topology induced as a subspace of
∏∞

i=1 Gi.

The restricted direct product
∏∞∗

i=1 Gi is a dense normal subgroup of
∏

i∈I Gi. There-

fore, the quotient topological group K =
∏∞

i=1 Gi/
∏∞∗

i=1 Gi is indiscrete. Now, let ρ :∏∞

i=1 Gi → K be the quotient mapping from
∏∞

i=1 Gi to K and consider the homomor-

phism f : G → K given by f(g) = ρ(〈g, g, . . .〉) for all g ∈ G. For each g ∈ G, g 6= e, g

is not contained in the kernel of f ; that is, the kernel of f is the set {e}. Therefore, f

is a one-to-one homomorphism from |G| to |K| and hence |G| can be embedded in |K|.

Since V is a variety of topological groups and K ∈ QC(V), we have K ∈ V and thus |G|

with the induced topology from K is also contained in V; that is, |G| with the indiscrete

topology is contained in V.

Proposition 2.2. Let V be a variety of (abelian) topological groups and T the compact

topological group consisting of the multiplicative group of complex numbers of modulus 1

with its usual euclidean topology. If T is contained in V, then every indiscrete abelian

group appears in V.

Proof. Note it is well-known that every abelian group is algebraically isomorphic to a

subgroup of a product of copies of the divisible group T and so is contained in V with

some topological group topology. The result then follows from Lemma 2.1, that whenever

a topological group G is in the variety V, the topological group |G| with the indiscrete

topology is also in V.
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Corollary 2.3. Let V be a variety of (abelian) topological groups that contains any

non-totally disconnected locally compact abelian group. Then every indiscrete abelian

group appears in V.

Proof. Let G be a non-totally disconnected locally compact abelian group contained in V.

Then the identity component G0 of G is a non-trivial connected locally compact abelian

group in V. By Theorem 26 of [56] G is topologically isomorphic to Rn × K, for n a

non-negative integer and K a compact connected abelian group. If n ≥ 1, then T, as a

quotient group of R, is also in V and the required result follows from Proposition 2.2. If

K is a non-trivial connected compact group, then being a closed subgroup of a product of

copies of T ([56, Corollary 1 to Theorem 14]) it must project onto T into this product. So

T is a quotient group of K and so it is in V from which the required result follows [56].

Definition 2.4. Let Ω be a class of (not necessarily Hausdorff) topological groups. Then

S(Ω) is defined to be the class of all topological groups G such that G is isomorphic to a

subgroup of a member of Ω. Similarly, the operators S, G, Q, Q, C and P denote closed

subgroup, quotient group, Hausdorff quotient group, arbitrary cartesian product with the

Tikhonov topology and finite product respectively.

The following theorem was shown in [8] (Theorem 1), however, because it is informa-

tive, we include it here.

Theorem 2.5. Let Ω be a non-empty class of topological groups. Then V(Ω) = QSC(Ω).

Proof. First, we note that SS(Ω) = S(Ω), QQ(Ω) = Q(Ω) and CC(Ω) = C(Ω).

Further, for Ω a non-empty class of topological groups, it is routine to establish the

following.

(i) CS(Ω) ⊆ SC(Ω),

(ii) CQ(Ω) ⊆ QC(Ω),

(iii) SQ(Ω) ⊆ QS(Ω).

Next we use these results to show that QSC(Ω) is a variety of topological groups:

Q[QSC(Ω)] = QSC(Ω),

S[QSC(Ω)] ⊆ QSSC(Ω) = QSC(Ω),

C[QSC(Ω)] ⊆ QCSC(Ω) ⊆ QSCC(Ω) = QSC(Ω).

Therefore, QSC(Ω) is a variety of topological groups and so V(Ω) ⊆ QSC(Ω). Clearly,

QSC(Ω) ⊆ V(Ω) and the proof is complete.

Theorem 2.5 indicates that any topological group contained in the variety generated

by a class of topological groups can be obtained by just one application of each of the

operators Q, S and C to members of the class.

Remark 2.6. Due to the fact that every subgroup of an abelian topological group is

normal, if Ω is a class of abelian topological groups, then QS(Ω) ⊆ SQ(Ω) and hence

QS(Ω) = SQ(Ω).
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The class of locally compact abelian topological groups and the class of σ-compact

abelian topological groups are both closed under S and Q, but not C. However, they

are closed under P . Therefore, the following result, also shown in [8] (Theorem 2), is

powerful. The proof is omitted here as it is more involved than that of Theorem 2.5.

Theorem 2.7. Let Ω be a non-empty class of abelian topological groups. If G is a Haus-

dorff topological group in V(Ω), then G ∈ SCQP (Ω).

Remark 2.8. We now see, for example, that if G is a Hausdorff topological group in

V(LA) then G ∈ SC(LA); and for certain groups we can say significantly more. For

example, if B is a Banach space contained in V(Cσ), then B ∈ SP (Cσ) and hence B is

σ-compact, that is, B is finite-dimensional.

This follows because a Banach space is a special kind of topological group, namely a

UFSS-group. A Hausdorff topological group G is defined by Enflo [18] to be uniformly

free from small subgroups, or a UFSS-group, if it has a neighbourhood of the identity, U ,

such that for every neighbourhood of the identity, V , there exists a positive integer nV

with the property that if x 6∈ V then xn 6∈ U for some n ≤ nV . We note that discrete

topological groups and normed vector spaces are UFSS-groups.

Proposition 2.5 and Theorem 3.10 of [63] show that if a UFSS-group G is contained in

V(Ω), then G ∈ SQSP (Ω). Again, if Ω is a class of abelian groups, then G ∈ SQP (Ω).

In contrast to Ol’shanskĭı’s result, Morris in [41] proved that there is a proper class

of varieties of topological groups. The key to this is the notion of a T (m)-group.

Definition 2.9 ([41, §4] and [34]). Let m be any infinite cardinal number. A topological

group, G, is said to be a T (m)-group if each neighbourhood of the identity contains a

normal subgroup of index in G strictly less than m.

Note that a discrete group is a T (m)-group if and only if its cardinality is strictly less

than m. Observe that a variety generated by a class of T (m)-groups, for some cardinal m,

contains only T (m)-groups. We say such a variety is a T (m)-variety and clearly, there

is such a variety for every cardinal number and so there is a proper class of varieties of

topological groups. (See [41, Theorem 4.2].)

Remark 2.10 (cf. [57, Corollary 6 to Theorem 2]). A variety of topological groups is

said to be singly-generated if it is generated by a single topological group. A variety of

topological groups is singly-generated if and only if it is a T (m)-variety for some cardinal

number m. And so, any subvariety of a singly-generated variety is singly-generated.

3. Free abelian topological groups

Graev [20] defined a free abelian topological group as follows.

Definition 3.1 ([20]). Let X be a completely regular [33] (not necessarily Hausdorff)

space and e a distinguished point in X. An abelian topological group FA(X) is said to

be a free abelian topological group on the space X if it has the following properties:
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(i) X is a subspace of FA(X);

(ii) X generates FA(X) algebraically;

(iii) for any continuous mapping φ of X into any abelian topological group G which maps

the point e onto the identity element of G, there exists a continuous homomorphism

Φ of FA(X) into G such that Φ(x) = φ(x) on X.

Graev [20] showed that FA(X) exists and is unique up to topological isomorphism. In

particular, FA(X) does not depend on the choice of the point e in the space X. Further,

if X is completely regular Hausdorff, FA(X) is also Hausdorff.

We note that |FA(X)|, the group underlying FA(X), is the free abelian group on the

set X \ {e} where e is the identity element ([58, Proposition 47, p. 376]).

Remark 3.2.

(1) Note that each element w of FA(X) can be represented as a product of members of

X ∪X−1 in an infinite number of ways. Amongst these there is the so-called reduced

representation (1) which has no occurrences of e (unless w = e) and if x ∈ X appears

in the representation then x−1 does not appear in the representation.

(2) Any two free abelian topological groups on a given space X are topologically isomor-

phic; that is, FA(X) is unique up to topological isomorphism. In particular, FA(X)

does not depend on the choice of the point e in the space X. (See [20].)

(3) The topological group FA(X) has the finest topological group topology on the free

abelian group on the set X \ {e} that satisfies property (i) in Definition 3.1, where e

is the identity element of FA(X). In [20], Graev showed the existence of the Graev

free abelian topological group, FA(X), on each completely regular Hausdorff space

X and gave a description of its topology. We outline Graev’s construction of the free

abelian topological group topology.

A continuous pseudometric is a pseudometric that defines a topology coarser than the

given topology on a space X. Note that every completely regular space is determined

by a family of continuous pseudometrics ([23, Chapter II, §8]). Each continuous pseu-

dometric, ρ, on X can be extended to an invariant pseudometric, ρ′ on |FA(X)|. In

summary, Graev [20] defined ρ′ as follows.

Let x, y ∈ X and x−1, y−1 ∈ X−1 where X−1 = {x−1
i : xi ∈ X}. Then

ρ′(x, y) = ρ(x, y); ρ′(x−1, y−1) = ρ(x, y);

ρ′(x−1, y) = ρ′(x, y−1) = ρ(x, e) + ρ(y, e).

Let a, b ∈ |FA(X)|, a 6= b and let A = a1a2 . . . as be a (not necessarily reduced)

representation of a, B = b1b2 . . . bs a (not necessarily reduced) representation of b,

in the form of words of equal length such that ai, bi ∈ X ∪ X−1 for i = 1, . . . , s.

Define R(A, B) =
∑s

i=1 ρ′(ai, bi). Then ρ′(a, b) is the infimum of all such R(A, B).

Further, this infimum is achieved and a representation (A, B) of (a, b) is said to be

an optimal ρ-representation if ρ′(a, b) = R(A, B). It is readily seen from Graev’s

proof that if b = e, then ρ′(a, e) has the reduced representation of a in any optimal

ρ-representation.

(1) We use the term reduced representation where M. Hall [21] uses the term reduced word.
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We shall refer to this extension as the Graev extension of the pseudometric.

The Graev extension determines a topological group topology on the abelian group

|FA(X)|. The sum of all such topologies on |FA(X)| gives a topological group topol-

ogy on |FA(X)|, and this topological group is the free abelian topological group

on X ([58, pp. 378–379]; [62, Proposition 1]). Note that in the non-abelian case,

the topological group thus obtained is not necessarily the free topological group.

(See [62].)

(4) If X is a completely regular Hausdorff space, then FA(X) is also Hausdorff (see [20]).

(5) As all topological groups are uniform spaces, they are completely regular. So, if

G is any topological group then the free abelian topological group on the under-

lying space of G makes sense. Indeed, if G is an abelian topological group, then

G is a quotient group of FA(G) ([39, Theorem 2.12]), as we can extend the iden-

tity map φ : G → G to an open continuous homomorphism Φ from FA(G) onto

G.

Lemma 3.3. Let X be a completely regular space whose topology is defined by the family

{ρi : i ∈ I} of pseudometrics. Then FA(X) can be embedded as a topological subgroup of

the product

H =
∏

i∈I

(|FA(X)|, ρ′i),

where |FA(X)| is the free abelian group on X \ {e} and ρ′i is the Graev extension of ρi,

for each i ∈ I.

Proof. Let f : FA(X) → H be given by f(w) =
∏

i∈I wi where w ∈ FA(X) and wi = w

for each i ∈ I. The mapping f is clearly a one-to-one homomorphism. A subbasis at e

for the topology of FA(X) is given by the family of all open spherical balls about e in

ρi, i ∈ I. Consider the open ball Bj(e) in ρj where Bj(e) = {w ∈ FA(X) : ρj(w, e) < ε},

for j ∈ I and some ε > 0. Then

f(Bj(e)) =
( ∏

i∈I

Ui

)
∩ f(FA(X))

where Uj = Bj(e) and Ui = FA(X) for each i 6= j. Clearly this is open in f(FA(X))

and so the corestriction of f is an open mapping. Finally, let O =
∏

i∈I Oi be a subbasic

open set in H, where Oi is open in (|FA(X)|, ρ′i) and Oi = |FA(X)| for all i ∈ I \ J ,

J ⊆ I a finite set. Then

f−1(O) =
⋂

i∈I

Oi =
⋂

j∈J

Oj

is open in FA(X). Therefore, f is continuous and the result follows.

The next two results are folklore and their proofs are straightforward.

Lemma 3.4. Let X and Y be completely regular spaces such that there exists a quotient

mapping φ : X → Y . Then φ extends to a quotient homomorphism Φ: FA(X) → FA(Y ).

Lemma 3.5. Let X be a completely regular space and G an abelian topological group

algebraically generated by X and having the finest topological group topology that induces

the given topology on X. Then G is a quotient group of FA(X).
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We now recall the concepts of kω-space and kω-group, the importance of these being

that the free abelian topological group on X is easiest to describe when X is a kω-space.

Definition 3.6 ([72]). A Hausdorff topological space X is said to be a kω-space with

kω-decomposition X =
⋃∞

n=1 Xn if X has compact subspaces Xn, for n = 1, 2, . . . , such

that

(i) X =
⋃∞

n=1 Xn;

(ii) Xn ⊆ Xn+1 for all n;

(iii) a subset A of X is closed in X if and only if A∩Xn is compact (or closed) for all n.

Further, a topological group that is a kω-space is said to be a kω-group.

Of course, every compact Hausdorff space X is a kω-space with kω-decomposition

X =
⋃∞

n=1 Xn with Xn = X, for all n = 1, 2, . . . . Every connected locally compact

Hausdorff group G is a kω-group ([35, §2]) with kω-decomposition G =
⋃∞

n=1 Kn where

K is any compact symmetric neighbourhood of the identity in G ([56, Corollaries 1 and 2

to Proposition 8]). For example, the additive topological group of all real numbers, with

the Euclidean topology, R, is a kω-space with kω-decomposition R =
⋃∞

n=1[−n, n]. The

importance of kω-spaces to us is a consequence of the fact that the free abelian topological

group on a kω-space is a kω-space.

Notation. Let X be a completely regular space, Y a subspace of X and let n ∈ N.

We shall denote by FAn(Y ) the set of all words in FA(X) whose reduced representation

has length less than or equal to n with respect to Y .

Remark 3.7. If X is a kω-space with kω-decomposition X =
⋃∞

n=1 Xn, then FA(X)

is a kω-space with kω-decomposition FA(X) =
⋃∞

n=1 FAn(Xn) ([35, Corollary 1 to The-

orem 1]). [Note that in every Hausdorff group topology on |FA(X)| inducing the given

topology on X, the set FAn(X) inherits the same compact topology.]

The following lemma uses a now standard application of the Stone–Čech compactifi-

cation technique introduced in [22].

Lemma 3.8. Let X be a completely regular Hausdorff space and let S be a subset of

FA(X) such that S ∩ FAn(X) is compact for all n ∈ N. Then S is closed in FA(X).

Proof. Let βX be the Stone–Čech compactification of X and let FA(βX) be the free

abelian topological group on βX. Then the natural map φ : X → βX, where βX ⊆

FA(βX), can be extended to a continuous, one-to-one homomorphism Φ: FA(X) →

FA(βX). Now, clearly FA(βX) =
⋃∞

n=1 FAn(βX), indeed this is the kω-decomposition

of FA(βX).

Now, consider Φ(S) ⊆ FA(βX). We have

Φ(S) ∩ FAn(βX) = Φ(S ∩ FAn(X)).

As S ∩ FAn(X) is compact, Φ(S) ∩ FAn(βX) is compact. Therefore, Φ(S) is closed in

FA(βX), showing Φ−1(Φ(S)) is closed in FA(X). The proof is completed by noting that

Φ−1(Φ(S)) = S as Φ is one-to-one.
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Notation. Let X be a subset of a group G. We denote the subset
⋃n

i=1(X ∪ X−1)i of

G by gpn(X).

Corollary 3.9 (cf. Theorem 1.10 of [40]). Let X be a completely regular Hausdorff

space and let K be a compact subspace of X containing the distinguished point e of X.

Let G be the subgroup of FA(X) algebraically generated by K. Then G is topologically

isomorphic to FA(K).

Proof. Clearly, G =
⋃∞

n=1 gpn(K) and is algebraically the free abelian group generated

by K \ {e}. Note that gpn(K) is compact, and hence closed in FA(X), for each n as

K is compact. Let A ⊆ G be such that A ∩ gpn(K) is compact for each n ∈ N. Clearly

A ∩ gpn(K) = A ∩ gpn(X) and so by Lemma 3.8, A is closed in FA(X). Thus, A is

closed in G, making G the kω-group with kω-decomposition G =
⋃∞

n=1 gpn(K). So, by

Remark 3.7, G is topologically isomorphic to FA(K).

Notation. Let X and Y be disjoint topological spaces. We denote by X ⊔ Y the free

union of X and Y ; that is, X ⊔ Y is the set X ∪ Y with the coarsest topology inducing

the given topologies on X and Y and having X and Y as open subsets. Further, for each

n = 1, 2, . . . , let Yn be a topological space disjoint from each of Y1, . . . , Yn−1. We denote

by
⊔∞

n=1 Yn the free union of the Yn.

Lemma 3.10. Let X =
⋃∞

n=1 Xn be a kω-decomposition of the kω-space X. For each

n, let Yn be a space homeomorphic to Xn and disjoint from each of Y1, . . . , Yn−1, and

Y =
⊔∞

n=1 Yn. Then FA(X) is a quotient group of FA(Y ).

Proof. For each n ∈ N, let fn : Yn → Xn be the homeomorphism from Yn onto Xn. Define

the mapping φ : Y → X as follows. For each y ∈ Y , there is a unique n ∈ N such that

y ∈ Yn, so let φ(y) = fn(y). Clearly φ is a surjective mapping. We shall show it is also a

quotient mapping. Let O be open in X. Now, φ−1(O) =
⋃∞

n=1(φ
−1(O)∩Yn). Further, for

each n ∈ N, φ−1(O)∩Yn = f−1
n (O), which is open in Yn and hence open in Y . Therefore,

φ−1(O) is the union of open sets in Y and hence it is open in Y . So φ is continuous.

Now let U be a subset of X such that φ−1(U) is open in Y . Then φ−1(U) ∩ Yn is open

in Yn for each n ∈ N. But, fn(φ−1(U) ∩ Yn) = U ∩ Xn is open in Xn for each n ∈ N. As

X =
⋃∞

n=1 Xn is a kω-space, U is open in X. Thus φ is a quotient mapping from Y onto

X and hence, by Lemma 3.4, FA(X) is a quotient group of FA(Y ).

4. The Metrification Mechanism

The Metrification Mechanism proved next will allow us to reduce many problems to the

metric case. The Metrification Mechanism is the key to proving the first equality of our

main result (see §5).

Note that we call a topological space pseudometrizable if its topology is determined

by a pseudometric.
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Theorem 4.1 (Metrification Mechanism). Let (X, ρ) be a pseudometrizable topological

space. Then (X, ρ) is a subspace of the product of a metrizable space (Y, d) and the set

X with the indiscrete topology.

Proof. Define the equivalence relation ∼ on X by x ∼ y if and only if ρ(x, y) = 0, for

x, y ∈ X, and let [x] = {y ∈ X : ρ(x, y) = 0} denote the equivalence class of x under ∼.

Let Y be the set of all such equivalence classes and define f : X → Y by f(x) = [x] for

all x ∈ X. We note that f is surjective and we put the quotient topology on Y so that

U is open in Y if and only if f−1(U) is open in X. Consider O open in X. Then it is

routine to show that f−1(f(O)) = O, which is open. Therefore, f(O) is open in Y and

so f is an open mapping.

We define the metric d on Y by

d([x], [y]) = inf{ρ(a, b) : a ∈ [x], b ∈ [y]}

for all [x], [y] ∈ Y . However, we note that for a ∈ [x] and b ∈ [y],

ρ(a, b) ≤ ρ(a, x) + ρ(x, y) + ρ(y, b) = ρ(x, y)

and

ρ(x, y) ≤ ρ(x, a) + ρ(a, b) + ρ(b, y) = ρ(a, b),

giving ρ(a, b) = ρ(x, y). Therefore our definition for d reduces to d([x], [y]) = ρ(x, y) for

each [x], [y] ∈ Y . From the definition, d is clearly a pseudometric. To see that d is a

metric, we take [x], [y] ∈ Y with d([x], [y]) = ρ(x, y) = 0. Then x ∈ [y] and so [x] = [y].

Next we need to show that d defines the topology on Y . Let x ∈ X with [x] ∈ Y .

Consider Bα(x, ρ) = {z ∈ X : ρ(x, z) < α}, the open sphere of radius α about x ∈ X

under ρ. Let B′
α([x], d) = {[y] ∈ Y : d([x], [y]) < α} denote the open sphere of radius

α about [x] ∈ Y under d. Now, f(Bα(x, ρ)) = {[z] : ρ(x, z) < α} = B′
α([x], d) and so d

defines the required topology on Y .

Finally, we shall show that (X, ρ) is indeed homeomorphic to a subspace of the product

H = (Y, d)×XI where XI is the set X with the indiscrete topology. Consider the mapping

g : (X, ρ) → H given by g(x) = 〈f(x), x〉 for each x ∈ X. Clearly, g is one-to-one. Let U

be an open set in H. Then U = O1 × O2 where O1 is open in (Y, d) and O2 is either Ø

or X. Now, if O2 = Ø, then g−1(U) = Ø, which is open in (X, ρ). On the other hand,

if O2 = X, then g−1(U) = f−1(O1), which is open in (X, ρ). Therefore, g is continuous.

Finally, if O is an open set in (X, ρ), then g(O) = (f(O)×O)∩g(X) = (f(O)×X)∩g(X),

which is open in g(X). Therefore, (X, ρ) is homeomorphic to g(X), a subspace of H.

Notation. If (X, ρ) and (Y, d) are as in the Metrification Mechanism, we refer to (Y, d)

as the metrification of (X, ρ).

Remark 4.2.

(1) We note that the metrification (Y, d) of a pseudometrizable space (X, ρ) is indeed a

quotient space of (X, ρ).

(2) Given a pseudometrizable space (X, ρ), there exists a metrizable space, Y , such that

FA(Y ) is a quotient of FA(X). This is simply an application of the Metrification

Mechanism and Lemma 3.4.
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(3) It is true that a topological group G is topologically isomorphic to a subgroup of

the product of the Hausdorff topological group G
/
{e} and |G|I . This can be shown

by considering the mapping h : G → G
/
{e} × |G|I given by h(g) = 〈f(g), g〉 where

f : G → G
/
{e} is the quotient mapping (cf. [41, proof of Theorem 6.7]). It is routine

to show that h is an embedding.

Further, for a pseudometrizable topological group (G, ρ), the quotient group G
/
{e}

is a metrizable topological group. Indeed, noting that

{e} = {x : ρ(x, e) = 0},

it is clear that G
/
{e} with the metric defined by

d(x{e}, y{e}) = ρ(x, y),

where x, y ∈ G, is the metrification of (G, ρ). Therefore, the metrification of a pseu-

dometrizable topological group is a topological group.

For X a completely regular space, let ρ be a pseudometric on X. We wish to identify

the metrification of (|FA(X)|, ρ′), where |FA(X)| is the group underlying FA(X) and ρ′

is the Graev extension of ρ. To do this we need the following lemma.

Lemma 4.3. Let (X, ρ) be a pseudometric space and let ρ′ be the Graev extension of ρ

to |FA(X)|. Let x = xε1

1 . . . xεn
n , εi = ±1 for i = 1, . . . , n, be the reduced representation

of a word in FA(X) such that ρ′(x, e) = 0 and for each i = 1, . . . , n, ρ(xi, e) 6= 0. Then

x can be written the form x = u1 . . . um where each ui = zi1
z−1
i2

, zi1 ∈ {xj : εj = 1} ⊆ X

and zi2 ∈ {xk : εk = −1} ⊆ X and ρ(zi1
, zi2

) = 0.

Proof. Let W1 and W2 be the optimal ρ-representations for x and e respectively. We note

that by Graev’s analysis ([20, pp. 313–315]) on ρ′, W1 and W2 have length at most n;

that is, W1 is in fact the reduced representation of x. Further, if we write W2 directly

under W1, and we apply Graev’s analysis on these representations, we can divide the

representation (W1, W2) into small blocks, each of which has one of the following two

forms:

Single block:

{
xεi

i

e

Double block:

{
xj x−1

k

xj x−1
j

where xj and x−1
k appear in W1, xj 6= xk.

Note that ρ′(x, e) = R(W1, W2). Suppose the single block

{
xεi

i

e
appears in the represen-

tation (W1, W2). Then ρ(xi, e) contributes to the value of ρ′(x, e). However, ρ(xi, e) 6= 0

and ρ′(x, e) = 0, giving a contradiction. Therefore, all blocks must be double blocks and

the result follows.

The following proposition applies the Metrification Mechanism to (X, ρ), a pseu-

dometrizable topological space, and (|FA(X)|, ρ′), the free abelian group on X \ {e}

with the Graev extension of ρ. We see that if (Y, d) is the metrification of (X, ρ) and we

take the free abelian group on Y with the Graev extension of d, the result is exactly the

metrification of (|FA(X)|, ρ′).
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Proposition 4.4. Let (X, ρ) be a pseudometric topological space. Let (Y, d) be the met-

rification of (X, ρ). Let ρ′ and d′ be the Graev extensions of ρ and d to FX , the group

underlying FA(X, ρ), and FY , the group underlying FA(Y, d), respectively. Then the

metrification of (FX , ρ′) is a topological group and is topologically isomorphic to (FY , d′);

indeed, (FY , d′) is isometrically isomorphic to the metrification of (FX , ρ′).

Proof. The notation for (X, ρ) and (Y, d) will be as in the Metrification Mechanism,

Theorem 4.1. Note that [e] ∈ Y is the identity element in FY . We shall denote by(
FX

/
{e}, h

)
the metrification of (FX , ρ′) as per Remark 4.2(3).

Let w ∈ FY have reduced representation w = [x1]
ε1 . . . [xn]εn , where εi = ±1 for each

i = 1, . . . , n. We define the map f : FY → FX

/
{e} by

f([x1]
ε1 . . . [xn]εn) = xε1

1 . . . xεn

n {e}.

It is routine to show that f is well-defined. Further, f is clearly a surjective group homo-

morphism. We shall show that f is a topological group isomorphism from (FY , d′) onto

(FX

/
{e}, h).

To show f is one-to-one, let

w1 = [x1]
ε1 . . . [xn]εn , εi = ±1 for each i = 1, . . . , n,

and

w2 = [y1]
η1 . . . [ym]ηm , ηi = ±1 for each i = 1, . . . , m,

be words in FY , each in its reduced representation. We note that if [xi] = [xj ],

i 6= j, then εi = εj , and similarly [yi] = [yj ] implies ηi = ηj . Also, ρ(xi, e) 6= 0 for

each i = 1, . . . , n and ρ(yj , e) 6= 0 for each j = 1, . . . , m. Now, let f(w1) = f(w2). Then

xε1

1 . . . xεn
n {e} = yη1

1 . . . yηm
m {e} and so ρ′(xε1

1 . . . xεn
n , yη1

1 . . . yηm
m ) = 0. By the invariance of

ρ′, ρ′(xε1

1 . . . xεn
n y−ηm

m . . . y−η1

1 , e) = 0. By Lemma 4.3, the word xε1

1 . . . xεn
n y−ηm

m . . . y−η1

1

can be written in the form u1 . . . uq where ui = z2i−1z
−1
2i such that ρ(z2i−1, z2i) = 0 with

z2i−1 ∈ {xi : εi = 1} ∪ {yj : ηj = −1} ⊆ X, z2i ∈ {xi : εi = −1} ∪ {yj : ηj = 1} ⊆ X.

Suppose for some ui, z2i−1 = xi and z2i = xj , i 6= j. Clearly εi 6= εj . However, as

ρ(z2i−1, z2i) = 0, [z2i−1] = [z2i], that is, [xi] = [xj ], implying εi = εj . This is contradic-

tion, so for each ui, both z2i−1 and z2i cannot be letters from {x1, . . . , xn}. Similarly, for

each ui, both z2i−1 and z2i cannot be letters from {y1, . . . , ym}. Therefore, for each ui

one letter is from xε1

1 . . . xεn
n and the other from y−ηm

m . . . y−η1

1 . This implies that each xεi

i

is paired with a y
−ηj

j such that ρ(xi, yj) = 0, giving [xi] = [yj ]. Further, m = n and using

commutativity of FY , we can form representations of aw1 and w2 by taking one letter

from each pair [xi] = [yi]. This gives w1 = w2 and so f is one-to-one.

To complete the proof, we show that d′ and h are isometric. We must show that for

two words w1 and w2 in FY , the equality d′(w1, w2) = h(f(w1), f(w2)) holds. Recall that

for x{e} and y{e} in FX

/
{e}, h(x{e}, y{e}) = ρ′(x, y).

Now, we note that ρ′(xε, yη) = d′([x]ε, [y]η), where xε, yη ∈ X ∪ X−1 and [x]ε, [y]η ∈

Y ∪ Y −1. Next we will show that for a word w ∈ FY ,

d′(w, [e]) = h(f(w), f([e])).
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Let

w = [x1]
ε1 . . . [xn]εn , εi = ±1 for i = 1, . . . , n,

[e] = [a1]
η1 . . . [an]ηn , ηi = ±1 for i = 1, . . . , n,

be an optimal d-representation for (w, [e]). Then

d′(w, [e]) =

n∑

i=1

d′([xi]
εi , [ai]

ηi) =

n∑

i=1

ρ′(xεi

i , aηi

i ) ≥ ρ′(xε1

1 . . . xεn

n , aη1

1 . . . aηn

n ).

Now, f(w) = xε1

1 . . . xεn
n {e}, and f([e]) = aη1

1 . . . aηn
n {e}, giving

h(f(w), f([e])) = ρ′(xε1

1 . . . xεn

n , aη1

1 . . . aηn

n ),

and hence d′(w, [e]) ≥ h(f(w), f([e])).

Conversely, take x = xε1

1 . . . xεn
n . Then h(f(w), f([e])) = ρ′(x, e). Further, let

x = bξ1

1 . . . bξn

n , ξi = ±1 for i = 1, . . . , n,

e = cγ1

1 . . . cγn

n , γi = ±1 for i = 1, . . . , n,

be an optimal ρ-representation for (x, e) (in FX). Then

ρ′(x, e) =

n∑

i=1

ρ′(bξi

i , cγi

i ) =

n∑

i=1

d′([bi]
ξi , [ci]

γi) ≥ d′([b1]
ξ1 . . . [bn]ξn , [c1]

γ1 . . . [cn]γn).

Now as bξ1

1 . . . bξn
n = xε1

1 . . . xεn
n , we have

f([b1]
ξ1 . . . [bn]ξn) = xε1

1 . . . xεn

n {e} = f([x1]
ε1 . . . [xn]εn) = f(w).

Therefore, w = [b1]
ξ1 . . . [bn]ξn . Similarly, [e] = [c1]

γ1 . . . [cn]γn and we have d′(w, [e])

≤ h(f(w), f([e])), giving equality.

Finally, let w1, w2 ∈ FA(Y ). Then

d′(w1, w2) = d′(w1w
−1
2 , [e]) = h(f(w1)[f(w2)]

−1, {e}) = h(f(w1), f(w2)).

Lemma 4.5. Let X be a completely regular space. Then FA(X) is topologically isomor-

phic to a subgroup of the product of an indiscrete abelian group with a product of free

abelian topological groups on metric spaces.

Proof. Let ρi, i ∈ I, be a family of continuous pseudometrics on the space X which give

rise to the given completely regular topology on X. For each i ∈ I, let (Yi, di) be the

metrification of (X, ρi). Let (|FA(X)|, ρ′i) be the free abelian group on X \ {e} with ρ′i
the Graev extension of the pseudometric ρi. Further, let (|FA(Yi)|, d

′
i) be the free abelian

group on Yi \ {[e]i} with d′i the Graev extension of the metric di. By Proposition 4.4,

(|FA(Yi)|, d
′
i) is the metrification of (|FA(X)|, ρ′i). Noting Theorem 4.1, we see that there

exists a topological group embedding gi : (|FA(X)|, ρ′i) → (|FA(Yi)|, d
′
i) × Ki where Ki

is |FA(X)| with the indiscrete topology.

Let H =
∏

i∈I(|FA(X)|, ρ′i). By Lemma 3.3, FA(X) is topologically isomorphic to

a subgroup of H where the embedding f : FA(X) → H is given by f(w) =
∏

i∈I wi,

wi = w ∈ FA(X) for each i ∈ I.
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Consider Φ : FA(X) →
∏

i∈I [(|FA(Yi)|, d
′
i) × Ki] given by Φ(w) =

∏
i∈I gi(w).

Clearly, Φ is continuous. Also as each gi is one-to-one and an open mapping onto the

image of (|FA(X)|, ρ′i), the map Φ is also one-to-one and open onto Φ(FA(X)). Thus Φ

is a topological group embedding and Φ|X is a homeomorphism of X onto its image in∏
i∈I [(Yi, di) × Ki].

For each i ∈ I, let FA(Yi, di) be the free abelian topological group on the metric space

(Yi, di). We note that both (|FA(Yi)|, d
′
i) and FA(Yi, di) induce the topology (Yi, di) on Yi,

with FA(Yi, di) having the finer topology. Now, let Ψ : FA(X) →
∏

i∈I (FA(Yi, di) × Ki)

be given by Ψ(w) = Φ(w) for each w ∈ FA(X). Let T ′ be the topology on |FA(X)|

for which Ψ is a (topological) embedding. If we denote the topology on FA(X) by T ,

then clearly T ⊆ T ′. Considering Ψ(X) = Φ(X), we note Ψ(X) is a subspace of∏
i∈I ((Yi, di) × Ki). Therefore (|FA(X)|, T ′) induces the same topology on X as does

FA(X) (with T ). However, FA(X) has the finest group topology that induces the given

topology on X, giving T ′ = T . Thus FA(X) is topologically isomorphic to a subgroup of∏
i∈I (FA(Yi, di) × Ki). Further,

∏
i∈I (FA(Yi, di) × Ki) is topologically isomorphic to∏

i∈I FA(Yi, di) × K, where K =
∏

i∈I |FA(X)|I , an indiscrete abelian group, and the

result follows.

We now present the main theorem for this section, which brings the ideas in this

section together and allows us to describe the variety generated by FA[0, 1].

Theorem 4.6. Let X be a completely regular Hausdorff space. Then FA(X) is topolog-

ically isomorphic to a subgroup of
∏

i∈I FA(Yi), where each Yi is a metrizable space. If

X is also a compact space, then each Yi is a compact metrizable space and a quotient

space of X, and each FA(Yi) is a quotient group of FA(X).

Proof. Let the topology on X be defined by the family of pseudometrics {ρi : i ∈ I}

and for each i ∈ I, let (Yi, di) be the metrification of (X, ρi). By Lemma 4.5, FA(X) is

topologically isomorphic to a subgroup of
∏

i∈I FA(Yi, di) × K where K is an indiscrete

abelian group. Let Φ be the topological group isomorphism of FA(X) onto its image in∏
i∈I FA(Yi, di) × K, as in Lemma 4.5. Let p be the projection of

∏
i∈I FA(Yi, di) × K

onto
∏

i∈I FA(Yi, di) and consider γ = p ◦ Φ. Clearly, γ is a continuous homomorphism

of FA(X) into
∏

i∈I FA(Yi, di). As K is indiscrete, γ is an open mapping of FA(X) onto

its image γ(FA(X)) in
∏

i∈I FA(Yi, di).

We now show that γ is one-to-one. Let w ∈ FA(X) such that w 6= e. As FA(X) is

Hausdorff, there exists k ∈ I such that ρ′k(w, e) 6= 0. Let (|FA(Yk)|, d′k) be the group

underlying FA(Yk) with d′k the Graev extension of the metric dk. As (|FA(Yk)|, d′k) is

the metrification of d′k([w]k, [e]k) 6= 0, where [w]k and [e]k are the respective images

of w and e in FA(Yk). This implies that [w]k 6= [e]k for some k ∈ I and so γ(w) is

not the identity in
∏

i∈I FA(Yi, di). Therefore, γ is one-to-one and hence an embed-

ding.

To complete the proof, observe that (Yi, di) is a continuous image of (X, ρi), indeed

of X, and so (Yi, di) is compact. Further, (Yi, di) is a quotient space of X and so FA(Yi, di)

is a quotient of FA(X) by Lemma 3.4.
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5. The variety generated by FA[0, 1]

In this section, we will commence our proof of the Main Theorem by establishing the

following interesting result.

Theorem A. The variety of topological groups generated by FA[0, 1] is precisely the

variety of topological groups generated by the class of all abelian kω-groups; that is,

V(FA[0, 1]) = V(Kω).

The variety of topological groups generated by FA[0, 1] is trivially contained in V(Kω).

We must therefore establish that V(Kω) is contained in V(FA[0, 1]).

The first two steps in our proof of Theorem A call on Remark 3.2(5), Remark 3.7 and

Lemma 3.10 respectively.

Step 1. The variety of topological groups generated by the class of all abelian kω-groups,

V(Kω), is the same as the variety of topological groups generated by the class of all free

abelian topological groups on all kω-spaces.

Step 2. V(Kω) equals the variety of topological groups generated by the class of all free

abelian topological groups on countable free unions of compact Hausdorff spaces.

In the remainder of this section, we shall see that the free abelian topological group

on any compact Hausdorff space is contained in V(FA[0, 1]). This result will then allow

us to prove that V(FA[0, 1]) equals V(Kω).

As a first step towards establishing that FA(X) is contained in V(FA[0, 1]) for every

compact Hausdorff space X, we consider the case when X is a compact metrizable space.

Proposition 5.1. Let Y be a compact metrizable space. Then FA(Y ) is topologically

isormorphic to a subgroup of a quotient group of FA[0, 1], and hence, FA(Y ) is contained

in V(FA[0, 1]).

Proof. Observe that Y can be embedded in [0, 1]ℵ0 ([17, Chapter IX, Section 9, Corol-

lary 9.2]). As Y is compact, by Corollary 3.9, FA(Y ) is topologically isomorphic to a

closed subgroup of FA[0, 1]ℵ0 . Now noting that [0, 1]ℵ0 is a compact connected locally

connected metrizable topological space, by the Hahn–Mazurkiewicz Theorem ([2, Part II,

Chapter 1, §1, p. 100]), it is a continuous image of [0, 1], and hence a quotient space of

[0, 1]. Thus, by Lemma 3.4, FA[0, 1]ℵ0 is a quotient group of FA[0, 1] and the result

follows.

We now use the Metrification Mechanism and Proposition 5.1 to obtain the desired

result for any compact Hausdorff space.

Corollary 5.2. Let X be any compact Hausdorff space. Then FA(X) is contained in

V(FA[0, 1]).

Proof. By Theorem 4.6, FA(X) is topologically isomorphic to a subgroup of a product

of free abelian topological groups on compact metrizable spaces. From Proposition 5.1,

each of these free abelian topological groups is in V(FA[0, 1]) and the result follows.
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We now turn our attention back to the problem of establishing that V(FA[0, 1]) is

equal to V(Kω), where Kω is the class of all abelian kω-groups. Using Step 2, it now

suffices to show that the free abelian topological group on any countable free union of

compact Hausdorff spaces is in V(FA[0, 1]).

Notation. We will denote by gp(X) the algebraic group generated by X.

Proposition 5.3. Let Y =
⊔∞

n=1 Yn, where each Yn is a compact Hausdorff space. If Y

is a subspace of a compact Hausdorff space X, then FA(Y ) is topologically isomorphic

to a closed subgroup of FA(X). In particular, FA(Y ) is topologically isomorphic to a

subgroup of FA([0, 1]ℵ) for some cardinal number ℵ.

Proof. [Warning . We are not asserting in the statement that the subgroup of FA(X)

algebraically generated by Y is FA(Y ).] Without loss of generality, let e ∈ Y1 ⊆ X.

Let Z be the subspace of FA(X) defined by Z =
⋃∞

n=1 Zn, where Zn = {yn : y ∈ Yn}.

Now, Z \ {e} freely generates the group gp(Z). Further, Z ∩ FAn(X) =
⋃n

i=1 Zi,

which is compact. Therefore, Z is closed in FA(X) by Lemma 3.8. A similar argu-

ment shows that for each n ∈ N, Z \ Zn is closed in FA(X) and so Zn is open in

Z. Thus, Z is a free union of the spaces Zn, n = 1, 2, . . . . So Z is homeomorphic

to Y . Next, let Z ′
n = Z1 ∪ · · · ∪ Zn. Then Z is a kω-space with kω-decomposition

Z =
⋃∞

n=1 Z ′
n. Now, from the definition of Zn we see that gp(Z) ∩ FAn(X) ⊆ gpn(Z ′

n)

and so by Theorem 3 of [35], gp(Z) is closed in FA(X) and is the free abelian topolog-

ical group on Z, FA(Z). Further, as Z is homeomorphic to Y , FA(Y ) is topologically

isomorphic to FA(Z). Thus, FA(Y ) is topologically isomorphic to a closed subgroup

of FA(X).

Finally, as Y is completely regular Hausdorff, it can be embedded in X = [0, 1]ℵ for

some cardinal ℵ ([33, Chapter 4, Theorem 7]). The result follows by noting that [0, 1] is

compact Hausdorff.

Step 2 and Proposition 5.3 now allow us to deduce the final step in the proof of

Theorem A.

Step 3. V(Kω) equals the variety of topological groups generated by the class of all free

abelian topological groups on compact spaces.

Theorem A follows from Step 3 and Corollary 5.2.

Remark 5.4. V(Kω) is a singly-generated variety and hence is a T (m)-variety, indeed,

V(Kω) is a T (c+)-variety, where c is the cardinality of the continuum.

Open Questions. Is the variety of topological groups generated by the class of all

kω-groups equal to the variety of topological groups generated by the free topological

group on [0, 1]? If not, is the variety of topological groups generated by all kω-groups

a singly-generated variety? (We note that it can be proved that the variety of topo-

logical groups generated by the class of all connected locally compact groups is singly-

generated.)
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6. Locally compact abelian groups and kω-groups

In this section, we will prove the following part of the Main Theorem.

Theorem B.

A = V(B)
/ ∖

V(DR) = V(LA) V(Cσ)
∣∣∣

∣∣∣

V(D) V(Kω) = V(FA[0, 1])

Clearly, the class of all abelian σ-compact groups, Cσ, contains the class of all

abelian kω groups, Kω. Therefore, we will compare V(Kω) with V(Cσ).

We will say a variety of topological groups is closed under completions if every Haus-

dorff topological group G contained in the variety has a completion, Ĝ, in the variety.

Proposition 6.1. The variety V(Kω) is closed under completions.

Proof. Let G be a Hausdorff group in V(Kω). We know that G ∈ SCQP (Kω). Now,

Kω is closed under P and Q ([19, Results 4, 11]) and so G is topologically isomorphic

to a subgroup of K =
∏

i∈I Ki, a product of kω-groups contained in QP (Kω). Now K

is complete, since kω-groups are complete ([27, Theorem 2]), and so the closure of the

group, G, as a subgroup of K is complete and G = Ĝ ∈ V(Kω), giving the result.

We will see shortly that V(Cσ) is not closed under completions. But first we introduce

the concepts of a “miikika” class and a “palirika” (2) class of topological groups. This

will allow us to prove results about a number of different classes without dealing with

each one individually.

Definition 6.2. Let Ω be a class of topological groups. Then Ω is said to be a miikika

class if it is closed under S, Q and P . Further, Ω is said to be a palirika class if it is a

miikika class and is also closed under S.

Example 6.3. The following classes of topological groups are examples of miikika classes

that are not palirika classes.

(a) The class of all (abelian) σ-compact groups.

(b) The class of all locally compact (abelian) Hausdorff groups.

(c) The class of all (abelian) kω-groups.

(d) The class of all (abelian) Lie groups.

The following classes of topological groups are examples of palirika classes.

(2) Miikika (´mi kı ka) and palirika ( ṕa lı rı ka) are the Paakantyi words for “clever” and
“nice” respectively. Paakantyi is the language of Aboriginal people living around the Darling
River mainly in southwestern New South Wales, Australia [74].
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(e) The class of all discrete (abelian) groups.

(f) The class of all (abelian) separable metrizable groups.

(g) The class of all (abelian) topological groups of cardinality less than or equal to m for

some infinite cardinal m.

The following are examples of classes that are not miikika classes.

(h) The class of all (abelian) pro-Lie groups ([25, Corollary 4.11, p. 179]).

(i) The class of all complete topological groups (see [71]).

Lemma 6.4.

(i) Let Ω be a miikika class. Then any complete UFSS-group in V(Ω) is in Ω. In partic-

ular, any discrete group or Banach space in V(Ω) is in Ω.

(ii) Let Ω be a palirika class. Then any UFSS-group in V(Ω) is in Ω.

Proof. To prove part (i), let G be a complete UFSS-group in V(Ω). By Remark 2.8

G ∈ SQ SP (Ω). As G is complete, G ∈ S Q SP (Ω). The result follows from Definition 6.2.

The proof of part (ii) is similarly trivial.

Proposition 6.5. The variety V(Cσ) contains no infinite-dimensional Banach spaces.

Further, any discrete group contained in V(Cσ) is countable.

Proof. Let B be a Banach space and D a discrete group, both contained in V(Cσ).

Noting that Cσ is a miikika class, both B and D are σ-compact by Lemma 6.4(i). We see

immediately that D is countable.

Suppose B is infinite-dimensional. As B is σ-compact metrizable, B is separable. Now

Theorem 5.2 of Chapter VI in [5] says that any separable Fréchet space, in this case B,

is homeomorphic to Rℵ0 . However, it is clear that Rℵ0 is not σ-compact, giving us a

contradiction. Thus B cannot be infinite-dimensional.

(An alternative proof using less powerful machinery goes as follows: A compact subset

of an infinite-dimensional Banach space is nowhere dense, otherwise, being closed, it would

contain some ball with positive radius, and it is well known that a ball in an infinite-

dimensional normed vector space is never compact. It is then enough to apply the Baire

Theorem that a complete metric space is not a countable union of nowhere dense subsets.

This shows that an infinite-dimensional Banach space is not σ-compact.)

Note that from Proposition 6.5, we see that V(Cσ) is properly contained in A.

Proposition 6.6. The class Cσ contains all countable-dimensional (real) topological vec-

tor spaces.

Proof. Let N be a countable-dimensional (real) topological vector space and let S be

countable vector space basis for N . Then N = gp(R.S) where R.S =
⋃

s∈S{rs : r ∈ R}.

Further, {rs : r ∈ R} =
⋃∞

i=1{rs : r ∈ [−i, i]}. Clearly, {rs : r ∈ [−i, i]} is compact for

each s ∈ S and so N is a countable union of compact sets and hence is in Cσ.

Proposition 6.7. The variety V(Cσ) is not closed under completions.
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Proof. Let N be a countably infinite-dimensional normed vector space. By Proposi-

tion 6.6, N ∈ V(Cσ). However, N̂ , the completion of N , is an infinite-dimensional Banach

space and by Proposition 6.5 is not in V(Cσ), giving the result.

The following corollary follows immediately from Propositions 6.1 and 6.7, and the

fact that every kω-space is σ-compact.

Corollary 6.8. The variety V(Kω) is properly contained in V(Cσ).

We now turn our attention to a rich variety of topological groups, V(LA). First recall

the Principal Structure Theorem for locally compact abelian groups.

Theorem 6.9 (Principal Structure Theorem, [23, Theorem 24.30]). Every locally compact

abelian group G is topologically isomorphic to Rn×H, where H is a locally compact abelian

group containing a compact open subgroup and n is a non-negative integer.

Proposition 6.10. The variety V(LA) properly contains V(D) and neither is a singly-

generated variety of topological groups.

Proof. Clearly, V(D) ⊆ V(LA).

Suppose R ∈ V(D). As D is a miikika class and R is a complete UFSS-group, by

Lemma 6.4(i), R must be discrete. This is clearly a contradiction. So R 6∈ V(D) and

V(D) is a proper subvariety of V(LA).

Now, suppose V(D) is singly-generated. Then it is a T (m)-variety for some infinite

cardinal m (Remark 2.10). However, there exists a discrete group of cardinal m which is

not a T (m)-group and we have a contradiction. Therefore, V(D) is not singly-generated

and the result follows from Remark 2.10.

The next proposition shows that it suffices to add the locally compact abelian group

R to the class of all discrete abelian groups to obtain the variety generated by LA. We

use the following lemma, which is folklore.

Lemma 6.11 ([16, Lemma 3.1]). Let G be a locally compact abelian group containing

an open compact subgroup. Then G is topologically isomorphic to a closed subgroup of a

product Tm × D, where m is a cardinal and D is a discrete abelian group.

Proof. Let K be an open compact subgroup of G. Then there exists an embedding φ :

K → Tm for some cardinal m. As Tm is divisible, φ can be extended to a homomorphism

Φ : G → Tm. Now, Φ is continuous as K is open in G and the restriction φ to K is

continuous. Let h : G → G/K be the canonical homomorphism to the quotient group

D = G/K. Note that as K is open, D is discrete. Consider the mapping f : G → Tm ×D

given by f(g) = 〈Φ(g), h(g)〉. Clearly, f is a continuous homomorphism. Further, the

kernel of f is the identity of G as φ is one-to-one on K. Since the restriction of f to the

open subgroup K coincides with the embedding φ : K → Tm, f is also an open mapping,

and hence an embedding, which completes the proof.

Proposition 6.12. The variety V(LA) equals V(DR), the variety generated by the class

of all discrete abelian groups and R.
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Proof. The result follows from Proposition 6.10, the Principal Structure Theorem, and

Lemma 6.11.

To establish that V(LA) is not the variety of all abelian topological groups, we consider

connected abelian topological groups that are contained in V(LA).

Proposition 6.13. Let G be a complete Hausdorff topological group contained in V(LA).

Then the connected component of the identity of G is topologically isomorphic to Rℵ × K,

where ℵ is some cardinal number and K is a connected compact Hausdorff abelian topo-

logical group.

Proof. Let G0 denote the connected component of the identity of G. By Theorem 2.7,

G ∈ SCQP (LA) and noting that G0 is a closed subgroup of the complete G, we have G0 ∈

SCQP (LA) = SC(LA). Now by [54] (Theorem on p.123), a connected closed subgroup

of a product of locally compact Hausdorff abelian groups is topologically isomorphic to

Rℵ × K, for some cardinal number ℵ and some compact connected Hausdorff abelian

group K, giving the result.

Lemma 6.14 ([8, Corollary 1 to Theorem 2]). Let Ω be a family of locally compact abelian

Hausdorff groups. Then every Hausdorff topological group G in V(Ω) has a completion

Ĝ in V(Ω).

Proof. By Theorem 2.7, G ∈ SCQP (Ω). Now, the class of all locally compact abelian

Hausdorff groups is closed under Q, and P and so G is topologically isomorphic to a

subgroup of a product, H, of locally compact abelian Hausdorff groups contained in

QP (Ω). As every product of locally compact abelian Hausdorff groups is complete and

every closed subgroup of a complete group is complete, the completion, Ĝ, of G satisfies

Ĝ = G as a subgroup of H. Thus, Ĝ ∈ V(Ω).

Remark 6.15. By Example 5.1 of [25] (p. 212) every locally compact abelian group is an

abelian pro-Lie group. Further, by Definition C of [25] (p. 161) every pro-Lie group is a

closed subgroup of a product of (finite-dimensional real) Lie groups. So, V(LA) = V(AL),

where AL is the class of all abelian Lie groups. If a Hausdorff group G is contained in

V(AL) then G ∈ SCQP (AL). As AL is closed under Q and P , G ∈ SC(AL) and as the

product of pro-Lie groups is a pro-Lie group, G is a subgroup of a pro-Lie group. If G

is a complete Hausdorff topological group in V(LA), then G is a pro-Lie group as, by

Theorem 3.35 of [25] (p. 158), every closed subgroup of a pro-Lie group is a pro-Lie group.

By Lemma 5.12 of [25] (p. 221), every connected pro-Lie group is topologically isomorphic

to Rℵ × K, for some cardinal number ℵ and some compact connected Hausdorff abelian

group K. This remark reproves Lemma 6.14 but extends the result to show that every

complete Hausdorff topological group in V(LA) is a pro-Lie group.

We now show the connected abelian topological groups contained in V(LA) are in the

variety of topological groups generated by R.

Proposition 6.16. Let G be a Hausdorff connected abelian topological group contained

in V(LA). Then G ∈ V(R).



26 C. E. McPhail and S. A. Morris

Proof. By Lemma 6.14, the completion, Ĝ, of G is in V(LA). Then, by Proposition

6.13, Ĝ is topologically isomorphic to Rℵ ×K, where K is compact connected Hausdorff

abelian and ℵ is some cardinal number. Therefore G ∈ V(R) since every compact Haus-

dorff abelian topological group is topologically isomorphic to a subgroup of a product of

copies of T ([56, Corollary 1 to Theorem 14]) and is thus contained in V(R). Therefore,

G ∈ V(R).

Theorem 6.17. A normed vector space contained in V(LA) is finite-dimensional.

Proof. By Lemma 6.14, the completion, Ĝ, of G (a Banach space) is contained in V(LA).

As LA is a miikika class, Ĝ ∈ LA. Therefore, Ĝ, indeed G, is finite-dimensional.

From Proposition 6.16 and Theorem 6.17, we see that V(LA) is not equal to A. Indeed,

V(LA) is relatively small, despite not being singly-generated.

To complete the proof of Theorem B, we establish that there are no further contain-

ment relationships between V(Kω), V(Cσ), V(D) and V(LA).

Lemma 6.18. Let Z be the discrete additive group of integers. Then FA(Z) is topologically

isomorphic to a subgroup of FA[0, 1].

Proof. By Theorem 1 of [32], FA(0, 1) is topologically isomorphic to a subgroup

of FA[0, 1]. Now Z is homeomorphic to a closed subspace of (0, 1), a kω-space. Thus,

by Theorem 3 of [35], the group algebraically generated by Z in FA(0, 1) is topologi-

cally isomorphic to FA(Z). Therefore, FA(Z) is topologically isomorphic to a subgroup

of FA[0, 1].

Lemma 6.19 (cf. [43, Lemma 2]). Let D be a discrete group in V(R). Then D is finitely

generated.

Proof. By Remark 2.8, D ∈ SQP (R). Therefore, D is a subgroup of H, where H is a com-

pactly generated locally compact Hausdorff abelian topological group. By Theorem 9.14

of [23], H is topologically isomorphic to Ra × Zb × F , where F is a compact group and

a and b are non-negative integers.

Let Y be the subgroup of D consisting of all elements of finite order and X be the

complement of Y in D. We will show that both Y and the group generated by X, gp(X),

are finitely generated, and hence so too is D.

Let S be any finite subset of X. Then the group generated by S is Zr for some non-

negative integer r. By Theorem 9.12 of [23], r ≤ a + b. That is, any finitely generated

subgroup of gp(X) is generated by a + b elements. Thus gp(X) is finitely generated.

Let p1, p2 and p3 be the natural projection mappings of H onto Ra, Zb and F ,

respectively. Let y be any element in Y . Then, since y is of finite order, p1(y) = e1

and p2(y) = e2, where e1 and e2 denote identity elements. Thus p3(Y ) is topologically

isomorphic to Y . That is, p3(Y ) is a discrete subgroup of F . Since F is compact, this

implies p3(Y ), and hence Y , is a finite set. The proof is complete.

Proposition 6.20. The topological group FA[0, 1] is not in V(LA).
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Proof. Suppose FA[0, 1] ∈ V(LA). We note that any group algebraically generated by a

connected set containing the identity is connected. Thus as [0, 1] is connected Hausdorff,

FA[0, 1] is also connected Hausdorff and so from Proposition 6.16, FA[0, 1] ∈ V(R). Now

any discrete subgroup D of FA[0, 1] is also in V(R) and hence by Lemma 6.19, D is

finitely generated. However, by Lemma 6.18, FA(Z) is a discrete subgroup of FA[0, 1]

which is not finitely generated. Thus, we have a contradiction and so FA[0, 1] is not

contained in V(LA).

Remark 6.21. Proposition 6.20 tells us that V(Cσ) and V(Kω) are not subvarieties of

V(LA). Further, as V(LA) and V(D) contain uncountable discrete groups which are not

in V(Cσ) we see that V(D) and V(LA) are not contained in V(Cσ).

This completes the proof of Theorem B.

7. Marrang properties

Definition 7.1. Let P be a property of topological spaces. A topological space X is

said to be locally P if each neighbourhood of each point of X contains a neighbourhood

of that point with property P.

Remark 7.2. Clearly a topological group is locally P if each neighbourhood of the

identity contains a neighbourhood of the identity with property P.

Local properties we consider in this paper share a number of useful characteristics.

Therefore, we introduce the concept of a “marrang”(3) property, which has these charac-

teristics. We are then able to establish a number of general results which can be applied

later.

Definition 7.3. Let P be a topological property. Then P is said to be a marrang prop-

erty if

(i) P is preserved under finite products;

(ii) P is preserved under quotients;

(iii) every singleton space {x} has property P;

(iv) any topological group that has property P is also locally P;

(v) any topological group G algebraically generated by a subspace X with property P,

also has property P.

Lemma 7.4. Let P be a marrang property. Then a topological group G is locally P if and

only if G has an open subgroup with the property P.

Proof. Let G have an open subgroup H with the property P. By Definition 7.3(iv), H

is locally P. Let U be a neighbourhood of the identity e of G. Then U ∩ H is clearly

a neighbourhood of e in H and so contains a neighbourhood of e with the property P.

Therefore, U contains a neighbourhood of e with property P, implying G is locally P.

(3) Marrang (´ma [r]ang –rolled r) is the Wiradjuri word for “good” or “friend”. Wiradjuri
is one of the largest Aboriginal language groupings in New South Wales, Australia [74].
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Conversely, if G is a locally P group, then there exists a neighbourhood U of the identity

with property P. From Definition 7.3(v), the open subgroup gp(U) has property P and

the result follows.

The previous lemma gives an alternative definition for a locally P group when P is a

marrang property. We shall use it in all cases without reference.

Remark 7.5.

(1) Let P be a marrang property. Then a connected locally P group has the property P.

(2) Let P be a marrang property and X a completely regular space with property P.

Then FA(X) has property P from Definition 7.3(v).

(3) It follows from Definition 7.3(iii) that if P is a marrang property, every discrete space

is locally P.

Example 7.6. For an infinite cardinal m, a locally-m group is a topological group with

a neighbourhood of the identity of cardinality less than or equal to m. In other words,

a group G is locally-m if and only if it is locally P1, where P1 is the property of having

cardinality less than or equal to m.

The property P1 of having cardinality less than or equal to m is a marrang property.

Note that σ-compactness and separability will be seen to be marrang properties.

Lemma 7.7. If P is a marrang property, then the class of all abelian locally P groups is

closed under Q and P .

Proof. Let G be a locally P group with open subgroup H that has property P. Clearly,

if F is a quotient topological group of G with quotient homomorphism f : G → F , then

f(H) is an open subgroup of F with property P and so F is locally P. Further, let Gi

be a locally P group for each i = 1, . . . , n, and let Hi be an open subgroup of Gi with

property P. Clearly
∏n

i=1 Hi is an open subgroup of
∏n

i=1 Gi that has property P and

so
∏n

i=1 Gi is locally P.

Notation. Let P be a marrang property. We shall denote by P the class of all abelian

topological groups with property P and by LP the class of all abelian locally P topological

groups.

Proposition 7.8. Let P be a marrang property and G a connected Hausdorff abelian

topological group. Then G ∈ V(LP) if and only if G ∈ V(P).

Proof. Clearly, if G ∈ V(P), then G ∈ V(LP) (see Definition 7.3(iv)).

Let G ∈ V(LP), then G ∈ SCQP (LP) (see Theorem 2.7). By Lemma 7.7, LP is

closed under Q and P and so G ∈ SC(LP). Therefore, G is topologically isomorphic to

a subgroup of
∏

i∈I Li for some index set I, where each Li has an open (and closed)

subgroup, Hi, with property P. For j ∈ I, let pj be the projection map from
∏

i∈I Li

onto Lj . As pj(G) is connected, pj(G) is a subgroup of Hj . Therefore, G is topologically

isomorphic to a subgroup of
∏

i∈I Hi, where each Hi has property P. Thus, G ∈ V(P),

giving the result.
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As an immediate consequence of Proposition 7.8, we have the following result con-

cerning normed vector spaces.

Corollary 7.9. Let P be a marrang property and N a normed vector space. Then

N ∈ V(LP) if and only if N ∈ V(P).

Theorem 7.10. Let P be a marrang property. Then V(LP) = V(P ∪ D).

Proof. As all abelian topological groups with property P and all discrete abelian groups

are locally P (see Remark 7.5(3)), V(P ∪ D) ⊆ V(LP).

Let G ∈ LP . Then G has an open subgroup H which has property P. Note that G has

the finest group topology which induces the given topology on H. Choose one element

out of each coset of H different from H and form the set D which is clearly discrete and

disjoint from H. Thus, H ⊔D = H ∪D is a subspace of G, and G has the finest topology

which induces the given topology on H ⊔ D, for if there were a finer topology on G that

induces the given topology on H⊔D, it would also induce the given topology on H, which

is a contradiction. Further, G = gp(H ∪D) and so by Lemma 3.5, G is a quotient group

of FA(H ⊔D). By Theorem 6 of [48] we find that FA(H ⊔D) is topologically isomorphic

to FA(H) × FA(D). By Remark 7.5(2), FA(H) has property P and we know FA(D)

is discrete. So FA(H) × FA(D) ∈ V(P ∪ D). Therefore, G ∈ V(P ∪ D) and the result

follows.

8. Locally σ-compact groups

In this section, we extend Theorem B to the following.

Theorem C.

A = V(B)
∣∣∣

V(Cσ ∪ LA) = V(Cσ ∪ D) = V(Lσ)
/ ∖

V(DR) = V(LA) V(Cσ)
∣∣∣

∣∣∣

V(D) V(Kω) = V(FA[0, 1])

Definition 8.1. A topological space G is said to be locally σ-compact if each neighbour-

hood of each point in G contains a σ-compact neighbourhood of that point.

Proposition 8.2. The property of σ-compactness is a marrang property.
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Proof. Clearly, σ-compactness satisfies Definition 7.3(i)–(iii).

Let G be a σ-compact group and N an open neighbourhood of the identity e ∈ G.

Then, as G is a regular space, N contains a closed neighbourhood C of e. So, C is

σ-compact. Therefore, G is locally σ-compact.

Let X be a σ-compact space and H = gp(X). Then H =
⋃∞

n=1(X ∪X−1)n and so is

obviously σ-compact, thereby completing the proof.

From Remark 7.5(1), we see that a connected locally σ-compact group G is σ-compact.

Further, the class of all abelian locally σ-compact groups, Lσ, is closed under Q and P

(see Lemma 7.7).

Example 8.3. Every locally compact Hausdorff abelian group G is locally σ-compact

as by the Principal Structure Theorem ([56, Theorem 25]) G has an open subgroup

topologically isomorphic to the σ-compact group Rn × K, K a compact abelian group

and n a non-negative integer.

Remark 8.4. It is of interest to know also that S preserves the property of locally σ-

compact. This can be seen by taking a locally σ-compact group G with open σ-compact

subgroup H and K a closed subgroup of G. Then K ∩H is a closed subgroup of H and is

therefore σ-compact. So K has K ∩ H as an open σ-compact subgroup and so is locally

σ-compact.

Proposition 8.5. The variety V(Lσ) contains no infinite-dimensional Banach spaces.

Proof. Let B be a Banach space in V(Lσ). By Corollary 7.9, B ∈ V(Cσ). The result

follows from Proposition 6.5.

Proposition 8.5 shows that V(Lσ) is a proper subvariety of A.

In Proposition 6.7 we saw that the variety generated by the class of all abelian σ-

compact groups is not closed under completions. Using exactly the same argument, we

have the following result.

Proposition 8.6. The variety V(Lσ) is not closed under completions.

Proposition 8.7. The variety V(Lσ) properly contains both V(LA) and V(Cσ).

Proof. From Example 8.3 it is clear that V(LA) is contained in V(Lσ). Note that V(LA)

is closed under completions (see Lemma 6.14) while V(Lσ) is not, hence establishing

proper containment.

As σ-compactness is a marrang property, V(Cσ) is contained in V(Lσ). Noting that

V(Lσ) contains all discrete abelian groups (indeed, all groups in LA) while V(Cσ) con-

tains no uncountable discrete abelian groups (Proposition 6.5), we again have proper

containment.

Theorem 8.8. Consider the variety V(Lσ). Then

V(Lσ) = V(Cσ ∪ D) = V(Cσ ∪ LA).
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Proof. By Proposition 8.2, σ-compactness is a marrang property. Therefore, by Theo-

rem 7.10, V(Lσ) = V(Cσ ∪ D). As all abelian σ-compact groups and all locally com-

pact Hausdorff abelian groups are locally σ-compact (see Example 8.3), we see that

V(Cσ ∪ D) ⊆ V(Cσ ∪ LA) ⊆ V(Lσ) and the result follows.

This completes the proof of Theorem C.

9. Separable and locally separable groups

In this section, we extend Theorem C to the following.

Theorem D.

A = V(B)
∣∣∣

V(LS) = V(S ∪ D) = V(S ∪ Lσ)
/ ∖

V(Cσ ∪ LA) = V(Cσ ∪ D) = V(Lσ) V(S) = V(BS) = V(ℓ1)
/ ∖ /

V(DR) = V(LA) V(Cσ)
∣∣∣

∣∣∣

V(D) V(Kω) = V(FA[0, 1])

We will make use of the following well-known result, the proof of which is straightfor-

ward.

Lemma 9.1. Let G be an abelian topological group algebraically generated by a separable

subspace X. Then G is separable.

The next separability result concerning FA(X) follows immediately from Lemma 9.1

Corollary 9.2. Let (X, ρ) be a separable pseudometrizable (hence completely regular)

topological space. Let F be the free abelian group on X \ {e} for some e ∈ X, and let ρ′

be the Graev extension of ρ onto F . Then (F, ρ′) is separable.

Remark 9.3. We note that open subspaces of separable spaces are separable and all

subspaces of separable metrizable spaces are separable.

Recall the fact that every separable Banach space is a quotient group of the separable

Banach space ℓ1 [15]. Thus we have the following result.
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Proposition 9.4. The variety of topological groups, V(ℓ1), generated by the topological

group underlying the separable Banach space ℓ1 is precisely V(BS).

Remark 9.5. Let (X, d) be a metric space and let F be the free abelian group on the

set X \ {e}, for e ∈ X. Let d′ be the Graev extension of d to F . In Corollary 3.4 of [38]

it was proved that (F, d′) is a topological group which is topologically isomorphic to a

subgroup of a Banach space.

Proposition 9.6. Let X be a separable completely regular topological space. Then FA(X)

is contained in V(ℓ1).

Proof. Let {ρi : i ∈ I} be the family of all continuous pseudometrics on X. Clearly

each (X, ρi) is a separable space. Let (Yi, di) be the metrification of (X, ρi) for each

i ∈ I. Then (Yi, di) is separable metrizable. Further, let Fi be the free abelian group on

Yi \ {ei} and let d′i be the Graev extension of di onto Fi. From Corollary 9.2, (Fi, d
′
i)

is separable and by Remark 9.5, (Fi, d
′
i) is a topological group which is topologically

isomorphic to a subgroup of a Banach space, indeed, a separable Banach space. There-

fore, (Fi, d
′
i) ∈ V(BS) = V(ℓ1). Now FA(X) is topologically isomorphic to a subgroup

of the product H =
∏

i∈I(|FA(X)|, ρ′i), where |FA(X)| is the group underlying FA(X)

and ρ′i is the Graev extension of ρi for each i ∈ I (see Lemma 3.3). By Proposition 4.4,

(Fi, d
′
i) is the metrification of (|FA(X)|, ρ′i) and so H can be embedded in the product∏

i∈I(Fi, d
′
i) × L, where L is an indiscrete abelian group. Now, R is a separable Ba-

nach space, so R, T ∈ V(ℓ1). Therefore, by Proposition 2.2, L is contained in V(ℓ1),

thus, FA(X) can be embedded as a topological group in a product of topological groups

contained in V(ℓ1) giving FA(X) ∈ V(ℓ1).

Theorem 9.7. V(ℓ1) = V(BS) = V(S).

Proof. We have already established that V(ℓ1) = V(BS).

Clearly, V(ℓ1) ⊆ V(S). Let G be an abelian separable topological group. By Propo-

sition 9.6, FA(G) ∈ V(ℓ1). Now G is a quotient group of FA(G) and so G ∈ V(ℓ1).

Therefore, S ⊆ V(ℓ1) and thus V(S) = V(ℓ1).

Although V(ℓ1) contains all separable topological groups, it does not contain any

non-separable normed vector spaces.

Lemma 9.8. Any normed vector space contained in V(S) is separable.

Proof. Firstly, by Theorem 9.7, V(S) = V(ℓ1). Let N be a normed vector space in V(ℓ1).

We note that ℓ1 is a separable metric topological group and the class of all separable

metrizable groups is a palirika class. So by Lemma 6.4(ii), N is separable.

Proposition 9.9. Let X be a σ-compact completely regular topological space. Then

FA(X) is contained in V(S).

Proof. Let {ρi : i ∈ I} be the family of all continuous pseudometrics on X. Clearly

each (X, ρi) is a σ-compact pseudometrizable space and is therefore separable. We know

that FA(X) is topologically isomorphic to a subgroup of the product
∏

i∈I(|FA(X)|, ρ′i),
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where |FA(X)| is the group underlying FA(X) and ρ′i is the Graev extension of ρi for

each i ∈ I. By Corollary 9.2, (|FA(X)|, ρ′i) is separable for each i ∈ I, and therefore

contained in V(S). Hence, FA(X) ∈ V(S).

Theorem 9.10. The variety V(S) properly contains V(Cσ).

Proof. Let G be an abelian σ-compact group. By Proposition 9.9, FA(G) is contained

in V(S). Further G is a quotient group of FA(G) and so contained in V(S). There-

fore, V(Cσ) ⊆ V(S). By Proposition 6.5, V(Cσ) only contains finite-dimensional Banach

spaces. However, V(S) contains ℓ1, and so V(Cσ) is a proper subvariety of V(S).

Proposition 9.11. The variety V(S) is not contained in, nor does it contain, V(Lσ).

Proof. By Proposition 8.5, V(Lσ) contains no infinite-dimensional Banach spaces

and so V(S) is not contained in V(Lσ). On the other hand, ℓ1 is a separable metriz-

able topological group and so has cardinality c (ℓ1 is a subspace of [0, 1]ℵ0 ; see [33,

Chapter 4, Theorem 17]). Thus, ℓ1 is a T (c+)-group, where c+ is the smallest cardinal

strictly greater than c, and so every topological group contained in V(S) = V(ℓ1) is

a T (c+)-group; that is, every discrete group contained in V(S) has cardinality strictly

less than c+. However, V(Lσ) contains every discrete group and so is not contained

in V(S).

We see now that although V(S) contains V(Cσ), it does not contain V(LA). Thus

we introduce the concept of locally separable topological groups, to find a variety that

contains all locally σ-compact groups and all separable abelian topological groups.

Definition 9.12. A topological space G is said to be locally separable if each neighbour-

hood of each point contains a separable neighbourhood of that point.

Proposition 9.13. The property of separability is a marrang property.

Proof. Clearly, separability satisfies Definition 7.3(i)–(iii).

Let G be a separable group and H an open neighbourhood of G. As open subspaces

of separable spaces are separable, H is a separable neighbourhood of e. Therefore, G is

locally separable. Lemma 9.1 completes the proof.

As a direct consequence of Proposition 9.13, S ⊆ V(LS). Also a connected locally

separable group G is separable. Further, the class of all abelian locally separable groups,

LS , is closed under Q and P .

Corollary 9.14. The variety V(LS) properly contains V(S).

Proof. As separability is a marrang property, V(S) is contained in V(LS). Proper con-

tainment follows by noting that V(LS) contains all discrete groups (Remark 7.5(3)) while

V(S) contains only discrete groups of cardinality strictly less than c+ (see the proof of

Proposition 9.11).

Theorem 9.15. Consider the variety V(LS). Then

V(LS) = V(S ∪ D) = V(S ∪ Lσ).
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Proof. By Proposition 9.13, separability is a marrang property. Therefore, by Theo-

rem 7.10, V(LS) = V(S ∪ D). Theorem 9.10 clearly implies that Cσ ⊆ V(S), and so

V(Cσ∪D) ⊆ V(S∪D). Further, by Theorem 8.8, V(Cσ∪D) = V(Lσ), giving Lσ ⊆ V(S∪D)

= V(LS). Thus, as D ⊆ Lσ, V(S ∪ D) ⊆ V(S ∪ Lσ) ⊆ V(LS) and the result follows.

Corollary 9.16. The variety V(Lσ) is properly contained in V(LS).

Proof. From Theorem 9.15, V(Lσ) ⊆ V(LS). Recall that V(Lσ) contains no infinite-

dimensional Banach spaces (Proposition 8.5). Now all separable Banach spaces are locally

separable and contained in V(LS). Therefore, V(Lσ) is properly contained in V(LS).

Remark 9.17. As separability is a marrang property, we can apply Corollary 7.9 to a

normed vector space N contained in V(LS) and see that N ∈ V(S). However, by Lemma

9.8, N is separable. Therefore, V(LS) clearly does not contain all normed vector spaces

and so is properly contained in A.

This completes the proof of Theorem D.

10. Locally-m groups

In this section, we complete the proof of the Main Theorem. The “missing link” is a

chain of varieties generated by classes of locally-m groups, m an infinite cardinal (see

Example 7.6).

Proposition 10.1. Let m be an infinite cardinal. A normed vector space N is in V(Lm)

if and only if the cardinality of N is less than or equal to m.

Proof. Note that having cardinality less than or equal to m is a marrang property, and

the class, Mm, of all abelian topological groups of cardinality less than or equal to m is

a palirika class. Let N be a normed vector space. By Corollary 7.9, N is in V(Lm) if and

only if N is in V(Mm). Finally, if N ∈ V(Mm) then, by Lemma 6.4(ii), N ∈ Mm and

the result follows.

Remark 10.2. Let m be an infinite cardinal number greater than or equal to c. Observe

that there exists a normed vector space N of cardinality m. If m = c choose N = R. For

m > c, let I be an index set of cardinality m, X =
∏

i∈I Xi, where each Xi = [0, 1], and

let C(X) be the Banach space of all continuous functions X → R. C(X) has dimension

greater than or equal to m. So choose m linearly independent vectors in C(X) and let

N be the normed vector space spanned by these vectors. Then N has cardinality m.

Proposition 10.3. Let m and n be infinite cardinals greater than or equal to c. Then

V(Lm) is a proper subvariety of V(Ln) if and only if m < n.

Proof. If m < n then, clearly, Lm ⊆ Ln and so V(Lm) ⊆ V(Ln). Now, there exists a

normed vector space N of cardinality n (Remark 10.2) and N ∈ V(Ln). However, by

Proposition 10.1, N 6∈ V(Lm), giving V(Lm) ( V(Ln).

The following theorem immediately follows.
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Theorem 10.4. The class C of varieties of topological groups, V(Lm), ranging over all

infinite cardinals m, is a proper class such that the smallest variety in the class is V(Lc),

and if V1,V2 ∈ C, then V1 is properly contained in V2 or V2 is properly contained in V1.

Proposition 10.5. Let G be an abelian topological group with a neighbourhood of the

identity which is separable. Then G is contained in V(Lc).

Proof. Let {ρ′i : i ∈ I} be the family of all continuous pseudometrics on G. Let U

be a neighbourhood of the identity in G which is separable and let ρ be a continuous

pseudometric on G in which U is a neighbourhood of the identity. We shall consider

{ρi : ρi = ρ′i + ρ, i ∈ I}, a family of continuous pseudometrics on G that also defines

the topology on G. Then G is topologically isomorphic to a subgroup of the product∏
i∈I(G, ρi) and we note that U is a separable neighbourhood of the identity in each

(G, ρi). Let Gi = (G
/
{e}

i

, di) be the metrification of (G, ρi) for each i ∈ I, with fi : G →

Gi the quotient homomorphism from G onto Gi. Theorem 4.1 and Remark 4.2(3) clearly

imply that G is topologically isomorphic to a subgroup of the product
∏

i∈I Gi×H, where

H is an abelian indiscrete group. We note that each Gi has a separable neighbourhood of

the identity in Gi, namely fi(U). Further, fi(U) is metrizable and we know that separable

metrizable topological spaces have cardinality less than or equal to c. Therefore for each

i ∈ I, Gi is an abelian locally-c group and so is in V(Lc). Since T is a locally-c group, by

Proposition 2.2 every indiscrete abelian group is in V(Lc). Therefore, G is in V(Lc), as

required.

Theorem 10.6. The variety V(Lc) properly contains V(LS).

Proof. Since every locally separable topological group has at least one separable neigh-

bourhood of the identity, Proposition 10.5 implies that V(LS) ⊆ V(Lc).

Let N be a normed vector space of cardinality c that is not separable (for example, ℓ∞;

see [70]). From Remark 9.17 we see that V(LS) contains no non-separable normed vector

spaces, and so N 6∈ V(LS). However, N ∈ V(Lc) and the result follows.

Theorem 10.7. Let m be an infinite cardinal number. Then V(Lm) = V(Cm ∪ D).

Proof. The result follows from Example 7.6 and Theorem 7.10.

This completes the proof of our Main Theorem.

Open Question. What is the analogue of the Main Theorem for non-abelian topological

groups?

We make a few observations.

The variety generated by the class of all locally compact groups, LC , is not the

class of all topological groups. Let B be a Banach space contained in V(LC) then it

is contained in SCQSP (LC). Now, QSP (LC) = LC and so B ∈ SC(LC). As B is

abelian, it is contained in SC(LA) and by Theorem 6.17, is finite-dimensional. Using a

similar argument, we can show that a Banach space contained in the variety generated by

all σ-compact groups is finite-dimensional. Therefore, once again, the variety generated

by the class of all σ-compact groups is not the class of all topological groups. Indeed,
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Proposition 10.1 applies to the non-abelian case and therefore for any infinite cardinal m,

V(Lm) is not the class of all topological groups. This is true as there are normed vector

spaces of arbitrary size.

It is by no means obvious that it is trivial to convert the proofs we have presented here

for abelian groups to non-abelian groups. The key difficulty is that we have relied heavily

on the fact that the free abelian topological group topology is equal to the Graev topology,

namely that obtained by extending pseudometrics. Except in exceptional cases, the free

topological group topology is not equal to the Graev topology (see, for example, [62]).

11. Wide varieties of topological groups

The concept of a variety of topological groups is a natural extension of the concept of vari-

ety of groups. An equally natural extension is that of a wide variety of topological groups

where instead of saying the class is closed under quotients, we say the class of topological

groups is closed under continuous homomorphic images, namely the operator H, rather

than (or as well as) Q. Indeed, the alternative definition of variety of groups using laws

extends more satisfactorily to the case of wide varieties. To see this, see [73, 57, 34, 64].

Definition 11.1. Let Ω be a class of topological groups. The operator H is defined on

Ω to give the class of topological groups as follows. The topological group G ∈ H(Ω) if

G is a continuous homomorphic image of a topological group in Ω.

Definition 11.2. A class of topological groups is said to be a wide variety of topological

groups if it is closed under S, H and C [73]. Further, if Ω is a class of topological groups,

the smallest wide variety containing Ω, denoted by W(Ω), is the wide variety generated

by Ω.

Example 11.3.

(a) It is clear that the class of all abelian topological groups is a wide variety of topological

groups as any continuous homomorphic image of an abelian topological group is also

abelian.

(b) Let m be any cardinal number. The class of all T (m)-groups is a wide variety of

topological groups [41]. This is seen by considering a T (m)-group G with continuous

homomorphism f : G → K from G onto K. Clearly, for U an open neighbourhood

of the identity in K, f−1(U) is an open neighbourhood of the identity in G and thus

contains a normal subgroup, N of index strictly less than m. The image f(N) in K

is also a normal subgroup of index strictly less than m and f(N) ⊆ U . Thus, K is a

T (m)-group.

(c) Recall that the class Ω of all topological groups that have the subgroup topology is

a variety of topological groups. Note also that all discrete groups are contained in Ω,

but R is not. Therefore, Ω is not the class of all abelian topological groups. We shall

soon see that any class that contains all discrete groups generates as its wide variety

the class of all abelian topological groups (see Remark 11.11). Therefore, W(Ω) 6= Ω,
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that is, Ω is an example of a class of topological groups that forms a variety, but not

a wide variety of topological groups.

Remark 11.4.

(1) In a manner analogous to that for varieties generated by topological groups, we know

that W(Ω) = HSC(Ω) [73]. It also indicates that just as with varieties generated by

classes of topological groups, any topological group contained in the smallest wide

variety can be obtained by just one application of each of the operators H, S and C.

(2) Let Ω be a class of topological groups. Note that a quotient group of a topological

group G is a continuous image of G and so it is clear that the variety generated by

Ω is contained in the wide variety generated by Ω.

Proposition 11.5. Let Ω be a class of topological groups and let G ∈ W(Ω). Then G is

a continuous one-to-one homomorphic image of G′ where G′ ∈ V(Ω).

Proof. By the definition of W(Ω), G ∈ HSC(Ω). Therefore, G is a continuous homo-

morphic image of K ∈ SC(Ω). Let f : K → G be the continuous homomorphism of K

onto G and let T be the given topology on G. Further, let T ′ be the quotient topology

induced on |G| by f . Clearly, (|G|, T ′) = G′ is a quotient group of K and so is contained

in V(Ω). Finally, we note that T ′ is finer than T and so the identity mapping i : G′ → G

is a continuous, one-to-one homomorphism, giving the result.

We present a number of useful corollaries to Proposition 11.5.

Corollary 11.6. Let Ω be a class of topological groups. A discrete group D is contained

in W(Ω) if and only if D ∈ V(Ω).

Proof. Clearly, if D ∈ V(Ω), then D ∈ W(Ω). Let D ∈ W(Ω). By Proposition 11.5, D is

a continuous one-to-one homomorphic image of a group G ∈ V(Ω). As the topology on G

is finer than the topology on D, G must be a discrete group. Therefore, D is topologically

isomorphic to G and so D ∈ V(Ω).

Corollary 11.7. Let E be a locally convex Hausdorff topological vector space contained

in W(R), the wide variety generated by R. Then E ∈ V(R).

Proof. By Proposition 11.5, there exists a topological group G ∈ V(R) such that E is a

continuous, one-to-one homomorphic image of G; that is, there exists f : G → E such

that f is a continuous isomorphism. Let D be a discrete subgroup of E, then f−1(D) is

a discrete subgroup of G. By Lemma 6.19 f−1(D) is finitely generated and hence D is

finitely generated. Therefore, by the main Theorem of [44], E has the weak topology and

so is contained in V(R).

Notation. We denote by I the operation of formation of continuous, algebraically iso-

morphic images, so that H = IQ.

Corollary 11.8. Let Ω be a non-empty class of abelian topological groups. If G is a

Hausdorff topological group in W(Ω), then G ∈ ISCQP (Ω).
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Proof. By Proposition 11.5, G is a continuous, one-to-one image of K ∈ V(Ω). As G is

Hausdorff, K must be Hausdorff, so K ∈ SCQP (Ω) and so G ∈ ISCQP (Ω).

We have presented here a very brief overview of wide varieties, giving only those

results that are needed in this section. More information on wide varieties can be found

in the work of Taylor [73] and that of Kopperman, Mislove, Morris, Nickolas, Pestov and

Svetlichny in [34] and that of Morris, Nickolas and Pestov in [64].

The first two wide varieties of topological groups we consider are the wide variety

generated by the class of all Banach spaces and the wide variety generated by the class

of all locally compact abelian groups. For both classes, we easily characterize the wide

varieties they generate.

Remark 11.9. We know that V(B), the variety generated by the class of all topological

groups underlying Banach spaces, is exactly the variety of all abelian topological groups.

Thus, W(B) = V(B) = A, where A is the variety of all abelian topological groups.

Proposition 11.10. The wide variety of topological groups generated by the class of all

locally compact abelian groups is precisely the variety of all abelian topological groups.

Proof. Clearly, W(LA) ⊆ A, where LA is the class of all locally compact abelian groups

and A is the variety of all abelian topological groups. Let G be an abelian topologi-

cal group and let |G|D be the group underlying G equipped with the discrete topology.

Clearly, |G|D is contained in LA and the identity homomorphism i : |G|D → G is contin-

uous. Therefore, G ∈ W(LA) and so A ⊆ W(LA), giving the result.

Note it follows immediately from Remark 11.4(2), Theorem 6.17 and Proposition

11.10 that V(LA) ( W(LA).

Remark 11.11. We note that if a class Ω of topological groups contains LA—even D,

the class of all discrete abelian groups—then W(Ω) is the variety of all abelian topolog-

ical groups. Therefore, considering the diagram in our Main Theorem, we see that the

following wide varieties of topological groups are all equal to the variety of all abelian

topological groups.

(i) W(B), generated by all Banach spaces;

(ii) W(Lm), generated by all locally-m groups for m ≥ c;

(iii) W(LS), generated by all locally separable groups;

(iv) W(Lσ), generated by all locally σ-compact groups;

(v) W(LA), generated by all locally compact abelian topological groups;

(vi) W(D), generated by all discrete abelian topological groups.

The wide variety generated by FA[0, 1] turns out to be the most interesting of the wide

varieties in question. From Theorem A it follows trivially that W(FA[0, 1]) = W(Kω).

Proposition 11.12. The wide variety of topological groups generated by FA[0, 1] con-

tains all countable abelian topological groups.

Proof. Clearly, every countable discrete abelian topological group is a kω-group and by

Theorem A is contained in V(FA[0, 1]). Every countable abelian topological group G
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is a continuous homomorphic image of |G|D, the group underlying G with the discrete

topology, and as |G|D ∈ V(FA[0, 1]) ⊆ W(FA[0, 1]), the result follows.

We will shortly show that W(Cσ) = W(FA[0, 1]). To do this, we need the following

two lemmas.

Lemma 11.13. Let X be a σ-compact space. Then there exists a kω-space Y such that X

is the continuous image of Y .

Proof. Let X =
⋃∞

n=1 Xn where each Xn is compact. Let Hn be a homeomorphic copy

of Xn, disjoint from H1, . . . , Hn−1, with fn : Hn → Xn the corresponding homeomor-

phism. Let Y =
⊔∞

n=1 Hn be the free union of the Hn. Now, let Yn = H1 ⊔ · · · ⊔ Hn,

and note that each Yn is compact. Clearly, Y =
⋃∞

n=1 Yn and we will show that with this

decomposition, Y is a kω-space. Let A be a subset of Y such that A ∩ Yn is compact for

each n ∈ N. Clearly, for each i ∈ N, A ∩ Hi is compact and so Hi \ A is open in Hi,

indeed, Hi \ A is open in Y . Noting that Y \ A =
⋃∞

i=1 (Hi \ A), A is closed in Y . So

Y =
⋃∞

n=1 Yn is a kω-decomposition of Y . Finally, let f : Y → X be the mapping defined

as follows. If y ∈ Y then y ∈ Hn for some n ∈ N and so define f(y) = fn(y). The mapping

f is clearly onto, and for an open set U in X, f−1(U) =
⋃∞

n=1 f−1
n (U), which is open in

Y . Therefore, X is the continuous image of Y , a kω-space.

The following result is analogous to Lemma 3.4:

Lemma 11.14. Let X and Y be completely regular spaces such that there exists a contin-

uous mapping φ : X → Y from X onto Y . Then there exists a continuous homomorphism

Φ : FA(X) → FA(Y ) from FA(X) onto FA(Y ).

Proof. Let Φ be the continuous homomorphism from FA(X) into FA(Y ) that extends

naturally from φ, according to the definition of a free abelian topological group. To

show that Φ is an onto homomorphism, take w ∈ FA(Y ) such that w = yε1

1 . . . yεn
n ,

yi ∈ Y and εi = ±1 for each i = 1, . . . , n. For each yi, there exists an xi ∈ X such that

φ(xi) = Φ(xi) = yi. Further,

Φ(xε1

1 . . . xεn

n ) = Φ(x1)
ε1 . . . Φ(xn)εn = yε1

1 . . . yεn

n = w.

Therefore, Φ is an onto continuous homomorphism.

Theorem 11.15. The wide variety of topological groups generated by FA[0, 1] is equal to

the wide variety generated by Cσ, the class of all abelian σ-compact groups.

Proof. As FA[0, 1] is a kω-group, it is σ-compact and so FA[0, 1] ∈ W(Cσ) giving

W(FA[0, 1]) ⊆ W(Cσ). Now, let G be an abelian σ-compact group then by Lemma

11.13, there exists a kω-space X such that G (as a topological space) is a continuous

image of X. Further, FA(G) is a continuous homomorphic image of FA(X), by Lemma

11.14. We know that FA(X) is a kω-group (see [35, Corollary 1]) and therefore is con-

tained in V(FA[0, 1]) and hence also in W(FA[0, 1]). Thus, FA(G) ∈ W(FA[0, 1]) and

as G is a quotient group of FA(G) (Remark 3.2(5)), G ∈ W(FA[0, 1]) also. Hence,

W(Cσ) ⊆ W(FA[0, 1]) and the result follows.

From Theorems 11.15 and B it is clear that V(FA[0, 1]) ( W(FA[0, 1]).
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Definition 11.16 ([15]). Let X be a completely regular space. A topological group

FLCS(X) is said to be a free locally convex topological vector space on the space X if it

has the following properties:

(1) X is a subspace of FLCS(X);

(2) X is a (vector space) basis for FLCS(X);

(3) for any continuous mapping φ of X into any locally convex topological vector space

V , there exists a continuous linear transformation Φ of FLCS(X) into V such that

Φ(x) = φ(x) on X.

The following theorem is not an obvious result. It shows that for a completely regular

space X, FA(X) is a subgroup of FLCS(X).

Theorem 11.17 ([75, Theorem 3]; [76]). Let X be a completely regular Hausdorff space

and let FLCS(X) be the free locally convex topological vector space on X. Then the

subgroup of FLCS(X) that is algebraically generated by X is (with the induced topology)

topologically isomorphic to the free abelian topological group on X.

Theorem 11.18. W(FLCS[0, 1]) = W(FA[0, 1]).

Proof. In FLCS[0, 1], for n ∈ N define the set An = {λt : λ ∈ [−n, n], t ∈ [0, 1]}. Further,

for m ∈ N, define mAn = An + · · · + An (m terms). Note that each mAn is compact.

Further,

FLCS[0, 1] =
∞⋃

n=1

∞⋃

m=1

mAn

Therefore, FLCS[0, 1] is σ-compact. Thus, W(FLCS[0, 1]) ⊆ W(Cσ) = W(FA[0, 1]). To

complete the proof, we note that [0, 1] is completely regular and so by Theorem 11.17,

FA[0, 1] ∈ W(FLCS[0, 1]).

In summary, the following wide varieties are all equal:

(i) W(FA[0, 1]), the wide variety generated by FA[0, 1];

(ii) W(Kω), the wide variety generated by the class of all abelian kω-groups;

(iii) W(Cσ), the wide variety generated by the class of all abelian σ-compact groups.

(iv) W(FLCS[0, 1]), the wide variety generated by FLCS[0, 1].

Earlier, we considered the variety of topological groups generated by S, the class of

all separable abelian groups. We now examine W(S).

Recall that a Polish space is a separable complete metrizable space [7]. For example,

P, the set of irrationals with the topology induced from R, is a Polish space. A topological

space is said to be a Suslin space if it is metrizable and is a continuous image of a Polish

space. Note that Rℵ0 , indeed every separable Banach space, is a Polish space and hence

a Suslin space.

Remark 11.19. It can be shown (cf. [7, p. 261, 6(a)]) that if X is a Suslin space, then

X is a continuous image of Nℵ0 , indeed of P, where P is the set of irrationals with the

induced topology from R.
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Proposition 11.20. The following wide varieties of topological groups are equal:

(i) W(ℓ1);

(ii) W(BS), where BS is the class of all separable Banach spaces;

(iii) W(S), where S is the class of all separable abelian topological groups;

(iv) W(FA(Rℵ0)), where FA(Rℵ0) is the free abelian topological group on Rℵ0 ;

(v) W(FA(P)), where FA(P) is the free abelian topological group on P.

Proof. From Theorem 9.7, the first three wide varieties are clearly equal.

As Rℵ0 is a Polish space, Proposition 9.6 and Remark 11.4(2) imply that FA(Rℵ0) ∈

V(ℓ1). We also know that FA(ℓ1) is topologically isomorphic to FA(Rℵ0) as ℓ1 is hom-

eomorphic to Rℵ0 (see [29, Part I, Section 2]). Therefore, ℓ1 ∈ V(FA(Rℵ0)), giving

V(ℓ1) = V(FA(Rℵ0)), indeed W(ℓ1) = W(FA(Rℵ0)).

We now note that as ℓ1 is a separable Banach space, it is a Suslin space. So there

exists a continuous surjective mapping, f : P → ℓ1, which extends to a continuous

homomorphism F of FA(P) onto ℓ1. Hence, ℓ1 ∈ W(FA(P)) and W(ℓ1) ⊆ W(FA(P)).

Equality follows from Proposition 9.6 and Remark 11.4(2).

We note now that W(S) = W(ℓ1) is not the wide variety of all abelian topological

groups.

Proposition 11.21. The wide variety generated by ℓ1 is properly contained in the wide

variety of all abelian topological groups.

Proof. Recall that ℓ1 has cardinality c and so every topological group contained in V(ℓ1)

is a T (c+)-group. By Corollary 11.6, a discrete group contained in W(ℓ1) must also

be contained in V(ℓ1); that is, every discrete group contained in W(ℓ1) has cardinality

strictly less than c+. Therefore, W(ℓ1) does not contain all discrete abelian topological

groups and is therefore properly contained in the wide variety of all abelian topological

groups.

We now summarize our wide variety results in the following theorem.

Theorem E.

A = W(B) = W(D) = W(LA) = W(Lσ) = W(LS) = W(Lm), for all m ≥ c

/ ∖

W(FA[0, 1]) = W(Kω) = W(Cσ) W(S) = W(BS) = W(ℓ1)

= W(FLCS[0, 1]) = W(FA(P)) = W(FA(Rℵ0))

Concerning the previous theorem, note that although we know that W(Cσ) ⊆ W(S),

deduced from the main theorem of this paper, we do not know the full relationship

between W(Cσ) and W(S). We leave this as an open question.

Open Question. In the structure given in the Main Theorem, we saw that V(Cσ) is

properly contained in V(S), the variety generated by the class of all separable abelian
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topological groups. Thus, it is clear that W(Cσ) ⊆ W(S). However, the question remains

whether these two wide varieties are equal.

Note that we already know that W(Cσ) = W(FA[0, 1]) and W(S) = W(FA(Rℵ0)).

Therefore our question of whether W(Cσ) equals W(S) can be reduced to whether

W(FA[0, 1]) equals W(FA(Rℵ0)), that is, whether FA(Rℵ0) ∈ W(FA[0, 1]).

Recall that V(FA[0, 1]) is closed under completions, but V(Cσ) is not. An alternative

way of considering this open question is to determine whether W(FA[0, 1]) = W(Cσ) is

closed under completions or not.
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